
UC Berkeley
UC Berkeley Previously Published Works

Title
Figure 1 Theory Meets Figure 2 Experiments in the Study of Gene Expression.

Permalink
https://escholarship.org/uc/item/8zc7f81p

Authors
Phillips, Rob
Belliveau, Nathan
Chure, Griffin
et al.

Publication Date
2019-05-06

DOI
10.1146/annurev-biophys-052118-115525
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8zc7f81p
https://escholarship.org/uc/item/8zc7f81p#author
https://escholarship.org
http://www.cdlib.org/


Figure 1 Theory Meets Figure 2 Experiments in the Study of 
Gene Expression

Rob Phillips1,2, Nathan M. Belliveau3,4, Griffin Chure2, Hernan G. Garcia5, Manuel Razo-
Mejia2, Clarissa Scholes6

1Department of Physics, California Institute of Technology, Pasadena, California, USA

2Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, 
California, USA

3Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA

4Department of Biology, University of Washington, Seattle, Washington 98195, USA

5Department of Molecular & Cell Biology, Department of Physics, Biophysics Graduate Group, 
and Institute for Quantitative Biosciences-QB3, University of California, Berkeley, California, USA

6Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA

Abstract

It is tempting to believe that we now own the genome. The ability to read and rewrite it at will has 

ushered in a stunning period in the history of science. Nonetheless, there is an Achilles’ heel 

exposed by all of the genomic data that has accrued: We still do not know how to interpret them. 

Many genes are subject to sophisticated programs of transcriptional regulation, mediated by DNA 

sequences that harbor binding sites for transcription factors, which can up- or down-regulate gene 

expression depending upon environmental conditions. This gives rise to an input-output function 

describing how the level of expression depends upon the parameters of the regulated gene—for 

instance, on the number and type of binding sites in its regulatory sequence. In recent years, the 

ability to make precision measurements of expression, coupled with the ability to make 

increasingly sophisticated theoretical predictions, has enabled an explicit dialogue between theory 

and experiment that holds the promise of covering this genomic Achilles’ heel. The goal is to 

reach a predictive understanding of transcriptional regulation that makes it possible to calculate 

gene expression levels from DNA regulatory sequence. This review focuses on the canonical 

simple repression motif to ask how well the models that have been used to characterize it actually 

work. We consider a hierarchy of increasingly sophisticated experiments in which the minimal 

parameter set learned at one level is applied to make quantitative predictions at the next. We show 

that these careful quantitative dissections provide a template for a predictive understanding of the 

many more complex regulatory arrangements found across all domains of life.
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Hic rhodus, hic salta.

–Aesop’s Fables

1. INTRODUCTION

The study of transcriptional regulation is one of the centerpieces of modern biology. It was 

set in motion by the revolutionary work of Jacob and Monod in the postwar era, which 

culminated in their elucidating the concept of transcriptional regulation in the early 1960s 

(42, 65, 66), and it has continued apace ever since. Based on their study of the lac operon 

and regulation of the life cycle of bacterial viruses, Jacob and Monod hypothesized that 

transcription was controlled using a mechanism sometimes known as the repressor-operator 

model, in which repressive factors bind to promoters at sites called operators to prevent 

activation of genes. Here, we refer to this regulatory architecture as the simple repression 

motif.

Jacob and Monod suspected that there would be a universal mechanism for transcriptional 

regulation that followed the strictures of the repressor-operator model; indeed, simple 

repression, defined diagrammatically in Figure 1a, has since been shown to have widespread 

applicability, as seen in Figure 1b. However, transcriptional reality is—as is usually the case 

in biology—far more complicated (13), and, as Figure 1 reveals, many genes are in fact 

subject to both negative and positive regulation. Ironically, the genetic circuit used by 

Monod to formulate the repressor-operator model—the lac operon shown in Figure 2—is 

itself subject to positive regulation, which shows the repressor-operator model to be 

incomplete (27, 117).

The lac operon is one of the canonical case studies learned by high school and college 

students alike when they are first introduced to the logic of gene regulation in modern 

molecular and cellular biology (2, 68). Figure 2 shows in cartoon form how the gene that 

encodes the enzyme for digesting lactose is activated only when lactose is present and 

glucose is absent. This textbook case of transcriptional regulation has been studied to death, 

but how well do we really understand it? The sketch in Figure 2 is a broad-brush view of 

transcriptional control at the lac operon, but it gives us no sense of how the level of gene 

expression is affected by, for example, changing the copy numbers of the LacI and CRP 

transcription factors, changing the positioning of the operator, or titrating the relative 

concentrations of glucose and lactose. We argue that achieving real understanding of this 

system requires that we be capable of making precise and quantitative predictions about its 

regulatory response as a function of all these parameters, and then that we be able to confirm 

these predictions experimentally.

How could we achieve this mastery? First, we would need theoretical models able to provide 

quantitative predictions that can be tested with careful experiments. Importantly, both the 

predictions and the experiments themselves would need to access the same underlying knobs 
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to control the level of gene expression. Second, we would need to start with the simplest of 

regulatory architectures. If we are unable to understand the most basic regulatory kernel, 

then we have no hope of doing so for more complex regulatory circuits. Third, to dissect 

more subtle features of a regulatory circuit—for instance, to understand how expression 

noise depends on changing parameters—we must be able to use quantitative information 

gleaned from one type of experiment to formulate further predictions that are tested in 

subsequent experiments of a different type. Therefore, we would need to conduct all these 

experiments in the same system and under standardized conditions.

This review summarizes such an approach, which we have taken in our own laboratory over 

the past decade. We discuss how, working with a set of specifically designed synthetic 

constructs and challenging theoretical models with experiments, we have been able to tackle 

increasingly subtle behaviors of the simple repression architecture in Escherichia coli. The 

strategy that we have taken results in a pyramidal structure, as shown in Figure 3, in which 

parameters inferred at one level are used to make quantitative predictions about gene 

expression behavior in successive, more sophisticated experiments.

At the foundation of the simple repression pyramid are experiments to determine how gene 

expression responds to changes in operator strength and repressor copy number. With this 

information in hand, we can then consider the entire distribution of expression levels among 

a population of cells, as opposed to simply the average expression. At the next level in the 

hierarchy, we address a number of subtle and beautiful effects that arise when there is more 

than one copy of our gene of interest or competing binding sites for the repressor elsewhere 

on the genome (or on plasmids). This repressor titration effect provides a very stringent test 

of our understanding of the simple repression motif. Of course, much of gene expression is 

dictated by the presence of environmental signals, and the next level in the simple repression 

pyramid is to ensure that these same kinds of predictive models can describe induction of 

transcription. Furthermore, changes in the environment such as media quality or growth 

temperature certainly have an effect on the bacterial doubling rate. The next challenge is 

then to retain predictive power by describing how these different conditions affect the 

magnitude of parameters that are the basis of these models, such as repressor copy number 

and binding energy. Finally, evolution of transcription acts at the level of both transcription 

factor binding sites and the transcription factors that bind to them. Ultimately, the simple 

repression pyramid will be topped off by learning the rules that relate transcriptional 

regulation to fitness (7, 35, 54, 60). At every level in the pyramid, we demand that the 

parameters be self-consistent. That is, regardless of how our experiments are done or which 

new question we ask, the same minimal parameter set is used without recourse to new fits 

for each new experiment.

Note that this article is not a review of a field; rather, it is a review of a concept, in which 

one minimal parameter set is asked to describe all measurements on a particular realization 

of the simple repression motif. This objective is not served by an approach in which different 

measurements are taken from disparate sources on different strains under different 

conditions. We focus instead on measurements made using the same strains under the same 

growth conditions throughout, and this renders the discussion highly self-referential. But 

everything that we have done was enabled by beautiful work that has come before and 
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inspired by wonderful experiments since; we point the reader toward as much of this 

literature as possible.

The goal of this review is to address whether, for simple repression, we have reached a self-

consistent theoretical picture that stands up to careful experimental scrutiny. After an 

overview of regulatory architectures in E. coli, and the simple repression motif in particular, 

we describe our systematic effort to make the strains, tune the relevant knobs, and make the 

high-precision measurements that enable us to test theoretical predictions about how the 

simple repression architecture behaves. In the following sections, we then address the key 

critiques of the theoretical framework, before stepping back to discuss what our results entail 

for future efforts in understanding gene regulation. We argue that we have achieved 

significant success using this hierarchical approach and that it provides hope for 

understanding other, more complex, gene regulatory circuits. Indeed, the great work done by 

others in lac (52, 90, 110), MarA (3, 62), GalR (96, 97, 105), Lambda (23, 24, 79, 116), and 

AraC (93) lends itself to providing the fundamental stepping stones for building other 

transcriptional pyramids.

2. THE REGULATORY LANDSCAPE IN ESCHERICHIA COLI AND THE 

UBIQUITOUS SIMPLE REPRESSION ARCHITECTURE

Despite the dominance of E. coli as a model system for studying gene regulation, we 

remarkably have little or no idea how most of its genes are controlled. As Figure 4 

demonstrates, for the majority of genes, we do not know the identity of the transcription 

factors that turn them on/off, where the binding motifs for those transcription factors are, or 

what the regulatory logic is (at the most basic level, whether they are controlled by 

repressors, activators, or a combination of both). Figure 1 provides an incomplete, but state-

of-the-art picture of our current knowledge of the regulatory landscape by showing the 

distribution of different architecture types in E. coli. Shortly after the elucidation of the 

repressor-operator model [the (0, 1) motif] that introduced the simple repression architecture 

that we focus on here, the idea of activation as a regulatory mechanism also took root. But as 

we see in Figure 1b, at the time of this writing, most genes in E. coli are annotated as 

unregulated. This sounds counterintuitive, but for many genes it likely reflects ignorance of 

the binding motifs and regulators, as opposed to actual lack of any regulation. Simple 

repression (along with simple activation) comes in as the next most prevalent architecture, 

and we now turn our attention there.

Simple repression is a common regulatory motif in E. coli (89), but we know little of the 

general principles by which it is used. To tackle this, we used annotated regulatory 

information from RegulonDB (30) to survey 156 promoters with a simple repression 

architecture, controlled by 50 different transcription factors. We first wanted to know how 

the concentrations of these regulators change under different growth conditions, and how 

this relates to their probability of binding to the promoters in question

To characterize each promoter, we used published data that quantified protein abundance 

across the bacterial proteome under various growth conditions using either ribosomal 

profiling or mass spectrometry (58, 95). Figure 5a shows the distribution of repressor and 

Phillips et al. Page 4

Annu Rev Biophys. Author manuscript; available in PMC 2020 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activator copy numbers genome wide, while Figure 5b shows the copy numbers for just 

those repressors that target the (0, 1) architectures in which we are interested. The 

transcription factors vary in copy number from 0 to about 10,000 per cell. Of the repressors, 

just over half of them bind 10 or fewer binding sites, while some target over 100 binding 

sites across the genome (Figure 5e). Given the wide range in repressor copy number, we 

wondered whether it related to the number of target binding sites that exist for each of these 

repressors in the genome. Indeed, when we calculated the ratio between protein copy 

number and number of target binding sites for each transcription factor (as indicated by the 

dashed lines in Figure 5b), we found a median ratio of about 15 transcription factor copies 

per binding site. The majority of the transcription factors (about 80%) have no more than 

100 copies per binding site. Given that the number of transcription factors per binding site is 

on the order of 10–100, we can infer that their typical effective binding constants (defined in 

detail below) are in the 10–100 nM range, since 1 copy of a protein per bacterial cell 

corresponds to a concentration of roughly 1 nM.

We next asked how these simple repression promoters are regulated by the transcriptional 

repressors that control them. It might be the case that the promoters respond to changes in 

repressor copy number; alternatively, the copy number may remain constant, but a repressor 

may be induced by an external signal to switch to an active state. Using mass spectrometry 

measurements of protein copy number across 22 growth conditions (varying carbon source, 

minimal versus rich media, temperature, pH, growth phase, osmotic shock, and growth in 

chemostats), Schmidt et al. (95) had found that most repressor copy numbers vary less 

dramatically as a function of growth condition when compared to the changes in copy 

numbers across the entire proteome (Figure 5c). Figure 5d gives a quantitative picture of the 

variability in transcription factor copy number for the repressors that target simple 

repression architectures. Most repressors exhibit a low coefficient of variation (standard 

deviation/mean copy number) in their abundance across these growth conditions (median 

coefficient of variation of 0.33, compared with 0.51 across the entire proteome). In Figure 6, 

we replot these data to show how the total proteome changes as a function of growth rate, as 

compared to how the total number of transcription factors or copies of LacI do. This plot 

provides a more nuanced picture of the challenges that theoretical models must face in 

treating expression levels over all growth conditions, as will be discussed in the final section 

of the review.

While it is possible that the growth conditions considered were not appropriate to elicit 

major changes in the copy number of each repressor, an alternative explanation of the low 

variability in repressor copy number is that these transcription factors, instead of relying on 

the modulation of their copy number, depend on ligand binding and allosteric transitions to 

alter their potency in regulating transcription. Ligand binding followed by conformational 

changes between inactive and active conformations provide allosteric control of the 

repressors by altering their DNA binding strength, allowing for immediate changes in gene 

expression without relying on the much slower process of changing the transcription factor 

copy number through protein synthesis or degradation. As shown in Figure 5f, we indeed 

find that the majority of these repressors (65%) are either known to bind DNA in response to 

binding to a ligand or, for those less well characterized, predicted to have a ligand binding 
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domain. In addition, several of the other repressors that were identified are part of two-

component systems that bind DNA in a phosphorylation-dependent manner.

3. SIMPLE REPRESSION AS THE HYDROGEN ATOM OF GENE 

REGULATION: HIC RHODUS, HIC SALTA

In physics, when we establish some model system that shows our complete command of an 

area, it is often christened “the hydrogen atom” of that subject. This badge of honor refers to 

the far-reaching power of the hydrogen atom in the context of the modern quantum theory of 

matter. The theory informs not only the classic analysis of spectral lines in hydrogen, but 

also many more nuanced behaviors ranging from the Stark and Zeeman effects to some of 

the most subtle effects seen in quantum electrodynamics (83). Using the tools of quantum 

mechanics, the hydrogen atom is simple enough to explore—both mathematically and 

experimentally—revealing the basic principles behind many of the most important ideas in 

modern physics. It can also teach us what a solution to the problem looks like, in a way that 

is instructive when going on to tackle more complicated problems such as the behavior of 

heavier atoms.

We argue that this analogy is helpful in thinking about the simple repression motif as a 

foundation for launching into the study of more complicated regulatory architectures. One of 

Aesop’s fables recounts the exploits of a braggart who after a trip to the island of Rhodes 

claimed to have made a long jump that could not be equaled by others. A witness to the 

braggart’s commentary replied, “Hic rhodus, hic salta” meaning, “Here is your Rhodes, 

jump now.” The simple repression motif is our Rhodes. Here, we take the leap to see the 

extent to which we can construct predictive theoretical models for how this regulatory circuit 

behaves.

The simple repression motif that forms the basis of our work was originally constructed by 

Oehler and colleagues (70, 71). In a set of now classic experiments, they pared down the 

complex lac operon and rewired it as a powerful model system, stripped of all but its most 

essential features. As shown in Figure 7, Oehler et al. reduced the number of repressor 

binding sites (operators) from three to one, creating precisely the repressor-operator model 

originally envisaged by Jacob and Monod. This remaining binding site was placed so as to 

compete directly with RNA polymerase for promoter binding. Oehler et al. furthermore 

recognized the key control parameters for the simple repression motif—the repressor copy 

number and the operator binding strength— and figured out how to manipulate them over 

different values in parameter space, as shown in Figure 8. Using the DNA sequence of the 

binding site as a way to manipulate its affinity, they could then tune the strength of 

repression, providing a well-conceived model system for testing the theoretical predictions 

of various modeling frameworks aimed at describing transcriptional regulation. We now 

consider the kinds of theoretical predictions needed to carry out the experiment-theory 

dialogue advocated here.
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4. MATHEMATICIZING TRANSCRIPTIONAL REGULATION

While some may say that Figure 2 makes predictions as to when gene expression will be 

turned “on” or “off,” we protest this loose use of the term “prediction,” which in our minds 

has a very special meaning. To earn the title of “the hydrogen atom of X,” the system must 

be understood not only qualitatively, but with quantitative precision as well. In this article, 

“prediction” is used with care to emphasize the quantitative concreteness of our thinking. 

Our aim in the coming sections is to examine the myriad of different physical/mathematical 

approaches that have been set forth to think about gene regulation in a predictive fashion. 

Figure 9 shows the different classes of models that will be entertained in the remainder of 

the article as a result of their prevalence in the literature and their impact on the field itself. 

Figure 9a provides a schematic of how thermodynamic models are used to compute 

promoter occupancy, an approach that will be described in greater detail below. Figure 9b 

focuses instead on mRNA dynamics using differential equations to account for the mean 

number of mRNAs as a function of time given the microscopic processes that lead to both an 

increase and a decrease in the number of mRNAs. An even more ambitious strategy is 

presented in Figure 9c, which focuses on the dynamics of the full distribution p(m, t), which 

is defined as the probability of finding m mRNAs at time t in a single E. coli cell. To be 

concrete, our strategy is to focus on the use of each of these different methods in the specific 

case of simple repression, with special focus on what the different classes of models say and 

how experiments have been used to test those predictions.

4.1. The Occupancy Hypothesis and Thermodynamic Models

The thermodynamic models presented schematically in Figure 9a implicitly assume one of 

the most important and ubiquitous assumptions in all of regulatory biology, namely, the 

occupancy hypothesis. This hypothesis, which will be described, criticized, and contrasted 

with experiments in detail in Supplemental Appendix S1, informs approaches ranging from 

the bioinformatic search for transcription factor binding sites, to the use of ChIP-Seq 

experiments, to the kinds of thermodynamic models that are our focus here. Stated simply, 

the central assumption is that the rate of mRNA production is proportional to the probability 

of RNA polymerase occupancy at the promoter,

dm
dt = rpbound − γm, 1.

where we introduce the notation pbound for the probability that RNA polymerase is bound to 

the promoter of interest and the mRNA degradation rate γ. More generally, if we have N 
transcriptionally active states (e.g., polymerase by itself, polymerase and activator together), 

then we write

dm
dt =

i = 1

N
ripi − γm . 2.

The idea behind this equation is that the net average rate of transcription is given by the 

fraction of time the promoter spends in each transcriptionally active state, pi, multiplied by 

the rate of transcription corresponding to that state, ri.

Phillips et al. Page 7

Annu Rev Biophys. Author manuscript; available in PMC 2020 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



But before we can use this result, we need to know the physical nature of the individual 

states and how to compute their probabilities. We adopt notation in which the probability of 

the ith transcriptionally active state can be thought of as

pi = pi([TF1], [TF2], …), 3.

where the notation indicates that this probability is a function that reflects the occupancy of 

the regulatory DNA by the various transcription factors (i.e., regulatory proteins) that 

interact with the regulatory apparatus of the gene of interest. Hence, each transcriptionally 

active state, denoted by the label “i,” corresponds to a different state of the promoter 

characterized by a different constellation of bound transcription factors. These ideas were 

first put into play in the gene regulatory setting by Ackers and coworkers and have since 

been explored more deeply by a number of groups (1, 8, 9, 15, 37, 102, 103, 107, 108, 110). 

For the case of the simple repression motif, the thermodynamic model is illustrated in Figure 

10.

As in Figure 9a, the idea is to identify the relevant microscopic states of the promoter and to 

assign to each such state its corresponding statistical weight. The details of how to use 

statistical mechanics to compute this probability have been described elsewhere (9, 76), so 

here we resort to simply quoting the central result of the thermodynamic models for the 

simple repression motif, namely, the probability of finding RNA polymerase bound to the 

promoter given by

pbound =

P
NNS

e
−βΔεP

1 + P
NNS

e
−βΔεP + R

NNS
e

−βΔεR
, 4.

where R is the number of repressors, NNS is the size of the genome (i.e., number of 

nonspecific sites), and ΔεR is the binding energy of repressor to its operator. Similarly, P is 

the number of RNA polymerase molecules, and ΔεP is its binding energy to the promoter.

In the language of these models, we can now relate the experimentally measurable 

repression, which is obtained by quantifying the rate of mRNA production, or the steady-

state levels of mRNA or protein, in the presence and absence of repressor, to the 

theoretically calculable quantity pbound such that

repression = dm/dt(R = 0)
dm/dt(R ≠ 0) =

rpbound(R = 0)
rpbound(R ≠ 0) =

pbound(R = 0)
pbound(R ≠ 0) . 5.

Alternatively, we can write the fold-change as

fold‐change =
pbound(R ≠ 0)
pbound(R = 0) , 6.

where we have made use of the occupancy hypothesis introduced in Equation 1. We now use 

the expression for pbound from Equation 4 and obtain
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fold‐change =
1 + P

NNS
e

−βΔεP

1 + P
NNS

e
−βΔεP + R

NNS
e

−βΔεR
. 7.

Finally, we assume that binding of RNA polymerase to the promoter is weak such that P/
NNSe−βΔεP ≪ 1. In the context of this weak promoter approximation, which is discussed in 

detail in References 9 and 31, the fold-change reduces to

fold‐change = 1
1 + R

NNS
e

−βΔεR
.

8.

The conceptual backdrop to this result is shown in Figure 10. As we will describe in great 

detail later in this article and in Supplemental Appendix S2, there is much confusion about 

the mapping between statistical mechanics language, which we believe is more 

microscopically transparent, and thermodynamic language using dissociation constants. In 

that language, our result for fold-change can be written as

fold‐change = 1
1 + [R]

KR

,
9.

where [R] is the concentration of repressor and KR its dissociation constant to operator 

DNA. This equation for the fold-change is precisely what is plotted as a theory prediction in 

the left panel of Figure 11a.

4.2. Beyond the Mean: Kinetic Treatments of Transcription

Up to this point, we have examined the simple repression architecture in a manner that 

describes the steady-state mean level of expression. But this is not to say that mRNA 

dynamics or the mRNA distribution are not of interest; quite the opposite. Knowledge of the 

higher moments of the distribution provides great insight into the kinetics of the system, and 

we turn to this now.

We begin by considering a dynamic description of repression that can be used to calculate 

the temporal evolution of the number of mRNA molecules, as shown for the case of the 

constitutive promoter in Figure 9b. Specifically, we think of simple repression using the 

kinetic scheme presented in Figure 12. For the kinetics of the first state, in which the 

promoter is occupied by the repressor molecule, the linear reaction scheme shows that there 

is only one way to enter and exit this state, and that is through the “empty” state (state 2). 

This results in the dynamical equation

dp(1)
dt = kon

(R)p(2) − koff
(R)p(1) . 10.
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The dynamics of the empty state (state 2) are more complicated because this state is 

accessible to both the repressor and the polymerase, meaning that the dynamics can be 

written as

dp(2)
dt = − kon

(R)p(2) + koff
(R)p(1) − kon

(P)p(2) + koff
(P)p(3) + rp(3) . 11.

Note that the final term in this equation reflects the fact that mRNA is produced at rate r 
from state 3, and once mRNA production begins, polymerase leaves the promoter and hence 

the system goes back to state 2. The state with polymerase occupying the promoter evolves 

similarly, as can be seen by writing

dp(3)
dt = kon

(P)p(2) − koff
(P)p(3) − rp(3) . 12.

To close the loop and come full circle to the real question of interest, namely, the production 

of mRNA itself, we have

dm
dt = rp(3) − γm . 13.

What this equation tells us is that the promoter is only transcriptionally active in the third 

state, namely, that state in which the polymerase binds the promoter. The above equations 

can be solved in order to obtain the temporal dynamics of mRNA concentration, as we have 

illustrated in Figure 9b for the unregulated one-state promoter.

An interesting feature of the kinetic description of simple repression presented here is that it 

enables us to go beyond the steady-state and equilibrium assumptions that were invoked to 

calculate the fold-change in gene expression in Equations 8 and 9. Instead, we can use the 

kinetic scheme shown in Figure 12 to solve for the fold-change, but now only invoking 

steady-state by setting the left side in each equation above to zero. We begin by solving for 

the steady-state level of mRNA, mss, and find

mss = rp(3)
γ . 14.

But what is p(3)? In seeking the unknown steady-state probabilities, we must respect the 

constraint that the probabilities sum to one, namely,

p(1) + p(2) + p(3) = 1 . 15.

We will not go into the details of the algebra of resolving these three linear equations, as 

these details are described in Reference 76. Instead, we will simply quote the result as

p(3) = 1

1 +
(koff

(P) + r)

kon
(P) 1 +

kon
(R)

koff
(R)

,
16.
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which enables us to make contact with the types of experiments discussed earlier, by 

computing the fold-change:

fold‐change =
mss(R ≠ 0)
mss(R = 0) = 1

1 +

(koff
(P) + r)

kon
(P)

1 +
(koff

(P) + r)

kon
(P)

kon
(R)

koff
(R)

.

17.

Note that we can write kon
(R) = k+

(R)R, where we have acknowledged that the on rate for the 

repressor is proportional to the number of repressors present in the cell. Interestingly, we see 

that this implies that the functional form of the fold-change is the same even in this steady-

state context as it was in the thermodynamic model framework, though now at the price of 

having to introduce an effective Kd
eff, resulting in

fold‐change = 1

1 + R

Kd
eff

.
18.

By comparing Equations 9 and 18, we see that their scaling with repressor number is 

identical. To further explore the common features between these two expressions for fold-

change, note that we can write

Kd
eff =

koff
(R)

kon
(P)

1 +
(koff

(P) + r)

kon
(P)

(koff
(P) + r)

kon
(P)

. 19.

We can simplify this further by noting that we can write Kd
(R) = koff

(R) ∕ k+
(R), resulting in

Kd
eff = Kd

(R)
1 +

(koff
(P) + r)

kon
(P)

(koff
(P) + r)

kon
(P)

. 20.

This equation reveals that the thermodynamic and kinetic treatments of simple repression 

have some interesting differences and clearly shows the consequences of imposing the 

equilibrium assumption in the thermodynamic calculation. The validity of this assumption 

will be explored in detail in Supplemental Appendix S3.

An alternative way of viewing these same problems is by going beyond the description of 

the dynamics of the mean mRNA number and appealing to the kinetic theory of transcription 
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in order to work out the time evolution of the probabilities of the different states (33, 46, 49, 

64, 74, 82, 92, 101). Our goal is to write equations that describe the time evolution of the 

probability of finding m mRNA molecules at time t. This means that we need to define three 

coupled differential equations for the mRNA distribution in each of the three states, namely, 

p1(m, t), p2(m, t), and p3 (m, t). Intuitively, if we are thinking about the possible changes that 

can alter state 1, there are only three transitions that can occur: (a) the promoter can switch 

from state 1 to state 2, (b) the promoter can switch from state 2 to state 1, and (c) an mRNA 

molecule can decay, resulting in a change in m. These transitions are expressed using the 

master equation formalism and the rate constants defined in Figure 12 as

dp1(m, t)
dt = − koff

(R)p1(m, t)
(1) (2)

+ kon
(R)p2(m, t)
(2) (1)

+ γ(m + 1)p1(m + 1, t)
m + 1 m

− γmp1(m, t)
m m − 1

. 21.

The case of state 2 includes the same transitions between state 1 and state 2, as well as the 

transitions between states 2 and 3 as a result of polymerase unbinding or promoter escape 

due to transcriptional initiation. Incorporating these ideas leads to an equation of the form

dp2(m, t)
dt = koff

(R)p1(m, t)
(1) (2)

− kon
(R)p2(m, t)
(2) (1)

+ koff
(P)p3(m, t)
(3) (2)

− kon
(P)p2(m, t)
(2) (3)

+ rp3(m − 1, t)
m − 1 m
(3) (2)

+ γ(m + 1)p2(m + 1, t)
m + 1 m

− γmp2(m, t)
m m − 1

.
22.

Finally, for state 3, we must account for the transitions between state 2 and state 3 and the 

mRNA production at a rate r. Bringing all of these transitions together results in

dp3(m, t)
dt = − koff

(P)p3(m, t)
(3) (2)

+ kon
(P)p2(m, t)
(2) (3)

− rp3(m, t)
m m + 1
(3) (2)

+ γ(m + 1)p3(m + 1, t)
m + 1 m

− γmp3(m, t)
m m − 1

.
23.

This set of coupled equations describes the time evolution of the probability distribution 

p(m, t).

As described in the following sections, the equations written above imply a steady-state 

mRNA distribution that can be used to compute both the mean and variance in gene 

expression. In order to render the different theoretical descriptions self-consistent, the 

thermodynamic parameters such as the repressor binding energy ΔεR must constrain the 

values that the repressor rates koff
(R) and kon

(R) can take. Now that we have seen how theory can 

be used to sharpen our thinking, we turn to how experiments can be designed to test those 

theoretical ideas.
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5. “SPECTROSCOPY” FOR THE SIMPLE REPRESSION HYDROGEN 

ATOM: PRECISION MEASUREMENTS ON GENE EXPRESSION

Figure 11 provides a picture of how theory and experiment come together in thinking about 

the simple repression motif. As Figure 11b shows, there are a variety of approaches that can 

be taken to count the repressors and to measure the level of gene expression. Expression 

levels can be quantified using enzymatic or fluorescence assays. Note that by choosing to 

measure the ratio of level of gene expression (i.e., the fold-change) rather than the absolute 

value of the gene expression itself, the system is further simplified since various categories 

of context dependence such as the position of the gene on the genome are normalized away. 

This is not to say that the description of such effects on the absolute level of expression is 

uninteresting, but rather that the focus on a predictive understanding of the fold-change in 

gene expression reflects the spirit of little steps for little feet that are required to 

progressively develop a rigorous view of these problems.

There are many facets to the regulatory response of the simple repression motif that can be 

subjected to experimental scrutiny in order to compare them to the results of theoretical 

predictions, as shown in Figure 11a. Indeed, the seeds of this review were planted by many 

wonderful earlier works that explored various aspects of the theoretical and experimental 

strategies laid out in Figure 11. Experimentally, as noted above, Muller-Hill and Oehler led 

the way in the lac system (see Figure 8), as did Schleif in the context of the arabinose operon 

(25, 72, 94). On the theory side, Ackers and Shea laid the groundwork for thermodynamic 

models, which allow us to predict the mean level of expression (1, 102). These models were 

pushed even further by Buchler, Gerland, and Hwa (15) and by Vilar, Saiz, and Leibler (91, 

107, 108). Besides the thermodynamic model approach (8, 9, 37, 103), others have been 

interested in gene expression noise, which demands kinetic models. These approaches to 

transcription have offered numerous insights of their own (46, 49, 64, 74, 82, 92). Much of 

the work presented here draws inspiration from modern quantitative dissections of the wild-

type lac operon (52, 100), as well as from efforts that made it possible to measure gene 

regulatory functions at the single-cell level (39, 86) and from research that embodies the 

same interplay between theory and experiment featured in this article but in the context of 

other gene-regulatory architectures (4, 18, 99, 115).

6. CLIMBING THE SIMPLE REPRESSION PYRAMID: A MINIMAL 

PARAMETER SET TO RULE THEM ALL

In the previous sections, we outlined how different kinds of theoretical frameworks enable 

us to formalize our “pathetic thinking” in order to to refine our prejudices about how a 

complex system behaves (40). One of the key requirements we insist on in using such 

theoretical frameworks to describe simple repression is that a single set of parameters 

applies across all different situations, as illustrated in Figure 11. There is a long tradition of 

developing phenomenological theories that describe broad classes of behaviors, in which the 

underlying microscopic processes that give rise to material response are captured in the form 

of a small set of phenomenological, but measurable, parameters. Consider the steel used to 

build our bridges and skyscrapers, or the aluminum used to build our airplane wings: Several 
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elastic constants, a yield stress, and a fracture toughness often suffice to fully characterize 

the material response under a broad array of geometries and loading conditions (44). 

Importantly, each time we go out and use those materials for something new, we do not have 

to introduce a new set of parameters. It is critical to realize that, for a phenomenological 

theory to be both beautiful and far-reaching in its predictive value, there is no requirement 

whatsoever for an underlying “mechanistic theory” of what determines those parameters. 

Although perhaps the “microscopic mechanism” of, for example, how the interactions 

between the nucleotides on the DNA and residues on the repressor dictate binding energy is 

attractive to some investigators, we do not need a microscopic understanding of these 

atomic-level “mechanisms” to construct a predictive theory of gene regulation. Indeed, 

though much progress has been made in constructing a microscopic basis for these 

parameters, we generally cannot predict these material parameters from first principles.

Here, we adopt a phenomenological mind-set in the context of the gene regulatory response. 

Although it is clear that there are a huge variety of complicated processes taking place 

within the cell that we do not understand, we address whether it is nonetheless possible to 

introduce a few key effective parameters that will allow us to characterize the regulatory 

response of the simple repression motif under a broad array of different circumstances. 

Figure 13a shows us how the theoretical ideas highlighted in the previous sections demand a 

small number of parameters before we can use them predictively. For example, in the simple 

repression motif, we require a binding energy ΔεR (or equivalently a KR) to characterize the 

strength of repressor binding to operator. Similarly, when describing the induction response 

of transcription factors to inducer, we require parameters KA and KI that describe the affinity 

of inducer to the transcription factor when it is in its active and inactive states, respectively 

(80). We also require a free energy difference ΔεAI that characterizes the relative stability of 

the active and inactive states in the absence of inducer. Finally, when describing gene 

expression dynamics, we require rate constants for mRNA degradation (γ), transcript 

initiation (r), and the on and off rates of repressor and RNA polymerase binding to their 

respective sites [kon
(R) and koff

(R) for the repressor, and kon
(P) and koff

(P) for RNA polymerase]. The 

question we ask is: Once we have established this minimal set of parameters, how well can 

we now quantitatively predict expression outcomes across different classes of experiments 

involving the simple repression motif?

We now show how it is possible to ascend the simple repression pyramid introduced in 

Figure 3. In Figure 13b, we outline how we fully determined a single minimal set of 

parameters needed to characterize a host of regulatory responses. Note that others have also 

made complete parameter determinations, but did so across different experiments (110). The 

left-hand panel of Figure 13b illustrates how experiments like those of Oehler et al., with 

one particular repressor copy number and a specific operator sequence, can be used to 

determine the parameter ΔεR (or KR). The second experiment highlighted in Figure 13b 

shows how the transcription factor titration effect can be used to determine the parameter 

ΔεAI (or alternatively L = e−βΔεAI), which characterizes the equilibrium between the inactive 

and active states of repressor in the absence of inducer. The third panel in the figure shows 

how a single induction response curve can fix the parameters KA and KI that determine the 

binding of inducer to the repressor in the active and inactive states, respectively. Finally, the 
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right-hand panel demonstrates how, by going beyond the mean and looking at the full 

mRNA distributions for the constitutive promoter and the simple repression motif, it is 

possible to infer the rates of RNA polymerase and Lac repressor binding and unbinding, as 

well as the rates of mRNA production and degradation.

This kinetic approach takes advantage of the known closed form of the full mRNA 

distribution for a two-state promoter (74). Using this expression for the distribution, we can 

perform a Bayesian parameter inference to obtain values for the polymerase rates kon
(P) and 

koff
(P), as well as for the mRNA production rate r, that fit the single molecule mRNA count 

data from Reference 43. The kinetic rates for the repressor are obtained by assuming that 

kon
(R) is diffusion limited (43) and demanding that koff

(R) be consistent with the binding energies 

obtained in the left-hand panel of Figure 13b. We note, however, that this model differs from 

the one presented in Figure 12 in the sense that upon initiation of transcription at a rate r, the 

system does not transition from state 3 to state 2. Further comparison between this model 

and the model presented in Figure 12 is still needed and will be explored in future work (M. 

Razo-Mejia and R. Phillips, manuscript in preparation).

With our single minimal parameter set in hand, it is now time to take the leap and to see 

whether the theoretical framework that has been used to describe various facets of the simple 

repression architecture actually works. Figure 14 shows the diversity of predictions and 

corresponding measurements that partner with the predictions given at the top of Figure 11. 

In fact, the understanding summarized in this figure was developed sequentially rather than 

with the “all at once” appearance conjured up by Figure 13. Indeed, that is the principal 

reason that the discussion is so self-referential, since over the last decade, inspired by the 

many successes of others (52, 67, 70, 90, 108, 110), we undertook a systematic effort to 

design experiments that allowed us to control the various knobs of transcription already 

highlighted, to construct the strains that make this possible, and then to do the highest-

precision measurements we could in order to test these predictions.

Figure 14a shows a modern and predictive incarnation of the experiments done by Oehler et 

al. to determine the response of the simple repression motif to changes in repressor numbers 

and operator sequence (we showcased their results above in Figure 8). In this set of 

experiments, our ambition was to control both the copy number of repressors and operator 

binding strengths and to systematically measure the resultant expression over the entire suite 

of different constructs, using only one repressor copy number for each DNA binding 

strength to determine the parameter ΔεR as described above. The measurements were taken 

in multiple ways: We used both enzymatic and fluorescent reporters to read out the level of 

gene expression, and we separately counted the number of repressors using quantitative 

immunoblotting and fluorescence measurements. One of our central interests is in whether 

or not different experimental approaches to ostensibly identical measurements yield the 

same outcomes. We were encouraged, at least in this case, to find reasonable concordance 

between them.

The level of expression from our simple repression promoter can be significantly affected if 

the repressors are enticed away from it by other binding sites. The results of this much more 
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demanding set of predictions surrounding the transcription factor titration effect (12) are 

shown in Figure 14b. There are a number of ways to titrate away repressors: We can put 

extra copies of our gene of interest on the chromosome or on plasmids (shown in the 

schematic below the data) or use plasmids to simply introduce decoy binding sites for the 

repressor that have no explicit regulatory role other than pulling it out of circulation, 

effectively tuning the chemical potential of the repressor. Note that in this case, the fold-

change has a particularly rich behavior, and this is on a log-log plot, where functional forms 

often appear as straight lines. Figure 15a brings together all of the data from Figure 14a,b 

under one simple conceptual roof by determining the natural scaling variable of the simple 

repression motif. This data collapse implies that any combination of repressor concentration, 

binding site strength, and number and strength of competing binding sites can be replaced by 

an equivalent effective promoter consisting of one binding site and an effective repressor 

number.

The middle panel of Figure 11a highlights the next level in the hierarchy of theoretical 

predictions that can be made about the simple repression motif, namely, how this motif 

responds to inducer. In Figure 14c, we show one example [from a much larger set of 

predictions (80)] of how the induction response can be predicted for different operator 

strengths and repressor copy numbers. Here we highlight predictions for the O2 operator 

ranging over the same repressor copy numbers already shown in Figure 14a. As with our 

ability to introduce the natural variables of the problem in Figure 15a, induction responses 

also have a scaling form that permits us to collapse all data onto a single curve (Figure 15b). 

Once again, the emergence of this natural scaling variable tells us that any set of repressor 

number, binding energies, and inducer concentrations can be mapped onto a simple 

repression architecture with a corresponding effective binding energy.

The final part of our comparison of theory and experiment in the context of the simple 

repression motif is shown in Figure 14d. The predictions about gene expression noise were 

already highlighted in the right panel of Figure 11a. Here what we see is that the Fano factor 

(i.e., the variance normalized by the mean) is quite different for constitutive promoters and 

promoters subject to repression in the simple repression motif (43). Discrepancies in the 

gene expression noise revealed for different regulatory architectures remain to be resolved 

(104).

The hierarchical analysis presented in Figure 14 illustrates the unity of outlook and 

parameters afforded by performing all experiments in the same strains. When experimental 

consistency is placed front and center, one minimal set of parameters appears to serve as a 

predictive foundation for thinking about a broad variety of different constructs and 

conditions over a host of different experimental scenarios and methods.

Nearly fifty years ago, Theodosius Dobzhansky wrote a beautiful article in American 
Biology Teacher entitled “Nothing in Biology Makes Sense Except in the Light of 

Evolution” (22). This phrase, now an oft-quoted tenet of modern biology, has resulted in 

evolution becoming the capstone to numerous biological pyramids. As such, there is a 

reason we talk about climbing the simple repression pyramid rather than saying that we have 
climbed it. Although the evolutionary aspects of transcription are represented by the smallest 
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part of the pyramid in Figure 3, they are perhaps the most daunting. At the time of writing, 

many different groups are still working to construct this section of the pyramid for simple 

repression (20, 21, 77, 78, 81, 106).

To make meaningful predictions about the evolutionary potential of the simple repression 

motif, it is a requirement that we have a thorough knowledge of the minimal parameter set 

described in the preceding section. For example, we have shown that the sequence of the 

operator strongly influences the maximum level of gene expression, given an input such as 

the concentration of inducer. One could extend this conclusion to make predictions of how 

the various properties of the induction profiles could change due to mutation. It is reasonable 

to assume that mutations in the DNA binding pocket would alter only the strength of DNA 

binding and leave the inducer binding constants the same as the wild type. Conversely, 

mutations in the inducer binding domain would alter only the inducer binding constants. 

With quantitative knowledge of the single mutants, the theoretical underpinnings allow us to 

assume a naïve hypothesis in which the two mutations are additive, resulting in a predictable 

change in the induction profile. Measurements of this flavor have been performed and 

published (19); however, without knowledge of the parameters, the predictive power is 

extremely limited.

7. A CRITICAL ANALYSIS OF THEORIES OF TRANSCRIPTION

Thus far, we have painted a rosy picture of the dialogue between theory and experiment in 

the study of transcription in the simple repression motif. It is now time to critique these 

approaches and see what such critiques imply about future efforts to dissect the regulatory 

genome. In the sections that follow, we have amassed a series of worthy critiques of the 

program laid out thus far in the review, and in each case, we set ourselves the task of sizing 

up these critiques to see what we can learn from them. Our strategy is to discuss the high 

points of the analysis in the main body of the text and to relegate the technical details behind 

that analysis to the appendices.

7.1. The Equilibrium Assumption in Thermodynamic Models

As already seen in Figure 9, there are multiple approaches to modeling transcription. One 

broad class of models sometimes goes under the heading of “thermodynamic models,” but 

we would rather refer to them as models founded upon the occupancy hypothesis. We can 

examine two critical questions about such models, shown diagrammatically in Figure 16a: 

(a) To what extent is it true that the rate of transcription is proportional to the probability of 

promoter occupancy, and (b) can promoter occupancy be fruitfully computed using the 

quasi-equilibrium assumption?

Recall that the assumption that the rate of transcription is proportional to the probability of 

RNA polymerase binding to the promoter is central to the thermodynamic models. Indeed, 

this assumption makes it possible to connect a theoretically accessible quantity, pbound, to an 

experimentally measurable quantity, dm/dt. This connection can be used to test the 

predictions stemming from these models. To answer the question of whether the rate of 

transcription is proportional to pbound, we must remember that, as shown in Figure 16a, there 

is a plethora of kinetic steps between the binding of RNA polymerase and transcription 
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factors to the DNA and the ultimate production of an mRNA molecule. Furthermore, steps 

such as “initiation” in the figure are an oversimplification, as the process leading to promoter 

clearance and the initiation of productive transcription is composed of multiple intermediate 

steps (82). In Supplemental Appendix S1, we explore the conditions under which this 

occupancy hypothesis is fulfilled. In particular, we consider a situation where the transition 

rates between intermediate steps correspond to zero-order reactions. To illustrate this, we 

refer to the first transition in Figure 16a, which shows that the fraction of RNA polymerase 

molecules initiating transcription, denoted by I, is related to pbound. In a zero-order reaction 

scheme, the temporal evolution of I is given by

dI
dt = ripbound, 24.

where ri, is the rate of transcriptional initiation. In this scenario, the rate of change in the 

fraction of molecules initiating transcription is proportional to the fraction of molecules 

bound to the promoter. As described in Supplemental Appendix S1, under this assumption, 

Equation 1 can be used to relate the probability of finding RNA polymerase bound to the 

promoter to the rate of mRNA production.

Putting the occupancy hypothesis to a direct and stringent test requires us to have the ability 

to simultaneously measure RNA polymerase promoter occupancy and output transcriptional 

activity. The development of new approaches to directly measure DNA-binding protein 

occupancy in the vicinity of a promoter and relate this binding to output transcriptional 

activity will make it possible to realize such a test in the near future (17, 26, 41, 113). While 

technology catches up to the demands of our theoretical models, an indirect strategy for 

testing the occupancy hypothesis is to simply ask how well the thermodynamic models do 

for the various predictions highlighted throughout the review. Figure 14 suggests that, for the 

lac operon, the occupancy hypothesis is valid. However, it is important to note that there are 

cases where this hypothesis has been explicitly called into question both in the lac operon 

(32, 41) and in other regulatory contexts (56, 63). As a result, the validity of the occupancy 

hypothesis should be critically examined on a system-by-system basis.

The second key assumption to be considered is the extent to which the system can be viewed 

as being in “equilibrium,” such that the tools of statistical mechanics can be applied to 

calculate pbound and the fold-change. This equilibrium assumption permeates the vast 

majority of the work presented here. In Supplemental Appendix S3, we dissect it in the 

context of the kinetic rates revealed in Figure 13b. As we showed in Figure 16b, in order for 

equilibrium to be a valid assumption when calculating pbound for the constitutive promoter, 

the rates of RNA polymerase binding and unbinding [kon
(P) and koff

(P), respectively] need to be 

much larger than the rate of initiation r. However, we find that the inferred rates do not 

justify the use of the equilibrium assumption: The rate of RNA polymerase unbinding from 

the promoter is not much faster than the subsequent rate of initiation, such that the system 

does not get to cycle through its various binding states and equilibrate before a transcript is 

produced. However, our calculations reveal that, given these same rates, the fold-change in 

gene expression can be calculated based on the equilibrium assumption. As discussed in 
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detail in Supplemental Appendix S3, if kon
(P) ≪ koff

(P) + r, then when the system transitions to 

the polymerase-bound state, it will quickly revert back to the unbound state either by 

unbinding or through transcription initiation. As a result of this separation of time scales, the 

repressor gets to explore the bound and unbound states such that its binding is equilibrated 

even if the RNA polymerase binding is not.

Finally, it is important to note that our conclusions about the applicability of equilibrium rely 

on committing to the kinetic scheme presented in Figure 12 and on the inferred parameters 

shown in Figure 13b. Changes to the molecular picture of the processes underlying 

repression and gene expression could significantly affect our conclusions. Indeed, 

researchers have cast doubt on the applicability of equilibrium to describe the lac operon 

(41) as well as other gene-regulatory systems (28, 57).

7.2. Reconciling Thermodynamic Models and Statistical Mechanical Models

Thermodynamic models of transcription can be formulated either directly in the language of 

statistical mechanics, by invoking binding energies and explicitly acknowledging the various 

microscopic states available to the system, or in the language of thermodynamics, in which 

DNA-protein interactions are characterized using dissociation constants. The literature is not 

always clear about the relation between these two perspectives, and our central argument 

(fleshed out in detail in Supplemental Appendix S2) is that they are equivalent. That 

argument was really already made in Figure 10, in which we saw that the statistical weights 

of the three states of the simple repression motif can be written in either of these languages.

We personally favor the statistical mechanical language because we find that, in going to 

new regulatory architectures, it is more microscopically transparent to enumerate the 

microscopic states and their corresponding energies than to invoke dissociation constants 

that combine these microscopic interactions into an effective parameter, as shown in the next 

section for the case of the nonspecific background. One related point of possible confusion 

concerns the use of parameters such as NNS in the statistical mechanical approach to 

occupancy models of transcriptional regulation. In Supplemental Appendix S2, we 

demonstrate that the dissociation constant Kd is given by

Kd =
NNS
Vcell

eβΔε . 25.

This equivalence shows that the parameter NNS, which reflects the genome size and hence 

the size of the nonspecific background binding landscape, is in fact just a contribution to the 

standard state concentration used in conjunction with the dissociation constant Kd in 

disguise.

7.3. The Energy of Nonspecific Binding

One of the key simplifying assumptions often invoked in the context of thermodynamic 

models of transcription is the treatment of the binding of transcription factors to the 

nonspecific background as though all such nonspecific sites are equivalent. For transcription 

factors such as LacI, there is wide-ranging evidence from diverse types of experiments (e.g., 
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measurements of the protein content of genome-free minicells and imaging using modern 

microscopy techniques) that these transcription factors are almost always bound to the 

genome rather than free in cytoplasm (34, 45, 88). As such, when computing the probability 

of promoter occupancy by either polymerase or repressors, we need to account for the 

distribution of these molecules across the remainder of the genome.

With an approximately 5 × 106 bp genome as in E. coli, it at first blush seems ridiculous to 

proceed as though 5 × 106 − 1 of those sites have the exact same energy, εNS. To explore the 

distribution of nonspecific energies, one idea is to slide an energy matrix, much like those 

determined through Sort-Seq (6, 11, 48, 53), across the entire genome, base pair by base 

pair, to get the full distribution. Such a distribution is shown in Figure 17, where the energy 

matrix for the LacI repressor was applied to the entire E. coli genome. Energy values for 

each genomic site have been plotted relative to the binding energy ΔεR of LacI to its O1 

wild-type operator, which has been measured to be −15.3 kBT (31). We see immediately that 

an exceedingly small number of sites have a negative binding energy, meaning more 

preferable binding than the vast majority of sites, which are found to be positive. The three 

native lac operators, shown as black, red, and green vertical lines, have highly negative 

binding energies compared to the rest of the sites. With knowledge of the distribution, it is 

tempting to use this directly in the thermodynamic calculations to possibly get a better 

treatment of the nonspecific background. However, for now, it is a luxury to have an accurate 

energy matrix that reports the binding energy of a given transcription factor to a DNA 

binding site in vivo. We certainly do not know the binding energy matrix for all transcription 

factors that would permit the determination of the distribution of nonspecific binding 

energies.

But more interestingly, as we show in detail in Supplemental Appendix S4, there really is no 

difference between using the complete distribution of binding energies and using an effective 

energy of the entire genome. This concept is explored in detail in Supplemental Appendix 

S4 and agrees with more sophisticated treatments using concepts from statistical physics 

(36, 98). We treat this problem using the three toy models shown in Supplemental Figure S4. 

First, we assume that there is a uniform binding energy distribution in which all binding sites 

have the same energy. By definition, this is the simplest approach where this energy can be 

used directly in the partition function. The second example is the extreme case in which 

there are only two nonspecific binding energies, ε1 and ε2, which are evenly distributed 

about the genome. In this case, we can show the nonspecific background behaves as though 

it has a single effective binding energy of the form

εNS =
ε1 + ε2

2 , 26.

showing that the effective nonspecific binding energy ϵNS tells the exact same story as using 

the full distribution. Finally, we take the more realistic case in which we assume a Gaussian 

distribution of binding energies across the genome with mean ϵ and standard deviation σ, 

much like what is seen in Figure 17. Here, a few more mathematical steps outlined in the 

Appendix deliver us to the effective nonspecific binding energy
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εeff. = ε − βσ2

2 . 27.

Note that this shows that, even if we have a Gaussian distribution of nonspecific binding 

energies, it can be treated exactly as a uniform distribution with a single effective energy.

7.4. Promoter Competition Against Nonspecific DNA-Binding Proteins

Up until this point, we have considered the effect of LacI nonspecific binding throughout the 

genome on its regulatory action in the context of the simple repression motif. However, just 

like in the simple repression motif, where the promoter and operator constitute the specific 

binding sites for RNA polymerase and repressor, respectively, these same sequences serve as 

substrates for the nonspecific binding of other DNA-binding proteins that decorate the 

bacterial genome. In Supplemental Appendix S5, we show how the effect of these 

nonspecific competitors can be absorbed into an effective number of nonspecific binding 

sites NNS such that the theoretical models describing the simple repression motif retain their 

predictive power. Interestingly, the calculations presented in the Appendix also suggest that, 

as the concentrations of these DNA-binding proteins are modulated due to changes in 

growth rate, the effect of these competitors on the rescaled NNS remains unaltered. This 

indifference to growth rate stems from the fact that, as growth rate increases, both the overall 

protein concentration and the cell’s DNA content increase. This simultaneous increase in 

protein and DNA concentration leads to a relatively constant number of proteins per DNA 

target in the cell irrespective of growth conditions.

7.5. Is Gene Expression in Steady State?

A critical assumption in our experimental measurements of gene expression is that gene 

expression is in steady state. Steady state has different definitions depending on the method 

of measurement. For mRNA FISH, for example, we assume that the mRNAs are produced at 

rate r that matches the rate of degradation γmss, where mss is the steady-state level of 

mRNA. When measuring protein expression, we assume that the protein accrued over the 

cell cycle is negated by the dilution of these proteins into the daughter cells upon division, as 

is shown in Figure 18a. Through this assumption, we are able to state that, on average, a 

single measurement represents the level of expression for that particular time point rather 

than integrating over the entire life history of the cell. A typical rule of thumb is that steady-

state expression is reached when the cells enter the exponential phase of growth.

We put this hypothesis to the test by directly measuring the expression level of exponential-

phase E. coli over time. Using video microscopy, we monitored the growth of cells 

constitutively expressing YFP in exponential phase (OD600nm ~ 0.3–0.4) in minimal 

medium with a doubling time of approximately an hour (Figure 18a) following the 

experimental approach undertaken by Brewster et al. (12). Starting from a single cell, we 

tracked the lineages as the microcolony developed and compared the fluorescence in 

arbitrary units of each cell to that of the founding mother cell. If steady-state gene 

expression has been achieved, this approach, schematized in Figure 18b, will result in an 

average difference in fluroescence ΔI of zero. The results of this experiment are shown in 
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Figure 18c. In the figure, we see that individual measurements (red points) are scattered 

about zero, but that, once the mean difference in intensity is considered (blue triangles), the 

data become very tightly distributed about zero (black dashed line). These results show that, 

when cells are growing in exponential phase, gene expression levels are in steady state, and 

the reporter is not accrued over the life history of the cell lineage.

7.6. Allosteric Models Versus Hill Functions

Although many thermodynamic models of gene regulation attempt to enumerate the entire 

set of microscopic states and assign each their appropriate statistical weight, it is also 

extremely popular to adopt a strictly phenomenological model of binding described by Hill 

functions. It is undeniable that the Hill function features prominently in the analysis of many 

biological processes (for interesting examples, see 21, 84, 85, 100). However, treating 

allosteric systems with Hill functions often abstracts away the important physical meaning 

of the parameters and replaces them with combinations of polynomials often referred to as 

“lumped parameters.” For example, one could treat the induction profiles of LacI discussed 

above in this work using a Hill equation of the form

fold‐change = leakiness + dynamic range

c
Kd

n

1 + c
Kd

n , 28.

where the leakiness is set as the zero point of expression. With increasing concentration c of 

ligand, the leakiness is modified by an expression describing the activity of the repressor 

using a Hill function. In this expression, c corresponds to the concentration of inducer; n is 

the Hill coefficient, which describes the cooperativity of repression; and Kd is an effective 

dissociation constant (52).

Note that nowhere in this expression is any treatment of the allosteric nature of the protein! 

While structural biology has demonstrated that this repressor can exist in active and inactive 

states, each of which has its own dissociation constant for the inducer, all of these details 

have been lumped into the Kd parameter. Figure 19a shows Equation 28 applied to an 

induction profile of the lac simple repression motif with an O2 operator and 260 repressors 

per cell. Unsurprisingly, this equation can fit the data very nicely when all of the coefficients 

are properly determined. In fact, this fit is nearly indistinguishable from that obtained 

through a Monod-Wyman-Changeux (MWC) model–inspired approach (80), as is shown in 

Figure 19b. However, fitting a Hill function results in a single curve. In the Hill framework, 

for each induction profile, we must fit Equation 28 once again for all parameters. As the 

parameters for an allosteric model have a direct connection to the biological properties of the 

repressor molecule, we can use the parameter values determined from one experimental 

circumstance to predict a wide swath of other induction profiles. Examples of such curves 

are shown as gray profiles in Figure 19b.

What distinguishes allosteric models such as MWC and Koshland-Nemethy-Filmer [KNF 

(50)] from Hill functions is that they make a tangible connection with what structural 

biology has taught us about the conformational states of proteins. The existence of inactive 
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and active states implies that activity curves will be a very special ratio of polynomials. 

While an individual fit may be comparable in quality to that obtained by a Hill function, the 

loss of this physical context results in a fit that has no predictive ability. The MWC and KNF 

models, however, open the door to a huge suite of predictions not only about experiments 

like those described in this review, but also for biochemical experiments at the level of single 

molecules. For example, the allosteric treatment of induction hints at how mutating the 

repressor directly would change the behavior of the system. It is easy to hypothesize that 

mutations in the DNA binding domain would alter the binding energy of the repressor to the 

DNA ΔεR, whereas mutations in the inducer domain would alter the KA and KI (Figure 13a). 

If we were to redo the analysis by fitting phenomenological Hill equations, we would be left 

in the dark as to how to predict the effect of either of these perturbations.

7.7. Two-State Versus Three-State Dynamics

Most of the theoretical work on mRNA distribution dynamics has focused on the two-state 

model for a regulated promoter in which the promoter is treated as though it has two 

available states, inactive and active (74, 92, 104). Indeed, the predictions from Reference 43 

shown in Figure 14d were calculated using this model. However, another critical question to 

be examined in the context of theoretical models of transcriptional noise is the relative 

merits of the two-state and three-state models (for the three-state model, see Figure 12). 

Note that within this framework, the unregulated promoter itself becomes an effective two-

state model, since we now acknowledge both the empty promoter and the promoter occupied 

by RNA polymerase. In this case, them RNA distribution can be fitted with the parameters 

kon
(P), koff

(P), r, and γ while still accounting for the variability in promoter copy number across 

the cell cycle, and this is the strategy used in the parameter determination described in 

Figure 13b.

We have found that it is possible to fit the full mRNA distribution using either the two-state 

or three-state models, as already described in Reference 43. However, to get a fully self-

consistent parameter set in which the mean fold-changes as described in both the 

thermodynamic and kinetic pictures are identical, it is necessary to resort to the three-state 

model that explicitly accounts for repressor and polymerase binding. Specifically, we 

demand that the repressor kinetic parameters kon
(R) and koff

(R) be consistent with the repressor 

copy number R and the repressor–DNA binding energy ΔεR. The parameters reported in 

Figure 13b were determined using these constraints, giving identical results for the mean 

fold-change under both languages and, not surprisingly, requiring the full three-state model 

for this self-consistent picture to emerge.

8. SIMPLE REPRESSION IN OTHER CONTEXTS

Thus far, we have focused on one realization of the simple repression architecture. But in 

fact, the way that cells use the simple regulatory architecture is much more diverse, as 

illustrated in Figure 20. Variants of this architecture provide alternative means for the cell to 

perform signal transduction. Like LacI, many repressors are inducible, whereby binding of a 

small-molecule signaling ligand reduces their ability to bind DNA. The identities of these 

ligands are generally related to the physiological role provided by the operon under control. 
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For example, while LacI binds allolactose and is involved in lactose utilization, GalR binds 

galactose, and this in turn provides control over galactose usage (69, 96). Among those 

repressors that bind to a simple repression architecture, MprA has been reported to bind 

antimicrobial agents such as 4-dinitrophenol and carbonyl cyanide m-

chlorophenylhydrazone (CCCP) and negatively regulate the expression of multidrug 

resistance pumps (14). A related but opposite logic is also commonly observed, referred to 

as corepression, where binding of a small-molecule ligand instead will enhance the binding 

of the repressor to DNA. For example, TrpR binds tryptophan and provides repression of the 

tryptophan biosynthesis pathway, as well as repressing its own expression (114).

In both induction and corepression, signaling is achieved by a ligand internal to the cell. 

Another approach is to instead monitor the external environment directly, which is the role 

provided by two-component signal transduction systems (55). Here, the signal detection is 

typically carried out by a transmembrane protein, a sensor histidine kinase, which then 

activates a transcription regulator by phosphorylation. Such sensors that activate repressors 

involved in simple repression architectures include PhoR, ArcB, and CpxA, which regulate 

the DNA binding activity of PhoB, ArcA, and CpxR, respectively. The repressor PhoB is 

involved in regulating phosphorus uptake and metabolism, while ArcA primarily acts as a 

repressor under anaerobic conditions (61, 111). CpxR appears to act on at least 100 genes, in 

response to cell envelope stress, but also plays roles associated with motility, biofilm 

development, and multidrug resistance (87).

Cells have also devised ways to rapidly respond to stimuli by actively degrading regulatory 

proteins under specific stimuli. The DNA damage, or SOS, response provides one such 

example, which is mediated by the repressor LexA (59). Under conditions of DNA damage, 

LexA undergoes a self-cleavage reaction that is further catalyzed by the protein RecA, and 

this provides derepression of about 40 genes (38). Toxin–antitoxin systems such as RelB–

RelE serve as another example of this. While the toxin RelE is metabolically stable, with a 

cellular concentration dependent on the cell division time, the antitoxin RelB is actively 

degraded by the protease Lon and this can lead to a much shorter half-life (16, 73).

The examples provided here serve as a test bed for signal transduction strategies that 

demand further quantitative analysis and can be considered under the experimental–

theoretical framework we have presented in this review. Table 1 gives us another way to get 

a sense of the diversity of simple repression motifs in E. coli by showing us the copy 

numbers of the key transcription factors involved in simple repression.

9. BEYOND SIMPLE REPRESSION: BUILDING NEW PYRAMIDS

Of course, as we already showed in Figure 1, there is far more to transcriptional regulation 

than simple repression. Since the original development of the repressor-operator model by 

Jacob and Monod, the regulatory mechanisms of the lac operon have been resolved in 

exquisite detail, as shown diagrammatically on the left-hand side of Figure 7 (68). The 

picture that has emerged is a rather complex one, in which Lac repressor monomers 

assemble into a dimer of dimers. These repressors can bind to two of the three operators 

found in the lac operon simultaneously, resulting in DNA looping and the stabilization of 
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repressor action. Furthermore, the binding affinity of repressor to the DNA is modulated by 

inducer, which can be actively pumped into the cell by the Lac permease, which is one of the 

subjects of regulation by the repressor. This panoply of regulatory features calls for a 

complex theoretical description of the lac operon, which can be nevertheless built on the 

parameters already obtained by building the simple repression pyramid.

One of the most interesting features of regulation in prokaryotes and eukaryotes alike comes 

in the form of DNA looping. Such biological action at a distance is seen in the wild-type lac 
operon itself, allowing us to dissect this ubiquitous regulatory mechanism quantitatively. Just 

as it was possible to engineer pared-down versions of the simple repression motif, similar 

exercises have been undertaken in the context of DNA looping, as shown in Figure 21a. 

Looping has been explored in a wonderful series of experiments from the Müller-Hill lab 

(67, 70) and has also been elegantly treated using thermodynamic models (109). These 

threads of research show how a pyramid of regulatory understanding for wild-type operons 

can be constructed, featuring multiple binding sites and DNA looping.

Using the same minimal parameter set already identified in Figure 13b, it is possible to make 

predictions about how the regulatory response will work in the context of DNA looping. For 

example, thermodynamic models of DNA looping identify one new key parameter with 

respect to those presented in Figure 13b: the DNA looping free energy (9, 109). By fitting 

this model to the repression corresponding to the looping architecture shown in Figure 21a 

for a particular number of repressors per cell, the model predicts the repression value as 

repressor copy number is systematically varied. Similarly, it is also possible to do an 

operator swap experiment in which the DNA loop itself, and hence the DNA looping free 

energy, is unchanged, but instead the binding sites that the repressor uses to form the loop 

are varied. Figure 21b shows the outcome of such experiments. In Figure 21c, we also show 

that the inferred looping free energy is indifferent to the choice of operators used to induce 

the loop. The collection of results shown in Figure 21 provides further exciting evidence of 

the transferability of the minimal parameter set determined in the simple repression 

architecture.

In our opinion, one of the most surprising aspects about the state of the art in regulatory 

biology is our ignorance of regulation across genomes writ large. Even in the best 

understood of organisms, namely E. coli, we have no idea how more than half of the 

annotated genes are regulated, as we illustrated above in Figure 4 (29, 30, 47). There we 

represented the circular E. coli genome with those operons for which there is some 

regulatory annotation shown in blue and those thus far featuring no such regulatory 

knowledge shown in red. Faced with the kind of ignorance revealed in that figure, there is no 

prospect of building up a regulatory dissection like that we have reviewed in the context of 

simple repression. To rectify this, we need to establish methods that will allow us, first of all, 

to simply draw the cartoons of how a given gene’s regulatory apparatus is wired. Recent 

work has begun to develop tools that make it possible to go from regulatory sequence to the 

kind of regulatory architecture cartoons shown in Figure 1 (6, 48, 51). Figure 22 exemplifies 

how a combination of mutagenesis, deep sequencing, mass spectrometry, and information 

theory has made it possible to take the uncharacterized genes reported in Figure 4 and figure 

out their regulatory architecture (6, 48). Each time we identify how a given regulatory 
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architecture is configured, we are then poised to construct a new pyramid based upon 

minimal parameter sets like the one we describe here.

10. GENE REGULATION AND STATISTICAL PHYSICS: TACTICAL 

SUCCESS BUT STRATEGIC FAILURE?

An interesting reflection offered on the work presented here is that it should be viewed as a 

“tactical success but a strategic failure.” There are two aspects to this critique, and each is 

worth addressing. The first is that the architectures explored here are “synthetic,” and thus 

anything we learn does not apply to the “real biology.” In response, we note that we set out 

more than a decade ago to understand gene regulation in bacteria in a quantitative and 

predictive manner with a view to exporting it to the entire regulatory genome not only of E. 
coli, but of other more complex organisms as well. However, what we found was that, even 

for the most well-studied regulatory system, we had dispiritingly little quantitative 

understanding of how it would behave as the various “knobs” that control transcription were 

tuned. This demonstrated that we could not tackle the complexity of real endogenous 

promoters with potentially quite complex regulatory architectures without first proving to 

ourselves that we could understand the most basic unit already introduced in Jacob and 

Monod’s repressor-operator model and denoted here as the simple repression motif. 

Although we backpedaled from our original goals to do the most simple case, we think the 

work showcased here demonstrates that we have laid the groundwork for a full regulatory 

dissection of the E. coli genome. With the existence of methods like those highlighted in 

Figure 22, we are now poised to extend these kinds of regulatory dissections to the entire 

genome and believe that such work will unearth many generalizable principles (6).

The second thrust of the “tactical success but strategic failure” critique points out that, 

although we were able to find a single self-consistent minimal parameter set to describe 

regulation of the simple repression motif, it applies only to the particular conditions in which 

these specific strains were grown; if the growth conditions are shifted, then we will need to 

determine the relevant parameters all over again. This might be true, but to consider its 

weight we turn to an analogous example from the long history of the physics of materials. 

For a cubic material such as aluminum, we can measure the elastic constants (C11, C12, and 

C44) of single crystals. Now if we want to use those elastic constants to compute what will 

happen to a structure such as an airplane wing, we can confidently do so. However, if we 

alter the temperature of the metal away from that under which the constants were measured, 

then the values of those elastic constants will change. Figuring out how elastic constants are 

modified by temperature entailed a great deal of subsequent work (75). But acknowledging 

that a material response is subtle does not at all invalidate the original theory of linear 

elasticity, and for the gene regulatory situations considered here, we think it possible that a 

similar scenario might reveal itself. The first step is to make predictions and test them to 

determine whether different conditions do indeed require different parameters. The only way 

to actually know what happens in complex regulatory circuits is first to master a predictive 

understanding of the simplest case and subsequently build out from there.
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Despite these worthy critiques, the point of this article was to show that, with sufficient care, 

it is indeed possible to use a single minimal parameter set to describe a broad array of 

different regulatory situations. In our view, the results are sufficiently encouraging that it is 

now time to move to new systems, such as systematic studies of the regulatory landscape of 

newly sequenced genomes of microbes from the ocean floor. Having made the jump on the 

simple repression Rhodes, we are excited to see what comes of efforts of the kind described 

here in novel microorganisms, and in the more challenging setting of multicellular 

organisms as well.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The distribution of regulatory architectures in Escherichia coli. (a) Several of the simplest 

regulatory architectures are shown, featuring activator and repressor binding sites. We adopt 

the notation (m, n) to characterize these architectures, where the first number m tells us how 

many activator binding sites there are for our gene of interest, and the second number n tells 

us how many repressor binding sites are controlling that same gene. Within this notation, a 

(0, 0) architecture is unregulated, a (1, 0) architecture is a simple activation motif, and a (0, 

1) architecture is a simple repression motif and is the central focus of the present article. (b) 

Relative probability of different classes of regulatory architecture for those genes that have 

been annotated in E. coli (30, 89). For transcription factors that can act as both activators and 

repressors, we consider their specific mode of action in the context of each regulatory 

architecture. For example, if a transcription factor binds to a single site near a promoter and 

acts as an activator, we consider it to fall within the (1, 0) nomenclature even if this same 

protein can act as a repressor on other regulatory units.
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Figure 2. 
The high school lac operon. The classic story of how bacteria utilize lactose rather than 

glucose as a carbon source is the canonical example used to teach the concept of genetic 

regulation. The figure shows that only when lactose is present and glucose is absent will the 

gene for the enzyme used to digest lactose be turned on. The activator is shown in green, the 

repressor is shown in red, and RNA polymerase is depicted in blue.
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Figure 3. 
The simple repression pyramid. A progression of different experiments makes it possible to 

assess increasingly subtle regulatory effects for the simple repression motif. Parameters 

inferred from lower levels in the pyramid are used in the analysis of the experiments at the 

next level. The repressor (and its binding site) is shown in red, RNA polymerase (and its 

binding site) is shown in blue, and inducer is shown in green.
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Figure 4. 
Regulatory ignorance in Escherichia coli. The central figure, which schematizes the E. coli 
genome, shows the fraction of the operons for which we know nothing about how they are 

regulated. The left panels show examples of the knowledge of regulatory architectures 

required to unleash the kind of theory–experiment dialogue described here. The right panel 

shows the more common situation, which is complete regulatory ignorance.
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Figure 5. 
Summary of transcription factors that target the (0, 1) simple repression architecture. (a) 

Transcription factor copy numbers in Escherichia coli (58). The cumulative distribution of 

transcription factor copy numbers indicates that activator copy numbers are generally lower 

than repressor copy numbers. Roughly half of the activators have copy number less than 10, 

while roughly half of all repressors have copy number less than 100. Several representative 

examples of well known transcription factors are shown for reference. (b) Cumulative 

distributions are shown for transcription factors that target the (0, 1) simple repression 

architecture. Data are shown from measurements using ribosomal profiling [41 of the 50 

identified repressors were measured in MOPS minimal media with 0.2% glucose (58)] and 

mass spectrometry [31 of the 50 identified repressors were measured in M9 minimal media 

with 0.5% glucose (95)]. (c) The variability in cumulative distribution is shown for the 31 

transcription factors regulating the (0, 1) architecture measured across 22 different growth 

conditions, using mass spectrometry. The shaded region represents the 95th percentile region 

in cumulative distributions across growth conditions, with the distributions for four growth 

conditions shown explicitly. (d) Coefficient of variation for copy numbers of transcription 

factors regulating the (0, 1) architecture across the 22 different growth conditions, measured 

by mass spectrometry. Several examples are identified along with LacI, and the complete list 

is summarized in Table 1. (e) Number of target binding sites for each of the transcription 

factors that target a (0, 1) architecture [using annotated information from RegulonDB (30)]. 

(f) Mechanisms of target binding modulation for transcription factors that target a (0, 1) 

architecture. Ligand-dependent transcription factors contain a known or predicted protein 

domain for binding by a ligand [using information from EcoCyc (47)].

Phillips et al. Page 37

Annu Rev Biophys. Author manuscript; available in PMC 2020 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Protein census in Escherichia coli as a function of growth rate. The figure shows the cellular 

copy number for all proteins, for only transcription factors, and for LacI. The low copy 

number observed for LacI exemplifies the low protein counts that are commonly observed 

for such regulatory proteins. Each growth rate represents a different growth condition that 

was considered in the work of Schmidt et al. (95).
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Figure 7. 
Deconstructing the lac operon to make the simple repression hydrogen atom. Key features of 

the wild-type lac operon such as DNA looping between any of its three operators (only two 

operators shown here) are removed from the architecture to turn it into a model (0, 1) 

architecture.
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Figure 8. 
Classic experiments reveal key regulatory knobs of the simple repression motif. Oehler et al. 

deleted the auxiliary binding sites in the lac operon, rendering it into a simple repression 

architecture (70, 71). Different operators were used as the repressor binding site, and several 

different repressor counts were tuned, resulting in different values of the repression, defined 

as the ratio of gene expression with no repressors present to the level of expression with 

repressors present. Changes to operator sequence with respect to the O1 operator are 

highlighted in blue.
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Figure 9. 
Summary of approaches to computing the level of expression from the simple unregulated 

promoter. These same approaches can be used for computing the response of more complex 

regulatory architectures such as the simple repression motif that is the central preoccupation 

of this article. (a) Thermodynamic models compute the probability of promoter occupancy 

using the Boltzmann distribution. The graph shows the probability of promoter occupancy 

for a weak (lacP1) and a strong (T7 A1) promoter sequence as a function of the number of 

polymerases. (b) Dynamics of mean expression using kinetic models. The graph shows the 
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number of mRNA molecules as a function of time, with the steady-state number shown as a 

dashed black line. The mRNA dynamics corresponding to two different initial conditions are 

shown. (c) Dynamics of mRNA distribution using the chemical master equation approach. 

The bar graph shows how the distribution of mRNA copy numbers changes over time, 

ultimately settling on a steady-state Poisson distribution. Panel a is adapted from Reference 

9. In panels b and c, r = 10 mRNA min−1 and γ = 1 min−1.
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Figure 10. 
States and weights for the simple repression motif. (a) Our regulatory system is assumed to 

consist of P RNA polymerases (blue) and R repressors (red) per cell that either bind 

nonspecifically to the genomic background DNA (our reference energy state) or compete for 

binding to our promoter of interest. The genomic background is discretized by assuming a 

number of potential binding sites, NNS, that is given by the length of the genome (NNS = 4.6 

× 106 for Escherichia coli). (b) The different regulatory states of our simple repression 

promoter. The statistical weight associated with each state is shown using the statistical 

mechanical and thermodynamic formulations. The binding energies of the R repressors and 

P RNA polymerase to their binding sites on the promoter are given by ΔεR and ΔεP, 

respectively. These energies are given relative to the energy of nonspecific binding to the 

genomic background. In the thermodynamic formulation, [P] and [R] are the cellular 
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concentrations of the RNA polymerase and repressor, respectively. Their dissociation 

constants are given by KP and KR. NNS represents the number of nonspecific binding sites 

for both RNA polymerase and repressor.
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Figure 11. 
Theory–experiment dialogue in simple repression. (a) Three examples of predictions about 

the simple-repression motif that can be subjected to experimental scrutiny using precision 

measurements. The left figure shows the fold-change in gene expression as a function of 

repressor copy number for different operators, the middle panel shows predictions of 

induction profiles for different numbers of repressors, and the right panel shows how gene 

expression noise (Fano factor = variance/mean) varies as a function of the mean gene 

expression level for different promoter strengths. Shaded regions indicate credible parameter 
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confidence ranges. (b) Bulk and single-cell measurements of both repressor copy number 

and gene expression. For copy number, bulk measurements can be done using 

immunoblotting, while counting statistics can be used at the single-cell level. To measure 

gene expression, bulk enzymatic assays have excellent dynamic range. Single-cell 

measurements can be done by examining the level of either mRNA or protein gene product.
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Figure 12. 
Kinetic model of simple repression. The promoter can be empty, occupied by repressor, or 

occupied by RNA polymerase. Transitions between the different states are characterized by 

rate constants associated with each kinetic arrow. Note that when transcription commences 

from state 3, the promoter returns to the empty state (state 2).
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Figure 13. 
Determination of the minimal parameter set for describing simple repression across a broad 

array of experimental approaches and simple repression regulatory scenarios. (a) Parameters 

that are introduced in the description of simple repression fold-change measurements, in 

induction experiments, and in the context of gene expression noise. (b) Experiments used to 

determine the minimal parameter set. The left panel is adapted from Reference 31, the 

middle panels are adapted from Reference 80, and the right panel is adapted from Reference 

43.
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Figure 14. 
Experiment–theory dialogue in simple repression. All curves are parameter-free predictions 

based upon the minimal parameter set introduced in Figure 13. (a) Fold-change for simple 

repression as a function of repressor copy number and operator strength for a single gene 

copy (12, 31). (b) Fold-change for simple repression as a function of repressor copy number 

and operator strength with repressor titration effect (12). (c) Induction of the simple 

repression motif for different numbers of copies of the repressor (80). (d) Measurement of 
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gene expression noise for simple repression motif as reported by the Fano factor (variance/

mean) (43).
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Figure 15. 
Data collapse of all data from the simple repression architecture. (a) Gene expression in the 

simple repression motif is dictated by an effective repressor copy number (112). (b) Level of 

induction depends upon inducer concentration, repressor copy number, and repressor 

binding strength, all of which fold into the free energy difference between active and 

inactive forms of the repressor (80).
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Figure 16. 
The occupancy hypothesis and the equilibrium assumption. (a) The multiple steps between 

RNA polymerase binding and the termination of an mRNA raise the question of whether the 

binding probability (occupancy) of RNA polymerase to the promoter can be used as a proxy 

for the quantity of mRNA produced, and whether RNA polymerase binding is in quasi-

equilibrium such that the tools of statistical mechanics can be used to compute this quantity. 

(b) The equilibrium assumption is fulfilled if the rates of RNA polymerase binding and 

unbinding [kon
(P) and koff

(P), respectively] are much faster than the rate of transcriptional 

initiation r (see Supplemental Appendix S3 for details on this simulation).
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Figure 17. 
Distribution of nonspecific binding energies. The distribution shows the predicted binding 

energies for LacI to all possible 21 bp sequences on the Escherichia coli genome (strain 

MG1655, GenBank: U00096.3). Binding energies were calculated using an energy matrix 

obtained by Sort-Seq on the LacI simple repression architecture (5). The energies were fixed 

relative to the O1 wild-type operator, with ΑεR = −15.3kBT.
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Figure 18. 
Test of the idea of steady-state gene expression for cells in exponential phase. (a) 

Diagrammatic view of protein dilution through cell division. As cells grow, the expression of 

fluorescent proteins marches on. As the cell approaches division, the total detected 

fluorescence is much larger than detected at the cells’ birth. On average, the proteins are 

split evenly among the daughter cells, resulting in a fluorescence level comparable to that of 

the original mother cell. (b) Schematic of experimental measurement. To test the steady-state 

hypothesis, we monitored the growth of several bacterial microcolonies originating from 

single cells and tracked the difference in intensity with respect to their mother cell as a 

function of time for each daughter cell through the family tree. (c) Fluorescence intensity 

difference between mother/daughter pairs as a function of time. Red points indicate 

individual daughter/mother pairings in a given lineage. Blue triangles represent the average 

difference at that time point. Error bars on blue points are the standard error of the mean 

(SEM). A kernel density estimation of the ΔI distribution is shown on the right-hand side of 

the plot. The black dashed line is at zero.
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Figure 19. 
Predictive versatility of the Hill function versus allosteric models. (a) Measurements of the 

fold-change of a simple repression architecture as a function of IPTG concentration. Points 

and error bars represent the mean and standard error of ten biological replicates of 

repression of the O2 operator with 260 repressors per cell. The solid line is the best fit of the 

standard Hill function given in Equation 28. (b) Best-fit line for the data using the Monod-

Wyman-Changeux (MWC) model of allostery coupled with the thermodynamic model is in 

red. Gray lines represent predicted induction profiles of other combinations of repressor 

copy numbers and DNA binding energies. These predictions are made using only the 

parameters fit from a single strain. Tests of these predictions were shown in Figure 14c.
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Figure 20. 
Simple repression in other contexts. Here we summarize several different modes of 

regulation that are observed at (0, 1) architectures. Like LacI, many transcription factors are 

inducible, and binding by a specific ligand leads to a loss of repression. Conversely, a 

number of transcription factors undergo corepression and bind the DNA more strongly upon 

binding of a ligand to the repressor. For the examples identified, the transcription factor is 

shown in red text, while the ligand is shown in black. Several transcription factors appear as 

part of two-component signal transduction systems, whose phosphorylation-dependent 

DNA-binding strength is changed by the activity of membrane-bound sensor kinases. Lastly, 

repression can be modulated by changing the copy number of the repressor in response to 

stimuli. This can be achieved through self-cleavage (e.g., LexA) or by cellular proteases 

(e.g., RelB by Lon).

Phillips et al. Page 56

Annu Rev Biophys. Author manuscript; available in PMC 2020 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 21. 
Regulatory action at a distance. The same minimal parameter set remains valid in the context 

of DNA looping, with the only requirement being to introduce a new parameter that captures 

the free energy of DNA looping. (a) Repression for the case of DNA looping as a function of 

the number of repressors per cell. (b,c) Operator swap experiment. In this case, for each 

DNA loop length, the operators that flank the loop were changed. (b) Using the Oid-O1 data 

to obtain the DNA looping free energy as a function of operator distance, the 

thermodynamic model makes a parameter-free prediction of how repression will work out in 

this case, shown in the red curve. (c) Inferred looping free energy is the same regardless of 

which operators flank the loop. Figure adapted from Reference 10.
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Figure 22. 
Beyond the lac operon in regulatory dissection. Using the Sort-Seq method, it is now 

possible to identify regulatory architectures and the transcription factors that mediate them, 

making it possible to do regulatory dissections like that described here (6).
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Table 1

Summary of transcription factors identified in (0, 1) regulatory architectures

Protein Copy number in glucose, minimal media Standard deviation across 22 growth conditions Coefficient of variation

HU 87,425 28,629 0.37

H-NS 22,541 7,181 0.24

IscR 7,687 2,603 0.49

Fur 6,492 1,707 0.29

Lrp 6,092 1,339 0.20

IHF 5,018 1,223 0.25

ArcA 3,367 1,030 0.24

CRP 2,048 646 0.24

AlaS 1,948 605 0.33

MprA 1,085 516 0.61

PepA 1,076 259 0.23

MetJ 990 231 0.31

CpxR 933 158 0.17

NsrR 872 189 1.78

PurR 826 165 0.24

FNR 609 236 0.49

LexA 560 177 0.32

CysB 523 124 0.33

AllR 206 68 0.43

FadR 186 75 0.34

RelB 178 61 0.53

TrpR 167 35 0.22

Cra 148 87 0.37

UidR 139 137 1.06

NagC 124 36 0.26

LacI 23 8 0.65

AcrR 21 10 1.08

DicA 20 6 0.40

BirA 19 7 0.50

AscG 17 12 0.62

NadR 16 4 0.26

PaaX 11 19 0.64

PhoB 7 5 0.45

Protein copy numbers are per cell and were determined by mass spectrometry (95). The values for HU and IHF were taken as the average of their 
individual subunits (HupA and HupB for HU and IhfA and IhfB for IHF).
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