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ARTICLE

Whole-Exome Sequencing of 2,000 Danish Individuals
and the Role of Rare Coding Variants in Type 2 Diabetes

Kirk E. Lohmueller,1,18,19 Thomas Sparsø,2,18 Qibin Li,3 Ehm Andersson,2 Thorfinn Korneliussen,4

Anders Albrechtsen,5 Karina Banasik,2 Niels Grarup,2 Ingileif Hallgrimsdottir,6 Kristoffer Kiil,2

Tuomas O. Kilpeläinen,2 Nikolaj T. Krarup,2 Tune H. Pers,7,8,9 Gaston Sanchez,6 Youna Hu,1

Michael DeGiorgio,1,20 Torben Jørgensen,10,11,12 Annelli Sandbæk,13 Torsten Lauritzen,13 Søren Brunak,7

Karsten Kristiansen,3,5 Yingrui Li,3 Torben Hansen,2,14 Jun Wang,2,3,5 Rasmus Nielsen,1,5,15,*
and Oluf Pedersen2,16,17,*

It has been hypothesized that, in aggregate, rare variants in coding regions of genes explain a substantial fraction of the heritability

of common diseases. We sequenced the exomes of 1,000 Danish cases with common forms of type 2 diabetes (including body mass

index > 27.5 kg/m2 and hypertension) and 1,000 healthy controls to an average depth of 563. Our simulations suggest that our study

had the statistical power to detect at least one causal gene (a gene containing causal mutations) if the heritability of these common dis-

eases was explained by rare variants in the coding regions of a limited number of genes. We applied a series of gene-based tests to detect

such susceptibility genes. However, no gene showed a significant association with disease risk after we corrected for the number of genes

analyzed. Thus, we could reject a model for the genetic architecture of type 2 diabetes where rare nonsynonymous variants clustered in a

modest number of genes (fewer than 20) are responsible for the majority of disease risk.
Introduction

Twin and segregation studies have suggested that complex

diseases, such as common metabolic disorders, are deter-

mined, in part, by genetic factors.1 As a result, over the

last several decades there has been tremendous interest

in identifying the genetic basis of common diseases.2,3

Recently, researchers have used genome-wide association

studies (GWASs) to identify common variants that increase

risk of common disease. Hundreds of reproducible associa-

tions have been reported between common single SNPs

and particular traits. Some of these associations have

yielded novel biological insights that will be useful for

biomedical research.4

However, it is now well documented that most of the

identified loci have very small effect sizes.5 Despite their

relatively moderate frequency in the population, the com-

mon variants associated with complex traits, to date, can

only account for a small amount of the heritability that

has been estimated for these traits through twin and

familial-aggregation studies.6 This discrepancy between
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the heritability explained by the common SNPs identified

in GWASs and familial studies has been termed the

‘‘missing heritability’’ problem.

Presently, researchers are searching for the missing her-

itability in a number of places.6–8 One such location that

is the subject of much current research is in low-frequency

and rare (frequency < 1%) genetic variants.9,10 Population

genetic theory suggests that if disease-causing variants are

affected by purifying natural selection because they lead

to a slight decrease in reproductive fitness in the individ-

uals carrying them, then a greater proportion of the

heritability will be explained by low-frequency and rare

variants than by common variants.11,12 Furthermore,

low-frequency variants have probably eluded detection

in currently used GWASs. There are two reasons for this.

First, the currently used genotyping arrays are biased

against the inclusion of low-frequency variants. Thus,

many low-frequency variants are never directly tested for

an association with the trait. Second, low-frequency vari-

ants are not tagged by the common variants genotyped

in the GWAS. As a result, they would also escape indirect
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detection because they are not well correlated with a typed

common SNP.

Although there have been several reported associations

between low-frequency variants and complex traits,13–18

the hypothesis that rare variants account for a large

proportion of the heritability of complex traits remains

to be tested. With the advent of next-generation

sequencing19 and the affordability of exome sequencing,

researchers are gaining the genomic tools with which to

discover and test for associations between rare coding var-

iants and complex disease and directly test the rare-

variant common-disease hypothesis. Such approaches

have recently been successfully applied to the iden-

tification of new mutations responsible for Mendelian

diseases.20–25 Additionally, over the past several years,

advances have been made on the analysis side. The devel-

opment of numerous statistical tests has allowed more

efficient testing for associations between rare variants

within a particular gene and a trait.26–31 Such methods

seek to combine the signal from multiple markers within

a gene to provide greater statistical power than that for

single-marker tests. However, these methods have yet to

be widely applied to exome sequencing data from thou-

sands of individuals. As such, their overall performance

remains to be determined.

One common disease that has been subjected to intense

genetic study is type 2 diabetes.32 The heritability of type 2

diabetes has been estimated to be around 30%.33–35

Through GWASs, 63 loci have been reproducibly associ-

ated with type 2 diabetes.36 However, as for other complex

traits, the associated SNPs can only account for <20% of

the heritability estimated from family studies.36

Here, we seek to evaluate the role that rare coding vari-

ants play in the genetic basis of common forms of type 2

diabetes. We performed a deep whole-exome sequencing

study of 2,000 Danish individuals. We applied both

single-marker and gene-based association tests. Although

we failed to detect any significant association after multi-

ple test corrections, our simulations suggest that our results

are informative about the genetic architecture of type 2

diabetes. In particular, our study suggests that when clus-

tered in a small number of genes, rare coding variants of

moderate to strong effect are unlikely to account for

much of the missing heritability. Rather, if rare coding var-

iants are an important factor in type 2 diabetes risk, they

are most likely scattered across many genes. Our results

have important implications for the design and interpreta-

tion of future medical resequencing studies.
Subjects and Methods

Study Populations
We sequenced 2,000 Danish individuals, of which half (the cases)

suffered from type 2 diabetes,37 moderate adiposity (body mass

index [BMI] > 27.5 kg/m2), and hypertension (systolic/diastolic

blood pressure [BP] > 140/90 mmHg or use of antihypertensive

medication). The others were healthy individuals who all had
The American Jou
fasting plasma glucose < 5.6 mmol/l, 2-h OGTT-based plasma

glucose < 7.8 mmol/l, BMI < 27.5 kg/m2, and BP < 140/

90 mmHg (and no antihypertensive treatment). Clinical and

biochemical characteristics of the 2,000 individuals involved are

described in Table S1 in the Supplemental Data available with

this article online. The 2,000 sequenced individuals were selected

from three different Danish study populations (Inter99, Steno

samples, and ADDITION [Anglo-Danish-Dutch Study of Intensive

Treatment in People with Screen-Detected Diabetes in Primary

Care]) as previously reported.18

Inter99

The Inter99 cohort is a randomized, nonpharmacological inter-

vention study for the prevention of ischemic heart disease and

was conducted on 6,784 randomly ascertained participants aged

30–60 years at the Research Centre for Prevention and Health

in Glostrup (ClinicalTrials.gov ID NCT00289237). An oral glucose

tolerance test (OGTT) measured plasma glucose and serum insu-

lin at fasting and 30 and 120 min after glucose intake. Subse-

quently, 6,094 participants who were of Danish nationality

and had available DNA were classified as having normal glucose

tolerance (n ¼ 4,525), impaired fasting glycaemia (n ¼ 504),

impaired glucose tolerance (n ¼ 693), screen-detected type 2

diabetes (n ¼ 253), or previously diagnosed type 2 diabetes

(n ¼ 119) according to the World Health Organization (WHO)

1999 criteria. Detailed characteristics of Inter99 have been pub-

lished previously.38,39

Steno

A sample of individuals with clinical-onset type 2 diabetes and a

group of nondiabetic control individuals were ascertained at the

outpatient clinic at Steno Diabetes Center, Copenhagen. An

OGTTwas performed in all control individuals so that individuals

with unknown diabetes or states of prediabetes according toWHO

1999 criteria could be excluded.37

ADDITION

The Danish ADDITION Study is a general-practice type 2 diabetes

high-risk screening and intervention study sampled by the

Department of General Practice at the University of Aarhus

(ClinicalTrials.gov ID NCT00237548).40 The 8,662 Danish partici-

pants with available DNA from the initial screening cohort

included 1,626 participants with screen-detected and untreated

type 2 diabetes and 7,036 nondiabetic subjects. Individuals with

type 2 diabetes were diagnosed by two independent diabetic

plasma glucose values at baseline investigation or at a 1-year

follow-up investigation.

All study participants gave informed consent for use of their bio-

logical samples for genetic studies. The current research protocol

was approved by The Danish National Ethical Committee on

Health Research and is in accordance with the ethical scientific

principles of the Helsinki Declaration II.

Exome Capture and Sequencing
Concentration and quantity of genomic DNAs (gDNAs) were

measured by Qubit Fluorometer (Invitrogen). Agarose gel electro-

phoresis was employed for checking whether gDNAwas degraded.

Only samples without apparent degradation and quality > 3 mg

were retained. DNA from each sample was broken into short frag-

ments ranging from 150 to 200 bp. The resulting fragments were

end repaired, ligated with adaptors, indexed (6 bp), and amplified

by adaptor-mediated PCR (pre-PCR). After purification, the

amplified fragments were hybridized to the SureSelect biotinylated

RNA baits with the Agilent SureSelect All Exon Kit v.2 (with a

46 Mb target region). After a 24 hr hybridization, nonhybridized
rnal of Human Genetics 93, 1072–1086, December 5, 2013 1073
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fragments were washed away. The hybridized fragments were

amplified for the production of a sequencing library, which was

sequenced with an Illumina HiSeq 2000 machine. Case and con-

trol samples were randomized and sequenced in index tagged

pools of four (two random cases and two random controls).

Alignment
From the fastq files generated from the Illumina pipeline, all sam-

ples were aligned to the GRCh37/hg19 human reference genome

(UCSC Genome Browser) with the Burrows-Wheeler Aligner

(BWA; v.0.5.8).41 No alternative haplotypes or random chromo-

somes (chromosome parts without a known position) were used.

All reads were mapped to the positive strand of hg19. Duplicate

reads were removed.

Below are the BWA commands used for the alignments to the

GRCH37/hg19 reference genome:

d bwa aln -n 3 -o 1 -e 10 -i 5 -l 32 -t 4 hg19.fa read1.fq -f

read1.sai

d bwa aln -n 3 -o 1 -e 10 -i 5 -l 32 -t 4 hg19.fa read2.fq -f

read2.sai

d bwa sampe -a 2000 hg19.fa read1.sai read2.sai read1.fq

read2.fq j samtools view -C -S –b
Extended Target
Sites flanking the target region were also covered by sequencing

reads. Thus, we decided to enlarge the target regions by 100 bp

on each side (termed the ‘‘extended target region’’). Compared

to the original target, which covered only 46,205,397 bp of the

hg19 reference genome, the extended target regions covered

82,207,242 bp.

SNP Discovery and Genotype Calling without

Imputation
For all samples and for every position of the autosomes given by

the extended target region (~82 Mb), we calculated genotype like-

lihoods for all ten possible genotypes by using SAMtools v.0.1.8.42

From the raw likelihoods, we determined the major allele fre-

quency, minor allele frequency (MAF), and maximum likelihood

estimate.43,44 The likelihood was then used for SNP detection.

Specifically, for each site, we estimated the likelihood of the data

under the alternative model by allowing for two alleles (our opti-

mized likelihood) and under a null model in which only one allele

was present. This gave us a likelihood ratio test statistic (LRT) that

was c2 distributed with one degree of freedom and could be con-

verted to a p value. We defined a p value of 10�6 (LRT > 24) as

our cutoff for putatively variable sites of interest. These analyses

were done with ANGSD (Analysis of Next Generation Sequencing

Data) software.45

On the basis of the genotype likelihoods calculated from

SAMtools, we called genotypes for all 1,998 samples for 2,958,319

sites with a MAF > 0.0001 (1,354,315 in the target regions and

1,604,004 in the extended target regions) by using the approach

devised in Kim et al.,43 where the genotype with the highest likeli-

hood was assigned to each individual. Specifically,

Ghwe ¼ argmaxðg˛f0;1;2gÞ

��
2
g

�
f gð1� f Þ2�gLðD jG ¼ gÞ

�
;

where Ghwe is the called genotype for the individual, g is the num-

ber of copies of the minor allele, f is the allele frequency estimated
1074 The American Journal of Human Genetics 93, 1072–1086, Dece
at that site, and L(DjG ¼ g) is the genotype likelihood from SAM-

tools.
Filtering of Sites and Samples
After initial genotype calls, we applied a series of site filters to the

2,958,319 sites with a MAF > 0.0001 to obtain a set of sites with

high-quality genotype calls suitable for association analysis (see

Appendix A). We also filtered individuals for data quality (see

Appendix B).
Genotype Calling Using BEAGLE
We used BEAGLE46 to impute genotypes from sequencing data on

2,958,319 sites with an estimated MAF > 0.0001. We performed

BEAGLE imputation with default parameters by using genotype

likelihoods from SAMtools in the following stepwise manner:

1. From our sequencing data, we imputed genotypes for sites

both in the target and extended regions and in the 1000

Genomes project47 (510 kb, at most 15 SNPs) by using

the 1000 Genomes CEU (Utah residents with ancestry

from northern and western Europe from the CEPH collec-

tion) haplotypes as a reference panel (~4.2 million sites).

2. We imputed genotypes from our exome sequencing data

without using a reference panel (2,958,319 sites with an

estimated MAF > 0.0001).

3. We combined the two sets of calls. For sites present in the

1000 Genomes SNP set, we adopted imputed genotypes

from step 1. For sites only present in the exome sequencing

SNP set (not present in 1000 Genomes), we adopted the

imputed genotypes from step 2.

Variable sites were retained if they were successfully imputed

(r2 > 0.2) and if they passed all previously applied filters. Imputed

genotypes were used for association analyses throughout the

paper.
Annotation of Putative Variable Sites
The SeattleSeq Annotation 137 server was used for annotation of

all sites. If a variable site was given two or more annotations

because there were different isoforms, themost functional annota-

tion was used. In other words, annotations were ranked as

nonsense > splice > nonsynonymous > synonymous > outside

coding.
Validation of Variants
For validation purposes, we performed in-house Sanger sequenc-

ing of all singletons (n ¼ 31) and doubletons (n ¼ 15) identified

via our exome sequencing study in seven genes for maturity-onset

diabetes of the young (MIM 606391) and monogenic obesity. All

gene segments were amplified by standard PCR and directly

sequenced by Sanger sequencing. All primers were designed with

Primer3. The sequences were analyzed on a 3130XL Genetic

Analyzer (Applied Biosystems), and mutations were detected

with SeqScape v.2.5 (Applied Biosystems).
Metabolic Gene Sets, Pathways, and Networks
We defined gene sets for monogenic diabetes, obesity, and hyper-

tension, as well as sets of genes identified by GWASs of type 2

diabetes, BMI, and hypertension (see Table S2 for lists of genes

in each set).
mber 5, 2013



We next constructed protein-protein interaction networks. To

do this, we selected 76 genes known frommonogenic forms of dia-

betes, obesity, and hypertension or GWAS hits (type 2 diabetes,

obesity, and hypertension) for which the lead association lies

within the protein-coding part of the gene (Table S3).

Protein subnetworks were constructed with the InWeb protein-

protein interaction database v.3.48 InWeb comprises more than

960,000 experimentally derived interactions. We discarded low-

confidence interactions and focused our analysis on a network

consisting of 170,000 high-confidence interactions (defined as

interactions identified in multiple independent studies and

often reported in small-scale experiments rather than in high-

throughput studies). For each gene of interest, we defined protein

subnetworks by the proteins reported to directly interact with the

given gene’s product. To further restrict the analysis to interactions

likely to underlie type 2 diabetes, obesity, or hypertension, we

constructed tissue-specific protein subnetworks by pruning away

proteins whose encoding genes’ mRNA expression levels are below

the median gene expression level of the assigned tissue (Table S3).

We obtained tissue-specific gene expression data from the BioGPS

database49 and manually assigned a single most likely tissue to

each gene of interest.

Association Tests
For single-marker association tests, we applied an allele-based

c2 test (implemented in PLINK50) to test for an association be-

tween case-control status and each of the identified putatively

functional variants (annotated as nonsynonymous, splice-site,

or nonsense SNPs).

Because single-marker tests have suboptimal power to detect

genes with many rare variants affecting the trait,30,51 we also

employed several gene-based tests that combine information

across multiple variants within each gene. Specifically, we applied

the SKAT (Sequence Kernel Association Test),29 KBAC (Kernel-

Based Adaptive Cluster),27 WSS (Weighted Sum Statistic),28 VT

(Variable Threshold),52 Score,31 SSU (Sum of Squared Score),31

SSUw (Weighted Sum of Squared Score),31 and Sum31 tests. SKAT

was implemented with the R package described in Wu et al.29 To

model the relationship between genetic variants and disease status,

we ran SKAT by using both the linear kernel (defined as SKAT1) and

the identity-by-state (IBS) kernel (defined as SKAT2). Additionally,

we ran SKAT with two different weighting schemes. First, we gave

all SNPs equalweight (SKAT1). Second,we used the defaultweights,

which give extra weight to SNPs with lowMAF (SKAT2). In the first

case, SKAT has been shown to be equivalent to the C-alpha test.29

We ran KBAC by using the KBAC R package. To assess significance

for each test, we used 100,000 permutations and the adaptive

approach to increase speed. We ran the WSS method28 by using

the AssotesteR package with 500 permutations to assess signifi-

cance.Only SNPswith aMAF<1%wereused for this test. For genes

with initial p values% 0.002, we ran an additional 50,000 permu-

tations. One gene still had p ¼ 0, so we ran 500,000 permutations

for that gene. We ran the VT method52 by using the AssotesteR

package with 1,000 permutations to assess significance. Only

SNPswith aMAF< 5%were used for this test. For geneswith initial

p values % 0.001, we ran an additional 50,000 permutations. We

ran the other four gene-based tests by using the R code described

in Pan et al.31 We assessed significance by using 1,000 permuta-

tions. For the genes with initial p values equal to 0, we ran an

additional 100,000 permutations. We focus on the SKAT test

throughout much of this paper because it has been shown to

have high statistical power under a variety of conditions.29
The American Jou
Additionally, all analyses using the gene-based tests were

restricted to include only putatively functional variants, which

we defined to be nonsynonymous, splice-site, or nonsense SNPs.

Three different frequency thresholds for including SNPs were

used: (1) all SNPs regardless of frequency, (2) MAF < 5%, and (3)

MAF < 1%. All analyses described in the paper used the SNPs

with MAF < 5% unless otherwise noted.

It has been suggested that some genes might have too few SNPs

to enable detection of any statistically significant associations.53

Including such genes in the analyses could reduce power by

increasing the number of tests performed and, consequently, the

stringency of the correction for multiple tests. To mitigate this

effect, we only analyzed genes with at least two SNPs meeting

the inclusion criteria described above. For the 5% MAF threshold,

15,133 genes met this criterion, suggesting a Bonferroni-corrected

threshold of 33 10�6 for a genome-wide 5% significance level. We

also restricted some of the gene-based analyses to only include

genes containing at least five or ten SNPs under a 5% MAF

threshold. A total of 11,347 or 6,105 genes (containing at

least five or ten SNPs, respectively) met these criteria, giving 5%

Bonferroni significance thresholds of 4 3 10�6 and 8 3 10�6,

respectively.

Statistical Power Simulations
To assess the power of our exome sequencing study, we per-

formed power simulations. We explored different values of

the total heritability of diabetes risk (on the liability threshold

scale) that could be explained by rare nonsynonymous variants

in a number of genes. We conditioned these simulations on the

observed patterns of genetic variation within our exome

sequencing data and then assigned them effects on the trait

to generate the desired heritability. Although this approach

differs from traditional power simulations, which fix the effect

sizes and allele frequencies without regard to the heritability,

our simulation approach allows a more direct investigation of

the genetic architecture that is compatible with our empirical

results (also see Long and Langley54 for a similar simulation

approach).

We assumed that the total narrow-sense heritability of type 2 dia-

betes risk (h2) is 0.3 (which is likely to be an underestimate33–35,55;

Table S4). We then assumed that this heritability can be divided

among coding variants in n˛f5;10;15;20;50;100;150;200;500g
different risk genes. Under the assumption of n different

genes, the amount of heritability contributed by each gene was

h2
n ¼ 0:3=n. We also varied the causal proportion of SNPs within

each gene as c˛f0:25;0:5;1:0g. Within each simulation replicate,

each nonsynonymous SNP with a MAF < 5% had a probability c

of being retained as a causal SNP. If a gene had fewer than 2/c

total SNPs (both causal and noncausal), it was discarded before

the simulation started. This step increased the efficiency of our

simulations by retaining genes that were expected to carry at least

two causal SNPs.

For a given gene sampled fromour data set and values of h2
n and c,

we simulated cases and controls by conditioning on the genotypes

in our data. We did this by using the –simu-cc function of the

Genome-wide Complex Trait Analysis (GCTA) package.56 Specif-

ically, for each causal SNP i, we drew the SNP effect, ai, from a stan-

dard normal distribution. Let W denote the normalized genotype

matrix for all 1,965 individuals in the study at the causal SNPs.

Each entry in this matrix is thus wij ¼ xij � 2pi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ

p
,

where xij ˛{0, 1, 2} is the genotype for the jth individual at the ith

SNP and pi is the allele frequency in our 1,965 individuals.56
rnal of Human Genetics 93, 1072–1086, December 5, 2013 1075



Individual quantitative phenotypes were assigned by a standard

linear model,

yj ¼
X

all causal SNPs

wijai þ εj;

where yj is the (quantitative) phenotype of the j
th individual, wij is

the genotype of the jth individual at the ith SNP, ai is the effect of

the ith SNP, and εj is the environmental effect (see below). In

matrix notation, this can be expressed as y¼Wuþ ε. The environ-

mental variance was assigned such that the proportion of the

phenotypic variance attributable to genetic variation was equal

to h2
n. Let sG;n be the empirical variance ofWu. Then, the environ-

mental variance for individual j is drawn from a normal distribu-

tion with a mean of 0 and a variance of

sG;n

"
1

h2
n

� 1

#
:

Intuitively, this takes the genetic variance actually found in the

sample sG;n and then sets the environmental variance such that

h2
n ¼ sG;n

sG;n þ sE

:

Note that the GCTA approach used the empirical variance of

Wu. Essentially equivalent results can be found with the classic

quantitative genetic equation

sG;n ¼
X

all causal SNPs

2pi
�
1� pi

�
a2
i :

The 981 individuals with the highest values of ywere considered

to be cases, and the other 984 were the controls.

Our simulations assigned SNP effect sizes such that the observed

patterns of genetic variation explained the desired heritability.

One potential drawback to conditioning on the observed patterns

of variation is that the effect sizes assigned can be unrealistically

large, especially when a given gene (that might only contain a

small number of rare variants) accounts for much of the heritabil-

ity. Thus, we implemented an extra rejection step into our power

simulations. In order to simplify the discussion of the rejection

step, we rescaled the variances so that the total phenotypic vari-

ance equaled 1. We did this by finding the value of C such that

C½sG;n þ sE� ¼ 1. Then, we let ki ¼ Cai. In other words, ki was the

normalized SNP effect (still on the liability scale). If ki > 3 for

any SNP within a gene, we rejected that gene and selected a

different one. This procedure increased the probability of

including genes containing either common SNPs (still with a

MAF < 5%) or more SNPs.

The threshold of rejecting genes containing a SNP with ki > 3

was chosen for the following reason. Assume a liability threshold

model (liability follows a normal distribution) in which an indi-

vidual whose liability is >1 has the disease. Further assume that

there is a single causal variant. The liability of individuals who

do not carry the causal variant follows a standard normal distribu-

tion. Thus, roughly 16% of individuals not carrying any risk vari-

ants would have the disease. Under the assumption that a single

causal SNP i has an effect ki ¼ 3 (the cutoff we used) per allele

copy on the liability scale, the liability of heterozygous individuals

would be normally distributed with a mean equal to 3. Then,

97.8% of individuals who carry the causal SNP as a heterozygote

would have the disease (i.e., have a risk score > 1). Thus, the risk

variant is almost fully penetrant, and further increasing ki would
1076 The American Journal of Human Genetics 93, 1072–1086, Dece
not substantially increase the penetrance of the risk allele. Thus,

requiring SNPs to have ki < 3 is biologically reasonable and was

the upper bound on the effect size used in our power simulation.

We then ran SKAT and KBAC on the simulated phenotypes and

the actual genotypes and recorded the p values. This process

was repeated until we had 1,000 simulation replicates for each

combination of values of n and c. The proportion of simulation

replicates with p values less than the specified significance level

was the power of the test.

The simulations described above evaluate the SKAT test’s power

to detect a single association. But, under the polygenic models of

disease risk, there are many genes (n of them) that contribute to

disease risk. Although the effect of an individual gene under this

model becomes smaller, making the gene harder to detect, there

aremore opportunities to detect a truly associated gene. Therefore,

we also evaluated the power to detect at least one associated gene

at our Bonferroni significance threshold. The power to detect at

least one gene was calculated as PðdetectRone geneÞ ¼ 1� bn,

where b is the type II error, or the proportion of simulation repli-

cates that were not significant under our Bonferroni threshold,

and n is the number of risk genes in the particular model.
Results

Description of Variants Found and Data Quality

The fraction of the target region covered by various depths

is shown in Figure S1. The median and mean depth of

coverage were 463 and 56.33, respectively. The exome

coverage (the percent of targeted bases that were covered

by at least one read) ranged from 94.11% to 98.76%. The

average exome coverage per sample was 97.27% (SD ¼
0.00595; Figure S2). No sample had less than 90% of its

exome covered.

For general quality assessment of the sequencing, we

used nonimputed genotype calls for the 729,538 variants

identified and retained after site filtering and application

of the LRT score > 24 (Appendix A). The majority of

variants present in the data set had a low minor allele

count, as expected. There were no general differences

between cases and controls in the frequency patterns

(Figure S3). Additionally, we found no bias in the transi-

tion-to-transversion (Ti/Tv) ratios for different bins of

minor allele counts (Figure S4), total depth (Figure S5), or

LRT statistics (Figure S6). Furthermore, we found few

differences in the Ti/Tv ratios, average total depths, and

average LRT scores between rare SNPs (minor allele

count < 10) absent from and those already present in

dbSNP v.134 (Table S5).

As expected, the minor allele count differed across anno-

tation classes in that functional variants had lower MAFs

(Figure S7). We also stratified the Ti/Tv ratios into different

annotation classes, both for all individuals and for cases

and controls separately (Table S6). In some annotations,

we detected a slight decrease in the Ti/Tv ratio in cases

compared to in controls. However, the Ti/Tv ratios for

the different annotation categories were generally in

proximity to what others have reported.53 These findings

suggest that the data are of sufficient quality.
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Figure 1. Q-Q Plots Showing the p Values from the SKAT and
KBAC Association Tests
(A) SKAT1 test (linear kernel, all variants have equal weight).
(B) SKAT2 test (weighted IBS kernel, extra weight to rare variants).
(C) KBAC test.
Solid lines denote the diagonal.
As discussed in the Subjects and Methods, we extended

the target regions by 100 bp. The extended target regions

showed a lower median depth of coverage than did the

actual target regions (Figure S8). Also, the extended target

regions showed a lower Ti/Tv ratio than did the target
The American Jou
regions. This was because variants outside of the coding

region were included in the extended region (Table S7).

However, the ratio was still within the expected

threshold.57 The majority of variants in the extended re-

gion were noncoding, but we also found approximately

2,500 additional variants annotated to the exonic regions

(Table S8).

To test for potential bias in the BEAGLE data set, we

calculated the Ti/Tv ratio for each sample (Figure S9). We

observed no outlying samples. We also plotted the Ti/Tv

ratio as a function of r2 (Figure S10) and found that as r2

increased, the Ti/Tv ratio stabilized around 2.5. Finally, as

seen in the unimputed data, putatively functional variants

were present at a lower frequency than were other variants

(Figure S11).

Figure S12 shows the distribution of the number of sites

across the exome where each individual carries at least one

nonreference allele for different types of coding SNPs.

Figure S13 shows the number of nonreference alleles

carried by each exome for different types of coding SNPs.

These counts are broadly in line with what has been

previously reported from exome sequencing data.53,58,59

We also attempted to validate some of the singletons and

doubletons detected in our data set. All 31 singletons were

validated by traditional Sanger sequencing. For one of the

15 doubletons, we could only validate one carrier of the

variant; the other 14 doubletons were validated for both

carriers.

After genotype imputation and quality-control analyses,

we were left with 1.6 million autosomal variants (of which

286,083 were in the exons). See Table S9 for the number of

SNPs per gene.

Results of the Association Tests

We next applied the gene-based association tests to our

exome sequencing data. The quantile-quantile (Q-Q) plots

of the p values from the SKAT and KBAC association tests

showed good agreement with the expected distribution,

suggesting few biases (e.g., population stratification,

differences in technical artifacts, etc.) between cases and

controls (Figure 1). However, none of the genes under

either test passed the Bonferroni-correction threshold

(Tables S10–S12). We obtained similar results when we

only included SNPs with a MAF < 1%, when we included

all SNPs regardless of frequency, and for the additional

six gene-based association tests (Figures S14–S18 and Ta-

bles S10–S18). Additionally, we found no genes passing

the Bonferroni-correction threshold when we reduced

the number of genes analyzed to include only those with

at least five or at least ten SNPs (Figures S19 and S20).

We also applied a single-marker association test to each

of the putative functional variants. However, no SNP

passed the Bonferroni-correction threshold of p < 10�7

(Figure S21 and Tables S19–S21). Interestingly, there was

a substantial overlap in the top genes identified in the

single-marker analysis and the SKAT association tests. For

example, 9 of the top 20 genes with the lowest p values
rnal of Human Genetics 93, 1072–1086, December 5, 2013 1077
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Figure 2. Power to Detect an Association with SKAT or KBAC for
Different Numbers of Causal Genes
Different colored curves denote different significance levels. The
Bonferroni threshold was 33 10�6. Note that power was low when
there were many causal genes (genes containing causal variants)
such that the heritability explained by a given gene was very low.
(A) SKAT1 test (linear kernel, all variants have equal weight).
(B) SKAT2 test (weighted IBS kernel, extra weight to rare variants).
(C) KBAC test.
in the SKAT1 test were also among the top 20 genes with

the lowest single-marker p values. This finding suggests

that in our data, the effects detected with the SKAT test
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could also be captured by the single-marker analysis. How-

ever, this pattern is not universal to all association tests,

or data sets, given that only three genes with the lowest

p values in the KBAC test in our data were among the

top 20 genes with the lowest single-marker p values.

Further investigation of the relationship between single-

marker and gene-based association tests is warranted.

Gene-Set Analyses

Sets of genes related to diabetes or metabolic traits might

be enriched with lower p values from the gene-based asso-

ciation tests, even though none of the individual p values

passed the multiple test correction. We examined several

sets of genes related to metabolism, as well as the corre-

sponding interactomes of a subset of these genes (Tables

S2 and S3). We found that genes previously associated

with obesity through GWASs were enriched with lower

SKAT1 p values (p < 0.006, Table S22). Additionally, a few

of the interactomes, including those for two genes in

which mutations are known to cause monogenic forms

of diabetes60 (HNF1A [MIM 142410] and HNF4A [MIM

600281]), were marginally enriched with putatively func-

tional variants relative to synonymous variants. However,

these results were not significant after correction for

multiple tests (Table S23). A comprehensive overview of

the gene-set analysis is found in Tables S23 and S24.

Finally, monogenic forms of diabetes might be hidden

among individuals diagnosed with type 2 diabetes. We

therefore examined whether any of the individuals in

our study carried mutations previously demonstrated to

cause diabetes in the most common monogenic-diabetes-

associated genes (HNF1A [MIM 142410], GCK [MIM

138079], and HNF4A [MIM 600281]). We identified three

carriers of HNF1A mutations (two cases and one control)

and two carriers of GCK mutations (two cases).60,61

Statistical Power of the Gene-Based Association Tests

To evaluate the statistical power of these tests in the

context of our study under a variety of genetic models,

we performed a series of power simulations. These simula-

tions conditioned on the number of SNPs per gene and the

genotypes of the individuals sequenced in our study. As

such, they should closely reflect the power of our study.

These models assumed that the total heritability of type

2 diabetes (approximately 30%33–35,55) is equally divided

among a number (n) of different genes, each accounting

for 1/nth of the heritability. As expected, the power to

detect an association depended on the amount of heritabil-

ity explained and the number of causal variants (Figure 2).

For example, if all of the heritability of the trait is ex-

plained by functional variation at five genes, we would

detect a given causal gene (a gene containing causal muta-

tions) by using the SKAT1 test at our Bonferroni threshold

70% of the time. As the amount of the heritability ex-

plained by a given gene in our simulations decreased, so

did the power to detect that association. When there

were more than 15 genes contributing risk, the power to
mber 5, 2013



ge
ne

genes

Figure 3. Power to Detect at Least One of n Causal Genes at
a Bonferroni Significance Threshold for Different Numbers of
Causal Genes
The power to detect at least one causal gene is calculated as 1 �
(1 � power)n, where n is the number of causal genes and power
is estimated from the simulations shown in Figure 2.
detect an association at a given gene was extremely low

(<10% with the Bonferroni threshold), suggesting that

we did not have power to detect genes of weak effect

with the present sample size. Similar results were obtained

for the SKAT2 and KBAC tests, although KBAC showed

lower power than the SKAT tests for the parameters simu-

lated here (Figure 2). We also varied the proportion of

SNPs assumed to be causal (c) within a gene. As c decreased,

power also slightly decreased (Figures S22–S24). Our power

simulations conditioned on including genes for which the

individual normalized SNP effects ðkiÞ were <3. The simu-

lations not including this conditioning step suggest that

our study had lower power than described (Figure S25).

This apparent decrease in power was a result of including

genes with very little genetic variation and very large ki

values. As discussed in the Subjects and Methods section,

including genes with SNPs whose ki > 3 is not biologically

reasonable. Thus, further results only include genes in

which all SNPs have ki < 3.

The simulations described above estimated the power

to detect a single associated gene. However, applying

them to the entire exome provides the possibility of detect-

ing an association at any of the n different risk loci. We

next tabulated the probability of detecting at least one

significantly associated gene (at the Bonferroni threshold)

for each of the genetic models analyzed (see Subjects and

Methods). Models withmany risk genes have smaller effect

sizes per gene, making it harder to detect each gene.

However, as the number of risk genes increases, there are

more opportunities to detect a causal gene, increasing

the probability of detecting at least one true association

(Figure 3). The power to detect at least one significant
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gene was highest (>80%) for the SKAT tests when there

were a limited number of risk genes (fewer than 15). At

20 risk genes, we had >60% power to detect at least one

risk gene by using the SKAT test (Figure 3). As the number

of risk loci increased beyond 20, the amount of the herita-

bility explained by any one gene was so low that we had

limited power to find even one such gene. The overall

trend held regardless of the proportion of nonsynonymous

SNPs assumed to be causal (c) within each gene. Although

the power to detect at least one significant gene decreased

as c decreased, we still had >50% power to detect at least

one gene even when c ¼ 0.25 and there were %20 causal

genes (Figure S26).

In sum, the statistical power analyses suggest that we

had limited power to detect a particular association unless

the gene in question explained a substantial proportion

of the heritability of disease risk; however, when we

applied the simulations to the whole exome, we had sub-

stantial power to detect at least one significant association

at our Bonferroni threshold if rare variation in a modest

number of genes (fewer than 20) was responsible for the

majority of disease risk. Because we did not detect such

an association, our results suggest that low-frequency

variants in a modest number of genes do not explain a

substantial amount of the heritability of type 2 diabetes.
Discussion

It has been hypothesized that rare genetic variants with

moderate effects on disease risk could account for much

of the missing heritability of complex traits.6,9,10,62 We

have taken a first step toward testing this hypothesis for

type 2 diabetes. We did not detect any significant asso-

ciations between rare coding variants and common forms

of diabetes. Our study was underpowered to detect weak

genetic effects, but if much of the heritability of type 2

diabetes is explained by variants in a modest number of

genes, we should have detected at least one associated

locus at our Bonferroni significance threshold. Thus, our

empirical results, combined with the statistical power

simulations, suggest that when clustered in fewer than

20 genes, coding variants of moderate effect do not

account for much of the missing heritability of a common

polygenic disorder such as type 2 diabetes.

Importantly, although GWASs have identified more

than 60 common SNPs associated with type 2 diabetes

risk,36 these data alone are insufficient to reject a model

where fewer than 20 genes containing variants of strong

effect can account for much of the heritability of the

disorder. The reason that GWAS data alone cannot be

used for rejecting this model is that all the loci implicated

through GWASs have very weak genetic effects and only

explain a small fraction of the total heritability of the

trait.36 Thus, there is still a tremendous amount of

heritability to be explained. GWASs of common variants

do not address the question of whether that heritability
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could be accounted for by low-frequency and rare variants

of moderate effect in a small number of genes. Our whole-

exome sequencing study has explicitly addressed this

question. Additionally, we did not examine whether there

are fewer than 20 genes involved in type 2 diabetes but

rather looked at whether rare coding variants in fewer

than 20 genes account for much of the heritability. In

such a model, any number of other genes that do not

account for much of the heritability can be involved.

The previously identified GWAS loci would fall into this

category.

In our statistical power simulations, we assumed that

each of the n risk genes account for the same proportion

of the heritability. Both theory and data from common

variants suggest that this is unlikely to apply in prac-

tice.5,63–65 However, the assumption that n distinct genes

contribute to the heritability equally is actually conserva-

tive and means that we can reject additional models that

we did not explicitly simulate. For example, imagine a

type 2 diabetes architecture in which 10 of 100 risk loci ac-

count for almost all of the heritability. Although we did

not directly simulate this scenario, it would be very similar

to our simulation in which ten genes explained all of the

heritability of type 2 diabetes. The reason for this is that

the remaining 90 genes of weak effect would most likely

have failed to be detected in our study. If they collectively

do not account for much of the heritability, then they

can be discounted in our simulations, and this scenario

becomes equivalent to one that we simulated (i.e., the

scenario with ten causal genes).

Our power simulations included several important

assumptions. First, we assumed that causal variants act in

an additive manner. Although such a model is predicted

from theory and data,66 it is not clear howwell the additive

model will hold for rare coding mutations. If many rare

coding mutations are weakly deleterious and are affected

by purifying natural selection, they might be slightly

recessive.67,68 Second, we assumed that simulated causal

variants can either increase or decrease diabetes risk. Third,

we assumed a heritability of 30% for the trait. If the true

heritability of common forms of type 2 diabetes is lower,

then our power to detect an association in our study simi-

larly would have been lower. However, published estimates

of the heritability of type 2 diabetes and related metabolic

traits suggest that 30% is toward the low end of the herita-

bility estimates for these phenotypes (Table S4). For this

reason, we did not further decrease the heritability used

in our power simulations to account for the small (5.7%)

variance in disease risk that can be accounted for by

the 63 previously identified associations with common

variants.

Our empirical and simulation results are compatible

with a variety of different genetic architectures for type

2 diabetes. First, if rare coding variants are responsible

for the majority of the heritability of the trait, the variants

are most likely scattered across many (>20) different

genes. Thus, genetic variants in no one gene can account
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for much of the heritability of the trait. Biologically, such

a model would postulate that there are a large number of

genes that can be mutated to cause type 2 diabetes in a

given individual. Each individual would then carry a sub-

set of genetic variants located in several of the many

causal genes. Our finding that genes previously impli-

cated in obesity risk through GWASs showed unusually

low SKAT p values in our study supports a scenario in

which low-frequency and rare variants in multiple genes

could be responsible for risk of common metabolic dis-

eases. It also suggests that genes carrying common vari-

ants associated with a trait could also carry additional

low-frequency and rare coding variants that increase dis-

ease risk.

Yet another model for the genetic architecture of dia-

betes that could explain our results is that low-frequency

and rare coding variants do not account for much of the

heritability of type 2 diabetes. Under this scenario, the

missing heritability could be located in common or

low-frequency and rare variants in noncoding regions

of the genome. Recent studies that jointly modeled dia-

betes or obesity risk as a function of genetic relatedness

across all of the GWAS SNPs have suggested that much

of the heritability of these traits can be explained by

common variants with effects that are too small to

reach genome-wide significance in currently used

GWASs.69–71 Under this model, low-frequency and rare

coding variants do not account for a substantial amount

of the heritability of complex traits. Our results are consis-

tent with such a model. Alternatively, the heritability of

type 2 diabetes could have been overestimated in family

studies as a result of environmental factors or gene-gene

interactions.72

Recently, is has been suggested that when clustered

within the same gene, rare variants of strong effect could

explain some of the associations between common vari-

ants found in GWASs and complex traits.73,74 Such signals

have been termed ‘‘synthetic associations.’’ We found little

evidence for such synthetic associations within our data.

In particular, we did not detect an excess of functional

variants within genes containing common variant(s)

implicated in diabetes, obesity, or hypertension through

GWASs. Such an excess could be expected under a model

where the original GWAS signal could be explained by

rare functional variants. Additionally, we found that genes

containing GWAS hits for obesity had significantly lower

SKAT1 p values than did random genes. Although this

pattern could be driven by synthetic associations, we

found that the SKAT1 p values were weakly correlated

(Spearman’s r ¼ 0:34, p ¼ 0.067) with the best single-

marker p value within each gene. The fact that the sin-

gle-marker p values were even slightly informative

regarding the multimarker SKAT1 p values suggests that

the skew in SKAT1 p values was not entirely driven by

very rare variants (e.g., singletons in cases), as predicted

by the synthetic-association hypothesis. However, further

investigations using larger numbers of cases and controls
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will be required for convincingly supporting or rejecting

the synthetic association hypothesis.

The fact that we did not detect any significant asso-

ciation in our data has implications for designing and

analyzing further sequencing studies for elucidating the

genetic basis of complex traits. If there is substantial locus

heterogeneity, then gene-based tests of association are

likely to be severely underpowered. The reason for this

is that a particular causal gene is likely to carry causal var-

iants in only a small number of the affected cases. Other

cases carry risk variants in different genes. The gene-based

association tests currently used are substantially under-

powered in this model, even with sample sizes of thou-

sands of cases and controls. If the many distinct genes

that, if mutated, could give rise to the trait of interest all

cluster within a small number of pathways, power could

be gained through the implementation of the gene-based

tests at a pathway level. Another possibility would be to

use family-based association studies of rare variants on

extended pedigrees.75,76 This approach could be particu-

larly effective if the same causal genes are responsible

for the phenotype for most members of the pedigree.

Further methodological work is required in this area.

Conversely, if rare variation in coding regions contributes

little to complex disease risk, then this would argue for

alternative study designs. For example, whole-genome

sequencing, rather than exome sequencing, would allow

for the detection of rare variants outside of the coding re-

gions. This would be an effective strategy if the missing

heritability could be accounted for by rare noncoding

regulatory variants.

Although our results argue that low-frequency and

rare coding variants in a modest number of genes do

not account for the majority of the heritability of

common forms of type 2 diabetes, it is not clear how

generalizable this result is to other complex traits. Several

other exome sequencing studies have failed to detect any

significant associations between low-frequency variants

and schizophrenia,77 epilepsy,78 autism,79 or autoimmune

diseases.80 However, recent studies have associated rare

variants with age-related macular degeneration.81–83

Thus, the genetic architecture and the role of low-fre-

quency and rare variants are likely to be trait dependent

and will need to be addressed empirically.
Appendix A: Filtering Sites

After generating initial genotype calls from SAMtools, we

applied a series of site filters to the 2,958,319 sites with a

MAF > 0.0001 to obtain a set of sites with high-quality

genotype calls suitable for association analysis. We

describe those filters here:
Depth Filter

The average depth per site across all 1,998 samples was

calculated from pile-up files generated by SAMtools. Sites
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with an average depth less than 4 or greater than 150

were removed.
Base-Quality-Score Filter

For each site, we tested whether base quality scores of the

minor allele were significantly smaller than those from

the major allele. Base quality scores were collected for the

major and minor alleles. Because the combined quality

scores were always very large, even sites that only had a

small difference between the median quality scores for

both alleles gave very significant Wilcoxon rank-sum

p values. To set up a proper filter, we defined a quantity

Qdiff ¼ jm1 �m2j=0:5ðm1 þm2Þ, which measured the

absolute difference in read quality scores between the

major allele and the minor allele. Here, m1 is the median

read quality score for the major allele, and m2 is the

median read quality score for minor allele. Sites with

a Wilcoxon rank-sum p value < 10�7 and Qdiff > 0.1 were

removed.
Strand-Bias Filter

Because the capture experiment shows biases with respect

to strand, it is inappropriate to test the hypothesis that

half of the reads were derived from the forward strand

and the other half were derived from the reverse strand.

From the pile-up files generated by SAMtools, we tested

the homogeneity of the distribution of reads along the

two strands for the major and minor alleles. We first

made a 2 3 2 table whose rows contained the major (M)

and minor (m) alleles and whose columns contained the

number of reads that came from the forward strand (þ)

and the number of reads from the reverse strand (�). The

odds ratio (OR), defined as (Mþ / M�) / (mþ / m�), was

used formeasuring the difference of the strand distribution

for reads from the major allele and reads from the minor

allele. The p values were calculated with a Fisher’s

exact test. Sites with p values < 10�7 and log2 (OR) less

than �3 or greater than 3 were removed.
Mappability Filter

We computed amappability score to assess the accessibility

of each base in the human genome under typical Illumina

sequencing conditions. The mappability score represents

the probability that a read comes from the hg19 genomic

position to which it mapped. As a probability, the mapp-

ability score ranges from 0 to 1. Sites with mappability

scores < 0.5 were removed.
Homopolymer Filter

The homopolymer run is the length of the homopolymer

surrounding a SNP site. For example, on hg19, the

10-base sequence on either side of site chr1: 14,673 is

50-CTGGGTCTGG[G]GGGGAAGGTG-30. The maximum

homopolymer run of the SNP site (denoted by [G]) is

7. Sites with homopolymer runs greater than 6 were

removed.
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Allele-Balance Filter

At well-behaved heterozygous sites, within a given indi-

vidual, the number of reads for the major allele should

equal the number for the minor allele. We tested this by

using a binomial test with p ¼ 0.5. Specifically, from the

SAMtools pile-up files, we calculated the total number

of reads for the major allele and the minor allele at all

heterozygous genotype calls. We calculated the absolute

difference in the number of reads for the major and

minor alleles as Bdiff ¼ jr1 � r2j=jr1 þ r2j, where r1 is the

number of reads for the major allele and r2 is the number

of reads for the minor allele. Sites with p values < 10�6

and Bdiff > 0.5 were removed.
Hardy-Weinberg Filter

The Hardy-Weinberg filter was applied after genotype

calling (estimated from the 1,000 control samples). The

exact test11 was applied with the software PLINK.12

SNPs with p values < 10�6 were removed. After applica-

tion of the above quality threshold, 729,538 (713,122

autosomal) variants (of which 282,823 were in the exonic

region) were retained for further analyses.
Appendix B: Filtering Individuals

Low Sequencing Depth

In total, 1,998 samples were successfully sequenced. Of

these, 999 were male and the remaining 999 were female.

After removal of duplicated reads, the average depth of

each sample was 563 (SD ¼ 8.71). With the exception of

one sample with an average depth of 253, all samples

were sequenced to a depth R 303, and 1,522 (76.2%)

samples were sequenced to a depth R 503. The sample

with a depth of 253 was removed.
Contamination

In the process of library construction and DNA

sequencing, a sample could become contaminated. For

a heavily contaminated sample, more variants will be

identified and more heterozygous genotypes will be called.

But for a sample that is only slightly contaminated, we

might not observe such a deviation. For two samples

(A and B), let Ai and Bi be the genotypes at a variable site

i. Ai and Bi can take valuesMM,Mm, ormm, corresponding

to a homozygote for the reference allele, a heterozygote,

and a homozygote for the nonreference allele, respectively.

If sample A is contaminated by B and Ai isMM and Bi ismm

orMm, for a sequencing read, we have a higher probability

to observe an m than in the situation when A is not

contaminated. Given a sample that has been genotyped

at thousands or more variable sites across the autosomes,

we can calculate the fraction of reads that disagree with

known genotypes at homozygous sites. Samples that

show a large deviation are most likely contaminated. In

practice, we applied the above method to 1,963 samples

with Iselect data.13 We did calculations at 7,219 variable
1082 The American Journal of Human Genetics 93, 1072–1086, Dece
sites with aMAF> 0.05 in unique regions of 22 autosomes.

Reads that disagreed with known homozygous genotypes

were counted. SNP sites with sequencing depth < 83

were skipped. We found six samples showing obvious

deviations, indicating that they were contaminated. These

samples were excluded from further analyses.
Sex Check, Inbreeding, Relatedness, and Concordance

with Previous Genotype Projects

We used PLINK to check for correct sex, inbreeding, and

relatedness. Five samples were removed because of F-values

(inbreeding coefficients) lower than �0.12 (indicating

contamination, admixture, or genotyping errors) or higher

than 0.12 (indicating inbreeding). Eight samples had

disagreements between the genotypic and phenotypic

sex or had undetermined genotypic sex.

We assessed the concordance with previous genotyping

projects by comparing genotype data from previous

projects to our exome sequencing data. The number of

overlapping SNPs from previous genotyping and exome

sequencing was 65. Eighteen samples had missing geno-

types for all sites and could thus not be compared. Three

samples had a genotype concordance < 0.9. These samples

were excluded.

We found two pairs of duplicate samples. One was part

of a parent-offspring pair. We also found seven pairs of

full siblings and three pairs with second-degree relation-

ships (half siblings). To extract the half siblings, we first

removed IDs with too high or low inbreeding coefficient

(five individuals, described above). When two samples

were found to be related, we removed one of them from

our analyses.

After application of the above filters, 1,965 samples (983

controls and 982 cases) were retained for further analyses.
Supplemental Data

Supplemental Data include 26 figures and 24 tables and can be

found with this article online at http://www.cell.com/AJHG.
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