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ABSTRACT OF THE DISSERTATION

Average Cyclicity for Elliptic Curves in Torsion Families

By

Luke Fredericks

Doctor of Philosophy in Mathematics

University of California, Irvine, 2021

Associate Professor Nathan Kaplan, Chair

Let E/Q be an elliptic curve; for all but finitely many primes p, reduction modulo p yields

an elliptic curve over the finite field Fp, and it is natural to ask about the properties of these

reductions for varying primes. The purpose of this dissertation is to study one such question,

namely, how frequently the reductions result in an elliptic curve with cyclic group structure.

To be precise, we let πcycE (x) denote the number of primes less than x for which the reduction

of E modulo p is cyclic. The asymptotic behavior of this function has been established by

Serre conditional on Generalized Riemann Hypothesis. Furthermore, Banks and Shparlinski

showed that this asymptotic holds unconditionally on average over the family of elliptic

curves given by short Weierstrass equations with coefficients taken in a ‘box.’ Inspired by

the work of Battista, Bayless, Ivanov and James on the Lang-Trotter conjecture, we study

the average asymptotic behavior of the functions πcycE where the average is taken over certain

thin families of elliptic curves: elliptic curves with a rational point of order m defined over

Q. The results we obtain are again in agreement with the conditional asymptotic. We also

extend the study of cyclicity from elliptic curves defined over the rational numbers to elliptic

curves defined over a quadratic extension of Q and obtain partial results in that case. As a

key tool, we prove an analogue of a result of Vlăduţ that estimates the number of elliptic

vii



curves over a finite field which have some specified torsion and which have group structure

that is as cyclic as possible.
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Chapter 1

Introduction

In this chapter, we discuss the background and describe the results of this dissertation. In the

second chapter, we recall necessary background on the topics of elliptic curves, and number

fields. In the third chapter, we prove the necessary fixed field counting theorem, and in the

fourth chapter, we obtain necessary estimates on the size of the set of rational numbers with

given reduction modulo p. In chapter five, we prove the main result of this work, which

we extend somewhat to elliptic curves defined over the field Q(
√
−3) in the sixth chapter.

Finally, we discuss several directions for future study.

Notation will be defined as needed, but here we set a few conventions that will hold through-

out the dissertation. The symbols p and ` always represent prime numbers, and any sum-

mation over these symbols is taken over all the primes meeting the stated conditions. A

sum over d | n is taken over the positive divisors of n. Sums over n ≤ X are assumed to

begin at n = 1. All logarithms are to the base e. Given a complex valued function f and a

function g taking values in the positive real numbers, we write either f = O(g) or f � g to

mean that there exists a positive constant C such that |f | ≤ Cg holds for every element of
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the domain. When f and g are functions of a real variable, we write f = o(g) to mean that

limx→∞ f(x)/g(x) = 0.

1.1 Background and motivation

Let E be an elliptic curve over Q. For all but finitely many prime numbers p, we obtain

an elliptic curve Ep/Fp by reduction modulo p. It is natural to ask how the properties of

Ep vary with p. One might wonder how frequently Ep(Fp) is a prime number. One may

ask how frequently the group Ep(Fp) is a cyclic group. One may ask how often the trace of

Frobenius ap(E) is equal to a fixed number t, or how often the normalized trace ap(E)/
√
p

lies in a particular interval. These questions lie behind the Koblitz conjecture, the cyclicity

conjecture, the Lang-Trotter conjecture, and the Sato-Tate conjecture, respectively. To study

cyclicity and Lang-Trotter, we introduce the following functions. Denote by

πcycE (x) = #{p ≤ x : Ep(Fp) is cyclic} (1.1)

πtE(x) = #{p ≤ x : ap(E) = t}. (1.2)

The asymptotic growth of these functions are the subjects of the Lang-Trotter conjecture

and the cyclicity conjecture, respectively.

In the conjecture below, the symbols ρE,m and mE are as defined in Chapter 2, and for a set

of matrices A, we denote by Ar those elements of A whose trace is equal to r.

Conjecture 1 (Lang-Trotter). Let E/Q be an elliptic curve, and let r ∈ Z with r 6= 0 if E

has complex multiplication. Then

πrE(x) ∼ CE,r

√
x

log x
, (1.3)
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where

CE,r =
2

π
· mE ·#(ρE,mE

(GQ))r
#(ρE,mE

(GQ))

∏
`-mE

`-r

`(`2 − `− 1)

(`+ 1)(`− 1)2

∏
`-mE

`|r

`2

`2 − 1
.

Conjecture 2 (Cyclicity). Let E/Q be a non-CM elliptic curve. Then

πcycE (x) ∼ Ccyc
E π(x). (1.4)

where Ccyc
E is an explicit constant depending only on E.

The study of πcycE goes back to the work of Borosh, Moreno and Porta [6] who suggested that

for certain chosen examples of E/Q, Ep(Fp) is cyclic for infinitely many p. Serre formulated

and proved the cyclicity conjecture conditional on the Generalized Riemann Hypothesis for

the division fields of E [32]. The best result to date is the following conditional theorem of

Cojocaru and Murty.

Theorem 1. [9, Theorem 1.1] Let E be a non-CM elliptic curve defined over Q of conductor

N . Assuming GRH for the Dedekind zeta functions of the division fields of E, we have that

πcycE (x) = Ccyc
E li(x) +ON

(
x5/6(log x)2/3

)
(1.5)

where

Ccyc
E =

∑
k≥1

µ(k)

[Q(E[k]) : Q)]
. (1.6)

Unconditionally, we cannot prove that the asymptotic in (1.3) or (1.4) holds for a single

elliptic curve E. However, starting with the work of Fouvry and Murty [13], average ver-
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sions of Conjectures 1.3 and 1.4 have been obtained. These average results provide strong

unconditional evidence for the corresponding conjectures.

Let

π1/2(X) =

∫ X

2

dt

2
√
t log t

∼
√
X

logX
. (1.7)

In the case of the Lang-Trotter conjecture we have the following Theorem due to David and

Pappalardi.

Theorem 2. [11, Corollary 1.3] Let Ea,b : y2 = x3 + ax + b, and let ε > 0. If A,B > X1+ε

then we have as X →∞

1

4AB

∑
|a|≤A
|b|≤B

πrE(a,b)(X) ∼ Drπ1/2(X) (1.8)

where

Dr =
2

π

∏
`-r

`(`2 − `− 1)

(`+ 1)(`− 1)2

∏
`|r

`2

`2 − 1
. (1.9)

In the case of the cyclicity conjecture, Banks and Shparlinski proved

Theorem 3. [4, Theorem 17] Let ε > 0 and K > 0 be fixed. Then, for all integers A and B

satisfying AB ≥ x1+ε, A,B ≤ x1−ε, we have

1

4AB

∑
|a|≤A

∑
|b|≤B

πcycE(a,b)(x) = Ccycπ(x) +O(π(x)/(log x)K),

4



where

Ccyc =
∏

` prime

(
1− 1

`(`− 1)(`2 − 1)

)
,

and the constant implied by O depends only on ε and K.

The average asymptotic described above provide strong evidence for the conjectures in each

case. In particular, the constants Ccyc
E and Ccyc and CE,r and Dr are clearly closely related.

We view Ccyc and Dr as idealized constants where the variation of the constants from indi-

vidual curves has been averaged out. Furthermore, Jones [21] proved that the average of the

constants predicted by the respective conjectures is indeed the constant seen in the average

results.

Jones’ proof leveraged the fact (also due to Jones) that almost all elliptic curves are what

are known as Serre curves [22]. However, there are interesting families which consist entirely

of elliptic curves that are not Serre curves. These curves are essentially invisible in the prior

average results cited above; it is therefore of interest to study the averages of the functions

πtE and πcycE as E varies over such a family.

One class of such families are the torsion families – the family of elliptic curves which possess

some specified torsion structure. James [20] gave the first results in this direction when he

obtained an asymptotic for the Lang-Trotter conjecture on average over the family of curves

with a rational point of order 3. Battista, Bayless, Ivnaov, and James [5] extended this

investigation to the family of elliptic curves which possess a rational point of order m for

m = 5, 7 or 9. They prove

Theorem 4. [5, Theorem 3] Let Em(a) be the parameterization of elliptic curves which have
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a rational point of order m ∈ {5, 7, 9}. Then for any c > 0, we have

1

C(N)

∑′

|a|≤N

πrEm(a)(X) =
2

π
Cr,mπ1/2(X) +O

(
X3/2

N
+

√
X

logcX

)
,

where
∑′ represents the sum over non-singular curves, C(N) represents the number of curves

in the sum, and

Cr,m = Cr(m)
∏
`-m
`-r

`(`2 − `− 1)

(`+ 1)(`− 1)2

∏
`-m
`|r

`2

`2 − 1
,

where

Cr(m) =


5/4 if m = 5 and r ≡ 0, 3, 4 (mod 5),

7/6 if m = 7 and r ≡ 0, 3, 4, 5, 6 (mod 7),

3/2 if m = 9 and r ≡ 0, 3, 6 (mod 9).

The main result of this thesis is to establish an average cyclicity result over torsion families

of elliptic curves. For a rational number a = r/s with gcd(r, s) = 1, denote by ht(a) =

max{|r|, |s|}.

Theorem 5. Let ε > 0, A > x1+ε, B > 1. Let Em(a) denote the parameterization of elliptic

curves over Q which have a rational m-torsion point for m 6= 2, 3. Then

1

#{a ∈ Q : ht(a) ≤ A}
∑′

ht(a)≤A

πcycEm(a)(x) = Cm
∏
`-m

(
1− 1

`(`− 1)(`2 − 1)

)
π(x)

+O

(
x

logB x

)
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where

Cm =
∏
`|m

(
1− 1

`(`− 1)

)
.

Remark 1. Every elliptic curve over Q with a rational m-torsion point is isomorphic to

Em(a) for some a ∈ Q; however, it is not true that every such curve is isomorphic to Em(a)

where a ∈ Z. Consider for example the curve E5(3/2) defined by the Weierstrass equation

E5(3/2) : y2 +
1

2
xy − 3

2
y = x3 − 3

2
x2.

As we explain in Section 3.2 this curve is only isomorphic to one other curve in the 5-torsion

family, namely

E5(−2/3) : y2 +
5

3
xy +

2

3
y = x3 +

2

3
x2

given by parameter -2/3. In Theorem 5, we have taken the average over the entire torsion

family, not just those given by integer parameters. We remark that the same asymptotic

holds when the average is taken over curves given by integer parameters.

Remark 2. The effect of the presence of m-torsion is apparent; we interpret the constant

Ccyc as a product of local factors, each of which is the probability that Ep has cyclic `-torsion.

The presence of a point of order m should have some influence on these probabilities for ` | m.

Indeed, a curve with a point of order ` over Q need only acquire a single linearly independent

point of order ` for cyclicity of the reduction to fail. Compared to the generic case of a curve

without a point of order `, we expect it to be much less likely that the reductions of these

curves are cyclic. Our result quantifies this heuristic reasoning.

A key ingredient for the argument in [4] was the fixed-field count of Vlăduţ [36] which, for a
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finite field of q elements, estimates the number of E/Fq which have cyclic group structure.

Our result requires an analogous fixed field count which takes into account the additional

torsion data which we state below.

It is frequently convenient to express counts of elliptic curves over finite fields as weighted

cardinalities where we weight each curve by the size of its automorphism group. We indicate

weighted cardinalities by #′.

For a prime number `, denote by v`(n) the `-adic valuation of n. Concretely, any positive

integer n can be written n = `em where ` - m and e ≥ 0. Then v`(n) = e.

Theorem 6. Denote by

Cm(q) = {E/Fq : E(Fq) is cyclic and contains a point of order m}/∼=Fq .

Then

#′Cm(q) = q
∏
`|m

q≡1 (mod `)

1

`v`(m)

∏
`|m

q 6≡1 (mod `)

1

ϕ(`v`(m))

∏
`-m

q≡1 (mod `)

(
1− 1

`(`2 − 1)

)
+O

(
q1/2
)
.

This Theorem is a special case of a more general theorem that counts the number of elliptic

curves E/Fq which contain a subgroup isomorphic to Z/mZ × Z/nZ but which have cyclic

`-torsion for all primes ` - n. We prove this result in Chapter Three.
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Chapter 2

Preliminaries

In this chapter, we recall the necessary background from algebraic number theory and the

theory of elliptic curves. Proofs of the assertions in this section may be found, for example,

in [29].

2.1 Number fields

We are primarily concerned with quadratic extensions, but as it requires no extra effort, we

recall the theory of number fields before specializing to degree 2. A number field K is a finite

algebraic extension of the rational numbers. The ring of integers OK is the subring of all

elements of K which satisfy a monic polynomial with coefficients in Z. The critical property

of OK is that it is a Dedekind domain which implies that every non-zero ideal a ⊂ OK factors

as a product of prime ideals which is unique up to reordering factors;

a = pe11 · · · perr . (2.1)
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Let p ∈ Z be prime. Then the ideal pOK has a factorization as in (2.1); we say that any

prime ideal p in this factorization lies above p, and we say that p lies below p. If any ei is

greater than 1, we say that p is ramified in OK and that ei is the ramification index of pi

over p. If all ei are equal to 1, we say that p is unramified in ′K .

One consequence of the fact that OK is a Dedekind domain is that every prime ideal is

maximal. Thus, for any prime ideal p ⊂ OK , we have that OK/p is a field. In fact, this field

is a finite degree extension of Z/pZ where p = p∩Z is the unique rational prime lying below

p. The cardinality of OK/p is the norm of p, and the degree [OK : p/Z/pZ] of the extension

is called the inertial degree of p. By degree f primes, we mean the set of all prime ideals of

OK whose inertial degree is exactly f .

For p ∈ Z, the ramification indices and inertial degrees of the prime ideals appearing in the

factorization (2.1) of pOK satisfy the identity

[K : Q] =

g∑
i=1

eifi.

In the case where K/Q is Galois, it turns out that all ramification indices are equal and all

inertial degrees are equal for the primes lying above p. Thus, the identity above becomes

[K : Q] = efg.

For any number field K/Q there are only finitely many primes that ramify in K since a

ramified prime must divide a numerical invariant associated to K called the discriminant of

K. If e = f = 1, we say that the prime p splits completely in K, while if e = g = 1, we say

that p is inert in K.

A quadratic field K is a number field with [K : Q] = 2. All such fields arise by adjoining to Q

10



the square root of a squarefree integer dj, i.e., K = Q(
√
d). Since the conjugate root is also

an element of the field, all quadratic fields are Galois extensions of Q. Since the degree of

the extension is prime, each rational prime p is either totally split, inert, or totally ramified.

As mentioned above, there are finitely many ramified primes, but the sets of split primes and

inert primes are both infinite. Indeed, p ∈ Z is split if and only if the Legendre symbol
(
d
p

)
is equal to 1. By applying the law of Quadratic Reciprocity, this condition can be turned

into congruence conditions modulo the discriminant of K. For example, in K = Q(
√
−3), a

prime p splits if and only if
(
−3
p

)
= 1. Since −3 ≡ 1 (mod 4), this happens if and only if(

p
−3

)
= 1. Since the squares modulo 3 are 0 and 1 we conclude that p splits in K if and only

if p ≡ 1 (mod 3).

In order to count elements the number field K, we define a (näıve) height function as follows.

Fix a basis {e1 . . . en} for K/Q. Then for each element α ∈ K, we write

ht(α) = ht(a1e1 + . . .+ anen) = max{ht(a1), . . . , ht(an)}

where for a rational number q/r with gcd(q, r) = 1, ht(q/r) = max{| q |, | r |}.

2.2 Elliptic curves

We refer to [33] for the basic properties of elliptic curves.

Let K be a field; an elliptic curve defined over K is a smooth protective curve curve of genus

1 with a distinguished K-rational point O. For the purposes of this work, it will suffice to

consider an elliptic curve as the zero locus of a Weierstrass equation, that is, an equation of

11



the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where the coefficients ai belong to K, with the understanding that there is one extra point

at infinity. As long as the characteristic of K is not equal to 2 or 3, we may, by a change of

variables, consider E as the zero set of a short Weierstrass equation

Ea,b : y2 = x3 + ax+ b

for some a, b ∈ K such that ∆a,b = −16(4a3 + 27b2) 6= 0. The quantity ∆a,b is called

the discriminant of Ea,b. The discriminant is a basic invariant of the Weierstrass equation

(though not of elliptic curves).

Denote by E(K) the set of K-rational points of E. It is well-known that E(K) has the

structure of an abelian group; determining its structure is a central problem in the study of

elliptic curves. We are especially concerned with the case where K = Q and K = Fq; next

we recall general facts about E(K) in these cases.

In the case where K is a number field, the Mordell-Weil Theorem states that E is a finitely

generated abelian group, that is, E(K) ∼= Zr ⊕ E(K)tors where r is a non-negative integer,

called the rank of E, and E(K)tors is a finite abelian group. We will be especially concerned

with E(K)tors which is called the torsion subgroup of E(K).

For any elliptic curve E, the multiplication-by-m map which acts by P 7→ m · P is an endo-

morphism. Thus, we always have Z ↪→ EndE. For an elliptic curve E/K with char(K) = 0,

we say that E has complex multiplication if the endomorphism ring of E is strictly larger

than Z.

12



We denote by E[m] the m-division points of E. These are the points of E defined over an

algebraic closure of K which are annihilated by multiplication by m. We also denote by

E[m](K) = E[m] ∩ E(K). It is well-known that E[m] = Z/mZ × Z/mZ as an abstract

group when char(K) = 0 or char(K) - m, and when char(K) = p, the p-power torsion is

always cyclic, see [33, Corollary 6.4]. Since E(K)tors can be written as the direct sum of the

subgroups E(K)[`], it follows from the Mordell-Weil theorem that when K is a number field,

E(K)tors is isomorphic to Z/mZ× Z/nZ for some integers m | n.

In the case of K = Q, Mazur’s Torsion Theorem describes the possibilities for the group

E(K)tors.

Theorem 7 (Mazur). Let E/Q be an elliptic curve; then E(Q)tors is isomorphic to one of

Z/mZ for m = 1− 10, 12 or Z/2Z× Z/2mZ for m = 1− 4.

It follows from Mazur’s theorem that if E/Q has a rational point of order m ≥ 2, then

m ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12}. The elliptic curves E/Q that have a rational point of order

m ≥ 4 lie in a one-parameter family; these were described by Kubert [28] and are given in

Table 2.1.
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m Em(a)
4 y2 + xy − ay = x3 − ax2

5 y2 + (1− a)xy − ay = x3 − ax2

6 y2 + (1− a)xy − (a2 + a) y = x3 − (a2 + a)x2

7 y2 + (1 + a− a2)xy + (a2 − a3) y = x3 + (a2 − a3)x2

8 y2 +
(
−2a2+4a−1

a

)
xy + (−2a2 + 3a− 1) y = x3 + (−2a2 + 3a− 1)x2

9 y2 + (1 + a2 − a3)xy + (a2 − 2a3 + 2a4 − a5) y = x3 + (a2 − 2a3 + 2a4 − a5)x2

10 y2+

(
2a3 − 2a2 − 2a+ 1

a2 − 3a+ 1

)
xy +

(
−2a5 + 3a4 − a3

a4 − 6a3 + 11a2 − 6a+ 1

)
y

=x3 +

(
−2a5 + 3a4 − a3

a4 − 6a3 + 11a2 − 6a+ 1

)
x2

12 y2+

(
6a4 − 8a3 + 2a2 + 2a− 1

a3 − 3a2 + 3a− 1

)
xy +

(
−12a6 + 30a5 − 34a4 + 21a3 − 7a2 + a

a4 − 4a3 + 6a2 − 4a+ 1

)
y

= x3 +

(
−12a6 + 30a5 − 34a4 + 21a3 − 7a2 + a

a4 − 4a3 + 6a2 − 4a+ 1

)
x2

Table 2.1: Parameterizations for elliptic curves with m-torsion.

The discriminant ∆m(a) of the curve Em(a) given above is

∆4(a) = (16a+ 1)a4

∆5(a) = a5(a2 − 11a− 1)

∆6(a) = (9a+ 1)(a+ 1)3a6

∆7(a) = (a− 1)7a7(a3 − 8a2 + 5a+ 1)

∆8(a) = a−4(2a− 1)4(a− 1)8(8a2 − 8a+ 1)

∆9(a) = (a− 1)9a9(a2 − a+ 1)3(a3 − 6a2 + 3a+ 1)

∆10(a) = (2a− 1)5(a− 1)10a10(a2 − 3a+ 1)−10(4a2 − 2a− 1)

∆12(a) = (a− 1)−24(2a− 1)6a12(6a2 − 6a+ 1)(2a2 − 2a+ 1)3(3a2 − 3a+ 1)4.

In the case where K is a finite field Fq, we obviously have that E(K) is a finite abelian

group. Thus E(K) ∼= Z/mZ × Z/nZ for positive integers m | n. Furthermore, the Hasse
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bound restricts the order mn of the group E(K). Denote by aq(E) = q+ 1−#E(K). Then

| aq(E) |≤ 2
√
q. The quantity aq(E) is called the trace of Frobenius ; it is precisely the trace

of the endomorphism of E defined by

(x, y) 7→ (xq, yq).

Much more detail is known about the structure of the group E(Fq); we will end this section

by mentioning the following property which is particularly relevant to our discussion; for a

prime number `, an elliptic curve E/Fq has E[`] ⊆ E(Fq) only if ` | q − 1.

2.2.1 Galois representations

Throughout this section, let E be an elliptic curve over Q, and let m be a positive integer. We

denote by Q(E[m]) the field extension obtained by adjoining to Q the x and y-coordinates of

all points of E[m], and we denote by Gm(E) the Galois group of Q(E[m])/Q. Note that by

fixing a basis for E[n] ∼= Z/nZ× Z/nZ, we may view Gm(E) as a subgroup of GL2 (Z/nZ).

Let GQ = Gal(Q̄/Q) be the absolute Galois group. Then GQ acts on E[m]. Fixing a basis,

this yields a Galois representation

ρE,m : GQ → GL2 (Z/mZ) .

By taking the inverse limit over all positive integers, we obtain a continuous homomorphism

ρE : GQ → GL2

(
Ẑ
)
.

Serre proved that the image of this Galois representation is an open subgroup of GL2(Ẑ).
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Theorem 8 (Serre’s Open Image Theorem). Suppose that E is a non-CM elliptic curve

defined over Q. Then the index [GL2(Ẑ) : ρE(GQ)] is finite.

In fact, Serre proved that the image of the absolute Galois group always sits in an index two

subgroup of GL2(Ẑ) which leads to the following definition. A Serre curve is an elliptic curve

where the image of Galois is as large as possible, i.e., an elliptic curve such that the index

[GL2(Ẑ) : ρE(GQ)] is equal to 2. Serre curves are in a certain sense typical elliptic curves;

Jones [22] proved that Serre curves form a density one subfamily of all elliptic curves.

A consequence of Serre’s open image theorem is that there exists a positive integer m such

that ρE(GQ) = π−1(Gm(E)) where π denotes the natural projection map

π : GL2(Ẑ)→ GL2(Z/mZ).

For a non-CM curve E, denote by mE the smallest such integer m. We will call mE Serre’s

constant (corresponding to the curve E). This constant has the property that for any integers

m1 and m2 where m1 | mE and gcd(m1,mE) = 1, we have

Gm1m2
∼= Gm1 ×GL2(Z/m2Z) (2.2)

That is, the Galois representation obtained by letting the absolute Galois group act on E[m]

is surjective for m relatively prime to mE.

2.2.2 The cyclicity constant

The existence of Serre’s constant along with the identity (2.2) are critical because the con-

stants corresponding to cyclicity and Lang-Trotter are phrased in terms of the corresponding
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Galois representations. In the case of cyclicity we have

Ccyc
E =

∑
n≥1

µ(n)

[Q(E[n]) : Q]
.

This constant is derived from the fact that for a prime p of good reduction for E and a prime

` 6= p, the group of Fp-rational points of Ep contains Ep[`] if and only if p splits completely in

Q(E[`]); the inclusion-exclusion principle, together with the Chebotarev Density Theorem

yield this expression for Ccyc
E , see [9, Section 2].

When E does not have complex multiplication, we apply (2.2) to write

Ccyc
E =

∑
n|mE

µ(n)

[Q(E[n]) : Q]

 · ∏
`-mE

(
1− 1

# GL2(Z/`Z)

)

=

∑
n|mE

µ(n)

[Q(E[n]) : Q]

 · ∏
`-mE

(
1− 1

`(`− 1)2(`+ 1)

)
.

Jones proved that the average of the constants Ccyc
E for elliptic curves E taken over the family

of Serre curves is

Ccyc =
∏
`prime

(
1− 1

`(`− 1)2(`+ 1)

)
.

This is the same constant that appears in the average of the prime counting functions

πcycE obtained by Banks and Shparlinski in Theorem 3. This constant may be viewed as

a product of local factors, each one being the probability that the Frobenius endomorphism

of the reduction of E modulo p lies in a given conjugacy class. Indeed, when ` - mE,

ϕE,` is surjective. In this case, the only way that Ep can fail to have cyclic `-torsion is

that Ep[`] ⊆ Ep(Fp. Thus, the there is but one possibility for the matrix of Frobenius;

since Frobenius fixes the points of Ep, it fixes the ` torsion points of Ep, so the matrix
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representation of Frobenius obtained by fixing a basis for Ep[`] is the identity. Therefore,

the probability that Ep has cyclic `-torsion is 1− 1/(`(`− 1)2(`+ 1)).

In this thesis, we study the functions πcycE for elliptic curves E/Q which have a point of order

m. Suppose that E is such a curve; it seems natural to expect that the presence of a point of

order m on E should reduce the likelihood that Ep(Fp) is cyclic. Indeed, for a prime p ≥ 3

that does not divide the discriminant of E, we have that E(Q)tors injects into Ep(Fp), [27]

Theorem 5.1]. Thus, for any prime factor ` | m, in order that Ep[`] ⊂ Ep(Fp), our curve

need only acquire one linearly independent point of order ` after reduction modulo p instead

of the two points that would be required if we had started with an elliptic curve without a

point of order `.

The vague heuristic of the preceding paragraph is made more precise by considering the

image of the homomorphism ρE,`. Fix a basis for the ` torsion of Ep where the first point is

defined over Fp. Then the image of ρE,` lies inside the subgroup H ⊆ GL2(Z/`Z) described

below:

H =


1 a

0 b

 : b 6= 0

 .

The subgroup H has order `2 − `, and again, the only way that Ep can fail to be cyclic if

the matrix of Frobenius is the identity. Thus, the probability that Ep has cyclic ` torsion is

1− 1

`(`− 1)
.

A quick calculation shows that the difference between the probability that Ep has cyclic `

torsion and the probability that Ep has cyclic ` torsion given that E(Q) has a point of order
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` is

1− 1

`(`− 1)2(`+ 1)
−
(

1− 1

`(`− 1)

)
=

`2 − 1

`(`− 1)2(`+ 1)
− 1

`(`− 1)2(`+ 1)

=
`2 − 2

`(`− 1)2(`+ 1)
.

Viewing the factors of Ccyc as a product of local probabilities allows us to make a prediction

for the constant that will appear when we average over curves in torsion families. Namely,

we expect that the average over curves with a rational point of order m defined over Q will

be

Ccyc(m) =
∏
`|m

(
1− 1

`(`− 1)

)∏
`-m

(
1− 1

`(`− 1)2(`+ 1)

)
.

We prove that this is, indeed, the correct average constant for curves in this family.

Remark 3. One would expect that, as in the case of the family of all elliptic curves, the

average constant for the family of m-torsion curves will be the average of the constants Ccyc
E

as E varies through curves with a point of order m. Jones’ proof that Ccyc is the average

of the constants Ccyc
E relied on the fact that most elliptic curves are Serre curves. However,

a Serre curve has trivial torsion, so Jones’ technique of reducing the study to the case of

Serre curves does not directly apply to torsion families. We would require a generalization

of the notion of Serre curve to these families. That is, a ‘Serre curve in the m-torsion family’

should be a curve whose image of Galois is as large as possible given the constraint imposed

by having a point of order m. It would be of interest to show that the image of Galois for

elliptic curves in torsion families is “aussi gros que possible.”
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Chapter 3

Fixed field counts and isomorphism

counts

In this chapter, we obtain estimates for the number of elliptic curves E/Fq which have a

given subgroup but which are ‘as cyclic as possible.’ We also count the number of parameters

b ∈ Fq such that Em(b) is isomorphic to Em(a).

3.1 Fixed field count

There has been significant recent interest in counting problems for elliptic curves over a fixed

finite field Fq with specified conditions on their group of Fq-rational points. See for example

Howe, [17], Vlăduţ [36], Castryck and Hubrechts [7] and Kaplan and Petrow [25].

Our goal is to generalize Vlăduţ’s result giving the number of elliptic curves E/Fq such that

E(Fq) is cyclic to obtain a count of the number of E/Fq such that for some fixed m,n ∈ Z,
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E(Fq) contains a subgroup isomorphic to Z/mZ × Z/nZ, and for all ` - n, E(Fq has cyclic

`-torsion. Following Vlăduţ, our proof is based on the inclusion-exclusion principle and relies

on estimates provided by Howe. We begin by recalling the required notation and results.

Denote by ϕ the Euler totient function, and define ψ(n) = n
∏

l|n(1 + 1/l). For a | b, denote

by W (a, b) = {E/Fq : E[b](Fq) ∼= (Z/aZ) × (Z/bZ)}/∼=Fq . Estimates for the size of W (a, b)

are given by Howe [17]. Howe shows that

| #′W (a, b)− ŵ(a, b) |< Cq1/2

for an explicit constant C where

ŵ(a, b) =
qψ(b/a)

aϕ(b)ψ(b)

∏
`|gcd(b,q−1)/b

(
1− 1

`

)
.

It will also be convenient to define w̃(a, b) = ŵ(a, b)/q. Howe notes that w̃(a, b) is a multi-

plicative function of both arguments simultaneously.

Vlăduţ observes the following ‘obvious’ cyclicity condition: E(Fq) is cyclic if and only if for

any prime ` | q − 1, E 6∈ W (`, `). Now let us assume that E/Fq is an elliptic curve such

that the n-torsion subgroup of E is isomorphic to Z/mZ×Z/nZ. We observe that E(Fq) is

as cyclic as possible given this condition if and only if for all ` | q − 1, with ` - n, we have

E 6∈ W (`m, `n). Denote by

Em,n(q) = {E/Fq : E[n](Fq) ∼= Z/mZ× Z/nZ and ` - n⇒ E[`] 6⊆ E(Fq)}/∼=Fq ;

We are now ready to state and prove our theorem.
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Theorem 9. The weighted cardinality of Em,n(q) is

q
ψ(n/m)

mϕ(n)ψ(n)

∏
`|gcd(n,q−1)/m

(
1− 1

`

) ∏
`|q−1
`-n

(
1− 1

`(`2 − 1)

)
+O

(
q1/2
)

if m | q − 1, and it is 0 otherwise.

Proof. We have already observed in the previous chapter that m | q − 1 is a necessary

condition for there to exist an elliptic curve over Fq with full m-torsion, so assume this to

be the case.

We proceed by inclusion-exclusion, following [36]. We have

#′Em,n(q) = #′W (m,n) +
∑
d|q−1

gcd(n,d)=1

µ(d)#′W (md, nd)

= ŵ(m,n) +
∑
d|q−1

gcd(n,d)=1

µ(d)ŵ(md,md) +O
(
q1/2
)

= qw̃(m,n)

1 +
∑
d|q−1

gcd(n,d)=1

µ(d)w̃(d, d)

+O
(
q1/2
)

= qw̃(m,n)
∏
`|q−1
`-n

(
1− 1

`(`2 − 1)

)
+O

(
q1/2
)

= q
ψ(n/m)

mϕ(n)ψ(n)

∏
`|gcd(n,q−1)/m

(
1− 1

`

) ∏
`|q−1
`-n

(
1− 1

`(`2 − 1)

)
+O

(
q1/2
)
.

Example 3.1. Taking m = n = 1, we recover Vlăduţ’s result.

Example 3.2. Let n′q be the prime to q − 1 part of n, and let nq = n/n′q. Then in the case
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where m = 1, we have

#′E1,n =
1

nqϕ(n′q)

∏
`|q−1
`-n

(
1− 1

`(`2 − 1)

)
+O

(
q1/2
)
.

This estimate will be used in Chapter 5.

Example 3.3. Now suppose that n = m. Then we have

#′En,n =
1

nϕ(n)ψ(n)

∏
`|q−1
`-n

(
1− 1

`(`2 − 1)

)
+O

(
q1/2
)
.

This estimate will be used in Chapter 6.

3.2 Parameters yielding isomorphic curves

The parameterizations given in Table 2.1 were derived by Kubert by studying the modular

curve X1(m). A point of X1(m) corresponds to an elliptic curve E together with a point of

order m up to action by automorphisms of E. For example, if (E,P ) represents a point of

X1(m) and #AutFq(E) = 2, then (E,−P ) represents the same point. We will be concerned

with which parameter values yield isomorphic curves over Fq where q = pn and p > 3. With

at most 10 exceptions, an isomorphism class of elliptic curves over Fq consists of curves

whose automorphism group has cardinality 2. If #AutFq(Em(a)) = 2, there are ϕ(m)/2

values b ∈ Fq such that Em(b) ∼= Em(a). These correspond to the ϕ(m) points of order m

on Em(a), up to the action of of AutFq(Em(a)).

If #AutFq(E) > 2, the number of parameters yielding an isomorphic curve will vary de-

23



pending on the size of the automorphism group and the number of m-torsion points of E;

in general, the number of parameters which yield an isomorphic curve will not be ϕ(m)/2.

However, these O(1) isomorphism classes can be absorbed into the ‘unweighted’ version of

Theorem 6.

Corollary 1 (to Theorem 6).

Cm(q) = 2q
∏
`|m

q≡1 (mod `)

1

`v`(m)

∏
`|m

q 6≡1 (mod `)

1

ϕ(`v`(m))

∏
`-m

q≡1 (mod `)

(
1− 1

`(`2 − 1)

)
+O

(
q1/2
)
.

Proof. Denote by Cm(q, n) = {E ∈ Cm(q) : #Aut(E) = n}. Then

Cm(q) = Cm(q, 2) + Cm(q, 4) + Cm(q, 6) + Cm(q, 12) + Cm(q, 24).

We then have

#Cm(q, 2)

2
= #′Cm(q)− #Cm(q, 4)

4
− #Cm(q, 6)

6
− #Cm(q, 12)

12
− #Cm(q, 24)

24
.

Multiplying by 2 and applying Theorem 6 and the fact that #Cm(q, 4)/2 −#Cm(q, 6)/3 −

#Cm(q, 12)/6−#Cm(q, 24)/12 = O(1), we have

#Cm(q, 2) = 2q
∏
`|m

q≡1 (mod `)

1

`v`(m)

∏
`|m

q 6≡1 (mod `)

1

ϕ(`v`(m))

∏
`-m

q≡1 (mod `)

(
1− 1

`(`2 − 1)

)
+O

(
q1/2
)
,

which completes the proof.

Given an m-torsion curve Em(a), we can (outside of characteristic 2 or 3) perform a change

of variables to obtain a short Weierstrass equation y2 = x3 + Ax + B. In order for Em(a)

to have more than two automorphisms, the j-invariant must be 0 or 1728. In terms of the
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short Weierstass equation, this means that A = 0 or B = 0, respectively. The coefficients

A and B will be polynomials or rational functions in the parameter a. Since such functions

have finitely many zeros, we deduce the following

Lemma 1. For any field K, there are finitely many parameters a such that j((Em(a)) =

0 or 1728. The parameters which yield curves with these j-invariants are the roots of a

polynomial that depends only on m.

Using explicit change of variables, it is possible to specify precisely which parameter values

yield isomorphic curves. If #AutFq(Em(a)) = 2, then Em(a) ∼= Em(b) for precisely the b

appearing in Table 3.1.

m Parameters
4 a
5 a −a−1

6 a
7 a (1− a)a−1 −(1− a)−1

8 a −a+ 1
9 a (a− 1)a−1 −(a− 1)−1

10 a (a− 1)(2a− 1)−1

12 a −a+ 1

Table 3.1: Parameters yielding isomorphic curves.
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Chapter 4

Reductions of rational numbers

modulo p

The elliptic curves we wish to study lie in one-parameter family. The authors of [5] took

averages over the curves in torsion families given by integer parameters. However, not all

curves in these families are isomorphic to one given by integer parameters, so it is natural

to allow for non-integer parameters. In this chapter, we obtain estimates for the number of

rational numbers up to height x which reduce modulo p to a given value. We begin with

some lemmas.
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4.1 Summing the normalized totient function

Consider the normalized totient function ϕ(n)/n; it is well-known (see, for example, [30])

that

∑
n≤x

ϕ(n)

n
=

6

π2
x+O(log(x)). (4.1)

The proof exploits the identity

ϕ(n)

n
=
∑
d|n

µ(d)

d

to deduce the exact formula

∑
n≤x

ϕ(n)

n
=
∑
d≤x

µ(d)

d

∑
n≤x
d|n

1.

In this section, we will prove three lemmas related to summing the normalized totient func-

tion over different subsets of the positive integers. Though elementary, these results are not

easily found in the literature.

Lemma 2. Let p be prime. Then

∑
n≤x

gcd(n,p)=1

ϕ(n)

n
=

p

p+ 1

6

π2
x+O(log(x)).

Remark 4. Neither here nor in the following lemmas have we tried to write the most general

result; a similar result holds with composite modulus, due to Suryanarayana [34]. Nor have

we tried to prove the best possible result since an error term of the form O (log(x)) is sufficient

for our intended application.
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Lemma 3. Let p be prime. Then

∑
n≤x
p|n

ϕ(n)

n
=

1

p+ 1

6

π2
x+O(log(x)).

Lemma 4. Let p be prime, and let r be relatively prime to p. Then

∑
n≤x

n≡r (mod p)

ϕ(n)

n
=

p

p2 − 1

6

π2
x+O(log(x)).

Remark 5. The topic of estimating the sum of a multiplicative function over residue classes

has seen extensive study, see for example [12], [16], [3]. Comparing the results of Lemmas 2

and 4 shows that a much better error term than that predicted by Theorem 1 of [12] holds

for this function.

Below we use the notation [x] to denote the floor of the real number x.

Proof of Lemma 2. We have

∑
n≤x

gcd(n,p)=1

ϕ(n)

n
=

∑
n≤x

gcd(n,p)=1

∑
d|n

µ(d)

d
=
∑
d≤x
p-d

µ(d)

d

∑
n≤x
d|n
p-n

1

=
∑
d≤x
p-d

µ(d)

d

[x
d

] p− 1

p

= x
p− 1

p

∑
d≤x
p-d

µ(d)

d2
+O(log x). (4.2)
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Now write

∑
d≤x
p-d

µ(d)

d2
=
∞∑
d=1
p-d

µ(d)

d2
−
∑
d>x
p-d

µ(d)

d2
=
∞∑
d=1
p-d

µ(d)

d2
+O

(
1

x

)
.

From the Euler product expansion of 1/ζ(s), we have that

∞∑
d=1
p-d

µ(d)

d2
=

6

π2

p2

p2 − 1
.

Inserting this into (4.2) completes the proof.

Proof of Lemma 3. We have

∑
n≤x
p|n

ϕ(n)

n
=
∑
n≤x
p|n

∑
d|n

µ(d)

d
=
∑
d≤x

µ(d)

d

∑
n≤x
d|n
p|n

1 (4.3)

=
∑
d≤x
p|d

µ(d)

d

[x
d

]
+
∑
d≤x
p-d

µ(d)

d

[
x

pd

]
. (4.4)

We estimate these sums separately. For the first, we have

∑
d≤x
p|d

µ(d)

d

[x
d

]
= x

∑
d≤x
p|d

µ(d)

d2
+O(log x) = x

∑
d≤x

µ(d)

d2
−
∑
d≤x
p-d

µ(d)

d2

+O(log x).

Using (4.1) and the proof of Lemma 2, this becomes

6

π2
x− p2

p2 − 1

6

π2
x+O(log x) =

−1

p2 − 1

6

π2
x+O(log x).
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For the second sum in (4.4), we have

∑
d≤x
p-d

µ(d)

d

[
x

pd

]
=
x

p

∑
d≤x
p-d

µ(d)

d2
+O(log x). (4.5)

Again appealing to the proof of Lemma 2, this is equal to

6x

π2

p

p2 − 1
+O(log x) (4.6)

and the lemma is proved.

Proof of Lemma 4. We have

∑
n≤x

n≡r (mod p)

ϕ(n)

n
=

∑
n≤x

n≡r (mod p)

∑
d|n

µ(d)

d
=
∑
d≤x
p-d

µ(d)

d

∑
n≤x
d|n

n≡r (mod p)

1 (4.7)

=
∑
d≤x
p-d

µ(d)

d

[
x

pd

]
(4.8)

=
x

p

∑
d≤x
p-d

µ(d)

d2
+O(log x). (4.9)

Using the same steps as in Lemma 2, this becomes

x

p

(
6

π2

)(
p2

p2 − 1

)
+O(log x) =

(
p

p2 − 1

)
6

π2
x+O(log x),

as required.
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4.2 Rational numbers reducing to a unit of Fp

In order to study average problems for curves in torsion families, we need an estimate for

the number of parameters that reduce modulo p to a given element of Fp. In the case of

integer parameters, this is straightforward since we get precisely one integer reducing to a

given value modulo p inside each interval of length p.

When we consider reduction of rational numbers, the count is more subtle since out of the

4x2 possible pairs of integers that combine to give a positive rational number of height less

than x, many pairs will yield the same number. We have two problems to keep track of;

first, we must keep track of which pairs of integers (m,n) give distinct rational numbers, and

second, we must ensure that we take pairs that reduce to a chosen value.

First, consider the case of reducing to a unit in Fp. Let t ∈ F×p . There are p − 1 ways of

expressing t as a ‘fraction,’ namely, t ≡ ab−1 (mod p) where b runs through the units of Fp

and a is uniquely determined by b.

Fix such a pair a, b ∈ F×p ; for each r ∈ Z that reduces to a, we want to compute the number

of admissible denominators. That is, we wish to estimate the cardinality of the set

B(x; r, p) = {s ≤ x : s ≡ b (mod p), gcd(s, r) = 1}.

This is easily accomplished by applying the inclusion-exclusion principle; denote by

Ad(x; r, p) = {s ∈ B(x; r, p) : d | s} = {s ≤ x : s ≡ b (mod pd)}.
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Then we have

#B(x; r, p) =
∑
d|r

µ(d)#Ad(x; r, p).

Since #Ad(x; r, p) = x
pd

+O(1), our estimate becomes

#B(x; r, p) =
x

p

∑
d|r

µ(d)

d
+O(1) =

x

p

ϕ(r)

r
+O(1). (4.10)

According to Lemma 4, we conclude that the number of rationals of height bounded by x

which reduce to r modulo p is

12x2

(p2 − 1)π2
+O(x log x). (4.11)

Applying this result for the p − 1 possible values of a, b such that ab−1 ≡ r (mod p), we

obtain the desired estimate, which we record as a lemma.

Lemma 5. There are

12x2

(p+ 1)π2
+O(x log x) (4.12)

rational numbers of height less than x which reduce modulo p to r.

4.3 Rational numbers reducing to zero

For the sake of completeness, we now we estimate the number of a ∈ Q of height less than x

which reduce to 0 modulo p. Note that this result would be necessary if one wanted to study

the reductions of an elliptic curve defined over a quadratic number field modulo a prime
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ideal of norm p2.

Obviously the numerator of any such rational number is a multiple of p; if r is any admissible

numerator (i.e., a multiple of p that is less than x), our task is to estimate the number of

denominators. Similar to the previous case, we denote this set by

B(x; r, p) = {s ≤ x : gcd(r, s) = 1}.

As before, we use inclusion-exclusion to estimate the size of B(x; r, p). Set

Ad(x; r, p) = {s ∈ B(x; r, p) : d | s}.

Then

#B(x; r, p) =
∑
d|r

µ(d)#A(x, r, p)

=
∑
d|r

µ(d)
(x
d

+O(1)
)

= x
∑
d|r

µ(d)

d
+O(1)

= x
ϕ(r)

r
+O(1).

Summing over the multiples of p up to x and applying Lemma 3, we find the the number of

positive and negative rational numbers of height less than x which reduce to zero modulo p

is

12

(p+ 1)π2
x2 +O(x log x).
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Chapter 5

Proof of main result

In this section we will prove Theorem 5; we begin with an overview. The key step is to

turn a sum over elliptic curves of prime-counting functions into a sum over primes of elliptic

curves counts; we have

∑
ht(a)≤A

πcycEm(a)(x) =
∑
p≤x

∑
b∈Fp

∆m(b)6=0
Em(b)(Fp) cyclic

#{a ∈ Q : ht(a) ≤ A,Em(a)p ∼= Em(b)}. (5.1)

After applying the estimates of the preceding sections and some manipulation, we find that

the expression for the main term is obtained by estimating the expressions

∑
p≤x

p≡1 (mod `0)

∏
`|p−1

gcd(`,m)=1

(
1− 1

`(`2 − 1)

)
and

∑
p≤x

p 6≡1 (mod `0)

∏
`|p−1

(
1− 1

`(`2 − 1)

)
.

We recognize the summands as a multiplicative function F (n) evaluated on the sequence of
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shifted primes by setting

F (n) =
∏
`|n

gcd(`,m)=1

(
1− 1

`(`2 − 1)

)

Thus, we are left to evaluate the mean value of these multiplicative functions along the

shifted primes which satisfy some congruence condition. This is accomplished by appealing

to a technical result of Indlekofer, Weimeier, and Lucht.

The fixed field counts of E/Fp which have an m-torsion point and cyclic group of Fp-points

depends on the value of p modulo the prime divisors of m. For one-parameter torsion families

over Q, we are concerned with m ∈ {4, 5, 6, 7, 8, 9, 10, 12}. In this case, m has at most two

prime divisors, and if m is not a prime power, then one of its prime factors is 2. Since all odd

primes are 1 (mod 2), the number of curves we are counting varies according to the value of

p (mod `) where ` is the unique odd prime divisor of m.

Let m ∈ {4, 5, 6, 7, 8, 9, 10, 12}, and denote by

Em(A) = {Em(a) : ht(a) ≤ A}

the family of elliptic curves over Q with an m-torsion point given above. Write the prime

factorization of m as m = 2k`n0 where we take n = `0 = 1 if m is a power of 2. Let A ≥ x1+ε

for x, ε > 0.

For convenience of notation, set

A(p,m, n) = {b ∈ Fp : ∆m(b) 6= 0, Em(b)(Fp) cyclic,#Aut(Em(b)) = n)}.

Continuing on from Equation (5.1) above, by Lemma 5, there are 12A2

(p+1)π2 +O (A logA) values
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of a up to height A which yield a particular Weierstrass model modulo p. Thus the expression

above becomes

∑
p≤x

(
12A2

(p+ 1)π2
+O (A logA)

) ∑
b∈A(p,m,2)

1 +
∑

b∈A(p,m,4)

1 +
∑

b∈A(p,m,6)

1


=
∑
p≤x

(
12A2

(p+ 1)π2
+O (A logA)

)(
ϕ(m)

2
#Cm(p, 2) +

ϕ(m)

4
#Cm(p, 4) +

ϕ(m)

6
#Cm(p, 6)

)
.

Applying the estimate obtained in Corollary 1 and Lemma 1, this is equal to

∑
p≤x

p≡1 (mod `0)

(
12A2

(p+ 1)π2
+O (A logA)

)ϕ(m)

2

2p

m

∏
`|p−1

gcd(`,m)=1

(
1− 1

`(`2 − 1)

)
+O

(
p1/2

)

+
∑
p≤x

p 6≡1 (mod `0)

(
12A2

(p+ 1)π2
+O (A logA)

)ϕ(m)

2

2p

2kϕ(`n0 )

∏
`|p−1

gcd(`,m)=1

(
1− 1

`(`2 − 1)

)
+O

(
p1/2

) .

Note that if m is a power of 2, then the second sum is empty. Simplifying and applying the

trivial estimate

ϕ(m)p

2kϕ(`n0 )

∏
`|p−1

gcd(`,m)=1

(
1− 1

`(`2 − 1)

)
< p,

this becomes

∑
p≤x

p≡1 (mod `0)

12A2ϕ(m)p

(p+ 1)π2m

∏
`|p−1

gcd(`,m)=1

(
1− 1

`(`2 − 1)

)

+
∑
p≤x

p 6≡1 (mod `0)

12A2ϕ(m)p

π2(p− 1)2kϕ(`n0 )

∏
`|p−1

(
1− 1

`(`2 − 1)

)
(5.2)
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+O

(
A logA

∑
p≤x

p+
12A2

π2

∑
p≤x

√
p

p+ 1

)
. (5.3)

Note that according to Lemma 3.4 of [35], we have

∑
p≤x

p = O

(
x2

2 log x

)
.

For the other part of the error term, the estimate,

∑
p≤x

√
p

p+ 1
�
∫ x

2

1√
t

= O(
√
x)

will suffice. Substituting these estimates, the error term becomes

Ax2 logA

2 log x
+

12A2
√
x

π2
. (5.4)

We now turn our attention to the main term. First, note that

∑
p≤x

p≡1 (mod `0)

12A2ϕ(m)p

(p+ 1)π2m

∏
`|p−1

gcd(`,m)=1

(
1− 1

`(`2 − 1)

)

+
∑
p≤x

p 6≡1 (mod `0)

12A2ϕ(m)p

π2(p− 1)2kϕ(`n0 )

∏
`|p−1

(
1− 1

`(`2 − 1)

)

=
∑
p≤x

p≡1 (mod `0)

12A2ϕ(m)

π2m

∏
`|p−1

gcd(`,m)=1

(
1− 1

`(`2 − 1)

)

+
∑
p≤x

p6≡1 (mod `0)

12A2ϕ(m)

π22kϕ(`n0 )

∏
`|p−1

(
1− 1

`(`2 − 1)

)

+O

(
12A2

π2

∑
p≤x

1

p+ 1

)
.
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Note that the error term in the above equation is dominated by our previous error term

(5.4).

We analyze these two sums individually following [4]. A main input to this analysis is a

theorem on averages of multiplicative functions due to [19, Theorem 3] which we record

below for convenience. We denote by f ∗ g the Dirichlet convolution of the multiplicative

functions f and g.

Theorem 10. Let f and g be multiplicative functions such that g = 1 ∗ f . Suppose that

there exists a constant ϑ ≥ 0 such that

| g(p) |≤ ϑ

p
+ r(p) (5.5)

for all primes p and

∑
p

| r(p) |<∞,
∑
p

∑
k = 2∞ | g(pk) |<∞. (5.6)

Then for any B > 0,

1

π(x)

∑
p≤x

f(p− 1) =
∞∑
d=1

g(d)

ϕ(d)
+O

(
log(−Bx

)
.

Assume first that m is not a power of 2, so that `0 > 1. For any integer n, define the

functions

χ`0(n) =


1 if `0 - n

0 if `0|n,
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F (n) =
∏
`|n
`-m

(
1− 1

`(`2 − 1)

)
,

and

F ′(n) =
∏
`|n
`-m

(
1− 1

`(`2 − 1)

)
χ`0h(n).

Note that χ`0 and F are multiplicative (whence F ′ is multiplicative as well). We compute

∑
p≤x

p≡1 (mod `0)

∏
`|p−1

gcd(`,m)=1

(
1− 1

`(`2 − 1)

)

=
∑
p≤x

∏
`|p−1

gcd(`,m)=1

(
1− 1

`(`2 − 1)

)
−

∑
p≤x

p 6≡1 (mod `0)

∏
`|p−1

gcd(`,m)=1

(
1− 1

`(`2 − 1)

)

=
∑
p≤x

∏
`|p−1

gcd(`,m)=1

(
1− 1

`(`2 − 1)

)
−
∑
p≤x

∏
`|p−1

gcd(`,m)=1

(
1− 1

`(`2 − 1)

)
χ`0(p− 1)

=
∑
p≤x

F (p− 1) +
∑
p≤x

F ′(p− 1).

Let G = F ∗µ and G′ = F ′ ∗µ. Then G and G′ are multiplicative functions defined on prime

powers by

G(`k) =



−1
`(`2−1)

if ` - m, k = 1

0 if ` | m, k = 1

0 if k > 1,
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and

G′(`k) =



−1
`(`2−1)

if ` - m, k = 1

−1 if ` = `0, k = 1

0 if ` = 2 | m, k = 1

0 if k > 1.

Both pairs of functions F,G and F ′, G′ satisfy the hypotheses of [19, Theorem 3]. It follows

that

1

π(x)

∑
p≤x

F (p− 1) =
∞∑
d=1

G(d)

ϕ(d)
+OB(log−B x)

holds for any B > 0, and similarly for F ′, G′. Now we have

∞∑
d=1

G(d)

ϕ(d)
=
∏
`-m

(
1− 1

`(`2 − 1)(`− 1)

)
,

and

∞∑
d=1

G′(d)

ϕ(d)
=
`0 − 2

`0 − 1

∏
`-m

(
1− 1

`(`2 − 1)(`− 1)

)
.

Thus,

∑
p≤x

p≡1 (mod `0)

12A2ϕ(m)

π2m

∏
`|p−1

gcd(`,m)=1

(
1− 1

`(`2 − 1)

)

=
12A2ϕ(m)

π2m

1

`0 − 1

∏
`-m

(
1− 1

`(`− 1)(`2 − 1)

)
π(x) +O

(
A2 x

logB+1 x

)
. (5.7)
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Similarly, we write

∑
p≤x

p 6≡1 (mod `0)

∏
`|p−1

(
1− 1

`(`2 − 1)

)
=
∑
p≤x

∏
`|p−1

(
1− 1

`(`2 − 1)

)
χ`0(p− 1) =

∑
p≤x

F ′(p− 1)

so that, again by [19, Theorem 3], we have

1

π(x)

∑
p≤x

F ′(p− 1) =
∞∑
d=1

G′(d)

ϕ(d)
+OB(log−B x)

=
`0 − 2

`0 − 1

∏
`-2`0

(
1− 1

`(`− 1)(`2 − 1)

)
+OB(log−B x)

holds for any B > 0. Thus,

∑
p≤x

p 6≡1 (mod `0)

12A2ϕ(m)

π22kϕ(`n0 )

∏
`|p−1

(
1− 1

`(`2 − 1)

)

=
12A2ϕ(m)

π22kϕ(`n0 )

(`0 − 2)

(`0 − 1)

∏
`-m

(
1− 1

`(`− 1)(`2 − 1)

)
π(x) +O

(
A2 x

logB+1 x

)
. (5.8)

Combining (5.2), (5.4), (5.7), and (5.8), we have

∑
ht(a)≤A

πcycE(a)(x) =
12A2

π2

(
ϕ(m)

2kϕ(`n0 )

(`0 − 2)

(`0 − 1)
+
ϕ(m)

m

1

`0 − 1

)∏
`-m

(
1− 1

`(`− 1)(`2 − 1)

)
π(x)

+O

(
A2 x

logB+1 x

)
+O

(
Ax2 logA

2 log x
+

12A2
√
x

π2

)
.

In the case where m is a power of 2, we have that ϕ(m)/m = 1/2, and we are left to evaluate

1

2

∑
p≤x

∏
`|p−1

gcd(`,m)=1

(
1− 1

`(`2 − 1)

)
.
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An argument analogous to the above shows

∑
ht(a)≤A

πcycE(a)(x) =
6A2

π2

∏
` 6=2

(
1− 1

`(`− 1)(`2 − 1)

)
π(x) +O

(
A2 x

logB+1 x

)

+O

(
Ax2 logA

2 log x
+

12A2
√
x

π2

)
.

Computing

Cm =


(

ϕ(m)
2kϕ(`n0 )

`0−2
`0−1

+ ϕ(m)
m

1
`0−1

)
if m is not a power of 2

1/2 if m is a power of 2

for m ∈ {4, 5, 6, 7, 8, 9, 10, 12}, we complete the proof.
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Chapter 6

A torsion family defined over a

quadratic field

Mazur’s Torsion Theorem describes the possibilities for E(Q)tors where E is an elliptic curve

defined over Q. There has been substantial effort to determine which torsion structures

occur over number fields of larger degree. Kamienny [23] and Kenku and Momose [26]

determined which torsion structures may occur over a quadratic field. Najman gave the

analog to Mazur’s theorem for the two quadratic cyclotomic fields Q(i) and Q(
√
−3) [31].

Obtaining the list of torsion structures that occur over cubic and quartic fields has been the

focus of many recent papers, but the complete list is not yet known. Moreover, obtaining

the analog of Mazur’s theorem for a particular field is still quite hard, though Kamienny and

Najman describe a general technique to obtain such results in the case of quadratic fields

[24].

Given a torsion structure that occurs over a number field K, we would like to study the prime

counting functions analogous to those we studied in the preceding chapter. However, when
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K 6= Q, not all of the torsion families are parameterizable since the corresponding modular

curve need not have genus zero. In the case where the corresponding modular curve has

genus greater than 1, there are finitely many elliptic curves with that torsion structure by

Faltings’ Theorem. In the case in which the modular curve has genus 1, there are infinitely

many elliptic curves with that torsion structure, but those curves are not parameterizable.

6.1 Elliptic curves with full three-torsion

In order to apply the techniques we have already developed, we will focus our attention on the

field K = Q(
√
−3). According to Najman’s analog of Mazur’s Theorem for K, the torsion

structures occurring over this field are those which occur over Q along with Z/3Z × Z/3Z

and Z/3Z × Z/6Z, and both of the new torsion structures occur infinitely often. We will

focus our attention on the family of curves with full three-torsion. Husemöller [18] described

a procedure for parameterizing these curves. Let K be a field containing a primitive cube

root of unity ρ. Then a curve with full three torsion is isomorphic to the curve given by

E(a) : y2 + (3a− 1)xy + a(ρ− 1)(a− (ρ+ 1)/3)y = x3 (6.1)

for some a ∈ K satisfying ((3a− 1)3 − 27a(ρ− 1)(a− (ρ+ 1)/3))(a(ρ− 1)(a− (ρ+ 1)/3))3.

The points (0, 0) and (a, a(1− ρ)/3) form a basis for the subgroup E(a)[3].

The smallest field extension of Q in which the study of reduction of such curves makes sense

is the quadratic field K = Q(
√
−3); furthermore, according to Najman [31], K is the only

quadratic field over which there exists an elliptic curve with fully rational three torsion.

Clearly the reduction of curves in this family will never be cyclic; however, it makes sense to
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ask a question analogous to cyclicity for curves in this family. That is, we could ask how often

the reduction of a curve E(a) is “as cyclic as possible” given that it has full three-torsion

which injects into its reduction modulo p. We will say that a curve E(a) in this family

has reduction that is as cyclic as possible if its group of Fq rational points is isomorphic to

Z/3Z × Z/3NZ. Clearly, this condition is equivalent to imposing that for each ` 6= 3, the

reduction of E(a) has cyclic `-torsion. For each curve in this family, we define the prime

counting function

πcycE (x) = #{p ⊂ OK : N(p) ≤ x, ` 6= 3⇒ Ep(O/p)[`] is cyclic }. (6.2)

We study these prime counting functions on average, using the same approach as we employed

in the study of average cyclicity. As before, we will need an estimate of the number of E/Fq

whose group of Fq-rational points satisfies the conditions imposed by the family of curves

and our problem. We will also require an understanding of how many parameters in a given

finite field correspond to a given isomorphism class.

There is a new feature that appears in the case of elliptic curves defined over a number

field larger that Q, namely that our primes are now prime ideals instead of prime numbers,

and prime ideals come in three types according to the splitting behavior of the unique

rational prime lying below. They can split, remain prime (i.e., be inert), or they can ramify.

Since only finitely many rational primes ramify in a given number field and we are studying

a question of asymptotics of prime counting functions, we will from this point on ignore

ramified primes by making the convention that our prime counting functions do not count

these finitely many ramified primes.

The degree of a prime ideal of OK dictates the size of the finite field OK/p over which the

reductions of our elliptic curves will be defined. Thus, it will be convenient to modify our
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prime counting functions to count primes of degree one and degree two separately. Define

πcycE,d(x) = #{p ⊂ OK : deg(p) = d, N(p) ≤ x, ` 6= 3⇒ Ep(OK/p)[`] is cyclic }. (6.3)

We will see that it is easy to obtain an average asymptotic for these functions when d = 1,

but that a new input from analytic number theory will be required in the case where d = 2.

6.2 Isomorphisms of curves with full three-torsion

In this section we determine the number of parameters a which yield isomorphic curves in the

family of curves with full three-torsion. Recall that curves E(a) in this family are equipped

with a basis for their three torsion which is (0, 0) and (a, a(1− ρ)/3) where ρ is a primitive

cube root of unity. Let E = E(a) be a curve in the form (6.1), and let P and Q be linearly

independent points in E[3] (so that Q 6= −P ). Denote by Px and Py the affine coordinates

of P , and similarly for Q. We will count the isomorphisms (u, r, s, t) which send P to (0, 0)

and Q to (b, b(1− ρ)/3) for some b ∈ K which (we will see) depends on (u, r, s, t).

Since (u, r, s, t) acts by the change of variables

x = u2x′ + r

y = u3y′ + u2sx′ + t,

we have P 7→ (0, 0) if and only if r = Px and t = Py. Then s is determined by this choice of

r and t and the fact that the coefficient on x in (6.1) is zero. We find that

s =
3P 2

x − (3a− 1)Py
a(ρ− 1)(a− (ρ+ 1)/3) + (3a− 1)Px + 2Py

.
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Next, in order that Q 7→ (b, b(1− ρ)/3), we must have

u2b+ r = Qx

u3b(1− ρ)/3 + u2sb+ t = Qy.

Solving each equation for b, we have

b =
Qx − Px

u2
,

b =
Qy − Py

u3(1− ρ)/3 + u2s
.

Equating these expressions for b and clearing denominators, we obtain the equation

(u(1− ρ)/3 + s)(Qx − Px) = Qy − Py.

Solving, we find that

u =

(
Qy − Py
Qx − Px

− s
)(

3

1− ρ

)
.

We have shown that the isomorphism (u, r, s, t) is completely determined by the choice of a

basis (P,Q) for E[3]. Since there are 8 choices for P and 6 choices for Q, we conclude that

there are 48 isomorphisms that preserve the equation (6.1). Furthermore, a straightforward

but tedious calculation shows that the value of u which arises from taking (−P,−Q) as a

basis is the opposite of the u obtained by taking (P,Q) as a basis. From the relation

b =
Qx − Px

u2
,

we see that the parameters b which yield isomorphic curves are determined by the x-
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coordinates of the chosen basis points, together with u. Thus, from the 48 isomorphisms

which preserve the family, half of them yield a curve given by the same parameter.

As in the case of the curves Em(a) from Table 2.1, remark that the parameters which yield a

curve with j-invariant equal to 0 or 1728 are the roots of a polynomial that does not depend

on the field of definition. As in the previous calculation, these finitely many parameters are

irrelevant to our asymptotic considerations. We remark for completeness that there are 8

parameters corresponding to j = 0 and 12 parameters corresponding to j = 1728.

6.3 Reduction of elements of K modulo p

In this section we use the estimates obtained in Chapter 4 to estimate the number of α =

a+ b
√
−3 ∈ K whose height is bounded by A > 0 which reduce modulo p to a given value.

We will prove the following.

Lemma 6.

Let r ∈ OK/p. Then

#{α ∈ K : ht(α) ≤ A,α ≡ r (mod p)} =


144

π4(p+1)
x4 +O (x3 log(x)) if deg(p) = 1,

144
π4(p+1)2

x4 +O (x3 log(x)) if deg(p) = 2.

Proof. Assume first that p is a degree 1 prime. For any r ∈ Z and for any choice of b, we have

α ≡ r (mod p) if and only if a ≡ r − b
√
−3 (mod p). Applying the estimates of Chapter 4,

we conclude that
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#{α ∈ K : ht(α) ≤ A,α ≡ r (mod p)}

=

(
12

π2(p+ 1)
x2 +O (x log(x))

)(
12

π2
x2 +O (x log(x))

)
=

144

π4(p+ 1)
x4 +O

(
x3 log(x)

)
.

If, on the other hand, p is a degree 2 prime then the image of 1 and
√
−3 under the reduction

mod p form a basis for OK/p over Z/pZ. Writing r = a0 + b0

√
−3, we have that α ≡ r

(mod p) if and only if a ≡ a0 (mod p) and b ≡ b0 (mod p). Thus, we have

#{α ∈ K : ht(α) ≤ A,α ≡ r (mod p)}

=

(
12

π2(p+ 1)
x2 +O (x log(x))

)2

=
144

π4(p+ 1)2
x4 +O

(
x3 log(x)

)
,

which completes the proof.

6.4 Average cyclicity for curves with full three-torsion

We now study the averages of the functions (6.3) for d = 1. Each prime of degree 1 must

lie above a prime number p which splits in K, and we know that p splits in K if and only if

the discriminant of K, which in this case is 3, is a quadratic residue modulo p. By the law

of quadratic reciprocity, simply means that p is congruent to 1 modulo 3. Thus,

∑
ht(a)≤A

πcycE(a),1(x) = 2
∑
p≤x

p≡1 (mod 3)

∑
E/Fp

(Z/3Z)2↪→E(Fp)
(Z/`Z)2 6↪→E(Fp)

#{a : ht(a) ≤ A, E(a)p(OK/p) ∼= E},

49



the 2 appearing because each prime under consideration lies below two prime ideals in OK .

Each isomorphism class is represented by 24 parameter values modulo p except for the

finitely many isomorphism classes of j-invariant 0 or 1728 which are represented by 8 and

12 parameters, respectively. Applying the estimate from section 6.3, this is equal to

2
∑
p≤x

p≡1 (mod 3)

(
144A4

π4(p− 1)
+O

(
A3 log(A)

))


24
∑
E/Fp

#Aut(E)=2
(Z/3Z)2↪→E(Fp)
(Z/`Z)2 6↪→E(Fp)

1 + 12
∑
E/Fp

#Aut(E)=4
(Z/3Z)2↪→E(Fp)
(Z/`Z)2 6↪→E(Fp)

1 + 8
∑
E/Fp

#Aut(E)=6
(Z/3Z)2↪→E(Fp)
(Z/`Z)2 6↪→E(Fp)

1


.

Absorbing the sums over E with #Aut(E) > 2 into the error term and applying the estimate

from Corollary 1, this becomes

2
∑
p≤x

p≡1 (mod 3)

(
144A4

π4(p+ 1)
+O

(
A3 log(A)

))2p
∏
`|p−1
`6=3

(
1− 1

`(`2 − 1)

)
+O(p1/2)


= 4

∑
p≤x

p≡1 (mod 3)

144A4

π4

p

p+ 1

∏
`|p−1
` 6=3

(
1− 1

`(`2 − 1)

)

+O

(
A4
∑
p≤x

√
p

p+ 1

)
+O

(
A3 log(A)

∑
p≤x

p

)
.

The main term was analyzed in Chapter 5 using Theorem 3 of Indlekofer, Wehmeier, and

Lucht. Applying that result, we obtain

4
144A4

π4

∑
p≤x

p≡1 (mod 3)

∏
`|p−1
6̀=3

(
1− 1

`(`2 − 1)

)
+O

(
A4
∑
p≤x

√
p

p+ 1

)
+O

(
A3 log(A)

∑
p≤x

p

)

= 2
144A4

π4

(∏
6̀=3

(
1− 1

`(`− 1)(`2 − 1)

)
π(x) +O

(
x

logB+1 x

))
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+O

(
A4
∑
p≤x

√
p

p+ 1

)
+O

(
A3 log(A)

∑
p≤x

p

)
.

Dividing by 144A4/π4, we obtain the average asymptotic for the functions πcycE(a),1:

Proposition 1.

1

#{a ∈ K : ht(a) ≤ A}
∑

ht(a)≤A

πcycE(a),1(x) = 2
∏
`6=3

(
1− 1

`(`− 1)(`2 − 1)

)
π(x)

+O

(
A

logB(A)

)
.

Remark 6. The factor 2 in the Proposition above appears because for each finite field Fp

for p ≡ 1 (mod 3), there are two prime ideals of OK such that the residue field is isomorphic

to Fp. The constant is what we should expect; the definition of πcycE(a),d imposes the same

condition for ` 6= 3 as πcycE and imposes no condition at all for ` = 3. Thus, it is unsurprising

that we get the same constant with the factor corresponding to 3 removed.

6.5 Degree two primes

We would also like to study the average over primes of degree 2. It is easy to see that

the argument will proceed upon much the same lines, except that now the reductions of

the Ea will be elliptic curves over the finite field OK/p ∼= Fp2 . Consequently, we need to

compute the mean value of the multiplicative function f(n) =
∏

36=`|n

(
1− 1

`(`2−1)

)
evaluated

on the sequence of shifted squares of primes instead of the sequence of shifted squares. More

generally, studying average cyclicity for elliptic curves defined over a degree n number field

will likely require generalizing Indlekofer, Wehmeier, and Lucht’s result to mean value of

multiplicative functions over the sequence {pn − 1 : p is prime}.
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In the rest of this section, we will describe two approaches to resolving the technical obstacle

caused by primes of degree 2.

Studying the average cyclicity of the family (6.1) over degree two primes will require evalu-

ating

∑
p≤x

p≡2 (mod 3)

∏
`|p2−1

(
1− 1

`(`2 − 1)

)
. (6.4)

For an odd prime p, the only prime number that divides both p+ 1 and p− 1 is 2. Thus, we

can write

∏
`|p2−1

(
1− 1

`(`2 − 1)

)
=
∏
`|p−1

(
1− 1

`(`2 − 1)

)
·
∏
`|p+1
` 6=2

(
1− 1

`(`2 − 1)

)
.

Denote by

f(n) =
∏
`|n

(
1− 1

`(`2 − 1)

)
,

f1(n) =
∏
`|n

(
1− 1

`(`2 − 1)

)
,

f2(n) =
∏
`|n
6̀=2

(
1− 1

`(`2 − 1)

)
.

Then we have

∑
p≤x

p≡2 (mod 3)

∏
`|n

(
1− 1

`(`2 − 1)

)
=

∑
p≤x

p≡2 (mod 3)

f(p2 − 1) =
∑
p≤x

p≡2 (mod 3)

f1(p− 1)f2(p+ 1).

We can turn this into a sum over all primes by multiplying by the indicator function for
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integers relatively prime to 3. The topic of mean values of products of multiplicative functions

over various sequences has seen substantial study in recent years; however, we are unaware

of a result in the literature with the exact set of features we require.

Proving such a mean value theorem would be one way to complete the study of average

cyclicity of reductions of elliptic curves at degree two primes. However, we note that should

we eventually wish to the study of reductions of curves defined over fields of degree greater

than 2, such a result will be of no help whatsoever in the study of reductions at primes

of higher degree since it is particular to the factorization of p2 − 1 as a product of linear

polynomials in p.

A second potential approach would be to directly generalize the result of Indlekofer, Wehmeier,

and Lucht. This theorem gives the mean value of multiplicative functions evaluated on the

sequence of shifted primes p− 1 : p prime; to study reductions of elliptic curves modulo

degree d primes, we would require a theorem that gives the mean value of multiplicative

functions along the sequence pd − 1 : p prime. Whether or not it is reasonable to expect

such a theorem is unclear at this point since, for example, the sequence of squares of primes

is much thinner than the sequence of primes.

The main technical tool in the proof of Theorem 10 is the Bombieri-Vinogradov theorem

which describes the average error of the prime counting functions

π(x, d, a) = #{p ≤ x : p ≡ a (mod d)} (6.5)

that counts the primes in the arithmetic progression

{a, d+ a, 2d+ a, 3d+ a, . . .} (6.6)
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Generalizing the result in the same way would likely require an analog of Bombieri-Vinogradov

for the prime counting functions

πn(x, d, a) = #{p ≤ x : pn ≡ a (mod d)} (6.7)

which count prime nth powers in the arithmetic progression (6.6).

Question 1. Can we prove an analog to the Bombieri-Vinogradov theorem for the functions

πn(x, d, a)?

The functions πn(x, d, a) do not appear to have seen much study. Below we focus on the

case of π2(x, d, a) and show how to relate π2(x, d, a) to π(x, d′, a′) which are already well-

understood. Again, we rely on the fact that p2 − 1 factors as (p+ 1)(p− 1).

Factor d = `e11 · · · `err , and let a be a quadratic residue modulo d that is relatively prime to d.

Then d | p2 − a if and only if `eii | (p+ b)(p− b) holds for 1 ≤ i ≤ r where b is a square root

of a modulo p. Let ` = `i, and assume that ` - 2b. Since `i divides (p + b)(p − b), it must

divide one or the other factor. But since `i does not divide 2b, we conclude that `eii divides

precisely one of p − b or p + b. Thus, the p ≤ x which satisfy p2 ≡ a (mod d) must satisfy

one of two congruence conditions modulo `eii . Using the Chinese Remainder Theorem, we

obtain a congruence condition modulo d′ that p must satisfy, where d′ is the product of the

prime divisors of d that do not divide 2b.

Next we must address those prime factors of d which also divide 2b. In fact, we only need

concern ourselves with the prime 2. Indeed, since we are assuming that the GCD of a and

d is 1, the square root of a modulo d must be a unit in Z/dZ. Since any factor of d is

automatically a zero divisor in this ring, we will never encounter this case.

As for the prime 2, there are several cases to go through. We assume that p is an odd prime
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since the exception does not contribute to asymptotic concerns. If b is even, then 2 does not

divide p2 − 1. If b is odd, then 2 divides both p+ 1 and p− 1. Assume that 2e is the exact

power of 2 that divides d. Thus, the primes we are trying to count satisfy 2e | p2 − 1.

If e = 1, then 2e | p+ 1, and 2e | p− 1 holds for all odd primes. If e = 2, then since precisely

one of p+1 or p−1 is divisible by 4, we will again have 2e | p2−1 for all odd primes. Finally,

suppose that e ≥ 3. Using again the fact that precisely one of p + 1 or p− 1 is divisible by

4, we see that precisely one of p + 1 or p − 1 must be divisible by 2e−1. In this case, the

primes we are counting must satisfy the congruence condition modulo 2e−1, the other factor

of 2 being automatically supplied. In summary we have

π2(x, 2e, a) =


π(x, 2, 1) if e = 1

π(x, 4, 1) + π(x, 4,−1) if e = 2

π(x, 2e−1, a) + π(x, 2e−1,−a) if e ≥ 3.

Assembling all of the above discussion, we have shown the following.

Theorem 11. Let a be a quadratic residue modulo d that is relatively prime to d. Let k

denote the number of odd prime factors of d, and let v be the 2-adic valuation of d. Then

π2(x, d, a) ∼ 2k+ε

ϕ(d)
π(x)

where ε =


0 if v = 0 or 1

1 if v = 2

2 if v ≥ 3.

This theorem and its proof show that to a large extent, the study of prime squares in

arithmetic progressions can be reduced to the study of primes in closely related arithmetic

55



progressions. However, the fact that we must include data on quadratic residues means that

it is not obvious that we can get a Bombieri-Vinogradov type theorem for these functions.

We remark further that it is possible to estimate the error term

|π2(x, d, a)− 2k+ε

ϕ(d)
π(x)|

by repeatedly using the error term for primes in arithmetic progressions for each of the prime

power factor of d. The error term arising from this approach will depend on the number of

distinct prime factors of d.
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Chapter 7

Future research

In this chapter, we describe future directions of study.

7.1 Cyclicity

We have studied average cyclicity by ordering elliptic curves with a point of orderm according

to the parameterizations in Table 2.1, while Banks and Shparlinski ordered their curves by

naive height, that is, by size of coefficients of short Weierstrass equations in absolute value.

For an abelian group G appearing in allowed by Mazur’s Torsion Theorem, Harron and

Snowden [15] gave an estimate for the number of isomorphism classes of elliptic curves E/Q

up to height x such that E(Q)tors
∼= G. It is reasonable to expect that the average of the

functions πcycE over elliptic curves E in a torsion family ordered by height should be the

same as the average of the same functions ordered according to Kubert’s parameterizations.

Determining if this is, indeed the case will be the subject of future work.
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There are some cases of torsion families defined over Q that we have not addressed. Namely,

we have not studied the family of elliptic curves with a point of order 2 or 3, nor have we

studied average cyclicity for the family of curves with non-cyclic 2-torsion. However, we have

made a prediction of what Ccyc
E should be for these curves, and the details of the argument

will be similar. Working out the details of these cases would provide an opportunity for

undergraduate research.

As described above, there is still some work to do in order to study average cyclicity over

degree 2 prime ideals of OK , K quadratic. There are several approaches one could take to

resolve this problem, all of which require a new input from analytic number theory. The most

general question that we could pose would be “can we obtain the mean value of multiplicative

functions along shifted prime powers in the style of Indlekofer Wehmeier, and Lucht?” An

affirmative answer would enable us to study averages of the functions πcycE for E defined over

higher degree number fields.

7.2 Primality

We have focused on the case where Ep has cyclic group structure. If #Ep(Fp)is prime, then

Ep(Fp) is certainly cyclic; thus, a related problem would be to study the prime counting

functions

πtwinE (x) = #{p ≤ x : #Ep(Fp) is a prime number}.

The study of these functions was initiated by Koblitz, who was motivated by applications

to cryptography. He conjectured that πtwinE is asymptotic to Ctwin
E

x
(log x)2

for an explicit con-

stant Ctwin
E . Koblitz’ conjecture was refined by Zywina [37], and this refined conjecture has
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been established on average over the family of all elliptic curves given by a short Weierstrass

equation of bounded height by Balog, Cojocaru, and David [2]. As in the case of average

Lang-Trotter and average cyclicity, the average results agree with the conjecture for individ-

ual curves, and in this case too, Jones [21] has proven that the average of the constants (as

refined by Zywina [37]) is the constant appearing in the average result.

It would be of interest to study the average of the functions πtwinE over thinner families of

curves, for example, over torsion families. Obviously, when E/Q has a point of order m,

there are only finitely many p for which #Ep(Fp) is a prime number since for all sufficiently

large p, we have m | #Ep(Fp). Instead, we ask how frequently the ratio #Ep(Fp)/m is a

prime number.

Studying this question on average is less straightforward than in the case of cyclicity or

Lang-Trotter; in these cases, we have good estimates for the number of elliptic curves over

Fp with either cyclic group structure or fixed trace of Frobenius. In the case of primality, we

would like to know how many E/Fp have a prime number of points. In 2000 Galbraith and

McKee [14] gave a conjecture, but this remains open. However, David, Koukoulopoulos, and

Smith [10] established the conjecture of Galbraith and McKee on average over primes p ≤ x.

7.3 Squarefreeness

We conclude by mentioning a similar problem that has seen some study in recent years but

for which less is known. Given an elliptic curve E/Q and a prime p of good reduction, if

#Ep(Fp) is a squarefree number, then Ep(Fp) is certainly a cyclic group. Thus, we would
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like to understand the behavior of the prime counting function

πSFE (x) = #{p ≤ x : #Ep(Fp) is a squarefree number}.

Cojocaru [8] obtained an asymptotic for πSFE in the case where E has complex multiplication

by the full ring of integers of an imaginary quadratic number field. More recently, the authors

of [1] made a conjecture for the asymptotic of πSFE in the non-CM case and proved that it

holds on average over the family of elliptic curves given by short Weierstrass equations of

small height. So far, it does not appear that anyone has considered the average of πSFE over

thin families such as torsion families, nor has the study of these functions been extended to

elliptic curves defined over number fields. These are natural projects to pursue.

We would also like to study the corresponding fixed field count. That is, given a prime

power q, how many isomorphism classes of elliptic curves over Fq have squarefree number of

points? This is likely to be difficult to answer since it is, in part, asking about the number of

squarefree integers in a short interval. However, even if we cannot obtain a fixed field count,

obtaining a reasonable conjecture that holds on average, as was done for Galbraith–McKee

in the case of primality, may be enough to study the functions πSFE on average.
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