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Uncovering strategies for personalized treatment selection using large language models 

Brenda Miao 

Abstract 

Healthcare data has never been so accessible to patients and physicians, from smartphones and 

other remote monitoring devices to improved access for patients to their own Electronic Medical 

Record (EMR) history and clinical notes. Despite the ubiquity of healthcare data collection and 

distribution, there remains a significant gap in understanding the impacts of this data on clinical 

care. Insights from these digital health tools and downstream clinical decision-making processes 

are often only captured in medical notes, which are complex, sparse, unstructured, and difficult to 

model even with traditional deep learning methods. Only recently have large language models 

(LLMs) emerged that are capable of zero- or few-shot clinical language, without the need for large, 

manually annotated datasets. In this dissertation, I develop methods to adapt LLMs to healthcare 

tasks, particularly for identifying points of actionable insights for both digital and pharmaceutical 

therapeutics. These approaches demonstrate the ways in which digital health products can impact 

clinical care, as well as provide methods to identify reasons for medication class switching that 

consider the complexities of patient care beyond lab values and diagnosis codes. While careful, 

rigorous research is needed to ensure that these approaches are effective in facilitating patient care 

improvements and to reduce any potential for harm, the rapid pace of language model development 

provides an extraordinary opportunity to transform clinical practice. These new methods allow us 

to take an unprecedented look at the conversations, decisions, and medical expertise captured in 

billions of clinical notes and other clinical text, and to learn from this shared knowledge to 

accelerate medical research, improve clinical guidelines, and personalize patient care.   
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Chapter 1 

Introduction 

 

1.1 Overview 

This chapter provides an overview of the dissertation, a description of the research problem, and a 

summary of each chapter that follows.  

 

1.2 The Problem 

Healthcare data has never been so accessible to patients and physicians. From smartphones to 

wearables, patients are collecting and using data in their daily lives outside the hospital, 

empowering them to better understand the state of their health and adjust their behaviors or seek 

clinical care earlier. These developments to digital devices come in parallel to improved access for 

patients to their Electronic Medical Record (EMR) data as well, with federal mandates for hospitals 

to provide digital access for patients to their medical history and clinical notes. Despite these 

improvements to digital health and data access, there remains a significant gap in understanding 

the impacts of this data on clinical care and transforming such insights into actionable clinical 

guidelines. 

However, the nuances of patient-physician clinical decision making and clinical outcomes 

are often only documented in clinical notes or other real-world clinical text. Traditional natural 

language processing algorithms have been difficult to adapt to the clinical domain due to a lack of 

research datasets and specialized terminologies used. These methods relied on large, manually 

annotated datasets that were time-consuming and required significant clinical expertise to develop 

and could not be easily adapted to new tasks once trained. 
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The recent emergence of large language models (LLMs) has enabled more rapid clinical 

language modeling without the need for large, expertly-annotated training datasets. The following 

chapters dive into the capabilities of LLMs to understand clinical decision-making across digital 

and pharmaceutical therapeutic classes. The work spans several real-world datasets, starting with 

clinical trial registry data, electronic medical record data and clinical notes, and finally concluding 

with LLM capabilities on generating decision trees from best-practice clinical guidelines.  

 

1.3 Chapters 

Chapter 2 “The Digital Therapeutic Clinical Trial Landscape" describes the current landscape of 

FDA-regulated digital therapeutics using the ClinicalTrials.gov clinical trials registry using 

traditional natural language processing approaches. 

Chapter 3 “Impacts of Digital Health on Clinical Care" begins to bridge the gap between 

digital health data and clinical care and explores the ability of the Generative Pretrained 

Transformer 4 (GPT-4) LLM to uncover the impacts of digital health usage from clinical notes.  

Chapter 4 “Quantifying Clinical-Decision Making Using Large Language Models" 

assesses the use of structured medical record data as weak labels for medication information 

extractionand demonstrates that zero-shot GPT-4 outperforms transformer-based baseline models 

trained on these weak labels in extracting contraceptive prescription information. This chapter also 

presents results assessing the ability for LLMs to extract reasons for contraceptive switching, a 

novel task for LLMs. 

Chapter 5 “Extracting Biologic Treatment Strategies Using Open-Source Language 

Models" applies the methods developed in the previous chapter to a more complex patient cohort 

to analyze reasons for why patients switch between tumor necrosis factor inhibitors, which are 
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biologic therapies approved for treatment of various autoimmune diseases, and extends the 

previously developed medication switching information extraction pipeline to benchmark the 

abilities of open-source language models on this task. 

Chapter 6 “Generation of Guideline-Based Clinical Decision Trees” evaluates the ability 

for LLMs to extract decision trees from clinical guidelines and real-world clinical notes. While 

previous versions of GPT, including GPT-3.5, and open-source models are not yet capable of 

accurate clinical decision tree extraction, we find that GPT-4 does show this emergent property, 

particularly with in-context guidelines provided. 

Chapter 7 “Checklist for Generative Modeling for Clinical Research” provides 

standardized guidelines for robust study design, alignment to ethical standards, and end-to-end 

reproducibility in generative clinical modeling research. 

Chapter 8  “Conclusions” provides concluding thoughts and a discussion of future research 

directions in this rapidly evolving field. 
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Chapter 2 

The Digital Therapeutic Clinical Trial Landscape 

 

2.1 Abstract 

Digital therapeutics (DTx) are a novel class of FDA-regulated software that help patients prevent, 

manage, or treat disease. Here, we use natural language processing (NLP) to characterize 

registered DTx clinical trials and provide insights into the clinical development landscape for these 

novel therapeutics. We identified 449 DTx clinical trials initiated between 2010 and 2030 from 

ClinicalTrials.gov using 27 search terms, and available data were analyzed  trial durations, 

locations, Medical Subject Headings (MeSH) category, enrollment, and sponsor types. Topic 

modeling of eligibility criteria, performed using BERTopic, showed that DTx trials frequently 

exclude patients based on age, comorbidities, pregnancy, language barriers, and digital 

determinants of health, including smartphone or data plan access. Our comprehensive overview of 

the DTx development landscape highlights unique challenges in designing inclusive DTx clinical 

and present important opportunities for clinicians and researchers to address. Finally, we provide 

an interactive dashboard for readers to conduct their own analyses. 

 

2.2 Introduction 

Digital therapeutics (DTx) are a novel class of FDA-regulated therapeutics that use software to 

help patients prevent, manage, or treat disease. Beyond providing additional therapeutic options 

for patients, the unique modality of DTx also enables the delivery of continuous and personalized 

care at scale.1,2 Examples of approved DTx include the Propellor platform, which uses smart 

devices and paired consumer apps to improve medication adherence and reduces hospitalizations 
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in patients with asthma and COPD,3,32 and EndeavorRx, a video game that helps improve attention 

function in children with ADHD.4 While DTx have the potential to help bridge gaps in access to 

care, there are also concerns that these software will require access to compatible devices or high 

digital literacy, and widen disparities in health outcomes.1,5 These concerns prompt significant 

interest from healthcare and regulatory institutions to analyze the clinical development landscape 

and quality of clinical evidence available for DTx. 5,6 

  ClinicalTrials.gov is the main site in the United States for registering clinical trials,7 as 

required by Food and Drug Administration Amendments Act of 2007.31 Several studies have 

previously used the ClinicalTrials.gov registry to characterize the level of clinical evidence for 

drug therapeutics, including analysis of clinical trial design and applicability of trial results to real-

world populations.8–10 Analogous studies of clinical trials involving digital interventions11–13 have 

focused on structured data fields, and only a few have attempted to provide additional insights 

through manual free text analysis. However, manual analysis is time-consuming, requires 

specialized expertise, and difficult to keep up to date with new DTx trials. Automated tools are 

necessary to provide real-time insight into emerging trials from this therapeutic class. 

  In the last five years, developments in natural language processing (NLP) have made 

automated information extraction readily available for biomedical text. Software tools like 

SciSpacy provide open-source access to text analysis pipelines and NLP models, which are pre-

trained on large biomedical datasets and can achieve high accuracies on entity extraction and other 

language tasks.14,15 These pipelines can also map extracted concepts to existing biomedical 

vocabularies, such as Medical Subject Headings (MeSH),16 for standardization and downstream 

analysis. Several NLP methods have been applied to analyze drug therapeutic clinical trials,10,17 

but have not yet been used to characterize the clinical development of DTx. 



 

 6 

Given the increasing availability of DTx and their corresponding clinical trials we 

undertook a study to describe the characteristics of trials in this space. Here, we take advantage of 

modern NLP methods to better understand the characteristics of DTx clinical trials and the quality 

of evidence available for these novel therapeutics. Finally, we provide an interactive dashboard 

for readers to undertake their own analyses of DTx studies using both structured and unstructured 

data fields from ClinicalTrials.gov. 

 

2.3 Methods  

2.3.1 Search strategy and selection criteria 

Digital therapeutics clinical trials were identified through the ClinicalTrials.gov application 

programming interface (API) using a set of 27 search terms related to DTx, including “digital 

therapeutic”, “digital therapy”, “smartphone”, “mobile app”, and “video game” (Supplemental 

Table 2.1). Searches were limited to the fields for BriefSummary, BriefTitle, InterventionName, 

InterventionDescription, Keyword, DetailedDescription, EligibilityCriteria, or OfficialTitle, and 

only trials registered for FDA regulated devices and not listed as having a "Basic Science” purpose 

were included. We use the ClinicalTrials.gov field labeled “IsFDARegulatedDevice” to identify 

trials that are “studying a device product subject to section 510(k), 515, or 520(m) of the Federal 

Food, Drug, and Cosmetic Act”18 Thus, even if FDA clearance or approval has not been granted 

for any of these trials, this provides a high degree of confidence that these are trials for FDA-

regulated products. Basic science studies were identified using the “DesignStudyPurpose” field 

and were removed to focus on trials of DTx with an established mechanism of action. Using the 

“OverallStatus” field, trials that had been terminated, withdrawn, suspended, or had an unknown 

status were also excluded to limit analysis to active trials. The scope of the study was also limited 
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to studies with start dates occurring after 2010 or expected completion dates listed before 2030. 

Following these filtering steps, the full record from each remaining DTx trial was then extracted 

from the complete ClinicalTrials.gov dataset,7 which was downloaded on August 3, 2022. We 

report our findings in line with PRISMA guidelines. Since this review does not assess health 

outcomes, no protocol is registered on PROSPERO. The full list of data fields available can be 

found on ClinicalTrials.gov on the Protocol Registration Data Element Definitions page.18 

 

2.3.2 Analysis of clinical trial characteristics using structured data fields 

The number and duration of interventional and observational trials were compared, with duration 

calculated in years between reported start and completion dates. Clinical trials were also analyzed 

based on sponsor and collaborator types, visualized using a Sankey diagram.19 To understand the 

geographic distribution of clinical trials facilities for trials conducted in the United States, each 

entry in the LocationState field was mapped to a state code using the pgeocode software package 

(version 0.3.0) and the number of trials in each state was plotted as a choropleth.19,20 The density 

of clinical trial facilities in each state was calculated as a ratio of trial locations to the population 

of each state, based on 2021 estimated US Census Bureau values. 21 

  We also analyzed correlation between the number of clinical trial locations and area 

deprivation index (ADI), a metric of socioeconomic status in each region. ADI for the 5 states with 

the highest number of clinical trial locations - California, Florida, New York, Pennsylvania, and 

Texas - were downloaded from the University of Madison Neighborhood Atlas and mapped to 

each listed facility’s zip code. 22,33 Both national and state level ADI were analyzed, with national 

ADI score given as a percentile across the entire country. At the state level, ADI is provided on a 

scale from 1-10. Higher scores represent greater socioeconomic disadvantage for both state and 
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national ADIs. Only trials with available features in each data field were considered for these 

analyses (Supplemental Figure 2.1). 

  

2.3.3 Extraction of condition and eligibility criteria using natural language processing 

While ClinicalTrials.gov has an internal algorithm to map conditions listed using standardized 

biomedical vocabulary to MeSH terms, these terms do not correspond to the main MeSH branches 

and are not available for all clinical trials.23 To create standardized mappings for each clinical trial, 

medical conditions from the “Condition” free text field were extracted and mapped to MeSH terms 

using the MeSH EntityLinker from SciSpacy,14 with only the first match selected for each 

condition. Resulting terms were grouped into MeSH headings, and the most frequent heading was 

selected, with priority given to values under C (Diseases) and F (Psychiatry and Psychology). 

MeSH headings were manually reviewed for validity of the MeSH EntityLinker on this dataset. 

  To analyze the most common types of eligibility criteria present, we employed the 

BERTopic topic modeling technique,24 which clusters text embeddings to produce interpretable, 

semantically cohesive clusters. BERTopic has been used in previous studies of biomedical text, 

and has been shown to generate more coherent topics compared to Latent Derelict Aldrich or other 

topic modeling methods.25 To generate embeddings for BERTopic, text from the “Eligibility 

Criteria” field was first split into inclusion and exclusion criteria, with each line considered a 

separate document. A language model from SciSpacy pretrained on biomedical text 

(en_core_sci_lg) was then used to generate embeddings were generated for each eligibility criteria. 

A BERTopic model with default settings was used to generate topics from these embeddings, and 

the top five topics for each eligibility criteria were mapped back to the corresponding clinical trial 

to analyze the percentage of each topic occurring in each MeSH cluster. Again, a subset of the 200 
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inclusion criteria and exclusion criteria were manually reviewed to confirm that the eligibility 

criteria were mapped correctly to these topics. Only groups with at least 15 studies were analyzed. 

  

2.3.4 Development of interactive dashboard for DTx clinical trial analysis 

The dashboard for clinical trials data analysis was built using Streamlit.26 The dashboard 

implements all the methods described in this paper for analysis of study types, sponsor types, 

conditions, and eligibility criteria. Options are available to filter the data by different study fields, 

and the processed dataset can be downloaded for further analysis. Our dashboard is available at 

https://github.com/BMiao10/ClinicalTrials. 

 

2.3.5 Statistics 

Descriptive statistics are provided for categorical variables as proportions, and averages are 

reported for continuous variables as medians and interquartile ranges. Spearman r values were 

calculated to analyze the correlation between continuous variables. Mann-U Whitney tests were 

used to determine differences in median enrollment between MeSH categories. Bonferroni 

correction was used to account for multiple testing. Statistical testing was performed using Scipy 

and p-values less than 0·05 were considered significant. 27 

 

2.4 Results  

2.4.1 Identification of DTx clinical trials from ClinicalTrials.gov 

Using 27 search terms related to digital therapeutics (Supplemental Table 2.1), we identified 

8615 clinical trials involving digital-based interventions. Of these trials, 7386 were active or 

ongoing, and 7221 had a start date after 2010 and expected completion date before 2030. Since 

https://github.com/BMiao10/ClinicalTrials
https://github.com/BMiao10/ClinicalTrials


 

 10 

DTx are regulated by the FDA as “Software as a Medical Device,” we only considered studies that 

were listed as using FDA-regulated devices and conducted for non-basic science purposes, 

resulting in 449 studies of interest (Figure 2.1). Of these 449, there were 53 (11·8%) observational 

and 396 (88·2%) interventional studies (Figure 2.2), with 74 interventional studies listing a 

completion date in 2022 and 88 in 2023. Overall, 150 interventional and 18 observational studies 

were listed as completed, with median study durations of 1·02 years (IQR: 0·57-1·69, range: 0·06-

5·17) and 0·69 years (IQR: 0·32-1·59, range: 0·05-5·42), respectively (Figure 2.2). When looking 

at dates when studies were first posted to the registry, 13 observational and 68 interventional 

studies were posted in 2022 (Supplemental Figure 2.2). Because all information on 

ClinicalTrials.gov is voluntarily reported by the sponsor of each clinical trial, only available data 

is used for each analysis and missingness is reported (Supplemental Figure 2.1). 

  

2.4.2 Clinical trial locations and sponsor types 

ClinicalTrials.gov requires sponsors to list facilities in which studies are being conducted, though 

how this is being interpreted for DTx studies is not immediately clear. As one of the primary 

advantages of DTx are their abilities to deliver care remotely, we were interested in understanding 

the geographic distribution of physical clinical trial locations listed for these trials. 

  Using location data provided by each study, we found that the states with the most DTx 

clinical trial locations were California (n=135), New York (n=58), Florida (n=55), Pennsylvania 

(n=52), and Texas (n=50, Figure 2.3), and five states - South Dakota, Wyoming, Hawaii, 

Delaware, and West Virginia - had no listed DTx clinical trial locations. Overall, the mean number 

of locations for each completed trial was 2·33 (SD 5.75). Four trials were completed without any 
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listed facilities. The number of clinical trial locations was strongly correlated with state population 

(r=0·89, p<0·001, Supplemental Figure 2.3). 

  We also analyzed whether these reported clinical trial locations included 

socioeconomically disadvantaged neighborhoods, with socioeconomic disadvantage measured 

using the area deprivation index (ADI). Within the 5 states with the largest number of clinical trial 

locations, the number of clinical trials was inversely correlated with both the national (r=-0·52, 

p<0·001) and state (r=-0·66, p=0·037) ADI (Supplemental Figure 2.3). 

  To characterize the types of sponsors and collaborators funding or supporting clinical trials 

for the 449 trials, we looked at the lead sponsor and collaborator classes listed by each clinical 

trial. The most common sponsor type was “other” (n=290, 65%), which generally referred to 

academic medical centers. Industry was the next most common sponsor type, with 146 (33%) trials 

(Figure 2.3). The majority of studies were performed by a single sponsor with no collaborators 

(n=236, 53%), 131 (29%) had one collaborator, 45 (10%) had two, and 37 (8%) had three or more. 

For studies with a single collaborator, 26 were sponsored by other/academic institutions and had 

an industry collaborator, while 14 were sponsored by industry with another/academic collaborator. 

 

2.4.3 Characteristics of digital and pharmaceutical clinical trials by medical specialty 

To determine the distribution of DTx trials by medical specialty, we mapped conditions listed as 

free-text by each clinical trial to MeSH headings using a SciSpacy pipeline with a MeSH 

EntityLinker (see Methods). For trials with multiple conditions, we selected the most frequently 

occurring MeSH heading within that trial. The three most common MeSH headings tested in DTx 

clinical trials were Nervous System Diseases (n=82, 19%, Figure 2.4), Nutritional and Metabolic 

Diseases (n=45, 10%), and Pathological Conditions, Signs, and Symptoms (n=41, 9%), followed 
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by behavior and behavior mechanisms (n=37 [8%]), cardiovascular diseases (n=34 [8%]), and 

mental disorders (n=31 [7%]). Examples of conditions that mapped to the heading nervous system 

diseases included stroke and Parkinson’s disease,  nutritional and metabolic diseases included both 

diabetes type 1 and 2, and the heading respiratory tract diseases included conditions like asthma 

and COPD.   The MeSH category pathological conditions, signs, and symptoms contained 

“abnormal anatomical or physiological conditions…not classified as disease,” and included 

conditions such as chronic pain.16 Manual review of MeSH terms also showed that this approach 

mapped conditions to appropriate categories for 95% of values (Supplemental Table 2.2). Of the 

six studies in which conditions did not map to MeSH terms and were excluded from analysis, four 

described treatments or device characteristics (eg, device latency) rather than medical conditions 

and two described generic symptoms that did not map to specific headings (nasal congestion and 

prenatal stress, Supplemental Table 2.3).  

With conditions classified into standardized clusters, we compared enrolment counts 

within each MeSH heading, focusing on non-phase 1, interventional trials in groups with fewer 

than ten studies. Trials targeting cardiovascular diseases had the highest number of actual and 

anticipated participants, with a combined median of 200 participants (IQR 100–350, range 40–

450 000; 24 trials), followed by trials for nutritional and metabolic diseases with a median of 100 

participants (IQR 30–197, range 6–6006; 41 trials) and behavior and behavior mechanisms again 

with a median of 100 participants (IQR 40–234, range 7–4500; 35 trials, Figure 2.4). The category 

with the fewest median number of participants was nervous system diseases, which had an median 

of 40 participants (IQR 22–100; 70 trials), although the largest trial in this category listed an 

anticipated enrolment of 100 000 participants. Comparing anticipated and actual enrolment 

information within each MeSH group, median anticipated enrolment was only significantly higher 
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than actual enrolment for nutritional and metabolic disease DTx trials, with a median difference 

of 211 participants (p=0·035). 

 

2.4.4 Extraction of eligibility criteria from digital and pharmaceutical clinical trials using natural 

language processing 

Previous studies of drug therapeutic clinical trials have shown that eligibility criteria are often 

overly strict and can skew trial cohorts away from real-world patient populations.9,10 The top five 

inclusion criteria topics identified by BERTopic from DTx studies were defined by terms related 

to clinical factors, ability to provide informed consent, age, smartphone and data access, and 

English fluency (Figure 2.5). Criteria associated with clinical factors were most frequently found 

in 21 (55%) of 38 pathological condition trials, 31 (47%) of 66 trials for nervous system diseases, 

and 11 (46%) of 24 trials for mental health disorders (Supplemental Table 2.4). Age criteria were 

most likely to be found in trials for behavioral disorders (23 [72%] of 32) and nutritional and 

metabolic diseases (25 [66%] of 38). Inclusion criteria detailing smartphone access were also 

found in several trials, occurring most frequently in DTx intended for nutritional and metabolic 

diseases (18 [47%] of 38) and neoplasms (8 [47%] of 17), and least frequently in trials for nervous 

system diseases (11 [17%] of 66) and pathological conditions (2 [5%] of 38). The topic related to 

smartphones and data access also contained other keywords associated with device compatibility, 

cellular data plans, and Wi-Fi access. Manual review of DTx studies with eligibility criteria in this 

topic showed patients could be excluded if they did not have a PayPal account (NCT04857515), 

were not willing to use a “smartphone and personal data plan” (NCT04159480) or did not show 

"technology literacy” (NCT04136626). This topic was found most frequently in trials for 

nutritional and metabolic diseases (18 [47%] of 38). Ability to provide informed consent was also 
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most frequently found in trials for nutritional and metabolic diseases (24 [63.2%] of 38), and 

English fluency criteria occurred most frequently in trials for behavior and behavior mechanisms 

(11 [34.4%] of 32). 

  The top topics generated from the exclusion criteria were associated with medical history 

(varying between trials), pregnancy, allergies or other skin conditions, blood pressure, and, similar 

to inclusion criteria, ability to provide informed consent (Figure 2.5). There were 23 out of 24 

(95·8%) DTx clinical trials targeting mental disorders, 33 out of 38 (86·8%) trials targeting 

nervous system diseases, and 20 out of 24 (83·3%) cardiovascular disease trials with criteria 

associated with medical history. Component analysis showed that some trials specifically excluded 

patients with smoking or suicidal behavior, cardiac disorders, or use of insulin (Supplemental 

Table 2.5). Analysis of the topic associated with pregnancy showed that nutritional and metabolic 

disease DTx trials were most likely to contain this exclusion criteria (n=21/38, 55·3%), while only 

five out of 24 trials (20·8%) for Mental Disorders and three out of 24 trials (12·5%) for 

Cardiovascular Diseases listed such criteria. Manual review was performed on a subset of both 

inclusion and exclusion eligibility criteria to ensure that topics were highly coherent and accurately 

described each criteria. Topics were appropriate in 94.5% (n=200) inclusion criteria and 93.5% 

(n=200) exclusion criteria (Supplemental Table 2.6 – 2.7).  

 

2.4.5 Automated analysis of DTx data from ClinicalTrials.gov 

Although ClinicalTrials.gov has filters and other data analysis tools that enable research into the 

structured data, there are few publicly available visual tools for the analysis of DTx clinical trials. 

We provide an interactive dashboard and source code for the analysis of DTx clinical trials data 

(Supplemental Figure 2.4) at https://github.com/BMiao10/ClinicalTrials. 

https://github.com/BMiao10/ClinicalTrials
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2.5 Conclusion  

Digital therapeutics are a unique modality for treating disease and have the potential to provide 

new treatment options for patients at an unprecedented scale. Here, we used NLP pipelines to 

characterize 449 DTx clinical trials identified on ClinicalTrials.gov. With more than 150 of these 

trials having expected completion dates by 2023, DTx are becoming rapidly available for patient 

care, making it essential to characterize the quality of evidence being gathered for these novel 

therapeutics and to better understand their benefits for real-world patient populations. 

We showed that the majority of DTx trials are sponsored by academic institutions or 

industry with no collaborators and are primarily being developed for nervous system diseases and 

nutritional and metabolic diseases, which aligns with a previous review of DTx clinical trials.13 

However, the review relied on manual extraction of DTx and did not filter for FDA-regulated 

devices with the ClinicalTrial.gov data field. Although we were able to quantify the distribution 

of sponsor categories, this study  did not investigate any funding sources for these sponsors or the 

cost of DTx trials. ClinicalTrials.gov does provide an optional field for sponsors to include 

information regarding grants and funding sources, but its completeness and accuracy is dependent 

on transparent reporting from sponsors, and future studies might be necessary to quantify funding 

and costs for these trials. 

  Our results also indicated that DTx trials were often of short duration, with interventional 

studies lasting an average of only 1 year, which points to a need for additional studies to understand 

the long-term usage and efficacy of DTx. Although these trials are short, the largest DTx trials 

were able to enroll more than 400 000 patients in only one or two locations, suggesting that either 

these trials can be effectively scaled, or that they have alternative patient recruitment strategies 

that ClinicalTrials.gov does not capture. However, we also showed that DTx clinical trial facilities 
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tend to be in the most populated states. Few are done in socioeconomically disadvantaged 

neighborhoods, but further research is necessary to understand the true geographical and 

demographic distributions of users. 

  Analysis of DTx clinical trial eligibility criteria showed that these trials frequently exclude 

patients with comorbidities, who are pregnant, who are children, and who are not fluent in English. 

Eligibility criteria for drug therapeutics frequently cause clinical trial cohorts to deviate from real-

world populations9,10, and analogous research into DTx usage might be necessary to ensure trial 

results are applicable to general patient populations. We also identified criteria specific to digital 

determinants of health, which describe factors related to the accessibility or availability of 

technology that contribute to health outcomes and quality of life.28,29 Our geographical analysis of 

these studies also matched this finding, which suggested that fewer facilities in disadvantaged 

communities in the USA are being used to recruit participants. Future initiatives to assess the role 

of digital determinants of health, such as SOLVE Health Tech,30 are necessary to ensure that DTx 

are effective in promoting better outcomes for all patients. 

  The insights here and in the online interactive dashboard provide a framework for future 

research into DTx clinical trials, although we recognise there are limitations to our study. Although 

we were stringent in limiting our analysis to only FDA-regulated DTx, we might have missed DTx 

regulated outside the USA or inadvertently removed or selected others with our search criteria. 

Some DTx cleared through the 510(K) pathway, which allows medical devices to be marketed if 

they are “substantially equivalent” to already cleared devices, might not have registered 

preapproval trials,5 but might still require post-marketing trials that could be analyzed in future 

studies. Additionally, we were not able to differentiate between safety and efficacy studies with 

the data fields provided by ClinicalTrials.gov. Our analysis is also inherently limited to sponsor-
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provided data, which are not always up-to-date or accurate and might be missing or 

unstandardised.23 These limitations are particularly true for observational studies, for which the 

investigators are not required to list if they are studying an FDA-regulated product or if they accept 

healthy volunteers,18 although requirements could change as regulatory pathways evolve for the 

use of real-world evidence in clinical trials. Finally, we focused on the use of MeSH terminology 

in our pipelines due to the suggested use of such terminology on ClinicalTrials.gov, but other 

clinical vocabularies might be more applicable to capture additional nuances in clinical trial 

metadata analyses. Although we took a conservative approach in mapping DTx clinical trials to 

broad MeSH  terms, clinical trials might also involve different indications that could be better 

captured by allowing trials to be mapped to multiple MeSH categories. 

Despite the limitations, our application of NLP strategies to ClinicalTrials.gov provides a 

comprehensive overview of the DTx development landscape, and the modular dashboard 

developed here will serve as an openly available tool for future research into clinical trial design 

and the real-world applicability of DTx. 
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2.6 Figures  

 

Figure 2.1 Identification of digital therapeutic clinical trial dataset. 

A set of 449 DTx clinical trials were identified from a query of ClinicalTrials.gov using 27 search 
terms and additional ClinicalTrials.gov data filters. 
  

Clinical trial records retrieved
n = 449

Records screened for eligibility
n = 8615

Records identified from ClinicalTrials.gov
n=8615

8166 excluded trials
1229 inactive trials

Terminated (n=209)
Withdrawn (n=191) 
Suspended (n=29)
Unknown (n=800)

132 with start date before 2010
33 with completion date after 2030
6763 not listed as FDARegulatedDevice
9 with DesignPrimaryPurpose listed
   as "Basic Science"
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Figure 2.2 Identification of digital therapeutic clinical trial dataset. 

A) Number of trials completed or expecting completion each year. The dashed line indicates the 
current year. B) Duration of completed interventional and observational trials.  
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Figure 2.3 Characteristics of US-based DTx clinical trial locations and sponsors. 

A) Number of facilities conducting DTx clinical trials by state. B) Distribution of sponsor (left 
bar) and collaborator (right bar) types. 
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Figure 2.4 Interventional DTx clinical trials by medical specialty. 

A) The number of clinical trials mapped to each MeSH heading using a Scispacy EntityLinker. B) 
Actual and anticipated enrollment by MeSH group.  
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Figure 2.5 Topic analysis of DTx clinical trial eligibility. 

BERTopic embedding clustering was used for topic modeling of A) inclusion and B) exclusion 
criteria of DTx trials within each MeSH heading.  
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2.7 Supplemental Figures and Tables 
 

Supplemental Table 2.1 Search results from ClinicalTrials.gov for each DTx-associated term. 

Search term Number of studies 
"digital therapeutic" 76 

"digital therapy" 33 
"digital therapies" 33 
"mobile health" 1598 
"smartphone" 3219 
"smart phone" 3219 

"digital intervention" 156 
"mobile platform" 53 

"mobile app" 1834 
"mobile device" 462 

"study app" 48 
"digital treatment" 27 

"android" 401 
" app." 1265 
" app," 766 

"digital tablet" 21 
" ios" 340 

"iphone" 219 
"smart watch" 83 
"smartwatch" 140 

"virtual reality" 1747 
"video game" 598 

"digital health" 388 
"mobile video" 12 

"digital platform" 120 
"software intervention" 7 

"software treatment" 8 
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Supplemental Figure 2.1 Missing values in DTx clinical trials for each data field.  

Only data fields where at least 1 trial contains a missing value is shown. Black bars indicate 
missing data. 
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Supplemental Figure 2.2 Distribution of study post dates for digital therapeutic clinical trials.  
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Supplemental Figure 2.3 Correlation between DTx clinical trial locations and geographic 

characteristics. 

A) Correlation between number of DTx clinical trials and state population. The top 10 states with 
the highest number of DTx clinical trials are labeled. Within the top 5 states, we also looked at the 
relationship between number of DTx trial locations and area deprivation index (ADI) at the B) 
national level and C) state level. The national ADI is calculated relative to other zip codes in the 
United States, while the state ADI is relative to other zip codes in the state. Higher ADI scores at 
both the national and state level indicate greater socioeconomic disadvantage. 
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Supplemental Table 2.2 Incorrect MeSH branches selected by SciSpacy EntityLinker. 

Clinical Trial Condition (ClinicalTrials.gov) 
MeSH branch 

(SciSpacy 
EntityLinker) 

Incorrect 
(“N”) or 

“Multiple” 
possible 
MeSH 

Branches 

NCT03934658 

['PostTraumatic Stress Disorder' 'Sleep Disorder' 
'Stress Disorder'  'Sleep Initiation and Maintenance 

Disorders' 'Combat Disorders'  'Nightmares Associated With 
Chronic Post-Traumatic Stress Disorder'  'Nightmare' 

'Nightmares, REM-Sleep Type'] 

Psychological 
Phenomena N 

NCT03828656 

['PostTraumatic Stress Disorder' 'Sleep Disorder' 'Stress 
Disorder'  'Sleep Initiation and Maintenance Disorders' 

'Combat Disorders'  'Nightmares Associated With Chronic 
Post-Traumatic Stress Disorder'  'Nightmare' 'Nightmares, 

REM-Sleep Type'] 

Psychological 
Phenomena N 

NCT03795987 
['Stress Disorders, Post-Traumatic' 'Combat Disorders' 'Ptsd' 

'Nightmare'  'Nightmares, REM-Sleep Type' 'Nightmare 
Disorder With Associated Non-Sleep Disorder'] 

Psychological 
Phenomena N 

NCT04040387 
['Stress Disorders, Post-Traumatic' 'Combat Disorders' 'Ptsd' 

'Nightmare'  'Nightmares, REM-Sleep Type' 'Nightmare 
Disorder With Associated Non-Sleep Disorder'] 

Psychological 
Phenomena N 

NCT04897074 ['Attention Deficit Hyperactivity Disorder'] Psychological 
Phenomena N 

NCT04418076 ['HIV/AIDS' 'Cocaine Use'] Organic 
Chemicals N 

NCT04846777 ['Generalized Anxiety Disorder'] Investigative 
Techniques N 

NCT03748264 ['Sleep Disordered Breathing'] Psychological 
Phenomena N 

NCT05077644 ['Post-partum Depression'] Urogenital 
Diseases N 

NCT04364256 ['Autologous Hematopoietic Stem Cell Transplant'] Biological 
Factors N 

NCT04684823 ['Cystic Fibrosis' 'Adherence, Medication'] 
Digestive 
System 

Diseases 
N 

NCT03047720 ['Nocturnal Enuresis'] Heterocyclic 
Compounds N 

NCT03649074 ['Attention Deficit Hyperactivity Disorder'] Psychological 
Phenomena N 

NCT03678402 ['High Risk for Falling'] Investigative 
Techniques N 

NCT04429009 ['Thoracic Surgery' 'Respiratory Therapy'] Health 
Occupations N 

NCT05147987 ['Insufficient Lactation'] Urogenital 
Diseases N 

NCT05454813 ['System Validation'] 
Hemic and 

Immune 
Systems 

N 

NCT04584970 ['Scoliosis Idiopathic' 'Pain, Postoperative'] Infections N 
NCT05150197 ['Visual Field Defect, Peripheral'] Diagnosis N 
NCT04416555 ['Postoperative Pain'] Therapeutics N 
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Clinical Trial Condition (ClinicalTrials.gov) 
MeSH branch 

(SciSpacy 
EntityLinker) 

Incorrect 
(“N”) or 

“Multiple” 
possible 
MeSH 

Branches 

NCT04268901 ['Phlebotomy' 'Orthopedics' 'Radiology' 'Pain' 'Anxiety' 
'Virtual Reality' 'Allergy' 'Gastroenterology'] 

Immune 
System 

Diseases 
N 

NCT04175444 ['Visual Field Defect, Peripheral'] Diagnosis N 

NCT04025814 ['Attention Deficit Hyperactivity Disorder'] Psychological 
Phenomena N 

NCT04857515 
['Smoking Cessation' 'Smoking Behaviors' 'Smoking 
Reduction' 'Smoking, Cigarette' 'Smoking' 'Nicotine 

Dependence'] 

Behavior and 
Behavior 

Mechanisms 
Multiple 

NCT05365607 
['Posttraumatic Stress Disorder' 'Cardiovascular Diseases' 
 'Autonomic Dysfunction' 'Vascular Stiffness' 'Nightmare' 

 'Endothelial Dysfunction'] 
Mental 

Disorders Multiple 

NCT03340311 ['Gestational Diabetes Mellitus'] Urogenital 
Diseases Multiple 

NCT04808609 
['Smoking Cessation' 'Smoking' 'Smoking Behaviors' 
'Smoking Reduction' 'Smoking, Tobacco' 'Smoking, 

Cigarette' 'Hiv' 'HIV/AIDS'] 

Behavior and 
Behavior 

Mechanisms 
Multiple 

NCT04609514 ['HIV/AIDS' 'Smoking Cessation' 'Tobacco Use Disorder'] 
Behavior and 

Behavior 
Mechanisms 

Multiple 

NCT04854798 ['Covid19' 'Cytokine Storm' 'Inflammation'] 
Pathological 
Conditions, 
Signs and 
Symptoms 

Multiple 

NCT04701489 ['Covid19' 'Cytokine Storm' 'Inflammation'] 
Pathological 
Conditions, 
Signs and 
Symptoms 

Multiple 

NCT04838925 ['Chronic Pain' 'Opioid Use'] 
Pathological 
Conditions, 
Signs and 
Symptoms 

Multiple 

NCT04217551 ['Cardiac Arrest, Out-Of-Hospital' 'Hypothermia, Induced' 
 'Hypoxia-Ischemia, Brain'] 

Pathological 
Conditions, 
Signs and 
Symptoms 

Multiple 

NCT04332718 ['Stroke' 'Atrial Fibrillation'] 
Nervous 
System 

Diseases 
Multiple 

NCT03519451 ['Depression' 'Tobacco Use Disorder' 'Current Every Day 
Smoker'] 

Behavior and 
Behavior 

Mechanisms 
Multiple 

NCT03475147 ['Scotoma'] 
Nervous 
System 

Diseases 
Multiple 

NCT04465682 ['Urine Detectable Acute and Chronic Diseases'] 
Pathological 
Conditions, 
Signs and 
Symptoms 

Multiple 

NCT04297969 
['Amblyopia Bilateral' 'Hyperopia of Both Eyes' 

'Astigmatism Bilateral' 
 'Accommodation Disorder'] 

Nervous 
System 

Diseases 
Multiple 
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Clinical Trial Condition (ClinicalTrials.gov) 
MeSH branch 

(SciSpacy 
EntityLinker) 

Incorrect 
(“N”) or 

“Multiple” 
possible 
MeSH 

Branches 

NCT04607460 ['Chronic Low-back Pain' 'Mastectomy' 'Lumpectomy' 
'Migraine'] 

Nervous 
System 

Diseases 
Multiple 

NCT04659564 
['Breast Cancer Related Lymphedema' 'Lymphedema of 

Upper Arm' 'Lymphedema' 
 'Quality of Life'] 

Hemic and 
Lymphatic 
Diseases 

Multiple 

NCT03506568 ['Medication Adherence' 'Glaucoma'] 
Behavior and 

Behavior 
Mechanisms 

Multiple 

NCT04205370 ['Sleep' 'Pregnancy Complications'] Psychological 
Phenomena Multiple 

NCT04721067 ['Hiv' 'Insomnia'] 
Nervous 
System 

Diseases 
Multiple 

NCT05212129 

['Functional Gastrointestinal Disorders' 
 'Hypermobile Ehlers-Danlos Syndrome' 

 'Postural Orthostatic Tachycardia Syndrome' 
 'Autonomic Nervous System Disease' 'Autonomic Nervous 

System Imbalance'] 

Nervous 
System 

Diseases 
Multiple 

NCT05099874 ['Sickle Cell Disease' 'Attention Deficit' 
 'Cognitive Deficit in Attention'] 

Hemic and 
Lymphatic 
Diseases 

Multiple 

NCT05427734 
['Suicide' 'Suicide, Attempted' 'Suicidal Ideation' 'Alcohol 

Use Disorder' 
 'Alcoholism' 'Alcohol Abuse' 'Screening and Brief 

Interventions'] 

Chemically-
Induced 

Disorders 
Multiple 

NCT03905863 ['Diabetic Foot Ulcer' 'Surgical Wound'] Cardiovascular 
Diseases Multiple 

NCT05378399 ['HIV Infections' 'Substance Use' 'Adherence, Medication' 
 'Adherence, Treatment'] 

Behavior and 
Behavior 

Mechanisms 
Multiple 

NCT05130112 ['Small Airway Disorders' 'COPD'] 
Pathological 
Conditions, 
Signs and 
Symptoms 

Multiple 

NCT04169282 ['Tracheobronchomalacia'] Musculoskeleta
l Diseases Multiple 

NCT05473702 
['Heart Disease Chronic' 'Pulmonary Disease, Chronic 

Obstructive' 
 'Blood Pressure' 'Heart Rhythm Disorder'] 

Respiratory 
Tract Diseases Multiple 

NCT05212363 
['Compression; Vein' 'Compression; Artery' 'Sedentary 

Behavior' 
 'DVT of Legs'] 

Behavior and 
Behavior 

Mechanisms 
Multiple 
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Supplemental Table 2.3 Study conditions not mapped to MeSH by SciSpacy EntityLinker.  

Clinical Trial Study Official Title Condition 

NCT04887922 The Effect of Preoperative and Postoperative Incentive Spirometry 
in Patients Undergoing Major Abdominal Surgery 

Abdominal 
Surgery 

NCT04910139 A User Study of the Soniflow System for Nasal Congestion Relief Nasal 
Congestion 

NCT02091882 
OSMITTER 316-13-206A Substudy: A Substudy to Measure the 
Accuracy of Ingestible Event Marker (IEM) Detection by the 
Medical Information Device #1 (MIND1) System and Determine 
the Latency Period 

Device 
Latency 

NCT05052281 Promoting Healthy Brain Development Via Prenatal Stress 
Reduction: An Innovative Precision Medicine Approach 

Prenatal 
Stress 

NCT05099614 Naloxone Administration Via Auto-injection in Healthy Volunteers Overdose 
Antidote 

NCT05199844 Accuracy of Apple Watch to Measure Cardiovascular Indices in 
Patients With Cardiac Diseases: Observational Study 

Apple 
Watch 
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Supplemental Table 2.4 Keyword components comprising each inclusion criteria topic.  

Topic name MeSH Category Proportion Components 
Clinical 
factors 

Pathological Conditions, 
Signs and Symptoms 21/38 (55·3%) pain, months, sleep, scale, 10 

  Nervous System Diseases 31/66 (47·0%) pain, score, month, months, 
insomnia 

  Mental Disorders 11/24 (45·8%) treatment, medication, score, 
stable, month 

  Nutritional and Metabolic 
Diseases 15/38 (39·5%) smbg, participants, months, prior, 

therapy 
  Cardiovascular Diseases 8/24 (33·3%) score, states, resident, vasc, 

patients 
  Neoplasms 5/17 (29·4%) treatment, 20th, percentile, 

systemic, having 
  Behavior and Behavior 

Mechanisms 9/32 (28·1%) pain, usa, average, baseline, 
reported 

        
Informed 
consent 

Nutritional and Metabolic 
Diseases 24/38 (63·2%) consent, informed, willing, 

provide, hipaa 
  Behavior and Behavior 

Mechanisms 18/32 (56·2%) consent, informed, provide, 
willing, required 

  Neoplasms 9/17 (52·9%) consent, informed, written, 
provide, willing 

  Nervous System Diseases 32/66 (48·5%) consent, informed, provide, 
willing, able 

  Pathological Conditions, 
Signs and Symptoms 16/38 (42·1%) consent, informed, provide, 

willing, signed 
  Mental Disorders 9/24 (37·5%) consent, informed, provide, 

willing, able 
  Cardiovascular Diseases 6/24 (25·0%) informed, consent, ascertained, 

able, valid 
        
Age (>18) Behavior and Behavior 

Mechanisms 23/32 (71·9%) 18, years, age, old, ages 

  Nutritional and Metabolic 
Diseases 25/38 (65·8%) years, age, 18, old, male 

  Pathological Conditions, 
Signs and Symptoms 25/38 (65·8%) 18, years, age, aged, old 

  Cardiovascular Diseases 14/24 (58·3%) 18, years, age, older, male 
  Nervous System Diseases 38/66 (57·6%) years, age, 18, old, aged 
  Mental Disorders 13/24 (54·2%) years, 18, age, 22, older 
  Neoplasms 6/17 (35·3%) years, 18, age, old, mole 
        
Smartphone 
access 

Nutritional and Metabolic 
Diseases 18/38 (47·4%) smartphone, device, mobile, 

phone, compatible 
  Neoplasms 8/17 (47·1%) smartphone, access, recorded, 

audio, mobile 
  Behavior and Behavior 

Mechanisms 12/32 (37·5%) smartphone, android, access, 
iphone, ios 

  Mental Disorders 7/24 (29·2%) smartphone, iphone, game, 
android, controller 
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Topic name MeSH Category Proportion Components 
  Cardiovascular Diseases 6/24 (25·0%) smartphone, plan, data, wi, fi 

  Nervous System Diseases 11/66 (16·7%) smartphone, access, device, holds, 
license 

  Pathological Conditions, 
Signs and Symptoms 2/38 (5·3%) comfortable, complete, zoom, 

conferencing, web 
        
English 
fluency 

Behavior and Behavior 
Mechanisms 11/32 (34·4%) english, fluency, read, speaking, 

literacy 
  Nutritional and Metabolic 

Diseases 12/38 (31·6%) english, read, speaking, speak, 
write 

  Neoplasms 5/17 (29·4%) english, read, speak, speaking, 
write 

  Pathological Conditions, 
Signs and Symptoms 10/38 (26·3%) english, speaking, read, 

understand, spanish 
  Cardiovascular Diseases 6/24 (25·0%) english, speaking, read, write, 

speak 
  Mental Disorders 6/24 (25·0%) english, speaking, proficient, 

read, language 
  Nervous System Diseases 15/66 (22·7%) english, speaking, read, spanish, 

speak 
  



 

 33 

Supplemental Table 2.5 Keyword components comprising each exclusion criteria topic.  

Topic name MeSH Category Proportion Components 
Medical history Mental Disorders 23/24 (95·8%) disorder, suicidal, use, current, months 

  Pathological Conditions, 
Signs and Symptoms 33/38 (86·8%) disorder, history, severe, current, use 

  Cardiovascular Diseases 20/24 (83·3%) heart, weeks, patients, cardiac, disorder 

  Nervous System Diseases 55/66 (83·3%) disorder, history, severe, disease, 
months 

  Nutritional and Metabolic 
Diseases 31/38 (81·6%) insulin, disease, disorder, months, 

investigator 

  Behavior and Behavior 
Mechanisms 26/32 (81·2%) disorder, current, smoking, suicidal, 

treatment 

  Neoplasms 13/17 (76·5%) disorder, history, care, therapy, 
psychiatric 

       

Pregnancy Nutritional and Metabolic 
Diseases 21/38 (55·3%) pregnant, pregnancy, women, female, 

feeding 

  Pathological Conditions, 
Signs and Symptoms 12/38 (31·6%) pregnant, pregnancy, teeth, women, 

face 

  Behavior and Behavior 
Mechanisms 9/32 (28·1%) pregnant, planning, face, pregnancy, 

comfortable 

  Nervous System Diseases 18/66 (27·3%) pregnant, pregnancy, women, 
breastfeeding, potential 

  Neoplasms 4/17 (23·5%) pregnant, adults, populations, 
vulnerable, prisoners 

  Mental Disorders 5/24 (20·8%) pregnant, pregnancy, teenagers, cycles, 
menstrual 

  Cardiovascular Diseases 3/24 (12·5%) postpartum, wfbmc, center, location, 
birth 

       
Allergies or 
other skin 
conditions 

Neoplasms 5/17 (29·4%) cancer, documented, skin, patients, 
hematologic 

  Nutritional and Metabolic 
Diseases 11/38 (28·9%) skin, cell, allergy, basal, neoplasms 

  Pathological Conditions, 
Signs and Symptoms 7/38 (18·4%) skin, cancer, carcinoma, sores, 

hardware 

  Behavior and Behavior 
Mechanisms 4/32 (12·5%) skin, fragile, dermatologic, intact, 

oozing 
  Cardiovascular Diseases 3/24 (12·5%) wound, patches, surface, adhesive, skin 

  Mental Disorders 2/24 (8·3%) cancers, skin, cvd, preexisting, 
angiomas 

  Nervous System Diseases 5/66 (7·6%) allergic, skin, known, tapes, reaction 
    
Cardiovascular 
metrics Cardiovascular Diseases 8/24 (33·3%) mmhg, diastolic, cm, baseline, dl 

  Nutritional and Metabolic 
Diseases 9/38 (23·7%) mmhg, pressure, 60, ml, min 
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Topic name MeSH Category Proportion Components 

  Pathological Conditions, 
Signs and Symptoms 4/38 (10·5%) inches, 79, clots, obesity, circumference 

  Nervous System Diseases 5/66 (7·6%) mmhg, 60, diastolic, 30, cm 
  Neoplasms 1/17 (5·9%) mass, 35, bmi, index, body 
  Mental Disorders 1/24 (4·2%) tsh, thyroid, pcp, mu, values 
       
Ability to 
provide 
informed 
consent 

Neoplasms 5/17 (29·4%) consent, informed, sign, willing, 
inability 

  Cardiovascular Diseases 3/24 (12·5%) consent, provide, informed, inability, 
unwilling 

  Nervous System Diseases 8/66 (12·1%) consent, informed, provide, written, 
unable 

  Nutritional and Metabolic 
Diseases 4/38 (10·5%) consent, informed, inability, provide, 

unwillingness 

  Pathological Conditions, 
Signs and Symptoms 3/38 (7·9%) consent, informed, provide, inability, 

unable 

  Behavior and Behavior 
Mechanisms 2/32 (6·2%) informed, consent, inability, provide, 

unwillingness 

  Mental Disorders 1/24 (4·2%) consent, informed, adults, unable, 
written 
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Supplemental Table 2.6 Incorrect values from manual assessment of topic modeling in a subset 

of 200 inclusion eligibility criteria. 

 

NCTId Inclusion Criteria (Preprocessed) BERTopic 
cluster 

Expected 
cluster 

NCT03142932 agree anticipate living baltimore 2 months Clinical 
factors Other 

NCT04380415 u.s. resident Clinical 
factors Other 

NCT03214224 1 Clinical 
factors NA 

NCT03418129 served military branches  army  navy  marines  air force  
coast guard  october 2001. 

Clinical 
factors Other 

NCT03335800 
current resident united states time eligibility screening  
defined self reported state residence 50 states united 
states district columbia. 

Clinical 
factors Other 

NCT04524598 residing usa duration 5 week Clinical 
factors Other 

NCT04268914 

4. children normal range development recruited study. 
assessed report parents. rationale excluding patients 
developmental delay cognitive impairments  children 
react stressors surgery differently children 
developmental delay. unclear children use preparation 
programs interventions included  likely responses 
baseline outcome measures differ children normal 
developmental parameters. 

Clinical 
factors 

Ability to 
provide 

informed 
consent 

NCT04253691 unable complete forms implement treatment cognitive 
impairment  mmse<26 

Clinical 
factors 

Ability to 
provide 

informed 
consent 

NCT04607460 able speak understand english   6  access computer tablet 
home email address. 

Ability to 
provide 

informed 
consent 

English 
fluency 

NCT03335800 valid phone number associated iphone  ascertained self 
report. 

Ability to 
provide 

informed 
consent 

Smartpho
ne access 

NCT03338036 holds valid driver s license Smartphone 
access Other 
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Supplemental Table 2.7 Incorrect values from manual assessment of topic modeling in a subset 

of 200 exclusion eligibility criteria.  

 

NCTId Inclusion Criteria (Preprocessed) BERTopic 
cluster Expected cluster 

NCT05263037 members household Medical history Other 
NCT04394754 incarceration Medical history Other 

NCT03528174 hematocrit 36  men  32  women. Pregnancy Cardiovascular 
metrics 

NCT04479735 refuses lidocaine 2.5 prilocaine 2.5  cream 
use excluded study. Medical history Ability to provide 

informed consent 

NCT05293275 injury eyes  face neck impedes comfortable 
use virtual reality Medical history Medical history 

NCT04797611 agree use approved contraception method 
entirety trial Medical history Ability to provide 

informed consent 

NCT05263037 injury eyes  face  neck prevents comfortable 
use vr. Pregnancy Ability to provide 

informed consent 

NCT04906603 loss consciousness greater 30 minutes Cardiovascular 
metrics Medical history 

NCT04230486 volunteers unable complete tasks 
understand instructions Medical history Ability to provide 

informed consent 

NCT05112432 
legal commitment treatment medical 
guardianship  provision guardianship order 
court order allow guardian consent research 

Medical history Ability to provide 
informed consent 

NCT03315286 employee direct relative employee 
investigational site sponsor Medical history Ability to provide 

informed consent 

NCT04152447 injuries requiring staged surgical fixation  
i.e. ex fix orif 

Allergies or 
other skin 
conditions 

Medical history 

NCT03996954 patients unable unwilling use device Medical history Ability to provide 
informed consent 
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Supplemental Figure 2.4 Clinical trials analysis dashboard. 

Screenshot of an interactive dashboard for analysis of ClinicalTrials.gov metadata for DTx clinical 
trials, provided for readers. 
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Chapter 3 

Impacts of Digital Health on Clinical Care 

 

3.1 Abstract 

Digital health is rapidly growing in importance in modern healthcare, but its uptake and utility 

across patients and clinicians remains unclear. We analyzed over 100 million clinical notes from 

the Information Commons dataset at the University of California, San Francisco and found more 

than half a million notes containing digital health terms curated from PubMed articles and 

ClinicalTrials.gov. We characterized patient demographics, department, and frequency over time, 

and trends identified using clinical language modeling approaches. We identified 209,377 notes 

from 66,121 unique patients containing any of 91 digital curated digital health terms. These notes 

were primarily written for younger, White, and English speaking patients, and most frequently 

documented in pediatric endocrinology, cardiology, and neurology departments. Digital health 

documentation grew at an average annual rate of 26.9% from 2012-2022. Topic modeling analysis 

identified 29 clusters in digital health documentation, with glucose monitoring and Apple Watch 

usage in cardiology as the most frequent topics. Information extracted using GPT-4 applied to 

6,940 cardiology notes mentioning “Apple Watch” showed that 53.2% of the smartwatch usage 

was patient-initiated, and was primarily used for ongoing disease monitoring. In 36.8% of these 

notes, new patient instructions were provided, 21.2% led to procedure orders, and 15.6% led to 

medication changes. Our findings identified trends in digital health usage, and provide a 

framework for characterizing downstream impact of digital health using natural language 

processing approaches. Results also highlight the need for more evidence-based resources for 

digital health usage and access. 
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3.2 Introduction 

Digital health refers to the use of digital technologies to improve health, healthcare, and clinical 

outcomes, and encompasses a wide range of hardware and software tools1. These tools are 

increasingly being used both in clinical settings and by patients outside the healthcare system to 

track and monitor their own health. Real-world studies of digital health through retrospective 

medical record data analysis or prospective clinical trials have shown that digital health can help 

scale monitoring and disease management efforts outside the hospital2–4,5,6,7, streamline clinical 

workflows8,9, and provide clinical decision support10–12, and digital tools like telemedicine can 

often be an effective alternative to in-person visits13–15. Despite the potential of digital health to 

aid in clinical care16, there has also been research highlighting the challenges in the implementation 

of digital health or disparities in access, particularly for socioeconomically disadvantaged patients 

and in elderly populations17–19. As these digital health tools are adopted into routine healthcare, 

identifying best-practice guidelines for their use requires a better understanding of their real-world 

utilization and impact.  

One significant challenge to the study of digital health in real-world data is a lack of 

standardized ontologies and frameworks to identify digital health utilization20–22, particularly 

within unstructured clinical notes. Clinical notes are a rich source of unstructured data detailing a 

patient’s health status and clinical treatment plans23 and are particularly suitable for documenting 

aspects of patient health that occur outside the hospital, including digital health access and usage24. 

In this study, we take a data-driven approach to quantify how digital health is used and documented 

in real-world clinical text. This comprehensive assessment of digital health usage aims to support 

the development of evidence-based ontologies for shared clinical decision making around digital 

health usage.  

https://www.zotero.org/google-docs/?mJAvxb
https://www.zotero.org/google-docs/?MouybT
https://www.zotero.org/google-docs/?U91WRN
https://www.zotero.org/google-docs/?33BUYd
https://www.zotero.org/google-docs/?M3L3GT
https://www.zotero.org/google-docs/?PLMZSC
https://www.zotero.org/google-docs/?PVJieS
https://www.zotero.org/google-docs/?R2HgzY
https://www.zotero.org/google-docs/?onKS1i
https://www.zotero.org/google-docs/?f1UtVw
https://www.zotero.org/google-docs/?xf5P2b
https://www.zotero.org/google-docs/?9pL5Zz
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3.3 Results 

3.3.1 Digital health documentation dataset characterization. 

We identified 91 digital health terms from a search of PubMed articles, clinical trial descriptions 

listed on ClinicalTrials.gov, and previously curated publications (Supplemental Table 3.1). Out 

of 136,026,361 total inpatient, outpatient, ambulatory, and ancillary notes from Information 

Commons (2012-2022)23,25, we found 618,943 notes (0.46%, data retrieved July 17, 2023) 

containing mentions of any of these digital health terms. Following deduplication and removal of 

telehealth or online patient portal setup instructions, the final dataset contained 209,377 notes from 

66,121 unique patients (Figure 3.1).  

Among patients with digital health notes, 36,315 (54.9%) listed their gender as female, 

29,744 (44.9%) male, and 24 (0.0%) nonbinary (Table 3.1). The mean age of patients at the time 

of digital health documentation was 37.4 years (n=66,121, SD: 24.9 years), compared to a mean 

of 44.1 years for patients without digital health documentation (n=2,169,595, SD: 25.8 years, 

p<0.001). Patients with digital health notes were also significantly more likely to list “English” as 

their preferred language (91.4%) compared to patients without (83.0%, p<0.001). 

Distributions of self-reported race and ethnicity also differed significantly between patients 

with and without digital health notes (p<0.001). The largest proportion of patients with digital 

health notes self-reported as “White” (47.4%), which was higher than the proportion of “White” 

patients without digital health notes (37.4%). Similar trends were seen in patients self-reporting as 

“Latinx” (16.1% vs 15.1%), “Asian” (14.5% vs 10.3%), or “Black or African American”  (7.8% 

vs 5.4%). Only 4.1% of patients with digital health notes listed their race as “Unknown/Declined” 

(4.2%, n=2774) compared to 21.8% (n=473,673) of patients without digital health notes. 

https://www.zotero.org/google-docs/?1MHLN8
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3.3.2 Characterization of digital health documentation. 

The majority of digital health notes written by physicians, residents, and nurse practitioners 

(Supplemental Table 3.2), and occurred most frequently in pediatric endocrinology (n=21746, 

11.5%), cardiology (n=18966, 10.1%), neurology (n=13592, 7.2%) departments (Figure 3.2). The 

most frequently mentioned terms were “smartphone” (n=34,630, 16.5%), “FreeStyle Libre” 

(n=32,909, 15.7%), “iPhone” (n=31,168, 14.9%), “Contour Next” (n=23,106, 11.0%), and “Apple 

Watch” (n=14,319, 6.8%, Supplemental Table 3.2).  

Distributions of the top 10 terms differed significantly between department specialties 

(p<0.001, Figure 3.2). Within the pediatric endocrinology notes, “Contour Next” (44.0%, n=7986) 

and “Freestyle Libre” (42.8%, n=7761) were most frequently mentioned. “Contour Next” and 

“Freestyle Libre” are both terms that capture connected glucose monitoring devices and associated 

phone applications26,27. In cardiology, “Remote monitoring” (35.6%, n=6514) and “Apple Watch” 

(39.7%, n=7270) were the most frequently used terms. “Smartphone” was the most common term 

occurring in both neurology (50.0%, n=6741) and primary care (42.5%, n=4044), while “iPhone” 

was the most frequently documented term in audiology (48.0%, n=5493). 

 

3.3.3 Documentation of digital health in clinical notes is rapidly increasing. 

The compound annual growth rate (CAGR) of digital health term documentation from 2012 to 

2022 was 26.9%, compared to the growth of all clinical notes (7.31%, Figure 3.3). Of the top 10 

most prevalent terms, the terms with the highest CAGRs were “Freestyle Libre” (147.6%, 

n=37317), “Apple Watch” (127.7%, n=15008), and “App-based” (88.4%, n=4481). 

Documentation of the terms “Smartphone” (n=37456), “Android” (n=10386), and “iPhone” 

(n=34077) have also been increasing, with CAGRs of 31.0%, 30.8%, and 13.0%, respectively. Out 

https://www.zotero.org/google-docs/?r1AIFl
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of the most prevalent terms, only the term “Internet-based” showed a decline in usage with a 

CAGR of -29.3% (n=4205). CAGR values for all other terms ranged from -10.4% to 82.2% 

(Supplemental Table 3.2). 

The change of digital health mentions from 2012-2022 across different departments was 

also examined. Within departments with the greatest number of notes, the rate of growth in digital 

health documentation was greatest in Primary Care, with a CAGR of 50.3% (n=11049). Other 

departments showed similar rates of growth, with CAGRs ranging from 22.0% in General 

Pediatrics (n=3873) to 33.2% in Inpatient Nursing (n=6607, Figure 3.3). Of all departments, 

Psychiatry had the highest average growth in digital health documentation, with a CAGR of 89.6% 

(n=3110), and General Surgery had the lowest, with a negative CAGR of -15.1% (n=3538, 

Supplemental Table 3.3).  

 

3.3.4 Context of digital health usage in clinical notes 

Topic modeling using Latent Dirichlet Allocation (LDA) identified 29 clusters of digital health 

documentation (Figure 3.4, Supplemental Table 3.4). The most common topics within the digital 

health dataset were related to “Contour Next” glucose monitoring (topic 2, n=19050, 

Supplemental Table 3.3), “Apple Watch” usage in cardiology (topic 10, n=17569), medications 

(topic 1, n=17052), and glucose monitoring usage (topic 5, n=15105, Figure 3.4). Manually 

curated examples of notes from these categories are shown in Figure 3.5. Other topics contained 

terms describing access to devices (topic 21, n=13370), iPhones and hearing aid use (topic 17, 

n=12038), mobile apps for exercise and diet (topic 18, n=5180), devices related to hearing 

disorders (topic 25, n=3309), and remote learning (topic 22, n=3586, Supplemental Table 3.4).  
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GPT-4 extracted information from 6,940 cardiology department notes containing the term 

“Apple Watch” using a zero-shot prompt (Supplemental Table 3.5) demonstrated that 53.2% of 

use was initiated by patients, 14.7% by physicians, and 32.1% unknown (Supplemental Table 

3.6). The majority of Apple Watch usage (54.5%) was for ongoing monitoring purposes. In 26% 

of notes, data from the Apple Watch led to the current visit, 15.2% of notes contained suggestions 

for future use, and the remaining 4.1% were categorized as “Other” (Supplemental Table 3.6). 

Regarding downstream clinical care impacts, the most frequent action was to provide new patient 

instructions (36.8%) or to order additional procedures (21.2%), or lab tests (12.4%). Medication 

changes were identified in 15.6% of the cases, while new medication orders (4.4%) and 

discontinuations (5.2%) were less common. New diagnoses (3.0%), referrals (4.3%), and other 

care changes (9.1%) were also less frequently mentioned (Supplemental Table 3.7). Of the 50 

notes manually reviewed for accuracy of extracted care data, 64% contained no errors in digital 

health information extraction. The most common error identified was missing information about 

changes in clinical care, which occurred in 8/50 (16%) notes (Supplemental Table 3.8). 

 

3.4 Discussion 

Digital health technologies are increasingly becoming part of routine clinical care, providing 

patients with greater access to care and allowing clinicians to more effectively manage patient 

health. Here, we identify and characterize digital health documentation within a large corpus of 

over 130 million longitudinal clinical notes across a large, academic hospital.  

We showed that digital health documentation primarily occurred in clinical notes from 

slightly younger patients and were more common among patients self-reporting as “White” with 

“English” as their preferred language. These results align with previous studies highlighting a 
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“digital divide” in the use of digital health tools, particularly for patients with poor language 

fluency or among elderly patients17,28–30. However, future studies may be required to determine 

whether this discrepancy may be related to differences in demographic information completeness 

or other clinical factors.  

We also demonstrated that digital health documentation has been increasing across terms 

and departments, at rates faster than the growth of other notes. Several previous studies have also 

documented differences in digital health adoption across different departments, although these 

focused on telemedicine or specific digital health tools, not overall digital health usage31–33. The 

growth shown here may be due in part to a shift towards virtual care practices resulting from the 

COVID-19 pandemic29,34,35. Other reasons contributing to the overall growth of digital health 

documentation may include increasing patient and provider adoption32,35, advancements in 

regulatory frameworks and level of evidence for digital health tools16,20, and improved 

infrastructure for integration of digital health into clinical workflows36.  

Major themes in digital health documentation uncovered by topic modeling included the 

use of remote monitoring devices, particularly regulated devices approved for clinical use, such as 

continuous glucose monitoring37–39 and atrial fibrillation detection40. Manual review of note 

excerpts also showed that their use in clinical workflows varied significantly in the absence of 

formal, evidence-driven guidelines. Common clinical impacts of digital health usage, specifically 

Apple Watch use in cardiology, included patient instructions, procedures ordered, or medication 

changes. Future studies may clarify the impacts of these and other digital health tools. 

The findings of this study should be considered with the following limitations. First, the 

search terms used in this study may not have captured all relevant digital health references in our 

notes; more refined search strategies or the development of standardized ontologies may uncover 

https://www.zotero.org/google-docs/?niP9Tp
https://www.zotero.org/google-docs/?kiaUWs
https://www.zotero.org/google-docs/?S0kSgL
https://www.zotero.org/google-docs/?w8xape
https://www.zotero.org/google-docs/?Umt7Gb
https://www.zotero.org/google-docs/?2AvGdv
https://www.zotero.org/google-docs/?2QhCvD
https://www.zotero.org/google-docs/?A8mS2i
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additional digital health use cases in clinical notes or structured medical record data. Second, our 

analysis is also performed on deidentified data, so inaccurately deidentified digital health tools 

may be missed. The deidentification process also shifts clinical note dates up to a year for each 

patient, so trends in usage are only presented as an average across the dataset. Finally, we also 

specifically excluded notes that contained only telehealth instructions given the prevalence of other 

studies detailing the effects of telehealth on patient outcomes34,34,35.  

  While there is increasing appreciation of the role of social determinants in healthcare41,42, 

including digital determinants30,43,44, resources for patients and physicians to effectively use 

validated digital health devices and data remain limited45. This study provides a starting point for 

better understanding the contexts of digital health documentation and identifies cases where digital 

health is actively being used for patient care. As the adoption of digital devices and software 

continues to grow in both clinical and patient-driven settings, development of new evidence-based 

guidelines may help standardize workflows for how patients and physicians can use digital health 

resources most effectively.   

https://www.zotero.org/google-docs/?Ewrtr6
https://www.zotero.org/google-docs/?HAPscZ
https://www.zotero.org/google-docs/?LGqKkO
https://www.zotero.org/google-docs/?bsJPId
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3.5 Methods 

3.5.1 Curation of digital health terms 

To curate a list of digital health terms, we searched PubMed Central and ClinicalTrials.gov for any 

articles or trials containing the term “digital health” from the last 10 years (2012-2022, 

Supplemental Table 3.1). Search fields were limited to article key words, titles, and abstracts for 

PubMed. We selected one, two, and three word phrases that occurred in at least 500 abstracts or 

50 clinical trial descriptions, and manually inspected the terms to identify synonyms of “digital 

health” and specific hardware or software interventions. Phrases were excluded if not a noun or 

were not relevant to digital health, or were captured by other terms on the list. We also screened 

terms from previously curated lists of connected clinical digital health devices22 and digital 

therapeutics46. Terms that were selected from this initial screening were further filtered using the 

UCSF EMERSE search system. EMERSE is an elastic search algorithm built by the University of 

Michigan that identifies matches or near matches of all terms searched47. Terms that did not result 

in any matches through an EMERSE search, or appeared in contexts that were not digital health 

related, were excluded. Synonyms of digital health terms that appeared in reviews of notes 

extracted using EMERSE searches were also included in the final term list. Regular expressions 

were constructed for the final term list and used to identify notes that contained digital health 

concepts. The full list of phrases screened and final values selected can be found in the 

supplemental materials and tables online at https://github.com/BMiao10/DigitalHealthNotes.  

 

3.5.2 Identification of digital health notes from Information Commons at UCSF 

Information Commons is a dataset of deidentified, longitudinal medical record data from over 6 

million patients at UCSF and contains both structured clinical data and paired clinical notes23. 

https://www.zotero.org/google-docs/?Zwwpzx
https://www.zotero.org/google-docs/?RdvE8q
https://www.zotero.org/google-docs/?R6YZir
https://github.com/BMiao10/DigitalHealthNotes
https://www.zotero.org/google-docs/?nuoGVd
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Deidentified clinical notes from Information Commons were queried for the presence of any of 

the digital health search terms selected (Figure 3.1) using regular expressions of curated digital 

health terms. Due to an increase in clinical notes mentioning telehealth visits and related digital 

health infrastructure following the onset of the COVID-19 pandemic, notes and messages provided 

to patients outside the clinical visit were excluded based on the note type. These included notes 

regarding pre-procedure preparation, instructions to set up video calls or telehealth visits, and notes 

marked as documentation only. All duplicate notes were also removed. Unique patient or 

encounter IDs were used to identify patient and hospital metadata corresponding to each note. 

Specifically, baseline patient characteristics (gender, age, race, and patient portal usage) and 

encounter information (provider and department specialty) were selected for each note. All data 

used were deidentified and exempt from review based on guidelines from the UCSF IRB. 

 

3.5.3 Distribution and growth of digital health terms in clinical notes 

Analysis of the distribution of digital health terms within each department was limited to the top 

5 departments with the greatest number of digital health clinical notes. The proportion of each of 

the top 10 terms within each department was calculated and differences were analyzed by chi-

square test. Top terms were selected as the most frequently occurring term across all notes. For 

notes containing multiple different terms, each unique term was counted as a separate occurrence. 

However, multiple instances of the same term within a note were only counted as a single 

occurrence of that term. 

The number of notes occurring each year was also analyzed, stratified by digital health 

terms and by department. Compound annual growth rates (CAGRs) were calculated for 

occurrences of the top ten digital health terms from 2012-2022 and compared to the growth of the 
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total number of notes and number of digital health notes at UCSF within the same timeframe. The 

CAGR represents an average, cumulative rate of growth between the time period specified22. The 

total number of digital health notes in each year were also analyzed. Analogous calculations were 

performed for digital health notes in each department.  

 

3.5.4 Unsupervised classification of digital health notes using LDA topic modeling 

An unsupervised approach was taken to identify the context in which these digital health terms 

were discussed. Notes were tokenized and only sentences containing digital health terms, extracted 

using the NLTK package55, were selected for each note. These truncated digital health notes were 

further preprocessed to remove any uppercase letters and special characters, including asterisks 

that denote words redacted in the deidentification process. Common English stopwords from the 

NLTK library, words occurring fewer than 5 times, and words occurring in more than 50% of 

notes were removed. Topic modeling was performed using Latent Dirichlet Allocation56 (LDA) 

and visualized using the pyLDAvis package57. The number of topics was selected using a grid 

search of values between 10-50, and the best value was selected as having the highest Normalized 

Pointwise Mutual Information (NPMI) coherence value, which describes how closely text in a 

cluster are related. Digital health notes were assigned to each resulting category based on highest 

probability to quantify the prevalence of each topic. 

 

3.5.5 Quantifying downstream clinical effects of digital health product usage using large language 

models 

To analyze the clinical impact of specific digital health products, the GPT-4-128-turbo (“GPT-4”) 

large language model was used to extract digital health information using a zero-shot prompt. The 
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prompt, provided in supplemental data, was used to identify whether the digital health usage was 

initiated by the patient or physician, extract the clinical context for digital health use ("suggested 

for future use", "data led to current visit", "ongoing monitoring", or "other”), and if the usage 

resulted in any change(s) to downstream care ("medication change", "medication order", 

"medication discontinuation", "procedure ordered", "lab test ordered", "new diagnosis", "new 

referral", "new patient instructions", and/or "other"). The prompt was specifically applied to 

extract values only from “Apple Watch” clinical notes written in the cardiology department. A 

subset of 50 notes were manually reviewed for accuracy for each variable extracted. All GPT-4 

usage was performed using a HIPAA-compliant endpoint hosted on Microsoft Azure OpenAI 

Studio. 

 

3.5.6 Statistics 

Descriptive statistics for normally distributed continuous distributions are reported as means and 

standard deviations. Chi-square tests were used to compare categorical proportions, and 

comparisons between continuous variables were performed using student t-tests. Statistical testing 

was performed using the SciPy package58, with p<0.05 considered significant.  
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3.6 Figures 

 

Figure 3.1 Overview of digital health clinical note dataset selection. 

Clinical notes written between 2012-2022 and containing digital health terms were selected from 
Information Commons, which contains all deidentified clinical data at UCSF. Notes related to 
telehealth visits, non-visit messages, and duplicate notes were excluded, leaving a final dataset of 
209,377 notes across 66,121 patients. 
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Figure 3.2 Digital health term distribution across departments. 

Distribution of 10 most frequently occurring digital health terms across the top 5 departments with 
the greatest number of digital health notes.   
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Figure 3.3 Growth of digital health documentation over time. 

Relative distribution of the top 10 most prevalent A) digital health terms and B) departments with 
digital health notes from 2012-2022. The number of all notes at UCSF and the number of digital 
health notes over the same time period are also shown. Plots are colored by CAGR values, 
representing the average, cumulative rate of growth from 2012-2022.   
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Figure 3.4 Topic analysis to uncover context of digital health documentation. 

LDA topic modeling was used to identify major clusters of digital health documentation.  A) Topic 
clusters showing the similarity and relative contribution of clusters to the LDA model. B) Top 10 
terms for each of the top 10 most prevalent topics in the digital health dataset.  
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Figure 3.5 Examples of sentences containing digital health terms. 

Excerpts of digital health clinical notes from three prevalent topic clusters. Representative 
examples are chosen to demonstrate the diversity of scenarios documented in digital health clinical 
notes. Digital health terms are highlighted in green. 
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3.7 Tables 
 
Table 3.1 Demographics of patients with and without digital health notes 
 

  
Patients without digital 

health note 
(n=2,169,595) 

Patients with >=1 
digital health note 

(n=66,121) 
Significance 

        

Mean age (SD) 44.1 years (25.8) 37.3 years (24.9) p<0.0001 (T-
test) 

        

Gender (%)     p<0.0001 
(Chi-square) 

Female 1,189,240 (54.8%) 36,315 (54.9%)   

Male 976,837 (45.0%) 29,744 (45.0%)   

Unknown 3,137 (0.1%) 38 (0.1%)   

Nonbinary 293 (0.0%) 24 (0.0%)   

        

Race/Ethnicity (%)     p<0.0001 
(Chi-square) 

White 811,781 (37.4%) 31,371 (47.4%)   

Latinx 326,713 (15.1%) 10,650 (16.1%)   

Asian 222,925 (10.3%) 9,618 (14.5%)   

Black or African American 117,790 (5.4%) 5,157 (7.8%)   

Other 149,821 (6.9%) 3,594 (5.4%)   

Unknown/Declined 473,673 (21.8%) 2,774 (4.2%)   

Multi-Race/Ethnicity 22,752 (1.0%) 1,663 (2.5%)   

Southwest Asian 
and North African 7,307 (0.3%) 608 (0.9%)   
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Patients without digital 

health note 
(n=2,169,595) 

Patients with >=1 
digital health note 

(n=66,121) 
Significance 

Native Hawaiian 
or Other Pacific Islander 30,882 (1.4%) 441 (0.7%)   

Native American 
or Alaska Native 5,950 (0.3%) 244 (0.4%)   

        

Preferred Language (%)     p<0.0001 
(Chi-square) 

English 1,800,100 (83.0%) 60,465 (91.4%)   

Spanish 144,605 (6.7%) 2,932 (4.4%)   

Chinese 
(Cantonese) 25,077 (1.2%) 732 (1.1%)   

Russian 8,881 (0.4%) 332 (0.5%)   

Chinese 
(Mandarin) 

9,916 (0.5%) 331 (0.5%)   

Vietnamese 5,525 (0.3%) 219 (0.3%)   

Arabic 4,166 (0.2%) 142 (0.2%)   

Korean 2,011 (0.1%) 111 (0.2%)   

Sign Language 820 (0.0%) 85 (0.1%)   

Tagalog 3,225 (0.1%) 79 (0.1%)   
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3.8 Supplemental Figures and Tables 
 
 

 

Supplemental Figure 3.1 Digital health term selection criteria. 

Digital health terms (n=91) were selected using a comprehensive search criteria across PubMed, 
ClinicalTrials.gov, and reviews of connected digital health products and digital therapeutics. 
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Supplemental Figure 3.2 Digital health terms by department. 

Prevalence of all digital health clinical notes A) across all departments and B) by provider type. 
Colorbar scales are set to a maximum of 800 clinical notes to show departments and provider types 
with fewer clinical notes.  
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Supplemental Figure 3.3 Topic modeling coherence scores. 

NMPI coherence scores to identify optimal number of clusters for LDA modeling. The higher the 
score, the more coherent the topic clusters. 
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Supplemental Figure 3.4 Topic modeling results. 

Top 10 terms and frequencies for less prevalent topics identified by LDA topic modeling. 
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Supplemental Figure 3.5 Prompt used to extract digital health information.  
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Chapter 4 

Quantifying Clinical-Decision Making Using Large Language Models 

 

4.1 Abstract 

Understanding the factors that drive treatment selection and switching is of significant medical 

interest. However, many factors related to medication switching are often only captured in 

unstructured clinical notes and can be difficult to extract. We evaluate the zero-shot abilities of a 

large language model, GPT-4 (via HIPAA-compliant Microsoft Azure API), to identify reasons 

for switching between classes of contraceptives from clinical notes of 1,964 contraceptive switches 

in 1,515 patients in the UCSF Information Commons. When evaluated by clinical experts, GPT-4 

extracted switching reasons with an accuracy of 91.4% and 2.2% hallucination rate. Using 

extracted reasons, we identified patient preference, adverse events, and insurance as key reasons 

for switching using unsupervised BERTopic modeling. Notably, we also showed using our 

approach that "weight gain/mood change" and "insurance coverage" are disproportionately found 

as reasons for contraceptive switching in underserved demographic populations. 

 

4.2 Introduction 

Prescription contraceptives play a critical role in supporting women’s reproductive health. With 

the increasing availability of different contraceptives, providing patients with new options to 

manage their reproductive health, there is also a growing need to provide patients and providers 

with data-driven guidelines for informed decision-making1–3. Contraceptives may vary by active 

ingredient, with either progestin-only active ingredients or estrogen-progestin combinations 

available, as well as by mode of administration, which may be intrauterine (Intrauterine devices, 
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IUDs), oral, transdermal, intravaginal, subdermal, or as an injection4. Each of these contraceptives 

have unique adverse event profiles that may contribute to clinical decision making5. In addition, 

several other factors, including personal preference, cost, availability, comorbidities and clinical 

constraints, may contribute to a patient’s decision to start, stop, or switch contraceptives6. With 

nearly 50 million women in the United States using contraceptives7, understanding the factors that 

drive contraceptives selection and switching is of significant interest.  

Previous studies of medical claims data have shown that 44% of women starting a 

contraceptive discontinued its use within one year, although 76% resumed use of the same or 

another contraceptive within three months8. Some studies have begun to move beyond analysis of 

discontinuation rates and have included interviews9 or social media data10 to better understand the 

complexity of contraceptive switching. Using text mining approaches, these studies have identified 

specific patient subgroups that switch at different rates11 or showed that patients have differing 

preferences and reasons for seeking contraceptives4. However, these studies may not capture the 

breadth or depth of clinical information found in medical record data and require development of 

custom machine learning models or time-consuming manual analysis to generate insight from the 

complexity of real-world text data12–14. 

Recently, the development of general large language models (LLMs) has shown significant 

promise in being able to extract medication information without the need for manually annotated 

training data (“zero-shot extraction”)12,15,16. Despite concerns including factually incorrect 

information, clinicians and researchers remain optimistic that these computational advances can 

translate to clinically-meaningful use cases17–20. Here, we evaluate the ability of GPT-4 to extract 

contraceptive selection strategies and identify reasons for switching between classes of 

contraceptives using clinical notes from a large academic medical center.  
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4.3 Results 

4.3.1 Contraceptive switching cohort 

We selected a contraceptive patient cohort using the UCSF Information Commons dataset. We 

identified 37,834 patients with at least 1 medication order for an intrauterine, oral, intravaginal, 

subdermal, transdermal, or injectable contraceptive. We removed 5,594 patients who did not have 

any follow up encounters at least 6 months after the last contraceptive order. This left 37,834 

patients with 100,593 medication orders. We further filtered out the 11,916 orders without 

associated clinical notes and 53,125 duplicate medication orders, leaving a contraceptive cohort 

consisting of 39,790 medication orders across 20,283 unique patients (Figure 4.1). 

Among this contraceptive cohort, 1,515 (7.6%) patients experienced a total of 1,964 

contraceptive switches. Compared to patients who did not have a contraceptive switch, patients 

with contraceptive switches tended to be younger, with a mean age of 25.9 years (SD: 7.7) 

compared to 29.1 years (SD: 8.4, p<0.001, Table 4.1). There was also a statistically significant 

difference in the proportion of patients with and without contraceptive switches by patient 

race/ethnicity (p<0.001). The largest difference occurred in patients with a race/ethnicity listed as 

“Black or African American,” with 19.3% of such patients having a contraceptive switch compared 

to 8.2% without. Patients identifying as “Latinx” were also more likely to have a contraceptive 

switch (19.3%) compared to the proportion of “Latinx” patients without contraceptive switches 

(15.1%). “White” (33.0%) or “Asian” (16.0%) patients had lower rates of contraceptive switching 

in this cohort compared to the same groups without switches, with 45.1% of patients without 

contraceptive switches identifying as “White” and 20.3% identifying as “Asian.” 

Switching differed significantly by the first contraceptive prescribed, with the highest rates 

of switching following initial prescription of transdermal contraceptives (33.5%) and the lowest 
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rates following initial prescription of  intrauterine (5.1%) and oral (6.3%) contraceptives. The most 

common switch occurred in patients who were on oral contraceptives and switched to intravaginal 

contraceptives (n=205, n=10.5%). The least common switch occurred from intrauterine to 

injectable contraceptives (n=6, 0.31%, Supplemental Table 4.4). All supplemental tables are 

made available on Github at https://github.com/BMiao10/contraceptive-switching. 

 

4.3.2 Human evaluation of GPT4 extraction of contraceptive switching 

Prompt evaluation was performed on a held out set consisting of notes from 5% of patients (n=93 

clinical notes), and evaluated against annotations from a clinical reviewer. There was no significant 

difference in performance across the six prompts used to extract contraceptive information using 

zero-shot GPT-4, with micro F1 scores ranging from 0.817 to 0.849 (mean=0.827, SD: 0.012) for 

extraction of contraceptive started, and 0.827 to 0.881 (mean=0.854, SD: 0.020) for extraction of 

contraceptive stopped (Figure 4.2). The best prompt for medication stopping extraction used the 

specialist system configuration and default prompt. Reasons extracted by this prompt were also 

evaluated by a clinical reviewer for both accuracy and rate of hallucination. Human evaluation 

showed that GPT-4 was capable of extracting these reasons with 91.4% accuracy and without 

hallucination 97.8% of the time (n=93). Given the high accuracy and minimal hallucination of this 

prompt for extracting information about contraceptive stopping and reasons for stopping on the 

development dataset, this prompt was selected to extract contraceptive information from the 

remaining clinical notes. 

 

https://github.com/BMiao10/contraceptive-switching
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4.3.3 GPT-4 contraceptive switching information extraction outperforms baseline models 

Zero-shot GPT-4 performance using the best prompt was also compared to baseline models trained 

on different proportions silver-standard labels derived from structured data. GPT-4 outperformed 

all baseline models, regardless of the proportion of training data used for baseline models (Figure 

4.3, with micro F1 scores of 0.828 and 0.439 on contraceptive start and stop extraction, 

respectively. The next best model was random forest trained on TF-IDF representations, with a 

0.714 (SD: 0.024) score on medication start and 0.424 (SD: 0.009) on medication stopping.  

Concordance between silver-standard labels and human annotations available showed a 

Cohen’s Kappa coefficient of 0.585 for medication starting labels and 0.217 for contraceptive 

stopping (n=93). When we removed notes without relevant contraceptives, determined by the 

human evaluator, concordance between these two methods increased to 0.960 for contraceptives 

started and 0.644 for contraceptives stopped (Supplemental Table 4.5). 

 

4.3.4 Identification of reasons for contraceptive switching  

Unsupervised BERTopic topic modeling of extracted reasons for stopping across the full dataset 

identified 19 topics, which were manually grouped into 10 cohesive topics (Supplemental Table 

4.6). Excluding the 1136 notes that did not contain a relevant reason (topic 0, Supplemental Table 

4.7), the most frequently occurring topics contained terms related to spotting and irregular bleeding 

(topic 1), desire to switch contraceptives (topic 2), and forgetting to take daily pills (topic 3). 

Topics 4, 6, 7 described other adverse events of contraceptive use, including irritation and rash, 

weight gain and mood changes, and irregular menses and pain. Topic 5 related to IUD 

malpositioning and removal, and topic 9 related to implant removal. Finally, topic 8 included terms 

related to insurance coverage (Figure 4.4). 
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Subset analysis stratified by race/ethnicity identified enrichment of specific topics within 

certain patient subgroups. Weight gain and mood change (topic 6) were enriched in patients who 

self-reported as being “Latinx” or “Other” and showed lower enrichment in patients self-reporting 

as “Black or African American”. Topic 9 (Implant removal) was enriched in patients who self-

reported a race/ethnicity of “Asian”, and topic 8 (insurance coverage) was enriched in patients of 

“Black or African American”, “Latinx”, or “Multi-Race/Ethnicity” race/ethnicity (Figure 4.4). 

 

4.4 Discussion 

We demonstrated that GPT4 can accurately extract which medications were started and stopped 

during an encounter from associated clinical notes. GPT-4 performance, evaluated by both 

automated analysis and gold-standard manual annotation, was stable between six different prompts 

although more complex prompting methods may further improve medication information 

extraction24,33. We further showed that the majority of reasons for contraceptive switching 

extracted by GPT-4 were also correct, with minimal hallucinations. 

Lastly, we uncovered latent contraceptive-specific reasons for switching medications by 

clustering embeddings derived from GPT-4 extracted values. Topic clusters ranged from treatment 

failure to patient preference, as well as adverse events and insurance reasons. In line with previous 

studies34, we showed that weight gain and mood changes as reasons for switching were enriched 

in patient populations who self-reported their race/ethnicity as “Latinx” or “Other”. Additionally, 

we showed that insurance coverage as a reason for switching disproportionately affected patients 

identifying as “Latinx” or “Black or African American.” Our results highlight recent concerns 

regarding financial barriers to contraceptive access and resulting racial inequities in reproductive 
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health35. Future validation in independent datasets will be needed to determine whether this 

difference persists in larger samples or in other cases of medication switching.  

There are several limitations to this study. This dataset is limited to values derived from a 

large, academic medical center, which may introduce bias in the types of patients or contraceptives 

captured. We assume that clinical notes contain information on all medications ordered at the same 

or previous encounters, but some medications may not be discussed or documented. This is 

reflected in poor concordance between structured data labels and human evaluation, particularly 

for medication stopping values. Additionally, because the de-identification process is not perfect, 

manual review of some notes identified several medication names that were inappropriately 

redacted. This was particularly prevalent among contraceptive brand names that resemble common 

patient names (eg. “Camila” or “Heather”) that are deliberately redacted. Finally, another 

limitation of our work surrounds interpretability of results, which is significant to clinical care. 

There is little public information provided about GPT4’s training data, approach, or model 

architecture, and we have not yet tested any open-source language models on this task. As a result, 

we refrain from making conclusions about why LLMs like GPT-4 produces certain results and 

focus instead on evaluating overall performance and insights that can be derived from extraction 

of information from clinical notes. 

In conclusion, our findings demonstrate that reasons for contraceptive switching are 

disproportionately found in specific patient demographics. Our approach can be applied towards 

treatment strategy analysis across or within different classes of medications beyond contraceptive 

switching to improve understanding of treatment strategy and shape more detailed treatment effect 

estimation models. 
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4.5 Methods 

4.5.1 Contraceptive switching cohort selection 

A contraceptive switching cohort was selected from the UCSF Information Commons dataset21, 

which contains deidentified structured data and clinical notes from over 6 million patients between 

2012-2023. Clinical text notes were certified as deidentified as previously described22 and are 

usable by UCSF researchers as non-human subjects research. 

We identified all patients prescribed at least one contraceptive documented in the 

structured medication data based on a “therapeutic class” label. Non-drug contraceptives (e.g 

diaphragms/cervical caps, condoms, vaginal pH modulators, and spermicides), progestin and 

estrogen-containing agents not used for contraceptive purposes, and emergency contraceptives 

were removed (Supplemental Table 4.1). The remaining contraceptives were mapped to the 

following modalities: Oral, Implant, Intrauterine device (IUD), Injection (intramuscular or 

subcutaneous), Transdermal, and Intravaginal based on regular expression values (Supplemental 

Table 4.2). Contraceptives prescribed without a start date or associated clinical note and duplicate 

orders at each encounter date were removed. To filter out short notes without any relevant 

information, only clinical notes containing more than 50 tokens, created using encodings from 

OpenAI’s open-source tokenizer tiktoken. 

The dataset was further filtered to patients with encounters at least 6 months after the 

prescription of the first contraceptive, ensuring those without a switch weren't lost to follow-up. 

Prescriptions were sorted by documented start date, and encounters that contained a contraceptive 

switch were retrieved. A contraceptive switch was defined as a difference in prescribed 

contraceptive modalities between consecutive encounters. 
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Self-reported demographic information on race/ethnicity and preferred language were 

extracted from structured data, which was also used to calculate age at date of first contraceptive 

prescription. This study was conducted using retrospective, deidentified clinical data and was 

determined to be exempt from IRB review.  All data were stored or processed on HIPAA compliant 

hardware at UCSF or through a HIPAA compliant Microsoft Azure instance (“UCSF Versa”). No 

data was transferred or stored by OpenAI; and OpenAI settings were maintained so that no prompt 

information would be stored, even temporarily. All code along with supplemental data and tables 

are made available on Github at https://github.com/BMiao10/contraceptive-switching. 

 

4.5.2 Prompt evaluation for extraction of contraceptive selection strategy 

Prompting can have significant effects on the accuracy of large language models23,24. We tested 

six prompts (Supplemental Table 4.3), varying both system information and output formats, to 

extract the following information: 1) which contraceptive was stopped, 2) which new contraceptive 

was started, and 3) why the contraceptive switch occurred. To avoid overfitting, these six prompts 

were evaluated on a held-out subset of contraceptive switching clinical notes from 5% of the 

patients. The model used was GPT-4, with temperature set at 0, maximum response length capped 

at 500 tokens, top_p set to 1, and all other parameters kept as default. A zero-shot approach was 

used, with no additional information or training data provided outside of the encounter’s associated 

clinical note. Resulting values were mapped to the six contraceptive modalities using regular 

expression values (Supplemental Table 4.2). All GPT-4 queries were performed between 

November 13-15, 2023. 

A clinical evaluator assessed the accuracy of GPT-4 extraction for contraceptives started 

and stopped within each note. Micro F1 scores, which represent the harmonic mean of precision 

https://github.com/BMiao10/contraceptive-switching


 

 81 

and recall scores, are reported. The best prompt was selected based on the highest average score 

attained across all medications started/stopped determined by manual evaluation. The clinical 

reviewer was also instructed to identify whether the extracted reason was accurate based on the 

clinical note and whether any hallucination occurred, which was defined as information produced 

by the language model that could not be derived from the clinical note.  

4.5.3 Comparison of GPT-4 contraceptive information extraction to baseline models 

The best prompt selected from the development dataset was applied to the remaining 95% “test 

set” of the contraceptive switching cohort using the same GPT-4 setup. We compared our LLM-

based methods against several traditional machine learning techniques, including logistic 

regression, random forest, and BERT-style models. Since human clinical annotations were not 

available for this larger dataset, weak labels from structured data, specifically which contraceptives 

were started and stopped at the associated clinical encounter, were used for training and evaluation 

in each of these models. Structured data may not reflect the contents of clinical notes if patients 

are prescribed contraceptives at a different facility or stop dates are not documented, so we 

compared these silver-standard labels to human annotation for the 93 clinical notes in the prompt 

evaluation set using Cohen’s Kappa coefficient to assess reliability between the two sources. 

Two sets of logistic regression and random forest models were developed using either bag-

of-words and term-frequency inverse document frequency (TF-IDF)25 text representations.  

Multiclass classification was performed, with models predicting the modality of contraceptives 

started or stopped (oral, IUD, subdermal, intravaginal, injection, transdermal). We performed 5-

fold cross validation using a 70/10/20 split between train, validation, and test data. Due to 

differences in training sizes between baseline models and GPT-4, this split is independent of the 

previous prompt evaluation and GPT-4 test sets. Hyperparameter tuning was performed using a 
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grid search of varying regularization values (C=[0.01, 0.1, 1, 10, 100, 1000]) for logistic regression 

and both number of estimators and max depth for random forest (n_estimators=[50, 100, 250, 500], 

max_depth=[20, 50, 100]). 

The UCSF-BERT model26,27 trained on a large corpus of clinical notes was also used as a 

baseline. Again, we performed 5-fold cross validation using a 70/10/20 split. Hyperparameter 

tuning was performed using Optuna28, and both learning rate and weight decay were varied 

(learning rate=(1e-5, 5e-5), weight decay=(4e-5, 0.01)). Models were trained for 5 epochs, with 

early stopping. To accommodate for the 512 maximum token length allowed by UCSF BERT, a 

sliding window was used with final prediction selected by majority vote across all windows.  

To simulate few-shot learning, we trained each of the baseline models on random 

subsamples of 100%, 50%, 25%, 10%, 5%, and 1% of the training data. Micro-averaged F1 scores 

are reported for each model on the held-out test set. 

 

4.5.4 Unsupervised clustering of extracted reasons for contraceptive switching 

GPT-4 was also used to extract reasons for contraceptive switching from the test set using the best 

prompt. To identify key reasons for medication switching, we applied BERTopic, a topic modeling 

method that clusters document embeddings, to all reasons extracted from both the prompt 

evaluation and test sets. The UCSF-BERT model was used to generate embeddings from the list 

of extracted reasons and embeddings were clustered by BERTopic29. Briefly, dimensionality 

reduction was applied to the embeddings using Uniform Manifold Approximation and Projection 

(UMAP), with 5 components and 3 neighbors with Euclidean distance metrics. HDBSCAN30 was 

used to cluster reduced embeddings, with number of topics dynamically chosen by the algorithm, 
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and TF-IDF used to identify key terms from each cluster. All other default parameters were used. 

Topics were manually reviewed and similar topics were grouped together. 

Subgroup analysis was performed to understand whether topics were associated with 

particular patient demographics. Adapting from previous enrichment methods31, we used topic 

probabilities assigned to each document by the BERTopic model to calculate a weighted 

enrichment score that describes the relative contribution of each topic to patient subgroups. 

Specifically, enrichment scores were calculated as 𝜃!,#⬚ = %!,#	⋅	(!,$
∑ ⬚%
!&' %!,#	∗	∑ ⬚%

!&' (!,$
, where q(n,k) 

describes the weight of each topic k for note n, and y(n,j) are the patient subgroups assigned to 

each note. The scores were normalized by total topic weight, as well as by number of patients in 

each subgroup, and reported scores were negative log transformed.  

 

4.5.5 Statistics 

We present means and standard deviations for continuous distribution and utilize two-sided t-tests 

to analyze differences in continuous distributions. To evaluate differences in categorical data, Chi-

square tests were applied. Statistical analyses were conducted using the SciPy package32, and a p-

value less than 0.05 was used to indicate statistical significance.  
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4.6 Figures 

 
 
Figure 4.1 Study overview 

A) We selected a contraceptive patient cohort from the UCSF Information Commons dataset. 
Among 20,283 patients with unique contraceptive prescriptions and associated clinical notes, 
1,515 (7.6%) patients experienced a total of 1,964 total contraceptive switches. B) Study overview 
to assess the ability for GPT4 to extract contraceptive switching values from clinical notes, and to 
identify key reasons for switching using unsupervised clustering methods.  
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Figure 4.2 Development of prompt to extract contraceptive switching information. 

GPT4-extracted values for contraceptive class A) started and B) stopped compared to human 
annotation (n=93). C) Human evaluation was also performed to assess whether GPT-4 extracted 
reasons for contraceptive switching was accurate and contained only information specifically 
mentioned in the associated clinical note (not hallucination). 
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Figure 4.3 GPT-4 performance compared to baseline.  

Following prompt evaluation, GPT-4 performance on the remaining test set was also compared to 
baseline model performance for extraction of contraceptive A) started and B) stopped. Silver-
standard labels from structured data were used for training and evaluation of baseline models, and 
for evaluation of zero-shot GPT-4. 
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Figure 4.4 Clustering reasons for contraceptive switching using BERTopic 

A) BERTopic modeling was used to cluster GPT-4 extracted reasons for contraceptive switching, 
with nine key topics identified. Top terms for each cluster are shown. B) Topics were assessed for 
enrichment amongst patient subgroups by race/ethnicity. Higher enrichment scores indicate higher 
prevalence of a topic written in notes within a patient subgroup. 
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4.7 Tables 

Table 4.1 Contraceptive prescription cohort demographics.  

 Contraceptive switch 
(n=1,515) 

No switch 
(n=15,907) 

Significance 
Proportion 

Mean age (SD) 25.9 years (7.7) 29.1 years (8.4) p<0.001 (Two tailed T-test) 

    

Race/Ethnicity (%) Missing (n=32) Missing (n=815) p<0.001 (Chi-square) 

White 490 (33.0%) 6813 (45.1%)  

Latinx 286 (19.3%) 2281 (15.1%)  

Black or African American 286 (19.3%) 1237 (8.2%)  

Asian 237 (16.0%) 3071 (20.3%)  

Other 115 (7.8%) 1224 (8.1%)  

Multi-Race/Ethnicity 69 (4.7%) 466 (3.1%)  

    

Preferred Language (%)  Missing (n=5) p<0.001 (Chi-square) 

English 1474 (97.3%) 15405 (96.9%)  

Spanish 14 (0.9%) 281 (1.8%)  

Other 27 (1.8%) 216 (1.4%)  

    

First prescribed 
contraceptive, (%)   p<0.001 (Chi-square) 

Implant 160 (10.6) 799 (5.0) 20.0% 

Injectable 199 (13.1) 853 (5.4) 23.3% 

Intrauterine 64 (4.2) 1266 (8.0) 5.1% 

Intravaginal 244 (16.1) 1935 (12.2) 12.6% 

Oral 661 (43.6) 10496 (66.0) 6.3% 

Transdermal 187 (12.3) 558 (3.5) 33.5% 
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Chapter 5 

Extracting Biologic Treatment Strategies Using Open-Source Language 

Models 

5.1 Introduction 

Tumor necrosis factor alpha inhibitors (TNFα-i) are a class of biologic drugs that are used for the 

treatment of several autoimmune diseases, including inflammatory bowel disease1,2 (IBD) and 

rheumatoid arthritis3,4 (RA). While there are now several biosimilar TNFα-i drugs available for 

clinical use, there are few biomarkers or clinical guidelines to identify which patient should receive 

which drug, and treatment failure and switching is common within this class of medications3,5. 

Previous studies have shown that about 14.5% of patients with IBD switch medications at least 

once and primarily to another TNFα-i6. In a cohort of US patients with RA, 39.3% who failed a 

first-line TNFα-i switched to another TNFα-i7. Some patients may develop anti-drug antibodies to 

TNFα-i, leading to a loss of drug efficacy that may contribute to medication switching2,8. Women, 

older individuals, and patients with high disease activity also tend to have a poor clinical response 

to TNFα-i and are at higher risk for switching5,9.  

However, these studies often only estimate TNFα-i effectiveness and reasons for switching 

based on structured medical record data analysis, which often overlook social determinants of 

health, patient preference, or other reasons for switching10. Studies that utilize information from 

clinical notes require time-consuming manual clinical review, making it difficult to scale and keep 

these studies up to date. Since mean post-treatment disease activity scores and annual treatment 

costs tend to be higher in various patients who had a TNFα-i switch11, there continues to be 

significant clinical and financial interest to understand the factors driving TNFα-i switching. Here, 

we aim to develop automated strategies to extract TNFα-i switching information from clinical 

https://www.zotero.org/google-docs/?VFxHDv
https://www.zotero.org/google-docs/?oRPXba
https://www.zotero.org/google-docs/?BDrn08
https://www.zotero.org/google-docs/?l5iTHh
https://www.zotero.org/google-docs/?Fg3TTd
https://www.zotero.org/google-docs/?iSKQZq
https://www.zotero.org/google-docs/?H3BYH9
https://www.zotero.org/google-docs/?XDrwkP
https://www.zotero.org/google-docs/?IhMof8
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notes using large language models (LLMs) and to perform a comparative analysis of different 

open-source LLMs on this task.  

 

5.2 Methods 

5.2.1 TNF inhibitor treatment cohort selection 

We identified TNFα-i-treated patient cohort using the UCSF Information Commons dataset, which 

contains longitudinal, deidentified medical record data and clinical notes from patients at a large, 

academic medical center between 2012 and 202312. We selected all TNFα-i medication orders and 

administrations, using a string search of all TNFα-i generic or brand names derived from data 

provided by the Food and Drug Administration13 (FDA). Medication names were mapped to 

appropriate generic or biosimilar categories (Supplemental Table 5.1), and encounters where a 

patient switched to a new TNFα-i and had an associated clinical note were identified. Patients 

without demographic data were also excluded, as were encounters where multiple TNFα-i were 

ordered on the same date. We also excluded medications without at least 6 months of follow up 

from downstream comparative analysis, since it could not be determined whether the patient 

switched TNF inhibitors in these cases. For encounters with multiple notes, only the first note was 

used for analysis. 

Patient demographic information was calculated using the tableone package14, with 

continuous distributions reported as means and standard deviations and categorical values 

represented as proportions.. Statistical testing was performed using chi-square tests for categorical 

variables and two-sided t-tests for continuous values. A p-value of less than 0.05 was considered 

significant. All data used in this study was performed using retrospective data, and was determined 

to be exempt from further review by the UCSF IRB. 

https://www.zotero.org/google-docs/?nlnAGi
https://www.zotero.org/google-docs/?LVLOck
https://www.zotero.org/google-docs/?CGwJd3
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5.2.2 Prompt selection for TNFα-i switching reason extraction using GPT-4 

The GPT-4 large language model was used to extract information about TNFα-i switching from 

associated clinical notes in a zero-shot manner. Data were split into 5%/95% validation and test 

sets, with the validation set used for evaluation of 4 different prompts (Supplemental Table 5.2) 

and final metrics reported on the test set. Each prompt was used to extract the TNFα-i started, the 

TNFα-i stopped, and one of the following categories for stopping: adverse event, lack of efficacy, 

insurance/cost, drug resistance, patient preference, other, or unknown (“NA”). Model performance 

was assessed against weak labels from associated structured medication information, and microF1 

scores are reported. Previous experiments have shown that these labels are generally unreliable 

when assessing null values extracted by GPT-4 (eg. when the medication is not documented in 

clinical note). As a result, we report microF1 scores separately for all labels and for only non-null 

values extracted by the language models. The prompt with the highest microF1 scores calculated 

using non-null values was used to extract TNFα-i switching information from the test set for 

downstream analysis. 

 

5.2.3 Comparison of open-source large language models on TNFα-i switching information 

extraction 

Several open-source models were also assessed using the manually annotated validation data. 

These included several independently trained models (“Yi-6B-Chat”, “Llama-2-7B-Chat”, 

“Starling-7B-alpha”, “Gemma-7B-IT”), as well as updated versions (“Llama-3-8B-Instruct”, 

“Starling-7B-beta”) or further finetuned versions of some models (“zephyr-7b-gemma-v0.1”, 

“OpenHermes-2.5-Mistral-7B”, “Snorkel-Mistral-PairRM-DPO”). Two models, “JSL-MedMNX-
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7B-SFT” and “BioMistral-7B” were specifically trained or finetuned on biomedical data. 

Additional details on models and parameters usage can be found in the supplemental figures 

(Supplemental Table 5.3). Open source models were compared using average pairwise win rates 

compared to GPT-4 for each response, following open-source comparative benchmarks15. Model 

“ties” were recorded when both models provide correct or incorrect values, while a model “win” 

was recorded when one model provides the correct value while the other does not. We report mean 

win rates of each model against all other models. 

 

5.3 Results 

5.3.1 TNFα-i Cohort Identification from UCSF Information Commons 

We identified 190,518 relevant TNFα-i medication orders (Figure 5.1), including 51,402 that were 

administered to patients as procedures, from 12,442 unique patients. These orders were mapped to 

generic names, ignoring dosage information and modality (Supplemental Table 5.1). After 

removing 14 patients without demographic information, 190,500 total medication orders 

remained. Duplicate TNFα-i orders and orders without associated clinical notes were dropped, 

leaving 64,983 unique medication orders. When there were different TNFα-i orders at the same 

encounter, only the first TNFα-i and associated clinical note were considered for downstream 

analysis. This left a TNFα-i treatment dataset consisting of 58,323 medication orders from 11,572 

patients. Of these patients, 2,112 had a documented TNFα-i switch, while 7,075 had no 

documented switch with a follow-up encounter at least 6 months after the TNFα-i order. Another 

2,385 patients also did not have a medication switch but were lost to follow up and were excluded 

from further analysis.  

https://www.zotero.org/google-docs/?dI73bV
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5.3.2 TNFα-i Treatment Cohort Demographics 

The TNFα-i treatment cohort (n=9,187) as a whole had a mean age of 39.9 years (SD 19.0), with 

a slightly higher proportion of female patients (57.1%, Table 5.1). Patients with a documented 

TNFα-i switch (n=2,112) were more likely to be female (60.5% vs 56.1%, p=0.002) and had a 

significantly lower mean age (36.3 years, SD 18.4) compared to those who did not (n=7,075, 41.0 

years, SD 19.0, p<0.001). Patients with a TNFα-i also tended to be followed longer at UCSF, with 

a mean follow-up period between their first TNFα-i prescription and final encounter documented 

at UCSF of 7.1 years (SD 5.6) compared to those without a switch (5.3 years, SD 4.6). There were 

also significant differences in self-reported race/ethnicity values between the switching and non-

switching groups (p<0.001). Overall, the majority of patients were listed as being “White” (60.2%) 

or “Latinx” (13.9%). There was a higher proportion of patients with a TNFα-i switch who were 

“Latinx” (16.4%) compared to the non-switching group (13.2%), while there was a lower 

percentage of patients in the TNFα-i switch group who were “Asian” (7.4% vs 5.8%, respectively).  

Proportions of first documented TNFα-i also differed significantly between switching and 

non-switching groups (p<0.001). The most common first TNFα-i across all patients was 

Adalimumab (40.9%), which was lower in the TNFα-i switching group (31.6%) compared to the 

non-switching group (43.7%). Infliximab (26.3%) and etanercept (24.1%) were the next most 

common, with more patients in the TNFα-i starting on etanercept (31.8%) compared to patients 

without a TNFα-i switch (21.8%). Within patients who had a TNFα-i switch, the most common 

first switch was from etanercept to adalimumab (n=546, 6.4%, Figure 5.2). Patients who started 

on certolizumab and infliximab were also most likely to switch to adalimumab (41.8% and 45.5%, 

respectively). Out of patients who started on adalimumab, the most common switch was to 

infliximab (n=265, 39.7%). 
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5.3.3 Reasons for TNFα-i switching using GPT-4 abstracted information 

The GPT-4-turbo-128k model was used to test four different prompts for extracting information 

about TNFα-i switching strategies and reasons for switching (Supplemental Table 5.2). Out of 

the default prompt, prompt that provided specific categories for drug values (“Drugs provided”), 

a prompt that specified categorical reasons for switching (“Reasons provided”), or both drugs and  

reason categories provided (“All values provided”), the prompt providing the reason categories 

had the best overall performance (Supplemental Table 5.1). With this prompt, microF1 scores 

were 0.42 for TNFα-i stopping information extraction and 0.50 for extracting which new TNF was 

prescribed (n=146). When extracted null values were excluded from analysis, microF1 scores 

increased to 0.63 (n=71) and 0.89 (n=56), respectively for TNFα-i stopping and new TNFα-i order 

information. Although all prompts had microF1 scores within 0.05, “Reasons provided” had the 

highest average score and was used for all downstream tasks. 

When applied to the test dataset (n=2958), GPT-4 performance on TNFα-i started and 

stopped information extraction had microF1 scores of 0.51 and 0.37, respectively. When only 

considering non-null values, microF1 scores increased to 0.90 (n=1184) and 0.60 (n=1331), 

respectively. Analysis of all the reasons for TNFα-i switching extracted by GPT-4 for the 

validation and test sets uncovered that 1759 of the notes appeared to contain no reasons for 

switching, while the most commonly extracted reason for switching was due to lack of efficacy 

(n=568, 56.9%, Supplemental Table 5.4) and adverse events (n=135, 13.5%). Insurance or cost 

issues accounted for 10.8% (n=108) of reasons and patient preference for another 8.2% (n=82). 
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5.3.4 Comparison of TNFα-i information extraction across large language models 

The best prompt previously selected (“Reasons provided”) was also used to understand how 

different open source LLMs performed on these treatment information extraction tasks compared 

to GPT-4. “Starling-7b-beta” had the highest average microF1 score of 0.52 when compared to 

GPT-4 extracted values while “Llama-2-7B-chat” had the lowest average score of 0.07 

(Supplemental Table 5.5). Again, only evaluating non-null values increased microF1 scores, 

which ranged from 0.42 for “Llama-2-7B-chat” to 0.85 for “Starling-7b-beta”.  

The concordance between models was also explored. Given GPT-4 performance on the 

previous tasks, outputs from this model were used as a baseline to further evaluate pairwise 

concordance between other models (Supplemental Table 5.6). Llama-3-8B-Instruct and Starling-

7B-beta showed the highest mean concordance with GPT-4 extracted information, with a 

concordance rates of 82.4% (SD: 0.6%) and 77.0% (SD: 6.0%), respectively. Llama-2-7b-Chat 

showed the lowest concordance, with only 55.3% of values concordant (SD: 7.6%). We also 

evaluated pairwise win and tie rates of these models compared to GPT-4-turbo-128k extracted 

values. Mean tie rates ranged from 66.3% (SD: 16.2%, Figure 5.3) for llama-2-7b-chat-hf to 

80.0% (SD: 12.8%) for JSL-MedMNX-7B-SFT. Llama-3-8B-Instruct had the highest average win 

rate at 15.5% (SD: 11.4%), followed by zephyr-7b-gemma-v01 at 12.7% (SD: 9.0%).  

 

5.4 Discussion 

Here, we provided a set of automated evaluations of GPT-4 and open-source large language 

models in treatment information extraction from a cohort of TNFα-i-treated patients. We 

uncovered differences in demographic characteristics for patients who had a TNFα-i switch versus 

those without, and showed that the most commonly extracted reasons were due to adverse events, 
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followed by lack of efficacy and insurance costs. Adverse events and lack of efficacy are well 

documented reasons for TNFα-i switching4,6, and while there have been several studies analyzing 

the cost-effectiveness of different TNFα-i treatment strategies11,16, the results here provide 

evidence for how frequently insurance or cost is a causal reason for TNFα-i switching.  

Additionally, we assess the use of GPT-4 and open-source large language models for this 

use case and showed that prompt engineering with GPT-4 on this task led to comparable 

performance on many smaller, open-source language models. We further showed that multiple, 

independent models often can perform this information extraction with highly concordance to 

GPT-4. As new language models are developed, the need for improved automated evaluation 

approaches is necessary to understand which models may perform better at different tasks. Finally, 

we demonstrated that GPT-4 extracted treatment information from notes are often poorly aligned 

with structured medical record data around medication switching, particularly medication 

stopping. Future studies are needed to assess whether these discrepancies between structured data 

and GPT-4 extracted values, as well as the incorporation of non-medical reasons for switching, 

may affect the development of models for individual treatment estimation or outcome prediction.  

There are several limitations to this study. This study did not dive into disease-specific 

reasons for TNFα-i switching or switches to other medications that may have occurred between 

TNFα-i switches, although the pipeline described here can be applied to more specific patient 

cohorts or other classes of medications in future studies. Additionally, our evaluation of open-

source language models was only compared to GPT-4, currently the state-of-the-art language 

model on general benchmarks, and not to expert annotations. Comparisons to expert annotation 

are likely to clarify the relative capabilities of these open-source models; however there have also 

been studies showing that human evaluation can also be unreliable and a combination of both 

https://www.zotero.org/google-docs/?uQS24A
https://www.zotero.org/google-docs/?iACW27
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evaluations may be beneficial17,18. Finally, we did not apply any filters to the data based on time 

or clinical note type, which may also change the proportions of different reasons extracted. 

Despite these limitations, the results presented here contribute insights into both reasons 

for TNFα-i switching and methods to automate the extraction of such information, using both 

proprietary and recently developed open-source language models. 

 

 

  

https://www.zotero.org/google-docs/?BtpTZv
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5.5 Figures 

 

 

Figure 5.1 Cohort selection. 

TNFα-i-treated patients, and the subset of patients with at least one TNFα-i switch based on 
medication or procedure orders of relevant drugs, were identified from the UCSF Information 
Commons dataset. 
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Figure 5.2 Treatment switching pattern in TNFα-i cohort. 

Sankey diagram showing TNFα-i switching strategies for 9,187 patients from UCSF Information 
Commons. 
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Figure 5.3 Average win rates across open-source language models compared to GPT-4 

extracted TNFα-i switching information. 

Models were compared pairwise to GPT-4 outputs, with a model “win” occurring if one model 
matched GPT-4 and the other did not. If both models matched or were discordant, a “tie” was 
called and not included in this figure.  
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5.6 Tables 

Table 5.1 Patient demographics. 

  

Total
(n=9,187)

No TNFi switch
(n=7,705)

TNFi switch
(n=2,112)

Significance

Mean age, First TNFi (SD) 39.9 (19.0) 41.0 (19.0) 36.3 (18.4) p<0.001

Mean follow-up, years (SD) 5.7 (4.9) 5.3 (4.6) 7.1 (5.6) p<0.001

Sex (%) Missing = 4 p=0.002
Female 5244 (57.1) 3969 (56.1) 1275 (60.5)
Male 3939 (42.9) 3105 (43.9) 834 (39.5)

Race/Ethnicity (%) Missing = 434 p<0.001
White 5268 (60.2) 4076 (60.9) 1192 (57.7)
Latinx 1220 (13.9) 881 (13.2) 339 (16.4)
Other 952 (10.9) 726 (10.9) 226 (10.9)
Asian 612 (7.0) 492 (7.4) 120 (5.8)
Black or African American 417 (4.8) 310 (4.6) 107 (5.2)
Multi-Race/Ethnicity 212 (2.4) 159 (2.4) 53 (2.6)
Southwest Asian
and North African 72 (0.8) 44 (0.7) 28 (1.4)

First documented TNFi (%) p<0.001
Adalimumab 3757 (40.9) 3089 (43.7) 668 (31.6)
Infliximab 2413 (26.3) 1883 (26.6) 530 (25.1)
Etanercept 2216 (24.1) 1545 (21.8) 671 (31.8)
Certolizumab 303 (3.3) 236 (3.3) 67 (3.2)
Infliximab (biosimilar) 289 (3.1) 149 (2.1) 140 (6.6)
Golimumab 209 (2.3) 173 (2.4) 36 (1.7)
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5.7 Supplemental Figures and Tables 

 

Supplemental Figure 5.1 Automated evaluation of GPT-4-turbo-128k performance.  

The GPT-4-turbo-128k model was used to extract TNFα-i switching information, including A) 
which TNFα-i was stopped and B) which was started. microF1 scores evaluated against structured 
data are shown, with LLM extracted null values included (“All values”) and counted as incorrect, 
or without the null values (“Null values dropped”). 
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Supplemental Table 5.1 TNF inhibitor drug generic and brand names. 

Brand name Generic name 

cimzia certolizumab 

enbrel etanercept 

humira adalimumab 

remicade infliximab 

simponi golimumab 

eticovo etanercept-ykro 

erelzi etanercept-szzs 

yuflyma adalimumab-aaty 

idacio adalimumab-aacf 

yusimry adalimumab-aqvh 

hulio adalimumab-fkjp 

abrilada adalimumab-afzb 

hadlima adalimumab-bwwd 

hyrimoz adalimumab-adaz 

cyltezo adalimumab-adbm 

amjevita adalimumab-atto 

avsola infliximab-axxq 

ixifi infliximab-qbtx 

renflexis infliximab-abda 

inflectra infliximab-dyyb 
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Supplemental Table 5.2 Prompts tested using automated evaluation. 

Prompt Prompt Text 

Default 

Task: Using the clinical note provided, answer the following questions - 1. What new 
TNF inhibitor (TNFα-i) biologic drug was prescribed or started? If the patient is not 
starting a new TNF inhibitor drug, write "NA" 2. What was the last TNF inhibitor 
drug the patient used? If none, write "NA" 3. Why was the last TNF inhibitor drug 
stopped or planned to be stopped? If no reason was provided or no TNFα-i was 
stopped, write "NA". Use the following format: {"new_TNFα-i":str, "last_TNFα-i":str, 
"reason_last_TNFα-i_stopped":str} 
 
Answer: 

Drugs 
provided 

Task: Cimzia (certolizumab), Enbrel (etanercept), Humira (adalimumab), Remicade 
(infliximab), Simponi (golimumab), Eticovo (etanercept-ykro), Erelzi (etanercept-
szzs), Yuflyma (adalimumab-aaty), Idacio (adalimumab-aacf), Yusimry (adalimumab-
aqvh), Hulio (adalimumab-fkjp), Abrilada (adalimumab-afzb), Hadlima (adalimumab-
bwwd), Hyrimoz (adalimumab-adaz), Cyltezo (adalimumab-adbm), Amjevita 
(adalimumab-atto), Avsola (infliximab-axxq), Ixifi (infliximab-qbtx), Renflexis 
(infliximab-abda), Inflectra (infliximab-dyyb), and Renflixis (infliximab-abda) are 
tumor necrosis factor inihibitor (TNFα-i) biologic drugs. Using the clinical note 
provided, extract the following information into this JSON format: {"new_TNFα-
i":"What new TNFα-i was prescribed or started? If the patient is not starting a new 
TNFα-i, write "NA"","last_TNFα-i":"What was the last TNFα-i the patient used? If 
none, write "NA"","reason_last_TNFα-i_stopped":"Why was the last TNFα-i stopped 
or planned to be stopped? If no reason was provided or no TNFα-i was stopped, write 
"NA""} 
 
Answer: 

Reasons 
provided 

Task: Tumor necrosis factor inhibitors (TNFα-is) describe biologic drugs targeting 
TNF proteins. Using the clinical note provided, extract the following information into 
this JSON format: {"new_TNFα-i":"What new TNFα-i was prescribed or started? If 
the patient is not starting a new TNFα-i, write "NA"","last_TNFα-i":"What was the 
last TNFα-i the patient used? If none, write "NA"","reason_type_last_TNFα-
i_stopped":"Which best describes why the last TNFα-i was stopped or planned to be 
stopped? "Adverse event", "Drug resistance", "Insurance/Cost","Lack of 
efficacy","Patient preference","Other", "NA"","full_reason_last_TNFα-
i_stopped":"Provide a description for why the last TNFα-i was stopped or planned to 
be stopped?"} 
 
Answer: 
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Prompt Prompt Text 

All values 
provided 

Task: Cimzia (certolizumab), Enbrel (etanercept), Humira (adalimumab), Remicade 
(infliximab), Simponi (golimumab), Eticovo (etanercept-ykro), Erelzi (etanercept-
szzs), Yuflyma (adalimumab-aaty), Idacio (adalimumab-aacf), Yusimry (adalimumab-
aqvh), Hulio (adalimumab-fkjp), Abrilada (adalimumab-afzb), Hadlima (adalimumab-
bwwd), Hyrimoz (adalimumab-adaz), Cyltezo (adalimumab-adbm), Amjevita 
(adalimumab-atto), Avsola (infliximab-axxq), Ixifi (infliximab-qbtx), Renflexis 
(infliximab-abda), Inflectra (infliximab-dyyb), and Renflixis (infliximab-abda) are 
tumor necrosis factor inihibitor (TNFα-i) biologic drugs. Using the clinical note 
provided, extract the following information into this JSON format: {"new_TNFα-
i":"What new TNFα-i was prescribed or started? If the patient is not starting a new 
TNFα-i, write "NA"","last_TNFα-i":"What was the last TNFα-i the patient used? If 
none, write "NA"","reason_type_last_TNFα-i_stopped":"Which best describes why 
the last TNFα-i was stopped or planned to be stopped? "Adverse event", "Drug 
resistance", "Insurance/Cost","Lack of efficacy","Patient preference","Other", 
"NA"","full_reason_last_TNFα-i_stopped":"Provide a description for why the last 
TNFα-i was stopped or planned to be stopped?"} 
 
Answer: 
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Supplemental Table 5.3 Open source model information. 

Model name Base Model Release date Reference or model repository 

Llama-2-7b-Chat Llama-2-7B Jul 18, 2023 Touvron et al, 202319 

OpenHermes-2.5-Mistral-7B Mistral-7B Oct 29, 2023 https://huggingface.co/teknium/Op
enHermes-2.5-Mistral-7B  

Yi-6B-Chat Yi-6B Nov 22, 2023 01.AI 202420 

Starling-7b-alpha  Mistral-7B Nov 25, 2023 Zhu et al, 202321 

Snorkel-Mistral-PairRM-DPO Mistral-7B Jan 19, 2024 https://huggingface.co/snorkelai/Sn
orkel-Mistral-PairRM-DPO  

BioMistral-7B Mistral-7B Feb 14, 2024 Labrak et al, 202422  

Gemma-7B-IT Gemma-7B Feb 21, 2024 https://huggingface.co/google/gem
ma-7b-it  

Zephyr-7b-gemma-v01 Gemma-7B Mar 1, 2024 https://huggingface.co/HuggingFac
eH4/zephyr-7b-gemma-v0.1  

Starling-7b-beta Mistral-7B Mar 19, 2024 https://huggingface.co/Nexusflow/
Starling-LM-7B-beta  

JSL-MedMNX-7B-SFT Starling-7B 
(?) 

April 15, 2024 https://huggingface.co/johnsnowla
bs/JSL-MedMNX-7B-SFT  

Llama-3-8b-Instruct Llama-3-8B April 18, 2024 https://huggingface.co/meta-
llama/Meta-Llama-3-8B-Instruct  

 
  

https://www.zotero.org/google-docs/?iIthsF
https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
https://www.zotero.org/google-docs/?3GxGBZ
https://www.zotero.org/google-docs/?xBAxev
https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
https://www.zotero.org/google-docs/?WktNI9
https://huggingface.co/google/gemma-7b-it
https://huggingface.co/google/gemma-7b-it
https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1
https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1
https://huggingface.co/Nexusflow/Starling-LM-7B-beta
https://huggingface.co/Nexusflow/Starling-LM-7B-beta
https://huggingface.co/johnsnowlabs/JSL-MedMNX-7B-SFT
https://huggingface.co/johnsnowlabs/JSL-MedMNX-7B-SFT
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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Supplemental Table 5.4 Reasons for treatment switching. 

Reason type Count Proportion 

NA/Unknown 2106 - 

Lack of efficacy 568 56.9% 

Adverse event 135 13.5% 

Insurance/Cost 108 10.8% 

Patient preference 82 8.2% 

Other 54 5.4% 

Drug resistance 51 5.1% 
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Supplemental Table 5.5 Open-source language model performance on validation set. 

Model Prompt Extraction Task All values 
(microF1) 

Null values 
dropped 

(microF1) 

Non-null 
values (n) 

gpt-4-turbo-128k default-task TNFα-i Stopped 0.41 0.61 76 

gpt-4-turbo-128k default-task TNFα-i Started 0.46 0.88 52 

gpt-4-turbo-128k all-values-provided TNFα-i Stopped 0.41 0.59 78 

gpt-4-turbo-128k all-values-provided TNFα-i Started 0.46 0.90 50 

gpt-4-turbo-128k drugs-provided TNFα-i Stopped 0.38 0.54 79 

gpt-4-turbo-128k drugs-provided TNFα-i Started 0.47 0.90 52 

gpt-4-turbo-128k reasons-provided TNFα-i Stopped 0.41 0.63 71 

gpt-4-turbo-128k reasons-provided TNFα-i Started 0.50 0.89 56 

starling-7b-beta reasons-provided TNFα-i Stopped 0.43 0.83 52 

starling-7b-beta reasons-provided TNFα-i Started 0.60 0.88 76 

llama-3-8b-chat-hf reasons-provided TNFα-i Stopped 0.44 0.79 56 

llama-3-8b-chat-hf reasons-provided TNFα-i Started 0.57 0.83 76 

JSL-MedMNX-7B-
SFT reasons-provided TNFα-i Stopped 0.41 0.82 49 

JSL-MedMNX-7B-
SFT reasons-provided TNFα-i Started 0.59 0.83 81 

OpenHermes-2.5-
Mistral-7B reasons-provided TNFα-i Stopped 0.38 0.88 42 

OpenHermes-2.5-
Mistral-7B reasons-provided TNFα-i Started 0.61 0.82 85 

starling-7b-alpha reasons-provided TNFα-i Stopped 0.37 0.87 39 

starling-7b-alpha reasons-provided TNFα-i Started 0.60 0.82 84 

Yi-6B-Chat reasons-provided TNFα-i Stopped 0.39 0.63 67 

Yi-6B-Chat reasons-provided TNFα-i Started 0.57 0.83 77 

Snorkel-Mistral-
PairRM-DPO reasons-provided TNFα-i Stopped 0.40 0.76 51 

Snorkel-Mistral-
PairRM-DPO reasons-provided TNFα-i Started 0.54 0.77 79 
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Model Prompt Extraction Task All values 
(microF1) 

Null values 
dropped 

(microF1) 
Non-null 
values (n) 

zephyr-7b-gemma-
v01 reasons-provided TNFα-i Stopped 0.34 0.56 64 

zephyr-7b-gemma-
v01 reasons-provided TNFα-i Started 0.46 0.94 48 

BioMistral-7B reasons-provided TNFα-i Stopped 0.22 0.86 21 

BioMistral-7B reasons-provided TNFα-i Started 0.38 0.80 45 

gemma-7b-it reasons-provided TNFα-i Stopped 0.03 1.00 2 

gemma-7b-it reasons-provided TNFα-i Started 0.05 0.89 5 

llama-2-7b-chat-hf reasons-provided TNFα-i Stopped 0.04 0.22 14 

llama-2-7b-chat-hf reasons-provided TNFα-i Started 0.10 0.62 13 
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Supplemental Table 5.6 Concordance of open-source language models with GPT-4 values. 

  Previous 
TNFα-i 

TNFα-i 
Started 

Reason 
Stopped Mean SD 

gpt-4-turbo-128k 100.0% 100.0% 100.0% 100.0% 0.0% 

llama-3-8b-chat-hf 82.9% 81.5% 82.9% 82.4% 0.6% 

starling-7b-beta 80.8% 81.5% 68.5% 76.9% 6.0% 

JSL-MedMNX-7B-SFT 78.1% 80.1% 69.9% 76.0% 4.4% 

OpenHermes-2.5-Mistral-7B 72.6% 75.3% 81.5% 76.5% 3.7% 

starling-7b-alpha 72.6% 76.7% 74.0% 74.4% 1.7% 

Yi-6B-Chat 68.5% 75.3% 45.9% 63.2% 12.6% 

Snorkel-Mistral-PairRM-
DPO 73.3% 69.9% 64.4% 69.2% 3.7% 

zephyr-7b-gemma-v01 71.9% 83.6% 65.1% 73.5% 7.6% 

BioMistral-7B 59.6% 73.3% 61.0% 64.6% 6.2% 

gemma-7b-it 52.7% 65.1% 66.4% 61.4% 6.2% 

llama-2-7b-chat-hf 44.5% 61.0% 60.3% 55.3% 7.6% 
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Chapter 6 

Generation of Guideline-Based Clinical Decision Trees 

 

6.1 Abstract 

Molecular biomarkers play a pivotal role in the diagnosis and treatment of oncologic diseases but 

staying updated with the latest guidelines and research can be challenging for healthcare 

professionals and patients. Large Language Models (LLMs), such as MedPalm-2 and GPT-4, have 

emerged as potential tools to streamline biomedical information extraction, but their ability to 

summarize molecular biomarkers for oncologic disease subtyping remains unclear.  Auto-

generation of clinical nomograms from text guidelines could illustrate a new type of utility for 

LLMs. 

In this cross-sectional study, two LLMs, GPT-4 and Claude-2, were assessed for their 

ability to generate decision trees for molecular subtyping of oncologic diseases with and without 

expert-curated guidelines. Clinical evaluators assessed the accuracy of biomarker and cancer 

subtype generation, as well as validity of molecular subtyping decision trees across five cancer 

types: colorectal cancer, invasive ductal carcinoma, acute myeloid leukemia, diffuse large B-cell 

lymphoma, and diffuse glioma. Both GPT-4 and Claude-2 “off the shelf” successfully produced 

clinical decision trees that contained valid instances of biomarkers and disease subtypes. 

Overall, GPT-4 and Claude-2 showed limited improvement in the accuracy of decision tree 

generation when guideline text was added. A Streamlit dashboard [https://clinicaltrees.org/] was 

developed for interactive exploration of subtyping trees generated for other oncologic diseases. 

This study demonstrates the potential of LLMs like GPT-4 and Claude-2 in aiding the 

summarization of molecular diagnostic guidelines in oncology. While effective in certain aspects, 

https://clinicaltrees.org/
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their performance highlights the need for careful interpretation, especially in zero-shot settings. 

Future research should focus on enhancing these models for more nuanced and probabilistic 

interpretations in clinical decision-making. The developed tools and methodologies present a 

promising avenue for expanding LLM applications in various medical specialties. 

 

6.2 Introduction 

Molecular biomarkers are becoming increasingly crucial in supporting the diagnosis and treatment 

of oncologic diseases but keeping up with the latest guidelines and relevant research can be time-

consuming for physicians, researchers, and patients. The recent emergence of several new large 

language models (LLMs) present a unique opportunity to help streamline text-heavy healthcare 

workflows, including medical information summarization and education. Previous studies have 

demonstrated that new LLMs are capable of extracting complex clinical information from 

oncology progress notes1, suggesting differential diagnoses2, or even generating decision trees 

from clinical trial criteria3 or for clinical decision support4. The generation of decision trees can 

provide clear visual guidelines for clinical support, which can significantly impact downstream 

clinical care. In this study, we aimed to assess the capabilities of two recently developed LLMs in 

generating diagnostic decision trees for the molecular subtyping of cancers, using published 

clinical guidelines. 

 

6.3 Methods 

Diagnostic trees describing cancer subtypes based on molecular biomarker status were generated 

for five cancers using GPT-4 (OpenAI) and Claude-2 (Anthropic), two LLMs with public 

Application Programming Interfaces (APIs). These cancers were selected based on the prevalence 
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of known molecular biomarkers, and included two common solid organ cancers (colorectal cancer 

[CRC] and invasive ductal carcinoma [IDC]), a common hematologic cancer (acute myeloid 

leukemia, AML), a rare hematologic cancer (diffuse large B-cell lymphoma [DLBCL]), and a rare 

solid cancer (diffuse glioma). 

Trees were generated using a specific prompt that contained either only formatting 

guidelines (Figure 6.1) or also included information provided from recent classification guidelines 

for each of the five cancers5–9 (Supplemental Table 6.1). Clinical trees were generated to contain 

molecular biomarker status as nodes, terminating at nodes that were molecular subtypes. Model 

temperature was set to 0, and a new API call was made for each of the different prompts used. 

Additional details on models and parameters used are provided in Supplemental Table 6.2. 

Results were processed into Pydot graph objects10 and visualized using an interactive dashboard 

developed using Streamlit11.  

Each branch of LLM-generated decision trees were evaluated against subtyping decision 

trees generated by clinical reviewers based on clinical guidelines. Evaluators were blinded to 

which language model generated which tree, and each tree was evaluated by two reviewers, with 

discrepancies resolved by discussion. We report mean accuracies of subtyping trees, as well as 

proportions of subtypes and biomarkers correctly extracted by the two LLMs for each cancer. 

Hallucinations, identified as values not mentioned in recent guidelines for use in  molecular cancer 

subtype diagnosis, were also quantified by clinical evaluators. Accuracy of LLM trees with and 

without guidelines were compared with two-sided T-tests using Scipy12. A p-value less than 0.05 

was considered statistically significant.   
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6.4 Results 

Both Claude-2 and GPT-4 were able to create properly formatted decision trees with or without 

being provided actual clinical guideline text. Including guideline text improved the proportion of 

cancer subtypes and biomarkers that each model was able to extract. Mean accuracy of cancer 

subtype extraction increased when guidelines were provided, with the Claude-2 model increasing 

from 45% (SD: 44.7%, n=5) to 81.9% (SD: 20.8%, p=0.13) and GPT-4 from 36.1% (SD: 33.3%) 

to 82.0% (SD: 24.2%, p=0.035). Without guidelines, both GPT-4 and Claude-2 were best at 

generating accurate cancer subtypes in decision trees for IDC (80% and 100%, respectively) and 

neither were able to produce subtypes of CRC. By providing guideline text, both GPT-4 and 

Claude-2 were able to extract and visualize all expected subtypes for IDC and CRC 

(Supplemental Figure 6.1). 

Regarding hallucinations, GPT-4 and Claude-2 produced the greatest proportion of 

hallucinated subtypes, which were subtypes not present in clinical trees generated by clinical 

annotators, for CRC and AML when not provided  guideline text. Subtypes that were not 

mentioned in recent guidelines, such as “NPM1 Wildtype, FLT3-ITD Wildtype and CEBPA 

Mutated AML,” were considered hallucinations. On average, 40% (SD: 54.8%) of subtypes 

extracted by Claude-2 without guidelines were deemed to be hallucinations, which decreased to 

21.0% (SD: 23.7%, p=0.50) when provided guideline text . GPT-4 referenced hallucinated cancer 

subtypes 37.1% (SD: 54.8%) of the time when not provided guideline text, which dropped to  2.9% 

(SD: 6.3%, p=0.17) when provided with guideline text  (Supplemental Figure 6.1). 

For accurate biomarker extraction, Claude-2 extracted 55.3% of expected biomarkers on 

average (SD: 24.6%) without guideline text and 86.2% with (SD: 16.4% , p=0.07), while GPT-4 

extracted 50.3% (SD: 27.3%) of biomarkers without guideline text and 83.3% with (SD: 23.5%, 
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p=0.048). Without guideline text, both GPT-4 and Claude-2 both showed 75% accuracy for 

biomarker extraction for IDC and were least accurate in extracting biomarkers for AML (4.2% and 

12.5%, respectively). With guideline text, both GPT-4 and Claude-2 were able to extract all 

expected subtypes for IDC and diffuse gliomas (Supplemental Figure 6.2). 

On average, without guideline text, Claude-2 and GPT-4 produced biomarkers that were 

considered hallucinations (for example, “RBM15::MKL1” and “TP53”) in 16.3% (SD: 17.1%) 

and 16.0% (SD: 35.8%) of generated values, respectively. With provided guideline text, 

hallucinations decreased to 12.5% (SD: 13.6%) for Claude-2 and 13.0% (SD: 15.9%) for GPT-4. 

The largest proportion of hallucinated biomarkers was produced for AML, with 40% 

hallucinations for Claude-2 and 80% for GPT-4, although providing guidelines reduced model 

hallucination down to 8.7% for Claude-2 and 7.7% for GPT-4 (Supplemental Figure 6.2).  

Assessment of average overall accuracy of decision trees showed that, without guidelines, 

GPT-4 produced valid branches 46.7% (SD: 46.2%) of the time, while decision tree branches were 

39.3% (SD: 40.1%) valid for Claude-2. Substantial increases in decision tree accuracy were seen 

for AML, going from 0% to 92.3% for GPT-4 and 0% to 61.7% for Claude-2. However, adding in 

guideline text did not significantly increase overall accuracy of decision tree generation for either 

GPT-4, which increased to 72.5% (SD: 41.1%, p=0.38) or Claude-2 (54.2%, SD: 30.5%, p=0.52). 

A streamlit dashboard [https://clinicaltrees.org/] was developed to provide a user interface 

for exploration of GPT-4 and Claude-2 model performance on subtyping tree extraction for user-

specified cancer types and guidelines (Figure 6.3).  

 

https://clinicaltrees.org/
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6.5 Discussion 

Here, we demonstrate the capability for language models to generate accurate and comprehensive 

decision trees from clinical  guideline text for molecular diagnosis across multiple cancer types. 

Additionally, we showed that adding clinical guideline text into prompts improves extraction of 

molecular biomarkers and oncology disease subtypes but did not significantly improve clinical 

decision tree generation. 

While this brief report identifies opportunities for LLMs in supporting biomedical 

information review and visualization in oncology, the results are focused on molecular diagnosis, 

which is only a part of clinical decision making. Furthermore, not all molecular features are binary 

in nature, and future iterations of these decision trees may be assessed for their ability to include 

probabilities at each branch along the decision tree. Finally, another limitation to this study is the 

use of API-based models, which are not as interpretable and are more costly to run compared to 

open-source alternatives. We also did not perform any prompt engineering, and further exploration 

of strategies like chain-of-thought may help improve decision tree generation, which involves 

significant reasoning capabilities. 

Despite these limitations, our initial evaluation of GPT4 for oncology molecular 

information extraction shows significant potential for further development. Additionally, we 

provide open access to the tools assessed and developed here, and for future studies to  use similar 

approaches to evaluate summarization of guidelines for treatment or other aspects of clinical 

workflows across different medical specialties. Future work might even include being able to 

summarize many raw clinical studies and results from clinical trials into more accessible guideline 

texts and visualizations.   
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6.6 Figures 

 
 
Figure 6.1 Prompts to generate clinical decision trees. 

Prompt used to generate clinical cancer subtyping trees. Values highlighted in green are replaced 
with cancer specific information for each of the five cancers evaluated, and values highlighted in 
yellow are only included if guidelines are present. 
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Figure 6.2 Accuracy of clinical decision tree generation using LLMs. 

Clinical evaluators assessed the A) accuracy of cancer subtype extracted by each LLM with and 
without guidelines. B) Clinical evaluators also assessed the overall accuracy of clinical decision 
trees generated. A tree was only considered correct if all biomarkers and subtypes were clinically 
appropriate, and the biomarkers accurately described the associated cancer subtype. 
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Figure 6.3 Clinical decision tree dashboard.  

A streamlit dashboard [https://clinicaltrees.org/] was created to enable exploration of subtyping 
decision trees for other cancers and guidelines.  
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6.7 Supplemental Figures and Tables 

Supplemental Table 6.1 Guideline references and sections used. 

Cancer type and 
reference used Sections used 

Acute Myeloid Leukemia6 

“Acute myeloid leukaemia” section 1 (Enhanced grouping 
framework permitting scalable genetic classification and 
deemphasizing blast enumeration where relevant) and section 2 
(AML with defining genetic abnormalities) 

Diffuse large B-cell 
lymphoma5 “Overview,” “Diagnosis,” and “Workup” 

Diffuse gliomas8 “Integrated histomolecular classification” 

Colorectal cancer7 “CMS1,” “CMS2,” “CMS3,” and “CMS4” 

Invasive ductal carcinoma9 “Molecular classification” section 1 (Intrinsic Subtypes) and 
section 2 (Integrative Clusters) 
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Supplemental Table 6.2 Overview of language models used. 

 GPT4 Claude 

Company OpenAI Anthropic 

Model name GPT4 Claude 2 

Model version 0613 2023-06-01 

Model context length 8,192 100,000 

Temperature 0 0 

Top p 1 1 

Maximum output tokens 4500 4500 

Training data cutoff date September 2021 December 2022 

Cost $0.03/1k input tokens 
$0.06/1k output tokens 

$11.02/1M input tokens 
$32.68/1M output tokens 

Date accessed October 3, 2023 October 3, 2023 
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Supplemental Figure 6.1 Hallucinations of cancer subtype extraction 
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Supplemental Figure 6.2 Accuracy and hallucinations of cancer subtype extraction 
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Chapter 7 

Checklist for Generative Modeling for Clinical Research 

 

Recent advances in generative models, including large language models (LLMs), vision language 

models (VLMs), and diffusion models, have accelerated the field of natural language and image 

processing in medicine and marked a significant paradigm shift in how biomedical models can be 

developed and deployed1,2. While these models are highly adaptable to new tasks, scaling and 

evaluating their usage presents new challenges not addressed in previous frameworks. In 

particular, the ability of these models to produce useful outputs with little to no specialized training 

data (“zero-” or “few-shot” approaches), as well as the open-ended nature of their outputs, 

necessitate the development of updated guidelines in using and evaluating these models.  

In response to gaps in standards and best practices for the development of clinical AI tools 

identified by US Executive Order 141103 and several emerging national networks for clinical AI 

evaluation4, we begin to formalize some of these guidelines by building on the “Minimum 

information about clinical artificial intelligence modeling” (MI-CLAIM) checklist5. 

The MI-CLAIM checklist, originally developed in 2020 and already cited 300 times, 

provided a set of six steps with guidelines on the minimum information necessary to encourage 

transparent, reproducible research for artificial intelligence (AI) in medicine. Here, we propose 

modifications to the original checklist that highlight differences in training, evaluation, 

interpretability, and reproducibility of generative models compared to traditional AI models for 

clinical research. This updated checklist also seeks to clarify cohort selection reporting and adds 

additional items on alignment with ethical standards. 

 



 

 132 

7.1 Study design 

We describe best-practice approaches for generative modeling study design, particularly for new 

tasks enabled by these technologies and how these may affect study design choices. Additionally, 

we update the MI-CLAIM to clarify checklist items to improve reproducibility of cohort selection 

for all clinical AI research. Finally, we add checklist items to encourage researchers to assess bias, 

privacy, and harm of generative AI studies (Table 7.1). 

 

7.1.1 Study design for generative modeling 

Generative modeling has opened up new types of tasks that have previously been limited by the 

capabilities of older models, and require careful consideration of appropriate datasets, labels, 

evaluation, and interpretation of results. In tasks where the outcomes are well-defined and fall into 

either discrete categories (categorical labels) or a spectrum of values (continuous labels), these 

labels should be robust, clinically validated, and reflective of the outcome of interest. How labels 

were derived should also be clearly documented, including the source of the labels and protocols 

to retrieve these labels. If labels are provided by human annotators, at least two annotators should 

be involved and details on annotation guidelines and inter-annotator agreement provided6. If 

outputs are unstructured, such as summaries of clinical notes, and do not readily map to simple 

labels, more robust evaluation frameworks are necessary, which may again involve both automated 

and human evaluation. We discuss these evaluation strategies in detail in part 4. 

For all generative model studies, researchers should also be careful of training data 

memorization (“data leakage” or “contamination”)7,8. Almost all publicly available datasets are 

included in generative model training data and should not be used as test datasets unless it can be 

demonstrated that the model has not been trained on the specific task or the data was published 
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after the model was trained9. One option to test for memorization is to see whether the generative 

model can regenerate large portions of the dataset10. Importantly, however, memorization of data 

is still possible even if the foundation model cannot regenerate the dataset in this way and should 

be listed as a limitation if public datasets are used11. 

Another key feature of generative models is their ability to produce a variety of valid 

outputs, making consistency and reproducibility a unique challenge in study design. For 

classification problems where the goal is to consistently output a discrete value, models can be set 

to a temperature of 0, greedy sampling to select the highest probability token each time, or a seed 

set to control reproducibility6. This is particularly relevant in clinical decision support systems 

where consistency of recommendations is a key concern. For open-ended generation, where 

stochasticity is expected or of interest to the research, sampling confidence intervals or 

representative outputs should be provided where feasible10,11. 

 

7.1.2 Best practices for cohort selection 

Ideally, code to select patient cohorts and raw individual-level data should be made available 

(which is increasingly compliant with mandates from funding agencies, including the National 

Institutes of Health), but in cases where either is not possible, full details on both the patient cohort 

selection should be provided. Ambiguous language, such as “patients diagnosed with diabetes 

were included,” should be avoided in favor of more reproducible terms, such as “patients who had 

at least 2 of the following ICD-10 codes: E11.*, E13.*... were included”. If datasets are de-

identified or are otherwise not representative of the clinical settings presented by the research 

question, these limitations should be described and discussed in detail. This information may 

include how date were shifted to preserve privacy, whether age is masked, specific methods used 
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for redaction of text, which Electronic Medical Record (EMR) vendor the data was derived from, 

if the data was obtained from specific department(s), or other deviations from real-world settings. 

We additionally provide checklist items for cohort selection based on unstructured or 

multimodal data. If methods to select patients are based on the presence of certain values 

mentioned in clinical text, the list of keyword terms, regular expressions, or other selection criteria 

should be made available. If qualitative factors, such as manual chart review, are used to identify 

patient cohorts, these should be detailed and the qualifications (eg. years of practice, specialty, etc) 

of the reviewer should be reported. Pre- and post-processing steps, such as extracting specific 

sections, converting text to lowercase, lemmatization or stemming, and/or mapping to standard 

vocabularies, should also be reported in full. Sensitivity analyses should be performed where 

appropriate to justify any patient selection criteria deviating from established guidelines. 

Specifications for handling missing data should also be provided, if applicable. 

 

7.1.3 Bias, privacy, and harm assessments 

Identifying potential harms of modeling approaches is becoming increasingly important for 

generative models, which can produce complex, unstructured outputs that may be difficult to 

identify as inaccurate or biased12,13. The updated MI-CLAIM checklist introduces new items that 

encourage discussion, identification, and mitigation of study biases, privacy concerns, and 

potential for harm. Here, we briefly discuss examples of approaches that may be used to promote 

transparency and inclusivity in these study design elements. 

Models trained on biased data can perpetuate clinical biases in generated content14. All 

available details regarding data distribution of training and evaluation datasets should be reported, 

including patient sociodemographic information, any data imbalance, the time period when the 
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data was collected, and any changes to best practice medical guidelines during this time period15. 

When possible, analysis of model performance across diverse patient subgroups is strongly 

encouraged to identify biases in downstream deployment and impact on patient care and decision-

making8,9. This is particularly critical if training or evaluation datasets are not reflective of real-

world patient diversity or clinical workflows, and external validation to assess model fairness and 

robustness should be performed across different data distributions if possible. For assessment of 

cultural and social biases, researchers should consider engaging with a diverse set of clinical 

evaluators. Potential clinical impacts of generative models should also be identified or if possible, 

assessed in real-world settings with patient-centered approaches that are inclusive of diverse 

cultural and social communities16,17. 

Due to the rapid development of generative modeling approaches, data privacy and security 

vulnerabilities also remain a significant concern3. Model vulnerabilities should be assessed based 

on up-to-date literature on privacy and security18,19, and care must be taken to ensure that sensitive 

data or model outputs from sensitive data are maintained in secure environments20. This section 

provides only a brief description of potential approaches to analyzing and addressing model safety, 

fairness, and reliability, and we point researchers towards more comprehensive guidelines on each 

of these topics18,21–23. 

 

7.2 A new train-test split for prompt development and few-shot learning 

To minimize data leakage and prevent overfitting, study design should also ensure that training, 

validation, and test datasets are independent of each other. While traditional machine learning 

methods typically rely on large, well-annotated datasets for training, newer generative models have 
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been shown to be capable of performing tasks with minimal examples (few-shot), or even without 

any specific examples (zero-shot). 

For simple supervised machine learning models, common train-test splits typically use 

about 70-80% of the data for training, ~10-15% for hyperparameter tuning, and the remainder used 

only for final model evaluation. For few- or zero-shot approaches, the “training” dataset can be 

kept to a minimal fraction of the data, still independent from the validation or test datasets. Data 

splits should be performed at the patient level, with all data from each patient only included in one 

of the splits to maintain independence. We also emphasize the use of an independent “prompt 

validation” dataset for prompt engineering, which should be thought of as a hyperparameter that 

can overfit to a dataset. Previous studies have used 5% of the data or a minimum of 50 to 100 

samples24,25 for prompt validation. While the same validation dataset should be used for prompt 

engineering between different models, the best prompt selected for each model may vary. For 

classification tasks where potential labels are provided in the prompt, the order of these labels 

should be randomly shuffled since models may be sensitive to the position of values in the 

prompt26,27. All prompts should be shared verbatim, along with representative model outputs when 

feasible, and a discussion of robustness of the model relative to specific prompts28. 

As prompt engineering is a rapidly evolving field, this checklist does not specify how to 

approach prompt development beyond the use of independent prompt validation datasets and 

appropriate randomization. We direct readers to follow best practice guidelines laid out by each 

model developer, which often emphasize using clear, descriptive, concise instructions, providing 

a value to output if the task is not applicable, and using leading cues to direct the formats of 

outputs29–31. New approaches, such as chain-of-thought approaches for reasoning tasks32, self-
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consistency with shuffling33, or training vector representations as “soft prompts”34, should be 

considered when developing prompts.  

 

7.3 Updates to baseline selection 

Due to the zero-shot nature and variety of potential outputs generated by LLMs, appropriate 

baselines should be selected rigorously. For model baselines, both generative and non-generative 

approaches should be considered, particularly if the outcome is discrete and the task can be 

performed by non-generative models. Any post-processing of generative model outputs should be 

detailed in the methods, including how errors or unexpected outputs are handled. If non-generative 

models are used, which require training or finetuning, it’s important to report their performance 

across various volumes of training data. Discussion of the tradeoffs between compute and cost 

requirements is encouraged. This allows an understanding of the scalability and efficiency of these 

non-generative models compared to their generative counterparts24,35.  

Given the rapid pace of model development, the most recent model available should be 

preferred for testing. Previous versions can serve as baselines where appropriate. Open source 

baselines are strongly encouraged and researchers should consider evaluating models of different 

sizes if available. The training datasets, context lengths, and all other model details should be 

reported or clearly referenced to describe their potential impact on the task being tested. If no 

comparable models are available, human evaluation can be used, which we detail in part 4B. 

 

7.4 Model evaluation 

Evaluation metrics for generative models should distinguish between metrics that measure overlap 

accuracy, which measures proportions of overlapping subunits (eg. tokens, pixels), semantic 
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accuracy, which compare the meanings of outputs and labels, and clinical utility, which measure 

how models affect clinical workflows or downstream patient outcomes36–38. We identify best-

practices for both automated and clinical expert evaluations, with a focus on metrics developed to 

handle the complex, unstructured outputs from generative models. 

 

7.4.1 Automated model evaluation 

Similar to traditional machine learning classification setups, accuracy, F1 scores (for imbalanced 

datasets), or other suitable metrics should be reported, along with class distribution, for categorical 

labels. For continuous outputs, such as time saved or changes to patient activity scores, which are 

common for assessing clinical utility of models, best practice statistical approaches and reporting 

should be applied, including appropriate adjustment for confounding variables and multiple 

hypothesis testing. 

For unstructured text outputs, automated overlap scoring methods like BLEU and ROUGE 

are commonly used, but these only capture how well tokens match between model predictions and 

a ground truth reference. These provide an estimate of how well the models produce text that look 

correct, but do not assess whether the answers are clinically accurate, so are often poorly correlated 

with human evaluation on biomedical tasks16,39. These methods also often fail in cases of 

negation40, where the model produces values such as “correct” that can match a significant 

proportion of the negated value “not correct” but has the opposite meaning. Additionally, these 

methods may not be appropriate for certain clinical tasks where reference documents typically do 

not exist, such as in document summarization. 

Semantic scoring methods, such as BERT-based scoring methods41 or a panel of multiple 

metrics42,43, can provide more reliable evaluation, but should also be compared to human 
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evaluation where possible to demonstrate its accuracy on new tasks. The same caution should be 

applied if using another AI model for semantic scoring. Although initial studies using these 

methods for evaluation on general, non-medical tasks appear promising44–46, rigorous evaluation 

is required before applying these approaches at scale on new, clinical tasks47. 

 

7.4.2 Human model evaluation 

Human model evaluation remains the gold-standard for assessing semantic accuracy and clinical 

utility of generative models. As much as possible, evaluation should be conducted in a blinded 

fashion, with Turing-like assessments against ground truth values or across multiple metrics to 

gauge the accuracy, appropriateness, bias, and other aspects of model performance48,49. For 

complex outputs or simulated scenarios, Objective Structured Clinical Examination (OSCE) type 

evaluations can be considered that assess model performance across multiple axes that better 

reflect real-world clinical encounters or workflows16,50. Although evaluations are dependent on the 

question being asked, we emphasize the need for multiple clinical reviewers and transparent 

reporting of inter-reviewer variability and formal evaluation guidelines.  

 

7.5 Interpretability of generative models 

Interpretability research for generative models remains an active field of investigation, and we 

maintain suggestions from the original MI-CLAIM checklist to apply best-practice interpretability 

methods when possible. These may include local interpretability techniques like LIME51 and 

SHAP52, gradient and attention analysis53,54 for attributing importance scores to different input 

segments, probing methods to identify encoded knowledge55, rule-based methods to explain model 

predictions as if-then-else rules56, and counterfactual analysis to compare minimal example pairs 
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for which language models exhibit different behavior57. Careful evaluation of these methods 

should be performed when applied to new clinical tasks58. Recently, methods like chain-of-thought 

have become popular for generating explanations to improve language model reasoning32. 

However, these generated explanations may not always align with model outputs and should not 

be used as a method of model interpretability55,59.  

Error analysis and sensitivity analysis (ablation tests) are also strongly encouraged as 

methods to better understand model behavior, particularly if evaluation datasets or models are not 

made publicly available. It is becoming increasingly important to understand how generative 

models may fail in clinical settings, which can provide insights into their capabilities and 

limitations beyond accuracy metrics. 

 

7.6 End-to-end pipeline replication 

Reproducible methods for generative modeling research should allow the community to replicate 

1) data collection and cohort selection, 2) model development, inference, and/or deployment, and 

3) end-to-end evaluation. Best-practice methods for reproducible cohort selection are discussed in 

Part 1 alongside study design. For reproducible model development or usage, random seeds and 

other hyperparameters should be reported, along with detailed descriptions of model inputs and 

implementation frameworks, especially if code and/or data are not provided. Due to the rapid 

development of generative models, accurate reporting of model versions is also crucial. As 

mentioned in section 1, model cards that detail model capabilities, intended use, training data and 

limitations, potential biases, and model risks should be provided if releasing a new model21.  

If possible, a sample of the raw data, synthetic data, or the data structure derived following 

patient selection as well as the processed data should be provided6. Use of any synthetic data and 
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strategies for generation should follow individual journal guidelines on data reporting. Along with 

training data, we also emphasize the importance of releasing prompts or other in-context learning 

data, as well as annotation guidelines and details on metrics used for evaluation. Ideally, prompts 

that did not work well and corresponding results should also be reported. Additionally, to promote 

translatability, we encourage researchers to include infrastructure and compute requirements 

needed to run or develop the model as part of their methods. These may include, but are not limited 

to, the type and quantity of hardware used, actual or estimated costs of inference or training, and 

training time if applicable.  

 

7.7 Conclusions 

There is enormous potential for generative models to unlock new research directions and 

applications, but robust study design and evaluations are crucial for developing reproducible, 

transparent, safe, and diverse models for clinical research and deployment. While the focus and 

examples provided here pertain primarily to generative language modeling, these principles can 

be applied to research using biomedical vision, speech, and multimodal models as well. The 

updated MI-CLAIM checklist can be found at https://github.com/BMiao10/MI-CLAIM-2024. We 

welcome continuous community feedback as the generative modeling landscape evolves. Since 

best practices for generative modeling are likely to change as new research emerges in prompt 

engineering, model bias evaluation, and interpretability approaches, the updates presented here 

focus on broad differences in generative modeling compared to traditional AI model development. 

The updated checklist aims to formalize these guidelines for generative modeling study design, 

baseline model development, generative language model evaluation of model accuracy, bias, and 

fairness, interpretability, and end-to-end reproducibility for clinical applications.   

https://github.com/BMiao10/MI-CLAIM-2024
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7.8 Tables 

Table 7.1 Updated MI-CLAIM checklist for generative AI clinical studies. 

Before paper submission 

Study design (Part 1) Page number Notes if not 
completed 

The clinical problem in which the model will be 
employed is clearly detailed in the paper.     

The research question is clearly stated.    

All cohort selection criteria and study design are 
detailed using precise, unambiguous language.    

The characteristics of the cohorts are detailed in the 
text and are shown to be representative of real-world 
clinical settings. 

   

Details on how labels were generated are described, 
including any annotation guidelines, level of 
experience of annotators, inter-annotator scores, etc. 

  

Which step(s) have been taken to understand model 
biases, privacy and security concerns, and other 
potential harm? 

☐ Discussion 
☐ Identification 
☐ Mitigation 

 

Data and optimization (Part 2) Page number Notes if not 
completed 

The origin of the data is described and the original 
format is detailed in the paper.    

All data preprocessing for model training or inference 
is described, including appropriate randomization and 
other transformations. 

   

The independence between training, validation 
(including prompt evaluation), and test sets has been    
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proven in the paper, and data is split at the patient 
level. 

Details on the models that were evaluated and the code 
developed to select the best model are provided, 
including any prompt development or evaluation 
techniques. 

   

Details on post-processing for model outputs should be 
detailed. 

  

Is the output data type categorical, continuous, or 
unstructured? 

☐ Categorical 
☐ Continuous 
☐ Unstructured 

Model performance and evaluation (Parts 3-4) Page number Notes if not 
completed 

The state-of-the-art solution used as a baseline for 
comparison has been identified and detailed. Both 
generative and non-generative approaches are 
considered. 

   

The performance comparison between the baseline and 
the proposed model is presented with the appropriate 
statistical significance. 

   

Identify which type(s) of evaluations were performed, 
and provide clear justifications for the primary metrics 
used for each evaluation. 

☐Overlap accuracy 
☐Semantic accuracy 
☐Clinical utility 

If applicable, details on human evaluation are 
described, including any evaluation guidelines, level of 
experience of evaluators, inter-reviewer scores, etc. 

  

Model examination (Part 5) Page number Notes if not 
completed 

Relevant interpretability techniques, error analysis, 
and/or other approaches are applied to understand 
factors contributing to model behavior. 
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A discussion and/or assessment of the reliability and 
robustness of the model as the underlying data 
distribution shifts is included. 

   

Reproducibility (Part 6) Page number Notes 

Data transparency: choose appropriate tier of transparency 

Tier 1: complete sharing of the code and data    

Tier 2A: complete sharing of the code with synthetic 
data provided   

Tier 2B: complete sharing of the code   

Tier 3: no sharing of code or data    

Model transparency 

Model hyperparameters, along with infrastructure and 
compute requirements for running or developing the 
model are included, specifying hardware type, costs, 
and training time where applicable. 

  

If applicable: Model cards detailing capabilities, 
intended use, training data, limitations, potential 
biases, and risks are provided. 
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Chapter 8 

Conclusions 

 

8.1 Contributions 

The field of language modeling shifted significantly with the public release of ChatGPT and rapid 

development of methods in the emerging generative modeling landscape in the year that followed. 

While these models showed significant promise on publicly available biomedical benchmarks, 

there have been justified concerns brought up regarding data leakage and calls for new datasets 

and evaluation approaches that go beyond curated question answering. This thesis contributes 

several new evaluations, tasks, and perspectives on clinical language modeling using both black-

box LLM methods and open-source models. Chapters 2 and 3 focused on digital therapeutics and 

interventions and shed light on these novel therapeutics available for patients and how digital 

health tools impact clinical workflows and patient care. Chapter 4 developed and applied methods 

to assess the ability of proprietary LLMs to extract information on clinical decision making from 

real-world notes compared to traditional natural language processing approaches. Chapter 5 

extended this method beyond prescribed contraceptive switching and demonstrated the capabilities 

of both proprietary and open-source language models in understanding reasons for targeted 

treatment switching in patients with autoimmune diseases. Chapter 6 shifted towards evaluating 

LLMs on a new task in developing clinical decision trees from clinical guidelines in oncology. 

From the learnings in the previous chapters, we conclude with Chapter 7, which provided a 

formalized checklist for robust, transparent, and reproducible clinical language modeling research. 
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8.2 Future Directions 

Hospitals are uniquely positioned in the language modeling landscape, with large, proprietary, 

specialized medical record datasets that contain rich, untapped information about human health 

and disease at an unprecedented scale. We are only beginning to uncover the complexity of patient 

care using these data but improved facilitation of interdisciplinary work across the clinical 

language modeling domain is required for the clinical language modeling domain to keep up with 

the rapid pace of generative model development. Computer scientists looking to develop, adapt, 

or validate computational methods often lack real-world datasets and perspective on the challenges 

of clinical workflows. In contrast, hospitals and clinical researchers are often not equipped with 

the infrastructure or incentives to produce reproducible and scalable approaches to healthcare 

modeling. 

While new initiatives are helping to bridge the gap between these fields, these challenges 

continue to limit healthcare informatic approaches and much of the constantly evolving field of 

language modeling has yet to make its way into clinical applications. The field is moving so 

quickly that even some of the work that has gone into this dissertation has already become outdated 

in these few short years, particularly the last few months. However, adaptation and implementation 

of these cutting edge algorithms to future real-world clinical applications will require a critical 

interdisciplinary effort from both clinical and computational researchers. To conclude this thesis, 

I discuss briefly opportunities to pursue at the frontier of clinical language modeling, particularly 

their application to individual treatment prediction and the challenges in bringing these methods 

towards the development of personalized medicine. 

With the emergent capabilities of LLMs, there is a growing emphasis on utilizing these 

models for more complex physician and patient-facing tasks that may involve multi-step 
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information synthesis, use of external data sources, high-level reasoning, or even simulation of 

clinical text or conversations.7,8 In these scenarios, LLMs should not be viewed as models of 

language, but rather as intelligent “agents” that have internal planning capabilities that allow them 

to perform complex, multi-step reasoning or interact with tools, databases, other agents, or external 

users to better respond to user requests.8,9 While the field of agent-based modeling is not new, with 

real-world applications in modeling disease and training self-driving cars, the complex, domain-

specific interactions between patients, physicians, and other aspects of the healthcare system have 

previously been difficult to simulate. Now, with the development of new LLMs and agents 

designed to learn how to navigate complex data landscapes, high-fidelity simulations of clinical 

scenarios and complex workflows are increasingly possible.  

However, there remain significant challenges in critical evaluation of LLMs in these 

dynamic environments and their effects on patient care, and a need for new clinical agent 

benchmarks that go beyond curated question answering. There must also be the development of 

new methods to maintain patient privacy while ensuring that data can be used responsibly to drive 

medical innovation. Similar to standards and regulations for the autonomous driving industry, 

identifying robust clinical guidelines and what constitutes a successful interaction for healthcare 

LLM agents will be crucial towards fulfilling the long-term goals of patients, providers, and other 

clinical stakeholders. 

The rapid development of LLMs is happening in parallel to an unprecedented growth of 

clinical data collected both in and out of the healthcare system. This explosion of data and 

computational approaches necessitate further development of the robust, scalable evaluations, 

building on the methods and findings presented here, to reliably use these technologies in clinical 

workflows and for the improvement of patient care. 
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