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Abstract 
Studies have shown a positive priming effect with a short time 
between the prime and the target. The prime increases the 
performance on the target if they are congruent and decreases  
the performance when they are incongruent. Paradoxically, a 
negative priming effect has been found with a long time between 
the prime and the target. A major hypothesis argues that the 
prime initiates a motor self-inhibitory process that causes these 
effects. This hypothesis has been criticized and the model based 
on this hypothesis does not fit human data. A model was 
developed that fits the human data. It depends on attentional 
neuro-modulation not motor self-inhibition.  

Keywords: Masked priming; Negative congruency effect; 
modelling; attention; conflict. 

Introduction 
In masked priming tasks, a brief masked stimulus (the 
prime) can affect the processing of the stimulus that follows 
(the target). A prime, a mask, and a target are presented 
sequentially and the task is to make a decision on the target. 
The result is usually a Positive Congruency Effect (PCE), 
also known as the positive compatibility effect. In PCE, the 
prime increases the performance on the target if they are 
congruent and decreases the performance if they are 
incongruent (Dehaene et al., 1998; Schlaghecken & Eimer, 
2000). Conversely, a negative priming effect has been 
found, called the Negative Congruency Effect (NCE). This 
effect is also known as the negative compatibility effect, 
where paradoxically the prime increases the performance on 
the target if they are incongruent and decreases the 
performance if they are congruent (e.g., Schlaghecken & 
Eimer, 2000, 2002; Eimer & Schlaghecken, 1998;  
Jaśkowski & Ślósarek, 2006). The PCE has been shown 
with a short mask-target Stimulus Onset Asynchrony 
(SOA), while the NCE has been shown main ly with a longer 
mask-target SOA (e.g., 100 ms). To explain these results, 
some researchers (Schlaghecken & Eimer, 2000; Bowman 
et al., 2006), based on Event Related Potential (ERP) 
measurements and computational modelling, argue that 
when SOA is short, response selection can already take 
place during the initial response activation phase; this is 
reflected as an early increase in ERP for the congruent 
compared to incongruent trials, and this should result in the 
congruency effects in the form of a PCE. When SOA is 

longer, responses have to be selected during the subsequent 
inhibitory phase. This is reflected as a late decrease in ERP 
for congruent compared to incongruent trials, and this 
should be demonstrated as a negative effect (i.e., NCE). In  
these studies, the reduction in ERP activ ity has been 
attributed to a motor self-inhibit ion, causing the NCE effect. 
The mask causes this inhibition to be reversed, by removing 
the sensory evidence for the corresponding response and 
init iating its suppression.  
   The previous model of PCE and NCE (Bowman et al., 
2006) depends on motor self-inhib ition and does not show a 
decline in NCE and overall Reaction Times (RTs) through 
time and shows a huge PCE eventually at very long SOAs. 
However, human data shows that NCE decreases and 
disappears or turns into a very small PCE at very long 
SOAs. The current model does show these effects and does 
not depend on motor self-inhib ition, but it works through 
attentional modulation driven by conflict. The same model 
that shows the PCE with strong prime and target and NCE 
with weak prime and target, without any changes in the 
parameters, shows a PCE at short mask-target SOA and an 
NCE at long mask-target SOA. It also shows the effect of 
other factors such as degradation (Schlaghecken & Eimer, 
2002), mask density (Eimer & Schlaghecken, 2002), and 
prime duration (Eimer & Schlaghecken, 2002). The model 
is based on previous models that have been used to simulate 
different tasks such as target detection and simple decisions 
in monkeys and humans (Gilzenrat et al., 2002; Usher & 
Davelaar, 2002;  Nieuwenhuis, et al., 2005).  

The Cur rent Model 
Modeling methods. The processing elements in the model 
are a few neurons with self-excitation, lateral inhibit ion, and 
accumulat ive activation that have a strong computational 
power in simulating basic neural and cognitive processes 
(e.g., Usher & Davelaar, 2002; Gilzenrat et al., 2002). It has 
been demonstrated that these types of reduced models can 
resemble the neural computation of a large group of neurons 
(e.g., Wong & Wang, 2006). 
   The model (Figure 1) is a mult i-layer dynamic neural 
model that consists of a feed-forward component for 
perceptuo-motor processing from the Input Layer (IL) to an 
intermediate layer, called Representation Layer (RL), and 
from there to the Cognitive Layer (CL) and Motor Layer 
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(ML, not shown in Figure 1). An assumption is that the 
cognitive processing, including the response, is modulated 
by attention. The Alert Attention layer (AA) simulates 
attentional modulation, that is supposed to be a model of 
Locus Coeruleus (LC) that potentiates cortical areas through 
norepinephrine (Aston-Jones & Cohen, 2005). The 
executive attention is only modelled through its effects on 
AA, using a Cognitive Layer (henceforth, CL) for conflict 
monitoring. The CL effect on AA simulates direct cortical 
projections to LC (Aston-Jones & Cohen, 2005). The CL 
and ML are affected by both prime and target. The ML is 
not shown in Figure 1 for the sake of simplicity, but its 
architecture is identical to CL, with the exception that it 
sends no outputs to AA, is slower, and noisier (see Table 1).  
Each condition in a simulation consists of 20,000 trials (200 
independent blocks of 100 trials each, with congruent and 
incongruent trials counterbalanced randomly within each 
block). A single trial takes 1100 cycles. Each block starts 
with 500 cycles without changes in IL to let the units in 
other layers reach a steady state of activation. Similarly the 
Inter-Trial Interval (ITI) for each trial is 500 cycles, which 
allows the activation of units to return to baseline following 
the responses. The prime is presented by clamping one of 
the two units in the IL to 1, intended to be smaller or larger 
than five, or left or right in the case of arrows. The mask 
units in IL are set to 1 at the time of mask presentation and 
are otherwise set to 0. Therefore, the recognition of the 
stimuli is implemented with a localized representation, for 
example, the left unit is turned on when the stimulus is less 
than five in the case of numerals and symbols, or points left 
in the case of arrows; otherwise the right unit is turned on. 
Accordingly, as will be described below, in a congruent trial 
the two corresponding units (e.g., the left unit of the prime 
and target in IL) is set to 1 or 0 at the time of stimulus 
presentation, while in an incongruent trial, one of the two 
relevant units of the prime or target is set to 1 and the other 
to 0.  
   The units in each layer make connections, via excitatory 
weights, to their corresponding units in other layers. The 
activations of these units (except IL) are calculated by a 
sigmoid (logistic) function of the incoming informat ion, and 
a small amount of random noise. The RL sends excitatory 
activities to ML and CL continuously but activates AA only 
if a  unit of the prime or target reaches a designated threshold 
of .62. Similarly, when one of the two units in the ML 
reaches the same designated threshold it triggers a manual 
response (i.e., init iating a hand movement). When AA is 
activated and its activation reaches a threshold, it starts 
modulating in formation processing in RL, CL, and ML by 
making the activation function of their units steeper.  

Modelling details. As shown in Figure 1, the IL encodes 
the prime, the mask, and the target, and projects to RL 
through excitatory connections. For the sake of simplicity, 
prime and target, as well as an identical mask for each 
(shown as a single unit in Figure 1, fo r the sake of 
simplicity) were implemented in two separate paths. All 

units in RL have a self-excitation connection, intended to 
simulate mutual excitation among a g roup of neurons. 
Connections between mutual units (for prime and target and 
to the mask) from IL to RL have small cross-talks (see 
Table 1), indicating feature overlaps or similarities among 
stimuli. The units also have lateral inhibition with 
neighboring units within the same layer.  
   The mask units are activated after the prime and before the 
target for a specific time. They have lateral inhibition with 
prime and target. In addition to lateral inhibit ion, the model 
simulates the similarity of the mask to the prime and target 
through a lateral excitation from mask to the prime and 
target. It plays a role using this lateral excitation and can 
affect ML and AA (and CL), indirect ly, through its effect on 
both prime and target. Moreover, the prime and target units, 
but not the mask, have feed-forward pro jections into the 
ML, CL, and AA layers. Therefore, the mask acquires 
mean ing through its relationship with the prime and target. 
Because it comes right after the prime, it can activate the 
prime through its excitation. So, it can act partially like the 
prime and increase the attentional responses to it, forcing it  
to stay longer, but, on the other hand, its inhibitory effect 
usually dominates its excitatory effect and interrupts the 
prime, causing it to decay faster. This interplay depends on 
the similarity of the mask to the prime and target (Sohrabi, 
2008). 

 

Figure 1: The architecture of the model. The IL projects 
to the RL. The RL excitates AA, CL, and ML (not 
shown). The AA modulates all other layers except IL. 
The CL changes the AA response mode in the event of 
conflict. Different connections are depicted with 
different arrows: −♦  modulatory; −• conflict 
monitoring; self-excitation and lateral excitation; 
•−• Lateral inhibit ion; -Feed-forward activation.  
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The units in all layers (except IL and AA) receive additive 
Gaussian noise (zero mean and variance σ), intended as 
general, irrelevant incoming activities. The activations in 
the model are represented using units with real valued 
activity levels. The units excite and inhibit each other 
through weighted connections. Activation propagates 
through the network when the IL is clamped with input 
patterns, leading to a final response. As will be described 
below, the states of units in RL, ML, and CL are adopted in 
a method similar to a noisy, leaky, integrator algorithm 
(Usher & Davelaar, 2002; Gilzenrat et al., 2002). These 
types of models are noisy versions of previous connectionist 
models.  
   In  a typical masked trial or epoch, one of the prime units 
in the IL is turned on and the network is left active for 43 
cycles. Then the mask units in IL are turned on for 71 
cycles, followed by turning on the target input in IL for 200 
cycles. This is similar to a trial in the experiment, except no 
forward mask is presented, for the sake of simplicity. The 
prime and target units in the IL are used to represent the 
stimulus features (i.e., direction or magnitude). However, as 
mentioned before, the recognition of the stimuli is not 
implemented in detail, but is encoded as a binary code. For 
example, in the case of arrows, 1 is used for the left unit if it 
points left, or in the case of numerical stimuli, if the number 
is less than five, and 0 is used for the opposite (reciprocal) 
unit. In the congruent condition, the RL units of the prime 
and target at the same side (left or right randomly) are 
turned on (1) or off (0) in each trial at the time of stimulus 
presentation. By contrast, in the incongruent condition, the 
two units at the opposite sides are turned on and the other 
two are left off, with random selection of the two possible 
cases.  
   The RL is governed by a modified version of previous 
models (Usher & Davelaar, 2002; Gilzenrat et al., 2002), 
which is calculated with discrete integrational time steps 
using the dynamic equation:  

  X(t + 1) = λx X(t)  
    + (1- λx) ƒ [WXiXi Xi(t) + WXiIi Ii(t) 

            - WXiXj Xj(t) - θXi+ ξXi]        (1)  
Likewise, ML and CL are modelled in a similar way with 
their inputs coming from RL:  

Y(t + 1) = λy Y(t)  
    + (1- λy) ƒ [WYiYi Yi(t) + WYiXi Xi(t)) 

WYiYj Yj(t) - θYi+ ξYi]        (2)  
In equations (1) and (2), X and Y denote the activity of units 
through time t. W is the weight of the connections between 
units, I is the input, and the subscripts i and j are indexes of 
the units. The three weight parameters in the brackets 
correspond to recurrent self-excitation, feed-forward  
excitation, and lateral inhibit ion, respectively. However, for 
the sake of simplicity in equation 1, the lateral excitation 
from mask units to the prime and target, WXiXj Xj(t), and the 
cross-talk in prime and target to reciprocal units and mask 
units, WXiIj Ij(t), are not present. The term θ is the bias, the 
term ξ is noise, and ƒ is a sigmoid function (see equation 3). 

The term λ represents neural decay which is related to the 
discrete integrational time steps in the underlying equation 
(Usher & Davelaar, 2002).  
   The AA modulates other layers by changing their 
activation from sigmoid toward binary responses. The 
activation function, ƒ, transfers the net input, X, of a unit, 
and modulatory gain, g, to its activity state, implementing 
the firing rate of a neuron or the mean firing rate of a group 
of neurons:  

ƒ(X)=1/(1+exp (-Xg))       (3)  
   A conflict-monitoring measurement was employed to take 
the activations of the units in the CL layer to adjust phasic 
and tonic response modes of AA. The activation of the CL 
units was used to measure the Hopfield energy function 
between units (Hopfield, 1982), as used previously 
(Botvinick et al., 2001). Conflict can be defined as the 
concurrent activation of the competing units and as the joint 
effect of both prime and target in CL. Hopfield energy can 
be calculated as  

        

       (4) 
where E denotes energy, X denotes the activity of a unit, W 
is the weight of the connection between units, and the 
subscripts 1 and 2 are indexes of the two units.  
   As noted above, CL combines prime and target activations 
and measures conflict between its two units. When one CL 
unit is active and the other is inactive, conflict is low. 
However, when both units are active concurrently, the 
conflict is high. Activations in CL units are converted to 1 if 
they are equal to or greater than .5, and to 0 otherwise (i.e., 
using a threshold function). Also, E >  .5 is considered as a 
conflict, otherwise as no conflict. When the activation of a 
prime or target unit in RL reaches the designated threshold, 
.62, the AA is activated with a phasic or tonic mode, 
depending on the absence or presence of conflict in CL. The 
change in AA response mode usually occurs by the 
presentation of a target that is incongruent with the prime.  
Here the AA is modelled using a reduced or abstracted 
version of LC neurons in a Willson-Cowan type of system 
(e.g., Wilson & Cowan, 1972) adopted recently (Usher & 
Davelaar, 2002) (there are similar models and detailed 
implementations of this type of attention (Gilzenrat et al., 
2002):  

X(t + 1) = λx X(t) 
    + (1- λx) ƒ [c (ax X (t) – bY(t) + Ix (t) - θx)], 

Y(t + 1) = λy Y(t) 
       + (1- λy) ƒ [c (ay X(t) – θy)], 

G(t + 1) = λg  G(t) 
         + (1- λg) X(t)        (5)  
where ƒ is again a sigmoid function (as in equation 3), X is 
the fast variable representing AA activity and Y is a slow 
auxiliary variab le, together simulating excitatory/inhibitory 
neuron groups in the LC (Usher & Davelaar, 2002). The X 
and Y variables have decay parameters λx and λy, 
excitatory/inhibitory coefficients, ax and ay, as well as 
thresholds θx and θy, respectively. The G variab le is the 
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output of the AA, which is based on X. The g (used in 
equation 3) is computed from G: g = G * K. The AA 
modulates other layers when g crosses a threshold, 1. Its 
activity modes can be phasic or tonic depending on the 
conflict state, low or high, respectively. In all conditions the 
CL can change the AA mode according to the conflict 
between prime and target (i.e., using within-trial conflict). 
The phasic and tonic modes of AA responses are 
implemented using high or low c value (3 or 1) (see 
equation 5). The c value is 3 at the beginning of each trial 
(for the prime), but it is set to 1 (for the target) if conflict 
occurs. The number of computer simulat ion cycles from the 
target onset until one of the ML units reached a designated 
threshold, .62, was considered as RT. A constant, as other 
sensory and motor processes, could be added to this RT, to 
increase the match between simulation and human data. 

Simulation  Results 
Simulation 1: mask-target SOA. To simulate the data from 
previous studies i.e., a PCE and an NCE with short and long 
mask-target SOAs, respectively (e.g., Schlaghecken & 
Eimer, 2000; Jaśkowski & Ślósarek, 2006) a simulation was 
run with no changes in the parameters except the mask-
target SOA. Seven intervals of the mask-target SOA (from 
71 to 251, with 30 cycles interval) were used to show the 
effect of SOA on priming pattern. To maintain consistency, 
the duration of the mask was again 71 cycles, but a longer 
mask duration has a similar effect (as used in the following 
simulations). 

Simulation 2: stimulus degradation  
A previous study (Schlaghecken & Eimer, 2002, Exp. 4) 
found that degradation of stimuli, by adding small random 
dots to all stimuli, turns NCE into PCE. Here, the 
degradation of stimuli was simulated by using lower input 
activation in IL (for both prime and target) compared to the 
usual 1 and 0 and increasing the noise of the prime and 
target in RL. Two levels of degradation were created by 
using .85 (opposite unit .15) and .75 (opposite unit .25), 
while 1 (opposite unit 0) was used to encode an intact 
stimulus. For a better fit between simulation and human 
data, the noise of the prime and target units in RL was 
increased from .2 to .3. The IL-RL strength for the prime 
and target was 2.5 and the mask-target SOA was 125 cycles. 
The model successfully simulated the human data as shown 
in Figure 3, top. W ith degradation, the NCE turned into 
PCE and RTs were increased by more degradation. 
   In another experiment in the same study (Schlaghecken & 
Eimer, 2002, Exp . 3), random dots were added to all stimuli, 
but the dots did not cover the target (presented above or 
below the target, randomly). In this case, while degradation 
turned the NCE into PCE, it did not increase the RTs. For 
simulating this experiment, a simulation was run identical to 
the previous one but only the prime was degraded. The 
result was similar to the human data. As shown in Figure 3, 

bottom, if the target is not degraded the RTs do not increase 
(because it is stronger and is processed faster). 

 

 

Figure 2: The result of Simulation 1, mask-target SOA. Top: 
Modelling results at seven levels of mask-target SOA, 
starting from 71 cycles. Each SOA follows 30 cycles after 
the previous one, with mask duration of 71 cycles. Bottom: 
The same result was shown by the congruency difference 
(Incongruent - Congruent) in the seven SOAs. This is 
similar to the different lags in attentional blink paradigm, 
showing a similar attentional basis for priming and 
attentional blink. 

Simulation 3: mask density  
It has been shown that the mask needs to be dense enough at 
a specific rate to cause NCE, and that decreasing the density 
changes NCE to PCE (e.g., Eimer & Schlaghecken, 2002), 
although beyond that it has no major effects. In this 
simulation, mask density was simulated by changing the 
inputs of the mask units to .55 (medium density) and .45 
(low density), instead of 1 (very high density, used in 
simulations of usual masked conditions). The IL-RL 
strength for the prime and target was 2.5 and the mask-
target SOA was 125 cycles. As shown in Figure 4, top, 
similar to human data (e.g., Eimer & Schlaghecken, 2002, 
Exp . 1) decreasing the mask density from 1 to .55 decreased 
NCE and then to .45 and 0 turned NCE to PCE (low mask 
density and no mask are supposed to invoke other types of 
processes, Sohrabi, 2007, not discussed here). 
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Simulation 4: prime duration  
Prime duration has an important role in the priming effect. 
Stimuli with longer duration have stronger representations 
and also activate more attentional responses. It has been 
shown that increasing the prime duration increases NCE to 
some extent and turns it to PCE after a specific rate (Eimer 
& Schlaghecken, 2002). The current simulation shows the 
priming effects for three prime durations: 43, 48, and 53 
cycles. The IL-RL strength for the prime and target was 2.5 
and the mask-target SOA was 125 cycles.  
As shown in Figure 4, bottom, increasing the prime duration 
caused larger NCE, but a further increase turned it into PCE. 
Interestingly, increasing the prime duration does not 
decrease RTs and even has an opposite effect, similar to 
human data (e.g., Eimer & Schlaghecken, 2002, Exp . 2) 
(longer duration is supposed to invoke other types of 
processes, Sohrabi, 2008, not discussed here). 

 

 

Figure 3: Results of Simulation 2, degradation effect. Top: 
Degrading the prime and target with three levels of prime 
and target inputs in IL: 1 (no degradation), .85 (medium 
degradation), and .75 (high degradation), as well as an 
increase in noise. With degraded unit activations NCE 
turned into PCE and RTs increased. Bottom: Degrading 
only the prime turned NCE to PCE but did not increase RTs. 

Discussion 
When the mask-target SOA was short, the target could be 
processed primarily with the initial activation and 
attentional response to the prime. When a delay was 
introduced between them (as with longer mask-target SOA), 
the second phase of attention (for the target) was not strong 

enough to activate the target quickly. This happened 
because attention showed a phasic response with a 
refractory period. The conflict was measured based on the 
incongruency in the stimuli relationship. It decreased the 
effect of the refractory period by putting the second phase of 
attention (to the target) in a tonic mode, enhancing the 
processing of the incongruent trials where conflict occurred. 
This was not the case in the congruent trials. The NCE 
found in previous studies (Schlaghecken & Eimer, 2000, 
2002; Eimer & Sch laghecken, 1998, 2002; Jaśkowski & 
Ślósarek, 2006) was simulated by increasing mask-target 
SOA, with no other changes in the model. A PCE and an 
NCE were found with short and long mask-target SOA, 
respectively.  

 

 

Figure 4: Results of Simulations 3 (mask density) and 4 
(prime duration). Top: Four levels of mask density were 
employed: 1 (no mask), 2 (low density), 3 (medium 
density), and 4 (high density), simulated by IL mask unit 
inputs 0, .45, .55, and 1 compared to masks with  15, 10, 
5, and 0 random lines in human data, respectively (Eimer & 
Schlaghecken, 2002, Exp. 1). Bottom: Simulation results for 
three levels of prime duration: 53 cycles (long), 48 cycles 
(medium), and 43 cycles (short), compared to 64, 32, and 16 
ms in human data (Eimer & Sch laghecken, 2002). 
Increasing the prime duration increased the NCE but a 
further increase turned the NCE into PCE. 

The model also showed the effects of other factors on 
priming directions such as prime duration, stimulus 
degradation, and mask density. For example, a prime with 
longer duration and less degradation has a strong 
representation that causes a large NCE if the target comes 
late (and a large PCE if it comes early). The model also 
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showed that decreasing the activation of input units (e.g., 
from binary, 1 and 0, to real normalized numbers, .9 and .1, 
or less, for simulat ing stimulus degradation) turns NCE into 
PCE. Th is supports the idea that the NCE is not caused 
merely by a decrease in the incoming perceptual 
informat ion but by a decrease in the representation strength.  
The current model, in addit ion to being more b iologically  
compelling, showed many dynamic effects in RT and error 
patterns that have not been shown previously (such as the 
changes in RT and the size of priming effects through time). 
While in the current model the NCE disappeared and 
became a very small PCE at very long SOAs, the previous 
model (Bowman et al., 2006) showed a huge PCE at very 
long SOAs inconsistent with human data (e.g., Jaśkowski & 
Ślósarek, 2006). The present model is similar to some other 
previous neuro-computational models, especially those 
employed to simulate the attentional blink (Mathis & 
Mozer, 1996; Nieuwenhuis, et al., 2005). In these models 
blink for the second target occurs at lag 2 (after 100 ms 
from the first target) and no blink occurs at lag 1 (if the 
second target appears during 100 ms after the first target), 
related to NCE and PCE in the current model, respectively.  

Table 1. Parameters in the model, fixed for all simulations, 
unless otherwise mentioned. 

WXiIi (IL to RL) [P & T] & WYiXi  (RL 
to ML) [P & T] 

2-3 & 1.5   

WXiIi (IL to RL) [M] & WYiXi  (RL to  
CL) [P & T] 

1.5 & 1 

WXiXi (RL) [P & T], WXiXi (RL) [M], 
WYiYi (CL), & WYiYi  (ML)  

1.5, 1.25, 1, & 
.9 

WXiXj (RL) & WYiYj (ML & CL) 1 & 1 
WXiXj (RL) [M to P & T] & WXiIj (IL 
to RL) 

.75 & .33  

K (AA) 4.52 
θx, θy (AA), θx (RL), θy (CL), & θy  
(ML)  

1.25, 1.5, .5, 
.85, & 2 

b,c, ax & ay (AA) 4, 1-3, 2, & 3 
λx, λg, & λy (AA) .92, .98, & .996 

λ (CL), λ (ML),  & λ (RL) .75, .925, & .95 
σ (CL), σ  (RL) [P & T], σ  (ML)  & σ 
(RL) [M] 

.025, .2, .25, & 
1.25 

IL=Input Layer; RL=Representation Layer; CL= Cognit ive 
Layer; ML=Motor Layer; AA=Alert Attention; P=Prime;  
T=Target; M=Mask. 
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