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As more artificial intelligence (AI)-enhanced mammography screening tools enter the clinical market,
greater focus will be placed on external validation in diverse patient populations. In this viewpoint, we
outline lessons learned from prior efforts in this field, the need to validate algorithms on newer screening
technologies and diverse patient populations, and conclude by discussing the need for a framework for
continuous monitoring and recalibration of these AI tools. Sufficient validation and continuous moni-
toring of emerging AI tools for breast cancer screening will require greater stakeholder engagement and
the creation of shared policies and guidelines.

© 2019 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Promising reports of artificial intelligence (AI) algorithms from
reader studies involving limited imaging case sets indicate that
they may improve mammography screening accuracy beyond
radiologist interpretation alone [1e3]. Several of these AI tools have
garnered medical device regulatory approval within multiple
countries, including in the U.S. from the Food and Drug Adminis-
tration (FDA) [4]. With regulatory approval, these commercial
products can now be marketed for clinical use directly to stake-
holders including radiologists and physician groups.

However, rigorous validation in large, diverse patient pop-
ulations that were not involved in the original AI algorithm
development is required before clinical translation. Moreover, key
stakeholders, including major payers, providers, and women un-
dergoing routine screening, need convincing evidence that these
new tools can reliably improve screening performance beyond
y University of Washington
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current practice standards. Given the “black box” nature of AI al-
gorithms, there are a number of unique challenges in the process of
algorithm validation and stakeholder acceptance. There is a myriad
of technical, social, political, and ethical issues regarding AI algo-
rithm validation, as well as multiple stakeholder viewpoints,
beyond the scope of a single article. Thus, in this viewpoint, we
focus on some of the major pressing issues in validating algorithms
from the perspective of AI developers, organizations with imaging
data, and regulatory agencies.

1.1. Learning from the past

In the U.S., the bar for FDA medical device approval remains low
with small reader studies showing non-inferiority to existing per-
formance being sufficient for regulatory clearance [5]. Case sets
used in FDA approval reader studies usually number in the hun-
dreds of exams and are enriched with positive cases, making per-
formance measures unreliably applicable to routine screening at
the population level where positive cases are more seldom
encountered [6]. Once this initial regulatory bar is met, however, an
AI software device can be marketed directly to radiology groups
and health systems without the need for reproducibility in multiple
icense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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populations and settings.
There are serious consequences of adopting new technologies

without supporting validation and reproducibility in medicine [7].
In mammography screening, we have encountered these conse-
quences with traditional computer aided detection (CAD) software.
CAD was rapidly adopted around the turn of the century in com-
bination with digital mammography (which was concurrently
replacing screen-film mammography as a primary screening mo-
dality) without robust observational studies or randomized trials to
suggest improved screening performance at the population level
[8]. Instead, based on small reader studies used to gain FDA
approval and heavy lobbying from vendors to obtain reimburse-
ment, CAD was widely adopted into clinical practice [8]. Unfortu-
nately, through observational studies performed over the next
decade, CAD was eventually found to increase false-positives and
benign biopsies without increasing cancer detection rate [9e11].
The result was a substantial increased cost to healthcare systems
and women undergoing screening, without realization of the
promised benefit [10,11].

1.2. Validation on newer screening technologies

One of the first steps towards clinical translation for promising
AI algorithms trained and tested on existing mammography data-
sets will be adaptation to and validation using frequently evolving
screening technologies. To date, nearly all of the published reader
studies demonstrating improved screening accuracy with AI have
used 2D digital mammography or screen-film mammography [6].
The largest mammography AI study to date, the Digital Mammog-
raphy DREAM Challenge, provided 2D mammography images and
associated clinical data representing >640,000 images from
>86,000 women to DREAM Challenge participants for training and
validation of their deep learning algorithms for automated
mammography interpretation [12].

While digital mammography is currently the most widely used
imaging modality for breast cancer screening and further AI algo-
rithm development is needed prior to dissemination and clinical
implementation, screening imaging technologies themselves are
rapidly changing. Digital breast tomosynthesis (DBT, 3D
mammography) is quickly usurping the role of digital mammog-
raphy as the first-line screening modality of choice in many set-
tings. This is in part due to population-based studies suggesting
higher cancer detection rate and possibly lower interval cancer rate
with DBT compared to digital mammography [13,14]. With the
majority of U.S. facilities and many European population-based
programs evaluating or transitioning to DBT screening, a strong
argument can be made that current AI algorithms need to be
effectively scaled from 2D to 3D volumetric data. While the
assumption is that 2D to 3D algorithm scaling will be straightfor-
ward, this is not guaranteed. Thus, in order to remain relevant for
clinical application, emerging AI algorithms will need to be trained
and validated on large DBT imaging datasets and be able to adapt to
further advancements in primary screening imaging modalities in
the future.

1.3. Defining sufficient algorithm validation

After a promising AI algorithm has been trained and tested on a
large modern imaging dataset and has gained regulatory approval,
external validation in diverse patient populations is needed to
demonstrate generalizability and clinical effectiveness. There is
increasing concern that AI models have structural biases based on
the imaging exams and populations included in initial training and
testing with calls for more distributive justice in the initial model
design, evaluation, and deployment [15]. AI developers will need to
demonstrate improved screening performance in large diverse
populations, including women of minority race/ethnicity and
differing breast cancer risk factors.

External validation should be performed in population-based
screening programs and also in many different clinical settings
(i.e. double reader and single reader environments). In countries
without centralized screening programs, such as the U.S., algo-
rithms need to be validated in large health systems and in different
geographic regions in order to ensure that there is no unintended
bias against specific subpopulations, especially traditionally
vulnerable populations. It is also uncertain whether retrospective
validation (the predominant approach used in studies of AI for
breast cancer detection thus far [6]) is sufficient or if prospective
randomized and/or pragmatic trials are needed to convince key
stakeholders that AI-driven mammography screening (with or
without radiologist involvement) is more accurate than traditional
radiologist interpretation alone. In other words, the actual
threshold required to validly claim external validation of a prom-
ising AI algorithm remains up for debate. The guideposts for the
adequacy in size of validation population datasets, diversity of the
validation populations, and improved accuracy measures of AI-
based screening over human interpretation alone are currently
unknown.

2. Access to population-based data

Gaining access to validation datasets, even retrospectively, is
currently fraught with differing priorities among imaging stake-
holders and unequal access among AI developers. In order to be
useful, mammography images representing populations served by
regional screening programs and high quality registries need to be
linked to eventual cancer outcomes in order to determine the
ground truth. Thus, access to useful imaging datasets requires ac-
cess to not only the images themselves but also complete cancer
history (e.g., prior lumpectomy for breast cancer) and follow-up
data on all women to define eventual cancer outcome status (e.g.,
clinical records, biopsy results). The result is the need for complex
data use agreements, especially with intellectual property of
eventual AI algorithms at stake.

From the perspective of imaging data owners (health systems,
radiology groups, and women), privacy concerns for biomedical
data remain a major concern. Institutions may be reluctant to
release millions of imaging exams for private developer use [16].
One potential solution is a shift from a traditional model of trans-
ferring data directly to data modelers to an alternative “model to
data” paradigm where the flow of data is reversed [17]. This para-
digm was used successfully in the Digital Mammography DREAM
Challengewhere participants submitted containerized AI models to
the Challenge organizer to train and validate the submitted models
on untouched imaging data behind a firewall. While this has
greater protection for health information, an important disadvan-
tage is that AI data scientists have limited access to images, which
could impede their ability to optimize their algorithms.

Finally, since the vast majority of players in this arena are
looking to develop and commercialize their AI tool, there is fierce
competition in gaining access to limited numbers of data partners
willing to broker cooperative agreements with AI developers,
especially for imaging data that includes exams from vulnerable
populations. With intellectual property at stake, major industry
players with larger resources and the ability to pay for use of im-
aging data have a distinct advantage over smaller start-ups, making
current access to larger, diverse validation datasets inequitable. The
end result is that not all AI developers will have access to validation
datasets across diverse populations, potentially further exacer-
bating screening disparities by rendering eventual clinical
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algorithms less effective among already vulnerable patient
populations.

3. Continuous improvement and monitoring

New AI tools for mammography have the advantage of contin-
uously learning compared to traditional CAD. Ideally, AI
mammography algorithms would not go through validation just
once, but would undergo continuous refinement and validation
over time in order to not repeat the missteps experienced with
traditional CAD. However, the fluid nature of AI algorithms is
inherently non-transparent, with factors leading to algorithm
performance changes difficult to decipher and monitor by its end
users or those developing benchmarkswithout explicit information
provided by AI developers. These developers will likely need direct
access to an institution's radiology information system to make
such a continuous feedback loop possible, leading to data security
concerns with potential exposure of personal health information.

Thus, developers, medical organizations, industry partners, and
government agencies will have to work together to create new
processes and guidelines. In the U.S., the FDA is working with
stakeholders to draft a new regulatory process for AI devices
spanning from the pre-market approval to post-market surveil-
lance [18]. Previously, FDA clearance required that CAD software be
“locked” prior to marketing with any changes to the algorithm
requiring another FDA premarket review. As newer AI models have
the ability to continuously learn and adapt to more available data
with each new exam, the FDA proposes an adaptive total product
lifecycle regulatory approach where manufacturers would be ex-
pected to monitor the AI algorithm clinical performance and
incorporate a risk management approach after an initial premarket
review [19]. Algorithm change components to be monitored and
reported include data management changes (new training and
testing data), re-training of machine learning architecture and pa-
rameters, changes in pre-determined assessment metrics, and
software update procedures.

This type of medical AI device oversight will require adoption of
standardized application programming interfaces (APIs) across
diverse medical organization and government data networks. The
real-world data requested by regulatory bodies such as the FDA for
post-marketing surveillance of AI will also require large
population-based registries that can help with continuous valida-
tion in the post-marketing setting. Moreover, large academic and
private health systems will have to become willing partners in a
new era of continuous monitoring by truly adapting into learning
health care environments where AI-based imaging interpretation
can continuously evolve and change. This latter enterprise will be
challenging given a current environment of vendor-specific and
proprietary data management tools for medical imaging without
the ability for cross-communication. Yet, in the post-marketing
period, regulators and manufacturers will have to work collabora-
tively to demonstrate that improved overall screening accuracy is
maintained across different populations over time.

4. Summary

With multiple AI algorithms for mammography screening
entering the clinical market and frequently evolving imaging
technologies, external validation will be needed before and after
clinical adoption. Medical organizations, AI developers, re-
searchers, and government agencies must work together to help
make evolving population-based imaging datasets representing
diverse populations available for external validation in order to
ensure clinical effectiveness and generalizability. As AI algorithms
and screening modalities continue to undergo modifications in the
post-marketing period, better standards are needed for continuous
monitoring with greater transparency from AI algorithm de-
velopers. Moreover, better integration of biomedical informatics
and data systems are needed for incorporating improvements in
real-time and to avoid the missteps experienced with static tradi-
tional CAD software. These major paradigm shifts in validation and
monitoring will be necessary before trust in “black box” algorithms
for breast cancer screening are embraced by payers, health pro-
viders, and women alike. Without investment in novel validation
pathways, generalized adoption of AI-enhanced breast cancer
screening is unlikely to be successful.
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