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Abstract

Duality for Boolean Algebra Expansions and Its Applications

by

Kentarô Yamamoto

Doctor of Philosophy in Logic and the Methodology of Science

University of California, Berkeley

Associate Professor Wesley Halcrow Holliday, Chair

This dissertation consists of four largely independent chapters. The first two chapters
concern counterparts of classical theorems in modal logic in more general semantics: the
Sahlqvist Correspondence Theorem inter alia for possibility semantics in Chapter 1 and the
Goldblatt-Thomason Theorem and Fine’s Canonicity Theorem for neighborhood semantics
in Chapter 2. Chapter 3 contains various results on Heyting algebras, among which is the
topological-dynamical study of the automorphism group of the smallest existentially closed
Heyting algebra. The last chapter establishes choice-free duality between the category of
ortholattices and a category of certain spectral spaces.



i

To My Family



ii

Contents

Contents ii

List of Figures iv

List of Tables v

Introduction 1

1 Modal Correspondence Theory for Possibility Semantics 4
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Possibility semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Sahlqvist theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Model-theoretic characterization . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Correspondence, Canonicity, and Model Theory for Monotonic Modal
Logics 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Model theory of neighborhood frames . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Proof of the main lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Applications of the main lemmas . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Adventures on Heyting Algebras 45
3.1 Countable Ultrahomogeneous Heyting algebras . . . . . . . . . . . . . . . . . 46
3.2 Definable Countable Atomless Boolean Algebras . . . . . . . . . . . . . . . . 48
3.3 Automorphism Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Axiomatization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 Beth Semantics and Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Choice-Free Duality for Ortholattices 65
4.1 Duals of Ortholattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



iii

4.2 Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Logical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography 73



iv

List of Figures

1.1 A possibility frame F and a valuation π on it. The refinement relation of F is
shown by solid lines as in Hasse diagrams and the accessibility relation is shown
by dashed arrows. The valuation π is such that π(p) = {x}. . . . . . . . . . . . 7

1.2 Forcing conditions for ♦. The same conventions as in Figure 1.1 apply. . . . . . 8
1.3 Conditions equivalent to the validity of the B axiom. The same conventions as in

Figure 1.1 apply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8



v

List of Tables

2.1 Classes of monotonic neighborhood frames and their definitions . . . . . . . . . 26



vi

Acknowledgments

First and foremost, I would like to express my sincerest gratitude for my advisor Wesley
Holliday for his expertise, guidance, and insights throughout my projects, the results of which
are presented here. Without his help, this dissertation would not exist. I would also like to
thank the other members of the dissertation committee: Leo Harrington, who helped me
with the qualifying examination, Tadeusz Litak, who kindly agreed to be an external member
and gave me valuable pieces of career advice, Theodore Slaman, who very kindly took me
under his wing toward the beginning of my graduate study, and Thomas Scanlon, who gave
me several invaluable pieces of advice.

I would like to give special thanks to Dana Bartošová, Nick Bezhanishvili, Alessandra
Palmigiano, and Pièrre Simon for providing me with useful comments and feedback on my
projects.

I would like to extend my gratitude to the Takenaka Scholarship Foundation, which
supported me financially between 2014 and 2018. Also, Chapters 1 and 2 have previously
appeared in print as [81] and [80], respectively.

Finally, I would like to add that I am indebted to the support offered by other graduate
students studying logic at Berkeley. Specifically, I would like to thank Reid Dale and James
Walsh, the other two members of the cohort to which I belong, for the sense of camaraderie
we have nurtured through the years.



1

Introduction

The central objects of study in this dissertation are Boolean algebra expansions (BAEs). They
are objects of the form (B,�) where B is a Boolean algebra and � : B → B is an additional
operation. The BAEs studied here are equipped with operations that satisfy additional
axioms such as:

�x ≤ �y whenever x ≤ y, (monotonicity)∧
i<n

�xi = �
∧
i<n

xi for n < ω. (multiplicativity)

If a BAE satisfies (monotonicity), it is called a monotonic Boolean algebra expansion (BAM);
if it satisfies both of the axioms, it is a Boolean algebra with an operator (BAO).

The author’s interest in BAEs comes from their relevance in modal and other nonclassical
logics. Not only do BAEs arise as the Lindenbaum-Tarski algebras of modal logic [14, 17],
but also they induce other algebraic structures relevant for nonclassical logics. We call BAOs
that satisfy the following additional axioms interior algebras:

�x ≤ x,

��x = �x.

Interior algebras are related to Heyting algebras [30], which are expansions of bounded lattices
important in intuitionistic logic. When regarded as posets, Heyting algebras are exactly the
posets of fixed points of � in interior algebras. Likewise, BAOs satisfying x ≤ �¬�¬x are
related to ortholattices, which are of interest in an alternative foundation of quantum physics
[13]. Ortholattices arise from such a BAO by taking the poset of the fixed points of �¬�¬
and expanding it with the operation �¬�.

Representation theorems are important in algebra at large. Most often, we axiomatically
define a class V of algebras, but paradigmatic examples X+ in V are constructed in a specific
manner from some mathematical object X in some other class F . For instance, with the
class of Boolean algebras, X is a pure set, and X+ is the powerset of X; with the class of
groups, X is again a pure set, and X+ = Sym(X). One is then interested in obtaining an
arbitrary member A ∈ V as a subalgebra of (CstA)+ where CstA, the canonical structure of
A, is in F , or encoding which subalgebra of (CstA)+ it is using an appropriate topology on
CstA. In the most basic setting of this kind that is relevant to my research, V is the class of
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Boolean algebras with an operator, and F is the class of sets with a binary relation on it.
The following is a brief summary of classical results in this setting.

Definability One can use an equation E for V to define a subclass K of F : X ∈ F belongs
to K if and only if X+ satisfies E. In correspondence theory [5], one compares this
notion of definability with other means of defining a subclass of F such as definability
in first-order logic. One classical result in this field is the Sahlqvist Correspondence
Theorem, which gives a syntactic sufficient condition on E under which the corresponding
subclass of F is also definable in first-order logic. Additionally, one may be interested
in characterizing this notion of definability in a way that does not mention the syntax
explicitly, just as first-order definability of classes can be characterized in terms of
closure. The Goldblatt-Thomason theorem [40] does this in terms of closure properties
under constructions characteristic of the class F .

Completeness One important aspect of studying algebras motivated by logic is to examine
subclasses of V that can be defined by a set of equations, i.e., varieties. An important
property of a variety is completeness. A variety V ′ is complete if the least variety
containing {X+ ∈ V ′ | X ∈ F} is V ′ itself. Complete varieties V ′ are easier to study
in the sense that the study of V ′ reduces to its members of the form X+, which are
easier to analyze. One important sufficient condition for a variety to be complete is
canonicity. A variety V ′ is canonical if for every A ∈ V ′ the algebra (CstA)+ is also
in V ′. Every canonical variety is complete; in fact, most completeness results have
involved canonicity. Yet again, there is a classical result in this field, proved by Fine [31],
concerning the relationship between first-order definability and canonicity.

In the first half of the thesis, we prove results similar to the classical results mentioned
above in the setting of more general forms of duality theory.

In Chapter 1, we study correspondence theory in the setting of possibility semantics [48].
In possibility semantics, F is the class of certain structures with a partial order and an
additional binary relation, which are used to represent complete Boolean algebras with
completely multiplicative operators as structures of the form X+. This is more general than
the aforementioned framework, where structures of the form X+ are necessarily atomic. We
prove that the same syntactic condition on equations E as in Sahlqvist’s result guarantees that
the class {X ∈ F | X+ satisfies E} is also definable in first-order logic. After the publication
of this chapter as [81], Zhao [82] generalized this result to a wider class of equations, i.e., that
of inductive formulas.

In Chapter 2, we look at the problem of non-syntactic characterization of definability
and canonicity in the setting where V is the class of monotonic Boolean algebra expansions,
Boolean algebras with additional operations that are merely monotonic. In this setting, F is
a class of certain higher-order structures. In proving a result like Fine’s, one has to make
sense of “first-order definability” within such a class. Incidentally, Chang [18] proposed a
logic for F , who motivated it as a formalism of social situations. This logic shares important
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properties with first-order logic, and we use it to establish a similar relationship between
canonicity in V and definability of subclasses of F in that logic. In the proof, we use the
duality between types and definable subsets in model theory as a guide. This solved a
problem asked in [60]. By using the same method, we prove a non-syntactic characterization
of definability of subclasses of F in the same style as the Goldblatt-Thomason Theorem.

The second half of this dissertation involves the application of the theory of BAOs
to Heyting algebras and ortholattices, where ideas used in the development of possibility
semantics are still relevant.

Chapter 3 contains various results on Heyting algebras. The chapter begins with the
study of existentially closed Heyting algebras. The original motivation for studying this
class of algebras comes from the nontrivial fact that the theory of Heyting algebras has a
model-completion, or, equivalently, that intuitionistic propositional logic admits uniform
interpolation [37]. The latter half of the chapter is a study of Beth semantics, a more
general semantic framework than Kripke semantics in which more Heyting algebras can
be represented. Beth semantics, as well as possibility semantics, is an example of nuclear
semantics of intuitionistic logic [10]: one starts with the Heyting algebra of open sets in an
Alexandroff space and constructs another by taking the set of the fixed points of a nucleus, a
closure operator that distributes over meets.

Chapter 4 is on a novel duality theory for ortholattices that does not rely on choice
principles. This chapter builds on Goldblatt’s work [39] in which he represented an arbitrary
ortholattice by an irreflexive symmetric relational structure consisting of all proper filters of
the ortholattice, with a topology on it. One will see in this chapter how the use of choice
principles can be dispensed by changing the topology on such a structure as suggested by
Bezhanishvili and Holliday [12]. Again, one can see ideas prevalent in possibility semantics in
this Chapter: considering all filters of a lattice as opposed to just maximal ones is reminiscent
of choice-free construction of canonical extensions in possibility semantics [48], and the
symmetric relations occurring in Goldblatt’s representation theorem can be thought of as
arising as the incompatibility relations of the partial orders in possibility semantics [50].
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Chapter 1

Modal Correspondence Theory for
Possibility Semantics

1.1 Introduction
Possibility semantics [49] (based on [52]) is a generalization of standard Kripke semantics
that makes use of a concept of possibility frames.1 Like Kripke frames, possibility frames
have a set of states and binary accessibility relations for modalities. In addition, possibility
frames have a refinement relation, which is a partial order between states. Some states in
a possibility model may only partially determine the atomic propositions, in contrast to
worlds in Kripke models, which completely determine each atomic proposition. Consequently,
possibility frames have a close connection with intuitionistic modal frames, but the former
yield classical modal logic. As is the case for intuitionistic modal semantics, a key issue for
possibility semantics is the interaction between the refinement and accessibility relations. In
this setting, modal axioms express properties not only of the accessibility relation but also of
the interaction between accessibility and refinement.

While standard Kripke frames are semantically equivalent to complete, atomic and com-
pletely additive Boolean algebras with operators (BAOs), possibility frames are semantically
equivalent to complete and completely additive, but not necessarily atomic, BAOs. As
shown in [49, Theorem 5.27], for any complete and completely additive BAO, there exists a
possibility frame that validates the same modal formulae as the BAO does, and vice versa,
just as there exists such a modally equivalent Kripke frame for any complete, atomic and
completely additive BAO. It follows from this and other results [59] that more normal modal
logics are sound and complete with respect to some class of possibility frames than with
respect to some class of Kripke frames. For other recent results on possibility semantics and
mention related work, see [7, 11, 46, 45].

In the present chapter, we show how aspects of correspondence theory, as studied for
1What we call “possibility frames” in the present chapter are essentially the “full possibility frames” of

[49].
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standard Kripke semantics [4], can be extended to the more general setting of possibility
semantics. In Section 1.2, we introduce possibility semantics briefly, referring to [49] for a more
detailed account of the semantics. We define key concepts such as possibility frames, possibility
models and the standard translation. In Section 1.3, we study syntactic sufficient conditions
for local correspondence. In particular, we prove the analogue of Sahlqvist’s Theorem for
possibility semantics, namely, that every Sahlqvist formula locally corresponds to a first-order
formula with respect to possibility frames. This extends a result [49, Proposition 6.23] which
states that Lemmon-Scott formulae ♦ā�b̄p → �c̄♦d̄p have first-order correspondents over
possibility frames. In Section 1.4, we study more model-theoretic aspects of correspondence
theory. We prove a counterpart of van Benthem’s characterization [5] of first-order definable
modal formulae in terms of preservation by ultrapowers. Finally, in Section 1.5 we state an
open problem for future research and related work.

1.2 Possibility semantics

Introduction to the semantics
Fix an enumeration Φ = {pi | i ∈ κ} (κ = |Φ|) of propositional variables (whose indices we
sometimes identify with the variables themselves) and a nonempty set I of modal operator
indices. Then the modal language L(Φ, I) is generated by the following grammar:

φ ::= p | φ ∧ φ | ¬φ | φ→ φ | �aφ,

where φ ∈ L(Φ, I), p ∈ Φ and a ∈ I. We assume that φ1 ∨ φ2 and ♦aφ are shorthand for
¬(¬φ1 ∧ ¬φ2) and ¬�a¬φ, respectively.

We view a partially ordered set P as a topological space whose open sets are the downward
closed sets. This is an Alexandrov topology. We denote by X and X◦ the closure and the
interior of a set X ⊆ P, so X = {x ∈ P | ∃x′ v x x′ ∈ X} and X◦ = {x ∈ P | ∀x′ v x x′ ∈ X},
where v is the partial order of P. We write RO(P) for the set of regular open subsets of P,
i.e., those subsets X ⊆ P such that X◦ = X. For X ⊆ P, the least regular open set containing
X is (⇓X)◦, where ⇓X denotes the least downward closed set containing X. We write Xro

for (⇓X)◦. Note that (·)ro satisfies the axioms of closure operators: for any X, Y ⊆ P, we
have X ⊆ Xro, Xro = (Xro)ro and X ⊆ Y ⇒ Xro ⊆ Y ro. For x, y ∈ P, we also write x G y
to indicate that x and y are compatible, i.e., ∃z (z v x ∧ z v y). We write x ⊥ y to indicate
that it is not the case that x G y.

We give a definition of possibility frames in the following. Note that, in [49, Definition
2.21], the term “possibility frame” is used for a kind of general frame version of the structures
defined in Definition 1.2.1.1 below, which are essentially the “full possibility frames” of [49,
Definition 2.21]. The structures in Definition 1.2.1.1 are the possibility-semantic analogues of
Kripke frames.

Definition 1.2.1.
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1. A possibility frame is a triple F = (F,v, (Ra)a∈I) where (F,v) is a partially ordered
set, each Ra is a binary relation on F , and the set RO(F) := RO(F,v) is closed under
the map

la : X(⊆ F ) 7→ {y ∈ F | Ra[y] ⊆ X}
for each a ∈ I. We refer to elements of F as states of the frame. We call v and each
Ra the refinement relation and an accessibility relation of F, respectively.

2. A possibility model is a pair M = (F, π) where π is a map Φ→ RO(F), called a valuation
on the frame F.

When considering a possibility frame F, we regard la as a map RO(F)→ RO(F).

Definition 1.2.2. Let M = (F, π) be a possibility model and φ ∈ L(Φ, I).

1. For w ∈M, define the relation M, w 
 φ recursively as follows:2

M, w 
 p⇔ w ∈ π(p) (p ∈ Φ);
M, w 
 φ1 ∧ φ2 ⇔M, w 
 φ1 and M, w 
 φ2;

M, w 
 ¬φ⇔ ∀v v w (M, v 6
 φ);
M, w 
 φ1 → φ2 ⇔ ∀v v w (M, v 
 φ1 ⇒M, v 
 φ2);

M, w 
 �φ⇔ ∀v (Rwv ⇒M, v 
 φ).

2. Let JφKM = {w ∈M |M, w 
 φ}. Call this the truth set of φ in M.

3. For w ∈ F, we write F, w 
 φ and say that v forces φ in F if and only if for every
possibility model (F, π), we have (F, π), w 
 φ. F validates φ if and only if for every
v ∈ F, the formula φ is forced by v in F.

Note that since we define ∨ in terms of ∧ and ¬, we have the following:

M, w 
 φ1 ∨ φ2 ⇔ ∀w′ v w ∃w′′ v w′(M, w′′ 
 φ1 or M, w′′ 
 φ2).

Remark. Let (W,R) be an arbitrary Kripke frame. Let P = (W,v) be the discrete partial
order on W , i.e., x v y ⇔ x = y for x, y ∈ W . Then F = (P, R) is a possibility frame. Let
M0 be a Kripke model that is an expansion of (W,R), and let M be the possibility model
that is an expansion of F with the same valuation asM. Let M0 be a Kripke model that is
an expansion of (W,R), and let M be a possibility model that is an expansion of F with the
same valuation as M0. Then we have

M0 
Kripke φ⇔M 
 φ

for any modal formula φ, where 
Kripke is the forcing relation of Kripke semantics.
2 Note that the clauses for ¬ and → scan the partial order downward. This is in line with a convention

used in weak forcing (see, e.g., [65]), to which the present semantics is related. In contrast, in the literature
on semantics for intuitionistic logic, the convention of going upward is more common.
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In the present chapter, we are interested in the relationship between the validity of a
modal formula over a possibility frame and the first-order properties of the accessibility and
refinement relations in the frame. To see how familiar correspondences from Kripke semantics
must be reconsidered in the setting of possibility semantics, it helps to consider a concrete
example, such as the following.

xp y z

s t u

w

Figure 1.1: A possibility frame F and a valuation π on it. The refinement relation of F is
shown by solid lines as in Hasse diagrams and the accessibility relation is shown by dashed
arrows. The valuation π is such that π(p) = {x}.

Example 1.2.3. Consider the possibility frame F = (F,v, R) of Figure 1.1. It can be checked
that F satisfies the axioms for a possibility frame.3 Note that for each state w in F there
exists exactly one v such that Rwv. This property of partial functionality is defined by the F
axiom ♦p→ �p over standard Kripke frames. However, it can be seen that for the state y
we have F, y 6
 ♦p→ �p. To see this, observe that the forcing clause for the defined operator
♦ works out to (see Figure 1.2):

(F, π), y 
 ♦φ⇔ ∀v′ v y ∃w′ (Rv′w′ ∧ ∃u v w′ (F, π), u 
 φ). (1.1)

Consider the valuation π also shown in Figure 1.1. (It is easy to check that this is indeed a
valuation on F, i.e., π(p)ro = π(p).) Then we know (F, π), y 
 ♦p: in (1.1), the only possible
value of v′ is y itself, and one can pick w′ to be t so that the right hand side holds. However,
we also have (F, π), y 6
 �p, since t 6∈ π(p).
Example 1.2.4. Another example is the B axiom p → �♦p. This defines the symmetry of
the accessibility relation over standard Kripke frames. The accessibility relation R of F from
Figure 1.1 is not symmetric. However, the B axiom is validated by F; indeed, as we will see
later, p→ �♦p is validated by F if and only if for every u, v, v′ ∈ F:

(Rwv ∧ v′ v v)⇒ ∃w′ (Rv′w′ ∧ w′ G w). (1.2)
3The possibility frame F is constructed from a Kripke frame ({0, 1, 2}, R), where R is the symmetric

closure of {(1, 0), (1, 2), (0, 0), (2, 2)}, by functional powerset possibilization as in [49, p. 53]. The observations
made here follow from the construction.
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y♦φ

v′ w′ ∃

uφ ∃

(1.1)

y♦φ

v′

uφ ∃

(1.4)

Figure 1.2: Forcing conditions for ♦. The same conventions as in Figure 1.1 apply.

(See Figure 1.3.) All the states in F are compatible with one another except that x, y, z are
pairwise incompatible. These states are not in the range of R, so (1.2) holds.

w v

v′w′

∃
u

∃
(1.2)

w

v′

u

∃
(1.3)

Figure 1.3: Conditions equivalent to the validity of the B axiom. The same conventions as in
Figure 1.1 apply.

To see why (1.2) is equivalent to the validity of B, suppose that (1.2) holds in F and that
(F, π), w 
 p, i.e., w ∈ π(p). We show (F, π), w 
 �♦p. It suffices to show (F, π), v 
 ♦p, for
an arbitrary v such that Rwv. With (1.1) in mind, take an arbitrary v′ v v. By (1.2), there
exist w′ and u such that Rv′w′, u v w′ and u v w. Since π(p) is open, i.e., downward closed,
u ∈ π(p). Then by (1.1), we have (F, π), v 
 ♦p. Conversely, suppose that (1.2) does not
hold. For w ∈ F, let π be a valuation such that π(p) = {w}ro. Then (F, π), w 
 p. However,
we see (F, π), w 6
 �♦p. Indeed, by the failure of (1.2), there exists v such that (F, π), v 6
 ♦p.
This is because if w′ ⊥ w then for all u v w′ we have u ⊥ w′ and thus u 6∈ π(p) = {w}ro; for
u ∈ {w}ro if and only if ∀u′ v uu′ G w.

It is often the case that conditions on a possibility frame that are equivalent to validity of
modal formulae can be simplified by imposing additional conditions on the interaction of the
accessibility and the refinement relation in possibility frames. For instance, if we assume

(Rwv ∧ v′ v v)⇒ Rwv′, 4 (R-down)
4This condition is often assumed for frames for intuitionistic modal logic (see, e.g., [79]) with the refinement

relation flipped. See also Footnote 2.
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it is easily seen that (1.2) is equivalent to

Rwv′ ⇒ ∃u (Rv′u ∧ u v w), (1.3)

which is much closer to the symmetry of R, the property that the B axiom defines over
standard Kripe frames (see again Figure 1.3). In fact, many familiar modal axioms without
♦ define the same property over possibility frames satisfying (R-down) as over Kripke frames;
for instance, the 4 axiom �p→ ��p is validated by a possibility frame (F,v, R) satisfying
(R-down) if and only if R is transitive. Moreover, (1.1) can be simplified if F satisfies
(R-down):

(F, π), y 
 ♦φ⇔ ∀v′ v y ∃u (Rv′u ∧ (F, π), u 
 φ). (1.4)
(See Figure 1.2.) We refer to [49, Section 2.3] for further discussion of (R-down) and other
similar conditions.

A few points should be made about these conditions. First, in Definition 1.2.1.1 we stated
a condition for a structure (F,v, (Ra)a∈I) to be a possibility frame in terms of RO(F,v) and
la; we will see in Section 1.2 that this condition, like (R-down), can be stated in a first-order
manner. Second, as shown in [49, Section 2.3], we can assume (R-down) and other conditions
on the interaction of R and v without loss of generality. That is, given a possibility frame
F, we can construct a modally-equivalent possibility frame F′ that satisfies (R-down) and
other interaction conditions (see also Example 1.3.13). Third, the main results of the present
chapter hold without imposing these conditions; unless otherwise stated, we do not assume
(R-down) and other interaction conditions on possibility frames, beyond those that follow
from the definition of possibility frames (again see Section 1.2).

To develop correspondence theory for possibility semantics, we will take an algebraic
perspective on possibility frames. An important consequence of the definitions above is that
truth sets in an arbitrary possibility model M := (F, π) are always in RO(F). As is the case
for RO(P) where P is an arbitrary partial order, RO(F) is a complete Boolean algebra with
respect to set inclusion, where the meet is the intersection, the complement is the interior of
the set-theoretic complement, and the join is the interior of the closure of the union. One can
show that Jφ1∧φ2KM = Jφ1KM∧Jφ2KM, J¬φKM = −JφKM and Jφ1 → φ2KM = (−Jφ1KM)∨Jφ2KM,
where ∧, − and ∨ on the right hand sides denote the meet, the complement and the join in
RO(F), respectively. We trust that no confusion will arise in using the same symbols for the
logical connectives and the algebraic operations.

Definition 1.2.5.

1. A map f : RO(F) → RO(F) is completely additive if it preserves arbitrary joins, i.e.,
for every family S ⊆ RO(F) we have f(∨S) = ∨{f(X) | X ∈ S}. We also say that a
map f : RO(F)n → RO(F) is completely additive in i-th coordinate for i ∈ {1, . . . , n} if
for every X1, . . . , Xi−1, Xi+1, . . . , Xn ∈ RO(F) the map

RO(F)→ RO(F)
(X1, . . . , Xi−1, X,Xi+1, . . . , Xn) 7→ f(X1, . . . , Xi−1, X,Xi+1, . . . , Xn)
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is completely additive. f : RO(F)n → RO(F) is completely additive if it is completely
additive in i-th coordinate for every i ∈ {1, . . . , n}. Completely multiplicative maps are
defined similarly, but with joins replaced by meets.

2. We say that f is a left adjoint of g and that g is a right adjoint of f , if f, g : RO(F)→
RO(F) satisfy, for X, Y ∈ RO(F),

f(X) ⊆ Y ⇔ X ⊆ g(Y ).

Note that completely additive maps are order-preserving, and that if f and g both have
left adjoints, so does the composite f ◦ g.

The complete Boolean algebra RO(F) becomes a BAO when equipped with the operators
la for a ∈ I, which are completely multiplicative operators (see [49, Section 2] for more on
the duality theory relating possibility frames and BAOs). It is easy to see that, in general,
a completely multiplicative map g over a complete lattice (L,≤) has a left adjoint f of the
form X 7→ min{Z ∈ L | Y ≤ g(Z)}. In our setting, this implies that each la has a left adjoint
of the form Y 7→ min{Z ∈ RO(F) | Y ⊆ la(Z)} = (Ra[Y ])ro.

Translation to classical logic
Let the signature τ = {v} ∪ {Ra | a ∈ I}, where v is a first-order binary relation symbol
and each Ra is a first-order binary relation symbol. We write L1(τ) for the first-order
τ -language and L2(τ) for the monadic second-order counterpart. L1(τ) will be our first-order
correspondence language. We use x, y, z, ξ, η, ζ, etc. for first-order variables and P,Q, etc. for
second-order monadic ones. In particular, let {Pi} be a set of distinct monadic second-order
variables, each Pi corresponding to the propositional variable pi. Let τ̄ be the signature
τ ∪ {Pi | i ∈ κ}.

We regard a possibility frame F = (F,v, (Ra)a∈I) as a structure for L1(τ), by letting
domF = F , vF = v and RF

a = Ra for each a ∈ I. Likewise, we regard a possibility model
M = (F, π) as a structure (F, (π(p))p∈Φ) for L1(τ̄), as an expansion of F with PM

i = π(pi).
In general, for a structure N, we use |= for the satisfaction relation for first-order languages,
and for parameters a1, . . . , am ∈ N and a first-order formula β(x; y1, . . . , ym), we write
β(N; a1, . . . , am) for the set {b ∈ N | N |= β(b; a1, . . . , am)}.

We can view a possibility frame F as a structure for L2(τ) in two different ways. In one
view, which is employed in the rest of this section and Section 1.3, we consider a possibility
frame F as a general prestructure for L2(τ), with its one-place relational universe being
RO(F).5 In the other view, which appears in Section 1.4, we consider a possibility frame
F as an (ordinary) structure for L2(τ), with no limitation on values that bound second-
order monadic variables can assume. In each case, we again write |= for the corresponding
appropriate satisfaction relation for L2(τ).

5Our treatment of second-order logic follows [29].
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Having defined classical languages and satisfaction relations, we can see, as in [49, Section
2.2], that the various conditions imposed on possibility frames are actually first-order. First,
we can show that there exists a formula βQro(x) ∈ L1(τ ∪ {Q}), where Q is a unary relation
symbol, such that for every X ⊆ F, we have βQro((F, X)) = Xro, where (F, X) is an expansion
of F that interprets Q as X. Concretely, βQro(x) is the formula

∀y v x ∃z v y ∃z′ w z Qz′

where w is the inverse of v. With this in mind, it can further be shown [49, Proposition
2.30] that a structure F for L1(τ) is a possibility frame if and only if it satisfies (in addition
to the axiom of partial orders) the following pair of sentences in L1(τ) for each a ∈ I:

βaR-rule :≡ U((x′ v x ∧Rax
′y′ ∧ y′ G z)→ ∃y (Raxy ∧ y G z));

βaR⇒win :≡ U(Raxy → ∀y′ v y ∃x′ v x ∀x′′ v x′ ∃y′′ G y Rax
′′y′′),

where U(·) denotes the universal closure. Understanding the details of these conditions will
not be necessary for the purposes of this chapter; what will be important for us in this chapter
is just that the class of possibility frames is first-order definable. We refer to [49, Section
2.3] and [7] for further discussion of these conditions, as well as simpler versions that can be
assumed without loss of generality.

We now give the analogue for possibility semantics of the standard translation of modal
formulae into first-order formulae.

Definition 1.2.6. For φ ∈ L(Φ, I) and a variable x, we define STx(φ) ∈ L2(τ) inductively
as follows:

STx(pi) = Pix,

STx(¬φ) = ∀y v x¬ STy(φ),
STx(φ1 ∧ φ2) = STx(φ1) ∧ STx(φ2),

STx(φ1 → φ2) = ∀y v x (STy(φ1)→ STy(φ2)),
STx(�aφ) = ∀y (Raxy → STy(φ)).

Recall that we are viewing a possibility frame as a general prestructure as explained above.
The following definition is standard [4], and the lemmas following it can be proved in the
usual way.

Definition 1.2.7. For φ ∈ L(Φ, I) and α(x) ∈ L1(τ), we say that φ locally corresponds to
α(x), or that α(x) is a local correspondent of φ, if for every possibility frame F and w ∈ F,
we have

F, w 
 φ⇔ F |= α(w).
For a first-order sentence α̃ ∈ L1(τ), we say that φ globally corresponds to α̃, or that α̃ is a
global correspondent of φ, if for every possibility frame F we have

F 
 φ⇔ F |= α̃.
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Lemma 1.2.8. Given a possibility frame F, w ∈ F and φ ∈ L(Φ, I), we have

F, w 
 φ⇔ F |= U2(STw(φ)), 6

where U2(φ) denotes the universal quantification by the monadic second-order variables Pi
occurring in φ. (Recall that in this section the domain of monadic second-order quanitification
is RO(F) for a possibility frame F.)

Lemma 1.2.9. For φ ∈ L(Φ, I) and α(x) ∈ L1(τ), the following are equivalent:

1. φ locally corresponds to α(x).

2. For arbitrary possibility frame F and w ∈ F, we have

F |= U2(STw(φ))⇔ F |= α(w).

1.3 Sahlqvist theory
In this section, we prove the possibility-semantic version of Sahlqvist’s Theorem.

For L(Φ, I), positive and negative occurrences of propositional variables, and positive
and negative formulae are defined recursively as follows. For p ∈ Φ, the occurrence of p in
p ∈ L(Φ, I) is positive. Suppose an occurrence of p in φ ∈ L(Φ, I) is positive (respectively,
negative) and ψ ∈ L(Φ, I). Then the corresponding occurrences of p in φ ∧ ψ, ψ ∧ φ, ψ → φ
and �aφ are positive (respectively, negative); and the corresponding occurrences of p in ¬φ
and φ→ ψ are negative (respectively, positive). A modal formula is positive (respectively,
negative) if all occurrences of all propositional variables in it are positive (respectively,
negative).

We define Sahlqvist antecedents, Sahlqvist implications and Sahlqvist formulae in the
standard way (see, e.g., [14]). More concretely, they are specified by the following grammar:

B ::= pi | �aB (boxed atoms)
A ::= B | 〈negative formula〉 | ♦A | A ∧ A | A ∨ A (Sahlqvist antecedents)
I ::= A→ 〈positive formula〉 (Sahlqvist implications)
F ::= I | F ∧ F | F ∨ F | �aF (Sahlqvist formulae)

where i ∈ Φ, a ∈ I, and in the last clause the disjuncts do not have shared variables.
The following is the main theorem of the present section:

Theorem 1.3.1. Every Sahlqvist formula locally corresponds to a first-order formula in
the setting of possibility semantics. Moreover, one can effectively calculate the first-order
correspondent from a Sahlqvist formula.

6By F |= U2(STw(φ)), we mean U2(STx(φ)) is satisfied by F and a variable assignment sending x to w.
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The rest of the present section is devoted to developing a theory necessary to prove the
theorem. The argument will be based on algebraic correspondence theory [24], although there
will be slight changes in terminology and convention.

The key observation is as follows. Call a class function V a definably enumerable class if the
domain of V is the class of possibility frames and there exists a formula β(x; z1, . . . , zk) ∈ L1(τ)
such that for every F we have

V(F) = {β(F;w1, . . . , wk) | w1, . . . , wk ∈ F} ∪ {∅}.

Lemma 1.3.2. Let φ(p0, . . . , pn−1) ∈ L(Φ, I) and V0, . . . ,Vn−1 be definably enumerable
classes.7 Assume for every possibility frame F and w ∈ F, the following are equivalent:

F |= U2(STw(φ)); (1.5)

∀P0 ∈ V0(F) · · · ∀Pn−1 ∈ Vn−1(F) (F, P0, . . . , Pn−1) |= STw(φ). (1.6)
Then, φ locally corresponds to a first-order formula.

Proof. Let βi(x; zi1, . . . , ziki) witness Vi being definably enumerable. Let α(x) be the first-order
formula obtained by replacing, in U2(STx(φ)), each quantifier ∀Pi by ∀zi1 · · · ∀ziki and each
occurrence of Pix by βi(x; zi1, . . . , ziki), for each i ∈ n, where z

i
j are fresh variables. Moreover,

let α∅(x) be the formula obtained by replacing, in STx(φ), each occurrence of Pix with x 6= x.
It can easily be seen that φ indeed locally corresponds to α(x) ∧ α∅(x).

Remark. A statement similar to Lemma 1.3.2 is true of Kripke semantics, as proved by van
Benthem [6, p. 9.15]. Modal formulae that satisfy the hypothesis of the Kripke-semantic
version of the lemma belong to a class of formulae that van Benthem called M sub

1 , which is
now commonly called the class of van Benthem formulae [22, Definition 30]. An anonymous
reviewer remarked that this class, which includes the class of Sahlqvist formulae, the class
of inductive formulae [42] and many more, is beyond the reach of current algorithmic
correspondence techniques.

In what follows, by F we mean a possibility frame.

Definition 1.3.3. A modal formula is normative if, for each p ∈ Φ, the number of positive
occurrences of p in it is at most one.8

In the following, we assume, without loss of generality, that negative propositional variables
in a normative Sahlqvist antecedent are all towards the end of the enumeration p0, p1, . . . of
the propositional variables occurring in the formula.

We will later associate with a normative Sahlqvist antecedent a certain kind of map, a
Sahlqvist map, between partial orders. Below, n will be the number of propositional variables
in a normative antecedent, and m will be the number of those that occur positively.

7By the notation like φ(p0, . . . , pn−1), we understand hereafter that all propositional variables occurring
in the formula are present in the parentheses.

8In [24], a related but slightly different concept of 1-implications is used.



CHAPTER 1. MODAL CORRESPONDENCE THEORY FOR POSSIBILITY
SEMANTICS 14

Definition 1.3.4. Let n,m, l ∈ ω (m ≤ n) and ā1, . . . , ām ∈ I<ω. A Sahlqvist map of type
(n,m, l; ā1, . . . , ām) is a map of the form f ◦〈(g1×· · ·×gm)◦πm, h1, . . . , hl〉 : RO(F)n → RO(F)
where

1. f : RO(F)m+l → RO(F) is completely additive;

2. πm : RO(F)n → RO(F)m is the projection onto the firstm coordinates, i.e., πm(X0, . . . , Xn−1) =
(X1, . . . , Xm−1);

3. each gi : RO(F)→ RO(F) has a left adjoint of the form

Y 7→ Rro
āi

[Y ] := (Rāi(0)[(Rāi(1)[· · · (Rāi(|ai|−1)[Y ])ro · · · ])ro])ro;

4. each hi : RO(F)n → RO(F) is order-reversing.

Note that for a formula φ(p0, . . . , pn−1) ∈ L(Φ, I) and possibility models (F, π) and (F, π′),
we have JφK(F,π) = JφK(F,π′) if π � n = π′ � n, where we identify propositional variables with
their indices. Write JφKF for the map RO(F)n → RO(F) that maps π̃ ∈ RO(F)n to the unique
value of JφK(F,π) where π : Φ→ RO(F) extends π̃.

Lemma 1.3.5. Let φ ∈ L(Φ, I) be a positive (respectively, negative) formula. Then JφKF is
order-preserving (respectively, order-reversing).

Proof. By simultaneous induction.

For a sequence of modal indices ā ∈ I<ω and a modal formula φ, we define the expression
�āφ recursively as �〈〉φ = φ and �ābφ = �ā�bφ. Let r : I<ω → I<ω be the string reversal;
i.e., r(〈〉) = 〈〉 and r(bā) = r(ā)b.

Lemma 1.3.6. If φ(p0, . . . , pn−1) is a normative Sahlqvist antecedent, then JφKF is a Sahlqvist
map of type (n,m, l; ā0, . . . , ām−1) for some l ∈ ω, where m is the number of variables that
occur positively in φ and, for each i ∈ m, the unique positive occurrence of pi in φ follows
�r(āi).

Proof. By induction. The properties used in the proof are that RO(F), the underlying BAO
of F, is a complete and completely additive BAO, making ∧, ∨ and the operators for ♦a
completely additive; that the operators la have left adjoints; and that if l : RO(F)→ RO(F)
has a left adjoint of the form Y 7→ Rro

ā [Y ], then lb ◦ l has a left adjoint of the form
Y 7→ Rro

āb[Y ].

For X ∈ RO(F), we write Y ≤1 X if Y = {y}ro for some y ∈ X. Note that if Y ≤1 X
then Y ⊆ X.

Lemma 1.3.7. For X ∈ RO(F) \ {∅}, we have X = ∨
Y≤1X Y .
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Proof. Since Y ≤1 X ⇒ Y ⊆ X, we have ∨Y≤1X Y ⊆ X.
Let x ∈ X be arbitrary. Then {x}ro ≤1 X, whence x ∈ {x}ro ⊆ ∨

Y≤1X Y . Therefore,
X ⊆ ∨Y≤1X X.

Note that the lemma above is a consequence of (·)ro being a closure operator and RO(F)
being the set of fixed points of (·)ro.

For ā ∈ I<ω, write Vā
1(F) for the family of regular open sets that are either empty or of

the form Rro
ā [{z}ro] where z ∈ F. Also, let V0(F) := V0 := {∅}. For ā ∈ I<ω, write Rāxy if

and only if there exist z1, . . . , z|a|−1 ∈ F such that

Rā(0)xz1 ∧Rā(1)z1z2 ∧ · · · ∧Rā(|a|−1)z|a|−1y.

Lemma 1.3.8. For each X ∈ RO(F) and for each ā,

Rro
ā [X] = (Rā[X])ro.

Therefore, Vā
1 is a definably enumerable class as witnessed by the first-order formula βā1 (x; z)9

[∃z′ (λy Rāz
′y ∧ [λy′ y′ = z/Q]βQro(z′))/Q]βQro(x).

(Recall that βQro(x) is a first-order formula that defines Xro in the expansion of F that interprets
Q as X.)

Proof. For S ⊆ F × F , let us define the map lS by, for X ⊆ F,

lS(X) = {x ∈ F | ∀y (Sxy ⇒ y ∈ X)}.

Then lRa = la, and it can be shown that lRbā = lb ◦ lRā . Hence, by induction, we may regard
lRā as a map RO(F)→ RO(F), for every ā ∈ I<ω.

It can easily be seen that Y 7→ Rro
ā [Y ] is a left adjoint of la(|a|−1) ◦ · · · ◦ la(0). By reasoning

similar to that in the case of la, we see that Y 7→ Rā is a left adjoint of lRr(ā) . Since
la(|a|−1) ◦ · · · ◦ la(0) = lRr(ā) , we conclude Rro

ā [X] = (Rā[X])ro for any X ∈ RO(F), by the
uniqueness of the left adjoint.

V0 is also a definably enumerable class trivially.

Lemma 1.3.9. Let f : RO(F)n → RO(F) be a Sahlqvist map of type (n,m, l; ā0, . . . , ām−1)
and G : RO(F)n → RO(F) be order-preserving. Then for w ∈ F, the following are equivalent:

∀P0 ∈ RO(F) · · · ∀Pn−1 ∈ RO(F)
(w ∈ f(P0, . . . , Pn−1)⇒ w ∈ G(P0, . . . , Pn−1));

(1.7)

∀P0 ∈ Vā0
1 (F) · · · ∀Pm−1 ∈ Vām−1

1 (F)∀Pm ∈ V0 · · · ∀Pn−1 ∈ V0

(w ∈ f(P0, . . . , Pn−1)⇒ w ∈ G(P0, . . . , Pn−1)).
(1.8)

9We use the λ-notation and the notation for syntactic substitution as in [14].
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Proof. For simplicity, assume n = 2, m = 1, and l = 2; it is straightforward to adapt the
proof below for the general case.

(⇒) is clear. Assume (1.8). Suppose f = f0 ◦ 〈g ◦ π1, h〉 where f0 : RO(F)2 → RO(F)
is completely additive, g : RO(F) → RO(F) is the right adjoint of the map Y 7→ Rro

ā0 [Y ]
and h : RO(F)2 → RO(F) is order-reversing. Take arbitrary P0, P1 ∈ RO(F) and assume
w ∈ f(P0, P1). We will show w ∈ G(P0, P1).

By the adjunction, we can show that if P0 = ∅ then g(P0) = ∅. Assume g(P0) = ∅.
Then w ∈ f(P0, P1) = f0(g(P0), h(P0, P1)) = f0(∅, h(P0, P1)) = f0(g(∅), h(P0, P1)). Since h is
order-reversing and f0 is order-preserving, w ∈ f0(g(∅), h(∅, P1)) = f(∅, P1). By ∅ ∈ Vā0

1 and
(1.10), we have w ∈ G(P0, P1).

Assume g(P0) 6= ∅. Since h is order-reversing, f0 is completely additive, and g(P0) =∨
X≤1g(P0) X (by Lemma 1.3.7), we have

w ∈ f(P0, P1)
= f0(g(P0), h(P0, P1))
⊆ f0(

∨
X≤1g(P0)

X, h(P0, ∅))

=
∨

{x}ro⊆g(P0)
f0({x}ro, h(P0, ∅))

=
∨

Rro
ā0

[{x}ro]⊆P0

f0({x}ro, h(P0, ∅)),

where the last equality follows because g’s left adjoint is Y 7→ Rro
ā0 [Y ]. For each x ∈ F, let

Qx = Rro
ā0 [{x}ro]. Note that Qx ∈ Vā0

1 (F) and that g(Qx) ⊇ {x}ro (the latter is by the general
fact that the composite of a right adjoint after its left adjoint is inflating). Then

w ∈
∨

Qx⊆P0

f0({x}ro, h(P0, ∅))

⊆
∨

Qx⊆P0

f0(g(Qx), h(Qx, ∅)) (1.9)

⊆
∨

Qx⊆P0

G(Qx, ∅) (1.10)

⊆
∨

Qx⊆P0

G(P0, P1) (1.11)

= G(P0, P1). (1.12)

The inclusion (1.9) is by the order-reversing property of h and the order-preserving property
of f0; (1.10) is by (1.8); and (1.11) is because G is order-preserving.

Corollary 1.3.10. Let φ(p0, . . . , pn−1) be a normative Sahlqvist antecedent and
ψ(p0, . . . , pn−1) be positive. Assume that m is the number of propositional variables that
occur positively in φ, and that for each i ∈ m the unique positive occurrence of pi in φ follows
�āi . Then for w ∈ F, the following are equivalent:
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F |= U2(STw(φ→ ψ)); (1.13)

∀P0 ∈ Vā0
1 (F) · · · ∀Pm−1 ∈ Vām−1

1 (F)∀Pm ∈ V0 · · · ∀Pn−1 ∈ V0

(F, P0, . . . , Pn−1) |= STw(φ→ ψ).
(1.14)

Proof. Note that, for w ∈ F, we have (F, P0, . . . , Pn−1) |= STw(φ→ ψ) if and only if

∀w′ v w (w′ ∈ JφKF(P0, . . . , Pn−1)⇒ w′ ∈ JψKF(P0, . . . , Pn−1)).

By Lemma 1.3.6, JφKF is a Sahlqvist map of type (n,m, l; ā0, . . . , ām−1) for some l ∈ ω. By
Lemma 1.3.5, JψKF is order-preserving. By applying Lemma 1.3.9 to each w′ v w, we obtain
the equivalence between (1.13) and (1.14).

Corollary 1.3.11. For any Sahlqvist implication χ with a normative antecedent, there exists
a first-order formula α(x) such that χ corresponds to α(x).

Proof. By Corollary 1.3.10 and Lemma 1.3.2.

We will now see that the general case reduces to that of normative formulae. For
V, V ′ ⊆ RO(F), write V + V ′ for the family of regular open sets of the form P ∨ P ′, where
P ∈ V and P ′ ∈ V . Note that if both V and V ′ are definably enumerable classes, so is the
class V + V ′ which is defined by (V + V ′)(F) = V(F) + V ′(F).

Lemma 1.3.12. Let m ≤ n. Suppose φ(p0, . . . , pn−1) is a modal formula such that each pi
is positive for i = 0, . . . ,m− 1. Let ψ(pm, . . . , pn−1) be positive. Assume that for definably
enumerable classes V0, . . . ,Vm−1 the following are equivalent for each w ∈ F:

∀P0 ∈ RO(F) · · · ∀Pm−1 ∈ RO(F)
(w ∈ Jσ(φ)KF(P0, . . . , Pm−1)⇒ w ∈ Jσ(ψ)KF(P0, . . . , Pm−1));

(1.15)

∀P0 ∈ V0(F) · · · ∀Pm−1 ∈ Vm−1(F)
(w ∈ Jσ(φ)KF(P0, . . . , Pm−1)⇒ w ∈ Jσ(ψ)KF(P0, . . . , Pm−1)),

(1.16)

where

σ =
 ∨

0≤i<m
pi

/
pm, . . . ,

∨
0≤i<m

pi

/
pn−1

 .
Then the following are also equivalent for each w ∈ F:

∀P ∈ RO(F) (w ∈ Jσ0(φ)KF(P )⇒ w ∈ Jσ0(ψ)KF(P )); (1.17)

∀P ∈ (V0 + · · ·+ Vm−1)(F) (w ∈ Jσ0(φ)KF(P )⇒ w ∈ Jσ0(ψ)KF(P )), (1.18)

where σ0 = [p0/p0, . . . , p0/pn−1].
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Proof. (1.17) ⇒ (1.18) is clear. We will see (1.18) ⇒ (1.16) ⇒ (1.15) ⇒ (1.17). (1.16) ⇒
(1.15) is by assumption. (1.15)⇒ (1.17) is by instantiating (1.15) with P1 . . . , Pn−1 := P0, by
J
∨

0≤i<m piKF(P0, . . . , Pn−1) = ∨
0≤i<m Pi, and by the definition of σ.

We show (1.18) ⇒ (1.16). For simplicity, assume n = 3 and m = 2 (the proof can be
adapted for other cases straightforwardly). Take arbitrary P0 ∈ V0 and P1 ∈ V1. Then

w ∈ Jσ(φ)KF(P0, P1)
⊆ Jσ(φ)KF(P0 ∨ P1, P0 ∨ P1) (1.19)
= Jσ0(φ)KF(P0 ∨ P1) (1.20)
⇒ (1.21)

w ∈ Jσ0(ψ)KF(P0 ∨ P1)
= Jσ(ψ)KF(P0, P1). (1.22)

(1.19) holds because σ(φ) is positive in p0, and p1 and σ(p2) = p0 ∨ p1. (1.20) holds by the
definition of σ and σ0. (1.21) follows from (1.18). (1.22) holds because neither p0 nor p1
occurs in ψ.

By the lemma above, correspondence theory for a Sahlqvist implication in which the
only propositional variable is p0 reduces to that for a Sahlqvist implication with normative
antecedents. More concretely, the case for such an implication χ reduces to that for the formula
one obtains by replacing in χ the positive occurrences of p0 in the antecedent by distinct
propositional variables and, simultaneously, the other occurrences of p0 by the disjunction
of those distinct variables. We can further show a similar lemma for multiple variables to
reduce the case for general Sahlqvist implications to that for Sahlqvist implications with
normative antecedents.

We are now ready to prove the main theorem of this section.

Proof of Theorem 1.3.1. As in the correspondence theory for the standard Kripke semantics,
one can show that the set of modal formulae that locally correspond to first-order formulae
are closed under these operations:

χ 7→ �āχ (ā ∈ I<ω)
(χ, χ′) 7→ χ ∧ χ′

(χ, χ′) 7→ χ ∨ χ′ (if no propositional variables occur in both χ and χ′)

Also by the observation above one only needs to prove the theorem for a Sahlqvist implication
whose antecedent is normative. This follows from Corollary 1.3.11.

For a better understanding of the methods of this section, let us apply them to a concrete
example.
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Example 1.3.13. Assume that I is a singleton, denote its only element by ∗, and let R = R∗
and x B y ↔ Ryx. The B axiom from Example 1.2.4 has an equivalent form

Bop :≡ ♦�p0 → p0

which is a Sahlqvist implication. We will calculate a local correspondent of Bop as an example,
by using the theorems in this section.

As we saw in Example 1.2.4, we can assume extra conditions on the interaction of R and
v to make correspondents simpler, without loss of generality. In fact, something additional
is true here: often, for an interaction condition C, if a first-order formula α(x) is a local
correspondent of a modal formula φ over the possibility frames that satisfy C, i.e., for any
possibility frame F |= C and w ∈ F,

F, w 
 φ⇔ F |= α(w),

then one can effectively obtain a first-order α̃(x) which is a local correspondent of φ. See
[49, Section 6.3] for the details. To compute a local correspondent of Bop it is convenient to
assume the following conditions, alongside (R-down):

x v y ↔ ∀x′ v x x′ G y; (separativity)

(∀y′ v y ∃y′′ v y′Rxy′′)→ Rxy; (R-dense)
(Rx′y ∧ x′ v x)→ Rxy. (up-R)

Again, we can assume these conditions without loss of generality, in the strong sense stated
above. One of the major consequences of the extra conditions is

Rro[{x}ro] = R[{x}]. (1.23)

We are now ready to calculate a local correspondent of Bop. Using the simplified forcing
relation (1.4) for ♦, we see that STx(Bop) is equivalent to

∀x1 v x ((∀x2 v x1 ∃x3 B x2 ∀x4 B x3 P0x4)→ P0x1).

Since p0 follows exactly one � in the antecedent of Bop, one can apply Lemma 1.3.9 where
the range of ∀P 0 is restricted to V∗1. This class is defined by the first-order formula β∗1(x; z),
where

β∗1(x; z)↔ Rzx

by (1.23). A local correspondent of Bop is then obtained by applying Lemma 1.3.2: αBop(x)∧
α∅(x) is a local correspondent of Bop, where αBop(x) is the first-order formula obtained by
replacing

∀P0 · · ·P0x · · ·
by

∀z0 · · · Rz0x︸ ︷︷ ︸
equivalent to β∗1 (x; z0)

· · ·
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in U2(STx(Bop)), and α∅(x) = [λxx 6= x/P0] STx(Bop). αBop(x) can be calculated to be

∀z0 ∀x1 v x ((∀x2 v x1 ∃x3 B x2 ∀x4 B x3Rz0x4)→ Rz0x1),

and α∅(x) is

∀x1 v x ((∀x2 v x1 ∃x3 B x2 ∀x4 B x3 x4 6= x4)→ x1 6= x1).

One can check that, under the assumption of the extra conditions above,
∀x (αBop(x) ∧ α∅(x)) is equivalent to (1.3), the global correspondent of the B axiom given in
Example 1.2.4.

Given that the analogue of the Sahlqvist Correspondence Theorem holds for possibility
semantics, it is natural to ask whether an analogue of the Sahlqvist Completeness Theorem
holds for possibility semantics as well. We will briefly discuss this question in Section 1.5.

1.4 Model-theoretic characterization
In this section, we examine model-theoretic aspects of correspondence theory for possibility
frames, extending and adapting the classical work of van Benthem [5]. We will see that the
standard results for Kripke semantics smoothly extend to the setting of possibility semantics.

First, we investigate a model-theoretic characterization of modal formulae that globally
correspond to first-order formulae. Unlike in the previous sections, we now regard possibility
frames as (ordinary) structures for L2(τ), i.e., with no restriction on the range of second-order
variables. In this section, we use the term “structures” without qualifications to refer to this
kind of structure for L2(τ). We also assume in this section that I, the set of modal indices,
is finite.

Let FR(φ) denote the set of possibility frames F such that for every possibility model
M = (F, π) and every w ∈ F, we have M, w 
 φ. Equivalently, FR(φ) is the set Mod(SOT(φ))
of structures that models the monadic second-order formula SOT(φ), where:

• SOT(φ) := Ũ2(STx(φ)) ∧ βpo ∧
∧
a∈I β

a
R⇒win ∧ βaR-rule;

• βpo states v is a partial order;

• Ũ2(χ) denotes the universal quantification by the second-order monadic variables
occurring in χ, but with the domain of the quantification restricted to RO(F); concretely,
Ũ2(χ) := χ for χ ∈ L2(τ) with no monadic second-order free variables and Ũ2(χ) :=
Ũ2(∀P (βPval → χ)) for χ with a monadic second-order free variable P ; and

• βPval is a sentence in L1(τ∪{P}) that says that P is a regular open set within a possibility
frame; i.e.,

βPval :≡ ∀x (Px↔ βPro(x)).
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Definition 1.4.1. Let F be a structure. A generated substructure G of F is a substructure
of F such that if x ∈ G and F |= ♥xy for some ♥ ∈ {w} ∪ {Ra | a ∈ I}, then y ∈ G.

It can be shown that a generated substructure of a possibility frame as a structure is
again a possibility frame (see [49, Proposition 5.50.2]).

Lemma 1.4.2. Let F be a structure and G be a generated substructure of F. Let π be
an interpretation of Pi (i ∈ κ). Then for each modal formula φ and each w ∈ G, we have
(F, π) |= STw(φ)⇔ (G, π) |= STw(φ).

Proof. Obvious.

The following result is originally due to Goldblatt [41]. For a family (Ni)i∈J of structures
and an ultrafilter U over J , we write ∏i∈J Ni/U for the ultraproduct of the family using J
(see, e.g., [64]).

Lemma 1.4.3. Let (Fi)i∈J and (Gi)i∈J be families of structures. Assume that each Fi is
a generated substructure of Gi. Let U be an ultrafilter over J . Then F := ∏

i Fi/U is a
generated substructure of G := ∏

iGi/U .

Proof. This can be proved in the same way as over Kripke frames whose accessibility relations
are ♥’s as in Definition 1.4.1.

Recall that an ultrapower FJ/U is the ultraproduct ∏i∈J Fi/U of the family (Fi)i∈J where
Fi = F for all i ∈ J . Given a family (Fi)i∈J of structures, one can think of a new structure⊕
i∈J Fi, their disjoint union, since the signature τ is relational. Note that, if (Fi)i∈J is a

family of possibility frames, then ⊕i∈J Fi is again a possibility frame (see [49, Proposition
5.54.2]).

Corollary 1.4.4. Let (Fi)i∈J be a family of structures and F := ⊕
i∈J Fi. Let U be an

ultrafilter over J and G = ∏
i Fi/U . Then G is isomorphic to some generated substructure of

the ultrapower FJ/U .

Lemma 1.4.5. For φ ∈ L(Φ, I), we have that FR(φ) = Mod(∀x SOT(φ)) is closed under
generated substructures.

Proof. By induction on the complexity of φ.

Lemma 1.4.6. For φ ∈ L(Φ, I), if FR(φ) is closed under ultrapowers, then it is closed under
ultraproducts.

Proof. Obvious from the preceding lemmas, since FR(φ) is closed under disjoint unions.

We can now see that van Benthem’s [5] characterization of basic elementary classes of
Kripke frames can be extended to possibility frames as well. Recall that a class K of structures
is basic elementary if K = Mod(α) for some first-order α. By definition, for a modal formula
φ, we have that FR(φ) is basic elementary if and only if φ has a global correspondent
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Theorem 1.4.7. For φ ∈ L(Φ, I), we have FR(φ) is basic elementary if and only if it is
closed under ultrapowers.

Proof. By a general model-theoretic fact (see, e.g., [19, Corollary 6.1.16 (ii)]), FR(φ) =
Mod(∀x SOT(φ)) is basic elementary if and only if Mod(∀x SOT(φ)) and its complement
are closed under ultraproducts. Since ∀x SOT(φ) is Π1

1 for any φ ∈ L(Φ, I), we know that
Mod(¬∀x SOT(φ)), the complement of Mod(∀x SOT(φ)), is always closed under ultraprod-
ucts, since Σ1

1 sentences are preserved under ultraproducts. Then by the previous lemma,
Mod(∀x SOT(φ)) is basic elementary if and only if it is closed under ultrapowers.

Let us now turn to local correspondence. An analogous result for Kripke semantics was
also proved by van Benthem [5].

Theorem 1.4.8. For φ ∈ L(Φ, I), we have that φ locally corresponds to a first-order formula
if and only if for every possibility frame F, every index set J and an ultrafilter U over J , we
have

∀i ∈ J F |= SOT(φ)(wi)⇒ FJ/U |= SOT(φ)((wi)i/U). (†)

Proof. First observe that a modal formula φ locally corresponds to a first-order α(x) if and
only if Mod([c/x] SOT(φ)) = Mod(α(c)) where Mod is defined analogously for the language
L2(τ ∪ {c}), and c is a new constant symbol. In addition, the quantifier-wise syntactic
complexity of the sentence [c/x] SOT(φ) remains Π1

1 in the new language. Thus, a proof
similar to the one above applies to this theorem.

To be more precise, one can show the following analogue of Corollary 1.4.4:
Claim. Let ((Fi, wi))i∈J be a family of structures for L1(τ ∪{c}) and U be an ultrafilter over
J . Then ∏i Fi/U can be embedded in the ultraproduct∏

i∈J
(
⊕
j∈J

Fj, wi)/U, (∗)

and its image is a generated substructure of (⊕j∈J Fj)J/U .
Moreover, if (F, w) |= [c/x] SOT(φ), then for a generated substructure G of F containing

w we have (G, w) |= [c/x] SOT(φ), and if (Fi, wi) |= [c/x] SOT(φ) for all i ∈ J , an index
set, then (⊕j∈J Fj, wi) |= [c/x] SOT(φ) for all i. Thus, Mod(SOT(φ)[c/x]) is closed under
ultraproducts of the form (∗) if and only if φ locally corresponds to a first-order formula.
This can easily seen to be equivalent to the condition (†).

A standard application of a result like Theorem 1.4.8 is to obtain a syntactic closure
property of the set of formulae having first-order correspondents, as follows.

Theorem 1.4.9. If �aφ locally corresponds to a first-order formula, so does φ.
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Proof. For simplicity, we omit modal operator indices. Suppose that φ does not locally
correspond to a first-order formula. Then by Theorem 1.4.8, there exist a structure F =
(W,R,v), an index set J , an ultrafilter U over J , and (wi)i ∈ FJ such that for every i ∈ I we
have F |= SOT(φ)(wi) but FJ/U 6|= SOT(φ)((wi)i/U). Let π be the valuation that witnesses
the latter fact. Let v be an object not in W . For each i ∈ I, let Fi = (W t {v}, R t
{(v, wi)},v t {(v, v)}). Since for every i ∈ J we have Fi |= ∃!xRvx and Fi |= Rvwi, by
Łoś’s Theorem, we know that ∏i Fi/U |= ∃!xR((v)i/U)x and that the unique witness to
the preceding formula is (wi)i/U . Note that FJ/U is a generated substructure of ∏i Fi/U .
The valuation π is also a valuation for ∏i Fi/U . Hence, (∏i Fi/U, π) 6|= STx(φ)((wi)i/U)
and (∏i Fi/U, π) 6|= STx(�φ)((v)i/U). However, by construction, for every i ∈ J we have
Fi |= SOT(�φ)(v). Therefore, by Theorem 1.4.8, we know that �φ does not locally correspond
to a first-order formula.

1.5 Conclusion
We have seen that despite the richer structure of possibility frames, involving not only the
accessibility relation but also the refinement relation, central results of standard correspon-
dence theory continue to hold in this more general setting. A natural question raised by
our results is this: does every formula that has a first-order correspondent in the setting of
Kripke semantics also have a first-order correspondent in the setting of possibility semantics?

A second open problem suggested by our results concerns the Sahlqvist Completeness
Theorem, which states that every Sahlqvist formula is canonical. A natural question to ask
here is how this theorem can be extended to our general setting of possibility semantics. In
[48, Section 5.6], a possibility-theoretic view of canonical extensions of BAOs is developed,
according to which, for a normal modal logic Λ, there is a canonical possibility frame10 whose
modal theory is included in Λ. Unlike a canonical Kripke frame, built from the ultrafilters in
the Lindenbaum algebra of a logic, a canonical possibility frame is built from proper filters
in the Lindenbaum algebra. The possibility frame constructed from a BAO in this way is
called a filter frame. Even for an uncountable modal language, the construction of the latter
does not require the ultrafilter axiom, or equivalently, the Boolean prime ideal axiom. The
possibility-semantic version of canonicity of a modal formula φ is then defined so that φ
is filter-canonical if and only if, for every normal modal logic Λ containing φ, the logic’s
canonical possibility frame validates φ. Assuming the ultrafilter axiom, φ is filter-canonical if
and only if φ is canonical in the standard Kripke-semantic sense [48, p. 122]. Holliday also
proves [48], without use of the Boolean prime ideal axiom, that the underlying BAO of the
filter possibility frame of a BAO A coincides with what Gehrke and Harding [33] construct as
the “canonical extension” of A and what Conradie and Palmigiano [23] call the constructive
canonical extension of A (see also Suzuki [74]). Consequences [48, Theorem 7.20] of Conradie
and Palmigiano’s results [23] are that every inductive formula is filter-canonical, and that

10Again, we are dropping the word “full” from the technical term defined in [49].
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every normal modal logic axiomatized by inductive formulae is sound and complete with
respect to its canonical possibility frame.

Another question raised by our results concerns the potential applicability to possibility
semantics of ALBA [21], a group of general syntactic algorithms that can calculate correspon-
dents of formulae in many non-classical logics that are interpreted in lattices with operators.
A possible research direction is to adapt the techniques of ALBA in order to reformulate the
argument in Section 1.3 as a variant of ALBA and to prove more general correspondence
results for possibility semantics.
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Chapter 2

Correspondence, Canonicity, and
Model Theory for Monotonic Modal
Logics

2.1 Introduction
Monotonic modal logics generalize normal modal logics by dropping the K axiom �(p→ q)→
(�p→ �q) and instead requiring only that ` φ→ ψ imply ` �φ→ �ψ. There are a number
of reasons for relaxing the axioms of normal modal logics and considering monotonic modal
logics. For instance, monotonic modal logics are considered more appropriate to describe the
ability of agents or systems to make certain propositions true in the context of games and
open systems [68, 69, 2]. The standard semantics for monotonic modal logics is provided by
monotonic neighborhood frames (see, e.g., [43]).

Just as the first-order language with a relation symbol is a useful correspondence language
for Kripke frames, it is natural to consider what would be a useful correspondence language
for monotonic neighborhood frames. Litak et al. [60] studied coalgebraic predicate logic (CPL)
as a logic that plays that role and proved a characterization theorem in the style of van
Benthem and Rosen [72]. In this article, we continue that path for monotonic neighborhood
frames and prove variants of the Goldblatt-Thomason theorem [40] and the Fine canonicity
theorem [31] in the setting of coalgebraic predicate logic.

We will deal with a relativized notion of CPL-elementarity, relativized to subclasses of
the class of monotonic neighborhood frames. There are several important subclasses to
consider: the class of filter neighborhood frames, providing a more general semantics [35,
36] for normal modal logics than relational semantics; the class of quasi-filter neighborhood
frames, providing a semantics for regular modal logics; the class of augmented quasi-filter
neighborhood frames, providing a less general semantics for regular modal logics; and the
class of augmented filter neighborhood frames, which are Kripke frames in disguise [20, 66].

The analogue of the Goldblatt-Thomason theorem in this article is that a class of
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Subclass Closed under ...

monotonic supersets
quasi-filter supersets, intersections of nonempty finite families of neighbor-

hoods
augmented quasi-filter supersets, intersections of nonempty families of neighborhoods
filter supersets, intersections of finite families of neighborhoods
augmented filter supersets, intersections of families of neighborhoods

Table 2.1: Classes of monotonic neighborhood frames and their definitions

monotonic neighborhood frames closed under CPL-elementarity relative to any of the classes
of neighborhood frames in Table 2.1 is modally definable if and only if it is closed under
disjoint unions, bounded morphic images, and generated subframes, and it reflects ultrafilter
extensions; and the analogue of Fine’s theorem we will prove states that a sufficient condition
for the canonicity of a monotonic modal logic is that it is complete with respect to the class of
monotonic neighborhood frames it defines and that that class is closed under CPL-elementarity
relative to any of the classes of neighborhood frames in Table 2.1.

The relevance of coalgebraic predicate logic in this article is that many monotonic modal
logics define classes of monotonic neighborhood frames that are CPL-elementary. For instance,
the monotonic modal logics axiomatized by formulas of the form

〈purely propositional positive formula〉 → 〈positive formula〉 (2.1)

are determined by CPL-elementary classes of monotonic neighborhood frames (see Remark 2.2).
In addition, relative to the class of augmented quasi-filter frames, all monotonic modal logics
axiomatized by Sahlqvist formulas are CPL-elementarily determined (see Example 2.2.5).
Further discussion regarding the relevance of this language in the context of Fine’s theorem
is in Remark 2.4.

Since augmented filter frames are Kripke frames in disguise (see also Example 2.2.5),
our result regarding classes elementary relative to the class of augmented filter frames
generalizes the original, Kripke-semantic Goldblatt-Thomason theorem. Also, our Goldblatt-
Thomason theorem concerns elementary classes like the original theorem, whereas some
existing Goldblatt-Thomason theorems such as [44] or [58] deal with classes closed under
ultrafilter extensions.

The article is organized as follows. In § 2.2, we recall standard concepts in the semantics
of monotonic modal logic and introduce the language for neighborhood frames. In § 2.3, we
give an overview of the model theory of neighborhood frames for this language. We also
define a two-sorted first-order language (Definition 2.3.8) and a translation of coalgebraic
predicate logic into it (Proposition 2.3.5), which are used later to explain the existence of
ℵ0-saturated models of languages of coalgebraic predicate logic (Proposition 2.3.6). In § 2.4,
we prove the main lemmas of this articles. In § 2.5, we give the applications of the main
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lemmas, which are analogues of the Goldblatt-Thomason Theorem and Fine’s Canonicity
Theorem.

The presentation of the results in this article does not presuppose the reader’s prior
knowledge of coalgebras or coalgebraic predicate logic.

2.2 Preliminaries

Languages and structures
In this subsection, we recall standard definitions in neighborhood semantics of modal logic and
the language coalgebraic predicate logic introduced in [18] and [60] to describe neighborhood
frames.

We define languages of coalgebraic predicate logic relative to sets of nonlogical symbols
here; this is so that we can use expansions of the smallest language in proofs in § 2.4.

Definition 2.2.1.

(i) Let σ be the set of atomic formulas of some language of first-order logic. The language
of coalgebraic predicate logic L based on σ is the least set of formulas containing σ
and closed under Boolean combinations, existential quantification, and formation of
formulas of the form x�dy : φe, where φ ∈ L, and x and y are variables. To save
space, we sometimes write x�y φ or even x�φ for x�dy : φe. For a language L0 of
first-order logic, the language of coalgebraic predicate logic based on L0 is defined to
be the language of coalgebraic predicate logic based on the set of atomic formulas of
L0. We write L= for the language of coalgebraic predicate logic based on the empty
language, i.e., the language with just the equality symbol.

(ii) Let L0 be a language of first-order logic and L the language of coalgebraic predicate
logic based on L0. An L-structure F = (F,NF ) is an L0-structure F with an additional
datum NF : F → P(P(F )), where P is the powerset operation. The map NF is
called the neighborhood function of F . A set U ∈ NF (w) is called a neighborhood of w.
If L0 is the empty first-order language, the L-structures are exactly the neighborhood
frames.

(iii) A neighborhood frame F is monotonic if for every w ∈ F the family NF (w) is closed
under supersets. F is a quasi-filter neighborhood frame if for every w ∈ F the family
NF (w) is closed under intersections of nonempty finite families of neighborhoods. F is
a filter neighborhood frame if it is a quasi-filter frame and for every w ∈ F the family
NF (w) is nonempty. F is an augmented quasi-filter neighborhood frame if for every
w ∈ F the family NF (w) is either empty or a principal upset in the Boolean algebra
P(F ), i.e., there exists U0 ⊆ F such that U ∈ NF (w) ⇐⇒ U0 ⊆ U . Finally, F is an
augmented filter neighborhood frame if for every w ∈ F the family NF (w) is a principal
upset.
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One might object to calling the language in Definition 2.2.1(i) the language of “coalgebraic
predicate logic” since this is essentially what Chang introduced in [18] whereas the language
in Litak et al. [60] is applicable to general coalgebras. We use the name “coalgebraic predicate
logic” in this article because Chang’s language does not have a name, and technically speaking
we do not use Chang’s syntax, which imposes a more strict rule regarding variables bound by
modal operators.
Example 2.2.2. For a topological space X = (X, τ), we associate a neighborhood frame
X∗ = (X,N) defined by

U ∈ N(w) ⇐⇒ w ∈ U◦,

where ◦ denotes topological interior. We call a monotonic neighborhood frame of the form
X∗ a topological neighborhood frame. Recall the satisfaction predicate 
top for topological
semantics and the satisfaction predicate 
nbhd for neighborhood semantics (see, e.g., [20, 9]
for more details):

M,w 
top �φ ⇐⇒ w ∈ {w′ |M,w′ 
top φ}◦

and
M ′, w 
nbhd �φ ⇐⇒ {w′ |M,w′ 
nbhd φ} ∈ N(w),

where M is a topological model, M ′ is a neighborhood model, and N is the neighborhood
function of the neighborhood frame of M ′. It is then easy to see that for every w ∈ X, every
modal formula φ, every topological model M based on X, and every neighborhood model N
based on X∗, if the valuations of M and N are the same, then

M,w 
top φ ⇐⇒ N,w 
nbhd φ.

Definition 2.2.3. Let L be a language of coalgebraic predicate logic and F an L-structure.
We define the satisfaction predicate F |= φ for a sentence φ ∈ L. It is convenient to define
the predicate for the expanded language L(F ) of coalgebraic predicate logic. In general, for
A ⊆ F , we define L(A) to be the language of coalgebraic predicate logic that has all symbols
of L and for each w ∈ A a constant symbol w that is intended to be interpreted as w itself.
Now, F is an L(F )-structure in the obvious way. We define the satisfaction predicate F |= φ
for φ ∈ L(F ). The predicate is defined by recursion on φ. For symbols of first-order logic in
L, the predicate is defined in the usual way. For φ = w�y φ0, we define

F |= w�y φ0(y) ⇐⇒ φ0(F ) ∈ NF (w)

where
φ0(F ) = {v ∈ F | F |= φ0(v)}

and φ0(v) stands for the substitution instance of φ0(y) with v substituted for y.

The use of constant symbols interpreted as themselves is standard practice in model
theory (see, e.g., [64]); it makes the notation and definitions much simpler, particularly in
later parts of this article where we deal with types with parameters.
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Example 2.2.4. Consider the B axiom p → �¬�¬p. We see that this modal formula has
a local frame correspondent relative to the class of monotonic neighborhood frames in the
language L=. Consider the validity of the B axiom for a monotonic neighborhood frame F
and w ∈ F . By the monotonicity of F , the usual minimum valuation argument (see, e.g., [14])
applies: the B axiom is valid at w if and only if its consequent is true under the minimum
valuation that makes its antecedent true, which is the valuation that sends p to the set {w}.
The latter condition is expressible by a formula in L=:

w�y(¬y�z z 6= w).

Remark. It can be shown likewise that modal formulas of the form (2.1) have frame correspon-
dents relative to the class of monotonic neighborhood frames. A formula of the form (2.1) is
what is called a KW formula in [43] and axiomatizes a monotonic modal logic complete with
respect to the class of monotonic neighborhood frames that it defines. Hence, the monotonic
modal logics axiomatized by such formulas are determined by CPL-elementary classes (see
Definition 2.4.1) of monotonic neighborhood frames.
Example 2.2.5. Consider the 4 axiom �p→ ��p. We show that this modal formula has a
local frame correspondent relative to the class of augmented quasi-filter neighborhood frames
in the same language L= as above. Consider the validity of the 4 axiom for an augmented
quasi-filter neighborhood frame F and w ∈ F . If w ∈ F is impossible, i.e., NF (w) = ∅,
then the 4 axiom is valid at w. Note that by monotonicity w is impossible if and only if
F 6∈ NF (w), i.e., F |= ¬w�y y = y. Otherwise, we can again use the minimum valuation
argument. Here, the minimum interpretation of p that makes the antecedent true is R[w]
because F is an augmented quasi-filter neighborhood frame, where R ⊆ F × F is the binary
relation defined by

xRy ⇐⇒ {z ∈ F | z 6= y} 6∈ NF (x) (⇐⇒ F |= ¬x�z z 6= y). (2.2)

To summarize, the 4 axiom has the local frame correspondent

¬w�dy : y = ye ∨ (w�dy : y = ye ∧ w�dy1 : y1�dy2 : ¬y2�dz : z 6= weee).

In fact, since the accessibility relation R and the set of impossible worlds are definable in L=
as we have seen above, the first-order frame correspondence language in [67] translates into
L=, and thus all Sahlqvist formulas have frame correspondents in L= relative to the class of
augmented quasi-filter neighborhood frames.

The displayed formula (2.2) can be used to define the class of augmented quasi-filter
neighborhood frames by coalgebraic predicate logic as well. Write R[x] for the set of y ∈ F
satisfying (2.2) for an arbitrary monotonic neighborhood frame F and x ∈ F . We see that a
monotonic neighborhood frame F is augmented quasi-filter if and only if either NF (w) is
impossible, or R[w] ∈ NF (w) for every w ∈ F , i.e., F satisfies the L=-sentence

∀x[(x�y y = y)→ x�y ¬(x�z z 6= y)].

Indeed, we have seen the “only if” direction in the last paragraph; to see the “if” direction,
observe that R[w] = ⋂

NF (w).
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Example 2.2.6. Recall that for a topological space X the specialization preorder of X is the
preorder . on X defined by

x . y ⇐⇒ x ∈ {y},

where (·) denotes topological closure. A space X is T0 if and only if . is a partial order, and
X is T1 if and only if . is a discrete partial order. Note that the specialization preorder of a
topological space X is “definable” in coalgebraic predicate logic in the sense that

x . y ⇐⇒ X∗ |= ¬x�z z 6= y. (2.3)

Hence, the images under ∗ of the classes of T0 and T1 spaces are CPL-elementary relative
to the class of topological neighborhood frames: X is T0 if and only if X∗ |= ∀z ∀w(z .
w ∧ w . z → w = z), and X is T1 if and only if X∗ |= ∀z ∀w(z . w → w = z), where x . y
abbreviates the formula of coalgebraic predicate logic on the right-hand side of the displayed
formula (2.3).

Definition 2.2.7. Let F and F ′ be neighborhood frames. A function f : F → F ′ is a
bounded morphism if for each w ∈ F :

f−1(U ′) ∈ NF (w) =⇒ U ′ ∈ NF ′(f(w)) (“forth”)

and
U ′ ∈ NF ′(f(w)) =⇒ f−1(U ′) ∈ NF (w). (“back”)

Lemma 2.2.8 ([27]). Let F and F ′ be monotonic neighborhood frames and f : F → F ′ be a
function that satisfies the “forth” condition. Suppose in addition that for all U ′ ∈ NF ′(f(w))
there exists U ∈ NF (w) such that f(U) ⊆ U ′. Then f is a bounded morphism.

Proof. By assumption, if U ′ ∈ NF ′(w), then there exists U such that f−1(U ′) ⊇ U ∈ NG(w);
by monotonicity, we have f−1(U ′) ∈ NG(w).

Note that bounded morphisms between monotonic neighborhood frames clearly satisfy
the assumption of this lemma.

Algebraic concepts
In this subsection, we recall some standard definitions from the algebraic treatment of modal
logic; for the standard notions that we do not define here, see [78].

First, we recall basic definitions regarding the algebraic treatment of monotonic modal
logic.

Definition 2.2.9. A monotonic Boolean algebra expansion (BAM for short) A = (A,�A) is
a Boolean algebra A with an additional datum �A : A→ A, a function that is monotonic,
i.e., for all a, b ∈ A we have a ≤ b =⇒ �A(a) ≤ �A(b).
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Lemma 2.2.10. Let F be a monotonic neighborhood frame. The function �F : P(F )→
P(F ) defined by

X 7→ {w ∈ F | X ∈ NF (w)}

is monotonic.

Definition 2.2.11 ([27]). The complex algebra F+ of a monotonic neighborhood frame F is
the BAM (P(F ),�F ), where P(F ) is the Boolean algebra of the powerset of F .

Proposition 2.2.1. Let F and F ′ be monotonic neighborhood frames. A function f : F → F ′

is a bounded morphism if and only if f+ : F ′+ → F+ defined by f+(X) = f−1(X) is a
homomorphism.

Since this article concerns canonicity, we need to recall definitions regarding canonical
extensions.

Definition 2.2.12. Let B be a Boolean algebra. The canonical extension Bσ of B is the
Boolean algebra of the powerset of the set Uf(B) of ultrafilters in B. An element of Bσ of the
form [a] := {u ∈ Uf(B) | a ∈ u} for a fixed a ∈ B is called clopen. Meets and joins of clopen
elements of Bσ are closed and open, respectively. The sets of closed and open elements of Bσ

are denoted K(Bσ) and O(Bσ), respectively.

Proposition 2.2.2. For a Boolean algebra B, the map [−] : B → Bσ is an embedding.

Proof. See, e.g., [78].

Definition 2.2.13 (see, e.g., [78]).

(i) Let A = (A,�) be a BAM. The canonical extension Aσ = (Aσ,�σ) of A is the canonical
extension of the Boolean algebra A expanded by the function �σ, where

�σ(u) =
∨

u⊇x∈K(Aσ)

∧
x⊆a∈A

�(a).

(ii) A set ∆ of modal formulas is canonical if for every BAM A |= ∆ we have Aσ |= ∆.

Proposition 2.2.3. For a BAM A = (A,�), the function �σ is monotonic, and thus the
canonical extension Aσ = (Aσ,�σ) is again a BAM.

Proof. See, e.g., [78].

Remark. Canonical extensions can be defined for larger classes of algebras. We stick to BAMs
in this article since they admit the most natural definition for �σ, among other reasons.

Definition 2.2.14 ([43]).
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(i) Let A be a BAM. The ultrafilter frame of A is a neighborhood frame (Uf(A), Nσ) with
Nσ defined by

U ∈ Nσ(u) ⇐⇒ ∃K ⊆ U ∀a ∈ A([a] ⊇ K ⇒ �(a) ∈ u), (2.4)

where u ∈ Uf(A), and K ranges over closed elements of Aσ = P(UfA). We denote the
ultrafilter frame of A by Uf(A).

(ii) Let F be a monotonic neighborhood frame. The ultrafilter extension ueF of F is
Uf(F+).

Proposition 2.2.4. Let A be a BAM.

(i) Uf(A) is monotonic.

(ii) (Uf(A))+ = Aσ.

Finally, we define a few notions necessary to state our Goldblatt-Thomason theorem.

Definition 2.2.15 ([43]). For a disjoint family ((Fi, N i) | i ∈ I) of monotonic neighborhood
frames, the disjoint union of the family is (F,N), where F = ⊔

i Fi and N is a neighborhood
function defined by U ∈ N(w) ⇐⇒ U ∩ Fi ∈ N i(w). A monotonic neighborhood frame F is
a bounded morphic image of another F ′ if there is a surjective bounded morphism F ′ � F .
A monotonic neighborhood frame F is a generated subframe of another F ′ if F ⊆ F ′, and the
inclusion map F ↪→ F ′ is a bounded morphism.

2.3 Model theory of neighborhood frames
In this section, we recall as well as develop results in the model theory of neighborhood
frames and coalgebraic predicate logic.

Standard concepts in first-order model theory
Here, we define concepts that have counterparts in classical first-order model theory.

Definition 2.3.1. Let L be a language of coalgebraic predicate logic, F an L-structure, and
A ⊆ F . A subset X ⊆ F is A-definable in F if there is an L-formula φ(x; ȳ) and a tuple ā of
elements of A (notation: ā ∈ A) such that X = φ(F ; ā). A subset X is definable in F if it is
F -definable in F .

Definition 2.3.2.

(i) A set of L-sentences is called an L-theory.

(ii) Let L be a language of coalgebraic predicate logic and F be an L-structure. The full
L-theory ThL(F ) of F is the set of L-sentences φ such that F |= φ.
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(iii) Two L-structures F, F ′ are L-elementarily equivalent, or F ≡L F ′, if ThL(F ) = ThL(F ′).

For the rest of this section, we fix a language L of coalgebraic predicate logic and a
monotonic L-structure F . We also let T = ThL(F ).

Definition 2.3.3. Let A ⊆ F . We write Def(F/A) for the Boolean algebra of A-definable
subset in F , its operations being the set-theoretic ones. We also think of Def(F/A) as a
BAM whose monotone operation � is defined by

�(φ(F )) = (�φ)(F )

for an L(A)-formula φ(x), where (�φ)(x) is the L-formula x�y φ(y). (It is easy to see that
� : Def(F/A)→ Def(F/A) is well defined here. This is true of similar definitions that appear
in later parts of the article.)

It is easy to see that Def(F/A) is a subalgebra of F+ as a BAM.

Proposition 2.3.1. Assume F ′ |= T . Then Def(F/∅) and Def(F ′/∅) are isomorphic as
BAMs.

Types play an important rôle in the proof of the original theorem of Fine as well as in
this article.

Definition 2.3.4.

(i) The Stone space S1(T ) of 1-types over ∅ for T is the ultrafilter frame Uf(Def(F/∅))
of Def(F/∅). (Note that if F ′ is such that ThL(F ′) = T , then Uf(Def(F ′/∅)) =
Uf(Def(F/∅)) and that S1(T ) is, therefore, defined uniquely regardless of the choice of
F |= T .) We consider S1(T ) as a topological space whose open subsets are exactly the
open elements of (Uf(Def(F/∅)))+ = (Def(F/∅))σ. An element p ∈ S1(T ) is called a
1-type over ∅.

(ii) Likewise, we let SF1 (A) = Uf(Def(F/A)). An element p ∈ SF1 (A) is called a 1-type over
A.

(iii) A set Σ(x) of L(A)-formulas with one variable, say, x, is called a partial 1-type over A.
We write Σ(F ) for the set {w ∈ F | ∀φ ∈ ΣF |= φ(w)}.

Convention 2.3.2. We identify a 1-type p over A with the partial 1-type

{φ(x; ā) | φ(F ; ā) ∈ p, ā ∈ A}

over A. In fact, this is closer to how types are usually defined in classical model theory and
is what types are in [60]. Likewise, we write [φ] for the clopen set [X] in a Stone space of
1-types if φ defines X.
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Given a partial type Σ(x), the intersection ⋂φ∈Σ[φ] is a closed set in the Stone space of
1-types.

Definition 2.3.5.

(i) A partial 1-type Σ(x) over A is deductively closed if [φ] ⊇ ⋂ψ∈Σ[ψ] =⇒ φ ∈ Σ.

(ii) For a deductively closed partial 1-type Σ(x), we write EΣ for the closed set

{p | p ⊇ Σ} =
⋂
φ∈Σ

[φ].

Proposition 2.3.3. Let w ∈ F and A ⊆ F . The family tpF (w/A) of A-definable subsets of
F containing w is an ultrafilter in Def(F/A) and thus a 1-type over A.

Definition 2.3.6.

(i) Let A ⊆ F . An element w ∈ F realizes p ∈ SF1 (A), or w |= p, if tpF (w/A) = p. The
1-type p is realized in F if there is w ∈ F with w |= p.

(ii) The L-structure F is ℵ0-saturated if for every finite A ⊆ F , every p ∈ SF1 (A) is realized
in F .

Model theory specific to neighborhood frames
In this section, we study the model theory of neighborhood frames while we relate it to the
classical model theory.

Definition 2.3.7. Let L be a language of coalgebraic predicate logic based on L0 and F an
L-structure. The essential part F e of F is the L-structure whose reduct to L0 is the same as
that of F and whose neighborhood function N e is defined by

U ∈ N e(w) ⇐⇒ U is definable in F and U ∈ NF (w)

for w ∈ F e.

Proposition 2.3.4 ([18]). Let L be a language of coalgebraic predicate logic and F,G be
L-structures. Suppose F e ∼= Ge.

(i) F ≡L G.

(ii) If F is ℵ0-saturated, so is G.

We define a class of languages of first-order logic, one for each language of coalgebraic
predicate logic.
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Definition 2.3.8 ([44],[16, Definition 9]). Let L be an arbitrary language of coalgebraic
predicate logic and L0 the language of first-order logic on which L is based. We define the
language L2 to be the two-sorted first-order language whose sorts are the state sort and
neighborhood sort and whose atomic formulas are those in L0, recast as formulas in which
constants and variables belong to the state sort, together with xNU and x ∈ U , where x and
U are variables for the state sort and the neighborhood sort, respectively. (In general, we will
use lowercase variables for the state sort and uppercase variables for the neighborhood sort.)

Definition 2.3.9. Let L be a language of coalgebraic predicate logic and F an L-structure.
Given a family S ⊆P(F ) that contains all definable subsets of F , we write (F,S) for the
L2-structure G. The domain of the state sort of G is that of F , and the domain of the
neighborhood sort of G is S. The L2-structure G interprets all nonlogical symbols of L2

but N and ∈ in the same way as F . Finally, we have (w,U) ∈ NG ⇐⇒ U ∈ NF (w) and
(w,U) ∈ ∈G ⇐⇒ w ∈ U . A family S is large for F if U ∈ S whenever there is w ∈ F with
U ∈ NF (w).

Proposition 2.3.5 ([18, 60]). Let L be a language of coalgebraic predicate logic. Let
(−)2 : L→ L2 be the translation that commutes with Boolean combinations and satisfies

(∃xφ)2 = ∃x(φ2)
(x�y φ)2 = ∃U [∀y(y ∈ U ↔ φ2(y)) ∧ xNU ].

Let S ⊆P(F ) be a family that contains all definable subsets of F . Then for every L-formula
φ and ā ∈ F we have

F |= φ(ā) ⇐⇒ (F,S) |= φ2(ā).

Remark. Note that the same two-sorted language L2 is considered in [44] even though their
transformation of neighborhood frames into L2-structures there is different from ours. While
in [44] a neighborhood frame F is always associated with the structure M for L2 whose
neighborhood sort consists of those subsets of F that are neighborhoods of some state of F , we
do not impose such a restriction here. In addition, there is a third language for neighborhood
frames used before as a model correspondence language [16, Definition 12] for neighborhood
and topological semantics of modal logic and for the study of model theory of topological
spaces [32] in general. This is also a fragment of the two-sorted language introduced above
and, in fact, contains the image of the embedding of coalgebraic predicate logic into the
two-sorted language [83].

Lemma 2.3.10. Let L be a language of coalgebraic predicate logic and F an L-structure.
Let G be an L2-structure that is an elementary extension of (F,P(F )). There exists an
L-structure G′ whose domain is that of the state sort of G and a family S ⊆ P(G′) that
satisfies the following:

(i) S contains all definable subsets in G′.



CHAPTER 2. CORRESPONDENCE, CANONICITY, AND MODEL THEORY FOR
MONOTONIC MODAL LOGICS 36

(ii) S is large for G′.

(iii) G ∼= (G′,S).

Proof. Note that F satisfies extensionality:

(F,P(F )) |= ∀U ∀V [∀x(x ∈ U ↔ x ∈ V )→ U = V ].

By L2-elementarity, so does G. Let G′, SG be the domains of the state sort and the
neighborhood sort of G, respectively. Let i : SG →P(G′) be defined by

i(U) = {w ∈ G′ | G |= w ∈ U}.

By the extensionality of G, i is injective. Let S be the range of i. Define the neighborhood
function NG′ by

i(U) ∈ NG′(w) ⇐⇒ G |= wNU.

Let φ(x; ȳ) be an L-formula and X := φ(G′, ā) be a definable set in G′, where ā ∈ G′.
Note that the L2-structure (F,P(F )) satisfies comprehension:

(F,P(F )) |= ∀ȳ ∃U ∀x(φ2(x; ȳ)↔ x ∈ U).

So does G. Let U witness the satisfaction by G of the existential formula ∃U ∀x(φ2(x; ā)↔
x ∈ U). It can easily be seen that i(U) = φ(G′, ā).

It is easy to see that S is large for G′ and that G ∼= (G′,S).

Proposition 2.3.6. Let L be a language of coalgebraic predicate logic and F an L-structure.
There exists an L-structure G such that G ≡L F and that G is ℵ0-saturated.1

Proof. Consider the L2-structure (F,P(F )), and take an elementary extensionG0 of (F,P(F ))
that is ℵ0-saturated. By Lemma 2.3.10(iii), take an L-structure G and S ⊆ P(G) with
G0 ∼= (G,S). Suppose that A ⊆ G is finite. Let p ∈ SG1 (A) be arbitrary. Let Σ2 be the
partial type {φ2 | φ ∈ p} over A in L2. Since p is a proper filter in Def(F/A), the type Σ2

is consistent by Proposition 2.3.5. Thus, by the ℵ0-saturation of G0, we can take w ∈ G0
realizing Σ2. By Proposition 2.3.5, we have w |= p.

We now introduce the notion of quasi-ultraproducts as we will use it to give a proof of
Fine’s theorem at the end of this article.

1Our use of both coalgebraic predicate logic and first-order logic makes phrases such as “elementarily
equivalent” and “ℵ0-saturation” potentially ambiguous because we have two different classes of definitions, one
from the previous subsection and the other standard in classical model theory. Note, however, that (expansions
of) neighborhood frames are never structures of any language of first-order logic and that first-order structures
are never L′-structures for any language L′ of coalgebraic predicate logic. Hence, for example, if L′ is a
language of coalgebraic predicate logic, and F is an L′-structure, then whenever we say that F is ℵ0-saturated,
we mean what we stated in Definition 2.3.6(ii), with L in the definition being L′.
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Definition 2.3.11 ([18, 60]). Let L be a language of coalgebraic predicate logic based on L0
and (Fi)i∈I be a family of monotonic L-structures. Suppose that D is an ultrafilter over I.
Let ∏D Fi be the ultraproduct of (Fi)i as L0-structures modulo D. A subset A ⊆ ∏D Fi is
induced by a family (Ai)i∈J if J ∈ D, Ai ⊆ Fi for i ∈ J , and

a ∈ A ⇐⇒ a(i) ∈ Ai for all i ∈ J .

A quasi-ultraproduct of (Fi)i modulo D is a monotonic L-structure that is the L0-structure∏
D Fi equipped with a neighborhood function N that satisfies

A ∈ N(w) ⇐⇒ Ai ∈ N i(w(i)) for all i ∈ J,

whenever w ∈ ∏D Fi, and A is induced by (Ai)i∈J . A class K of monotonic neighborhood
frames admits quasi-ultraproducts if whenever (Fi)i is a family of neighborhood frames from
K, a quasi-ultraproduct of (Fi)i exists in K.

Proposition 2.3.7 ([60, 18]).

1. Each class of the classes in Table 2.1 admits quasi-ultraproducts.

2. Let (Fi)i∈I be a family of monotonic L-structures for a language L of coalgebraic
predicate logic. If Fi satisfies a theory T for all i ∈ I, so does a quasi-ultraproduct of
(Fi)i.

Proof.

1. By Remark 2.4, it suffices to prove this for the class of monotonic neighborhood frames,
the class of quasi-filter frames. This could be done by using the machinery introduced
in Litak et al. [60], but it is easy to prove it directly in the following way.
Let K0 be either the class of monotonic neighborhood frames or the class of quasi-filter
neighborhood frames. Let (Fi)i be a family of neighborhood frames in K0. Let N i be
the neighborhood function of Fi. Define the neighborhood function N on ∏D Fi as
follows: a subset U ⊆ ∏D Fi is in N(w) if and only if there is a set A ⊆ U induced by
(Ai)i∈J with Ai ∈ N i(w(i)) for all i ∈ J . It is easy to see that this indeed defines a
quasi-ultraproduct and that if each Fi is in K0 then so is the quasi-ultraproduct.

2. The usual argument by induction works; see Litak et al. [60].

2.4 Proof of the main lemmas
In this section we prove the main lemmas of this article. Recall that L= is the language of
coalgebraic predicate logic based on the empty language of first-order logic.



CHAPTER 2. CORRESPONDENCE, CANONICITY, AND MODEL THEORY FOR
MONOTONIC MODAL LOGICS 38

Definition 2.4.1. Let K0 be a class of monotonic neighborhood frames. A class K of
monotonic neighborhood frames is CPL-elementary relative to K0 if there is an L=-theory T
with

K = {F ∈ K0 | F |= T}.

Two monotonic neighborhood frames F and F ′ are CPL-elementarily equivalent relative to
K0 if F, F ′ ∈ K0 and ThL=(F ) = ThL=(F ′).

Remark. The class of filter frames is CPL-elementary relative to the class of quasi-filter frames
(see Definition 2.4.1), and the class of augmented filter frames is CPL-elementary relative
to the class of augmented quasi-filter frames; indeed, they are both defined by the same
L=-sentence ∀x x�y y = y. Furthermore, by the second paragraph of Example 2.2.5, the
class of augmented quasi-filter frames is CPL-elementary relative to the class of monotonic
frames. Therefore, the main lemma in this section concerns the classes of monotonic and
quasi-filter neighborhood frames, respectively, which suffice for the purpose of the main
results (Theorems 2.5.1 and 2.5.2), which deal with any of the classes in Table 2.1.

Lemma 2.4.2. Let F be a monotonic neighborhood frame, and let G and G′ be (L=)2- and
L=- structures, respectively, obtained by elementarily extending F as in Lemma 2.3.10.

(i) If F is monotonic, X, Y ⊆ G′ are definable, X ⊆ Y , and X ∈ NG′(w) for w ∈ G′, then
Y ∈ NG′(w).

(ii) If F is an augmented filter frame, then for every w ∈ G′ either NG′(w) is empty or has
a minimum element.

Proof. For (i), let L(G′)-formulas φ(x; ā) and ψ(x; b̄) define X and Y , respectively. Since F
is monotonic, we have

(F,P(F )) |= ∀ȳ ∀z̄ ∀v[ ∀x(φ(x; ȳ)→ ψ(x; z̄))
∧ v�x φ(x; ȳ)→ v�x ψ(x; z̄)]. (2.5)

Since (F,P(F )) e satisfies the (−)2-translation of the right-hand side of the displayed
formula (2.5) by Proposition 2.3.5, so does G. Again by Proposition 2.3.5,

G′ |= ∀x(φ(x; ā)→ ψ(x; b̄)) ∧ w�x φ(x; ā)→ w�x ψ(x; b̄).

Since X ∈ NG′(w), we have ψ(G′, b̄) ∈ NG′(w).
For (ii), first observe that the L2-structure (F,P(F )) satisfies the sentence

∀x[¬∃U xNU ∨ ∃U0 ∀U(xNU → U0 ⊆ U)],

where ⊆ is an abbreviation of the obvious L2-formula. Since G′ satisfies the same L2-formula,
the claim follows.



CHAPTER 2. CORRESPONDENCE, CANONICITY, AND MODEL THEORY FOR
MONOTONIC MODAL LOGICS 39

We are now ready to prove the key lemmas used in the proof of our main result. Our
lemmas are analogous to [3, 8.9 Theorem].

Lemma 2.4.3. Let F be a monotonic neighborhood frame. There exists G ≡L= F such that
there is a surjective bounded morphism f : G� ueF . Moreover, if K0 is either the class of
monotonic neighborhood frames or the class of quasi-filter neighborhood frames, and F ∈ K0,
then we can take G ∈ K0.

The following is the outline of the proof, which comes after this paragraph. We follow the
classical proof of [3, 8.9 Theorem] by taking an expansion L of the correspondence language so
that every subset of the given frame F will be definable and taking an ℵ0-saturated extension
G in that language. However, we need to add more neighborhoods to the neighborhood frame
G that is being constructed to make sure that the map from G to the ultrafilter frame of F
is a bounded morphism. Much of the proof is dedicated to showing that this construction
preserves elementary equivalence in L.

Proof. Let L be the language of coalgebraic predicate logic based on {PS | S ⊆ F}, the
unary predicates for the subsets of F . The neighborhood frame F can be made into
an L-structure naturally. Let G0 ≡L F be an ℵ0-saturated L-structure as obtained by
Proposition 2.3.6. Let G1 be the essential part of G0. Let G2 be the L-structure obtained
from G1 as follows: for each state w ∈ G1, add as a neighborhood of w the set Σ(G1), where
Σ(x) is a partial type over a finite set A ⊆ G1 such that Σ(x) is deductively closed and that
for every φ ∈ Σ we have φ(G1) ∈ NG1(w). We call such a partial type good at w. Let G
be the L-structure identical to G2 except that its neighborhood function NG is defined by
U ∈ NG(w) ⇐⇒ ∃U0 ⊆ U U0 ∈ NG2(w).

Note that a singleton partial type Σ = {φ} with φ(x) ∈ L(A) is always good at w ∈ G1 if
φ(G1) ∈ NG1(w).

We show that G ≡L F . By Proposition 2.3.4, we have G1 ≡L G0 ≡L F , so it suffices
to see that for every definable X ⊆ G we have X ∈ NG(w) ⇐⇒ X ∈ NG1(w). We show
=⇒ (the other direction is easy). By construction, there is either a definable set Y ⊆ X
with Y ∈ NG1(w) or a partial type Σ(x) over a finite set A good at w with Σ(G1) ⊆ X.
The former is a special case of the latter, so we assume the latter. Let A′ be a finite
set containing A and the parameters used in the definition of X. Let f ′ : G1 � SG1

1 (A′)
be defined by f ′(w) = tpG1(w/A′). By ℵ0-saturation, f ′ is a surjection. We show that
f ′(Σ(G1)) = EΣ ⊆ SG1

1 (A′). It is easy to show that f ′(Σ(G1)) ⊆ EΣ; we show f ′(Σ(G1)) ⊇ EΣ.
Let p ∈ EΣ be arbitrary. By ℵ0-saturation, take w ∈ G1 with f ′(w) = p. Since p ⊇ Σ,
w ∈ Σ(G1). We have shown that f ′(Σ(G1)) = EΣ. That f ′(X) = [X] easily follows from the
ℵ0-saturation of G as well. We have EΣ ⊆ [X]. By the compactness of SG1

1 (A′), we have a
finite Σ0 ⊆ Σ for which EΣ0 ⊆ [X]. Being the intersection of finitely many clopen sets,

EΣ0 =
⋂
φ∈Σ0

[φ] =
[∧

Σ0
]
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is clopen. Since Σ is good at w, we have (∧Σ0)(G1) ∈ NG1(w). We conclude thatX ∈ NG1(w)
by Lemma 2.3.10 (i). (See Remark 2.4 for an alternate proof of this fact.)

Since F+ ∼= Def(F/∅), we have ueF ∼= S1(T ), where T is the full L-theory of F , which
is identical to ThL(G). We show f : G � S1(T ) defined by f(w) = tpG(w/∅), which is
surjective by ℵ0-saturation, is a bounded morphism. In the rest of the proof, we write Nσ for
the neighborhood function of S1(T ).

The “forth” condition. Suppose that U ∈ NG(w). We show that f(U) ∈ Nσ(tpG(w)).
By construction, we have either (I) U ⊇ φ(G, ā) ∈ NG(w) or (II) U ⊇ Σ(G) ∈ NG(w), where
φ(x, ȳ) is an L-formula, ā ∈ G, and Σ(x) is a partial type over a finite set A good at w. Since
(I) is a special case of (II), we will just show (II).

For (II), assume that U ⊇ Σ(G) ∈ NG(w), where Σ is a partial 1-type over finite A good
at w. Let K = r(EΣ), where r : SG1 (A) → S1(T ) is the closed continuous map dual to the
embedding Def(G/∅) ↪→ Def(G/A). Note that r(q) = q ∩Def(G/∅) for q ∈ SG1 (A). Being
the image of a closed map of a closed set, K is closed. Recall the equation (2.4) that defines Nσ

to see that it suffices to show (i) that for every χ(x) ∈ L we have [χ] ⊇ K =⇒ χ(G) ∈ NG(w)
and (ii) that K ⊆ f(U). For (i), assume that [χ] ⊇ r(EΣ), where χ(x) ∈ L, and [χ] denotes
a subset in S1(T ). Take an arbitrary q ∈ EΣ. Then r(q) ∈ r(EΣ) ⊆ [χ], so χ ∈ r(q) ⊆ q. We
have just shown that [χ] ⊇ EΣ, where [χ] denotes a subset in SG1 (A). By deductive closure
χ ∈ Σ. By construction, χ(G) ∈ NG(w). For (ii), it suffices to show that arbitrary q ∈ EΣ
can be realized by an element of U . Since q is a type over a finite set, by ℵ0-saturation, we
may take v |= q; this means v |= Σ, i.e., v ∈ Σ(G) ⊆ U .

The “back” condition. Suppose that U ′ ⊆ S1(T ) is in Nσ(tpG(w/∅)). We show that
there is U ⊆ G in NG(w) such that f(U) ⊆ U ′. By the definition of Nσ, there is a partial
type Σ(x) over ∅ good at w such that EΣ ⊆ U ′. By construction, Σ(G) ∈ NG(w). Let
U := Σ(G). Then for every v ∈ U , the type tpG(v/∅) extends Σ and thus is in EΣ ⊆ U ′.

Closure in relatively CPL-elementary classes. By construction, G is monotonic.
Suppose that F is a quasi-filter neighborhood frame. Let w ∈ G and U,U ′ ∈ NG(w)

be arbitrary. By construction, there are deductively closed partial types Σ(x),Σ′(x) over a
finite set of parameters both of which are good at w with Σ(G) ⊆ U and Σ′(G) ⊆ U ′. The
partial type Σ∪Σ′ is also over a finite set, good at w. Moreover, Σ∪Σ′ is deductively closed
since F is a quasi-filter frame. Therefore, we have (Σ ∪ Σ′)(G) = Σ(G) ∩ Σ(G) ⊆ U ∩ U ′, so
U ∩ U ′ ∈ NG(w). We have seen that G is a quasi-filter neighborhood frame.

Remark. In the proof above, we obtain G not only by compactness but also by altering the
neighborhoods in an ad-hoc way while maintaining elementary equivalence in L=. There
is no reason for us to believe that G has the same theory as F in L=

2 or in the languages
described in Remark 2.3. This is why we find it difficult to extend our main result to the
more expressive languages.
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The following is the alternate proof that I announced at the end of the third paragraph
of the proof (the concepts that we have not defined have obvious definitions): Suppose X
is definable by ψ(x;A′) where ψ ∈ L and A′ ⊆ G is a finite set. By ℵ0-saturation of G1,
we have ThL(A′)(G1) ∪ Σ(x) |= ψ(x,A′) (otherwise, realize the type Σ(x) ∪ {¬ψ(x,A′)} by
some element in G1, which would be in Σ(G1) \X.) By compactness, there is finite Σ0 ⊆ Σ
such that Σ0(G1) ⊆ ψ(G1, A

′). Since ∧Σ0(x) is a single formula of L, by deductive closure∧Σ0(x) ∈ Σ(x). Hence ∧Σ0(G1) ∈ NG1(w). By Lemma 2.3.10(i), we have X = ψ(G1, A
′) ∈

NG1(w) as desired.

2.5 Applications of the main lemmas

The Goldblatt-Thomason Theorem
An algebraic argument essentially the same as the classical counterpart can be used to show
that a class of monotonic neighborhood frames closed under ultrafilter extensions is modally
definable if and only if it is closed under bounded morphic images, generated subframes,
and disjoint unions, and it reflects ultrafilter extensions [58][43, Theorem 7.23]. By applying
Lemma 2.4.3, we obtain the following theorem.

Theorem 2.5.1. Let K be a class of monotonic neighborhood frames that is closed under
CPL-elementary equivalence relative to any of the classes in Table 2.1. K is modally definable
if and only if it is closed under bounded morphic images, generated subframes, and disjoint
unions, and it reflects ultrafilter extensions.

Proof. Let K be a class of monotonic neighborhood frames that is closed under CPL-
elementary equivalence relative to a class K0 in Table 2.1. We show the “if” case. Suppose
that K is closed under bounded morphic images, generated subframes, and disjoint unions,
and it reflects ultrafilter extensions. Apply Lemma 2.4.3 and Remark 2.4 to conclude that
K is closed under ultrafilter extensions. Note that the hypothesis of [43, Theorem 7.23] is
satisfied, and we conclude that K is modally definable.

Example 2.5.1. As an example, we show that the image K under ∗ of the class of discrete
topological spaces is modally definable. For a quasi-filter frame F , F is a ∗-image of a discrete
topological space if and only if F |= ∀x¬x�z y 6= x and F |= ∀x x�y y = x. Hence, K is
CPL-elementary relative to the class of quasi-filter frames, and the Goldblatt-Thomason
Theorem is applicable to K. It is easy to check that K is closed under bounded morphic
images, generated subframes, and disjoint unions, so it suffices to show that K reflects
ultrafilter extensions. Assume that for a neighborhood frame F = (F,N) its ultrafilter
extension ueF = (ueF,Nσ) is in K. We show that F ∈ K. The class of topological frames
is defined by modal formulas �p ∧ �q → �(p ∧ q), �p → p, and ��p → �p [9], so we
may assume that F is topological as ultrafilter extensions reflect modally definable classes.
Let w ∈ F be arbitrary, and let u be the principal ultrafilter generated by w, so u ∈ ueF .
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Note that U ∈ Nσ(u) ⇐⇒ u ∈ U since ueF is the ∗-image of a discrete space. Recall the
definition of Nσ in (2.4). The singleton {u} is in Nσ(u), and this has to be witnessed by
K = ∅ or K = {u} according to (2.4) of Definition 2.2.14.(i). Suppose K = ∅. Then (2.4)
implies that �F+∅ ∈ u among other things (recall that A in (2.4) is F+ here). However,
since F is topological, �F+∅ = ∅, and it cannot belong to an ultrafilter u. Hence, K = {u}.
Again by (2.4), for all a ⊆ F such that [a] ⊇ K = {u}, i.e., a ∈ u, we have that �F+

a ∈ u.
Let a = {w}, so a ∈ u. Since the set u is an ultrafilter, we have a ∧ �F+

a 6= ∅, that is,
a ∩ {w ∈ F | a ∈ N(w)} 6= ∅; this implies {w} ∈ N(w). Since w was arbitrary, we conclude
that F ∈ K. We have shown that K is modally definable; in fact, it is defined by p→ �p in
addition to the definition of the class of topological neighborhood frames.

Fine’s Canonicity Theorem
By the dual equivalence between monotonic modal logics and varieties of BAMs [43, Chapter
7], we will state our version of Fine’s Canonicity Theorem in an algebraic manner. Our
presentation of the proof of the theorem is modeled after that of the classical version of the
theorem in [78].

For a class K of neighborhood frames, we write K+ for the class {F+ | F ∈ K}.

Lemma 2.5.2. Let K be a class CPL-elementary relative to any of the classes in Table 2.1.
Let S ⊇ K+ be the least class of BAMs closed under subalgebras.

1. S is closed under canonical extensions.

2. S is closed under ultraproducts.

Proof.

1. Let A ∈ S. For some F ∈ K we have A ↪→ F+. By duality theory [33, Theorem
5.4], we have Aσ ↪→ (F+)σ. By Lemma 2.4.3 and Remark 2.4, there is G ∈ K with
(F+)σ ↪→ G+. Thus, we have Aσ ∈ S by definition.

2. It suffices to do the following: given an ultraproduct ∏D F
+
i where I is an index set, D

is an ultrafilter over I, and (Fi)i is a family of neighborhood frames in K, we show that
the ultraproduct embeds into (∏D Fi)+, where ∏D Fi is a quasi-ultraproduct of (Fi)i
modulo D. In fact, we show that ι : ∏D F

+
i → (∏D Fi)+ defined by

s ∈ ι(a) ⇐⇒ {i | s(i) ∈ a(i)} ∈ D,

where s ∈ ∏D Fi and a ∈
∏
D F

+
i is a BAM embedding (we do not write equivalence

classes modulo D explicitly; it is easy to see that ι is well defined). It can easily be seen
that ι is a Boolean algebra embedding. We show that ι ◦�pu = �cm ◦ ι, where �pu and
�cm are the operations of the domain and the target of ι, respectively. Let N be the
neighborhood function of the quasi-ultraproduct. We write �i and N i for the operation
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of F+
i . Note that for all a the set ι(a) is an induced subset of the quasi-ultraproduct; if

we let πi(A) be the projection of an induced subset A of the quasi-ultraproduct onto
the coordinate i, then {i | πi(ι(a)) = a(i)} ∈ D. We now have

s ∈ (ι ◦�pu)(a) ⇐⇒ {i | s(i) ∈ (�pu(a))(i)} ∈ D
⇐⇒ {i | s(i) ∈ �i(a(i))} ∈ D (*)
⇐⇒ {i | s(i) ∈ �i(πi(ι(a)))} ∈ D
⇐⇒ {i | ι(a) ∈ N i(s(i))} ∈ D
⇐⇒ ι(a) ∈ N(s)
⇐⇒ s ∈ (�cm ◦ i)(a),

where we have the equivalence (*) since

{i | (�pu(a))(i) = �i(a(i))} ∈ D.

Theorem 2.5.2. Let K be a class CPL-elementary relative to any of the classes in Table 2.1.
The variety of BAMs generated by K+ is canonical, i.e., closed under canonical extensions.

Proof. Recall Remark 2.4. Gehrke and Harding [33] showed that if S is a class of BAMs
closed under ultraproducts and canonical extensions, then S generates a canonical variety.
Apply this result for the class S in Lemma 2.5.2 to conclude that the variety generated by
K+, which is identical to the variety generated by S, is canonical.

Note that Fine’s original theorem follows as a special case concerning the classes of
augmented neighborhood frames.
Example 2.5.3. Consider the B axiom p→ �¬�¬p, which we considered in Example 2.2.4.
Recall that it defined a CPL-elementary classK relative to the class of monotonic neighborhood
frames. By [43, Proposition 6.5], the variety V defined by the B axiom is canonical and hence
generated by K+. By Theorem 2.5.2, the canonicity of V is explained by the CPL-elementarity
of K.
Remark. By Remark 2.2, Theorem 2.5.2 can be used to show the canonicity of the monotonic
modal logic axiomatized by any formula of the form (2.1).

2.6 Open questions
As we mentioned in Remarks 2.3 and 2.4, one could attempt to use a different notion of
elementarity in stating and proving the results of this article, but we stuck to coalgebraic
predicate logic due to the limitation of the proof technique we used. A natural question to
ask here would be whether there is a more expressive first-order-like logic that admits similar
results possibly by a different kind of proof. Another question would be to characterize classes
of monotonic neighborhood frames that admit analogues of the Goldblatt-Thomason theorem
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and Fine’s theorem in the same sense as in the main result of this article. This question
leads to another problem of showing results similar to ours for other coalgebras than those
discussed in this article.

It was suggested to the author that our version of Fine’s theorem could be proved by using
an algebraic result [34], which implies the original, Kripke-semantic version of the theorem.
The argument proposed contained a gap, and therefore it remains open whether the results
in this article follow from the aforementioned algebraic theorem. Even if they can indeed be
proved in that manner, we hope that the proof presented here serves our original purpose of
investigating the role of coalgebraic predicate logic in the study of monotonic modal logics,
especially in the spirit of van Benthem’s program [8] of re-analyzing algebraic arguments
occurring in modal logic from a model-theoretic perspective.
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Chapter 3

Adventures on Heyting Algebras

This chapter consists of two independent parts.
In the first part, we examine countable ultrahomogeneous existentially closed (e.c.) Heyting

algebras. The existence of model-completion T ∗ of the theory T of Heyting algebra [37]
is of interest in its relation to second-order intuitionistic propositional logic. Countable
ultrahomogeneous Heyting algebras are paradigmatic models of T ∗, one of them being its
prime model.

In the first section, we see that there are uncountably many countable ultrahomogeneous
e.c. Heyting algebras. The remainder of the first part concerns the prime model L of T ∗. In
the second section, we study the countable atomless Boolean algebra definable in L. In the
third section, we look at the automorphism group of L with the Kechris-Pestov-Todorcević
correspondence in mind, where it will be proved inter alia that Aut(L) is not amenable. In
the last section of this part, we study issues related to the axiomatization of T ∗.

It is an important future task to investigate the combinatorics of the age Age(L) of L, in
particular about the existence of order expansion of Age(L) with the Ramsey property and
the ordering property, and the metrizability of Aut(L).

The second part of this chapter on Heyting algebras concerns Beth semantics for intu-
itionistic logic and nuclei on locales.

Preliminaries
Let T be the theory of Heyting algebras. The model completion T ∗ of T exists. It is
axiomatized by

T ∪ {U(θ′ → θ) | θ existential} (3.1)
where U denotes universal closure, θ′ is a quantifier-free formula such that T |= U(θ → θ′),
and T + U(θ′ → θ) is a conservative extension with respect to the universal formulas (θ′ is
the result of applying the QE algorithm in [37] to θ).

We will study an ultrahomogeneous model L of T ∗ later in this part. Neither T nor T ∗ is
locally finite, but L is. However, L is not uniformly locally finite, so T ∗ is not ℵ0-categorical.
T ∗ is not uncountably categorical either because of its instability. The Fraïssé limit L is
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the prime model of T ∗. In many cases, the Fraïssé limit of a class of finite structures is
pseudofinite. However, this is not the case for the complete theory T ∗ + (0 6= 1); there is
a sentence φ implied by the theory that is not satisfied by any finite structure of the same
signature. Indeed, take φ to be the conjunction of the density of the partial order (see
Ghilardi and Zawadowski [37, Proposition 4.28]), 0 6= 1, and ∧T .

We review an important construction of Heyting algebras (this material appears in, e.g.,
Chagrov and Zakharyaschev [17]). For an arbitrary poset P, the poset of upward closed sets,
or up-sets, of P ordered by inclusion has a Heyting algebra structure. We call this Heyting
algebra is dual of P. Conversely, if L is a finite Heyting algebra, then one can associate with
L the poset P of join-prime elements of L with the reversed order. One can show that the
dual of P is isomorphic to L.

Suppose that L and L′ are the duals of P and P′, respectively, and that f : P → P′ is
bounded morphic, i.e., f is monotonic with

∀u ∈ P∀v ≥ f(u)∃w ≥ u f(w) = u,

then the function f ∗ defined on L′ that maps each up-set with its inverse image under f is a
Heyting algebra homomorphism L′ → L. We call f ∗ the dual of f as well. If f is injective,
then f ∗ is surjective; if f is surjective, then f ∗ is a Heyting algebra embedding.

3.1 Countable Ultrahomogeneous Heyting algebras
The model completion T ∗ is the theory of the Fraïssé limit L of finite nontrivial Heyting
algebras, which exists [37]. The amalgamation property of T was proved by Maksimova [63];
in fact, her construction establishes the strong amalgamation property for the class of
finite Heyting algebras. We introduce notation naming structures obtained by the strong
amalgamation property: Let D be the diagram B ←↩ A ↪→ C in Age(L), where Age(L)
the age of L is regarded as a category whose morphisms are the embeddings. The strong
amalgamation property for Age(L) gives rise to a subalgebra ⊔D of L such that there are
embeddings ιD←↩ : B ↪→ ⊔

D and ιD↪→ : C ↪→ ⊔
D with ιD←↩(B) \ ιD←↩(A) and ιD↪→(C) \ ιD↪→(A)

disjoint.
The following is a model-theoretic argument that L is e.c.:

Proof. Consider a quantifier-free formula φ0(x, y) and a tuple a ∈ L. Note that 〈a〉L is finite
by the construction of L, so there is a quantifier-free formula ψ(y) such that for any Heyting
algebra L′′ and b ∈ L, we have

L′′ |= ψ(b) ⇐⇒ 〈b〉L′′ ∼= 〈a〉L.

Now suppose that there is L′ ⊃ L such that L′ |= ∃xφ0(x, a). This implies the formula

∃x∃y[φ0(x, y) ∧ ψ(y)] (3.2)
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is satisfiable over T . By the extended form of the finite model property for T that works for
equations as well as inequations [25], there is a finite Heyting algebra L0 satisfying (3.2). By
construction, without loss of generality L0 ⊆ L. Let ξ, b ∈ L0 be the witness to ∃x, ∃y, resp.
The isomorphism 〈b〉L → 〈a〉L induces another i : L → L by ultrahomogeneity. It follows
that i(ξ) solves the formula φ0(x, a) in L.

Fact 3.1.1. There are continuum many finitely generated Heyting algebras up to isomorphism.

This fact is probably well known, but a proof is included for the sake of completeness.

Proof. Regard the chain ω + 1 as a Heyting algebra. Note that every order-preserving
injection ω+ 1→ ω+ 1 is a Heyting algebra embedding. Since such functions are in bijective
correspondence with strings in ωω, there are continuum many of them. Now consider the free
Heyting algebra F with one generator. Construct an embedding ι : (ω + 1)→ F recursively
as follows: let ι(0) = 0 and ι(ω) = 1; having defined ι(n) for n < ω, define ι(n + 1) to be
the join of the two successors of ι(n). It can be checked directly that ι is a Heyting algebra
embedding. By Abogatma and Truss [1, Theorem 2.4], we conclude that there are continuum
many finitely generated Heyting algebras up to isomorphism.

Proposition 3.1.1. Let K be an inductive class of finitely generated structures with the
amalgamation property, and let A ∈ K. There exists an ultrahomogeneous structure A] ∈ K
that is existentially closed in K and extends A.

Proof. We construct A] as the union of an ω-chain A0 ⊆ A1 ⊆ · · · of structures in K. Let
A0 = A. Fix a bijection π : ω × ω → ω such that π(i, k) < i for i, k < ω.

Having Ai constructed, we extend Ai to Ai+1 as follows:

Case i = 2i′ Apply the well-known construction to Ai to obtain Ai+1 so that Ai+1 |= φ(ā)
whenever φ(x̄) is an existential formula, ā is in Ai, and there exists C ∈ K such that
Ai ⊆ C and that C |= φ(ā).

Case i = 2i′ + 1 We do the construction in the proof of Abogatma and Truss [1, Lemma
2.3], which is included for the sake of completeness. There are at most countably many
partial isomorphisms of Ai, i.e., isomorphisms between substructures of Ai; enumerate
them as (ϕik)k<ω. Take (j, k) such that π(j, k) = i′. Let A′i+1 be the structure in K
witnessing the amalgamation property for the diagram

Ai
ι1←↩ domϕjk

ι2◦ϕjk
↪→ Ai,

where ι1, ι2 are the inclusion maps of the correct types. Replace Ai+1 with an isomorphic
copy if need be so that Ai ⊆ Ai+1. Note that ϕjk is extended to a partial isomorphism
ϕ̃jk of A′i+1, where dom ϕ̃′jk = Ai. One can use a similar construction to obtain Ai+1
with a partial isomorphism ϕ̃jk extending ϕ̃′jk such that Ai ⊆ ran ϕ̃jk.
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That A] is e.c. in K can be proved as usual. Let ϕ : B → C be an isomorphism where
B,C are finitely generated substructures of A]. Let j < ω be such that the finitely many
generators of B and C are contained in Aj; in fact, we have B,C ⊆ Aj. Take k < ω so
that ϕ = ϕjk. By the construction of Ai+1 from Ai, where i = 2π(j, k) + 1, ϕ is extended
by a partial automorphism ϕ̃jk of A], where dom ϕ̃jk ∩ ran ϕ̃jk ⊇ Ai. Note that i > j. By
repeating this, one obtains a chain ϕ = ϕ0 ( ϕ1 ( · · · , where domϕm < domϕn whenever
m < n, so the union ⋃n<ω ϕ has the domain A], which is evidently an isomorphism A] → A].
We have seen that A] is ultrahomogeneous.

Corollary 3.1.2. There are continuum many countable ultrahomogeneous e.c. Heyting
algebras.

Proof. This follows immediately from the preceding propositions as a single countable ultraho-
mogeneous e.c. Heyting algebra has at most countable substructures up to isomorphism.

3.2 Definable Countable Atomless Boolean Algebras
In the next section where we study the topological group of automorphisms of L, first-order
interpretations of B in L would be useful. Of course, the countable atomless Boolean algebra
embeds in L by the weak homogeneity of L. However:

Proposition 3.2.1. No substructure of L that is a countable atomless Boolean algebra is a
relativized reduct.

Proof. We show that for any countable atomless Boolean algebra B ⊆ L there are an
automorphism σ of L over a and a distinct countable atomless Boolean algebra B′ ⊆ L such
that σ(B) = B′ setwise. (Then the domain of B will be seen to be undefinable.)

Recall that B is the union of an ω-chain B0 ⊆ B1 ⊆ . . . of finite Boolean algebras. We
construct an ω-sequence A0, A1, . . . of finite Boolean algebras that are subalgebras of L and
an ω-chain B′0 ⊆ B′1 ⊆ . . . such that Bk, B

′
k ⊆ Ak, that Bk

∼= B′k, and that Bk 6= B′k.
Let D0 be the diagram B0 ←↩ 2 ↪→ B0. Let A′0 = ⊔

D. By the weak homogeneity of L,
there is an embedding i0 : A′0 → L such that (i0 ◦ ιD←↩) � B0 is the identity. Let A0 be ran i0
and B′0 be ran(i0 ◦ ιD↪→).

Having Ak and B′k defined, we define Ak+1 and B′k+1 as follows. the diagram Ak ←↩ B′k ↪→
Bi+1. Let D̃k+1 be the diagram Ak ←↩ Bi ↪→ Bi+1, and Dk+1 be Bi+1 ←↩ Bi ↪→

⊔
D̃k+1. By

appealing to the weak homogeneity of L as before, take an embedding ii+1 : ⊔Dk+1 ↪→ L so
that B′i+1 := ran(ii+1 ◦ ιDk+1

↪→ ◦ ιD̃k+1
↪→ ) extends B′i and that Bi+1 = ran(ii+1 ◦ ιDk+1

←↩ ). Finally,
let Ak+1 = ran ii+1.

By construction and by the ultrahomogeneity of L, the two substructures Bk and B′k
are conjugate under an automorphism of L. Let B and B′ be the unions of Bk’s and B′k’s,
respectively. Then B and B′ are conjugate under an automorphism of L, and B 6= B′.
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If we drop the requirement that a copy of B in L be a subalgebra of L, we do obtain a
natural interpretation as follows:

Proposition 3.2.2. There is an atomless Boolean algebra which is a relativized reduct of L.

Proof. The set B of fixed points of 1− (1− ·) in L is a Boolean algebra by setting a ∧B b =
¬¬(a∧L b) and the remaining operations of B the restrictions of the corresponding operations
of L. (Note that B is not a substructure of L.)

Suppose that a ∈ B is an atom of B. We show that a is also an atom of L. To see this,
assume the contrary, and let b be such that 0 < b < a, where b 6∈ B. Since b 6∈ B, we have
1− (1− b) 6= b; since 1− (1−c) ≤ c for all c ∈ B, we have 1− (1− b) < b. Now 1− (1− b) ∈ B
and 0 < 1 − (1 − b) (since 1 − b < 1), so we have 0 < 1 − (1 − b) < a, contradicting the
assumption that a is an atom of B.

We have seen that any atom in B is an atom of L. Since there is no join-irreducible
elements (let alone atoms) in L [37, Proposition 4.28.(iii)], B is atomless.

3.3 Automorphism Group
In this last section, we look at the automorphism group of L with the Kechris-Pestov-
Todorcević correspondence in mind.

Recall that the extreme amenability of topological groups are of interest only if they are
not locally compact [54]. It is well known that Aut(M) for a countable ω-categorical M is
not locally compact [62]. Even though L is not ω-categorical, we can show the following.

Proposition 3.3.1. The topological group Aut(L) is not locally compact.

Proof. It suffices to show that for every finite subset S ⊆ L there is an infinite orbit in
Aut(L)(S) y L. Note that for every subalgebra A ⊆ L, there exists a ∈ L \ A such that a is
join-prime in 〈Aa〉L. By repeatedly using this, take an ω-sequence (ai)i<ω of elements of L
such that ai ∈ L \ 〈Sa0a1 . . . ai−1〉L is join-prime in 〈Sa0a1 . . . ai〉L (and a fortiori in 〈Sai〉L)
for i < ω. By construction, there exists an automorphism φi : L→ L fixing S pointwise such
that φi(ai) = ai+1 for i < ω. Hence, the orbit of a0 under Aut(L)(S) is infinite.

An obvious strategy to study Aut(L) is to relate it to Aut(B), where B is the countable
atomless Boolean algebra. The following lemma gives rise to a topological embedding of the
former into the latter.

Lemma 3.3.2.

1. Let f : H → H1 be a Heyting algebra homomorphism between finite algebras. There
are finite Boolean algebras B(H) and B(H1) and a Boolean algebra homomorphism
B(f) : B(H) → B(H1). There are interior operators ◦ , ◦1 on B(H), B(H1) such that
B(H)◦ ∼= H and B(H1)◦1 ∼= H1. If f is injective, so is B(f); if f is surjective, so is
B(f).
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2. There is an interior operator ◦ on the countable atomless Boolean algebra B such that
B◦ is isomorphic to the universal ultrahomogeneous countable Heyting algebra L.

3. An automorphism L→ L can be extended (as a function between pure sets) to another
B → B. Moreover, there is an embedding Aut(L) ↪→ Aut(B) that is a homeomorphism
onto its image.

Proof.

1. Let P and P ′ be the dual posets of H and H1, respectively. There is a bounded
morphism D(f) : P1 → P that is the dual of f . D(f) is surjective if f is injective. Let
B(H) = P(P ) and B(H1) = P(P1). D(f) induces a Boolean algebra homomorphism
B(f) : B(H) → B(H1). B(f) is injective if D(f) is surjective. Likewise, B(f) is
surjective if f is. Let ◦ , ◦1 be the operations that take a subset to the maximal up-set
contained by that set.

2. Let (Li)i<ω be a chain of finite Heyting algebras used in the construction of L; so⋃
i Li = L. Let Bi = B(Li) and ◦i be an interior operator such that Bi

◦i ∼= Li. We may
take Bi ⊆ Bi+1 for i < ω. Then ◦i+1 extends ◦i . Let B = ⋃

iBi and ◦ = ⋃ ◦i . Then
B◦ = (⋃iBi) ◦ = ⋃

iBi
◦i = ⋃

iHi = H. It remains to show that B is atomless. Take
an arbitrary a ∈ B that is nonzero. Take i < ω such that a ∈ Bi. Let Pi be the poset
dual to Li; then a is a nonempty subset of Pi. Take some w ∈ a. Let P ′ be the poset
obtained from Pi by replacing w with the 2-chain {w1 < w2}. Let π : P ′ � Pi be the
surjection that maps the chain to {w} and is the identity elsewhere. This is a bounded
morphism, and it induces ι : Li ↪→ L′, where L′ is the dual of P ′. Take k < ω such that
there is an embedding ι′ : L′ ↪→ Lk such that ι′ ◦ ι is the identity on Li. Write L′ for
that image of L′. Let b = (a \ {w}) ∪ {w1}. Then b ∈ Bk = B(Lk) ⊆ B and 0 < b < a.

3. Let f : L → L be an automorphism. Let fk : Lk → L′k be the restriction of f to
Lk where L′k = f(Lk). Each fk is an automorphism. By the fact above, fk induces
a Boolean algebra automorphism B(fk) : B(Lk) → B(L′k) for each k < ω; and by
construction B(fj) extends B(fk) for each k < j < ω. Let f̂ = ⋃

k B(fk). Then f̂ is an
isomorphism B → B.
Let g : L → L be another automorphism. We need to show f̂ ◦ ĝ = (f ◦ g)̂. Let
a ∈ B be arbitrary. It suffices to show that f̂(ĝ(a)) = (f ◦ g)̂(a). Take i < ω such that
g(a), a ∈ Bi = B(Li). Then (f ◦ g)̂(a) = B((f ◦ g)|Lk)(a) = B(fk)(B(gk)(a)) = f̂(ĝ(a)).
Let ι : Aut(L)→ Aut(B) be the map f 7→ f̂ . The map ι is a group homomorphism as
seen above, and it is clearly injective.
Next, we show that ι is continuous. Let b̄ be a tuple in B. It suffices to show that for
an automorphism f : L→ L the value of f̂(b̄) is determined by the value of f(ā) for
a tuple ā in L. There exists k < ω such that b̄ is in Bk = B(Lk). Let fk : Lk → L′k
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be an automorphism that is a restriction of f . Then f̂(b̄) = B(fk)(b̄). Let ā be an
enumeration of the finite algebra Lk; then ā is what we needed.
Finally, we show that the image ι(U) is open in ran ι ⊆ Aut(B) for an arbitrary basic
open set U of Aut(L). Indeed, let U be the set of f : L→ L fixing the values of f at
ā ∈ L; then ĝ ∈ ι(U) in and only if ĝ � B0 = f̂ � B0 for g : L → L, where B0 is the
Boolean subalgebra of B generated by ā.

Note that despite L ⊆ B, the structure L is not interpretable in B because the latter is
ℵ0-categorical whereas the former is not.

There is another way Aut(B) and Aut(L) can be related. Recall the interpretation of B in
L from Proposition 3.2.2, and let h¬¬ : Aut(L)→ Aut(B) be the continuous homomorphism
that it induces.

Lemma 3.3.3. Consider the copy of B as a relativized reduct of L as before. Every element
L is a finite join of elements of B.

Proof. Let a ∈ L be arbitrary. Take a finite subalgebra H ⊆ L so a ∈ H, and let P be the
dual poset of H so we may identify an element of H with an up-set of P. Possibly by replacing
L by another finite Heyting algebra into which L embeds, we may assume that P is a forest.
Furthermore, without loss of generality, we may assume that a is principal. Suppose that a is
generated by x ∈ P. If x is a root, then a itself is regular, so there remains nothing to show.
Suppose not, and let x− be the predecessor of x. Let P1,P2 be disjoint posets isomorphic to
that induced by a ⊆ P. Let P′ := (P \ a) t P1 t P2 whose partial order is the least containing
those of the summands and x− ≤ P1, x− ≤ P2. Consider the surjective bounded morphism
P′ � P that collapses {minP1,minP2} into x, and let i : H ↪→ H ′ be the Heyting algebra
embedding it induces. Note that Pi ∈ H ′ is regular for i = 1, 2 and that i(a) = P1 ∨ P2. Let
φ : H ′ → Hr(a) be an isomorphism such that Hr(a) is a subalgebra of L and φ � H is the
identity. Let r1(a) := φ(P1) and r2(a) := φ(P2). We have a = r1(a) ∨ r2(a) and ri(a) ∈ B
(i = 1, 2) as promised.

Proposition 3.3.4. The continuous homomorphism h¬¬ is injective and is a homeomorphism
onto its image. However, h¬¬ is not surjective, and its image is a non-dense non-open set.

Proof. The first claim is immediate. We show that h¬¬ is not surjective.
Consider the 3-element chain C3, which can be regarded as a Heyting algebra, and let

a ∈ C3 be such that 0 < a < 1. Note that a is irregular and a principal up-set in the dual
finite poset of C3. Let D be the diagram C3 ←↩ 2 ↪→ C3, where 2 is the 2-element Heyting
algebra. Let a0 = ιD←↩(a), a1.5 = ιD↪→(a), and H = Hr(a1.5). Next, let D′ be the diagram
H ←↩ ιD←↩(C3) ↪→ H. Let a1i = ιD

′
←↩(ri(a1.5)), a2i = ιD

′
↪→(ri(a1.5)) and a0i = ri(a0) for i = 1, 2.

The Boolean subalgebra B6 generated by aji (0 ≤ j ≤ 2, 1 ≤ i ≤ 2) in B has six atoms,
each permutation of which extends to an automorphism of B. Consider the permutation
aji 7→ a(j+1 mod 3)i, which extends to an automorphism of B6, which in turn extends to
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φ ∈ Aut(B) by ultrahomogeneity of B. By construction,∨
L

φ({a11, a12}) 6=
∨
L

φ({a21, a22})

showing that φ is not in the range of h¬¬.
The last paragraph also shows that the image of h¬¬ is not dense. To see that ran h¬¬

is not open, let b be an arbitrary tuple in B, and we show that Aut(B)(b) \ ran h¬¬ 6= ∅.
Take a finite subalgebra H of L such that H generates 〈a〉B as a Boolean algebra. Let D′′
be the diagram1 H ←↩ 2 ↪→ ⊔

D. The image ran ιD′′↪→ generates a copy B′6 of B6. Take an
automorphism ψ0 on ⊔D′′ ψ0 � B′6 is as constructed in the preceding paragraph and that
ψ0 � ran ιD′′←↩ is the identity.2 The automorphism ψ0 extends to another φ ∈ Aut(B), which is
in Aut(B)(b) \ ran h¬¬.

We will show the non-amenability of Aut(L) later in this section. Before doing so, we find
it interesting to see that Aut(L) is distinct from the automorphism groups of better-known
ultrahomogeneous structures.

Lemma 3.3.5. Let N be a countable strongly 2-homogeneous structure, p ∈ S1(N), and M
be an ω-categorical structure in a possibly different countable language. Let fM : ω → ω
be defined by fM(n) = |SMn (∅)|. Suppose that for every n0 < ω there exist m < ω and
a set X of m-types realized in N such that for every q(x1, . . . , xm) and i < m we have
p(xi) ⊆ q(x1, . . . , xm) and that fM(n0m) < |X|. Then:

1. The topological group Aut(N) is not topologically isomorphic to Aut(M).

2. The abstract group Aut(N) is not isomorphic to Aut(M) if Aut(M) has the small index
property.

More generally, an analogous statement about a strongly (κ+1)-homogeneous N , a κ-type
p, and sets X of κ ·m-types of N holds true.

Proof. The second claim is a corollary of the first (see, e.g., Hodges [47, Lemma 4.2.6]).
By way of contradiction, assume that Aut(M) and Aut(N) are topologically isomorphic.

First, we see:
Claim. There exists n0 = n0(p) < ω and a function c : p(N) → Mn0 such that for any
formula φ(x1, . . . , xm) in the language of N there is a formula φ∗(x1, . . . , xm) in the language
of M with

N |= φ(b1, . . . , bm) ⇐⇒ M |= φ∗(c(b1), . . . , c(bm))

for every b1, . . . , bm ∈ N with bi ∈ p(N) (1 ≤ i ≤ m).
1To be more precise, one can replace

⊔
D by an appropriate copy by the weak homogeneity of L.

2The existence of such an automorphism can be proved in terms of the concrete representation of the⊔
D′′.
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In other words, N is Ind-interpretable in M . Before proving this claim, we note that if
(a1, . . . , am) ∈ φ(Nm)4 ψ(Nm), then c(a1) . . . c(am) ∈ φ∗(Mn0m)4 ψ∗(Mn0m).

We adapt the proof of a well-known fact [47, Lemma 7.3.7] combined with the strong
2-homogeneity of N to prove this claim. Let h : Aut(M) → Aut(N) be a topological
isomorphism. By the strong 2-homogeneity, the realizers of p in N form an orbit of Aut(N) y
N . Fix b |= p in N . Since h is continuous, h−1(Aut(N)(b)) is open and hence contains
Aut(M)(a) for some n0 < ω and a ∈ Mn0 . Define c : p(N)→ Mn0 so that for b′ ∈ p(N) we
have c(b′) = h−1(α) · a, where α is the unique element of Aut(N) such that α(b) = b′. Now
let φ(x1, . . . , xm) be as in the assumption of the claim, and consider X := {c(d) ∈ Mn0m |
d ∈ Nm, N |= φ(d)}. Since h is a group homomorphism, we can easily show that X is an
orbit of Aut(B) yMn0m. By the ℵ0-homogeneity of B, X is ∅-definable, say, by φ∗.

Take m < ω and X as in the assumption. For q ∈ X let p∗ be the possibly partial
n0m-type {φ∗ | φ ∈ q∗} over ∅ of M . By construction, if a tuple a ∈ Nm realizes q, we have
c(a) |= q∗. We conclude that |{q∗ | q ∈ X}| > fM(n0m), a contradiction.

Corollary 3.3.6. The topological group Aut(L) is not realized as the automorphism group
of any of the following structures:

• the countable atomless Boolean algebra B,

• the Fraïssé limit D of finite distributive lattices, or

• countable ultrahomogeneous structures in finite relational languages.

Moreover, Aut(L) is not isomorphic to Aut(B) or Aut(D) as abstract groups.

Proof. We will handle the cases of B and D first. Recall that Aut(B) and Aut(D) have
the small index property [76, 28]. Since Th(L), Th(B), and Th(D) eliminate quantifiers,
we may replace “types” with “quantifier-free types” in applying the preceding lemma to
these structures. Since fD grows asymptotically faster than fB, it suffices to prove the
conclusion for D. Let V be the variety of Gödel algebras, i.e., Heyting algebras satisfying
the equation (x→ y) ∨ (y→ x) = 1. This is a locally finite variety. For a tuple of variables x,
write FV

x for the free V-algebra generated by x, and let p be qftpFV
x (x/∅). Let m < ω be

arbitrary and x = x1 . . . xm. Consider Ha := FV
x × (FV

x /θa), where θa is the principal filter
generated by a ∈ FV

x . This is a V-algebra. Now, let Xm = {qftpHa(x′/∅) | a ∈ FV
m }, where

x′ := (x1, x1) . . . (xm, xm). By construction, we have p((xi, xi)) ⊆ q(x′) whenever q(x′) ∈ Xm

and 1 ≤ i ≤ m. Moreover, as Ha is finite for every a ∈ FV
m , every type in Xm is realized in L.

Let n0 < ω be given. We have

fD(n) =
n∑
i=1

S(n, i)i!M(i) ≤ nn!M(n) max
i
S(n, i),

where n = n0m, S(·, ·) are Stirling numbers of the second kind, and M(i) is the i-th Dedekind
number. Furthermore, by log maxi S(n, i) = O(n log n) [71] and log2M(n) = O

((
n
n/2

))
[57],
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we have
log fD(n) = O(n2) +O

((
n

n/2

))
+O(n log n) = O

((
n

n/2

))
,

where we assumed n0 is even without loss of generality. On the other hand, Valota [77]
showed that |Xm| = |FV

m | = (d(m))2 + d(m), where d(0) = 1, and

d(k) =
k−1∏
i=0

(d(i) + 1)(
n
i).

Therefore, log |Xm| = O(d(m)), and

log d(m) ≥
m−1∑
i=0

(
n

i

)
log d(i).

One can show by induction that log d(m) is at least the m-th Fubini number, which is strictly
greater than m! asymptotically [73]. Therefore, there exists m such that |Xm| > fD(n0m) as(
n0m
n0m/2

)
∼ 4n0m/

√
πn0m.

Finally, it is known that for every countable ultrahomogeneous structure M in a finite
relational language, fM is bounded from above by the exponential of a polynomial [15], so
the claim follows from the argument above.

We now proceed to showing the non-amenability of Aut(L).

Definition 3.3.7. Let H be a finite nondegenerate Heyting algebra. We write I(b) for the set
of join-prime elements below or equal to b for b ∈ H. Let ≺ be an arbitrary linear extension
of the partial order on I(1) induced from H. We define a total order ≺alex on H extending ≺
by the following:

a ≺alex a′ ⇐⇒ max
≺

(I(a)4 I(a′)) ∈ I(a′).

This is clearly a total order, which is known as the anti-lexicographic order. We call this a
natural ordering on H.

An expansion of a finite nondegenerate Heyting algebra H by a natural total order is
called a finite Heyting algebra with a natural ordering.

It is easy to check that if (H,≺) is a finite Heyting algebra with a natural ordering, and
H happens to be a Boolean algebra, then (H,≺) is a finite Boolean algebra with a natural
ordering in the sense of Kechris, Pestov, and Todorcević [54].

Proposition 3.3.8. The class K∗ of finite Heyting algebras with a natural ordering is a
reasonable Fraïssé expansion of Age(L).

Proof. We show that K∗ is reasonable and that K∗ has the amalgamation property. (Other
claims are clear.) In what follows, for a totally ordered set (X,<) and Y, Z ⊆ X, we write
Y < Z to mean that y < z whenever y ∈ Y and z ∈ Z.
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Let H1 ⊆ H2 be finite Heyting algebra, and let ≺alex
1 be an arbitrary admissible total

order on H1. We show that there exists an admissible order on H2 extending ≺alex
1 . Let

π : P2 � P1 be the surjective bounded morphism dual to the inclusion map H1 ↪→ H2. Note
that identifying I(1Hi) with Pi as pure sets, an admissible total order of Hi extends the dual
of the order of Pi for i = 1, 2.

Suppose that for p, q ∈ P1 we have p ≺1 q. Since ≺alex
1 is admissible, p 6≤ q. Take arbitrary

p′, q′ ∈ P2 such that π(p′) = p and that π(q′) = q. Since π is order-preserving a fortiori, we
have p′ 6≤ q′.

Let R = (≤ \∆) ∪ {(p′, q′) | π(p′) ≺2 π(q′)} be a binary relation on P2 = I(1H2), where
∆ is the diagonal relation. It can be shown by induction from the fact in the preceding
paragraph that R contains no cycle. Therefore, R can be extended to a total order ≺2.
Furthermore, for p, q ∈ P1, we have π−1(p) ≺2 π

−1(q); a fortiori, π−1(p) ≺alex
2 π−1(q). This

shows that ≺alex
2 extends ≺alex

1 .
Next, we show the amalgamation property for K∗. Let D be the diagram H1 ←↩ H0 ↪→ H2

in Age(L) and let ≺alex
i be an arbitrary admissible ordering on Hi for i = 1, 2. Recall the

dual poset P of ⊔D is a sub-poset of the product order P1 × P2, where Pi is the dual of Hi

(i = 1, 2) [63]. Define a total order ≺ on P so it extends the product order of ≺1 and ≺2.
We first show that ≺ extends the dual of the order of P. Assume that (p1, p2) ≤ (q1, q2)

for (pi, qj) ∈ P and 1 ≤ i, j ≤ 2. (Recall that pi, qi ∈ Pi.) Since the order of P is induced
by the product of those of P1 and P2, we have pi ≤ qi for i = 1, 2. Because ≺i extends
the dual of the order of Pi, we have pi �i qi (i = 1, 2). By the construction of ≺, we have
(p1, p2) � (q1, q2) as desired.

We then show that (⊔D,≺alex) witnesses the amalgamation property. Because of the
strong amalgamation property of Age(L), it suffices to show that ≺alex extends ιD←↩(≺alex

1 )
and ιD↪→(≺alex

2 ). Take p, p′ ∈ P1, and assume that p ≺ p′ (the other case can be handled in a
similar manner). Since ιD←↩ is induced by the projection π1 : P� P1, it suffices to show that
π−1(p) ≺alex π−1(p′). Now, it is easy to see that, in fact, π−1(p) ≺ π−1(p′) by the construction
of ≺.

Corollary 3.3.9. Aut(L) is not amenable.

Proof. Consider the Boolean algebras that witness the conditions (i) and (ii) of [56, Proposition
2.2] for the class of finite Boolean algebras with natural orderings [54, Remark 3.1]; call them
A1 and A2. Since A1, A2 ∈ K, and the Heyting algebra embeddings A1 → A2 are exactly the
Boolean algebra embeddings A1 → A2, the pair A1, A2 witness the conditions (i) and (ii) of
the same propositions for K∗.

Finally, we study the aspects of the combinatorics of Age(L) pertaining to the extreme
amenability of Aut(L). The Kechris-Pestov-Todorcević correspondence concerns order ex-
pansions of the ages of ultrahomogeneous structures with the ordering property [54]. One
can make an empirical observation that the ordering property of an order expansion of a
Fraïssé class have been proved by two classes of arguments, one of which is based on a
lower-dimensional Ramsey property, with the other argument rather trivially following from
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the order-forgetfulness of the expansion. The former is applied to many classes of relational
structures such as graphs, whereas the latter is used with the countable atomless Boolean
algebras and the infinite-dimensional vector space over a finite field. Our structure L is
similar to the latter classes of structures. However, we see the following.

Proposition 3.3.10. There is no Fraïssé order class of isomorphism types that expands the
class of finite Heyting algebras and is order-forgetful.

Proof. Suppose that such a class K∗ exists. Let H be an arbitrary finite Heyting algebra,
and consider the action of Aut(H) on the set of binary relations on H. Since K∗ is closed
under isomorphs, the set of admissible orderings AL on H is a union of orbits. Since K∗ is
order-forgetful, AL consists of a single orbit.

Now, consider the poset P′ that is the disjoint union of two 2-chains, with its quotient
P obtained by collapsing one of the 2-chains into a point. The canonical surjection P′ � P
is bounded morphic, which induces a Heyting algebra embedding H ↪→ H ′. Let a, b ∈ H ′
correspond to the two 2-chains. Clearly, H is rigid whereas there is an automorphism
φ : H ′ → H ′ under which a and b are conjugates. Consider an admissible ordering ≺ on
H ′; without loss of generality, we may assume a ≺ b. Writing the action of Aut(H ′) by
superscripts, we have b ≺φ a. Since K∗ is a Fraïssé class, the restrictions of ≺ and ≺φ to H,
respectively, are admissible orderings on H. Now, we have ≺ ∩H2 6= ≺φ ∩H2, as witnessed
by (a, b) ∈ H2. These cannot belong to the same orbit of AH as H is rigid.

3.4 Axiomatization
Following Darnière and Junker [26], we follow the formalism of co-Heyting algebras, or cHAs
for short. They are exactly the order-theoretic dual of Heyting algebras. Let T be the theory
of co-Heyting algebras. This is a theory in the language of lattices expanded by a binary
function symbol −, where x− y is the supremum of elements z for which y ∨ z ≥ x, which
always exists in a co-Heyting algebra. As before, we write T ∗ for the model-completion of T .

We write y � x iff y ≤ x and x− y = 0. Darnière and Junker [26, Section 4] lists two
axioms D1 and S1 that are satisfied by e.c. co-Heyting algebras:

D1 For every a, c such that c� a 6= 0 there exists a nonzero element b such that:

c� b� a.

S1 For every a, b1, b2 such that b1 ∨ b2 � a 6= 0 there exists nonzero elements a1 and a2 such
that:

a− a2 = a1 ≥ b1

a− a1 = a2 ≥ b2

a1 ∧ a2 = b1 ∧ b2.
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D1 is of the form (3.1), but S1 is not; in particular, the consequent of D1 does not imply the
antecedent over T . However, consider the following condition:

(b1 = a and b2 = 0) or (b2 = a and b1 = 0) or (b1 < a and b2 < a and b1 ∧ b2 � a). (AS1′)

The same construction as in [26, Lemma 4.2] shows that AS1′ implies the consequent of
S1 in T ∗. It can also be seen that the consquent of S1 implies AS1′ over T . I refer to the
conditional obtained from S1 by replacing the antecedent with AS1′ as S1′.

Proposition 3.4.1. D1 does not imply S1′; a fortiori, it does not axiomatize T ∗.

Proof. It suffices to show that, given a finite cHA L with x, y ∈ L such that x � y and
a, b1, b2 ∈ L witnessing the failure of S1′, there is a finite L′ ⊃ L such that L′ |= ∃z(x� z � y),
and that a, b1, b2 still witness the failure of S1′. For let L0 be a cHA as in the hypothesis of
the claim; the usual argument gives rise to a chain L0 ⊂ L1 ⊂ . . . , where Ln+1 is constructed
by applying the claim to Ln, the union ⋃n Ln of which will satisfy D1 and the negation of S1′.

In fact, the following construction in [26, Lemma 4.1] works. Let y1, . . . , yr be the join-
irreducible components of y in L. Let I0 be the poset of the join-irreducible elements of I; let
I be the poset obtained from I0 by replacing each yi by the chain {ηi < yi}. The bounded
morphism I � I0 that collapses each chain {ηi < yi} to yi induces a cHA embedding L ↪→ L′,
where L′ is the cHA of downsets of I. An element z ∈ L′ is in (the image of) L if and only
if there is 1 ≤ i ≤ r such that ηi ∈ z and that yi 6∈ z. Suppose that there are a1, a2 ∈ L′
witnessing the consequent of S1′. By hypothesis, one of them is in L′ \ L; without loss of
generality, assume a1 is. There is 1 ≤ i ≤ r such that ηi ∈ a1 and that yi 6∈ a1. By the
consequent of S1′, a = a1∨a2 ∈ L. Since ηi ∈ a1∪a2, we have that yi ∈ a1∪a2. Hence, yi ∈ a2,
and thus ηi ∈ a2. Therefore, ηi ∈ a1 ∩ a2, and yi 6∈ a1 ∩ a2. However, a1 ∧ a2 = b1 ∧ b2 ∈ L,
which leads to a contradiction.

Lemma 3.4.2. For a finite cHA L and a, b ∈ L, we have a � b if and only if for every
join-irreducible component b′ of b we have a ∧ b′ < b′.

Proof. Note that to prove quantifier-free formulas one may just treat elements of a cHA as
closed sets in a space. If concepts of higher quantifier complexity (e.g., irreducibility) are
involved, care must be taken.
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Let (bi)i<k be the join-irreducible components of b. Then

b− a = b ⇐⇒
∨
i

bi − a =
∨
i

bi

⇐⇒
∨
i

(bi − a) =
∨
i

bi identity in cHAs

⇐⇒
∨
i

(bi − a) ≥
∨
i

bi

⇐⇒ ∀i
∨
j

(bj − a) ≥ bi definition of
∨

⇐⇒ ∀i∃j bj − a ≥ bi join-primality of bj
⇐⇒ ∀i bi − a ≥ bi no other j than i can satisfy that
⇐⇒ ∀i bi − (a ∧ bi) ≥ bi

⇐⇒ ∀i (a ∧ bi) < bi by join-primality of bi; see [26].

Proposition 3.4.3. S1′ does not imply D1.

Proof. We use a similar argument as before. We let L0 be the minimal nontrivial cHA, and
we apply to Ln the construction in [26, Lemma 4.2] to obtain Ln+1. Note that for n < ω
there is no chain consisting of more than one element in the poset of join-irreducible elements
of Ln with the induced order.

We claim that for n < ω there is no nonzero z ∈ Ln such that 0 � z � 1—that is, 0
and 1 witness the failure of D1. Indeed, suppose that there is such a z 6= 0. There exists
a join-irreducible component u′ of 1 such that u′ ∧ z 6= 0 since z 6= 0 and by distributivity.
Take a join-irreducible component z′ of z ∧ u′. We now have a nontrivial chain {z′ < u′} of
join-irreducible elements.
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3.5 Beth Semantics and Nuclei
The second part of this chapter on Heyting algebras concerns Beth semantics for intuitionistic
logic and nuclei on locales. First, we examine several topologies associated to an arbitrary
Beth frame and prove that those topologies all give rise to a locale isomorphic to that
which Bezhanishvili and Holliday [10] associated to the Beth frame. We next study these
topologies arising from Beth frames that are trees and see that the associated topologies
are homeomorphic to the bounded topology [61] of the tree. Finally, we show that Beth
semantics restricted to separative trees is as general as Beth semantics restricted to trees.

We briefly recall basic notions in Beth semantics and pointless topology (see Bezhanishvili
and Holliday [10] for references). Nuclei on a locale L, or a complete Heyting algebra, are
simply closure operators on L that preserve meets. For a nucleus j : L → L, we write Lj
for the sublocale induced by j, i.e., the poset of fixed points of j. A sublocale Lj can be
equipped with a structure of a Heyting algebra induced by the order, albeit the Heyting
algebra operations will be different from those of L.

For a poset X, we write Up(X) for the locale of upward closed subsets of X. A path in a
poset X is simply a nonempty chain that is closed under upper bounds. A set U ∈ Up(X) is
fixed if for every x ∈ X and every path C containing x, x is in U whenever C intersects U
nontrivially. The Beth nucleus jb on the locale Up(X) for a poset X is defined such that for
every U ∈ Up(X), jb(U) is the least fixed set in Up(X) including U .

Bezhanishvili and Holliday constructed for a poset X a topological space, which we call
P (X), such that each point in P (X) is a path in X, and the algebra Ω(P (X)) of open sets of
P (X) is isomorphic to Up(X)jb [10, Theorem 4.18]. One can consider a similar construction
for maximal chains instead of paths. More specifically, for a poset X, we define P̃ (X) to be
the topological space of maximal chains in X whose open sets are exactly the subsets of the
form [U ] := {α | α ∩ U 6= ∅} for U ∈ Up(X)jb .

Proposition 3.5.1. Ω(P̃ (X)) ∼= Up(X)jb for every poset X.

Proof. The proof of [10, Theorem 4.18] can be adapted for maximal chains.

Proposition 3.5.2. Let f : P (X) → P̃ (X) be a function that assigns to each path α the
maximal path containing α in X. Then f is a quotient map between topological spaces.

Proof. Left as an exercise to the reader.

Trees
In what follows, we assume that X is a tree, i.e., for every x ∈ X the set of lower bounds of
x is wellordered.

Proposition 3.5.3. P̃ (X) is homeomorphic to the Kolmogorov quotient of P (X).
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Proof. It suffices to show that paths α, β ∈ P (X) are topologically indistinguishable if and
only if they are contained in the same maximal chain—i.e., ↓α = ↓ β. Suppose that ↓α = ↓ β.
Let U ∈ Up(X)jb be arbitrary, and assume that α ∈ [U ] or, equivalently, that α intersects U
nontrivially. Let x ∈ α ∩ U . Since α ⊆ ↓α = ↓ β, there is y ≥ x such that y ∈ β. Since U is
an upset, we also have y ∈ U . Hence β and U intersect nontrivially, and β ∈ [U ]. Combined
with a symmetric argument, this shows that α and β are topologically indistinguishable. To
show the converse, suppose that α and β are topologically indistinguishable. We show that
↓α ⊆ ↓ β (the other inclusion can be proved in an entirely symmetric manner). Let y ∈ ↓α
be arbitrary. Then there exists x ∈ α with x ≥ y. Note that jb(↑ y) ⊇ ↑ y 3 x ∈ α. Since
jb(↑ y) ∈ Up(X)jb , and α ∈ [jb(↑ y)], β also intersects jb(↑ y) nontrivially by assumption. Let
z ∈ jb(↑ y) ∩ β. Then β is a path containing z, which is in turn in jb(↑ y). This implies that
↑ y and β intersect nontrivially—i.e., y ∈ ↓ β.

Given the proposition above, we study P̃ (X) instead of P (X) for convenience’s sake.
There is another natural topology on the set of maximal chains in a tree X. This

topological space, which we call P̂ (X), has a basis {[↑x] | x ∈ X} (note that [↑x] is the
set of maximal chains containing x). This is called the branch space of X by some (e.g.,
[75]). If X is a subtree of ω<ω, then P̂ (X) ∩ ωω is a subspace of the Baire space ωω (see,
e.g., [55]), which carries the product topology. This is a totally disconnected Polish space
of size continuum. More generally, if X ⊆ κ<κ for a regular cardinal κ with |κ<κ| = κ, then
P̂ (X) ∩ κκ is a subspace of a generalized Baire space, whose topology is called the bounded
topology (see [61]).

Proposition 3.5.4. P̃ (X) and P̂ (X) are homeomorphic.

Proof. For x ∈ X let b(x) stand for the least y ≤ x such that [↑ y] = [↑x]. (For instance, if
X ⊆ ω<ω, then b(x) is the longest initial segment of x that is an endpoint, 〈〉, or an immediate
successor of a node with two or more immediate successors.) By definition, [↑x] = [↑ b(x)].
Moreover, ↑ b(x) is fixed for every x ∈ X. To see this, let z 6∈ ↑ b(x). Assume that z and
b(x) are comparable. Since z 6∈ ↑ b(x), we have z < b(x). By the minimality of b(x), we have
[↑ b(x)] ( [↑ z]. Then a maximal chain in [↑ z] \ [↑ b(x)] contains z and does not intersect
↑ b(x). Next, assume that z and x are incomparable. Then no maximal chain containing z
intersects ↑ b(x) nontrivially; indeed, if w is both in a maximal chain containing z and in
↑ b(x), ↓w contains two incomparable elements z and b(x).

The topology of P̃ (X) is at least as fine as that of P̂ (X); indeed, it suffices to see that
[↑x] is open in P̂ (X) for all x ∈ X, which follows from the observations in the paragraph
above.

To show that the topology of P̂ (X) is at least as fine as that of P̃ (X), let [U ] be an
arbitrary open set in P̃ (X) with U ∈ Up(X)jb . We have

U = jb(U) = jb
⋃
x∈U
↑x = jb

⋃
x∈U
↑ b(x).
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By the same argument as in the proof of Proposition 3.5.1, we have

[U ] = [jb
⋃
x∈U

b(↑x)] =
⋃
x∈U

[↑ b(x)].

We conclude that U is the union of some basic open sets in P̂ (X).

Proposition 3.5.5. Suppose that X ⊆ ω<ω. Define a tree X ′ ⊆ ω<ω with no maximal nodes
by

X ′ = {x | x ∈ X, x is not maximal} ∪ {x ∗ 0n | x ∈ X, x is maximal, n ∈ ω},

where ∗ stands for concatenation of strings. Then P̃ (X) and P̃ (X ′) are homeomorphic, and
Up(X)jb ∼= Up(X ′)jb .

Since P̃ (X ′) has no maximal nodes, P̃ (X ′) ⊆ ωω. This shows that, with a locale arising
from countable trees of height ≤ ω in Beth semantics, we can associate a subspace of the
Baire space that represents that locale as the algebra of open sets in it.

Proof. It suffices to work with P̂ (X) and P̂ (X ′). There is a bijection f : P̂ (X) → P̂ (X ′)
such that f(α) = α ∗ 0ω for α finite, and f(α) = α otherwise. Suppose that α ∈ P̂ (X)
is finite. Then α is an isolated point in P̂ (X); indeed, [↑X maxα]P̂ (X) is open in P̂ (X),
and [↑X maxα]P̂ (X) = {α}. f(α) = α ∗ 0ω is also isolated in P̂ (X) ⊆ ωω, as witnessed by
the open set [↑X′ maxα]P̂ (X′) = {α ∗ 0ω} in P̂ (X ′). The restriction f |P̂ (X)∩ωω is clearly a
homeomorphism. We conclude that f is a homeomorphism.

Even if X is not a subset of κ<κ, P̃ (X) still has a nice property of Polish spaces:

Proposition 3.5.6. P̃ (X) is Hausdorff.

Proof. Let α, β ∈ P̃ (X), and assume that α 6= β. Since α and β are maximal chains, neither
of the two chains is contained in the other; one can take x ∈ α \ β and y ∈ β \ α. Note that
x and y are incomparable by maximality of α and β. Then jb(↑x) and jb(↑ y) are open sets,
and they are clearly neighborhoods of α and β, respectively. Suppose by way of contradiction
that jb(↑x) ∩ jb(↑ y) 6= ∅; take z ∈ jb(↑x) ∩ jb(↑ y). Let γ be a maximal chain containing z.
Then γ nontrivially intersects both ↑x and ↑ y. This is a contradiction; for, if z ∈ γ∩↑x, and
w ∈ γ ∩ ↑ y, then ↓max{z, w} contains two incomparable elements—namely, x and y.

The Beth nucleus and double negation
The results in the next subsection suggest that the study of Up(X)¬¬ is useful in that of
Up(X)jb and P̃ (X). In general, Up(X)¬¬ ⊆ Up(X)jb . Moreover, we have the following.

Proposition 3.5.7. For any poset X, Up(X)jb = Up(X)¬¬ if and only if Up(X)jb is boolean.
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Proof. This is in fact true of any locale A and a dense nucleus j : A→ A: Aj = A¬¬ if and
only if Aj is boolean. This fact is well known, but we include the proof for completeness.

It suffices to show the “if” direction. Note that 0A ∈ Aj. Since Aj is boolean, Aj =
{x → a | x ∈ A} for some a ∈ A (see, e.g., [70, p. III.10.4]). In particular, for some
x ∈ A, we have x→ a = 0A. Since 0A ≥ (x→ a) ≥ a, we have a = 0A. As is well known,
A¬¬ = {x→ 0A | x ∈ A}.

Posets where every principal upset is fixed
As suggested by [10, Example 4.15], posets every principal upset of which is fixed often give
rise to locales that are easy to study.

Proposition 3.5.8. Suppose that every principal upset in X is fixed. Let P be either P (X)
or P̃ (X). α, β ∈ P are topologically indistinguishable if and only if one of the two points is
dense in the other—i.e.,

∀x ∈ α ∃y ≥ x (y ∈ β), and ∀y ∈ α ∃x ≥ y (z ∈ α). (3.3)

Proof. Suppose that α and β are topologically indistinguishable. Let x ∈ α be arbitrary.
By hypothesis, ↑x is fixed. Since ↑x and α intersect nontrivially, so do ↑x and β by the
topological indistinguishablity of α and β. This means ∃y ≥ x (y ∈ β). Likewise, we have
∀y ∈ α ∃x ≥ y (z ∈ α). Conversely, assume (3.3). Suppose that U ∈ Up(X)jb intersects α
nontrivially; let x ∈ α ∩ U . By hypothesis, ∃y ≥ x (y ∈ β). Since U is an upset, y ∈ U . We
have shown that U intersects β nontrivially. The other direction can be shown in the same
way.

We exhibit a class of posets the satisfies the assumption of the preceding proposition.
(For set-theoretic ideas that appear later in this subsection, see [53].) A poset X is separative
if for every x, y ∈ X we have

x ≥ y ⇐⇒ ∀x′ ≥ x ∃z ≥ x′ (z ≥ y).

For a boolean algebra of B, let B+ be the subposet of B consisting of every element of B
but maxB. This is called a topless boolean algebra. Topless boolean algebras are separative.
In fact, they are special separative posets: every separative posets densely embeds into some
topless boolean algebra.

Proposition 3.5.9. Let X be a separative poset. Then every principal upset in X is fixed.

Proof. Let B be a boolean algebra such that X is a dense subset of B+. Let x ∈ X be
arbitrary. Let y 6∈ ↑X x. It suffices to show that there is a path in X containing y that does
not intersect ↑X x nontrivially. Since y 6≥ x, we have z := ¬x ∨ y 6= 1 and z ∈ B+, where
the operations are those of B. Since X is dense in B+, there exists z′ ∈ X such that z′ ≥ z.
Take a path α in X starting at y and containing z′, such that an end segment of α is in ↑X z′.
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Assume for contradiction that α and ↑X x intersect nontrivially; let w ∈ α ∩ ↑X x. Suppose
that w ≤ z′. This implies x ≤ z′ ≥ ¬x, and it contradicts z′ ∈ X ⊆ B+. Suppose, on the
other hand, that w ≥ z′. This implies x ≤ w ≥ ¬x, which contradicts w ∈ α ⊆ X ⊆ B+. We
conclude that α does not intersect ↑X x nontrivially and that ↑X x is fixed.

Our next goal is to prove that Beth semantics restricted to separative trees is as general
as that restricted to trees.

Lemma 3.5.10. Let X be a tree, and let b be as in the proof of Proposition 3.5.4. Let X ′
be the image of X under b with the induced order. Then X ′ is (isomorphic to) the separative
quotient of X.

Proof. It suffices to show that
x ≤ y→ b(x) ≤ b(y) (3.4)

and that
x G y ⇐⇒ b(x) G b(y), (3.5)

where w G z for w, z ∈ X denotes w and z being compatible. This is because the separative
quotient of X is determined up to isomorphism as the image of a map that satisfies the
properties above. Note that, since X is a tree, w G z if and only if w and z are comparable.
It is clear that b satisfies the first condition by definition. Suppose that x G y. Since x ≥ b(x),
y ≥ b(x), and X is a tree, x G y. Suppose that b(x) G b(y). The two points b(x) and b(y) are
comparable; without loss of generality we may assume that b(x) ≤ b(y). Then

↑ y = ↑ b(y) ⊆ ↑ b(x) = ↑x.

This implies y ≤ x and y G x.

Proposition 3.5.11. Suppose that X is a tree and that X ′ is its separative quotient. Then
P̃ (X) ∼= P̃ (X ′), and thus Up(X)jb ∼= Up(X ′)jb .

Proof. By the previous lemma, we may assume that X ′ = b(X). Note that X ′ is also the set
of fixed-points in X with respect to b.

The map b : X → X ′ induces a bijection b∗ : P̃ (X) → P̃ (X ′), where b∗(α) is the
image b“α3 for α ∈ P̃ (X). Indeed, suppose that α ∈ P̃ (X). Since X is a tree, and b(x) = x
for all x ∈ X ′, the image b“α is equal to α ∩X ′. Thus, the image b“α is a chain in X ′ ⊆ X,
and it is maximal in X ′ by the maximality of α in X. Hence, b∗ is well-defined as a map
to P̃ (X ′). Next, suppose that β ∈ P̃ (X ′). We show that there is a unique α ⊇ β that is
a maximal chain in X, and that thus b∗ is bijective. Assume otherwise; let α0, α1 ⊇ β be
distinct maximal chains in X. By the maximality of α0 and α1, there exist x0 ∈ α0 and
x1 ∈ α1 such that x0 and x1 are incomparable. Since x0 and x1 are incomparable, so are
b(x0) and b(x1) by (3.5). Since x0 ≥ b(x0), and x1 ≥ b(x0), for i < 2 the two points xi and

3Since square brackets are used to denote basic open sets, we use this notation for the f -image of a subset
of dom f for a function f .
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b(x1−i) are incomparable. By the maximality of β in X ′, exactly one of b(x0), b(x1) ∈ X ′
must be in β; we may assume b(x0) ∈ β without loss of generality. However, a chain α1 in X
cannot contain incomparable points b(x0) and x1.

We show that b∗ is in fact a homeomorphism. By Proposition 3.5.4, it suffices to consider
the topology of P̃ (X) and P̃ (X ′) and their basic open sets. Specifically, since ↑X x = ↑X b(x)
for every x ∈ X, it suffices to show for every x ∈ X ′

b∗“{α ∈ P̃ (X) | x ∈ α} = {β ∈ P̃ (X ′) | x ∈ β},
{α ∈ P̃ (X) | x ∈ α} = b∗“{β ∈ P̃ (X ′) | x ∈ β},

where b∗ : P̃ (X ′) → P̃ (X) is the inverse of b∗. These follow because b∗(α) = α ∩ X ′, and
b∗(β) is the unique maximal chain α ⊇ β in X.

It is easy to see that a tree is separative if and only if every principal upset in it is fixed.
Therefore, the last proposition also shows the generality of Beth semantics restricted to trees
whose principal upsets are all fixed.
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Chapter 4

Choice-Free Duality for Ortholattices

In this chapter, we continue the study of the topological duality for ortholattices started
by Goldblatt [39], comparing it with the choice-free duality sketched in Bezhanishvili and
Holliday [12], which is examined here in detail. In both cases, we characterize the duals of
ortholattices and extend the duality categorically with the suitable morphisms. Afterwards,
we identify a separate, first-order definable way in which the original ortholattice may be
obtained from its choice-free dual. An application of this is a nontrivial characterization of
the duals of orthomodular lattices.

In this chapter, an ortholattice is an expansion of a bounded lattice L by an orthocom-
plementation, i.e., a function (·)⊥ : L→ L that is involutive and antitone such that a⊥ is a
complement of a for every a ∈ L. One can show that the class of ortholattice is a variety in
the appropriate signature. An important class of ortholattices is that of the lattices of closed
subspaces of Hilbert spaces in which the orthocomplementation is given by taking orthogonal
complements. These ortholattices satisfy additional axiom called orthomodularity:

x ≤ y→ x ∨ (x⊥ ∧ y) = y.

The class of orthomodular ortholattices is also a variety.

4.1 Duals of Ortholattices
Definition 4.1.1.

(i) A relational structure (X,⊥) with a irreflexive symmetric relation ⊥, is called an
orthoframe. The relation ⊥ is the orthogonality relation of the orthoframe.

(ii) Let L be an ortholattice.

a) The space X±L = (X±L ,⊥) of proper filters of L has the topology generated by the
sets of the form â = {x ∈ X±L | a ∈ x} and their complements for a ∈ L with the
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binary relation defined by

x ⊥ y ⇐⇒ (∃a ∈ L)[a ∈ x& a⊥ ∈ y].

This appeared in Goldblatt [39].
b) The space X+

L = (X+
L ,⊥) consists of the same points and the same binary relation,

but its topology is generated by sets of the form â only. This was briefly discussed
in Holliday and N. Bezhanishvili [12].

Proposition 4.1.1. Every ortholattice is isomorphic L to COR(X+
L ), where COR(X) is the

ortholattice of compact open ⊥-regular subsets of X.

Proof. We show that the image of the ortholattice embedding ·̂ from L to the ortholattice of
⊥-regular subsets of X+

L is COR(X+
L ). Suppose that A ∈ COR(X+

L ). Since it is open, it is a
union of basic open sets, which are of the form â. Since it is compact, it is a finite union of
basic open sets: A = â1 ∪ · · · ∪ ân for a1, . . . , an ∈ L. Since it is ⊥-regular, we have

(a1 ∨ · · · ∨ an)̂ = (â1 ∪ · · · ∪ ân)⊥⊥ = A⊥⊥ = A,

so A is in the image of ·̂.

The following is an analogue of the characterization of the duals of Boolean algebras
studied in Bezhanishvili and Holliday [12, § 5].

Proposition 4.1.2. An orthoframe (X,⊥) with topology is homeomorphic1 to X+
L for some

ortholattice L iff all of the following conditions are met:

1. X is T0.

2. COR(X) is closed under ∩ and ⊥.

3. COR(X) is a basis of X.

4. Every proper filter of COR(X) is of the form CORX(x) for some x ∈ X.

5. If x ⊥ y, then there is U ∈ COR(X) such that x ∈ U and y ∈ U⊥.

Here, CORX(x) = {U ∈ COR(X) | x ∈ U}.

Proof.
1A homeomorphism between two such structures is a homeomorphism between the two topological spaces

that is an isomorphism between their orthoframe reducts.
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“Only if” direction Note that x 6 y if and only if x ⊆ y. Condition (3) is the definition
of the topology of X+

L . We show Condition (1). Suppose that x 66 y, i.e., x 6⊆ y. Take then
a ∈ x \ y. Note that â is ⊥-regular and open. It can also be shown that â is compact. Indeed,
Let (b̂i)i∈I be a cover of â by basic open sets: â ⊆ ⋃i b̂i. Since the principal filter ↑ a generated
by a is in â, so is it in ⋃i b̂i, i.e., for some i ∈ I we have ↑ a ∈ b̂i. This means that a ≤ bi and
that â ⊆ b̂i, the unary union b̂i being a finite subcover of â. Therefore, â ∈ COR(X+

L ), x ∈ â,
and y 6∈ â. Condition (2) follows from COR(X+

L ) being isomorphic to L. For (4), let G be a
proper filter of COR(X+

L ). Let x be the image of G under the isomorphism COR(X+
L )→ L.

Then x ∈ X+
L . It is easy to see that G = CORX+

L (x). Finally, Condition (5) is the definition
of ⊥.

“If” direction We will show that if the five conditions are met, then there is a homeo-
morphism ε : (X,⊥)→ X+

COR(X) given by x 7→ CORX(x). That ε is surjective follows from
Condition (4). To see ε is injective, let x 6= y be in X. By X being T0, either x 66 y or y 66 x.
Assume the former (the other case can be addressed in the same manner). By (3), take
U ∈ COR(X) with x ∈ U and y 6∈ U . We have U ∈ CORX(x) and U 6∈ CORX(y), and we
have established the injectivity of ε. For the continuity of ε, we show that the inverse image
of every basic open set in X+

COR(X) is open in X. An arbitrary basic open set in X+
COR(X) is

of the form Û for U ∈ COR(X). We have:

ε−1(Û) = {x ∈ X | CORX(x) ∈ Û}
= {x ∈ X | U ∈ CORX(x)}
= {x ∈ X | x ∈ U}
= U,

which is open. Now, since COR(X) is a basis of U , we conclude that ε is a homeomorphism.
Finally, we show that ε is an isomorphism between the orthoframe reduct. We have:

CORX(x) ⊥ CORX(y) ⇐⇒ (∃U ∈ COR(X))U ∈ CORX(x) & U ∈ CORX(y)
⇐⇒ (∃U ∈ COR(X))x ∈ U & y ∈ U⊥

⇐⇒ x ⊥ y,

where the last ⇐ is Condition (5), and the ⇒ follows from the definition of (·)⊥.

Here is a result similar to above but for Goldblatt’s original representaion.

Proposition 4.1.3 (AC). A orthoframe (X,⊥) with topology is homeomorphic to X±L for
some ortholattice L iff all of the following conditions are met:

1. X is T0 and compact.

2. ClopR(X) is closed under ∩ and ⊥.
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3. If x 6= y, then there is U ∈ ClopR(X) such that either x ∈ U and y 6∈ U , or x 6∈ U and
y ∈ U .

4. Every proper filter of ClopR(X) is of the form ClopR(x) for some x ∈ X.

5. If x ⊥ y, then there is U ∈ ClopR(X) such that x ∈ U and y ∈ U⊥.

Here, ClopR(X) is the lattice of clopen ⊥-regular subsets of X, and ClopR(x) = {U ∈
ClopR(X) | x ∈ U}.

Proof.

“Only if” direction Goldblatt [39] showed that X±L is compact and that ClopR(X±L ) ∼= L.
Since the topology of X±L is finer than that of X+

L , the space X±L is T0 as well.

“If” direction As before, we will show that ε : (X,⊥) → X±ClopR(X) given by x 7→
ClopRX(x) is a homeomorphism. The injectivity of ε follows from (3), and its surjectivity
follows from (4) as before. The continuity of ε can be proved in the same manner. Note that
X±L is Haudorff. Since ε is a continuous map from a compact space to a Hausdorff space, it is
a homeomorphism. Finally, it can be shown from (5) that ε is an isomorphism between the
orthoframe reducts.

Corollary 4.1.4 (AC). 1. The preceding proposition obtains if the conditions (1), (2),
and (3) are replaced by the following respectively:

(1′) X is compact and Hausdorff.
(2′) ClopR(X) is closed under ⊥.
(3′) If x 6≤ y, then there is U ∈ ClopR(X) such that either x ∈ U and y 6∈ U , or x 6∈ U

and y ∈ U .

In particular, the space X±L for an ortholattice L is a Stone space, i.e., a compact
Hausdorff zero-dimensional space.

2. The space (X±L , 6⊥) with the complement of ⊥ is a modal space, i.e., the dual of some
BAO (B-algebra).

3. The clopens B(L) of X±L , i.e., the Boolean algebra dual to the space, is generated by
COR(X±L ).

Proof. 1. Easy.

2. ( 6⊥)[y] = {x | ∀a ∈ y a′ 6∈ x} = ⋂
a∈L {φ(a′), where { denotes set-theoretic complement.

Note that {φ(a′) is clopen.
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3. A clopen U of X±L is compact, and hence a finite union of basic opens, each of which
is of intersections of sets of the form either φ(a) or {φ(a). Note that { and ∪ are the
Boolean complement and join of the said Boolean algebra.

We conclude this section by showing that Goldblatt’s original representation indeed
requires some choice principle.

Proposition 4.1.5. The following are equivalent:

1. PIT, the Prime Ideal Theorem for Boolean algebras.

2. The space X±L is compact for all Boolean algebras L.

Proof. PIT proves the compactness of X±L for all Boolean algebras L as the only choice
principle used in Goldblatt [39] is the Alexander Subbasis Theorem, which is equivalent to
PIT.

Now assume that X±L is compact for all Boolean algebras L. To show PIT, it suffices [51]
to prove (I) the existence of a choice function for an arbitrary family of nonempty finite sets
and (II) the Weak Rado Selection Lemma (whose statement can be found below).

(I) Let S := (Si)i∈I be a family of nonempty finite sets. Let L be the Boolean algebra
presented by 〈⊔i∈I Si | {a ∧ b = 0 | a 6= b ∈ Si, i ∈ I}〉. Consider X±L . For I ′ ⊆fin I,
let FI′ = {u ∈ X±L | ∀i ∈ I ′ ∃a ∈ Si a ∈ u}. It can be shown that F := (FI′)I′∈Pfin(I)
is a filter basis of X±L . Since X±L is compact, F has a cluster point u+. We show that
f := {(i, a) | i ∈ I, a ∈ Si, a ∈ u+} is a choice function for S. Since u+ is a proper filter
of L, at most one a ∈ Si can belong to u+ by the construction of L. This shows that f
is a function. We now show that dom f = I. Let i ∈ I be arbitrary. Suppose by way of
contradiction that Si ∩ u+ = ∅. Then {â is a neighborhood of u+ for a ∈ Si, and so is
U := ⋂

a∈Si {â, which is open as Si is finite. Since u+ is a cluster point, U ∩ F{i} is nonempty,
i.e., ∀a ∈ Si ∃u ∈ F{i} a 6∈ u, contradicting the definition of F{i}.

(II) We will show:

Suppose that for a set Λ there is a family of functions (γS)S∈Pfin(Λ) such that
γS : S → {±1}. Then there is f : Λ → {±1} such that for all S ⊆fin λ there
exists T ⊆ Λ with S ⊆ T and f � S = γT � S.

Let (γS)S be given. Let L = 〈λ+, λ− | λ+ = ¬λ−〉λ∈Λ. For S ⊆fin λ, let uS be the filter of L
generated {λ± | λ ∈ Λ, γS(λ) = ±1}. It can be shown that uS is proper so uS ∈ X±L . Consider
the net (uS)S∈Pfin(Λ), where the indices are ordered by inclusion. Since X±L is compact, the
net has a cluster point u∞. Now we have

∀λ ∈ Λ ∀S ⊆fin Λ ∃T ⊇ S[u∞ ∈ λ̂±→ uT ∈ λ̂± and u∞ ∈ {λ̂±→ uT ∈ {λ̂±],
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i.e.,
∀λ ∈ Λ ∀S ⊆fin Λ∃T ⊇ S[λ± ∈ u∞ ⇐⇒ λ± ∈ uT ] (†)

Let f = {(λ,±1) | λ± ∈ u∞}. By a similar argument as before, f is a function Λ→ {±1}.
Also, by (†), ∀S ⊆fin Λ ∃T ⊇ S f � T = γT (a fortiori, f � S = γT � S).

4.2 Morphisms
Definition 4.2.1. For orthoframes X = (X,⊥) and X ′ = (X ′,⊥′) where X and X ′ are also
topological spaces, a bounded morphic spectral map f : X → X ′ is a spectral map X → X ′

that is also a bounded morphism (X, 6⊥)→ (X ′, 6⊥′) between these Kripke frames.

Note that a bounded morphic spectral map need not be bounded morphic with respect
to the specialization order of the topological spaces. This makes an interesting contrast to
the situation in [12] where that condition is required to obtain the dual equivalence result,
whereas we do not need it here:

Proposition 4.2.1. The category UVO whose objects are of the form X+
L for an ortholattice

L and whose morphisms are bounded morphic spectral maps is dually equivalent to the
category of ortholattices and homomorophisms.

Proof. Suppose that f : (X,⊥) → (X ′,⊥′) is a bounded morphic spectral map. Given
U ∈ COR(X ′), let f+(U) be the inverse f -image of U . Since f is a spectral map, f+(U) is
compact open. We see that f+(U) is ⊥-regular as well. Indeed, since U is ⊥′-regular, we
have �′♦′U = U⊥

′⊥′ = U , where �′ and ♦′ are the modal operators corresponding to 6⊥′ [38].
Since f is bounded morphic with respect to 6⊥′, the map f+ preserves modal operators. Thus
we have f+(U)⊥⊥ = �♦f+(U) = f+(�′♦′U) = f+(U), where � and ♦ are defined from 6⊥
likewise. We now have a map f+ : COR(X ′)→ COR(X). It is easy to see that COR(·) and
(·)+ combined give rise to a functor from UVO to the category of ortholattices.

Secondly, suppose that h : L→ L′ is an ortholattice homomorphism. Given u′ ∈ X+
L′ , let

h+(u) ⊆ L be the inverse h-image of u′ ⊆ L′. It is easy to see that h+(u) is a proper filter,
so h+(u) ∈ X+

L . We now have a function h+ : X+
L′ → X+

L . We show that h+ is a bounded
morphic spectral map. For each U ′ ∈ COR(X+

L ), the inverse h+-image of U ′ is compact
open; indeed, a routine calculation shows that the inverse h+-image of â is ĥ(a), which is
compact open in X+

L′ . By Lemma 6.62 of [12], the map h+ is a spectral map. It remains
to show that h+ is bounded morphic with respect to the complements of the orthogonality
relations. Suppose that u′ 6⊥′ v′ in X+

L′ , where ⊥′ is the orthogonality relation of X+
L′ , and

that h+(u′) ⊥ h+(v′) by way of contradiction. Then there is a ∈ L such that a ∈ h+(u′)
and a⊥ ∈ h+(v′). By definition, we have h(a) ∈ u′ and h(a)⊥′ = h(a⊥) ∈ v′, where ⊥′ is the
orthocomplement operation of L′. This is a contradiction. Suppose next that h+(u′) 6⊥ v for
some u′ ∈ X+

L′ and v ∈ X+
L . Let v′ be the filter generated by the h-image of v. It is easy to

2The proof of the lemma does not use the fact that the spaces are spectral.
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see that v′ is proper and thus in X+
L′ and that h+(v′) = v. Suppose by way of contradiction

that u′ ⊥ v′, i.e., there is a′ ∈ L′ such that a′ ∈ v′ and a′⊥
′ ∈ u′. By definition, there is

a ∈ L with h(a) ≤ a′ and a ∈ v. We now have a′⊥′ ≤ h(a)⊥′ = h(a⊥) ∈ u′. This means that
a⊥ ∈ h+(u′), which contradicts h+(u′) 6⊥ v. It easy to see that X+

· and (·)+ combined give
rise to a functor from the category of ortholattices to UVO.

Finally, it is not hard to show that the two functors consist a dual equivalence of the
categories.

Proposition 4.2.2 (AC). The category of modal spaces of the form (X±L , 6⊥) for an ortho-
lattice L is dually equivalent to the category of ortholattices.

Proof. This can easily proved via the duality for the category of modal B-algebras that are
generated by the fixed points of the composite �♦ of their modal operators.

4.3 Logical Considerations
Objects in UVO can be regarded as a two-sorted first-order structure X = (X,B,⊥,∈) given
a basis B of X+

L in the following manner:

• The first sort of X consists of the points of X+
L .

• The second sort of X is B.

• The binary relation symbol ⊥ between elements of the first sort is interpreted as the
orthogonality relation of X+

L .

• The binary relation symbol ∈ between elements of the first sort and the second sort,
respectively, is interpreted as the membership relation.

Let L be the first-order language for such structures. We use lowercase and uppercase
variables for the first and the second sort of L, respectively.

We say that an L-formula is invariant if for every quantification ∃U , atomic formulas of the
form x ∈ U occurs only negatively. Note that (X,B,⊥,∈) |= φ if and only if (X,B′,⊥,∈) |= φ
for bases B,B′ of the same topology on X and an invariant sentence φ. Invariant L-formulas
are essentially formulas of Ziegler’s logic (L′)tωω for L′ = {⊥} [83]. The idea is that invariant
sentences depend only on the intrinsic topological information of objects of UVO, not how it
is presented.

A bottomless ortholattice is a first-order structure of the form L− in the language of
two binary relation symbols, where L− = (L \ {0},≤, G−⊥), the relation ≤ is the partial
order induced by that of L, and G−⊥ is the intersection of (L−)2 and the graph of the
orthocomplement of L.

Proposition 4.3.1. There is an interpretation Γ (in the sense of Hodges [47, 5.4 (b)]) of the
class of bottomless ortholattices in UVO with the following properties:
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1. The interpretation Γ consists of invariant formulas. Consequently, for two bases B,B′
of X ∈ UVO, we have Γ((X,B,⊥,∈)) = Γ((X,B′,⊥,∈)). (We write Γ(X) for that
ortholattice.)

2. For X ∈ UVO, each element of the carrier set of Γ(X) is a point of X, i.e., an element
of the first sort of X as an L-structure.

3. Γ(X+
L ) ∼= L− for every ortholattice L.

Furthermore, for every first-order sentence φ in the language of ortholattices, there exists
an invariant L-sentence φ∗ such that for every ortholattice L we have L |= φ if and only if
X+
L |= φ∗.

Proof. Now the specialization order v of an object X in UVO is uniformly definable by an
invariant L-sentence:

x v y ⇐⇒ X |= ¬∃U 3 x[y 6∈ U ].

Furthermore, the set of principal filters of X+
L is defined by the invariant formula φ(x) :=

∃U 3 x∀y @ x[y 6∈ U ], where @ = v\=. Indeed, it is easy to see that X+
L |= φ(↑ a) for every

a ∈ L. On the other hand, assume that u ∈ X+
L is not principal and that X+

L |= φ(u). Let
U ⊆ X+

L be an open set witnessing φ(u). Since {â | a ∈ L} is a basis for X+
L , there exists

S ⊆ L such that U = ⋃
a∈S â. Since U is a neighborhood around u, there exists b ∈ S such

that u ∈ b̂, i.e., b ∈ u. Let y = ↑ b. Since y @ u, and u is not principal, y @ u. However, we
have y ∈ b̂ ⊆ U , which contradicts φ(u).

Let Γ(X+
L ) = (M,≤M , G−⊥) be defined as follows: M := φ(X+

L ), i.e., the set of principal
filters in X+

L ; the order ≤M is induced by the order-theoretic dual of the specialization order
v in X+

L , which can be defined by an invariant formula; and (x, y) ∈ G−⊥ if and only if x ⊥ y
and ∀y′ @ y x 6⊥ y′.

It is clear that the interpretation given above satisfies the promised properties. The last
claim follows from the fact that L and L− are bi-interpretable for every ortholattice L.

This proposition may be used to obtain the characterizations of the duals of many
important classes of ortholattices. For instance, let φ state orthomodularity in the language
of ortholattices. Then, the invariant L-sentence φ∗ obtained as in the proposition defines the
class of the duals of orthomodular lattices in UVO.
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