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Abstract

Nontrivial tori in spaces of symplectic embeddings

by

Cristian Mihai Munteanu

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Michael Hutchings, Chair

This dissertation is comprised of two papers studying the topology of certain spaces of
symplectic embeddings.

The first paper shows how given two 4–dimensional ellipsoids whose symplectic sizes
satisfy a specified inequality, a certain loop of symplectic embeddings between the two ellip-
soids is noncontractible. The statement about symplectic ellipsoids is a particular case of a
more general result which claims that given two convex toric domains whose first and second
ECH capacities satisfy a specified inequality, one can prove that a certain loop of symplectic
embeddings between the two convex toric domains is noncontractible.

The second paper proves how given two 2n–dimensional symplectic ellipsoids whose sym-
plectic sizes satisfy certain inequalities, a certain map from the n–torus to the space of sym-
plectic embeddings from one ellipsoid to the other induces an injective map at the level of
homology with mod 2 coefficients.
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Tu deviens responsable pour toujours de ce que tu as apprivoisé.1
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Format

This thesis consists of the papers:

1. Noncontractible loops of symplectic embeddings between convex toric domains

and

2. Essential tori in spaces of symplectic embeddings (with Julian Chaidez),

which were written while the author was a graduate student at UC Berkeley. Each chapter
in this dissertation contains one paper and is completely self–contained.

Both papers are studying the topology of the space of symplectic embeddings between
certain starshaped subdomains in Cn.

Basic definitions

Recall that a symplectic manifold is a smooth, even–dimensional manifold M equipped with
a symplectic form, i.e. a closed nondegenerate 2–form ω on M . The classical example of
a symplectic manifold is (R2n, ωstd =

∑n
i=1 dxi ∧ dyi), where (x1, y1, . . . , xn, yn) are linear

coordinates on R2n.
Given two symplectic manifolds (M,ωM) and (N,ωN), a symplectic embedding of M into

N is a smooth embedding ϕ : M → N such that ϕ∗ωN = ωM .
Recall also that a contact manifold is a smooth, (2n−1)–dimensional manifold Y equipped

with a contact form, i.e. a 1–form λ satisfying λ ∧ (dλ)n−1 > 0. The Reeb vector field
associated to λ, Rλ, is the vector field determined uniquely by dλ(Rλ, ·) = 0 and λ(Rλ) = 1.
A closed curve γ : R/TZ→ Y such that γ′(t) = Rλ(γ(t)) is called a Reeb orbit.

Given (M,ω) a symplectic manifold with boundary, one can prove that if there exists a
vector field ρ defined in a neighborhood of ∂M that is transverse to ∂M satisfying Lρω = ω
then the boundary ∂M is a contact manifold. Such a vector field ρ is called a Liouville vector
field and it induces the contact form λ = ιρω|∂M on ∂M .

A basic example that provides nonetheless nontrivial results is the study of symplectic
embeddings involving the symplectic ellipsoid

E(a1, a2, . . . , an) :=

{
(z1, . . . , zn) ∈ Cn

∣∣∣∣ π|z1|2

a1

+ . . .
π|zn|2

an
≤ 1

}
,

which together with the restriction of the standard symplectic form ωstd is a symplectic
manifold with boundary.

For the symplectic ellipsoid E(a1, a2, . . . , an), the radial vector field ρ =
∑n

i=1(xi∂xi +
yi∂yi) is a Liouville vector field which induces the standard contact form λstd = 1

2

∑n
i=1(xidyi−

yidxi) on the boundary ∂E(a1, a2, . . . , an). This holds true in more generality for any sub-
domain U ⊂ R2n that contains the origin and is transverse to the radial vector field, i.e. a
starshaped domain.
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It turns out one can study symplectic geometry of a starshaped domain U by studying
the contact geometry of ∂U and we elaborate in the papers that follow how one can take
advantage of this nice fact. More specifically for the study of symplectic embeddings, given
two starshaped domains U and V and a symplectic embeddings ϕ : U → V , we will define
the completed symplectic cobordism

Ŵϕ = (−∞, 0]× ϕ(∂U) ∪ V \ int(ϕ(U)) ∪ [0,∞)× ∂V

and consider moduli spaces J–holomorphic curves

u : (Σ̇, j)→ (Ŵϕ, J)

with asymptotical cylindrical ends over Reeb orbits. The study of these moduli spaces will
provide obstructions to the existence of certain families of symplectic embeddings U → V
and thus say something about the topology of the space of symplectic embeddings U → V .



1

Chapter 1

Noncontractible loops of symplectic
embeddings between convex toric
domains

Mihai Munteanu

1.1 Introduction

1.1.1 Previous results and a new result about ellipsoids

Questions about symplectic embeddings of one symplectic manifold into another have always
been one of the main study directions in symplectic geometry. The pioneering work of
Gromov in [16] introduced new methods that made it possible to answer many open questions
about symplectic embeddings that had been until then unanswered. The survey by Schlenk,
[41], presents in detail the type of results one can prove about symplectic embeddings together
with the tools used to prove such results.

Most of the questions that have been answered (in the positive or the negative) concern
the existence of symplectic embeddings of one symplectic manifold into another. For exam-
ple, see [30], [31], [33], and [35] for symplectic embeddings involving 4–dimensional ellipsoids,
see [7], [9], [10], and [24] for symplectic embeddings involving more general 4–dimensional
symplectic manifolds, and also see [17], [19], and [21] for results in higher dimensions.

Another direction where significant progress has been made is the study of the connec-
tivity of certain spaces of symplectic embeddings. In [31], McDuff shows the connectivity of
spaces of symplectic embeddings between 4–dimensional ellipsoids, while in [9], Cristofaro–
Gardiner extends this result to symplectic embeddings from concave toric domains to convex
toric domains, both of which are subdomains of R4 whose definition we recall below in §1.1.2.
In [21], Hind proves the non-triviality of π0 for spaces of symplectic embeddings involving
certain 4–dimensional polydisks, extending a result that was initially proved in [15]. In
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[20], the authors prove that certain spaces of symplectic embeddings involving more general
4–dimensional symplectic manifolds are disconnected, while in [36], the authors study the
connectivity of symplectic embeddings into generalized “camel” spaces in higher dimensions,
extending results in [14].

Following yet another direction, in this paper we study the fundamental group of certain
spaces of symplectic embeddings in 4 dimensions. Let us first clarify the notation we will be
using. For real numbers a and b with 0 < a ≤ b, the set

E(a, b) :=

{
(z1, z2) ∈ C2

∣∣∣∣ π|z1|2

a
+
π|z2|2

b
≤ 1

}
together with the restriction of the standard symplectic form from R4 is called a closed
symplectic ellipsoid, or more simply an ellipsoid. Moreover, we define the symplectic ball
B4(a) := E(a, a). Also, if M and N are symplectic manifolds, let SympEmb(M,N) denote
the space of symplectic embeddings of M into N .

Here are a few results about the fundamental group of spaces of symplectic embeddings
that motivated our work. The first result in this direction is an immediate consequence of
the methods that Gromov introduced in [16] in order to prove the nonsqueezing theorem.

Theorem 1.1.1 ([14]). Let S be an embedded unknotted 2–sphere in (R4, ωstd). Write XS =
R4 \ S and let e : SympEmb(B4(r), XS) → XS be the evaluation map f 7→ f(0). Then the
induced homomorphism e∗ : π1(SympEmb(B4(r), XS)) → π1(XS) is surjective for 2πr2 <∫
S
ω and trivial otherwise.

Another situation where the fundamental group of a space of symplectic embeddings can
be computed is the following.

Theorem 1.1.2 ([22]). If ε < 1 the space SympEmb(B4(ε), B4(1)) deformation retracts to
U(2).

A more recent result that is closer in spirit to the results of this paper can be found in
[5], where the author constructs a loop {φµ}µ∈[0,1] in SympEmb(E(a, b)tE(a, b), B4(R)) and
shows that if the positive real numbers a, b, and R satisfy a

b
/∈ Q, 2a < R < a + b, and

b < 2a, then the constructed loop is noncontractible in SympEmb(E(a, b)tE(a, b), B4(R)).
Moreover, the loop becomes contractible if R > a+ b.

By contrast to [5], we study symplectic embeddings whose domain is connected. More
specifically, this paper is concerned with the study of restrictions of the loop of symplectic
linear maps defined in (1.1.1) below to certain domains in R4.

Definition 1.1.3. Let {Φt}t∈[0,1] ⊂ Sp(4,R) denote the loop of symplectic linear maps

Φt(z1, z2) =

{
(e4πitz1, z2), t ∈

[
0, 1

2

]
(z1, e

−4πitz2), t ∈
(

1
2
, 1
]
.

(1.1.1)
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The loop Φt is a concatenation of the 2π counterclockwise rotation in the z1–plane fol-
lowed by the 2π clockwise rotation in the z2–plane. The loop {Φt}t∈[0,1] is contractible in
Sp(4,R), but it restricts to give some noncontractible loops of symplectic embeddings. For
example:

Theorem 1.1.4. Assume that a < c < b < d and c < 2a. Then, for Φt defined as
in (1.1.1), the loop of symplectic embeddings {ϕt = Φt|E(a,b)}t∈[0,1] is noncontractible in
SympEmb(E(a, b), E(c, d)).

π|z1|2

π|z2|2

a

b

c

d

If max(a, b) ≤ min(c, d), then one can fit a ball between E(a, b) and E(c, d), meaning there
exists r > 0 such that E(a, b) ⊂ B(r) ⊂ E(c, d), see Figure 1.1. Under this assumption, the
loop {ϕt}t∈[0,1] is contractible. For a more general statement, see Proposition 1.1.10 below.

π|z1|2

π|z2|2

a

b

c

d

r

r

Figure 1.1: The loop {ϕt}t∈[0,1] is contractible if max(a, b) ≤ min(c, d).

The method of proof we present in §1.4 does not answer whether the loop {ϕt}t∈[0,1] is
contractible or not under the following assumption.

Open question 1.1.5. Assume 2a < c < b < d. Is the loop {ϕt = Φt|E(a,b)}t∈[0,1] contractible
in SympEmb(E(a, b), E(c, d))?
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1.1.2 Main theorem

We begin by recalling an important example of 4–dimensional symplectic manifolds with
boundary, in order to prepare for the statement of the main theorem. Given a domain
Ω ⊂ R2

≥0, we define the toric domain

XΩ =
{

(z1, z2) ∈ C2
∣∣ π(|z1|2, |z2|2) ∈ Ω

}
(1.1.2)

which, together with the restriction of the standard symplectic form ωstd = dx1 ∧ dy1 +
dx2 ∧ dy2 on C2, is a symplectic manifold with boundary. For example, if Ω is the triangle
with vertices (0, 0), (a, 0) and (0, b), then XΩ is the ellipsoid E(a, b) defined above, while
if Ω is the rectangle with vertices (0, 0), (a, 0), (0, b), and (a, b), then XΩ is the polydisk
P (a, b) = B2(a)×B2(b). Note that we allow domains that have non-smooth boundary. The
toric domains we work with in this paper have the following particular property.

Definition 1.1.6. A convex toric domain is a toric domain XΩ defined by

Ω =
{

(x, y) ∈ R2
≥0

∣∣ 0 ≤ x ≤ a, 0 ≤ y ≤ f(x)
}

(1.1.3)

such that its defining function f : [0, a]→ R≥0 is nonincreasing and concave.

Even though we will not work with this type of domains in this paper, let us also recall
that a concave toric domain is a toric domain defined also by (1.1.3) such that its defining
function f : [0, a] → R≥0 is nonincreasing, convex, and f(a) = 0. For example, ellipsoids
are the only toric domains that are both convex and concave, and polydisks are convex toric
domains. We next explain how to compute the first few embedded contact homology (ECH)
capacities of convex toric domains in order to state the main result of this paper.

Given a 4–dimensional symplectic manifold (X,ω) with contact boundary ∂X = Y , its
ECH capacities are a sequence of real numbers

0 = cECH
0 (X,ω) < cECH

1 (X,ω) ≤ · · · ≤ ∞

constructed using a filtration by action of the ECH chain complex. The ECH capaci-
ties obstruct symplectic embeddings, meaning that if there exists a symplectic embedding
(X,ω) → (X ′, ω′) then ck(X,ω) ≤ ck(X

′, ω′) for all k ≥ 0. In particular, for the first and
second ECH capacities of a convex toric domain, we can use the following explicit formulas,
see [24, Proposition 5.6] for details.

Proposition 1.1.7. For a convex toric domain XΩ with nice defining function f : [0, a] →
R≥0,

cECH
1 (XΩ) = min(a, f(0)) and

cECH
2 (XΩ) = min(2a, x+ f(x), 2f(0)),

where x ∈ (0, a) is the unique point where f ′(x) = −1.
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For the definition of a nice defining function, see §1.2.4. Every defining function can be
perturbed to be nice. Having introduced all the ingredients, we are ready to state the main
result of this paper.

Theorem 1.1.8. Let XΩ1 and XΩ2 be convex toric domains with defining functions f1 :
[0, a] → R≥0 and f2 : [0, c] → R≥0, respectively. Assume that XΩ1 ⊂ XΩ2, a < c < f1(0) <
f2(0), and cECH

1 (XΩ2) < cECH
2 (XΩ1). Then, for Φt defined as in (1.1.1), the loop of symplectic

embeddings {ϕt = Φt|XΩ1
}t∈[0,1] is noncontractible in SympEmb(XΩ1 , XΩ2).

π|z1|2

π|z2|2

a

f1(0)

c

f2(0)

Figure 1.2: The loop {ϕt}t∈[0,1] is noncontractible if XΩ1 ⊂ XΩ2 , a < c < f1(0) < f2(0), and
cECH

1 (XΩ2) < cECH
2 (XΩ1).

Remark 1.1.9.

i. By symmetry, Theorem 1.1.8 also holds if we assume f1(0) < f2(0) < a < c instead
of a < c < f1(0) < f2(0). See Figure 1.2 for an example where the bounds in the
hypothesis of Theorem 1.1.8 hold.

ii. For XΩ1 = E(a, b) and XΩ2 = E(c, d) satisfying a < c < b < d, as in the hypothesis
of Theorem 1.1.4, we compute cECH

1 (E(c, d)) = min(c, d) = c and cECH
2 (E(a, b)) =

min(2a, b). Hence, Theorem 1.1.4 is a special case of Theorem 1.1.8.

If the target XΩ2 is large enough, the loop {ϕt}t∈[0,1] becomes contractible, see Figure
1.3.

Proposition 1.1.10. Assume there exists r > 0 such that XΩ1 ⊂ B4(r) ⊂ XΩ2. Then the
loop {ϕt = Φt|XΩ1

}t∈[0,1] is contractible in SympEmb(XΩ1 , XΩ2) .

Proof. Since the loop {Φt}t∈[0,1] is contractible in U(2), there exists a homotopy of unitary
maps {Φz}z∈D contracting it, where D denotes the closed unit disk. For each z ∈ D, the
operator norm of Φz ∈ U(2) is ||Φz|| = 1, and hence im

(
Φz|XΩ1

)
⊂ B(r) ⊂ XΩ2 . So

the 2–parameter family of restrictions {Φz|XΩ1
}z∈D is contained in SympEmb(XΩ1 , XΩ2) and

provides a homotopy from {ϕt}t∈[0,1] to the constant loop.
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π|z1|2

π|z2|2

a

f1(0)

c

f2(0)

r

r

Figure 1.3: If XΩ1 ⊂ B(r) ⊂ XΩ2 , the loop {ϕt}t∈[0,1] is contractible.

1.1.3 Strategy of proof and the organization of the paper

We use the following strategy to prove Theorem 1.1.8. For each symplectic embedding
ϕ : XΩ1 → XΩ2 , we add to the compact symplectic cobordism (XΩ2 \ int(ϕ(XΩ1)), ωstd),
a positive cylindrical end at ∂XΩ2 and a negative cylindrical end at ∂XΩ1 , in order to

construct the completed symplectic cobordism Ŵϕ = (−∞, 0]×∂XΩ1 ∪ (XΩ2 \ int ϕ(XΩ1))∪
[0,∞) × ∂XΩ2 . After choosing an almost complex structure J that is compatible with

the cobordism structure on Ŵϕ, we define the moduli space MJ(ϕ) which consists of J–

holomorphic cylinders in Ŵϕ that have a positive end at the shortest Reeb orbit on ∂XΩ2

and a negative end at the shortest Reeb orbit on ∂XΩ1 .
Using automatic transversality together with a compactness argument which works under

the hypothesis of Theorem 1.1.8, we show that for each ϕ ∈ SympEmb(XΩ1 , XΩ2) and for
each compatible almost complex structure J , the moduli space MJ(ϕ) is a finite set. We

directly construct an almost complex structure Ĵ and a Ĵ–holomorphic cylinder with the
right asymptotics, to show that MĴ(ϕ0) is nonempty for the restriction of the inclusion map

ϕ0 and the particular choice of Ĵ . We describe the cylinders near their asymptotic ends to
prove that, whenever nonempty, MJ(ϕ) contains a unique J–holomorphic cylinder.

We complete the proof using an argument by contradiction. We assume the loop {ϕt}t∈[0,1]

is contractible by the homotopy {ϕz}z∈D, ϕz ∈ SympEmb(XΩ1 , XΩ2) for each z ∈ D. We
choose a 2–parameter family of almost complex structures J = {Jz}z∈D so that Jz is compat-

ible with the cobordism structure on Ŵϕz and Jz = Ĵ for all z ∈ ∂D. We define the universal
moduli space MJ = tz∈DMJz(ϕz) and, using parametric transversality for generic families
of almost complex structures, we show that, for a generic choice of J as above, the moduli
space MJ is a 2–dimensional manifold. Assuming the bounds in the hypothesis of Theorem
1.1.8, we conclude using SFT compactness and the description of each MJz(ϕz) that MJ is
homeomorphic to the closed disk D.

For the final details, we fix a parametrization of the shortest Reeb orbit on ∂XΩ2 together
with a point p on the same Reeb orbit. For each ϕz, we trace, on the unique cylinder
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[uz] ∈MJz(ϕ), the vertical ray that is asymptotic to p at∞ and record the point pz where it
lands at −∞ on the shortest Reeb orbit on ∂XΩ1 . We then study the composition of maps

S1 → SympEmb(XΩ1 , XΩ2) → MJ → S1

t 7→ ϕt = ϕz 7→ (z, [uz]) 7→ pz.

and show that this circle map has degree −1. This provides the contradiction we are looking
for, since we previously showed that MJ is homeomorphic to the closed disk D.

The paper is divided in sections as follows. In §1.2, we classify the embedded Reeb orbits
on the boundary of a convex toric domain. We make use of this classification, together
with an automatic transversality argument, to prove the compactness of the moduli space
MJ(ϕ) in §1.3. We also use the classification in §1.2 to show the compactness of the moduli
space MJ in §1.4.3. Finally, §1.4.1 contains the argument for the existence of J–holomorphic
cylinders with the right asymptotics, §1.4.2 contains the argument for the uniqueness of
J–holomorphic cylinders in MJ(ϕ), and §1.4.3 presents the details behind the construction
of the circle map above, in order to complete the proof.

Acknowledgements. I would like to thank my advisor, Michael Hutchings, for all the
help and ideas he shared with me. I would also like to thank Chris Wendl for clarifying some
of my mathematical confusions during my visit at Humboldt–Universität zu Berlin and Felix
Schlenk for the helpful comments on the first draft. Finally, I would like to thank my friends,
Julian Chaidez and Chris Gerig, for the many helpful conversations we had. The author was
partially supported by NSF Grant No. DMS–1708899.

1.2 Reeb dynamics and the ECH index

1.2.1 Geometric setup

Let (Y, ξ) be a closed 3–dimensional contact manifold with contact form λ, i.e. ξ = kerλ.
The Reeb vector field R corresponding to λ is uniquely defined as the vector field satisfying
dλ(R, ·) = 0 and λ(R) = 0. A Reeb orbit is a map γ : R/TZ → Y for some T > 0, modulo
translations of the domain, such that γ′(t) = R(γ(t)). The action of a Reeb orbit γ is defined
by A(γ) =

∫
S1 γ

∗λ and is also equal to the period of γ.
For a fixed Reeb orbit γ, the linearization of the Reeb flow of R induces a symplectic linear

map Pγ : (ξγ(0), dλ)→ (ξγ(0), dλ), called the linearized return map. A Reeb orbit γ : R/TZ is
called nondegenerate if its linearized return map Pγ does not have 1 as an eigenvalue. We call
γ elliptic if the eigenvalues of Pγ are complex conjugate on the unit circle, positive hyperbolic
if the eigenvalues of Pγ are real and positive, and negative hyperbolic if the eigenvalues of
Pγ are real and negative. A contact form λ is called nondegenerate if all its Reeb orbits are
nondegenerate.
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1.2.2 Reeb dynamics on ∂XΩ

In this section we compute the Reeb dynamics on the boundary of convex toric domains.
Recall that a convex toric domain XΩ ⊂ R4 is defined by (1.1.2), with defining set Ω given
by (1.1.3). Similarly to the computations in [25, §4.3], we choose scaled polar coordinates
(z1, z2) = (

√
r1/πe

iθ1 ,
√
r2/πe

iθ2) on C2 to obtain

ωstd =
1

2π
(dr1 ∧ dθ1 + dr2 ∧ dθ2) .

The radial vector field

ρ = r1
∂

∂r1

+ r2
∂

∂r2

is a Liouville vector field for ωstd defined on all R4. The boundary of the toric domain ∂XΩ

is transverse to ρ and so

λstd = ιρωstd =
1

2π
(r1dθ1 + r2dθ2)

restricts to a contact form on ∂XΩ. The Reeb vector field R corresponding to λstd has the
following expression. In the two coordinate planes, R is given by

R =

{
2π
a

∂
∂θ1

if z2 = 0
2π
f(0)

∂
∂θ2

if z1 = 0.

While if π(|z1|2, |z2|2) = (r1, r2) = (x, f(x)) for some x ∈ (0, a) with f ′(x) = tanφ, φ ∈
[−π/2, 0], then

R =
2π

−x sinφ+ f(x) cosφ

(
− sinφ

∂

∂θ1

+ cosφ
∂

∂θ2

)
.

The embedded Reeb orbits of λstd|∂XΩ
are classified as follows:

• The circle e0,1 = ∂XΩ ∩ {z2 = 0} is an embedded elliptic Reeb orbit with action
A(e0,1) = a.

• The circle e1,0 = ∂XΩ ∩ {z1 = 0} is an embedded elliptic Reeb orbit with action
A(e1,0) = f(0).

• For each x ∈ (0, a) with f ′(x) ∈ Q and f ′′(x) 6= 0, the torus

{z ∈ ∂XΩ|π(|z1|2, |z2|2) = (x, f(x))}

is foliated by a Morse-Bott circle of Reeb orbits. If f ′(x) = −p
q

with p, q relatively
prime positive integers, then we call this torus Tp,q and we compute that each orbit in
this family has action A = qx+ pf(x).
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Remark 1.2.1. The existence of Morse-Bott circles of Reeb orbits implies that the contact
form λstd|∂XΩ

is degenerate. We need to perturb it in order to make it nondegenerate since the
nondegeneracy allows the study of J–holomorphic curves with cylindrical ends asymptotic
to Reeb orbits.

For each ε > 0, we can perturb λstd|∂XΩ
to a nondegenerate λ = hλstd|∂XΩ

, where ||h −
1||C0 < ε, so that each Morse-Bott family Tp,q that has action A < 1/ε becomes two embedded
Reeb orbits of approximately the same action, more specifically an elliptic orbit ep,q and a
hyperbolic orbit hp,q. Moreover, no Reeb orbits of action A < 1/ε are created and the Reeb
orbits e0,1 and e1,0 are unaffected.

Such a perturbation of the contact form is equivalent to a perturbation of the hypersurface
∂XΩ on which the restriction of λstd becomes nondegenerate.

1.2.3 ECH index

Embedded contact homology (ECH) is an invariant for 3–dimensional contact manifolds
due to Hutchings. See [25] for a detailed account of history, motivation, construction, and
applications of ECH. We give a brief overview of the definition of ECH following the notation
from [26].

Let (Y, λ) be a contact 3–dimensional manifold with nondegenerate contact form λ. Given
a convex toric domain XΩ, the boundary ∂XΩ together with a perturbation of λstd|∂XΩ

, as
in Remark 1.2.1, is such a contact manifold.

An orbit set is a finite set of pairs α = {(αi,mi)}, where αi are distinct embedded Reeb
orbits and mi are positive integers. We will also use the multiplicative notation α =

∏
αmii

for an orbit set α = {(αi,mi)}. Denote by [α] the sum
∑

imi[αi] ∈ H1(Y ) and define the
action of α by A(α) =

∑
imiA(αi). If α = {(αi,mi)} and β = {(βj, nj)} are two orbit sets

with [α] = [β] ∈ H1(Y ), then define H2(Y, α, β) to be the set of relative homology classes of
2–chains A such that ∂A =

∑
miαi −

∑
njβj. Note that H2(Y, α, β) is an affine space over

H2(Y ).
Given a Z ∈ H2(Y, α, β), define the ECH index of Z by the formula

I(α, β, Z) = cτ (Z) +Qτ (Z) + CZI
τ (α)− CZI

τ (β) (1.2.1)

where τ is a choice of symplectic trivializations of ξ over the Reeb orbits αi and βj, cτ (Z) =
c1(ξ|Z , τ) denotes the relative first Chern class (see [26, §2.5]), Qτ (Z) denotes the relative
self-intersection number (see [26, §2.7]), and

CZI
τ (α) =

∑
i

mi∑
k=1

CZτ (α
k
i ),

where CZτ (γ) is the Conley–Zehnder index with respect to τ of the orbit γ (see [26, §2.3]).
The ECH index does not depend on the choice of symplectic trivialization. The definition

of the ECH index I can be extended to symplectic cobordisms by generalizing the definitions
of the relative first Chern class and of the self intersection number (see [26, §4.2]).



10

If Z ∈ H2(Y, α, β) and W ∈ H2(Y, β, γ), then I(Z+W ) = I(Z)+I(W ). In the particular
case of starshaped hypersurfaces in R4, this implies there is an absolute Z grading on orbit
sets as follows. Since H2(Y ) = H2(S3) = 0, for every pair of orbit sets α and β there is an
unique class Z ∈ H2(Y, α, β). Define I(∅) = 0 for the empty orbit set and set

I(α) := I(α, ∅, Z) ∈ Z,

where Z is the unique element of H2(Y, α, ∅). Also, let cτ (α) := cτ (Z) and Qτ (α) := Qτ (Z).

1.2.4 Absolute grading on ∂XΩ

Following the details in [24, §5], we recall the classification of the orbit sets on the boundary
of a convex toric domain XΩ that have ECH index I ≤ 4.

Similarly to [24, Lemma 5.4], we first perform a perturbation of the geometry of ∂XΩ

(see Figure 1.4). This means we can assume, without loss of generality, that the function
f : [0, a]→ R≥0 defining Ω is nice, meaning that f satisfies the following properties:

• f is smooth,

• f ′(0) is irrational and is approximately 0,

• f ′(a) is irrational and is very large, close to −∞,

• f ′′(x) < 0 except for x in small connected neighborhoods of 0 and a.

π|z1|2

π|z2|2

a

f(0)

(a) Original toric domain

−→

π|z1|2

π|z2|2

a

f(0)

(b) Defining function perturbed to be
nice

Figure 1.4: Perturbating XΩ to a nice position

Lemma 1.2.2 ([24, Example 1.12]). Let XΩ be a convex toric domain defined by a nice
function f . Let λ be a nondegenerate contact structure obtained by perturbing λstd|∂XΩ

up to
sufficiently large action. Then the orbit sets with ECH index I ≤ 4 are classified as follows.
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• I = 0: ∅.

• I = 1: no orbit sets.

• I = 2: e0,1 and e1,0.

• I = 3: h1,1.

• I = 4: e2
0,1, e1,1, and e2

1,0.

In general, the classification of orbit set generators, up to larger ECH index and action,
provides a combinatorial model to compute the sequence of ECH capacities of a convex toric
domain using the following formula.

Lemma 1.2.3 ([24, Lemma 5.6]). For a convex toric domain XΩ and a nonnegative integer
k,

cECH
k (XΩ) = min{A(α) | I(α) = 2k}.

In particular, the equalities claimed in Proposition 1.1.7 hold. Moreover, one can deduce
the following lemma which we will use to rule out breaking.

Lemma 1.2.4. For a convex toric domain XΩ, orbit sets α with ECH index I(α) ≥ 5 have
action A(α) ≥ cECH

2 (XΩ).

1.3 Ruling out breaking

1.3.1 Completed symplectic cobordisms

Let (Y±, λ±) be closed contact 3–dimensional manifolds. A compact symplectic cobordism
from (Y+, λ+) to (Y−, λ−) is a compact symplectic manifold (W,ω) with boundary ∂W =
−Y− t Y+ such that ω|Y± = dλ±.

Given a compact symplectic cobordism (W,ω), one can find neighborhoods N− of Y− and
N+ of Y+ in W , and symplectomorphisms

(N−, ω)→ ([0, ε)× Y−, d(esλ−))

and
(N+, ω)→ ((−ε, 0]× Y+, d(esλ+)),

where s denotes the coordinate on [0, ε) and (−ε, 0]. Using these identifications, we can
complete the compact symplectic cobordism (W,ω) by adding cylindrical ends (−∞, 0]×Y−
and [0,∞)× Y+ to obtain the completed symplectic cobordism

Ŵ = [0,∞)× Y+ ∪Y+ W ∪Y− (−∞, 0]× Y−.

In accordance with [2], we restrict the class of almost complex structures on a com-

pleted cobordism Ŵ as follows. An almost complex structure J on a completed symplectic
cobordism Ŵ as above is called compatible (in [2], the authors use the term adjusted) if:
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· On [0,∞)×Y+ and (−∞, 0]×Y−, the almost complex structure J is R–invariant, maps
∂s (the R direction) to Rλ± , and maps ξ± to itself compatibly with dλ±.

· On the compact symplectic cobordism W , the almost complex structure J is tamed
by ω.

Call J(Ŵ ) the set of all such compatible almost complex structures on Ŵ .

Choose a compatible almost complex structure J ∈ J(Ŵ ) on Ŵ and let (Σ, j) be a
compact Riemann surface. We will consider curves

u : (Σ̇ = Σ \ {x1, . . . , xk, y1, . . . , yl}, j)→ (Ŵ , J)

that are J–holomorphic, i.e. du ◦ j = J ◦ du, and have k positive ends at Γ+ = (γ+
1 , . . . , γ

+
k )

corresponding to the punctures (x1, . . . , xk), and l negative ends at Γ− = (γ−1 , . . . , γ
−
l )

corresponding to the punctures (y1, . . . , yl). Denote by MJ(Γ+,Γ−) the space of such J–
holomorphic curves u modulo reparametrizations of the domain Σ̇.

Recall that a positive end of u at γ means a puncture, near which u is asymptotic to
R× γ. More specifically, that means there is a choice of coordinates (s, t) ∈ [0,∞)× R/TZ
on a neighborhood of the puncture, with j(∂s) = ∂t and such that lims→∞ πR(u(s, t)) = ∞
and lims→∞ πY+(u(s, ·)) = γ. Similarly, at a negative end there is a choice of coordinates
(s, t) ∈ (−∞, 0]× R/TZ on a neighborhood of the puncture, with j(∂s) = ∂t and such that
lims→−∞ πR(u(s, t)) =∞ and lims→−∞ πY−(u(s, ·)) = γ.

Given a J–holomorphic curve u as above, define the Fredholm index of u by

ind(u) = −χ(u) + 2cτ (u) +
k∑
i=1

CZτ (γ
+
i )−

l∑
j=1

CZτ (γ
−
j ), (1.3.1)

where τ is a trivialization of ξ over γ±i that is symplectic with respect to dλ, χ(u) is the
Euler characteristic of Σ̇, cτ (u) := c1(u∗ξ, τ) denotes the relative first Chern class, and
CZτ (γ

±
i ) is the Conley–Zehnder index with respect to τ , as before. The significance of the

Fredholm index is that for a generic choice of compatible almost complex structure J and for
a somewhere–injective J–holomorphic curve u, the moduli space MJ(Γ+,Γ−) is a manifold
of dimension ind(u) near u. See [44, §6] for more details.

1.3.2 Moduli spaces

Let XΩ1 and XΩ2 be two convex toric domains defined by nice functions f1 : [0, a] → R≥0

and f2 : [0, c]→ R≥0, respectively. Also, let ϕ : XΩ1 → XΩ2 be a symplectic embedding. The
manifold Wϕ := XΩ2 \ int(XΩ1) is a compact symplectic cobordism from (∂XΩ2 , λstd|∂XΩ2

) to
(∂XΩ1 , λstd|∂XΩ1

), where λstd denotes the standard Liouville form on R4.
Following the explanation in Remark 1.2.1, perturb the boundary components ∂XΩ1 and

∂XΩ2 of Wϕ in such a way that the Liouville form λstd restricts to nondegenerate contact
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forms λ1 and λ2 on ∂XΩ1 and ∂XΩ2 , respectively. Add cylindrical ends to Wϕ and call Ŵϕ

the completed symplectic cobordism.
To clean up notation, call γa the e0,1 embedded Reeb orbit on ∂XΩ1 , and call γc the e0,1

embedded Reeb orbit on ∂XΩ2 . Recall that A(γa) = a and A(γc) = c.

For a given almost complex structure J ∈ J(Ŵϕ), define MJ(ϕ) to be the moduli space

of J–holomorphic cylinders u : (R × S1, j) → (Ŵϕ, J) such that u has a positive end at γc
and a negative end at γa, modulo translation and rotations of the domain R× S1.

All such J–holomorphic cylinders have Fredholm index ind(u) = 0 and the automatic
transversality result in Lemma 1.3.1 below implies that MJ(ϕ) is a 0–dimensional manifold
for any choice of J . Moreover, MJ(ϕ) can be compactified with broken holomorphic curves
using the SFT compactness theorem, [2, Theorem 10.2], since all the J–holomorphic cylinders
in MJ(ϕ) have the same asymptotics.

1.3.3 Automatic transversality

A much more general automatic transversality result than the one we need to use is proven
by Wendl in [42]. In the language employed in this paper, the particular case that we need
to use is stated as follows. See also [27, Lemma 4.1] for a very similar statement and proof
in the case of symplectizations.

Lemma 1.3.1. Let Ŵ be a completed symplectic cobordism and let u : Σ̇ → Ŵ be an
immersed J–holomorphic curve that has asymptotic ends to Reeb orbits. Let N denote the
normal bundle to u in Ŵ and

Du : L2(Σ, N)→ L2(Σ, T 0,1C⊗N)

denote the normal linearized operator of u. Also let h+(u) denote the number of ends of u
at positive hyperbolic orbits. If

2g(Σ)− 2 + h+(u) < ind(u),

then Du is surjective, i.e. the moduli space of J–holomorphic curves near u is a manifold
that is cut out transversely and has dimension ind(u).

Note that there are no genericity assumptions on the almost complex structure J in
Lemma 1.3.1. Also, the result applies to the J–holomorphic cylinders in MJ(ϕ) since they
have ends only at elliptic Reeb orbits and the adjunction formula introduced below in (1.4.3)
implies that they are embedded. Hence MJ(ϕ) is cut out transversely, for any choice of
compatible almost complex structure J .

1.3.4 Ruling out breaking

In this section, we study the possible boundary of the union tJ∈JMJ(ϕ), where J is a smooth
parametrized family of compatible almost complex structures. We prove that, assuming the
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bounds in the hypothesis of Theorem 1.1.8, a sequence of cylinders in tJ∈JMJ(ϕ) cannot
converge to a broken holomorphic building with multiple levels.

Proposition 1.3.2. Assume XΩ1 and XΩ2 are convex toric domains satisfying the bounds
in the hypothesis of Theorem 1.1.8. Let {ϕi ∈ SympEmb(XΩ1 , XΩ2)}i≥1 be a sequence of

symplectic embeddings, C0–converging to ϕ0 ∈ SympEmb(XΩ1 , XΩ2)}. Let {Ji ∈ J(Ŵϕi)}i≥1

be a sequence of compatible almost complex structures converging to J0 ∈ J(Ŵϕ0). Let ui ∈
MJi(ϕi). Then the sequence {ui}i≥1 cannot converge in the sense of [2] to a J0–holomorphic
building with more than one level.

Proof. In general, if there exists a J–holomorphic curve from the orbit set α to the orbit
set β, then A(α) ≥ A(β). Assume that, in the limit, the cylinders ui break into a J0–
holomorphic building u0 = (v1, v2, . . . , vl), where v1 denotes the top level. Assume that αj is
the orbit set at which the level vj has negative ends. Then A(αj) ∈ [a, c]. Note first that c
is the lowest action of an orbit set in ∂XΩ2 . This means that v1 lives in the cobordism level.
Secondly, the assumption cECH

1 (XΩ2) < cECH
2 (XΩ1) translates to

c < min(2a,A(e1,1), 2f1(0)) = min(A(γ2
a),A(e1,1),A(e2

1,0)),

where γa = e0,1, e1,1, and e1,0 are the Reeb orbits on ∂XΩ1 . Thirdly, for a small enough
perturbation of ∂XΩ1 , we also have c < A(h1,1) since A(h1,1) is approximately A(e1,1).
Lastly, Lemma 1.2.4 implies that all orbit sets α on ∂XΩ1 with I(α) ≥ 5 satisfy c < A(α).

Using the classification by ECH index in Lemma 1.2.2, together with the action in-
equalities above, we conclude that the only orbit set through which the cylinders ui could
hypothetically break is α = e0,1. This means that the only broken building we still have
to rule out is u0 = (v1, v2), where v1 is a Fredholm index 0 cylinder from γc to e1,0 in the
cobordism level and v2 is a Fredholm index 0 cylinder from e1,0 to γa = e0,1 in the lower sym-
plectization level. The nontrivial cylinder v2 is a Fredholm index 0 J0–holomorphic cylinder
in a symplectization, and so, by automatic transversality, it cannot appear.

Proposition 1.3.2 together with the automatic transversality from Lemma 1.3.1, and SFT
compactness, [2, Theorem 10.2], imply that MJ(ϕ) is a compact 0–dimensional manifold,
i.e. a finite set of points.

1.4 Proof of main theorem

1.4.1 Nonemptiness of moduli spaces

First, we prove the nonemptiness of MĴ(ϕ0) for the inclusion map ϕ0 : XΩ1 → XΩ2 and a

certain compatible almost complex structure Ĵ .

Proposition 1.4.1. There exists Ĵ ∈ J(Ŵϕ0) such that the moduli space MĴ(ϕ0) is nonempty.
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Proof. We will construct a compatible almost complex structure Ĵ that is invariant under
the S1–action by rotations in the z2–plane and prove that an appropriate restriction of the
z1–plane is the Ĵ–holomorphic cylinder we are looking for. Our construction is similar to
[5, §5.2]. Whenever we say “S1–equivariant”, we mean invariant under the S1–action by
rotations in the z2–plane.

Recall that ∂XΩ1 and ∂XΩ2 are contact hypersurfaces in the compact symplectic cobor-
dism (Wϕ0 , ωstd = dλstd). Moreover, notice that they are S1–equivariant. Using an S1–
equivariant version of the Moser trick, one can prove that there exist S1–equivariant neigh-
borhoods N1 of ∂XΩ1 and N2 of ∂XΩ2 in Wϕ0 , and S1–equivariant symplectomorphisms

ψ1 : (N1, ω)→ ([0, ε)× ∂XΩ1 , d(esλ1))

and
ψ2 : (N2, ω)→ ((−ε, 0]× ∂XΩ2 , d(esλ2)),

where λi = λstd|∂XΩi
, and s denotes the coordinate on [0, ε) and (−ε, 0].

Choose almost complex structures J1 on ((0, ε
3
) ∪ (2ε

3
, ε))× ∂XΩ1 and J2 on ((−ε,−2ε

3
) ∪

(− ε
3
, 0))× ∂XΩ2 , that are S1–equivariant and compatible with the cylindrical ends near the

boundary of Wϕ0 , and that pull back under ψi to the standard complex structure on C2 near
the interior of Wϕ0 , i.e. ψ∗1(J1|( 2ε

3
,ε)×∂XΩ1

) = i and ψ∗2(J2|(−ε,− 2ε
3

)×∂XΩ2
) = i. Define

Ĵ(p) :=


ψ∗1(J1(ψ1(p))), p ∈ ψ−1

1 ((0, ε
3
) ∪ (2ε

3
, ε))× ∂XΩ1)

i, p ∈ Wϕ0 \ (N1 ∪N2)

ψ∗2(J2(ψ2(p))), p ∈ ψ−1
2 ((−ε,−2ε

3
) ∪ (− ε

3
, 0)× ∂XΩ2).

(1.4.1)

The compatibility of Ĵ with the cylindrical ends near the boundary of the compact symplectic
cobordism Wϕ0 makes it possible to extend Ĵ to a compatible S1–equivariant almost complex

structure on the cylindrical ends of the completed symplectic cobordism Ŵϕ0 . We still need
to interpolate between the standard complex structure in the interior of Wϕ0 and the almost
complex structure on the cylindrical ends.

Let g(·, ·) := ω(·, Ĵ ·) be the positive definite Riemannian metric defined by the compati-

bility of ω and Ĵ and note that g is S1–equivariant. Extend the Riemannian metric g to Wϕ0

and average the obtained extension over the S1–action to obtain an S1–equivariant Rieman-
nian metric ĝ on Wϕ0 . Note that ĝ = g wherever g is defined since g is S1–equivariant. Define

Ĵ to be the unique compatible almost complex structure that satisfies ĝ(·, ·) = ω(·, Ĵ ·) and
note that this definition extends the definition in (1.4.1), since ĝ = g wherever g is defined.

Note that since ĝ and ωstd are S1–equivariant, then Ĵ is also S1–equivariant.
Let S := Wϕ0 ∩ {z1 = 0}. Note that S is a closed annulus which we can complete by

adding cylindrical ends to get

Ŝ := (−∞, 0]× γa ∪ S ∪ [0,∞)× γc.
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We will now show that Ĵ being invariant under the S1–action in the z2–plane implies
that Ĵ preserves the tangent space of Ŝ. Let hθ(z1, z2) := (z1, e

iθz2), for θ ∈ [0, 2π]. Knowing

Ĵ is invariant under the S1–action in the z2–plane implies that

Ĵhθ(p) ◦ dphθ = dphθ ◦ Ĵp,

for any p ∈ Wϕ0 and any θ ∈ [0, 2π]. In the basis
{

∂
∂x1
, ∂
∂y1
, ∂
∂x2
, ∂
∂y2

}
, this equality can be

written in 2× 2 block matrix notation as(
A B
C D

)
hθ(p)

(
I 0
0 Rθ

)
=

(
I 0
0 Rθ

)(
A B
C D

)
p

, (1.4.2)

for any p ∈ Wϕ0 and any θ ∈ [0, 2π], and where Ĵp =

(
A B
C D

)
p

is the almost complex

structure in coordinates and Rθ =

(
cos θ − sin θ
sin θ cos θ

)
is a rotation matrix. After carrying

out the multiplications in (1.4.2), we see that(
Ahθ(p) Bhθ(p)Rθ

Chθ(p) Dhθ(p)Rθ

)
=

(
Ap Bp

RθCp RθDp

)
.

Note that for p = (z1, 0), hθ(p) = p, and so the above equality implies BpRθ = Bp for any

p ∈ S and θ ∈ [0, 2π]. This implies Bp = 0 and hence, Ĵ preserves the tangent bundle of S.

Moreover, by construction, Ĵ preserves the tangent spaces on the cylindrical ends of Ŝ and
so Ĵ preserves the tangent bundle of Ŝ.

Hence, (Ŝ, Ĵ) is a Riemann surface which is diffeomorphic to a punctured plane. By

the Uniformization theorem, (Ŝ, Ĵ) is biholomorphically equivalent to either the punctured

plane, the punctured disk, or an open annulus. Since Ĵ is compatible with the infinite
cylindrical ends of Ŵϕ0 , (Ŝ, Ĵ) must be biholomorphic to a punctured plane, and hence

also biholomorphic to a cylinder. We conclude that there exists a Ĵ–holomorphic map
u : (R× S1, j)→ (Ŵϕ0 , Ĵ) with image Ŝ, and hence, [u] ∈MĴ(ϕ0).

Finally, note that the perturbation of the hypersurfaces ∂XΩi , for i = 1, 2, needed to
make λstd|∂XΩi

nondegenerate, happens away from the z1–plane and so the curve [u] persists
after the perturbation.

Remark 1.4.2. All the symplectic embeddings that form the loop considered in Theorem
1.1.8 have the same image in XΩ2 , so Ŵϕt = Ŵϕ0 , for any t ∈ [0, 1]. Hence the moduli space

MĴ(ϕt) contains the same Ĵ–holomorphic cylinders as MĴ(ϕ0).

1.4.2 Counting the cylinders

We next prove the uniqueness of the J–holomorphic cylinders using asymptotic analysis
estimates. Let us begin by recalling the adjunction formula:
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Lemma 1.4.3. Let u : Σ̇→ X be a somewhere–injective J–holomorphic curve. Then u has
finitely many singularities, and

cτ (u) = χ(u) +Qτ (u) + wτ (u)− 2δ(u) (1.4.3)

where cτ (u) is the relative first Chern class as before (see [26, §4.2]), χ(u) is the Euler
characteristic of the domain of u, Qτ (u) is the relative self intersection number as before
(see [26, §4.2]), wτ (u) is the asymptotic writhe defined in [26, §2.6], and δ(u) is a count of
singularities of u with positive integer weights.

For a proof of this statement, see [23, §3]. Following the details in [26, §2.6], we give an
overview of the definition of writhe, linking number, and winding number in this context, as
they will become useful in the proof of Proposition 1.4.6 below.

Let γ be a simple Reeb orbit and let k be a positive integer. A braid with k strands
around γ is an oriented link ζ contained in a tubular neighborhood N of γ, such that the
tubular neighborhood projection ζ → γ is an orientation–preserving degree k submersion.

Choose a symplectic trivialization τ over γ and extend it to the tubular neighborhood
N of γ to identify N with S1 × D, such that the projection of ζ ⊂ N to the S1 factor is
a submersion. Identify further S1 × D with a solid torus in R3 by applying an orientation
preserving diffeomorphism. We thus obtain an embedding φτ : N → R3. We set up the
identifications in such a way that φτ (ζ) is an oriented link in R3 with no vertical tangents.
Hence, it has a well defined writhe by counting signed self–crossings in the projection to
R2×{0}. We use the sign convention where counterclockwise twists contribute positively to
the writhe.

We define the writhe of a braid ζ around γ, wτ (ζ) ∈ Z, to be the writhe of the oriented
link φτ (ζ) in R3. Also if ζ and ζ ′ are two disjoint braids around γ, define the linking number
of ζ and ζ ′, lτ (ζ, ζ

′) ∈ Z, to be the linking number of the oriented links φτ (ζ) and φτ (ζ
′) in

R3. This latter quantity is defined as one half the signed count of crossings of the projections
of the two links to R2 × {0}. Note that, if ζ and ζ ′ are two disjoint braids around γ then

wτ (ζ ∪ ζ ′) = wτ (ζ) + wτ (ζ
′) + 2lτ (ζ, ζ

′).

For a braid ζ around γ that is disjoint from γ we define the winding number of ζ around
γ to be windτ (ζ) := lτ (ζ, γ).

The following two lemmas explain how to bound the writhe and the winding number in
terms of the Conley–Zehnder index. The formulation is adapted from [27]. For more details,
see also [23].

Lemma 1.4.4 ([27, Lemma 3.2]). Let γ be an embedded Reeb orbit and let N be a tubular
neighborhood around γ. Let u : Σ̇→ R× Y be a J–holomorphic curve with a positive end at
γd which is not part of a trivial cylinder or a multiply covered component and let ζ denote
the intersection of this end with {s} × Y . If s >> 0, then the following hold:

a. ζ is the graph in N of a nonvanishing section of ξγd and has well defined winding
number windτ (ζ).
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b. windτ (ζ) ≤
⌊
CZτ (γd)

2

⌋
.

c. If J is generic, CZτ (γ
d) is odd, and if ind(u) ≤ 2 then equality holds in (b).

d. wτ (ζ) ≤ (d− 1)windτ (ζ).

An equivalent statement holds for the asymptotic winding number and writhe at a neg-
ative cylindrical end of a J–holomorphic curve.

Lemma 1.4.5 ([27, Lemma 3.4]). Let γ be an embedded Reeb orbit and let N be a tubular
neighborhood around γ. Let u : Σ̇→ R×Y be a J–holomorphic curve with a negative end at
γd which is not part of a trivial cylinder or a multiply covered component and let ζ denote
the intersection of this end with {s} × Y . If s << 0, then the following hold:

a. ζ is the graph in N of a nonvanishing section of ξγd and has well defined winding
number windτ (ζ).

b. windτ (ζ) ≥
⌈
CZτ (γd)

2

⌉
.

c. If J is generic, CZτ (γ
d) is odd, and if ind(u) ≤ 2 then equality holds in (b).

d. wτ (ζ) ≥ (d− 1)windτ (ζ).

Fix a symplectic embedding ϕ ∈ SympEmb(XΩ1 , XΩ2) and fix an almost complex struc-

ture J ∈ J(Ŵϕ).

Proposition 1.4.6. If the moduli space MJ(ϕ) is nonempty, then it contains exactly one
index zero cylinder.

Proof. Assume there are two different cylinders, u1 and u2, in MJ(ϕ). For s << 0, ζa =
(u1∪u2)∩({s}×∂XΩ1) is a braid around γa with two components, ζa1 and ζa2 , each having one
strand. For s >> 0, ζc = (u1∪u2)∩ ({s}×∂XΩ2) is a braid around γc with two components,
ζc1 and ζc2, each with one strand. Lemma 1.4.4 implies

windτ (ζ
c
i ) ≤

⌊
CZτ (γc)

2

⌋
=

⌊
1

2

⌋
= 0.

Similarly, Lemma 1.4.5 implies

windτ (ζ
a
i ) ≥

⌈
CZτ (γa)

2

⌉
=

⌈
1

2

⌉
= 1.

The linking numbers of the different strands of the two braids are given by lτ (ζ
a
1 , ζ

a
2 ) =

wind(ζa2 ) and lτ (ζ
c
1, ζ

c
2) = wind(ζc2). See [26, Lemma 4.17] for details. This means

wτ (ζa) = wτ (ζ
a
1 ∪ ζa2 ) = wτ (ζ

a
1 ) + wτ (ζ

a
2 ) + 2 · lτ (ζa1 , ζa2 )

= 0 + 0 + 2 · wind(ζa2 ) ≥ 2
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and

wτ (ζc) = wτ (ζ
c
1 ∪ ζc2) = wτ (ζ

c
1) + wτ (ζ

c
2) + 2 · lτ (ζc1, ζc2)

= 0 + 0 + 2 · wind(ζc2) ≤ 0.

Hence
wτ (u1 ∪ u2) = wτ (ζc)− wτ (ζa) ≤ −2.

Since cτ (u1∪u2) = Qτ (u1∪u2) = 0, the relative adjunction formula recalled in (1.4.3) applied
to u1 ∪ u2 gives

0 = 0 + 0 + wτ (u1 ∪ u2)− 2δ(u1 ∪ u2).

This is a contradiction since wτ (u1 ∪ u2) ≤ −2 and δ(u1 ∪ u2) ≥ 0.

1.4.3 Final steps of the proof

We have all the details needed to complete the proof of Theorem 1.1.8. Assume that
the loop {ϕt}t∈[0,1] is contractible in SympEmb(XΩ1 , XΩ2). This means there exists a 2–
parameter family {ϕz}z∈D ⊂ SympEmb(XΩ1 , XΩ2), parametrized by the unit disk D, such
that {ϕz}z∈∂D = {ϕt}t∈[0,1]. The family of embeddings {ϕz}z∈D generates a 2–parameter

family of completed symplectic cobordisms {Ŵϕz}z∈D. Let J = {Jz}z∈D be a generic 2–

parameter family of compatible almost complex structures such that Jz ∈ J(Ŵϕz) for every

z ∈ D and Jz = Ĵ for every z ∈ ∂D, where Ĵ is the almost complex structure constructed in
Proposition 1.4.1. Remark 1.4.2 provides an explanation as to why we can choose the same
almost complex structure Ĵ for all z ∈ ∂D.

Consider the moduli space

MJ := {(z, uz) | z ∈ D, uz ∈MJz(ϕz)} .

Claim 1.4.7. MJ is homeomorphic to the closed disk D.

Proof. By the parametric regularity theorem, [44, Theorem. 7.2 & Remark 7.4], for a generic
choice of 2–parameter family of compatible almost complex structures J, the moduli space
MJ is a 2–dimensional manifold that is cut out transversely. The holomorphic curves in MJ

have fixed asymptotics and so, by the SFT compactness result presented in [2, Theorem
10.2], there exists a compactification of MJ with broken holomorphic buildings. Proposition
1.3.2 implies that, under the assumptions made in the hypothesis of Theorem 1.1.8, no such
breaking is possible and so, MJ is already compact.

The automatic transversality result presented in Lemma 1.3.1, together with the nonempti-
ness result proved in Proposition 1.4.1 and the uniqueness result proved in Proposition 1.4.6,
implies that MJ contains exactly one cylinder above each parameter z ∈ ∂D and at most
one cylinder above each parameter z ∈ intD. Given that the moduli space MJ is compact,
it must contain exactly one cylinder above every parameter z ∈ D and so we can conclude
that MJ is homeomorphic to the disk D.
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Let γc : R/cZ→ ∂XΩ2 be the parametrization of γc such that p = γc(0) =
(√

c
π
, 0
)
∈ C2.

There exists a unique representative uz : R×S1 → Ŵϕz of the unique class in MJz(ϕz) such
that lims→∞ uz(s, 0) = p. Define pz := lims→−∞ uz(s, 0). This construction induces a well
defined composition of maps

S1 → SympEmb(XΩ1 , XΩ2) → MJ → γa ' S1

t 7→ ϕt = ϕz 7→ (z, [uz]) 7→ pz.

Claim 1.4.8. The above composition is a degree −1 circle map.

Proof. Remark 1.4.2 explains why for any two parameters z, w ∈ ∂D, the moduli spaces
MJz(ϕz) and MJw(ϕw) are the same. Moreover, note that the choice of fixed asymptotics,
lims→∞ uz(s, 0) = p = lims→∞ uw(s, 0), implies that the representatives uz and uw are also
the same. Hence, we can easily trace the movement of the point pz on the orbit γa as z goes
around the boundary of the parameter space.

Recall that the image of XΩ1 under the loop of symplectic embeddings {ϕt}t∈[0,1] does
a counterclockwise 2π rotation in the z1–plane, which rotates the orbit γa, followed by a
clockwise 2π rotation in the z2–plane, which does not rotate the orbit γa. Let q := p1 be the
point on γa corresponding to the parameter 1 ∈ D. Then

pe2πit =

{
e−4πitq, t ∈

[
0, 1

2

]
q, t ∈

(
1
2
, 1
]
,

and so the above composition is a degree −1 circle map.

This last claim provides us with a contradiction, given that a degree −1 circle map cannot
factor through the disk MJ ' D.
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Chapter 2

Essential tori in spaces of symplectic
embeddings

Julian Chaidez, Mihai Munteanu

2.1 Introduction

The study of symplectic embeddings is a major area of focus in symplectic geometry. Re-
markably, the space of such embeddings can have a rich and complex structure, even when
the domain and target manifolds are relatively simple.

Symplectic embeddings between ellipsoids are a well–studied instance of this phenomenon.
For a nondecreasing sequence of positive real numbers a = (a1, a2, . . . , an) define the sym-
plectic ellipsoid E(a) by

E(a) = E(a1, a2, . . . , an) :=

{
(z1, . . . , zn) ∈ Cn

∣∣∣∣∣
n∑
i=1

π|zi|2

ai
≤ 1

}
. (2.1.1)

The space E(a) carries the structure of an exact symplectic manifold with boundary endowed
with the restriction of the standard Liouville form λ on Cn, given by

λ =
1

2

n∑
i=1

(xidyi − yidxi). (2.1.2)

A special case is the symplectic ball B2n(r), which is simply E(a) for a = (r, . . . , r).
The types of results that one can prove about symplectic embeddings, together with the

tools used to do so, are surveyed at length by Schlenk in [41]. Most research has thus far
sought to address the existence problem. Let us recall some of the more striking progress in
this direction. The first nontrivial result was Gromov’s eponymous nonsqueezing theorem,
proven in the seminal paper [16].
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Theorem 2.1.1 ([16]). There exists a symplectic embedding

B2n(r)→ B2(R)× C2n−2

if and only if r ≤ R.

This result demonstrated that there are obstructions to symplectic embeddings beyond
the volume and initiated the study of quantitative symplectic geometry. Note that Theorem
2.1.1 can be seen as a result about ellipsoid embeddings, since B2(R)×C2n−2 can be viewed
as the degenerate ellipsoid E(R,∞, . . . ,∞).

In dimension 4, the question of when the ellipsoid E(a, b) symplectically embeds into the
ellipsoid E(a′, b′) was answered by McDuff in [32]. Let {Nk(a, b)}k≥0 denote the sequence of
nonnegative integer linear combinations of a and b, ordered nondecreasingly with repetitions.

Theorem 2.1.2 ([32]). There exists a symplectic embedding

int(E(a, b))→ E(a′, b′)

if and only if Nk(a, b) ≤ Nk(a
′, b′) for every nonnegative integer k.

A special case of this embedding problem, where the target ellipsoid is the ball B4(λ), was
studied by McDuff and Schlenk in an earlier paper [35] using methods different from [32]. In
that paper, McDuff and Schlenk give a remarkable calculation of the function c0 : R+ → R+

defined by
c0(a) := inf

{
λ
∣∣ E(1, a) symplectically embeds into B4(λ)

}
.

In particular, they show that for a ∈ [1, ( 1+
√

5
2

)4], the function c0 is given by a piecewise
linear function involving the Fibonacci numbers, which they call the Fibonacci staircase.
Some higher dimensional cases of the existence problem for symplectic embeddings have
been studied in a similar manner. For instance, a family of stabilized analogues of the
function c0, which are defined as

cn(a) := inf
{
λ
∣∣ E(1, a)× Cn symplectically embeds into B4(λ)× Cn

}
,

are studied in the more recent papers [11] and [12].
Beyond problems of existence, one can ask about the algebraic topology of the space of

symplectic embeddings SympEmb(U, V ) between two symplectic manifolds U and V , with
respect to the C∞ topology. Again, most results have been proven in dimensions 2 and 4. For
instance, in [31], McDuff demonstrated that the space of embeddings between 4–dimensional
symplectic ellipsoids is connected whenever it is nonempty. Other results in dimension 4 can
be found in [1] and [22].

More recently, in [37], the second author developed methods to show that the contractibil-
ity of certain loops of symplectic embeddings of ellipsoids depends on the relative sizes of
the two ellipsoids.
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2.1.1 Main result

In this paper, we build upon the methods developed in [37] to tackle the question of describing
the higher homology groups of spaces of symplectic embeddings between ellipsoids in any
dimension.

More precisely, we will be studying families of symplectic embeddings that are restrictions
of the following unitary maps. For θ = (θ1, . . . , θn) ∈ T n = (R/2πZ)n, let Uθ denote the
unitary transformation

Uθ(z1, . . . , zn) := (eiθ1z1, . . . , e
iθnzn). (2.1.3)

Given symplectic ellipsoids E(a) and E(b) such that ai < bi for every i ∈ {1 . . . , n}, we may
define the family of ellipsoid embeddings

Φ : T n → SympEmb(E(a), E(b)), Φ(θ) = Uθ|E(a) (2.1.4)

by restricting the domain of the maps Uθ. The following theorem about the family Φ is the
main result of this paper.

Theorem 2.1.3 (Main theorem). Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two sequences
of real numbers satisfying

ai < bi < ai+1 for all i ∈ {1, . . . , n− 1} and an < bn < 2a1.

Furthermore, let Φ : T n → SympEmb(E(a), E(b)) be the family of symplectic embeddings
(2.1.4). Then the induced map

Φ∗ : H∗(T
n;Z/2)→ H∗(SympEmb(E(a), E(b));Z/2)

on homology with Z/2–coefficients is injective.

In order to demonstrate the nontriviality of Theorem 2.1.3, we note that the map induced
by Φ : T n → Symp(E(a), E(b)) on Z/2–homology has a sizeable kernel when E(a) is very
small relative to E(b). More precisely, we have the following.

Proposition 2.1.4. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two nondecreasing sequences
of real numbers satisfying an < b1. Furthermore, let Φ : T n → SympEmb(E(a), E(b)) be as
in (2.1.4). Then the induced map Φ∗ on Z/2–homology has rank 1 in degree ≤ 1 and rank 0
otherwise.

Unlike the proof of Theorem 2.1.3, the proof of Proposition 2.1.4 is an elementary calcu-
lation in algebraic topology which we defer to §2.2.

Remark 2.1.5 (Comparison to [37]). In dimension 4, the fact that Φ∗ is injective in degree
1 was proven by the second author, Munteanu, in [37]. Specifically, this is equivalent to [37,
Theorem 1.4] which states that the loop

Ψ : S1 → Symp(E(a), E(b))
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defined by

Ψ(t)(z1, z2) :=

{
(e4πitz1, z2) t ∈

[
0, 1

2

]
(e−4πitz1, z2) t ∈

(
1
2
, 1
]

is noncontractible. In fact, [37] actually addresses the more general 4–dimensional case where
E(a) and E(b) are replaced with convex toric domains in C2. We expect Theorem 2.1.3 to
hold at this level of generality, and we hope to address this in future work using somewhat
different methods (see Remark 2.1.7).

Remark 2.1.6 (Z vs Z/2 coefficients). Our use of Z/2 coefficients, instead of Z coefficients,
allows us to use the methods of §2.4 to work entirely with smooth manifolds with boundary
as opposed to cochains. While the contents of §2.4 provide a nice technical work around, we
expect Theorem 2.1.3 to hold at the level of Z coefficients as well. We plan to develop the
methods needed to work over Z in forthcoming work (see Remark 2.1.7).

Remark 2.1.7 (Lagrangian analogues). In forthcoming work, we hope to demonstrate re-
sults analogous to Theorem 2.1.3 for families of Lagrangian torus embeddings in toric do-
mains. We anticipate that these results will be useful for demonstrating the various gener-
alizations of Theorem 2.1.3 discussed in Remarks 2.1.5 and 2.1.6 above.

Organization. The rest of the paper is organized as so. In §2.2, we give the proof of
Theorem 2.1.3. The final two section are dedicated to demonstrating some technical results
needed to deduce the steps of the proof. Namely, in §2.3 we recall the definition of the
contact dg–algebra (as constructed in full generality by Pardon in [39]) together with the
computations for symplectic ellipsoids that are relevant to Theorem 2.1.3. In §2.4, we prove
some useful technical results about the topology of all symplectic embeddings spaces.

Acknowledgements. We would like to thank our advisor, Michael Hutchings for all the
helpful discussions. JC was supported by the NSF Graduate Research Fellowship under
Grant No. 1752814. MM was partially supported by NSF Grant No. DMS–1708899.

2.2 Proof of the main result

In this section, we prove Theorem 2.1.3 assuming a small number of technical results dis-
cussed in §2.3–2.4. Here is a brief overview of the proof to help guide the reader.

We assume by contradiction that the map Φ∗ induced by the family Φ of (2.1.4) is
not injective in degree k. Using this assumption and the results in §2.4, we find a certain
family of symplectic embeddings, parametrized by a union of an odd number of k–tori tm1 T k
and built from Φ, which is null–bordant in the space SympEmp(E(a), E(b)). This means
that the family extends to a smooth (k + 1)–dimensional family of symplectic embeddings
Ψ : P → SympEmp(E(a), E(b)) where P is a smooth, compact, (k+1)–dimensional manifold
with boundary ∂P ' tm1 T k.
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Using Ψ, we construct a moduli space of holomorphic curves MI(J) in completed sym-
plectic cobordisms parametrized by P . Moreover, we construct an associated evaluation map
evI : MI(J)→ T k to a k–torus T k. We then show that the degree of this evaluation map is 1
mod 2 when restricted to any of the torus components of ∂MI(J). This is the contradiction,
since the evaluation map extends to the bounding manifold MI(J) and so must have degree
0.

2.2.1 Review of contact geometry

We now provide a quick review of basic contact geometry, and in the process establish nota-
tion for §2.2 and §2.3. We also discuss the Reeb dynamics on the boundary of a symplectic
ellipsoid with rationally independent parameters.

Review 2.2.1 (Contact manifolds). Recall that a contact manifold (Y, ξ) is a smooth (2n−
1)–manifold Y together with a rank 2n − 2 sub–bundle ξ ⊂ TY that is given fiberwise by
the kernel ξ = ker(α) of a contact 1–form α ∈ Ω1(Y ). A contact form α is a 1–form on Y
satisfying α ∧ dαn−1 6= 0 everywhere.

Every contact form α on Y has a naturally associated Reeb vector field Rα defined
implicitly from α via the equations

ιRαα = 1, ιRαdα = 0. (2.2.1)

The Reeb flow Φα : Y × R → Y is the flow of the vector field Rα, i.e. the family of
diffeomorphisms satisfying

dΦt
α(y)

dt

∣∣∣∣
t=s

= Rα ◦ Φs
α(y). (2.2.2)

A Reeb orbit is a closed orbit of the flow Φα, i.e. a curve γ : S1 = R/LZ→ Y satisfying
dγ
dt

= Rα ◦ γ for some positive number L which is called the period. Note that L coincides
with the action Aα(γ) of γ, which is defined as

Aα(γ) =

∫
S1

γ∗α. (2.2.3)

A Reeb orbit γ is called nondegenerate if the differential TΦL
γ(0) of the time L flow satisfies

det(TΦL
γ(0)|ξ − Idξ) 6= 0. (2.2.4)

A contact form α is called nondegenerate if every Reeb orbit of α is nondegenerate.

Review 2.2.2 (Conley–Zehnder indices). Any nondegenerate Reeb orbit γ posseses a fun-
damental numerical invariant called the Conley–Zehnder index CZ(γ, τ), whose definition
and computation we now review.
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The Conley–Zehnder index CZ(γ, τ) depends on a choice of symplectic trivialization
τ : γ∗ξ ' S1 × Cn−1. The invariant is defined by CZ(γ, τ) := µRS(φ) were µRS denotes the
Robbin–Salamon index (see [40]) and φ is the path of symplectic matrices defined as

φ : [0, L]→ Sp(2n− 2), φ(t) := τγ(t) ◦ TΦt
γ(0)|ξ ◦ τ−1

γ(0).

In the case where c1(ξ) = 0 ∈ H2(Y ;Z) and [γ] = 0 ∈ H1(Y ;Z), a canonical Conley–
Zehnder index CZ(γ) (which does not depend on a choice of trivialization) can be associated
to γ via the following procedure. Extend γ to a map u : Σ → Y from an oriented surface
Σ with boundary ∂Σ = S1 satisfying u|∂Σ = γ. Pick a symplectic trivialization σ : u∗ξ '
Σ× Cn−1 and define CZ(γ) by the formula

CZ(γ) := CZ(γ, σ|∂Σ). (2.2.5)

The fact that CZ(γ) is independent of Σ and σ follows from the vanishing of the first Chern
class. The index CZ(γ) can be related to the index CZ(γ, τ) with respect to a trivialization
τ by the formula

CZ(γ) = CZ(γ, τ) + 2c1(γ, τ). (2.2.6)

Here c1(γ, τ) is the relative first Chern number with respect to τ of the pullback u∗ξ of ξ to
a capping surface u of γ.

For the purposes of this paper, we are interested in a specific family of examples of contact
manifolds, namely boundaries (∂E(a), α) of irrational symplectic ellipsoids.

Example 2.2.3 (Ellipsoids). Let E(a) be a symplectic ellipsoid with parameters a =
(a1, . . . , an) ∈ (0,∞)n. Consider the boundary of the ellipsoid (∂E(a), α) as a contact
manifold with contact form α = λ|∂E(a), induced by the standard Liouville form λ on Cn

defined by (2.1.2). Assume that the parameters ai satisfy ai/aj 6∈ Q for each i 6= j. The
Reeb vector field Rα is given by

Rα = 2π
∑
i

a−1
i

∂

∂θi
. (2.2.7)

Here θi is the angular coordinate in the ith C factor of Cn, which we denote by Ci. The
Reeb flow Φα on ∂E(a) is given by:

Φα : ∂E(a)× R→ Y, Φt
α(z1, . . . , zn) = (e2πt/a1z1, . . . , e

2πt/an). (2.2.8)

Due to our assumption that ai/aj 6∈ Q for each i 6= j, there are precisely n simple orbits
γi for 1 ≤ i ≤ n. Each curve γi is a parametrization of the curve of points in Y with zj = 0
for all j 6= i. The iterates γmi (for any m ≥ 1 and 1 ≤ i ≤ n) are all nondegenerate, as we will
show below by computing the linearized flow. The action of γmi is given by Aα(γmi ) = mai
by (2.2.8).
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To compute the Conley–Zehnder indices of the Reeb orbits γmi , we proceed as follows.
Note that along γmi the fiber ξγmi (t) agrees at each t with the orthogonal complex subspace to
the ith component C⊥i = ⊕j 6=iCj ⊂ Cn ' TCn

γmi (t). The linearized flow in this trivialization

is a direct sum of loops t 7→ e2πimait/aj for j 6= i for t ∈ [0, 1]. Thus, in this trivialization, the
Conley–Zehnder index is given by

CZ(γmi , τ) =
∑
j 6=i

(
2

⌊
mai
aj

⌋
+ 1

)
.

On the other hand, the relative Chern number c1(γmi , τ) with respect to τ is

c1(γmi , τ) = m.

Thus we have the following formula for the canonical CZ index of γmi .

CZ(γmi ) =
∑
j 6=i

(
2

⌊
mai
aj

⌋
+ 1

)
+ 2m, (2.2.9)

which after some smart rewriting becomes

CZ(γmi ) = n− 1 + 2 |{L ∈ Spec(Y, α) | L ≤ mai}| . (2.2.10)

Next, we review the basic terminology of exact symplectic cobordisms and associated
structures. Throughout the discussion for the rest of the section, let (Y±, α±) be closed
contact (2n− 1)–manifolds with contact forms α±.

Review 2.2.4 (Exact symplectic cobordisms). Recall that an exact symplectic cobordism
(W,λ, ι) from (Y+, α+) to (Y−, α−) consists of the following data.

· A compact, exact symplectic manifold (W,λ) with boundary ∂W such that the Li-
ouville vector field Z (defined by the equation dλ(Z, ·) = λ) is transverse to ∂W
everywhere. In this situation, ∂W = ∂+W t ∂−W where Z points outward along ∂+W
and inward along ∂−W .

· A pair of boundary inclusion maps ι+ and ι−, which are strict contactomorphisms of
the form

ι+ : (Y+, α+) ' (∂+W,λ|∂+W ) ι− : (Y−, α−) ' (∂−W,λ|∂−W ) (2.2.11)

We will generally suppress the inclusions in the notation, using ι+ and ι− when needed. The
maps ι+ and ι− extend, via flow along Z or −Z, to collar coordinates

([0, ε)× Y−, esλ−) ' (N−, λ|N−), ((−ε, 0]× Y+, e
sλ+) ' (N+, λ|N+). (2.2.12)
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Here N− and N+ are collar neighborhoods of Y− and Y+ respectively, the maps preserve the
1–forms above and s denotes the coordinate on [0, ε) and (−ε, 0].

Given exact symplectic cobordisms (W,λ, ι) from (Y0, α0) to (Y1, α1) and (W ′, λ′, ι′) from
(Y1, α1) to (Y2, α2), we can form the composition (W#W ′, λ#λ′, ι#ι′) by gluing W and W ′

via the identification (ι′+)−1 ◦ ι− of ∂−W and ∂+W
′. The Liouville forms and inclusions

extend in the obvious way to the glued manifold.
Using these identifications (2.2.12), we can complete the exact symplectic cobordism

(W,λ) by adding cylindrical ends (−∞, 0] × Y− and [0,∞) × Y+ to obtain the completed

exact symplectic cobordism (Ŵ , λ̂), given by

Ŵ = (−∞, 0]× Y− tι− W tι+ [0,∞)× Y+. (2.2.13)

The Liouville 1–forms λ, esα− and esα+ glue together to a Liouville form λ̂ on Ŵ . An
important special caase of completed cobordisms is given by the symplectization of a contact
manifold (R× Y, esα), which is denoted by Ŷ .

Given a manifold P (with or without boundary), a P–parametrized family of exact sym-
plectic cobordisms (Wp, λp)p∈P from Y+ to Y− is a fiber bundle W → P over P with a 1–form
λ on W and a bundle map ι± : P × Y ± → W such that (Wp, λp, ιp) is an exact symplectic
cobordism for each p ∈ P . A pair of exact symplectic cobordisms (V, η, ) and (V, η′, ′)
are called deformation equivalent if there is a [0, 1]–parametrized family of exact symplectic
cobordisms such that (V, η, ) ' (W0, λ0, ι0) and (V ′, η′, ι′) ' (W1, λ1, ι1).

Review 2.2.5. (Almost complex structures) Recall that a compatible almost complex struc-
ture J on the symplectic vector bundle ξ gives rise to an R–invariant compatible almost
complex structure Ĵ on the symplectization Ŷ = R× Y , defined by

Ĵ(∂s) = Rα, Ĵ(Rα) = −∂s, Ĵ |ξ = J.

We denote the set of compatible almost complex structures on Y by J(Y ), and the R-invariant

almost complex structures arising from these as J(Ŷ ).

An almost complex structure J on a completed exact symplectic cobordism Ŵ as above
is called compatible if it has the following properties.

· On the ends [0,∞)×Y+ and (−∞, 0]×Y−, J restricts to R-invariant complex structures
arising from J+ ∈ J(Y+) and J− ∈ J(Y−), respectively.

· The almost complex structure J is compatible with the symplectic form dλ.

Such an almost complex structure extends to an almost complex structure on Ŵ in the
obvious way. We let J(W ) denote the set of all such compatible almost complex structures
on a given exact symplectic cobordism W .

As with contact manifolds, we are interested in a particular family of examples of exact
symplectic cobordisms related to ellipsoid embeddings.
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Notation 2.2.6 (Cobordisms of embeddings). Let E(a) and E(b) be irrational ellipsoids.
Given a symplectic embedding ϕ : E(a)→ int(E(b)), we denote by Wϕ the exact symplectic
cobordism given by

Wϕ := E(b) \ int(ϕ(E(a))), ι+ := Id |∂E(b), ι− := ϕ|∂E(a). (2.2.14)

In this context, we label the simple Reeb orbits of ∂E(b) by γ+
i and the simple Reeb orbits

of ∂E(a) by γ−i . The simple Reeb orbits of the negative boundary of Wϕ are, of course, the
images ϕ(γ−i ) and will be denoted as such.

More generally, let P ve a compact manifold with boundary and Ψ : P×E(a)→ int(E(b))
be a P–parametrized family of symplectic embeddings such that Im(Ψp) is independent of
p for p near ∂P . We then acquire a family of cobordisms (WΨp , λΨp) with fiber given by
(2.2.14). We let W∂P = E(b) \ Ψp(E(a)) for p ∈ ∂P and λ∂P be the Liouville form. Note
that in this case, the cobordisms (WΨp , λΨp , ιΨp) for p ∈ ∂P differ only by the boundary
inclusion ιΨp . In situations where ιΨp plays no role, we will often not distinguish between
(WΨp , λΨp , ιΨp) for different p ∈ ∂P .

In this setting, we let J(Ψ) denote the set of P–parametrized families J = {Jp | p ∈ P}
of almost complex structures with the following properties:

· Jp is compatible with ŴΨp for each p ∈ P , i.e. Jp ∈ J(ŴΨp),

· Jp is equal to some p-independent J∂P ∈ J(Ŵ∂P ) for p near ∂P .

We note that J(Ŵ ) is contractible for any W (see for instance [34, Proposition 4.11]). This
implies that the space of families J(Ψ) is also contractible, and that any family {Jp | p ∈ ∂P}
over ∂P extends to a family {Jp | p ∈ P} over all of P .

2.2.2 Moduli spaces in cobordisms

We now introduce the spaces of holomorphic curves that are relevant to our proof and we
derive the salient properties of these spaces, namely generic transversality (Lemma 2.2.10)
and compactness (Lemma 2.2.12). We also state a point count result for one of the moduli
spaces of interest, whose proof we defer to §2.3.

Notation 2.2.7 (Curve domains). Fix a subset I ⊂ {1, . . . , n} and denote by |I| the size of
I. For the remainder of §2.2, we adopt the following notation.

For each i ∈ I, let Σi denote a copy of the twice punctured Riemann sphere R × S1 '
CP1 \ {0,∞} with the usual complex structure jCP1 and let Σi denote the corresponding
copy of CP 1 itself. Let p+

i and p−i denote the points ∞ and 0 in the copy Σi of CP 1. We
refer to p+

i and p−i as the positive and negative punctures of Σi, respectively. Denote by ΣI

the disjoint union ti∈IΣi.
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Definition 2.2.8 (Unparametrized moduli space). Given any symplectic embedding ϕ ∈
Symp(E(a), E(b)) and any admissible almost complex structure Jϕ ∈ J(ϕ) on Ŵϕ as above,

we denote by MI(Ŵϕ; Jϕ) the moduli space defined as

MI(Ŵϕ; Jϕ) :=

{
u : ΣI → Ŵϕ

∣∣∣∣∣ (du)0,1
Jϕ

= 0

u→ γ±i at p±i

}/
(C×)|I|. (2.2.15)

That is, u : ΣI → Ŵϕ is a Jϕ–holomorphic curve such that u is asymptotic to the trivial
cylinder over γ+

i in [0,∞) × ∂+Wϕ ' [0,∞) × ∂E(b) at the puncture p+
i and u is asymp-

totic to the trivial cylinder over ϕ(γ−i ) in (−∞, 0] × ∂−Wϕ ' (−∞, 0] × ϕ(∂E(a)) at the
puncture p−i , for each i ∈ I. We quotient the space of such maps by the group of domain
reparametrizations, which is the product (C×)|I| of the biholomorphism groups C× of each
component cylinder Σi ' R× S1.

Definition 2.2.9 (Parametrized moduli space over P ). Given a compact manifold with
boundary P , a P–parametrized family of symplectic embeddings Ψ : P × E(a)→ E(b) and
a P–parametrized family of complex structure J ∈ J(Ψ), let MI(J) denote the moduli space
of pairs

MI(J) :=
{

(p, u)
∣∣∣ p ∈ P, u ∈MI(ŴΨp ; Jp)

}
. (2.2.16)

Lemma 2.2.10 (Transversality). Let E(a) and E(b) be irrational symplectic ellipsoids with
parameters a = (a1, . . . , an) and b = (b1, . . . , bn) satisfying

ai < bi, ai < 2a1, and bi < 2b1 for all i with 1 ≤ i ≤ n. (2.2.17)

Then there exists a comeager Jreg(Ψ) ⊂ J(Ψ) with J |∂P

(a) Every u ∈ MI(Ŵ∂P ; J∂P ) is Fredholm regular (see [44, Definition 7.14]), and thus the

moduli space MI(Ŵ∂P ; J∂P ) is a 0–dimensional manifold.

(b) Every (p, u) ∈MI(J) is parametrically Fredholm regular (see [44, Remark 7.4] and [43,
Definition 4.5.5]) and thus MI(J) is a (|I| + 1)–dimensional manifold with boundary

∂MI(J) ' ∂P ×MI(Ŵ∂P ; J∂P ).

Proof. This essentially follows from the general transversality results of [43] and [44, §7],
which we now discuss in some detail.

First, observe that every curve u ∈MI(Ŵ∂P ; J∂P ) must be somewhere injective (see [44,
p. 123]) for any choice of J∂P . Indeed, note that all of the orbits γ−i and γ+

i are simple.
This means that none of them can be factored as η ◦ ϕ where η is a closed Reeb orbit and
ϕ : S1 → S1 is a k–fold cover with k ≥ 2. This implies that u is simple as well, i.e. that
u cannot factor as v ◦ φ where v : Σ′ → Ŵ∂P is a J-holomorphic curve and φ : ΣI → Σ′

is a holomorphic branched cover. Simple curves are somewhere injective. In fact, these
conditions are equivalent in our setting, see [44, Theorem 6.19]. The same reasoning shows
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that any curve u appearing as a factor in a point (p, u) ∈ MI(J) is somewhere injective for
any choice of J.

To see (a), we now note that by [44, Theorems 7.1–7.2] there exists a comeager subset

Jreg(Ŵ∂P ) ⊂ J(Ŵ∂P ) with the property that for any J∂P ∈ Jreg(Ŵ∂P ), every somewhere

injective curve u ∈ MI(Ŵ∂P ; J∂P ) is Fredholm regular. Furthermore, [44, Theorems 7.1]

states that the moduli space MI(Ŵ∂P ; J∂P ) is a manifold near these points with dimension
given by the index formula

ind(u) =
∑
i∈I

(
(n− 3)χ(Σi) + 2c1(u|Σi , τ) + CZ(γ+

i , τ)− CZ(γ−i , τ)
)
. (2.2.18)

Here the Conley–Zehnder indices CZ(γ±, τ) and relative Chern numbers c1(u|Σi , τ) are as in
Review 2.2.2, and τ denotes a trivialization of ξ over ti(γ+

i t γ−i ).
Note that ∂E(a) and ∂E(b) are simply connected and W∂P is diffeomorphic to a product.

Thus we may choose τ by taking capping disks Di for γ−i , thus inducing trivializations
of ξ along γ−i , and then extending τ to a trivialization along Σi to induce trivializations
of ξ along γ+

i . The resulting trivialization has c1(u|Σi , τ) = 0, CZ(γ+
i , τ) = CZ(γ+

i ) and
CZ(γ−i , τ) = CZ(γ−i ). Here CZ(γ+

i ) and CZ(γ−i ) denote the canonical indices described in
Review 2.2.2. Thus, using this special choice of τ and noting that χ(Σi) = 0, the formula
(2.2.18) simplifies to

dim(MI(Ŵ∂P ; J∂P )) =
∑
i∈I

(
CZ(γ+

i )− CZ(γ−i )
)

(2.2.19)

Finally, we observe that the hypotheses (2.2.17) and the Conley–Zehnder index formula

(2.2.10) imply that CZ(γ+
i ) = CZ(γ−i ) = n−1+2i. Therefore, the moduli space MI(Ŵ∂P ; J∂P )

is 0–dimensional, and we have proven (a).
To see (b), we apply the appropriate parametric version of transversality (see [44, Remark

7.4] and [43, §4.5]), which states that there exists a family J ∈ J(Ψ), such that J|∂P ≡ J∂P
and MI(J) is a manifold with boundary. Since J is independent of p ∈ ∂P on the boundary,

the boundary of the moduli space is simply the product ∂MI(J) = ∂P ×MI(Ŵ∂P ; J∂P ). The
dimension is given by

dim(MI(J)) = dim(P ) + dim(MI(Ŵ∂P ; J∂P )) = k + 1.

This concludes the proof of (b), and also the whole proof of Lemma 2.2.10.

Before continuing on to the proof of compactness in Lemma 2.2.12, let us give a brief,
very simplified review of a version of SFT compactness. We refer the reader to [2, §10] for
the original proof and to [43, §9.4] for a detailed overview.

Review 2.2.11 (SFT Compactness). Let P be a compact manifold with boundary, and let
(Y∗, α∗) for ∗ ∈ {+,−} be closed, nondegenerate contact manifolds. Let (Wp, λp, Jp) be a
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P–paramaterized family of exact symplectic cobordisms from Y+ to Y− equipped with a P–

parametrized family of compatible almost complex structures on Ŵp such that Jp|[0,∞)×Y+ =
J+ and Jp|(−∞,0]×Y− = J− for some fixed almost complex structures J±. Fix a surface
Σ, acquired by taking a closed surface Σ and removing a finite set of punctures. Finally,
consider a sequence pi ∈ P and ui : Σ → (Ŵpi , Jpi) of Jpi–holomorphic curves asymptoting

to collections of Reeb orbits Γ+ (at the positive end of Ŵpi) and Γ− (at the negative end of

Ŵpi) independent of i.
The SFT compactness theorem states that, after passing to a subsequence, pi → p ∈ P

and ui converges to a Jp–holomorphic building, which is a tuple of the form

v = (u+
1 , . . . , u

+
M , u

W , u−1 , . . . , u
−
N). (2.2.20)

Here M,N ∈ Z≥0 are integers and the elements of the tuple (called levels) are holomorphic
maps from punctured surfaces of the form

u∗j : S∗j → (R× Y∗, J∗) for ∗ ∈ {+,−} and uW : SW → (Ŵp, Jp).

The maps u∗j and the map uW are considered modulo domain reparametrization, and modulo
translation when the target manifold is a symplectization. The surfaces Sj can be glued
together along the boundary punctures asymptotic to matching Reeb orbits, and this glued
surface #jSj is homeomorphic to Σ.

All of the curves u∗j and uW must be asymptotic to a Reeb orbit at each positive and
negative puncture. We denote the collections of positive and negative limit Reeb orbits of
uW (with multiplicity) by Γ+(uW ) and Γ−(uW ), respectively, and we adopt similar notation
for u∗j . The asymptotics of the u∗j and uW must be compatible, in the sense that the negative
ends of u∗j and the positive ends of u∗j+1 must agree (and likewise for u+

M and uW , etc.).
Furthermore, we must have Γ+(u+

1 ) = Γ+ and Γ−(u−N) = Γ−. Finally, every symplectization
level u∗j must have at least one component that is not a trivial cylinder R× γ.

Since (Wp, λp) is an exact symplectic cobordism, one may apply Stoke’s theorem to derive
the following expression for the energies of the levels of v:

E(uW ) :=

∫
SW

[uW ]∗dλp =
∑

η+∈Γ+(uW )

A(η+)−
∑

η−∈Γ−(uW )

A(η−) (2.2.21)

and

E(u±j ) :=

∫
Sj

[u±j ]∗d(etα±) =
∑

η+∈Γ+(u±j )

A(η+)−
∑

η−∈Γ−(u±j )

A(η−). (2.2.22)

The positivity of the energy of any holomorphic curve implies that the right hand sides of
(2.2.21) and (2.2.22) are nonnegative. More generally, if we let A[Γ] denote the total action
of a collection of Reeb orbits, then we have the string of inequalities

A[Γ−] = A[Γ(u−N)] ≤ · · · ≤ A[Γ(u−1 )] ≤ A[Γ(uW )] ≤
≤ A[Γ(u+

M)] ≤ · · · ≤ A[Γ(u+
1 )] = A[Γ+].

(2.2.23)
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There is some of additional data, beyond the holomorphic curves themselves, associated
to a holomorphic building. However, we suppress this data since it will play no role in any
of our arguments below.

With the above review of SFT compactness finished, we are ready to move on to the
statement and proof of Lemma 2.2.12.

Lemma 2.2.12 (Compactness). Let E(a) and E(b) be irrational symplectic ellipsoids with
parameters a = (a1, . . . , an) and b = (b1, . . . , bn) satisfying

ai < bi < ai+1 for all i ∈ {1, . . . , n− 1} and bn < 2a1. (2.2.24)

Choose an almost complex structure J∂P ∈ J(Ŵ∂P ) and a family J ∈ J(Ψ) as in Lemma

2.2.10. Then the moduli spaces MI(Ŵ∂P ; J∂P ) and MI(J) are compact.

Proof. Let (pi, u
i) be a sequence in MI(J). By SFT compactness, after passing to a sub-

sequence ui converges to a limit building v. We use the notation of Review 2.2.11 for this
building. We must show that v has no symplectization levels. By considering components
of ΣI and #jSj, we can assume that |I| = 1, i.e. that ΣI has one component and each ui is
positively asymptotic to a single γ+

li
where 1 ≤ li ≤ n.

Now consider a positive symplectization level u+
j of v. Due to action monotonicity

(2.2.23), the collections Γ+(u+
j ) and Γ−(u+

j ) of positive and negative limit Reeb orbits of
(Y+, α+) ' (∂E(b), λ|∂E(b)) must satisfy

ali = A(γ−li ) ≤ A[Γ−(u+
j )] ≤ A[Γ+(u+

j )] ≤ A(γ+
li

) = bli .

Consider Γ+(u+
j ) only. Due to the hypotheses (2.2.24), Γ+(u+

j ) cannot contain either a copy
of γ+

r for r > li or a copy of an iterate (γ+
r )m for any m ≥ 2 and any r. Otherwise, we

would have A[Γ+(u+
j )] > bli . This implies that Γ+(u+

j ) can only contain Reeb orbits γ+
r for

r ≤ li. Moreover, since A[Γ+(u+
j )] ≥ ali and A(γ+

r ) = br < ali for r < li (again by (2.2.24)),
we must have Γ+(u+

j ) = {γ+
li
}. The same reasoning shows that Γ−(u+

j ) = {γ+
li
}. Thus the

energy E(u+
j ) of the level u+

j is 0 by (2.2.22) and the level u+
j must be a branched cover of a

trivial cylinder (see [43, Lemma 9.9]). Since the ends are embedded, u+
j must be simple and

thus a trivial cylinder. This is disallowed by the SFT compactness statement, so u+
j cannot

exist.
The same reasoning implies that negative levels u−j of v cannot exist. Thus the building

v consists of a single level uW , whose domain is a cylinder and which is asymptotic to γ+
li

and γ−li at the positive and negative ends. We have found a limit curve (p, uW ) ∈MI(J) for a
subsequence of (pi, u

i) and thus we have proven the compactness of MI(J). The compactness

of MI(Ŵ∂P ; J∂P ) follows from that of MI(J).

Finally, we state the following curve count lemma. The proof is an application of the
(full) contact homology, and we defer it to §2.3.2.
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Lemma 2.2.13 (Curve count). Let E(a) and E(b) be irrational symplectic ellipsoids with
parameters a = (a1, . . . , an) and b = (b1, . . . , bn) satisfying

ai < bi < ai+1 for all i ∈ {1, . . . , n− 1} and bn < 2a1. (2.2.25)

Then there is a comeager Jreg ⊂ J(Ŵ∂P ) such that, for any J∂P ∈ Jreg, the compact 0–

dimensional manifold MI(Ŵ∂P ; J∂P ) has an odd number of points.

2.2.3 Proofs of Theorem 2.1.3 and Proposition 2.1.4

In this section, we use the moduli spaces constructed in §2.2.2 to prove our main result,
Theorem 2.1.3. We also provide a proof of Proposition 2.1.4. The following small piece of
notation will be helpful for both proofs.

Notation 2.2.14. For any n ∈ Z+ and any I ⊂ {1, . . . , n}, define the |I|–torus by

TI = {(θ1, . . . , θn) ∈ T n | θj = 0, ∀j /∈ I} . (2.2.26)

Note that the kth homology group Hk(T
n;Z/2) of the n–torus T n is generated by the fun-

damental classes [TI ], where I runs over all subsets of size |I| = k.

For Theorem 2.1.3, we also require the following result, which is proven in §2.4.

Lemma 2.2.15. Let U and V be compact symplectic manifolds with boundary. Let Z be
a closed manifold with total Stieffel–Whitney class w(Z) = 1 ∈ H∗(Z;Z/2) and let Φ be a
smooth family of symplectic embeddings

Φ : Z → SympEmb(U, V ) with Φ∗[Z] = 0.

Then there exists a compact manifold P with boundary Z and an extension of Φ to a smooth
family Ψ of symplectic embeddings

Ψ : P → SympEmb(U, V ) with Ψ|∂P = Φ.

Given the above preparation, we are now ready for the proof of Theorem 2.1.3.

Proof. (Theorem 2.1.3) We pursue the argument by contradiction outlined at the begining of
§2.2. Fix an integer k with 1 ≤ k ≤ n and suppose that there were a nonzero Z/2–homology
class of the n–torus of the form

[A] =
∑
L

cL[TL] with Φ∗[A] = 0 ∈ Hk(SympEmb(E(a), E(b));Z/2). (2.2.27)

Let Z = tcL 6=0TL. Then Lemma 2.2.15 states that there exists a smooth (k + 1)–
dimensional manifold P with boundary ∂P = Z and a smooth family of embeddings

Ψ : P → SympEmb(E(a), E(b)) with Ψ|TL = Φ|TL for each TL ⊂ Z. (2.2.28)
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By passing to subellipsoids, we may assume that E(a) and E(b) are irrational. In this

setting, Lemmas 2.2.10 and 2.2.12 state that there exist choices of J∂P ∈ J(Ŵ∂P ) and J ∈
J(Ψ) such that the parametrized moduli space MI(J) is a compact (k + 1)–dimensional

manifold with boundary ∂M(J) ' Z ×M(Ŵ∂P ; J∂P ). On the parametrized moduli space
MI(J), we can define an evaluation map

EvI :
∏
i∈I

γ+
i ×MI(J)→

∏
i∈I

γ−i ' T k (2.2.29)

via the following procedure. Let q = (qi)i∈I be a point in ×i∈Iγ+
i and let (p, u) ∈ MI(J).

According to (2.2.16), (p, u) is a pair of a point p ∈ P and an equivalence class of holomorphic

maps u : ΣI → ŴΨp up to reparametrization. Pick a representative holomorphic curve ũ of

u, which consists of k maps ũi : Σi → ŴΨp for each i ∈ I. We have limit parametrizations
of γ+

i and γ−i induced by ũi, defined by

lim
+
ũi : S1 → γ+

i ⊂ ∂E(b), lim
+
ũi(t) := lim

s→+∞
π∂+WΨp

ũi(s, t)

lim
−
ũi : S1 → Ψp(γ

−
i ) ⊂ Ψp(∂E(a)), lim

−
ũi(t) := lim

s→−∞
π∂−WΨp

ũi(s, t)

Here π∂+WΨp
and π∂−WΨp

denote projection to the positive and negative boundaries of WΨp .
Note that these projections are only defined in the limit as s → ±∞. In terms of these
parametrizations, we define the evaluation map EvI by the formula

EvI(q; p, u) :=

(
[Ψ−1

p ◦ lim
−
ũi ◦ (lim

+
ũi)
−1](qi)

)
i∈I
∈
∏
i∈I

γ−i . (2.2.30)

This definition is independent of the choice of representative ũ. Finally, fix an arbitrary q in

the product
∏

i∈I γ
+
i and define

evI : MI(J)→
∏
i∈I

γ−i , evI(p, u) := EvI(q; p, u). (2.2.31)

Now consider the restriction of evI to each component TL × {u} of the boundary Z ×
M(Ŵ∂P , J∂P ) of M(J). Since the equivalence class of curve u is independent of θ ∈ TL ⊂ T n,
we can use (2.2.30) and (2.2.31) to write

evI(θ, u) = (Ψ−1
θ (ri))i∈I with r :=

(
[lim
−
ũi ◦ (lim

+
ũi)
−1](q

i
)

)
i∈I
∈
∏
i∈I

γ−i .

Here r is independent of θ. Using the fact that Ψ−1|Z = Φ−1 and the formula (2.1.4) for the
family of embeddings Φ, we have the formula

evI(θ, u) = (Φ−1
θ (ri))i∈I = (e−2πiθi · ri)i∈I . (2.2.32)
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In the right–most expression of (2.2.32), we identify ri with an element of Cn via the inclusion
γ−i ⊂ E(a) ⊂ Cn.

The expression (2.2.32) allows us to compute the degree of evI on each component TL ×
{u}. There are two cases. If L = I, then (2.2.32) shows that evI |TL×{u} is degree 1. If I 6= L,
then for any j ∈ L \ (L∩ I), θj is constant for every θ ∈ TL and it follows from (2.2.32) that
the degree of evI |TL×{u} is 0. To derive our final contradictiction, we now observe that the
total degree mod 2 of evI restricted to the boundary is

deg(evI |∂MI(J)) =
∑

TL×{u}⊂∂MI(J)

deg(evI |TL×{u}) =

= |MI(Ŵ∂P , J∂P )| ≡ 1 mod 2.

(2.2.33)

The right–most equality in (2.2.33) crucially uses the point count of Lemma 2.2.13. The
equality (2.2.33) also provides the contradiction, since the degree of the restricton of a map
to a boundary must be 0 mod 2. This concludes the proof.

Having concluded the proof of Theorem 2.1.3, we now move on to Proposition 2.1.4.
The proof is much less involved than that of Theorem 2.1.3, and does not use any of the
machinery from §2.2.1–2.2.2. We begin with a lemma about the homology groups of the
unitary group U(n).

Lemma 2.2.16. Consider the map U : T n → U(n) given by θ 7→ Uθ. Then the induced map
U∗ : H∗(T

n;Z/2)→ H∗(U(n);Z/2) on Z/2–homology is:

(a) surjective if ∗ = 0 or ∗ = 1.

(b) identically 0 if ∗ ≥ 2.

Proof. To show (a), we first note that T n and U(n) are connected so U∗|H0 = Id. Further-
more, if we consider the loop γ : R/2πZ → T n given by θ 7→ (θ, 0, . . . , 0), we see that the
composition

detC ◦ U ◦ γ : R/2πZ→ U(1) ' R/2πZ

is the identity. Since detC : U(n) → U(1) induces an isomorphism on H1, the induced map
of U must be surjective on H1.

To show (b) we proceed as follows. It suffices to show that U∗[TL] = 0 for all L with
|L| ≥ 2. We can factorize TL = TJ × TK for J tK = L and |J | = 2, and

TL = TJ × TK
ιJ×ιK−−−→ U(2)× U(n− 2)

j−→ U(n).

Here j is the inclusion of a product of unitary subgroups, and ιJ and ιK are inclusions of
the tori into these unitary subgroups. It suffices to show that (ιJ × ιK)∗[TL] = [ιJ ]∗[TJ ] ⊗
[ιK ]∗[TK ] = 0, or simply that [ιJ ]∗[TJ ] = 0 ∈ H2(U(2);Z/2).

Now we simply note that dim(U(2)) = 4 and H∗(U(2);Z/2) ' Z/2[c1, c3] where ci is a
generator of index i. In particular, H2(U(2);Z/2) ' H2(U(2);Z/2) = 0.
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Using Lemma 2.2.16, we can now prove Propositon 2.1.4. The point is that the entire
unitary group U(n) embeds into SympEmb(E(a), E(b)) via domain restriction when ai < bj
for all i and j (which is equivalent to an < b1 by our ordering convention).

Proof. (Proposition 2.1.4) Let D : SympEmb(E(a), E(b)) → U(n) denote the map ϕ 7→
r(dϕ|0), given by taking derivatives dϕ|0 ∈ Sp(2n) at the origin and composing with a
retraction r : Sp(2n)→ U(n). Under the hypotheses on a and b, we can factor the identity
Id : U(n)→ U(n) and Φ : T n → SympEmb(E(a), E(b)) as

Id : U(n)
res−→ Symp(E(a), E(b))

D−→ U(n),

Φ : T n
U−→ U(n)

res−→ SympEmb(E(a), E(b)).

Here res(ϕ) := ϕ|E(a) denotes restriction of domain. In particular, res : U(n)→ Symp(E(a), E(b))
is injective on homology and Im(Φ∗) ' Im(U∗) as Z–graded Z/2–vector spaces. The result
thus follows from Lemma 2.2.16.

2.3 Contact homology

In this section, we discuss the main Floer–theoretic tool in this paper, the full contact
homology CH(Y, ξ) of a closed contact manifold (Y, ξ). The goal is to extract the point
count result, Lemma 2.2.13 in §2.2.2, from the basic properties of this invariant.

2.3.1 Contact dg–algebra

We first review the contact dg–algebra of a contact manifold and the cobordism dg–algebra
maps induced by exact symplectic cobordisms. This invariant package was originally intro-
duced by Eliashberg–Givental–Hofer [13] without foundations. Here we use the construction
by Pardon [39] using virtual fundamental cycles (VFC).

Remark 2.3.1 (Assumptions). We restrict our discussion to contact manifolds Y and exact
symplectic cobordisms W satisfying the following assumptions:

H1(Y ;Z) = H2(Y ;Z) = 0 and c1(ξ) = 0, (2.3.1)

H1(W ;Z) = H2(W ;Z) = 0 and c1(TW ) = 0. (2.3.2)

The hypotheses (2.3.1) and (2.3.2) are sufficient for our applications. Furthermore, they
allow us to simplify various definitions, formulas, and notations from [39] by suppressing the
homology classes of holomorphic curves and using Z–gradings.

We begin by fixing notation for the choices of Floer data that are needed to define the
relevant chain groups and cobordism maps.

Setup 2.3.2 (Contact manifold data). Fix the following setup and notation.
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(a) (Y, ξ) is a closed contact (2n − 1)–manifold satisfying (2.3.1), with nondegenerate
contact form α and associated Reeb vector field Rα.

(b) b(γ) is a basepoint for each simple orbit γ of (Y, α). Denote the set of orbits of (Y, α)
by P(Y, α). Given any orbit γ ∈ P(Y, α), denote the underlying simple orbit by γ and
the degree of the covering map γ → γ by d(γ).

(c) J is a dα–compatible complex structure on ξ and Ĵ is the associated R–invariant almost

complex structure on the symplectization Ŷ := R× Y .

(d) θ ∈ Θ(Y, α, J) is a choice of virtual perturbation data (in the sense of [39] §1.1) for

the compactified moduli spaces of holomorphic curves M∂(Ŷ ; γ+,Γ−) (see Definition
2.3.5) for all good orbits γ+ and collections of good orbits Γ−.

We use Data(Y, ξ) to denote the set of choices of data associated to a fixed contact manifold
(Y, ξ). Note that Data(Y, ξ) is natural: any contactomorphism Φ : (Y, ξ) → (Y ′, ξ′) induces
an obvious map Φ∗ : Data(Y, ξ) → Data(Y ′, ξ′) acquired by pushing forward the contact
forms, markers, complex structures and VFC data.

Setup 2.3.3 (Symplectic cobordism data). Fix the following setup and notation.

(a) For each ∗ ∈ {+,−}, let Y∗, ξ∗ and α∗ be contact data, J∗ and Ĵ∗ be complex data,
and θ∗ be virtual perturbation data, all as in Setup 2.3.2.

Furthermore, fix the following setup and notation for corresponding cobordism data.

(b) (W,λ) is an exact symplectic 2n–cobordism from ∂+W ' Y+ to ∂−W ' Y− satisfying

(2.3.2), with completion (Ŵ , λ̂) as in Review 2.2.4.

(c) J is a dλ–compatible complex structure on W agreeing with J∗ on symplectic collar

neighborhoods of Y∗, and Ĵ is the associated complex structure on Ŵ .

(d) θ ∈ Θ(W,λ, Ĵ) is a choice of virtual perturbation data (in the sense of [39] §1.3) for

the compactified moduli spaces of holomorphic curves Mc(Ŵ ; γ+,Γ−) (see Definition
2.3.5) for all good orbits γ+ and collections of good orbits Γ−.

We use Data[W,λ] to denote the set of choices of data as above for a fixed deformation class
[W,λ] of exact symplectic cobordism. For each ∗ ∈ {+,−}, there is a projection map of
Floer data

π∗ : Data[W,λ]→ Data(Y∗, ξ∗), (λ, J, θ) 7→ (α∗, J∗, π∗θ).

Here we use the projection map of VFC data π∗ : Θ(W,λ, J) → Θ(Y∗, α∗, J∗) described in
[39], §1.3. Note that the product map

π+ × π− : Θ(W,λ, J)→ Θ(Y+, α+, J+)×Θ(Y−, α−, J−)

is surjective.
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Before discussing the moduli spaces involved in contact homology, we recall the definition
of asymptotic markers.

Definition 2.3.4 (Asymptotic markers). Let (Σ, j) be a closed Riemann surface with punc-
tures. Let Σ denote the surface Σ with punctures added back in. An asymptotic marker
m(p) at a puncture p of Σ is a point in the projectivized tangent space SpΣ.

Let u : (Σ, j) → (Ŵ , Ĵ) asymptotic at the positive or negative end to an orbit γ at p,
where W and J are as in Setup 2.3.3(a)–(c). A natural map Sup : SpΣ→ γ may be defined
in this setting as the limit

Spu(v) = lim
ε→0

πY+u(η(ε)) or Spu(v) = lim
ε→0

πY−u(η(ε)),

for any arc η : [0, 1] → Σ with η(0) = p and dη
dε

= v. In either of these cases, we say that
m(p) is asymptotic x ∈ γ under u if Spu(m(p)) = x.

Here are precise descriptions of the moduli spaces referenced in Setup 2.3.2 and Setup
2.3.3 above. The reader should reference [39, §2.3] for Pardon’s definitions.

Definition 2.3.5 (Moduli spaces for CH). Let (Ŵ , λ̂) and Ĵ be as in Setup 2.3.3(a)–(b).
Let γ+ be a Reeb orbit of (Y+, α+) and let Γ− be a collection of k Reeb orbits in (Y−, α−)
(allowing repitition of orbits). Consider holomorphic curves u consisting of the following
data.

(a) A punctured, genus 0 Riemann surface (Σ, j) with a positive puncture p+ and k negative
punctures P−.

(b) A holomorphic map u : (Σ, j)→ (Ŵ , Ĵ) which is asymptotic to γ+ at the puncture p+

and the orbits Γ− at the punctures P−.

(c) Asymptotic markers m(p+) at p+ and m(p−) at each p− ∈ P−. These markers must
have the property that m(p+) is asymptotic to b(γ) under u and p− is asymptotic to
b(γ−), for any p− ∈ P− and corresponding γ− ∈ Γ−.

A pair of holomorphic curves u∗ = (Σ∗, j∗, u∗, p
+
∗ , P

−
∗ ,m∗) for ∗ ∈ {0, 1} are equivalent,

denoted by u0 ∼ u1, if there is a smooth map ϕ : Σ0 → Σ1 such that

(d) ϕ is holomorphic, i.e. Tϕ ◦ j0 = j1 ◦ Tϕ.

(e) ϕ sends punctures to punctures, i.e. ϕ(p+
0 ) = p−1 and ϕ(P−0 ) = P−1 .

(f) ϕ sends markers to markers, i.e. the induced map Sp+ϕ : Sp+
0

Σ0 → Sp+
1

Σ1 satisfies

Sp+ϕ(m0(p+
0 )) = m1(p+

1 ) and similarly for negative punctures.
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Let M(Ŵ ; γ+,Γ−) denote the moduli space of such holomorphic curves u modulo equiv-
alence. When the points of this moduli space are Fredholm regular (in the sense of [39,
Definition 2.39]), the moduli space is a smooth manifold of dimension

dim(M(Ŵ ; γ+,Γ−)) = |γ+| − |Γ−| ∈ Z. (2.3.3)

If the completed cobordism (Ŵ , λ̂) and Ĵ arise via a symplectization (Ŷ , etα) as in Setup
2.3.2(a)–(b), then this moduli space poseses a natural R action given by R–translation on

Ŷ . We adopt the notation

M∂(Ŷ ; γ+,Γ−) := M(Ŷ ; γ+,Γ−)/R. (2.3.4)

for the quotient. In the general case of a completed cobordism (Ŵ , λ̂) as above, we write

Mc(Ŵ ; γ+,Γ−) := M(Ŵ ; γ+,Γ−). (2.3.5)

We let M∂(Ŷ ; γ+,Γ−) and Mc(Ŵ ; γ+,Γ−) denote the compactifications of (2.3.4) and (2.3.5)
defined in [39], respectively. A detailed understanding of this compactification is unnecessary
for this paper, although it is similar to the SFT compactification described in [2].

Given the setup discussed above, we now give an overview of the construction of the
contact dg–algebra and cobordism maps.

Construction 2.3.6 (Contact dg–algebra). Consider a contact manifold (Y, ξ) along with
a choice of data D ∈ Data(Y, ξ), all as in Setup 2.3.2.

We now give the construction of the Z–graded differential algebra CC(Y, ξ)D with differ-
ential ∂D of degree −1, called the contact dg–algebra or the full contact homology algebra.
We denote the homology of this dg–algebra by

CH(Y, ξ)D := H(CC(Y, ξ)D, ∂D).

(Algebra) To define the algebra CC(Y, ξ)D, consider the set P(Y, α) of unparametrized
Reeb orbits of (Y, α). We can divide P(Y, α) into good orbits Pg(Y, α) and bad orbits Pb(Y, α).
An orbit γ is bad if it is a cover of an orbit γ′ with CZ(γ) − CZ(γ′) ≡ 1 mod 2. An orbit
is good if it is not bad. To each good orbit we can associate an Z–graded orientation line
oγ supported in grading |γ| = CZ(γ) + n− 3 (see for instance [3]). For a finite set of orbits
Γ ⊂ Pg(Y, α) of good orbits, we define oΓ := ⊗γ∈Γoγ and |Γ| :=

∑
γ∈Γ |γ|. We then define

the contact dg–algebra as

CC(Y, ξ)D :=
∧( ⊕

γ∈Pg(Y,α)

oγ ⊗Z Q
)
. (2.3.6)

That is, CC(Y, ξ)D is the free, graded–commutative, unital Z–graded Q–algebra generated
by the orientation lines oγ for γ ∈ Pg(Y, α).
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(Differential) We define the differential ∂D : CC(Y, ξ)D → CC(Y, ξ)D on any pure element
x ∈ oγ+ of the algebra by the formula

∂Dx :=
∑

|γ+|=|Γ−|+1

#θM∂(Ŷ ; γ+,Γ−)

|Aut(γ+,Γ−)|
· x. (2.3.7)

The symbol #θ denotes taking a virtual point count (with respect to the VFC data θ coming
with the data D) valued in oΓ−⊗o∨γ+ . See [39, §1.2, 2.3] for a full discussion. The differential
is extended to the entire algebra by imposing the graded Leibniz rule ∂D(xy) = ∂D(x)y +
(−1)|x|x∂D(y) for any x, y ∈ CC(Y, ξ)D.

Construction 2.3.7 (Contactomorphism Maps). Consider a contactomorphism Φ : (Y, ξ)→
(Y ′, ξ′) between contact manifolds (Y, ξ) and (Y ′, ξ′), along with a choice of data D ∈
Data(Y, ξ), all as in Setup 2.3.2. Then we can construct a morphism of Z–graded dg–algebras

CC(Φ)D : CC(Y, ξ)D → CC(Y ′, ξ′)Φ∗D.

To define this map, consider the bijection Pg(Y, α) → Pg(Y ′, (Φ−1)∗α) given by γ 7→ Φ ◦ γ.
This map comes with isomorphisms of Z–graded Z–modules oγ → oΦ◦γ for each γ ∈ P(Y, α)
(see [3]). We therefore define CH(Φ) to be the unique algebra map where the restriction
CH(Φ)|oγ⊗Q to oγ ⊗Q is the induced map of orientation lines (tensored up to Q).

Construction 2.3.8 (Cobordism Maps). Consider an exact symplectic cobordism (W,λ) be-
tween contact manifolds (Y+, ξ+) and (Y−, ξ−), along with a choice of data D ∈ Data(W,V, λ)
as in Setup 2.3.3, where A = π+D and B = π−D. Then we can construct a morphism of
Z–graded dg–algebras

CC(W,λ)D : CC(Y+, ξ+)A → CC(Y−, ξ−)B.

To define this cobordism map, we define its value on generators and extend it to an algebra
map. On a generator x ∈ oγ+ for γ+ ∈ P(Y+, α+), it is given by the sum

CC(W,λ)D(x) =
∑

|γ+|=|Γ−|+1

#θMc(Ŵ ; γ+,Γ−)

|Aut(γ+,Γ−)|
· x. (2.3.8)

The symbol #θ denotes taking a virtual moduli count in oΓ− ⊗ o∨γ+ with respect to the VFC
data θ, similarly to the differential. See [39, §1.3, 2.3] for a full discussion.

The salient features of Constructions 2.3.6 and 2.3.8 can be summarized in the following
Theorem, various parts of which are covered in [39, §1.3–1.8].

Theorem 2.3.9 ([39] Contact homology). The dg–algebra and maps described in Construc-
tions 2.3.6 and 2.3.8 have the following properties:
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(a) (Homology) The map ∂D of Construction 2.3.6 is a differential and the homology alge-
bra CH(Y, ξ) ' CH(Y, ξ)D is independent of the choice of data D ∈ Data(Y, ξ) up to
canonical isomorphism.

(b) (Contactomorphism) The contactomorphism map CC(W,λ)D of Construction 2.3.7
induces a well–defined isomorphism

CH(Φ) : CH(Y, ξ) ' CH(Y ′, ξ′).

(c) (Cobordism) The cobordism map CC(W,λ)D of Construction 2.3.8 is a map of dg–
algebras, and induces a well–defined map

CH[W,λ] : CH(Y+, ξ+)→ CH(Y−, ξ−).

(d) (Deformation/Composition) The cobordism map CH[W,λ] depends only on the defor-
mation class of (W,λ) (see Review 2.2.4). Furthermore, if (W01, λ01) and (W12, λ12)
are cobordisms from Y0 to Y1 and Y1 to Y2, respectively, then

CH[W12#Y1W01, λ12#Y1λ01] = CH[W12, λ12] ◦ CH[W01, λ01].

(e) (Transversality) Suppose that a 0–dimensional moduli space used in either Construc-
tions 2.3.6 and 2.3.8, i.e. one of the spaces

M∂(Ŷ ; γ+,Γ−) or Mc(Ŵ ; γ+,Γ−),

is Fredholm regular (see [39, §2.11]) and SFT compact. Then the corresponding virtual
count, which is either

#θM∂(Ŷ ; γ+,Γ−) or #θMc(Ŵ ; γ+,Γ−),

is given by a signed point count (according to coherent orientations, see [44, §11]),
after one identifies the orientation lines oγ of all good orbits γ with Z.

2.3.2 Proof of point count

We now compute the examples of contact homology and cobordism maps that are relevant
to this paper, and use these computations to prove Lemma 2.2.13.

Definition 2.3.10. A contact form α on a closed contact manifold (Y, ξ) is lacunary if for
every good orbit γ ∈ Pg(Y, α) the grading |γ| ∈ Z is even.

The contact dg–algebra of a contact manifold with lacunary contact form has vanishing
differential for grading reasons. Therefore we have the following lemma.
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Lemma 2.3.11. Let (Y, ξ) be a contact manifold with lacunary contact form α. Then

CH(Y, ξ) '
∧

(Q[Pg(Y, α)]) . (2.3.9)

Example 2.3.12 (Ellipsoid CH). Consider the boundary (∂E(a), α) of an irrational ellipsoid
E(a) equipped with the standard contact structure ξ and contact form α, as in Example
2.2.3. Note that (∂E(a), ξ) satisfies the hypotheses (2.3.1).

The Conley–Zehnder index formula (2.2.10) implies that every orbit of (∂E(a), α) is good,
and that we have the grading formula

|γmi | = 2n− 4 + 2|{L ∈ Spec(Y, α)|L ≤ mai}| ∈ Z. (2.3.10)

Therefore the grading of oγmi is even and the contact form is lacunary. The contact homology
is thus computed by (2.3.9).

Next, we use the axioms of Theorem 2.3.9 to demonstrate some properties of the cobor-
dism maps on contact homology induced by the cobordisms of Example 2.2.6.

Lemma 2.3.13. Let E(a) and E(b) be irrational ellipsoids with ai < bi for all i, and let
c ∈ (0, 1) be a constant such that c · bi < ai for all i. Let ι : E(a) → int(E(b)) and
 : E(c · b) → E(a) be the standard inclusions, and let sc : ∂E(b) → ∂E(c · b) be the
contactomorphism given by scaling, i.e. sc(x) := c · x.

Then the cobordism maps CH[Wι, λι] and CH[W, λ] induced by the cobordism (Wι, λι)
and (W, λ) (see Example 2.2.6) are inverses to each other, i.e.

CH[W, λ] ◦ CH[Wι, λι] = CH(sc). (2.3.11)

Proof. Notice that we have the isomorphisms

(W, λ)#∂E(a)(Wι, λι) ' (Wι◦, λι◦) ' (E(a)× [log(c), 0], esλ|∂E(a)) (2.3.12)

of exact symplectic cobordisms from (∂E(a), λ|∂E(a)) to (∂E(c · a), λ|∂E(c·a)). Therefore by
Theorem 2.3.9(c), the identity of cobordism maps

CH[W, λ] ◦ CH[Wι, λι] = CH[E(a)× [log(c), 0], esλ|∂E(a)] (2.3.13)

holds. The completion of the right–hand side of (2.3.11) is simply the symplectization of
∂E(a). By [39, Lemma 1.2], the induced map is equal to CH(sc).

With the above computations in hand, we now begin the proof of Lemma 2.2.13 from
§2.2.2. We first verify that the moduli spaces of Definition 2.2.8 are, in our case of interest,
given by a product of those provided by the cobordism maps of contact homology, described
in Definition 2.3.5 and [39].
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Lemma 2.3.14. Let (W∂P , λ∂P ) and J∂P be as in Lemma 2.2.13. Pick basepoints b(γ+
i ) and

b(γ−i ) for all i, as in Setup 2.3.2(b). Then there is a natural bijection

MI(Ŵ∂P ; Ĵ∂P ) '
∏
i∈I

Mc(Ŵ∂P ; γ+
i , γ

−
i ). (2.3.14)

Proof. To prove this, we construct natural maps between the two moduli spaces that are
inverses of each other.

(→) Let u be a point in MI(Ŵ∂P ; Ĵ∂P ). By Definition 2.2.8, u is a tuple (ui)i∈I of

reparametrization classes ui of maps Σi → Ŵ∂P where Σi := CP 1 \ {0,∞}. Let ũi be a
representative for each i ∈ I. Because the orbits γ+

i and γ−i are embedded, there is a unique
choice of asymptotic markers mi(p

+
i ) and mi(p

−
i ) at the punctures p+

i and p−i of Σi which
satisfy Definition 2.3.5(c). We thus define the map

MI(Ŵ∂P ; Ĵ∂P )→
∏
i∈I

Mc(Ŵ∂P ; γ+
i , γ

−
i ), u 7→

∏
i∈I

[Σi, jCP 1 , ũi, p
+
i , p

−
i ,mi]. (2.3.15)

The bracket [−] within the product means that we have taken the equivalence class of
the curve up to the relation ∼ described in Definition 2.3.5(d)–(f). Any two choices of
representative produce curves equivalent under ∼.

(←) In the other direction, let u be a point in the moduli space of Definition 2.3.5, which
can be written as

u = (ui)i∈I ∈
∏
i∈I

Mc(Ŵ∂P ; γ+
i , γ

−
i ), ui = [Si, ji, ũi, p

+
i , p

−
i ,mi].

As above, ũi is a holomorphic cylinder and ui is the corresponding reparametrization class.
Due to uniformization, for each i ∈ I we can pick a biholomorphism ϕi : (Σi, jCP 1) ' (Si, ji)
preserving the marked points. We define the map∏

i∈I

Mc(Ŵ∂P ; γ+
i , γ

−
i )→MI(Ŵ∂P ; Ĵ∂P ), u 7→ (ũi ◦ ϕi)i∈I . (2.3.16)

By the right–hand side we mean the reprametrization class of ũi ◦ϕi. Any two choices of ϕi
evidently produce reparametrization equivalent tuples.

Verifying that the maps (2.3.15) and (2.3.16) are inverses of each other, modulo the
equivalence relations involved, is straightforward.

Next, we need a regularity and compactness result for the cobordism moduli space
Mc(γ

+
i ; γ−i ) under weaker hypotheses than Lemmas 2.2.12 and 2.2.12. The proof is very

similar to the proofs of those Lemmas, so we will be terse in our exposition.

Lemma 2.3.15 (Compactness/transversality for Mc). Let E(c) and E(d) be irrational sym-
plectic ellipsoids with parameters c = (c1, . . . , cn) and d = (d1, . . . , dn) satisfying

ci < di for all i ∈ {1, . . . , n− 1}, dn < 2d1, and cn < 2c1. (2.3.17)
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Let  : E(c)→ E(d) be the inclusion and let (W, λ) be the associated embedding.

Then there exists a comeager Jreg() ⊂ J(W) such that the space Mc(Ŵ ; γ+
i , γ

−
i ) of

Definition 2.3.5 is Fredholm regular and SFT compact for any J ∈ Jreg().

Proof. Let Y+ = ∂E(d) and Y− = ∂E(d), and consider the moduli spaces

M∂(Ŷ+; γ+
i , γ

+
j ), M∂(Ŷ−; γ−i , γ

−
j ), and Mc(Ŵ; γ

+
i ,Γ

−). (2.3.18)

Here γ±∗ can be any orbit in Y± and Γ− is any finite collection of orbits on ∂−W ' ∂E(a).
By energy monotonicity, only finitely many such moduli spaces can be nonempty. These
spaces will be needed in the compactness argument.

(Regularity) Note that the orbits γ±i are all embedded. Therefore, by the same discussion

as in the proof of Lemma 2.2.10, every curve in Mc(Ŵ; γ
+
i ,Γ

−) is somewhere injective, and we
can invoke [44, Theorems 7.1–7.2] to see that there is a comeager subset Jreg(W; γ

+
i ,Γ

−) ⊂
J(W) such that the moduli space Mc(Ŵ; γ

+
i ,Γ

−) is transverse. An analogous argument
(using [44, Theorem 8.1]) shows transversality for any of the M∂ moduli spaces for J± in
a comeager Jreg(Y±; γ±i , γ

±
j ). Intersecting these (countably many) comeager sets yields the

desired Jreg().

(Compactness) Pick a J ∈ Jreg() as above and let (pi, u
i) be a sequence in Mc(Ŵ; γ

+
i , γ

−
i )

converging to a building v. We use the notation of Review 2.2.11 for this building. As in
Lemma 2.2.12, we show that v has no symplectization levels.

First, consider a positive symplectization level u+
k . By action monotonicity, we know that

A[Γ±(u+
k )] ≤ A(γ+

i ). It follows from (2.3.17) that there is a sequence {ak}M0 with a0 = i
such that

Γ−(u+
k ) = {γ+

ak
} and u+

k ∈M(Ŷ+; γ+
ak−1

, γ+
ak

) for all k ∈ {1, . . . ,M}.

Next, consider the cobordism level uW . Since Γ+(uW ) = Γ−(u+
M) = {γ+

aM
}, we know by the

above transversality argument above that the moduli space of uW is Fredholm regular, with
dimension given by

dim(Mc(Ŵ; γ
+
aM
,Γ−(uW )) = |γ+

aM
| − |Γ−(uW )| ≥ 0.

Using the grading formula (2.3.10), we see that if Γ−(uW ) contains an iterate γmi for m ≥ 2
or more than one orbit, then |Γ−(uW )| ≥ 4n − 2. On the other hand, |γ+

aM
| ≤ 4n − 4.

Therefore, Γ−[uW ] = {γ−b0} with 1 ≤ b0 ≤ n. Finally, we can argue analogously to the
positive symplectization case to show that there is a sequence {bk}N0 with bN = i such that

Γ−(u−k ) = {γ−bk} and u+
k ∈M(Ŷ+; γ+

bk−1
, γ+

bk
) for all k ∈ {1, . . . , N}.

We have thus shown that every level of v is Fredholm regular, and therefore

|γ+
ak
| − |γ+

ak+1
| ≥ 1, |γ−bk | − |γ

−
bk+1
| ≥ 1, |γ+

aM
| − |γ−b0 | ≥ 0.

The above equations contradict the fact that |γ+
i | − |γ−i | = 0 unless M = N = 0, i.e. unless

there are no symplectization levels.
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Finally, we proceed with the actual proof of Lemma 2.2.13.

Proof. (Lemma 2.2.13) Since (W∂P , λ∂P ) = (Wι, λι) (without considering the boundary in-
clusion maps), we know that the following equality of moduli spaces

Mc(Ŵ∂P ; γ+
i , γ

−
i ) = Mc(Ŵι; γ

+
i , γ

−
i )

holds. This equality, along with Lemma 2.3.14, then implies that it suffices for us to show
that Mc(Ŵι; γ

+
i , γ

−
i ) has an odd number of points for J in a comeager set.

To show this, we argue as so. By (2.3.10) in Example 2.3.12, we know that on any of
the contact manifolds ∂E(c · a), ∂E(a) or ∂E(b), a non–simple orbit η satisfies |η| ≥ 4n− 2
and any set of 2 or more orbits Γ satisfies |Γ| ≥ 4n− 2. In particular, we have the following
isomorphisms for 1 ≤ i ≤ n:

CH2(n+i−2)(∂E(a)) ' oγi ⊗Q, CH2(n+i−2)(∂E(c · a)) ' osc(γi) ⊗Q.

By applying Lemma 2.3.13, along with the definitions of CH(Wι) and CH(W) in terms of
the virtual moduli count, we find that

CH(sc) = CH[Wι, λι] ◦ CH[W, λ] =
#θMc(Ŵ; γ

−
i , sc(γ+

i ))

|Aut(γ−i , sc(γ+
i ))|

◦ #θMc(Ŵι; γ
+
i , γ

−
i )

|Aut(γ+
i , γ

−
i )|

.

Now note that Aut(γ−i , sc(γ+
i )) and Aut(γ+

i , γ
−
i ) are both trivial groups since the orbits

γ+
i , γ

−
i and sc(γ+

i ) are all embedded. Furthermore, by Lemma 2.3.15 there are comeager sets
of almost complex structures such that the moduli spaces above are both Fredholm regular
and compact. Thus, by applying Theorem 2.3.9(e) and choosing identifications of oγ+

i
, oγ−i

and osc(γ+
i ) with Z such that the map Z→ Z induced by CH(sc) is the identity, we acquire

the formula
1 = #Mc(Ŵ; γ

−
i , sc(γ+

i )) ·#Mc(Ŵι; γ
+
i , γ

−
i ) ∈ Z

Here # denotes taking a Z–valued, signed point count and so we can conclude that

#Mc(Ŵι; γ
+
i , γ

−
i ) = ±1 and |Mc(Ŵι; γ

+
i , γ

−
i )| ≡ 1 mod 2.

This proves the point count for the cobordism moduli-spaces, and ends the proof.

2.4 Spaces of symplectic embeddings

In this section, we discuss some basic results about the Fréchet manifold of symplectic
embeddings SympEmb(U, V ) between symplectic manifolds with boundary. In §2.4.1, we
construct the Fréchet manifold structure on SympEmb(U, V ). In §2.4.2, we discuss the
relationship between the bordism groups and homology groups of a Fréchet manifold. Last,
we prove a version of the Weinstein neighborhood with boundary as Proposotion 2.4.13 in
§2.4.3.
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2.4.1 Fréchet manifold structure

Let (U, ωU) and (V, ωV ) be 2n–dimensional compact symplectic manifolds with nonempty
contact boundaries. We now give a proof of the folklore result that the space of symplectic
embeddings from U to V is a Fréchet manifold.

Proposition 2.4.1. The space SympEmb(U, V ) of symplectic embeddings ϕ : U → int(V )
with the C∞ compact open topology is a metrizable Fréchet manifold.

Proof. Let (U × V, ωU×V ), with ωU×V = π∗UωU − π∗V ωV , denote the product symplectic
manifold with corners. Given a symplectic embedding ϕ : U → int(V ), we may associate
the graph Γ(ϕ) ⊂ U × V given by

Γ(ϕ) := {(u, ϕ(u)) ∈ U × V }.

The graph is a Lagrangian submanifold with boundary transverse to the characteristic fo-
liation T (∂U)ω on the contact hypersurface ∂U × int(V ). By the Weinstein neighborhood
theorem with boundary, Proposition 2.4.13, there is a neighborhood A of U , a neighborhood
B of Γ(ϕ) and a symplectomorphism ψ : A ' B with ψ|U : U → Γ(ϕ) given by u 7→ (u, ϕ(u))
and ψ∗ωU×V = ωstd.

Let A(ϕ, ψ) ⊂ ker(d : Ω1(L)→ Ω2(L)) and B(ϕ, ψ) ⊂ SympEmb(U, V ) denote the open
subsets given by

A(ϕ, ψ) :=
{
α ∈ Ω1(L)

∣∣ dα = 0 and Im(α) ⊂ A
}
,

B(ϕ, ψ) := {φ ∈ SympEmb(U, V ) | Im(ϕ) ⊂ B} .

Then we have maps Φ : A(ϕ, ψ)→ B(ϕ, ψ) and Ψ : A(ϕ, ψ)→ B(ϕ, ψ) given by

α 7→ Φ[α] := (πV ◦ ψ ◦ α) ◦ (πU ◦ ψ ◦ α)−1,

φ 7→ Ψ[φ] := (ψ−1 ◦ (Id×φ)) ◦ (πL ◦ ψ−1 ◦ (Id×φ))−1.

It is a tedious but straightforward calculation to check that Φ ◦ Ψ = Id and Ψ ◦ Φ =
Id. The fact that Φ and Ψ are continuous in the C∞ compact open topologies on the
domain and images follows from the fact that function composition defines a continuous
map C∞(M,N) × C∞(N,O) → C∞(M,O) for any compact manifolds M , N , and O (in
fact, smooth; see [29, Theorem 42.13]).

Since C∞(U, V ) is metrizable under the compact open C∞–topology (see [29, Corollary
41.12]), the subspace SympEmb(U, V ) is also metrizable.

Lemma 2.4.2. Let L be a compact manifold with boundary and let σ : L→ T ∗L be a section.
Then σ(L) is Lagrangian if and only if σ is closed.

Proof. The same as the closed case, see [34, Proposition 3.4.2].
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2.4.2 Bordism groups of Fréchet manifolds

We now discuss (unoriented) bordism groups and their structure in the case of Fréchet
maifolds. We begin by defining the relevant notions of (continuous and smooth) bordism.

Definition 2.4.3 (Bordisms). Let X be a topological space and f : Z → X be a map from
a closed manifold. We say that the pair (Z, f) is null–bordant if there exists a pair (Y, g) of
a compact manifold with boundary Y and a continuous map g : Y → X such that ∂Y = Z
and g|∂Y = f . Given a pair of manifold/map pairs (Zi, fi) for i ∈ {0, 1}, we say that (Z0, f0)
and (Z1, f1) are bordant if (Z0 t Z1, f0 t f1) is null–bordant.

Definition 2.4.4 (Smooth bordism). Let X be a Fréchet manifold and f : Z → X be a
smooth map from a smooth closed manifold. Then (Z, f) is smoothly null–bordant if it is
null–bordant via a pair (Y, g) where g : Y → X be a smooth map of Banach manifolds with
boundary. Similarly, a pair (Zi, fi) for i ∈ {0, 1} is smoothly bordant if (Z0 t Z1, f0 t Z1) is
smoothly null–bordant.

The above notions come with accompanying versions of the bordism group.

Definition 2.4.5 (Bordism group of X). The n–th bordism group Ωn(X;Z/2) of a topo-
logical space X is group generated by equivalence classes [Z, f ] of pairs (Z, f), where Z is
a closed n–dimensional manifold and f : Z → X is a continuous map, modulo the relation
that (Z0, f0) ∼ (Z1, f1) if the pair is bordant. Addition is defined by disjoint union

[Z0, f0] + [Z1, f1] := [Z0 t Z1, f0 t f1].

Definition 2.4.6 (Smooth bordism group ofX). The n–th smooth bordism group Ω∞n (X;Z/2)
of a Fréchet manifold X is group generated by equivalence classes [Z, f ] of pairs (Z, f), where
Z is a closed n–dimensional manifold and f : Z → X is a smooth map, modulo the relation
that (Z0, f0) ∼ (Z1, f1) if the pair is smoothly bordant. Addition in the group Ω∞∗ (X;Z/2)
is defined by disjoint union as before.

Lemma 2.4.7. The natural map Ω∞∗ (X;Z2)→ Ω∗(X;Z2) is an isomorphism.

Proof. The argument uses smooth approximation and is identical to the case where X is a
finite dimensional smooth manifold, which can be found in [8, Section I.9].

Given the above terminology, we can now prove the main result of this subsection, Propo-
sition 2.4.8. It provides a class of submanifolds for which being null–bordant and being
null–homologous are equivalent.

Proposition 2.4.8. Let X be a metrizable Fréchet manifold, and let f : Z → X be a smooth
map from a closed manifold Z with Stieffel–Whitney class w(Z) = 1 ∈ H∗(Z;Z/2). Then
f∗[Z] = 0 ∈ H∗(X;Z/2) if and only [Z, f ] = 0 ∈ Ω∞∗ (X;Z2).



49

Proof. Proposition 2.4.8 will follow immediately from the following results. First, by Lemma
2.4.7, it suffices to show f∗[Z] = 0 ∈ H∗(X;Z/2) if and only [Z, f ] = 0 ∈ Ω∗(X;Z2). By
Proposition 2.4.9, we can replace X with a CW complex. Lemma 2.4.10 proves the result in
this context.

Proposition 2.4.9 ([38, Theorem 14]). A metrizable Fréchet manifold is homotopy equiva-
lent to a CW complex.

Lemma 2.4.10. Let X homotopy equivalent to a CW complex, and let f : Z → X be a con-
tinuous map from a closed manifold Z with Stieffel–Whitney class w(Z) = 1 ∈ H∗(Z;Z/2).
Then f∗[Z] = 0 ∈ H∗(X;Z/2) if and only [Z, f ] = 0 ∈ Ω∗(X;Z2).

Remark 2.4.11. Crucially, we make no finiteness assumptions on the CW structure.

Proof. (⇒) Suppose that f∗[Z] = 0 ∈ H2(Z;Z/2). Pick a homotopy equivalence ϕ : X ' X ′

with a CW complex X ′. Such an equivalence induces an isomorphism of unoriented bordism
groups Ω∗(X;Z2) ' Ω∗(X

′;Z2), so it suffices to show that the pair (Z, ϕ◦f) is null–bordant,
or equivalently to assume that X is a CW complex to begin with.

So assume that X is a CW complex. By Lemma 2.4.12, we can find a finite sub–
complex A ⊂ X such that f(Z) ⊂ A and f∗[Z] = 0 ∈ H∗(A;Z/2). By Theorem 17.2 of [8],
[Z, f ] = 0 ∈ Ω∗(A;Z2) if and only if the Stieffel–Whitney numbers swα,I [Z, f ] are identically
0. Recall that the Stieffel–Whitney number swα,I [Z, f ] associated to [Z, f ], a cohomology
class α ∈ Hk(A;Z2) and a partition I = (i1, . . . , ik) of dim(Z)− k is defined to be

swα,I [Z, f ] = 〈wi1(Z)wi2(Z) . . . wik(Z)f ∗α, [Z]〉 ∈ Z2.

Here wj(Z) ∈ Hj(Z;Z2) denotes the j–th Stieffel–Whitney class of Z. By assumption,
w(Z) = 1 and so wj(Z) = 0 for all j 6= 0. In particular, the only possible nonzero Stieffel–
Whitney numbers have I = (0). But we see that

swα,(0)[Z, f ] = 〈f ∗α, [Z]〉 = 〈α, f∗[Z]〉 = 0.

Therefore, swα,I [Z, f ] ≡ 0 and [Z, f ] must be null–bordant.
(⇐) This direction is completely obvious, since the map Ω∗(X)→ H∗(X;Z/2) given by

[Z, f ] 7→ f∗[Z] is well defined.

Lemma 2.4.12. Let X be a CW complex, and let f : Z → X be a map from a closed
manifold Z with f∗[Z] = 0 ∈ H∗(X;Z/2). Then there exists a finite sub–complex A ⊂ X
with f(Z) ⊂ A and f∗[Z] = 0 ∈ H∗(A;Z/2).

Proof. A very convenient tool for this is the stratifold homology theory of [28], which we
now review briefly.

Given a space M , the n–th stratifold group sHn(M ;Z/2) with Z/2–coefficients (see
Proposition 4.4 in [28]) is generated by equivalence classes of pairs (S, g) of a compact,
regular stratifold S and a continuous map g : S → M . Two pairs (Si, gi) for i ∈ {0, 1} are
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equivalent if they are bordant by a c–stratifold, i.e. if there is a pair (T, h) of a compact,
regular c–stratifold and a continuous map g : T →M such that (∂T, h|∂T ) = (S0tS1, g0tg1)
(see Chapter 3 and Section 4.4 of [28]). Given a map ϕ : M → N of spaces, the pushforward
map ϕ∗ : sH(M ;Z2) → sH(M ;Z2) on stratifold homology is given (on generators) by
[S, g] 7→ [S, ϕ ◦ g] = ϕ∗[Σ, g].

Stratifold homology satisfies the Eilenberg–Steenrod axioms (see Chapter 20 of [28]), and
thus if M is a CW complex then there is a natural isomorphism sH∗(M ;Z2) ' H∗(M ;Z2).
If M is a manifold of dimension n, the fundamental class [M ] ∈ sHn(M ;Z2) is given by the
tautological equivalence class [M ] = [M, Id].

The proof of the lemma is simple with the above machinery in place. Since f∗[Z] = 0, the
pair (Z, f) must be null–bordant via some compact c–stratifold (Y, g). Since Y and its image
g(Y ) are both compact, we can choose a sub–complex A ⊂ X such that g(T ) ⊂ A ⊂ X.
Then the pair (Z, f) are null–bordant by (Y, g) in A as well, so that [Z, f ] = 0 ∈ sH∗(A;Z2)
and thus f∗[Z] = 0 ∈ H∗(A;Z2) via the isomorphism sH∗(A;Z2) ' H∗(A;Z2).

2.4.3 Weinstein neighborhood theorem with boundary

In this section, we prove the analogue of the Weinstein neighborhood theorem for a La-
grangian L with boundary, within a symplectic manifold X with boundary. We could find
no reference for this fact in the literature.

Proposition 2.4.13 (Weinstein neighborhood theorem with boundary). Let (X,ω) be a
symplectic manifold with boundary ∂X and let L ⊂ X be a properly embedded, Lagrangain
submanifold with boundary ∂L ⊂ ∂X transverse to T (∂X)ω.

Then there exists a neighborhood U ⊂ T ∗L of L (as the zero section), a neighborhood
V ⊂ X of L and a diffeomorphism f : U ' V such that ϕ∗(ω|V ) = ωstd|U .

Proof. The proof has two steps. First, we construct neighborhoods U ⊂ T ∗L and V ⊂ X of
L, and a diffeomorphism ϕ : U ' V such that

ϕ|L = Id, ϕ∗(ω|V )|L = ωstd|L, T (∂U)ωstd = T (∂U)ϕ
∗ω. (2.4.1)

Here T (∂U)ωstd ⊂ T (∂U) is the symplectic perpendicular to T (∂U) with respect to ωstd (and
similarly for T (∂U)ϕ

∗ω. Second, we apply Lemma 2.4.14 and a Moser type argument to
conclude the result.

(Step 1) Let J be a compatible almost complex structure on X and g be the induced
metric on L. Recall that the normal bundle νgL with respect to g is a bundle over L with
Lagrangian fiber, and that J : TL→ νgL gives a natural isomorphism. Let Φg : T ∗L→ TL
denote the bundle isomorphism induced by the metric g and let expg denote the exponential
map with respect to g.

Since L is compact, we can choose a tubular neighborhood U ′ of νL such that expg :
U → X is a diffeomorphism onto its image V . We then let

U := [J ◦ Φg]−1(U ′) ⊂ T ∗L
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and also
φg : U ' V, (x, v) 7→ expgx(J ◦ Φg(v)).

Note that φg|L = Id and [φg]∗ω|L = ωstd|L by the same calculations as in [34, Theorem
3.4.13]. We now must modify U , V , and φg to satisfy the last condition of (2.4.1).

To this end, we apply Lemma 2.4.15. Taking κ0 = T (∂U)ωstd and κ1 = T (∂U)[φg ]∗ω, we
acquire a neighborhood N ⊂ ∂(T ∗L) of ∂L and a family of embeddings ψ : N × I → ∂(T ∗L)
with the following four properties:

ψt|∂L = Id, d(ψt)u = Id for u ∈ ∂L, ψ0 = Id,

[ψ1]∗(T (∂U)ωstd) = T (∂U)[φg ]∗ω.

Note here that we are using the fact that T (∂U)ωstd|L = T (∂U)[φg ]∗ω|L already by the
construction of φg. By shrinking N and U , we can simply assume that N = ∂U . Let
tc : [0, 1)× ∂U ' T ⊂ U be tubular neighborhood coordinates near boundary. By choosing
the tubular neighborhood coordinates tc : [0, 1)×∂U ' T appropriately, we can also assume
that tc([0, 1)× ∂L) = L ∩ T . We define a map Φ : U → T ∗L by

Φ(u) =

{
(s, ψ1−s(v)) if u = (s, v) ∈ [0, 1)× ∂U via tc,

u otherwise.

The map Φ has the following properties which are analogous to those of ψs:

Φ|L = Id, d(Φ)u = Id for u ∈ L, Φ∗(T (∂L)ωstd) = T (∂L)[φg ]∗ω.

Also note that Φ is smooth since ψt is constant for t near 0 and 1. We thus define f as the
composition ϕ = φg ◦ Φ. It is immediate that f has the properties in (2.4.1).

(Step 2) We closely follows the Moser type argument of [34, Lemma 3.2.1]. By shrinking
U , we may assume that it is an open disk bundle. Let ωt = (1 − t)ωstd + tf ∗ω and τ =
d
dt

(ωt) = f ∗ω−ωstd. Let κ = T (∂U)ωt (by the previous work, it does not depend on t). Note
that τ satisfies all of the assumptions of Lemma 2.4.14(2.4.3). We prove that κ is invariant
under the scaling map φt(x, u) = (x, tu) in Lemma 2.4.16. We can thus find a σ satisfying
the properties listed in (2.4.2).

Let Zt be the unique family of vector fields satisfying σ = ι(Zt)ωt. Due to the properties
of σ, Zt satisfies the following properties for each t.

Zt|L = 0, Zt|∂U ∈ T (∂U) for all t.

The first property is immediate, while the latter is a consequence of the fact that

ωt(Zt, ·)|κ = σ|κ = 0

implies
Zt ∈ (κ)ωt = T (∂U).
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These two properties imply that Zt generates a map Ψ : U ′ × [0, 1] → U for some smaller
tubular neighborhood U ′ ⊂ U with the property that Ψt|L = Id and Ψ∗tωt = ω0 (see [34, §3.2],
as the reasoning is identical to the closed case). In particular, we get a map Ψ1 : U ′ → U
with Ψ1|L = Id and Ψ∗1f

∗ω. By shrinking U , taking ϕ = f ◦Ψ1 and taking V = ϕ(U), we at
last acquire the desired result.

The remainder of this section is devoted to proving the various lemmas that we used in
the proof above.

Lemma 2.4.14 (Fiber integration with boundary). Let X be a compact manifold with bound-
ary, π : E → X be a rank k vector bundle with metric and π : U → X be the (open) disk bun-
dle of E with closure U . Let κ ⊂ T (∂U) be a distribution on ∂U such that dφt(κu) = κφt(u) for
all u ∈ U , where φ : U×I → U denote the family of smooth maps given by φt(x, u) := (x, tu).

Finally, suppose that τ ∈ Ωk+1(U) is a (k + 1)–form such that

dτ = 0, τ |X = 0, (ι∗∂Xτ)|κ = 0. (2.4.2)

Then there exists a k–form σ ∈ Ωk(U) with

dσ = τ, σ|X = 0, (ι∗∂Xσ)|κ = 0. (2.4.3)

Proof. We use integration over the fiber, as in [34, p. 109]. Note that the maps φt : U →
φt(U) ⊂ U are diffeomorphisms for each t > 0, φ0 = π, φ1 = Id and φt|X = Id. Therefore we
have

φ∗0τ = 0, φ∗1τ = τ.

We may define a vector field Zt for all t > 0 and a k–form σt for all t ≥ 0 by

Zt := (
d

dt
φt) ◦ φ−1

t for t > 0, σt := φ∗t (ι(Zt)τ) for t ≥ 0.

Although Zt is singular at t = 0, as in [34] one can verify in local coordinates that σt is smooth
at t = 0. Since Zt|X = 0, the k–form σt satisfies σt|X = 0. Furthermore, for any vector field
K ∈ Γ(κ) on ∂X which is parallel to κ, we have ι(K)σt = φ∗t (ι(Zt)ι(dφt(K))τ) = 0 on the
boundary, so that ι∗∂X(σt)|κ = 0. Finally, σt satisfies the equation

τ = φ∗1τ − φ∗0τ =

∫ 1

0

d

dt
(φ∗t τ)dt =

∫ 1

0

φ∗t (LXtτ)dt

=

∫ 1

0

d(φ∗t (ι(Xt)τ))dt =

∫ 1

0

dσtdt = d(

∫ 1

0

σtdt).

Therefore, if we define σ :=
∫ 1

0
σtdt, it is simple to verify the desired properties using the

corresponding properties for σt.
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Lemma 2.4.15. Let U be a manifold and L ⊂ U be a closed submanifold. Let κ0, κ1 be rank
1 orientable distributions in TU such that κi|L ∩ TL = {0} and κ0|L = κ1|L.

Then there exists a neighborhood U ′ ⊂ U of L and a family of smooth embeddings ψ :
U ′s× I → U with the following four properties:

ψt|∂L = Id, d(ψt)u = Id for u ∈ L, ψ0 = Id, [ψ1]∗(κ0) = κ1.

Furthermore, we can take ψt to be t–independent for t near 0 and 1.

Proof. Since κ0 and κ1 are orientable, we can pick nonvanishing sections Z0 and Z1 We may
assume that Z0 = Z1 along L. We let Zt denote the family of vector fields Zt := (1−t)Z0+tZ1.
Since Z0 = Z1 along L, we can pick a neighborhood N of L such that Zt is nowhere vanishing
for all t. We also select a submanifold Σ ⊂ N with dim(Σ) = dim(U)− 1 and such that

Σ t Zt for all t and L ⊂ Σ.

We can find such a Σ by, say, picking a metric and using the exponential map on a neigh-
borhood of L in the sub–bundle νL ∩ κ⊥0 of TL. By shrinking Σ and scaling Zt to λZt,
0 < λ < 1, we can define a smooth family of embeddings

Ψ : (−1, 1)s × Σ× [0, 1]t → N, Ψt(s, x) = exp[Zt]s(x).

Here exp[Zt] denotes the flow generated by Zt. We let ψt = Ψt ◦Ψ−1
0 . To see the properties

of (2.4.1), note that Ψt(0, l) = l for all l ∈ L and d(Ψt)0,l(s, u) = sZt + u. This implies the
first two properties. The third is trivial, while the fourth is immediate from [Φt]∗(∂t) = Zt.
We can make ψt constant near 0 and 1 by simply reparametrizing with respect to t.

Lemma 2.4.16. Let L be a manifold with boundary and let (T ∗L, ω) be the cotangent bundle
with the standard symplectic form. Let κ = T (∂T ∗L)ω denote the characteristic foliation of
the boundary ∂T ∗L and let φ : T ∗L × (0, 1] → T ∗L denote the family of maps φt(x, v) =
(x, tv). Then [φt]∗(κ) = κ.

Proof. By passing to a chart, we may assume that L ⊂ R+
x1
×Rn−1

x and T ∗L ⊂ R+
x1
×Rn−1

x ×Rn
p .

Then κ is simply given on ∂T ∗L ⊂ {0} × ×Rn−1
x × Rn

p by

κ = span(∂p1) = span(∂x1)ω ⊂ T (∂T ∗L).

Under the scaling map, we have [φt]∗(∂p1) = t · ∂p1 . This implies that [φt]∗(κ) = κ.
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