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ARTICLE

Versatile stochastic dot product circuits based
on nonvolatile memories for high performance
neurocomputing and neurooptimization
M.R. Mahmoodi 1, M. Prezioso1 & D.B. Strukov1*

The key operation in stochastic neural networks, which have become the state-of-the-art

approach for solving problems in machine learning, information theory, and statistics, is a

stochastic dot-product. While there have been many demonstrations of dot-product circuits

and, separately, of stochastic neurons, the efficient hardware implementation combining both

functionalities is still missing. Here we report compact, fast, energy-efficient, and scalable

stochastic dot-product circuits based on either passively integrated metal-oxide memristors

or embedded floating-gate memories. The circuit’s high performance is due to mixed-signal

implementation, while the efficient stochastic operation is achieved by utilizing circuit’s noise,

intrinsic and/or extrinsic to the memory cell array. The dynamic scaling of weights, enabled

by analog memory devices, allows for efficient realization of different annealing approaches

to improve functionality. The proposed approach is experimentally verified for two repre-

sentative applications, namely by implementing neural network for solving a four-node graph-

partitioning problem, and a Boltzmann machine with 10-input and 8-hidden neurons.
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Computations performed by the brain are inherently sto-
chastic.1–7 At the molecular level, this is due to stochastic
gating of ion channels of the neurons3 and probabilistic

nature of transmitter release at the synaptic clefts.4 Noisy, unre-
liable molecular mechanisms are the reason for getting
substantially different neural responses to the repeatable pre-
sentations of identical stimuli, which, in turn, allows for a com-
plex stochastic behavior, such as Poisson spiking dynamics.2,5,6

Though noise is always detrimental for conventional digital cir-
cuits, a very low signal-to-noise ratio (SNR) of neuronal signals7

has been suggested to play an important role in the brain
functionality, e.g., in its ability to adapt to changing
environment1,2,5,6, as well as for achieving low energy operation8.

It is therefore not surprising that many developed artificial
neural networks rely on stochastic operation. For instance,
probabilistic synapses could be used as a main source of ran-
domness for reinforcement learning9, or as regularizers during
training, significantly improving classification performance in
spiking neural network10. In such networks, probabilistic
synapses also allow relaxing the requirements for synaptic weight
precision due to temporal averaging over a spike train11.

One of the prominent examples is a Boltzmann machine, a
recurrent stochastic neural network with bidirectional
connections12,13, which can be viewed as a generalization of the
Hopfield network14,15. In its simplest form, the Boltzmann
machine is a network of N stochastic binary neurons. At each
discrete-time instance, the network is in a certain state, which is
characterized by binary Vi outputs of its neurons. The network
dynamics is arranged to model thermal equilibrium, at certain
temperature T, of a physical system with energy E:

E ¼ �
XN

i¼1

ViIi Ii ¼
XN

j¼1

GijVj þ Ibi ; ð1Þ

where Ii and Iib are analog input and bias, which are typically
represented by currents in the circuit implementation, while Gij is
a synaptic weight (conductance) between ith and jth neurons. The
network state is updated by changing the state of the randomly
chosen neurons. The probability of a neuron being switched to
the digital state “1” with amplitude VON—in other words, turned
“on” or being activated—is a sigmoid function of its input i.e.,

Pr V ¼ VONð Þ ¼ 1
1þ exp �I0=Tð Þ : ð2Þ

Here T is a dimensionless temperature, and I′ is a normalized
input current I′= I/Imax, where Imax is the largest possible neuron
input current, common for the whole network. The process of
simulated annealing, in which initially high temperature is gra-
dually decreased over time, helps the network to escape local
energy minima15.

As a stochastic version of Hopfield networks, the Boltzmann
machine, combined with simulated annealing, is a powerful
approach for solving combinatorial optimization problems15.
Moreover, such networks can be utilized to compute conditional
and marginal probabilities by fixing the states of some neurons
and sampling outputs of the unclamped ones. Such functionality
is central for many Boltzmann machine derivatives, such as deep-
belief networks16, and Bayesian model computing17. The inven-
tion of the restricted Boltzmann machine (RBM)12,18 and efficient
training algorithms19 have led to its widespread use in machine
learning tasks18, including dimensionality reduction20, classifi-
cation21, and notably, collaborative filtering, for example enabling
the best performance in the Netflix movie prediction challenge22.
Furthermore, owing similarities to Markov random fields,
Boltzmann machines have found many applications in statistics
and information theory18.

The stochastic dot-product computation described by Eqs. 1, 2
is the most common operation performed during inference and
training in Boltzmann machines and its variants, and hence its
efficient hardware realization is of utmost importance. By now,
there have been many demonstrations of high performance dot-
product circuits, most importantly including analog and mixed-
signal implementations based on metal-oxide memristors23–27,
and phase-change28,29 and floating-gate memories30, developed
in the context of neuromorphic inference applications31–33.
Analog dot-product circuits based on metal-oxide memristors
have been also demonstration in the context of neural
optimization34,35.

For Boltzmann machines, the stochastic functionality can be
realized in neural cells, peripheral to the array of memory cells,
rather than at much more numerous synapse locations, which
somewhat relaxes the design requirements. Still, prior studies
showed that even with a relatively large synapse to neuron ratio
(~1000) and deterministic dot-product functionality, the neuron
circuitry may constitute a substantial part of the neuromorphic
inference systems30,36,37. Because of such concerns, purely CMOS
implementations, see, e.g., CMOS probabilistic gates38 and
CMOS-based Ising chip for combinatorial optimization pro-
blems39, may not be very appealing. (These challenges are
somewhat similar to CMOS-implemented random number gen-
erators in the context of hardware security applications, and
served as a motivation to use emerging memory device
technologies40,41.)

The implementation overhead of stochastic functionality might
be less of a problem for some memory devices, in which switching
between memory states is inherently stochastic, e.g.,
ferromagnetic42,43, phase-change44,45, ionic46,47 and thermally
driven metal-oxide48, and solid-state electrolyte devices49,50.
Unfortunately, many of such devices come with other severe
challenges. For instance, an efficient implementation of the large-
scale dot-product computation is a major challenge for magnetic
devices. The hybrid option of combining magnetic stochastic
neurons with the already mentioned mixed-signal dot-products is
not appealing, because an extreme energy efficiency of spin-based
computing is typically compromised by the interface with charge-
based devices. The technology of magnetic devices is also
quite immature judging by low-complexity of experimental
demonstrations51,52 (Supplementary Table 1). The biggest chal-
lenges for the remaining devices are low switching endurance and
variations in switching characteristics.

In this paper, we propose to utilize intrinsic and extrinsic
current fluctuations in mixed-signal circuits based on analog-
grade nonvolatile memories to implement scalable, versatile, and
efficient stochastic dot computation. The deterministic version of
such dot-product circuits have been extensively investigated due
to their potentials for high speed, high density, and extreme
energy efficiency—see, e.g., refs. 53,54. Unlike many prior
proposals42,43,51,52, our approach is suitable for large-scale dot-
product circuits and has no endurance restrictions for inference
operation, which is typical for other proposals44–50,55–57. We
experimentally verify stochastic dot-product circuits based on
metal-oxide memristors and embedded floating-gate memories
by implementing and testing Boltzmann machine networks with
non-binary weights and hardware-injected noise. We further
demonstrate how scaling of synaptic weights during operation
can be used for a very efficient annealing implementation to
improve functional performance.

Results
Stochastic dot-product circuit. Figure 1a shows the investigated
current-mode analog circuit based on nonvolatile memories, in
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which vector-by-matrix operation is efficiently implemented on
the physical level due to Ohm’s and Kirchhoff’s laws. For
memristor-based circuits (Fig. 1b), the weights are encoded with
device conductances, so that the current flowing into the virtually
grounded neuron is given by ΣiGiVi and the network operation is
described by equations in Fig. 1a. For the considered discrete-
state networks, a crosspoint floating-gate transistor can be con-
veniently viewed as a switch connecting a current source to a
neuron’s input (Fig. 1c). The cell currents Icell at voltage bias VON

used at network operation are pre-set according to the desired
synaptic weight. The neuron input current is given by ΣiIcell,i(Vi),
where Icell (VOFF) ≈ 0 when digital “0” is applied to the
cell’s switch.

The circuit noise is detrimental to the deterministic dot-
product operation and, e.g., defines the lower bound on the
memory cell currents for a desired computing precision58. The
main difference with prior work is that in the proposed operation
the noise is exploited for stochastic functionality. Specifically, two
types of noise sources are considered: intrinsic noise to each
memory cell and externally added noise to each output, e.g., from
additional fixed-biased memory cells or using the input-referred
current noise of peripheral circuits.

To analyze stochastic operation, let us consider normally
distributed independent noise sources. This assumption is
justified due to the dominant white (thermal and/or shot)

intrinsic noise for the most practical >100MHz bandwidth
operation, which would be realistic for both floating-gate
transistor and memristor-based analog circuits in which memory
arrays are tightly integrated with peripheral circuits53,54. The
current I is sampled and latched at the peripheral neuron, which
consists of a current-mode sensing circuitry feeding, in the case of
a discrete-time networks, a digital flip flop (Fig. 1a). The flip flop
effectively implements a step function of the sampled value, so
that the probability of latching a digital “1” state is

Pr V ¼ VONð Þ ¼ 1
2
þ 1
2
erf

Iffiffiffi
2

p
σ
; ð3Þ

where σ is the standard deviation of the output current.
There are two characteristic regimes for stochastic operation

defined by Eq. 3. If thermal noise dominates, the fluctuations of
an output current would be independent of its average value. In
this case, Eq. 3 matches almost exactly the sigmoid function of
Eq. 2 given that temperature is inversely proportional to a peak
SNR Imax/σ as

T ¼
ffiffiffiffiffi
2π

p
σ

4Imax
: ð4Þ

With predominant shot noise behavior, σ / ffiffi
I

p
. Even in this

case, Eq. 3 could closely approximate Eq. 2 assuming some
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Fig. 1 Stochastic dot-product circuit and its applications in neurocomputing. a Circuit schematics for the design with current-mode sensing with crosspoint
device implementation based on (b) memristors and (c) floating-gate memories. The equations in figure corresponds to memristor implementation,
while their modified version for floating-gate design are described in text. d An example of the considered differential-pair Boltzmann machine
implementation. e The implementation of generalized Hopfield neural network. The blue background highlights the baseline implementation. The yellow,
green, and red backgrounds highlight additional circuitry for the proposed “stochastic”, “adjustable”, and “chaotic” approaches, respectively. The gray
shaded circles show synaptic weights which are typically set to zero. Labels “Σ”/ “x” inside amplifier symbols denote summation / scaling. For clarity, panel
a does not show bias currents, panels (a) and (e) show single-ended network, while panel (d) shows (a) small two-input, two-hidden neurons fragment of
the considered network
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effective temperature—see Supplementary Fig. 1 and its discus-
sion in Supplementary Note 1 for more details.

The first regime is representative of intrinsic thermal noise in
metal-oxide memristors. Indeed, shot noise in such devices would be
negligible due to typically diffusive electron transport59 and
relatively small VON, which should be not much larger than a
thermal voltage at room temperature to avoid disturbance of
memory state. Note that intrinsic thermal noise is independent of
the applied voltage and will be contributed by all memristors in the
column, even zero-biased crosspoint devices, thus excluding any
input dependence (Fig. 1b). On the other hand, the intrinsic shot
noise is characteristic of a ballistic transport in nanoscale floating-
gate transistors with sub-10-nm channels60,61. This noise can be
completely cut off by opening the cell’s switch (Fig. 1c). For both
implementations, the effective computing temperature can be
dynamically varied by changing Imax. Moreover, the scaling constant
can be uniquely selected for each array’s input by adjusting its
voltage amplitudes—see, e.g., amplifiers marked with “x” in Fig. 1e.

Stochastic dot-product operation and runtime temperature
scaling are demonstrated next in the context of two applications.

Memristor-based RBM. In our first experiment, we focused on
the demonstration of an RBM using 20 × 20 crossbar circuits with

passively integrated Pt/Al2O3/TiO2-x/Pt memristors (Fig. 2),
fabricated using the device technology reported in ref. 24. The
integrated memristors are sufficiently uniform for programming
with less than 5% tuning error, and have negligible conductance
drift over time. Limiting the applied voltage bias across mem-
ristors to | VON | ≤ 100mV prevents disturbance of memory states
during the network operation. At such small voltages, the
memristor I–V characteristics are fairly linear, with I(VON)/(2I
(VON/2)) < 1.02 for all conductive states24. (More details on the
memristor technology and crossbar circuit operation is provided
in Methods section.)

The studied bidirectional network consists of 10 visible and 8
hidden neurons (Fig. 2a) with synaptic weights implemented as
differential memristor pairs. Each visible neuron is connected to a
single vertical electrode of the crossbar, while each differential
hidden neuron is attached to two horizontal crossbar electrodes
(Fig. 1d). The forward propagation of the information, i.e., from
visible neurons to hidden ones, and differential sensing is
performed similarly to previous work24. In the backward pass,
digital “1” input from the hidden neuron is implemented by
applying ±VON to the corresponding differential pair of lines,
while grounding both lines for zero input. The current is then
sensed at single-line input of the visible neuron.
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Fig. 2 Memristor-based restricted Boltzmann machine. a A bipartite graph of the considered RBM network and (b) its implementation with passively
integrated metal-oxide memristors. The red rectangle highlights the utilized area of 20 × 20 crossbar array, while the inset shows the conductance map,
measured at 50mV, after programming devices to the desired states. Note that though the neurons in Boltzmann machine are typically partitioned into visible
and hidden ones, for simplicity, we use the same notations for both types. c Measured stochastic neuron transfer functions at several VON, i.e., different
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relative to the largest possible current, which corresponds to all ten differential synaptic weights set to the maximum value of 32 µS
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For simplicity, we study the network with zero bias weights.
The remaining weights were chosen by first generating random
real numbers within [−1,+ 1] range. These values were mapped
to −32 µS to+ 32 µS at 50 mV maximum conductance range of a
differential pair using the 20 µS conductance bias and the 4–36 µS
dynamic range of individual devices. After such individual device
conductances had been determined, memristors were pro-
grammed using automated tuning algorithms62 with the 5%
tuning accuracy to the desired states (inset of Fig. 2b).

Figure 2c shows the stochastic dot-product results when
utilizing external noise, which was injected directly in the
hardware from the read-out circuitry. The noise spectrum is flat
at >~1 KHz frequencies (Supplementary Fig. 2a), which results in
approximately fixed standard deviation of the injected noise (inset
of Fig. 2c) for the studied 1MHz bandwidth. Specifically, these
results were obtained by applying all possible digital inputs to the
hidden neuron #2, and collecting 100,000 samples of the crossbar
array output currents for each specific input, while emulating the
peripheral circuitry in software. (A possible implementation of
peripheral circuits is shown in Supplementary Fig. 3.) The
effective computing temperature, i.e., the slope of sigmoid
function, is controlled by VON.

In our main RMB experiment, we first apply randomly
generated digital voltages to the vertical crossbar lines connected
to visible neurons, then sample output currents on the horizontal
crossbar lines feeding hidden neurons, and convert sampled
values to the new digital voltages of hidden neurons according to
the signs of the corresponding differential currents. Note that
only functionality of a sensing circuit and latch (i.e. applying step
function to the sensed currents and holding the resulting digital
value) are realized in a software, while the probability function of
Eq. 3 is implemented directly in the hardware. In the next step,
the calculated voltages at the hidden neurons are applied to
horizontal lines and the new voltages at the input neurons are
computed similarly to the forward pass. The voltages at the input
and hidden neurons represents the new state of the network after
one forward/backward state update (“epoch”) and are used to
calculate its energy according to Eq. 1. These updates are repeated
multiple times in a single run of the experiment.

Figure 2d shows the results of such experiment, namely the
energy distributions at different effective computing temperatures
calculated from Eq. 4. Each distribution corresponds to the
measured energies in the final 500 epochs of a single run (see an
example for such run in Fig. 2e), averaged across 100 different
trials, that start with randomly chosen initial neuron states. For a
wide range of effective computing temperatures, the experimen-
tally measured data are in good agreement with simulations,
which were based on the stochastic binary neuron with ideal
sigmoid probability function. Note that because of bipartite
network topology, the system quickly converges to thermal
equilibrium, which is indirectly confirmed by comparing energy
distributions over different time periods (inset of Fig. 2d).

Neurooptimization based on floating-gate memories. In our
second experiment, we investigated implementation of general-
ized Hopfield network with embedded NOR flash memory for
solving combinatorial optimization problem (Fig. 3). The
experimental work was performed on 6 × 10 integrated array of
supercells (Fig. 3a), using 55-nm technology modified from the
commercial process for analog tuning63. One supercell (Fig. 3a)
hosts two floating-gate transistors sharing a common source
terminal, so that there are 120 memory cells in such array. The
subthreshold currents of crosspoint transistors can be tuned
uniquely and precisely for each cell within a very wide dynamic
range by adjusting the charges at the floating gates63, enabling

very efficient implementation of dot-product operation in which
inputs are applied to word gate (WG) lines and output currents
are sensed from the drain (D) lines46–49,54. Furthermore, the
currents can be simultaneously scaled (and even completely
suppressed), without re-tuning, for all cells sharing the same
coupling gate (CG)/WG line, by controlling CG and/or WG
voltage amplitudes, while keeping other cell’s terminals biased
under typical reading conditions. More details on the utilized
embedded NOR flash memory devices and circuits are provided
in Method section.

Figure 3b shows the results of stochastic dot-product operation
for the flash memory implementation. For these measurements,
currents of 10 cells, sharing a drain line of the memory array,
were set with 20% tuning precision to 175 nA, which is
representative value for the considered experiment. After that,
20,000 samples of single-ended bit-line currents were collected at
10 KHz bandwidth for 30 randomly selected inputs. Similar to
RBM study, fixed white noise was added externally directly from
the read-out circuit (inset of Fig. 3b, Supplementary Fig. 2b),
while other peripheral functions were emulated in the software.
To consider different neuron’s input currents, m cells (out of 10
total) on the bit line were randomly chosen, i.e., a specific voltage
was applied to the selected m WG lines, while the remaining cells
were disabled by grounding their WG lines. This experiment was
repeated three times for each m from 1 to 10. The effective
computing temperature was controlled by adjusting CG voltage.

Our specific focus is on solving graph-partitioning problem
with parameters specified in Fig. 3c. Supplementary Note 2
provides more details on the problem formulation and its neural
network implementation. The neural network weights were
mapped to the cell currents using (Icell)max= 1.0 µA (Supple-
mentary Eq. 6), which resulted in comparable to memristor study
range of SNRs. To demonstrate versatility of the proposed
circuits, four different variations of Hopfield networks were
considered for solving this combinatorial optimization problem:
an original approach (labeled as “baseline”)14; a scheme with
dynamically adjusted problem/energy function (“adjustable”); a
network with chaotic annealing (“chaotic”)64; and, finally, a
generalized Hopfield network with simulated annealing imple-
mentation, which is enabled by stochastic dot-product circuits
(“stochastic”). For all approaches, the implemented network is
discrete time/state with state updates performed sequentially for a
randomly selected neurons during operation. The array and bias
conductances (Fig. 3d) were calculated according to Supplemen-
tary Eq. 6.

More specifically, the proposed “adjustable” approach draws
inspiration from the work on quantum annealing65, in which an
initial problem is modified to ease convergence to a global
optimum. Similarly, we modified the problem by adding an
additional node with relatively large weight and zero-weight edges
(Fig. 3c). The additional node weight was exponentially decreased
from 50 to 0.2 at each update, thus gradually turning the mapped
problem and its energy function (Supplementary Eq. 4) to those
of the original one. In the hardware implementation, the extra
node was realized by extending the original memory cell array by
one column and one row (highlighted with green background in
Fig. 1e) and decreasing WG voltage from 1.2–0.2 V. Note that the
additional bias line was required to separate contribution of bias
currents from the original node weights and that of the added one
(Supplementary Eq. 5).

For the chaotic annealing approach, we followed the idea of
ref. 64 to utilize transient chaos for better convergence. The
chaotic behavior was facilitated by initially employing large
negative diagonal synaptic weights (Icell=−1.2 µA at VCG= 1.5
V and VWG= 1.2 V) which were encoded in a separate array of
cells (Fig. 1e). These weights were decreased linearly to ~0 with
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each update by changing WG voltage on these additional cells
during runtime from 1.2 to 0 V.

In the baseline, adjustable, and chaotic annealing experiments,
all updates were deterministic (i.e. with larger SNR for neuron
input currents) due to using larger CG voltages (Supplementary
Table 2), and also very low (~20 Hz) operational bandwidth,
which further reduced noise impact. For stochastic Hopfield
network, the nodes were updated probabilistically at 20 KHz
bandwidth according to Eq. (2). To implement simulated
annealing, CG voltage was exponentially increased from 1 to 2
V in 80 steps, which corresponds to 80 × decrease in effective
computing temperature.

Figure 3e shows the main results of neurooptimization study.
The convergence for the baseline approach is fast (see also
additional experimental results in Supplementary Fig. 4), though
the network often gets stuck in the local minima. As a result, the
final energy, averaged over many runs, is substantially higher
than the global optimum (“ground state” line in Fig. 3e), which
corresponds to the solution shown with a dashed red line in
Fig. 3c. On the other hand, optimal solution was almost always
found using three remaining approaches. For the adjustable
approach, the initial increase in energy of the original 4-node

problem is expected, given the quick convergence to the global
energy optimum of the 5-node problem. As the additional node is
gradually eliminated from the network, 4-node problem energy
quickly drops to below baseline level, resulting in a better
solution. This is likely due to the network state being very close to
its global minima during convergence and/or more optimal initial
state corresponding to the optimal solution of the 5-node
problem.

For all considered approaches, experimental data follow very
closely simulation results (Fig. 3e). Furthermore, the SPICE
simulations at 100MHz operation bandwidth also show similar
performance when using only intrinsic cell noise (Supplementary
Fig. 4a).

Discussion
The considered case studies allow contrasting stochastic dot-
product circuit implementations with two representative memory
technologies.

The main advantage of floating-gate memory devices is their
mature fabrication technology, which can be readily used for
implementing practically useful, larger-scale circuits. Their
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substantial drawbacks for the considered applications include
unipolar electron transport, which, e.g., necessitates using two
different sets of cells with similarly tuned conductances, for for-
ward and backward computations in RBM networks. Floating-
gate memory cells are also sparser and less scalable, though these
deficiencies are somewhat compensated by lower peripheral
overhead due to the cells’ high input and output impedances30,54,
and also by having more design options in scaling cell currents
due to multi-terminal cell structure, which is important for the
considered annealing approaches.

Furthermore, there are two specific problems for floating-gate
implementation which may lead to a “smearing” of neuron’s
transfer function. First, for differential current sensing, the total
injected (shot) noise depends on the absolute currents at the
differential lines, rather than their subtracted value. The problem
can be better illustrated by considering two extreme cases, namely
when subtracting two smaller similar currents and two larger
similar currents on the differential lines. The total differential
current could be comparable, though due to the dependence of
the intrinsic shot noise on the cell currents, the SNR would be
larger (and hence effective temperature smaller) for the latter
case. To investigate this issue further, we considered a 100-node
graph-partitioning problem with randomly distributed weights
and edges within [0,1] interval. Figure 4a shows the corre-
sponding neural network weight map. We then simulated sto-
chastic neuron’s transfer functions by adding shot-like noise σ2=
αI to differential lines and considering different combinations of

input currents for all neurons (Fig. 4b). Second, due to variations
in subthreshold slopes of floating-gate transistors, there are
noticeable changes in relative weights when scaling currents.
Specifically, in the ideal case, the relative cell currents (and hence
the synaptic weights) should scale similarly when changing CG
voltage in the proposed annealing schemes. In practice, however,
the cells’ currents scale differently due to process-induced varia-
tions and voltage dependency of the subthreshold slope. To
quantify this issue, we have measured subthreshold characteristics
of the 100 devices, which were tuned randomly at VCG= 2 V,
VWG= 1.2 V) to currents ranging from 40 nA to 1 μA (Fig. 4c).
Fortunately, extensive modeling results show that the resulting
smearing of the stochastic neuron transfer function due to both
issues is rather negligible, more so at lower temperatures (Fig. 4d).

On the other hand, metal-oxide memristors are arguably the
most prospective candidate for the proposed circuits. Because of
input-independent intrinsic noise and linear static I–V char-
acteristics at small biases, the non-idealities discussed in Fig. 4 are
much less of a problem for memristors. Their major challenge,
however, is immature technology requiring substantial improve-
ments in device yield and I–V uniformity. The improved device
technology should also feature lower cell currents, by approxi-
mately two orders of magnitude, to improve system level per-
formance and to allow for high effective temperatures during
operation when relying on intrinsic noise in the stochastic dot-
product circuits. Due to the linear dependence of the off-state
current on the device footprint, cell currents in the utilized
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memristor technology can be reduced by scaling-down device
features24. Moreover, memristors with suitable range of resis-
tances based on other materials have been also recently
reported66,67 and the further progress in this direction can be
helped by development of foundry-compatible active metal-oxide
memristor (1T-1R RRAM) macros41,68.

Similar to other applications53, a limited tuning precision and
switching endurance for memristors and flash memories should
be adequate for “inference”-like computations in both studied
applications. For example, simulation results in Fig. 5 show
almost no degradation in performance for up to ~5% and ~10%
tuning errors (which is crudely equivalent to 3 and 2 bits of
weight precision) for the studied RBM network and graph-
partitioning problem, respectively. We also envision that the
proposed neurooptimization hardware will be the most useful for
computationally intensive problems, and thus require relatively
infrequent weight re-tuning because of longer runtimes. In
principle, implementations based on high-endurance digital
memories, such as ferroelectric devices69, would broaden the
application space for the proposed circuits, e.g., enabling RBM
training. Such implementations, however, would require multiple
digital devices per synaptic weight, resulting in sparser designs
with worse performance and energy efficiency.

In summary, we proposed to utilize extrinsic and intrinsic
noise sources in mixed-signal memory-based circuits to imple-
ment efficient stochastic dot-product operation with runtime
adjustable temperature. We then experimentally verified such
idea by demonstrating memristive RBM and solving combina-
torial optimization problem with floating-gate memory neuro-
morphic circuits. We believe that the future experimental work
should focus on more promising continuous time/state networks
with parallel state update70 based on fully integrated hardware.
The most urgent theoretical work includes modeling of the
impact of the circuit and device non-idealities on the network
functional performance, carrying out more rigorous comparison
of annealing techniques for neurooptimization, as well as the
development of larger-scale hardware suitable for more practical
applications. In this context, it is worth mentioning that for the
hardest combinatorial optimization problems, such as maximum
clique problem, finding even largely suboptimal solution is
challenging, which could greatly relax the device and circuit
requirements.

Methods
Memristor array. The RBM is implemented with a 20 × 20 passively integrated
(“0T-1R”) memristive crossbar circuits fabricated in UCSB’s nanofabrication
facility (Supplementary Fig. 5a–d). The active bilayer was deposited by low tem-
perature reactive sputtering method, while crossbar electrodes were evaporated
using oblique angle physical vapor deposition and patterned by lift-off technique
using lithographical masks with 200-nm lines separated by 400-nm gaps. Crossbar
electrodes are contacted to a thicker (Ni/Cr/Au 400 nm) metal line/bonding pad,
which were implemented at the last step of the fabrication process.

Similar to ref. 24, majority of the devices were electroformed, one at a time, by
applying one-time increasing amplitude voltage sweeps using automated setup.
Automated “write-verify” tuning algorithm62, involving alternative application of
write and read pulses, was used for setting the memristor conductances to the
desired values. Specifically, the memristors were formed/written one at a time using
“V/2-biasing scheme”, i.e. by applying half of the write voltages of the opposite
polarity to the corresponding two lines connected to the device in question, while
floating/grounding the remaining crossbar lines.

The formed memristors have fairly uniform switching characteristics, with set
and reset voltages varying within 0.6–1.5 V and −0.6 to −1.7 V, respectively. The
memristors’ I–Vs are nonlinear at larger biases due to aluminum oxide tunnel
barrier in the device stack, which helps with limiting leakage currents via half-
selected devices during programming. Voltage drops across the crossbar lines are
insignificant because of fairly large conductance of lines (~1 mS) compared to those
of the crosspoint memristors (<36 µS). Supplementary Note 3 elaborates on the
required further improvements in the device technology to avoid IR drop problem
for more practical (i.e. larger-scale and higher-density) crossbar circuits.

More details on fabrication, electrical characterization, and memristor array
operation can be found in refs. 24,33.

Embedded NOR flash memory array. The 12 × 10 arrays of floating-gate cells
were fabricated in commercial 55-nm embedded NOR memory process, redesigned
for analog applications (Supplementary Fig. 6a–c)63. (Such circuits were previously
used to demonstrate vector-by-matrix multiplication with less than 3% weight/
computing precision63). The array matrix is based on “supercells” (Supplementary
Fig. 6a, b), which consist of two floating-gate transistors sharing the source (S) and
the erase gate (EG) and controlled by different word (WG) and coupling (CG)
gates. The cells are tuned using write-verify tuning procedure62,63. (Note that WG,
D, and S supercell terminals are typically denoted by, respectively, WL, BL, and SL
in the context of digital memory circuits. The new labels are more relevant to the
considered application and were used to avoid possible confusion.)

After the weight tuning process had been completed, the network operation was
performed using VD= 1 V, VWG= 0.8 V, VS= 0 V, VEG= 0 V, and VCG ∈ [1 V, 2
V]. Such biasing conditions were mainly imposed by the requirement of keeping
the transistors in the subthreshold region (Fig. 4c), ensuring large (>30 dB)
dynamic range of SNRs, and minimizing the impact of subthreshold slope
variations on weight scaling.

Characterization setup. The memristive crossbar circuit and flash memory chips
were wire-bonded and mounted on custom printed circuit boards (Supplementary
Figs. 5f and 6e). To steer the applied biases and sensed currents, the developed
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board for flash memory chip also houses a microcontroller and a bank of low-
leakage, low-noise ADG1438 analog multiplexers, while low-leakage Agilent
E5250A switch matrix was used instead in memristor setup. The boards were
connected to Agilent B1500A semiconductor device parameter analyzer, and an
Agilent B1530A measurement unit to perform weight tuning, characterization, and
all other measurements (Supplementary Figs. 5e and 6d). Agilent tools and printed
circuit boards were controlled by C++ script running on a personal computer.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.
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