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Abstract Alterations of gut microbes play a role in the

pathogenesis and progression of many disorders including

liver and gastrointestinal diseases. Both qualitative and

quantitative changes in gut microbiota have been associ-

ated with liver disease. Intestinal dysbiosis can disrupt the

integrity of the intestinal barrier leading to pathological

bacterial translocation and the initiation of an inflammatory

response in the liver. In order to sustain symbiosis and

protect from pathological bacterial translocation, antimi-

crobial proteins (AMPs) such as a-defensins and C-type

lectins are expressed in the gastrointestinal tract. In this

review, we provide an overview of the role of AMPs in

different chronic liver disease such as alcoholic steato-

hepatitis, non-alcoholic fatty liver disease, and cirrhosis. In

addition, potential approaches to modulate the function of

AMPs and prevent bacterial translocation are discussed.

Keywords Dysbiosis � Innate immune system � Bacterial
translocation � Microbiome

Abbreviations

AhR Aryl hydrocarbon receptor

AMPs Antimicrobial proteins

FXR Farnesoid X receptor

IL-22 Interleukin 22

ILC3 Innate lymphoid cells type 3

LPS Lipopolysaccharide

NAFLD Non-alcoholic fatty liver disease

NASH Non-alcoholic steatohepatitis

Reg Regenerating island-derived protein

TLR Toll-like receptor

Introduction

The gastrointestinal tract is the largest surface area in the

body and is home to a vast consortium of symbiotic bacteria

that play an important role in human health and disease.

Microbiota are involved in basic human biological pro-

cesses, including food digestion, modulation of immune

responses, regulation of epithelial development and gener-

ation of a variety of products as a result of microbial meta-

bolic activities. These products together with host–bacteria

interactions influence both normal physiology and disease

susceptibility. A disruption of the symbiosis between

microbiota and host is known as dysbiosis and is described in

multiple chronic diseases such as obesity [1], malnutrition

[2], neurological disorders [3], inflammatory bowel disease

[4], diabetes mellitus [5], metabolic syndrome, atheroscle-

rosis [6], cancer [7] and liver disease [8–10].

Nutrition, other environmental and genetic factors can

independently cause changes in the gut microbiota com-

position, which can present as qualitative changes such as

increased proportions of harmful bacteria and reduced

levels of beneficial bacteria, and also quantitative changes

in the total amount of bacteria (intestinal bacterial over-

growth) [10, 11]. Intestinal bacterial overgrowth can affect

both the luminal compartment and mucosa-associated

bacteria [12]. As a result of dysbiosis, intestinal epithelial

integrity is lost, mucus-associated defense is weakened and
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the intestine becomes more permeable. Hence, viable

bacteria or microbial products are able to migrate from the

intestines to mesenteric lymph nodes or other extra-gas-

trointestinal organs via the bloodstream, causing disease

[13]. At distant sites, these bacterial products can be rec-

ognized via toll-like receptors (TLRs). Specific TLRs

recognize pathogen-associated molecular patterns associ-

ated with bacteria. TLR-2 may be activated by various

membrane components of Gram-positive bacteria. TLR-4

recognizes the lipid A portion of lipopolysaccharide (LPS).

TLR-5 may be activated by flagellin, and bacterial DNA

activates TLR-9. Activation of TLRs on macrophages leads

to a variety of inflammatory cascades that in turn cause

inflammation and may represent the driving force behind

disease progression [14]. In addition, upon liver injury,

hepatic stellate cells undergo an activation process in

which they express TLR4. Therefore, LPS and other TLR

ligands may enhance fibrogenic responses via direct stel-

late cell activation. Lastly, as also hepatocytes express

TLR-2 and TLR-4, bacterial recognition by TLRs on

hepatocytes may account for cell death occurring during

liver injury [15].

Besides the tightly interconnected intestinal epithelial

lining, the physical barrier to separate microbiota from

intestinal surface is formed by a mucus layer. This mucus

is secreted by goblet cells and largely consists of mucin

glycoprotein sheets. In the colon, where mucus consists of

two layers, the inner mucus layer is devoid of bacteria

whereas the outer is colonized [16]. Likewise, in the small

intestine bacteria are kept on distance from the epithelial

wall [17]. In order to sustain the mucosal barrier and pro-

tect the host against enteric pathogens, a range of host

antimicrobial factors are produced in the intestinal

epithelium [18]. These intestinal antimicrobial proteins

(AMPs) mediate killing of bacteria by attacking the basic

cell wall structures through enzymatic and non-enzymatic

mechanisms. Interestingly, dysfunctional antimicrobial

defense has been described in different chronic liver dis-

eases [19–21].

In this review, we summarize evidence supporting the

contribution of bacterial translocation and the role of

antimicrobial proteins in the development and progression

of different chronic liver diseases such as alcoholic and

non-alcoholic fatty liver disease (NAFLD), and cirrho-

sis (Fig. 1). Moreover, potential approaches to modulate

the function of antimicrobial proteins to prevent bacterial

translocation are discussed.

Antimicrobial proteins

The surface of the mammalian intestine continuously

encounters bacteria, fungi, viruses and parasites that could

act as pathogens. In order to cope with these microbial

challenges, a diverse collection of AMPs are produced in

the intestinal epithelium and Paneth cells which rapidly kill

or inactivate microorganisms. These AMPs consist of dif-

ferent protein families, which include defensins, catheli-

cidins, C-type lectins (such as the regenerating islet-

derived protein (REG) family), ribonucleases (RNases,

such as angiogenin 4) and S100 proteins (such as calpro-

tectin (also known as S100A8–S100A9) and psoriasin (also

known as S100A7)) [22]. Although most AMPs attack

bacterial cell wall components, different AMP families use

distinct molecular mechanisms to kill microorganisms [18].

This might explain that microbial resistance to multiple

AMPs is rare.

The expression, secretion and activity of AMPs are

under tight control of different factors. First, studies of

germ-free mice have revealed that some intestinal AMPs

require bacterial signals for their expression, whereas

others are expressed independently of the microbiota [18].

For example, the expression of regenerating island-derived

protein 3 gamma (REG3c) is essentially absent in germ-

free mice and is upregulated on colonization with a con-

ventional microbiota [23]. Besides bacterial signals, host

immune function controls the expression of these bacteri-

ally regulated AMPs. Studies in mice have shown that

bacterial recognition by TLRs on intestinal epithelial cells

is required for and upregulates the expression of REG3c
and REG3b [24, 25]. In addition, intestinal epithelial cell

expression of REG3c also requires interleukin 22 (IL-22), a
cytokine mainly expressed by RORct? type 3 innate

lymphoid cells (ILC3s) in the gut [26]. The production of

this cytokine by ILC3s is enhanced by activation of the aryl

hydrocarbon receptor (AhR) via specific bacterially

derived molecules [27–29], indicating that bacteria might

enhance the immune response to protect the host from

harmful pathogens. Taken together, the expression and

function of AMPs are the result of a symbiotic interplay

between host and commensals, in which interruptions

might cause disease. Here, we further describe the role of

AMPs, more specifically C-type lectins, in different

chronic liver diseases.

Alcoholic liver disease

Alcoholic liver disease affects several million people

worldwide and can progress from hepatic fat accumulation

(steatosis) and alcoholic steatohepatitis to cirrhosis and
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hepatocellular carcinoma [30]. Based on current under-

standing, multiple pathogenic factors are involved in the

development of alcoholic liver disease [31, 32]. Both clinical

and experimental evidence show that alcohol abuse is asso-

ciated with dysbiosis. Transfer of the dysbiotic intestinal

microbiota from alcoholic hepatitis patients to germ-free and

conventionalizedmice demonstrated that alcohol-associated

dysbiosis contributes to the development of alcoholic liver

disease [33]. In addition, gut barrier dysfunction and

increased intestinal permeability have been implicated in

alcohol-induced liver injury [34]. Mechanistically,

acetaldehyde, which is a product of ethanol metabolism, and

the generation of reactive oxygen species through cyto-

chrome P450 2E1 induction might contribute to tight junc-

tion disruption leading to increased permeability during

alcohol consumption [35]. In addition, intestinal inflamma-

tion is an importantmediator of intestinal barrier dysfunction

during alcohol consumption [11].

Bacterial translocation in alcoholic liver disease

In line with increased intestinal permeability, translocation

of bacteria has been implicated in the development of

alcoholic liver disease. Experimental induction of bacterial

overgrowth in the small intestine alone is sufficient to

result in bacterial translocation and subsequent liver dis-

ease [36]. Inversely, administration of non-absorbable

antibiotics prevented bacterial overgrowth, reduced

pathological bacterial translocation and ameliorated etha-

nol-induced steatohepatitis in rodents [37]. Moreover,

plasma levels of gut-derived microbial products such as

LPS and peptidoglycan are increased during alcohol

administration [38, 39]. Recently, our group demonstrated

that besides bacteria, also fungi contribute to alcohol-re-

lated liver disease. Increased fungal growth and translo-

cation of fungal products to the liver activate inflammatory

immune responses in the liver of ethanol-fed mice. This

process is mediated via b-glucan recognition by CLEC7A

on Kupffer cells. Moreover, relatively to healthy people,

Dysbiosis
Healthy 

microbiome

Alcohol
Diet

Gene�cs
Intes�nal 
epithelium

Kupffer cell Inflamma�on
Stellate cell Fibrosis
Hepatocyte Cell death

Lamina 
propria

Portal vein

Loss of �ght junc�ons
Increased gut permeability

Reduced an�microbial proteins
Bacterial transloca�on

TLR

Steatosis CirrhosisHealthy liver

AMPs

Viable bacteria

Bacterial products

Fig. 1 Steatosis (fatty liver) due to obesity (diet), alcohol consump-

tion, other environmental or genetic factors is associated with

dysbiosis, loss of intestinal tight junctions, reduced intestinal

epithelial integrity, increased permeability and lower expression of

antimicrobial proteins (AMPs). This allows bacterial products such as

LPS (via the paracellular route) or viable bacteria (via not further

detailed mechanisms) to translocate into the bloodstream and

mesenteric lymph nodes. Via the portal vein, bacteria and their

products reach the liver, where they promote progression to more

severe stages of liver disease via recognition by Toll-like receptors

(TLRs) on Kupffer cells, hepatic stellate cells and hepatocytes,

leading to inflammation, fibrosis and cell death (Figure made using

Servier Medical Art; http://smart.servier.com)
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alcohol-dependent patients showed altered fungal signature

and increased exposure and immune reactivity to fungal

products in the blood, indicating fungal translocation [40].

Taken together, these data support that during alcoholic

liver disease, epithelial damage in the intestine leads to

pathological translocation of microbial products, thereby

causing liver damage.

Antimicrobial defense during alcoholic liver disease

We previously described that chronic alcohol consumption

suppresses REG3c and REG3b mRNA and protein levels

in murine small intestine [19, 21], and duodenal REG3c in

patients with alcohol use disorder [21]. In mice, the lowest

levels of Reg3c and Reg3b were observed in the proximal

small intestine, where the bacterial overgrowth was most

pronounced and luminal alcohol concentrations are highest

[21]. Decreased REG3c can be restored using prebiotics,

which are associated with suppression of intestinal bacte-

rial overgrowth. We have demonstrated that ethanol-fed

Reg3c-/- and Reg3b-/- mice have increased susceptibility

to ethanol-induced liver disease, in association with

increased mucosa-associated bacteria and more transloca-

tion of bacteria to the liver. In line, intestine-specific

overexpression of Reg3c protects mice against ethanol-in-

duced liver disease by maintaining an inner mucus layer

devoid of bacteria and reducing bacterial translocation

[12]. How a reduced number of mucosa-associated bacteria

results in lower bacterial translocation is not known. Fur-

ther, mice deficient for mucin-2 production that were

protected against alcohol-induced liver lesions showed

increased defensin production as well as that of Reg3b and

Reg3c [19]. These data indicate that antimicrobial defense

plays an important role in preventing bacterial transloca-

tion and protect against alcoholic liver disease develop-

ment. Other antimicrobial molecules do not seem to be

suppressed by chronic ethanol treatment [21], although a

global analysis using transcriptomic or proteomic approa-

ches should be done in future studies.

Recent findings from our laboratory suggest that Reg3c
and Reg3b suppression during alcoholic liver disease is an

indirect effect of alcohol consumption. Using chronic–

binge ethanol-fed mice as a model of alcoholic steato-

hepatitis [41], we found that dysbiosis upon ethanol con-

sumption is associated with altered tryptophan metabolism

by bacteria [42, unpublished data]. Ethanol feeding resul-

ted in lower levels of indole-3-acetic acid, a ligand for the

AhR [29, ], and reduced production of IL-22 by intestinal

lamina propria ILC3. Importantly, AhR-dependent pro-

duction of IL-22 regulates REG3c and REG3b expression.

Administration of non-absorbable antibiotics to ethanol-fed

mice restored IL-22 production, indicating the influence of

microbiota on regulating IL-22 expression [42,

unpublished data]. Taken together, these data suggest that

alcohol consumption changes microbial composition,

thereby affecting the bacterial metabolome which alters

host immunity and allows bacterial translocation.

Nevertheless, the exact mechanism of how chronic

ethanol administration results in changes of the luminal

intestinal microbiota composition is not fully elucidated.

Undoubtedly, chronic alcohol consumption affects multiple

factors in the host and more mechanistic studies are needed

to fully understand how changes in the gut microbiome

impact liver function during alcoholic liver disease and

vice versa.

Non-alcoholic fatty liver disease

The prevalence of NAFLD is increasing worldwide and is

considered to be a hepatic manifestation of the metabolic

syndrome. Due to its strong association with obesity and

type 2 diabetes, the pathogenesis of NAFLD and its pro-

gression to more complicated conditions have been widely

accepted to be the result of multiple factors including

intestinal dysbiosis [43, 44]. Similar to patients with

alcoholic fatty liver disease, studies show that a shift in the

gut microbiota composition correlates closely with the

prevalence and progression of NAFLD. In patients with

NAFLD, a decrease of some selected members of Firmi-

cutes has been observed and obese patients with non-al-

coholic steatohepatitis (NASH) had reduced Bacteroidetes

compared with healthy controls [45]. Severity of NAFLD

is associated with gut dysbiosis and microbial metabolome

[46, 47]. These studies indicate that an alteration in the

composition of the gut microbiota is closely associated

with the development of NAFLD.

Different microbiota-dependent mechanisms have been

suggested to contribute to NAFLD pathogenesis and pro-

gression. Ethanol-producing bacteria were proposed to be

more abundant in NASH patients [48]. Further, dysbiosis

may result in production and translocation of LPS and

other inflammatory factors, changes in bile acid metabo-

lism, and increased gut permeability in a subset of NAFLD

patients [49]. This facilitates translocation of bacterial

products into the portal circulation and activation of

inflammatory processes.

Bacterial translocation in NAFLD

Studies in rodent models have shown correlations between

hepatic inflammation and dysfunction of the intestinal

mucosal barrier, which suggest that intestinal mucosal

barrier malfunction and bacterial translocation influence

the pathogenesis of NAFLD and NASH. Indeed, it has been

shown that tight junction disruption in mice and NAFLD
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patients increases intestinal permeability and bacterial

translocation to the liver through the bloodstream [50–52].

Nevertheless, data suggest that only a portion of NAFLD

patients have increased intestinal permeability. It was

reported that serum endotoxin levels were increased in only

42.1% (8/19) patients with NASH and a meta-analysis

found that only 39.1% of patients with NAFLD (n = 128)

had increased intestinal permeability [53]. Therefore, gut

barrier dysfunction with subsequent translocation of

microbial products might make only a small contribution to

development or progression of fatty liver disease, or only in

a subset of patients.

Antimicrobial defense during NAFLD

Similar to chronic ethanol consumption, animal models of

diet-induced obesity indicate a downregulation of intestinal

Reg3c [54]. Recently, we explored the role of Reg3 lectins

in the development of NASH. To induce NASH, mice

deficient for REG3b or REG3c were fed a Western-style

fast-food diet (rich in saturated fat, cholesterol and fruc-

tose) for 20 weeks. Loss of REG3b or REG3c did not

cause more severe liver disease than in their WT litter-

mates, despite elevated endotoxemia in Reg3c-deficient
mice. In addition, intestinal overexpression of REG3c did

not protect mice against NASH development [55]. Overall,

these results indicate that loss of REG3b or REG3c is

insufficient to aggravate diet-induced obesity and NAFLD.

Vitamin D insufficiency, which has been associated with

metabolic syndrome and NAFLD, has been found to be

associated with loss of Paneth cell defensins, which may

consequently lead to intestinal dysbiosis and endotoxemia.

Moreover, oral administration of human alpha-defensin 5

rebalanced gut microbiota and resolved hepatic steatosis in

mice [56]. Further, cathelicidin, another antimicrobial

peptide, suppresses lipid accumulation and hepatic steato-

sis via the inhibition of the CD36 receptor [57]. Recently,

the expression of cathelicidin-related antimicrobial peptide

(Cramp), the only member of cathelicidin antimicrobial

peptide family in mice, was found to be decreased by

alcohol exposure to mice [58]. More studies investigating

the function of different antimicrobial proteins during fatty

liver disease development and progression are needed.

Nevertheless, current data support the notion that bacterial

translocation might not be as important during NAFLD as

observed in patients with alcohol use disorder and alcohol-

induced liver disease.

Cirrhosis

For most chronic liver diseases, cirrhosis is the common

end-stage histologic distortion, characterized by the pres-

ence of regenerative nodules that causes portal hyperten-

sion. This in turn induces bacterial overgrowth by altering

intestinal motility [59]. The gut–liver axis is well studied

during cirrhosis and complications such as hepatic

encephalopathy, spontaneous bacterial peritonitis and var-

iceal bleeding are the result of pathological translocation of

bacteria or their products into the blood of cirrhotic patients

[60–63]. Evidence from both animal and patient studies

indicates a loss of epithelial tight junctions during cirrhosis.

Patients or mouse models of liver cirrhosis showed reduced

intestinal expression of zonula occludens-1, occludin and

claudin-1 compared to controls, and these changes were

more evident in cases of decompensated or more advanced

stage of disease [64]. Moreover, intestinal permeability is

enhanced via increased production of lipid peroxidation

products such as malondialdehyde in the intestine, as

described in patients and rats with cirrhosis [65, 66].

Bacterial translocation in cirrhosis

In patients with cirrhosis, changes in gastrointestinal bar-

rier and dysbiosis increase the rate of bacterial transloca-

tion [62]. Indeed, cirrhotic patients have increased levels of

LPS and bacterial DNA in the portal circulation compared

to healthy controls, with increasing amounts as the liver

function worsens [67, 68]. Whereas the rate and degree of

translocating bacterial products are higher in early cirrhosis

compared to healthy conditions, pathological translocation

of viable bacteria occurs in the decompensated stage of the

disease. During decompensated cirrhosis, a further increase

in intestinal permeability could be triggered by intestinal

inflammation and may contribute to enhanced translocation

of viable bacteria [69, 70]. Living bacteria appear to

translocate via the transcellular route (transcytosis),

whereas microbial products migrate via disrupted tight

junctions using the paracellular route and further enhance

the local and systemic inflammatory response [71]. Positive

cultures from mesenteric lymph nodes are found in about

50–60% of rats with CCl4-induced cirrhosis and in 30% of

cirrhotic patients [72, 73], supporting that pathological

bacterial translocation plays an important role in disease

progression during cirrhosis.

Antimicrobial defense during cirrhosis

Besides intestinal immune cell damage, several studies

point to deficiencies in the production of intestinal

antimicrobial peptides during cirrhosis. Cirrhotic rats with
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ascites and translocation of viable bacteria to mesenteric

lymph nodes produce lower levels of defensins molecules

compared with cirrhotic rats without bacterial translocation

[20]. The transcription factor farnesoid X receptor (FXR),

which is the nuclear receptor for conjugated bile acids,

plays a crucial role in preserving intestinal epithelial

integrity by increasing antimicrobial peptide production

and secretion [74]. Treatment of cirrhotic rats with obeti-

cholic acid, a potent agonist of FXR, significantly reduced

bacterial translocation from the intestine to the blood via

upregulation of antimicrobial proteins angiogenin-1 and a-
5 defensin, as well as tight junction proteins, and reduced

liver fibrosis [75]. Further, liver cirrhosis in advanced

stages is frequently associated with malnutrition [76],

which has deleterious effects on gut mucosal integrity and

antimicrobial peptides [77]. Data on the expression of

intestinal AMPs in cirrhosis are scarce. Mucosal expression

of several different AMPs was not altered in the ileum or

colon of patients with cirrhosis as compared with healthy

controls [78]. Taken together, experimental data in animal

models underline the concept of intestinal antimicrobial

deficiency in cirrhosis. Measurements of AMPs in more

and larger patient cohorts should be undertaken.

Modulation of antimicrobial proteins as treatment
for liver disease

Since bacterial translocation and reduced expression of

certain antimicrobial proteins in the gut are observed in

rodents and humans with liver disease, designing a strategy

to increase intestinal concentrations of antimicrobial pro-

teins or their production by intestinal epithelial cells might

be developed to prevent liver disease.

Antibiotics

Non-absorbable antibiotics have a beneficial effect on

NASH [79] and alcoholic liver disease [37], and are

commonly used to treat patients with cirrhosis [80].

Although the use of antibiotics seems to have a beneficial

effect by reducing bacterial overgrowth and preventing

bacterial translocation, no evidence supports that this is

achieved by increased expression of antimicrobial proteins.

Nevertheless, recent data from our group indicate that non-

absorbable antibiotics can restore IL-22 production by

ILC3 s during ethanol diet [42, unpublished data]. There-

fore, changes in the microbial metabolome, the composi-

tion of microbiota, or host immunity due to antibiotics

might affect antimicrobial responses indirectly.

Probiotics and prebiotics

Probiotics regulate antimicrobial defense. For instance,

probiotic Escherichia coli Nissle 1917 and a variety of

other probiotics such as lactobacilli strongly induced the

expression of human beta-defensin-2 in epithelial cell lines

[81]. In addition, probiotic lactobacilli strains are not only

able to upregulate enterocyte human beta-defensin 2 (hBD-

2) production in vitro [82]; some species, such as Lacto-

bacillus lactis, have been demonstrated to be resistant to

the antimicrobial effects of this defensin [83]. Apart from

the induction of AMP, probiotics might affect cytokine-

producing innate cells in the mucosa (e.g., IL-22) that can

increase the expression of Reg3 lectins. As such, probiotic

Lactobacillus reuteri was found to produce AhR ligands

from tryptophan metabolism, thereby enhancing IL-22

production and mucosal defense [29]. This host–commen-

sal interplay is a prime example of how beneficial bacteria

might enhance the immune response to protect the host

from pathogens.

Prebiotics are complex short-chain saccharides that

cannot be digested by host pancreatic and brush-border

enzymes, but can be selectively used and fermented by the

commensal microbiota. They stimulate probiotic bacteria

such as lactobacilli and bifidobacteria [84]. Interestingly,

we found that decreased REG3c level during ethanol-in-

duced liver disease can be partly restored using prebiotics.

Adding fructooligosaccharides to ethanol-fed mice reduced

ethanol-induced steatohepatitis and intestinal bacterial

overgrowth by partial restoration of REG3c [21]. Current

evidence supporting a beneficial effect of prebiotics for

NAFLD and cirrhosis is lacking. More studies and larger

clinical trials are needed to support the use of pre- and

probiotics in different chronic liver diseases.

Conclusion

In conclusion, several human and mouse studies have

demonstrated that intestinal barrier dysfunction, bacterial

translocation and a deficiency in various antimicrobial

proteins are implicated in the development of chronic liver

disease. We are gaining increased insight into the close

relationship between the gut and the liver evoked by dys-

biosis. The evaluation of the gut–liver axis and the inter-

vention of the relationships between antimicrobial peptides

and bacteria might aid the development of treatment and

prevention for liver disease patients. Finally, besides bac-

teria, the intestinal microbiota also includes eukaryotic

viruses [85], bacteriophages [86], and eukaryotic organ-

isms such as fungi [87]. However, studies were mainly

focused on the interaction between AMPs and bacteria.

Therefore, studies to explore the influence of AMPs on
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other microbial communities will be interesting. In that

way, more insights in the communication between host and

microbiome will be made which may provide new strate-

gies for improving health and disease management.
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