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ABSTRACT 
 

Environmental Controls on Extracellular Polysaccharide Production in a Mediterranean 

Grassland Soil  

by 

 

Kenneth Allen Marchus 

 

The Mediterranean climate has two clear seasons—the cool wet winter growing season, 

and the hot dry summer, which routinely experiences 6 months or more without rain and is 

routine in southern California. Microbes survive and biochemical processes continue even 

during the driest parts of the long summer. Biofilms, or extracellular polymeric substances 

(EPS), are thought to be an important means for microbes to survive through physically 

stressful times, (i.e. drought). Do EPS concentrations increase with the length of the dry 

season? Do EPS concentrations vary with different levels of carbon (C) inputs? We 

hypothesize that drier soils will have greater microbial EPS due to the amplified need for 

survival; additionally, soils with higher C inputs will have more C to allocate to EPS 

production, but may be dominated by plant produced EPS. 

To answer these questions, we manipulated plant cover and dry season length and 

measured EPS in seasonally dry grassland soils and evaluated pools of total EPS in the soils 

as well as the mix of sugars making up EPS. Soil cores were collected monthly from our 

research plots to capture the transition from the dry dormant summer to the wet winter 

growing season, from July 2014 to February 2015. Because EPS are largely made up of 

sugars, we used extractable sugar residues as a proxy for EPS and we analyzed them using 

Gas Chromatography coupled with Mass Spectroscopy (GC-MS).  



 

 vi 

The GC-MS data shows a significant decrease in sugar concentrations with increased 

moisture across all sample dates. Drier soils show greater accumulation or production of 

EPS, which supports our hypothesis. Plant removal does lessen EPS accumulation or 

increase consumption and drive overall concentrations down slightly.  

We conclude that after subjecting the soils to a range of dry season length treatments, 

there were reductions in EPS accumulation with moist conditions. However, these changes 

were not as drastic as we expected thus suggesting that other microbial survival mechanisms 

may be involved. 
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1. Introduction 

The Mediterranean climate has two clear seasons—the cool wet winter growing 

season, and the hot dry summer, which routinely experiences 6 months or more without rain 

(Bolle, 2003). Although many plants senesce or go dormant, microbes survive and 

biochemical processes continue even during the driest parts of the long summer (Parker and 

Schimel 2011). While it was previously assumed that microbial activity in the dry summer 

months ceases, in California grasslands, microbial biomass may actually increase during 

these harsh times (Waldrop and Firestone, 2006; Parker and Schimel 2011).  

The mechanisms remain unclear that microbes use to survive in Mediterranean 

environments, as well as others that experience dry or seasonally dry conditions. Yet, 

moisture can be limited for prolonged periods of time and drought stress severe. Extended 

dry periods are often followed by strong rewetting events, which have been argued to cause 

severe osmotic stresses, potentially causing microbes to burst (Kieft et al. 1987; Schimel et 

al. 2007), but recent work suggests this may be rare (Boot et al. 2013). During dry 

conditions, microbes may simply dehydrate or become disconnected from substrate, 

eventually leading to starvation (Manzoni et al. 2012; Parker and Schimel, 2011). Yet these 

stressors are routine in seasonally dry ecosystems and microbes continue to function.  

Microbial physiology is in part regulated by substrate and water availability in soils 

(Skopp, 1990; Stark and Firestone, 1995). When soils wet up, micro and macro-pores fill 

and soils become hydrologically connected (Manzoni et al. 2012; Parker and Schimel, 

2011), which allows for diffusion of substrates through the soil (Parker and Schimel, 2011). 

When soils dry, diffusion becomes limited and soil pore spaces become physically 

disconnected, separating microbes from their resources leading to reduced activity and may 

drive microbes into dormancy (Fierer et al. 2005; Manzoni et al. 2012). However, they don’t 
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shut down completely (Waldrop and Firestone, 2006; Parker and Schimel 2011). Therefore, 

to survive dry conditions, microbes have adapted the ability to shift resources from 

acquiring substrate and growth to survival mechanisms (Schimel et al. 2007). This begs the 

question, what are microbes doing to survive? 

One proposed mechanism for overcoming environmental stressors is the production 

of extracellular polymeric substances; this is predominantly polysaccharide, but also 

contains DNA, protein, and other constituents. Extracellular polysaccharides (EPS) are 

produced by both plants and microorganisms (Oades, 1972) and acts as glue-like binding 

agents that adhere to soil particles, which promote soil aggregate formation and stability 

(Blankenship et al. 2016; Martin 1946; Whistler and Kirby 1956). It is thought that microbes 

encapsulate themselves in EPS as a survival mechanism under stressful conditions, 

particularly starvation (Chen et al. 2014; Colica et al. 2014; Rossi et al. 2012; Steinberger 

and Holden 2004; Wolfaardt et al. 1999) and desiccation (Chenu, 1993; Chenu, 1995; 

Harris, 1981; Roberson and Firestone 1992). During dry periods, when resource pools shrink 

and concentrate in soil pore microsites, EPS creates a matrix that physically connects 

microbes to substrates (Chenu and Roberson, 1996; Or et al. 2007). Further, as soils dry, 

EPS films may help maintain a beneficial microhabitat within soil aggregates to retain 

moisture by dramatically increasing soil water-holding capacity and delaying drying (Oades, 

1984; Pointing and Belnap 2012; Roberson and Firestone 1992). However, producing EPS 

may be taxing and energy intensive for microorganisms (Harder and Dijkhuizen 1983; 

Wolfaardt et al. 1999). Thus, attributing microbial EPS production to an environmental 

condition or specific stress response remains uncertain (Schimel et al. 2007).  

In this study, we ask: what environmental drivers in a natural grassland ecosystem 

control the production or accumulation of extracellular polysaccharides? Do EPS 
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concentrations increase with the extended length of the dry season and greater plant inputs? 

We hypothesize that with longer dry periods (i.e. extended drought), soils will have greater 

levels of EPS due to the amplified need for survival from desiccation and starvation. We 

also hypothesize that soils with more plants (i.e. higher C inputs) will have more C to 

allocate to EPS production, but will be dominated by plant produced EPS whereas soils 

without plants (i.e. lower C inputs) will have less EPS, due to a lack of available C substrate 

and will be dominated by microbial EPS. To answer these questions, we manipulated plant 

cover and dry season length and measured EPS in seasonally dry grassland soils and 

evaluated pools of total EPS in the soils as well as the mix of sugars making up EPS.  

 

2. Methods 

2.1 Field Methods 

We designed and implemented a plant cover and soil moisture field manipulation 

experiment in a seasonally dry grassland in Santa Barbara County. The site is located at the 

University of California, Sedgwick Reserve in Los Olivos, California (34.712036°, -

120.038797°). The reserve is approximately 28km from the coast, and 370m above sea level 

in a North-South oriented valley in the Santa Ynez Valley. The sampling area is dominated 

by exotic annual grasses -primarily Bromus diandrus, Bromus hordaceous, and Avena fatua. 

The area has a Mediterranean climate regime, with long dry summers and cool wet winters. 

Average annual precipitation is 380mm, however, during our 2 year study we were in the 

midst of a drought, where annual rainfall was approximately 50% below normal (175mm in 

2013 and 201mm in 2014).  Daily average air temperature is 16.8o C, with highs in the 

summer months reaching into the 30’s and winter lows below freezing are not uncommon. 

Micro meteorological data was obtained (IDEAS, UCSB Geography Dept. 
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http://www.geog.ucsb.edu/ideas/) from a site on the Sedgwick reserve, approximately 2km 

southwest of the field site. Air temperature and relative humidity readings were taken from 

75cm above the ground, rain and fog events were collected and soil temp was measured 

from 15cm depth. 

Soils are described as Pachic Haploxerolls with silty clay loam texture and granular 

structure on nearly flat slopes (< 2%). The soil pH is 6.0, with 2.2% C, 0.21% N, and a bulk 

density of 1.2 g cm-3 in the upper 10 cm (Blankinship et al. 2016; Homyak et al. 2016).  

Plant thinning treatment 

We created a gradient of fresh plant inputs into the surface soils by thinning live 

plants. The treatments consist of 0%, 33%, 66% and 100% removal and was done by hand 

throughout the growing season. All plants were removed with the 100% removal, but we 

can’t assume all plants inputs were excluded. For this study, we sampled from plots with 

plants (0% removal) and without plants (100% removal) to focus on the extreme 

manipulations.   

Dry season manipulation 

Dry season length was manipulated to alter the amount of time during which dry-

season processes would continue (Fig. 1).  Water manipulations included: dry, control, short 

dry, and wet (i.e. no dry season). Water was added to the short dry plots (May 23rd – July 

8th) and wet plots (May 23rd – Nov 28th) biweekly using backpack sprayers. Each scheduled 

watering consisted of two applications of 15L each, roughly an hour apart, which equated to 

1.5cm of water. This maintained >10% volumetric water content (VWC). Based on Fierer et 

al., 2005, we deemed 10% VWC to be an important moist/dry threshold, which was due to a 

noticeable decline in soil respiration, suggesting a loss of access to C substrate. In dry 

treatment plots, we excluded precipitation from the from October 28th – February 2nd using 
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rain-out shelters made of clear corrugated polycarbonate roof panels (Suntuf, Palram 

Americas, Kutztown, Pennsylvania).  

After 2 years of field manipulation treatments we collected 0-10cm soil cores 

monthly from our research plots to capture transition from the dry dormant season to the wet 

growing season, from July 2014 to February 2015. Samples were collected from near center 

of each plot to prevent any edge effect from neighboring plants and plant roots from outside 

the plots.  

2.2 Laboratory Methods 

To analyze the EPS material we extracted polysaccharides from soils sampled from 

each of the treatment plots using a modified hot-water extraction method (Ball et al. 1996). 

Hot water was used to hydrolyze microbial EPS and extract the stabilized materials that are 

bound to minerals and tied up in soil aggregates. Hot water is an intermediate between the 

dilute sulfuric acid method, which hydrolyzes plant tissues and other organic matter (OM) 

and so overestimates microbial polysaccharide pools (Redmile-Gordon et al. 2014), and the 

cold-water extraction method, which only accesses free detritus and OM (Lutzow et al. 

2007).  

Soils were brought back to lab and prepared that same day by passing intact cores 

through a 4mm sieve to remove rocks and homogenize each sample. 1g (wet weight) 

subsamples of the fresh soils were mixed with deionized water (10mL) and then heated and 

shaken in an 80oC water bath at 150 rpm for 16 hours. At the end of the 16 hours the extracts 

were cooled for 20 minutes and vacuum filtered to 2.7µm using Whatman #542, hardened 

ashless filter paper to obtain liquid extracts of each soil sample. Sample extracts were stored 

at -20oC while standard solutions (1 mg sugar/mL) of each sugar of interest were prepared 

(arabinose, rhamnose, fucose, xylose, glucuronic acid, galacturonic acid, mannose, 
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galactose, glucose (dextrose), N-acetyl-galactosamine, N-acetyl-glucosamine, N-acetyl-

mannosamine) and an internal standard (myo-inositol). The internal standard was added 

(20µL) to all samples and standards to track the derivatization process and provide quality 

control throughout the process. Samples were refrozen and then freeze-dried until ready for 

the derivatization process.  

To prepare freeze-dried samples for analysis, we hydrolyzed polysaccharides to their 

constituent monomers and then derivitized them to convert sugars into methyl glycosides 

and glycosyluronic acids into methyl ester methyl glycosides (i.e. glycosyl residues). This 

was done by adding 500µL of 1M methanolic HLC and heating the sample at 80oC for 16 

hours; after cooling for 20 minutes, the methanolic HLC was removed by adding 200µL of 

methanol and evaporated using filtered N2 gas two times. N2 gas was filtered to remove any 

moisture present using an inline Hydro-Purge II filter from Alltech Associates Inc. 

(Deerfield, Illinois). Then to re-acetylate any N-acetyl compounds present, 100 µL 

methanol, 50 µL pyridine, and 50 µL acetic anhydride was added to each tube, mixed and 

then set at room temperature for 30 min.  The samples were again evaporated with N2 gas 

and 100µL of Tri-Sil HTP Reagent (2:1:10 HMDS:TMCS:pyridine) was added. The 

reaction mix was heated at 80oC for 20 minutes, cooled for 10 minutes then evaporated 

again with N2. Samples were filtered to 8µm through mini-columns packed with glass wool 

and evaporated again. Derivatives were re-dissolved with 0.5mL hexane, evaporated, rinsed 

with 100µL hexane and transferred to 2ml vials (with 200µL inserts). Samples were stored 

at -20oC until analysis.  

The derivatives were analyzed using an Agilent Technologies gas chromatograph, 

with mass spectrometer (GC-MS, HP 6890/5973 GC-MS system) to analyze the glycosyl 

composition of polysaccharides by forming trimethylsilyl ethers of methyl glycosides (York 
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et al. 1986). The GC-MS provides accurate concentrations of 12 specific sugars of interest: 

Arabinose, rhamnose, fucose, xylose, glucuronic acid, galacturonic acid, mannose, 

galactose, glucose (dextrose), galactosamine, glucosamine and mannosamine. This 

quantitative analysis is performed on a fused-silica DB1 column (J&W Scientific), 30-meter 

by 0.25 mm by 0.25 µm.  Auto-injections of 1µL were made with a split ratio of 10:1, and a 

column flow rate of 1mL/min helium.  The initial oven temperature was 160°C with an 

immediate ramp to 200°C at 2°/min.  The column was then conditioned for the next sample 

by an increase to 260°C at 10°/min and holding at 260° for 5 min. Since each sugar results 

in several derivatives, the major peak areas for each sugar are summed before calculating 

response factors and determining glycosyl compositions. 

2.3 Statistical Analysis 

Treatment effects (harvest date, plant thinning and moisture (i.e. dry season length)) 

on total EPS, microbe:plant EPS and individual sugar concentrations, were tested by Three-

way, full-factorial ANOVA. No multi factor effects were significant with the full-factorial 

ANOVA. Therefore a One-way test was done on individual treatments. Tukey HSD was 

also run to separate samples and treatments from one another. All statistical analyses were 

performed in JMP Pro 12.0.1 (SAS Institute, Cary, North Carolina). Mean and standard 

errors were also calculated for each sample date, treatment and EPS concentration. 

 

4. Results  

4.1 Seasonal variation in EPS concentrations 

Total sugars 

Total EPS (i.e. glycosyl residue) concentrations across all treatments started 

relatively low and generally rose, oscillated then declined across the sampling dates 
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(Fig. 2). Plots with plants in dry and ambient conditions (i.e. control), concentrations 

notably increased to the end of the summer dry season, reaching 363±30(µg C g-1 

soil) (Fig. 2). After the first rain of winter (October 31st, 2014) concentrations began 

to decline and dropped to below early summer levels 188±27(µg C g-1 soil). EPS 

concentrations in short dry and wet (i.e. moist, >10% volumetric water content) as 

well as dry and control plots without plants, did not show a notable summer/fall 

increase and oscillated more mildly thru November and December before 

concentrations dropped.  

Individual sugars  

Individual EPS sugars generally track the overall pattern of total sugars (Fig. 

3). The exceptions were galacturonic acid and the N-acetyl compounds (N-acetyl-

galactosamine, N-acetyl-glucosamine and N-acetyl-mannosamine). The N-acetyl 

compounds were bordering detection limits, whereas N-acetyl-mannosamine was 

consistently below the limits of detection. Galacturonic acid concentrations increased 

in the September and October samplings, opposite to the pattern of the other sugars; 

concentrations went from 1.08(µg C g-1 soil), up to 9.8(µg C g-1 soil), and then 

returned back to 3.76(µg C g-1 soil) between the October-November sampling dates. 

All the other sugars concentrations decreased during September and October.   

4.2 Ratio of Microbe:Plant EPS  

Galactose (gal) and mannose (man) are thought to be predominantly 

microbial products while arabinose (ara) and xylose (xyl) are thought to be more 

plant based (Oades, 1972; Oades, 1984). In these soils, EPS was always dominated 

by microbial products, as indicated by the ratio of microbial to plant sugars (gal + 

man : ara + xyl). The microbe to plant EPS ratio reached as high as 1.97±0.10 in 



 

 9 

ambient conditions with plants, whereas at the lowest, it was only down to 1.72 (Fig. 

4). 

The ratio, however, shifted significantly across the sampling period (p=0.02). 

These low ratios were found in winter (Dec, Feb) sampling dates, while high ratios 

were found typically in the fall (Aug, Sept, Oct). Yet, none of the individual 

sampling dates showed significant differences between treatments.   

Plant thinning increased the ratio of microbial to plant sugars noticeably 

across all treatments (p <0.0001). Effects were significant on plant sugars; ara 

(p=0.07) and xyl (p=0.02), but no significance was shown on microbial sugars; gal 

(p=0.75) and man (p=0.99).  

Dry season manipulations lowered the ratio of microbe to plant sugars with 

drier conditions (p <0.0001). Effects were also significant for both plant sugars; ara 

(p=0.001) and xyl (p=0.0005) and microbial sugars; gal (p=0.07) and man (p=0.003).  

4.3 Treatments 

Dry season manipulations  

In plots that had been watered, notably in the no dry season treatment, EPS 

concentrations were lower than in drier plots; this held true throughout the sampling 

period (Fig. 5). The EPS levels in constantly moist plots were significantly lower 

than the dry (p=0.006), control (p=0.001) and short dry (p=0.06) plots, roughly 

50µgC/g soil-1 lower on average across the sampling period.   

Plant thinning  

Plant thinning tended to reduce EPS concentrations slightly. Effects were 

most apparent in both dry and control plots during the fall (Oct, Nov), when total 

EPS concentrations were highest (Fig. 2; Fig. 5). With short-dry and wet plots, 
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differences were more apparent in the winter sampling dates (Dec, Feb) and both 

remained lower without plants. The overall plant thinning treatment effect was 

significant at p = 0.07. Again, plant thinning did significantly reduce individual 

sugars that are thought to be more associated with plant production; ara (p= 0.07) 

and xyl (p=0.02). 

 

5. Discussion  

In this study we examined which environmental conditions (i.e. moisture and 

plant C) alter EPS (i.e. glycosyl residue) accumulation in a California grassland soil. 

We hypothesized that dry season length would alter microbial EPS production and 

that drier conditions would promote greater EPS production. We also hypothesized 

fresh plant C would increase total EPS levels and be more dominated by plant 

products, while removing plants would greatly reduce EPS levels. 

We found that, to our surprise, EPS concentrations were not influenced by a 

lack of fresh plant C—rather EPS levels were only slightly lower and in some cases 

higher (but not significantly so) in plots without plants (Fig. 5). Fresh C inputs may 

not be as essential to available substrate pools and microbial EPS production as 

previously thought.  

Contrary to what we hypothesized, the response of EPS accumulation 

indicates that microbes are not C limited in the absence of plants. After 2 years of 

plant removal one would think the fresh C pools would be consumed and the 

difference between plant and no plant treatments would be more evident. However, 

that was not the case in this study. Microbes may in fact be more limited by physical 

constraints, given the heterogeneous nature of soil, rather than deficient organic C 
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pools (Manzoni et al. 2012; Parker et al. 2011).  This could also be due to a legacy of 

plant C in plant removal plots.  

The plant removal treatment did, however, decrease plant EPS products 

(arabinose and xylose) and raise the microbe:plant ratio signature of the EPS 

composition. Plant EPS was much lower, yet still a significant fraction of total EPS 

pool. Microbial production of EPS dominates across all plots and treatments and is 

an important process in this system. Plant EPS increases with the wet season when 

plants start growing and reallocating resources into root and soil storage, which was 

what we initially hypothesized.  

With our dry season length manipulations, EPS patterns indicate a strong 

positive response to dry conditions and negative response to moist conditions (Fig. 

2; Fig. 5). We found that EPS concentrations declined with increased moisture (both 

irrigation treatments and rain events) and increased with a longer dry season. We 

interpret this to mean that microbes produce EPS as an adaptation and response to 

drought, which supports our original hypothesis. If a key role of EPS is to maintain 

connection between microbes and resources as soils dry and hydrological 

connectivity fails (Manzoni et al. 2012; Parker and Schimel, 2011), then in moister 

soils, there may be less need to produce EPS. Alternately, in moister soils, there may 

be more EPS consumed. If EPS can be used as a microbial resource, then microbes 

may not break it down as readily in dry soils and pools may therefore accumulate.  

(Chenu and Roberson, 1996; Cheshire, 1977; Foster, 1981; Holden, 2011; Manzoni 

et al. 2012; Or et al. 2007; Parker et al. 2011) 

The pattern of EPS in dry and control plots follow one another closely, even 

after soils in the control plots received rain. Moisture created hydrologic connections 
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and so substrate may be accessible with the moist soil treatments, but this doesn’t 

explain why the dry plots follow the same pattern. One possible explanation for the 

decline in EPS, even in the rain exclusion treatment, might simply be relative 

humidity and dew. When the winter rains begin, fog, humidity and leaf wetness all 

increase regardless of direct exposure to rain (as measured by micrometeorological 

stations near our study site; IDEAS, UC Santa Barbara, Geography Department). 

Moisture in the air may have a strong influence on dry surface soils (McHugh et al. 

2014), and so could shift soils out of the “dry season” pattern even without actual 

rainfall.  

 

6. Conclusion 

 Our measurements suggest that soil moisture is controlling factor of 

microbial EPS dynamics, while plants have limited effects. We conclude that after 2 

years of plant removal, plants did not play a major role in microbial EPS dynamics—

EPS concentrations were the same in the presence and absence of plants. Although, 

plant associated sugars did decrease with plant removal. After subjecting the soils to 

a range of dry season length treatments, there were reductions in EPS accumulation 

with moist conditions. However, these changes were not as drastic as we expected 

thus suggesting that other microbial survival mechanisms may be involved. It is also 

possible that drought stress in seasonally dry climates has been overestimated and is 

simply business as usual for microorganisms. 
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