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ABSTRACT OF THE DISSERTATION

The Curtain Model of CAT(0) Spaces and its Relationship to the Sublinearly Morse
Boundary

by

Elliott Scott Vest

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, September 2024

Dr. Matthew Gentry Durham, Chairperson

We show that the sublinear Morse boundary of every CAT(0) space continuously

injects into the Gromov boundary of a hyperbolic space, which was not previously known

even for all CAT(0) cube complexes. Our work utilizes the curtain machinery introduced by

Petyt-Spriano-Zalloum. Curtains are more general combinatorial analogues of hyperplanes

in cube complexes, and we develop multiple curtain characterizations of the sublinear Morse

property along the way. The hyperbolic space mentioned is the curtain model, and its role

for a CAT(0) space has shown a striking comparison to the curve graph for a mapping class

group of a finite type surface. We show that the curtain model is not a quasi-isometry

invariant for all CAT(0) spaces and that quasi-flats are of bounded diameter in the curtain

model. Our results answer multiple questions of Petyt-Spriano-Zalloum in [PSZ22].
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Chapter 1

Introduction

1.1 Summary of Results

The sublinearly Morse boundary, denoted ∂κX, was introduced by Qing-Rafi-Tiozzo in

[QR22, QRT20] as an extension of the Morse boundary [Cor17]. It remains a quasi-isometry

invariant while also capturing the asymptotic behavior of random walks on finitely generated

groups. A motivating application they use is showing that, for each finite-type surface S

and some p ∈ N depending on S, the logp-Morse boundary for the mapping class group of S

serves as a topological model for the Poisson boundary for its random walks. This boundary

has now subsequently been studied in the CAT(0) cube complex setting [MQZ22, IMZ23],

and more generally the hierarchically hyperbolic setting [DZ22, NQ22].

When in regards to CAT(0) spaces, authors Petyt-Spriano-Zalloum in [PSZ22]

introduce a combinatorial tool named a curtain that serves as an analogue to a hyperplane

for a CAT(0) cube complex. Building off of “hyperplane-separation” metrics introduced by

Genevois [Gen19], the authors utilize curtains in a CAT(0) space X to build the curtain
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model - a hyperbolic space whose isometry group contains Isom X. Denoting X̂ as the

curtain model and ∂X̂ as its Gromov boundary, we summarize our main results.

Main Results: Let X be a proper CAT(0) space and κ be a sublinear function. We show

the following,

1. If κ4 is sublinear and ∂κX is endowed with the sublinearly Morse topology, then ∂κX

continuously injects into the Gromov boundary ∂X̂. Endowed with the cone topology,

∂κX topologically embeds into ∂X̂. (Theorem 1.3.1.)

2. Any κ-Morse ray can be characterized by a dual chain of κ-separated curtains crossing

the ray at a sublinear rate. (Theorem 1.4.1.)

3. Any κ-Morse ray can be characterized by the κ-persistence of its projection into X̂.

(Theorem 1.4.2.)

Theorem 1.3.1 upgrades a similar theorem by Petyt-Spriano-Zalloum in [PSZ22]

from the Morse setting. Since sublinearly Morse rays have been shown to be unparametrized

quasi-geodesics in the hyperbolic space X̂, a key ingredient we prove is that these rays are

also unbounded in X̂ and, thus, define a point in ∂X̂. Moreover, as random walks sublinearly

track κ-Morse rays in CAT(0) spaces [Cho23], Theorem 1.3.1 immediately concludes that

the Gromov boundary of the curtain model for a CAT(0) group is a model for its Poisson

boundary (Corollary 1.3.2). The central characterization used to give Theorem 1.3.1 is

Theorem 1.4.1 - a CAT(0) analogue of a result in [MQZ22] in the cube complex setting

that allows directions of κ-Morse rays to be described in a combinatorial fashion. Lastly, a

version of Theorem 1.4.2 was proven for hierarchically hyperbolic spaces in [DZ22], including

2



mapping class groups of finite-type surfaces. In particular, they proved that κ-Morse rays

in the mapping class group make persistent and fast (compared to κ) progress in the curve

graph of the whole surface. Hence, Theorem 1.4.2 further strengthens observations that

the curtain model for a CAT(0) space gives a similar role of the curve graph for a mapping

class group of a finite-type surface [Zal23]. These main results are from the author’s paper

[Ves23a] and are to appear in the refereed journal Groups, Geometry, and Dynamics.

In addition to our main results, Petyt-Spriano-Zalloum also asked questions con-

cerning hyperbolicity criterion and quasi-isometry invariance in their seminal paper on the

curtain model. We give answers to some of these questions through the following results.

Supplemental Results:

1. There exists a CAT(0) space X and a self quasi-isometry ϕ : X −→ X such that ϕ

does not descend to a quasi-isometry for X̂. Further, there exists two quasi-isometric

CAT(0) spaces W,Z whose curtain models Ŵ , Ẑ are not quasi-isometric. (Theorem

1.5.1.)

2. Quasi-flats of CAT(0) cube complexes project to bounded diameter sets in the curtain

model. (Theorem 1.5.3.)

3. Let X be a CAT(0) space. Then X is hyperbolic if and only if every curtain grid is

E-thin for some uniform E > 0. (Theorem 1.5.4.)

Though a counter example for quasi-isometry invariance is unfortunate, it is still an

open problem whether CAT(0) spaces with cocompact actions have quasi-isometric curtain

models. Theorem 1.5.4 is also from [Ves23a] and is to appear in Groups, Geometry, and

Dynamics. Theorem 1.5.1 can be found in [Ves23b] and is being reviewed by the journal

3



Proceedings of the American Mathematical Society. Further motivation, details, relevant

citations, and the full statement of the theorems will be given in the rest of the introduction.

1.2 Hyperbolic-like Boundaries and Cube Complexes

In recent years, there have been numerous advancements in investigating the boundaries

of spaces, either to gain insights into the spaces themselves or to understand groups that

act geometrically on these spaces. A foundational result is due to Gromov [Gro87], who

demonstrated that quasi-isometries between hyperbolic spaces induce homeomorphisms on

their visual boundaries, leading to a well-defined notion of a boundary of a hyperbolic group.

However, Croke and Kleiner showed that this result does not hold for CAT(0) spaces, as they

discovered two quasi-isometric CAT(0) spaces that lack homeomorphic visual boundaries

[CK00]. To address this problem in the CAT(0) setting, Charney and Sultan introduced

the contracting boundary, a quasi-isometry invariant restriction of the visual boundary that

only looks at the “hyperbolic” directions of a space [CS15]. Subsequently, Cordes extended

this result to any proper geodesic space by defining Morse geodesics and the Morse boundary

[Cor17]. It is worth noting that the contracting and Morse conditions are equivalent in the

CAT(0) setting, and if the underlying space is hyperbolic, then all mentioned boundaries

are equivalent.

The sublinear Morse boundary (Definition 3.3.6), denoted ∂κX where κ is a sub-

linear function, was introduced in [QR22, QRT20] with the motivation to preserve a notion

of a hyperbolic-like boundary that is quasi-isometry invariant while also capturing generic

directions of the space in question. More specifically, random walks can sublinearly track

4



the sublinearly Morse directions of a group G to serve as a topological model for the Poisson

boundary when G is a right angled Artin group [QR22] or a mapping class group of a finite-

type surface [QRT20]. This result has also been shown to hold for rank-1 CAT(0) spaces

and Teichmüller spaces of finite-type surfaces [GQR22], then later with CAT(0) admissible

groups with mild assumptions [NQ22].

Apart from the aforementioned developments, CAT(0) cube complexes have also

been of particular interest due to their combinatorial nature [Sag95]. When one cubulates

a group, i.e. shows that the group acts geometrically on a CAT(0) cube complex, one

can import the various combinatorial information of the cube complex to the group. No-

table applications of this strategy are shown in the resolutions of the virtual Haken and

fibering conjectures in 3-manifold theory [Ago13, Wis21]. There are many examples of in-

teresting groups that can be cubulated such as right-angled Artin groups [CD95], Coxeter

groups [NR03], small cancellation groups [Wis04], hyperbolic 3-manifold groups [KM12],

and others. Furthermore, CAT(0) cube complexes have become a useful tool for studying

the geometry of mapping class groups of finite-type surfaces, and hierarchically hyperbolic

spaces more generally [BHS21, DMS20, HHP20, DZ22].

1.3 The Curtain Model and a Continuous Injection

Recently, Petyt-Spriano-Zalloum introduced an analogue for a hyperplane in any CAT(0)

space [PSZ22]. Hyperplanes are the basic combinatorial objects in a cube complex (Def-

inition 2.3.4), and their general analogues, curtains, have a simple definition: each is the

5



preimage of a unit length interval of a geodesic under closest point projection (Definition

4.1.1).

Like hyperplanes, curtains separate the ambient space into two components, and

Petyt-Spriano-Zalloum prove that an analogous notion of separation allows one to build a

hyperbolic space, called the curtain model (Definition 6.1.1), which encodes much of the

ambient hyperbolic geometry of the space. Such a space serves as an analogue of curve

graphs for mapping class groups [Zal23], as the curve graph of a finite-type surface also

encodes the hyperbolic geometry of its associated mapping class group [MM99]. In addition,

ongoing work of Le Bars shows the utility curtains can have when investigating asymptotic

behavior of random walks in CAT(0) spaces [Bar22a, Bar22b]. This segues to our main

result, which deals in the extension of the projection of a CAT(0) space X −→ X̂ to a

continuous injection of its sublinearly Morse boundary.

Theorem 1.3.1. Let X be a proper CAT(0) space, X̂ its curtain model, and κ be a sublinear

function such that κ4 is sublinear. Endow ∂κX with the sublinear Morse topology and

denote ∂X̂ as the Gromov boundary of X̂ . Then the projection map X → X̂ extends to an

Isom X-equivariant continuous injection φ : ∂κX ↪−→ ∂X̂. Moreover, endowing ∂κX with

the subspace topology of the cone topology makes φ a homeomorphism onto its image.

In other words, the curtain model of a CAT(0) space will capture all the generic

directions of the CAT(0) space. We note that Theorem 1.3.1 relies on the condition that κ

also have powers that are sublinear. Given that sublinear Morse boundaries are commonly

employed in applications where random walks converge to ∂κX for κ(t) = logp(t) [NQ22,

QRT20], the cost of our restriction on κ is justifiable for cleaner arguments. In addition,
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the assumption that the CAT(0) space be proper is only used for the characterization that

κ-Morse rays are κ-contracting [QR22]. If one worked with the sublinearly contracting

boundary instead of ∂κX, our work could yield the same result without the assumption

that the CAT(0) space be proper.

In the recent paper [CFFT22], the authors show if a group G acts on a hyperbolic

space X̂ with a WPD element and µ is a probability measure with finite entropy, then ∂X̂

with the hitting measure is a model for the Poisson boundary of (G,µ). In the context of

CAT(0) spaces, work of Choi in [Cho23, Cho22] has shown that random walks with finite

pth moment will sublinearly track o(n1/p)-Morse geodesics. Moreover, [QRT20] shows that

whenever random walks sublinearly track κ-Morse rays, ∂κX with its hitting measure is a

model for the Poisson boundary of (G,µ). Thus, the injection created in Theorem 1.3.1

immediately gives the following corollary. This corollary recovers the aforementioned result

in [CFFT22], but with a stronger assumption on the probability measure µ.

Corollary 1.3.2. Let G be a group that acts properly on a proper CAT(0) space X, denote

X̂ as its curtain model, and let µ be a non-elementary probability measure on G with finite

5th moment. Let ν be the hitting measure on the Gromov boundary ∂X̂. Then (φ(∂X̂), ν)

is a model for the Poisson boundary of (G,µ)

Endowing ∂κX with the sublinearly Morse topology is nice because it makes ∂κX

metrizable and a quasi-isometry invariant [QR22]. However, our proof of continuity only

uses open sets in the cone topology which is strictly coarser than the sublinearly Morse

topology [IMZ23]. We use techniques of [AIM22] to show that φ can be a homeomorphism

7



on its image when ∂κX is endowed with the cone topology (this is Theorem 6.3.8 in our

paper).

Theorem 1.3.1 has been shown in the CAT(0) cube complex setting [IMZ23], where

the authors project to a hyperbolic space inspired by Genevois’s work [Gen19]. However,

their proof relied on the assumption that the cube complex admits a factor system - namely

that the cube complex be a hierarchically hyperbolic space [BHS17]. Recently, Shepherd

found an example of a cocompact CAT(0) cube complex that does not admit a factor system

[She22]. As Theorem 1.3.1 applies to the CAT(0) setting, it in particular applies to any

CAT(0) cube complex - including those not covered in prior literature. Similar theorems like

Theorem 1.3.1 have been shown for sublinear Morse boundaries of hierarchically hyperbolic

spaces [DZ22] and the Morse boundary of CAT(0) spaces [PSZ22], both of such results re-

quiring a leverage of cubical techniques. Since He in [He23] has shown the Morse boundary

with the Cashen-Mackay topology to be homeomorphic to ∂κX for κ ≡ 1, Theorem 1.3.1

recovers the Morse boundary result in [PSZ22] when in regards to the Cashen-Mackay topol-

ogy. Additional related work of Theorem 1.3.1 can be found in [AIM22], where Abbott and

Incerti-Medici study classes of spaces that have hyperbolic projections and are κ-injective.

Hence, Theorem 1.3.1 shows that rank-one CAT(0) spaces and groups fall into the class of

objects that Abbott and Incerti-Medici build a framework for studying.

8



1.4 Characterizations of κ-Morse Rays and Hyperbolicity

The key arguments needed to prove our main result involve characterizing κ-Morse geodesics

in the same combinatorial fashion as done in the CAT(0) cube complex setting [CS15,

MQZ22].

Theorem 1.4.1. In a CAT(0) space, a geodesic ray b is κ-contracting if and only if there

exists C > 0 such that b meets a chain of curtains {hi} at points b(ti) ∈ hi satisfying:

• ti+1 − ti ≤ Cκ(ti+1)

• hi and hi+1 are Cκ(ti+1)-separated

A geodesic ray with a dual chain of curtains satisfying the above conditions will be

defined as a κ-curtain excursion geodesic (Definition 5.2.1) in reference to similarly defined

rays in the CAT(0) cube complex setting [MQZ22]. Thus, since the proof of the forward

direction finds a dual chain (Proposition 5.2.5), Theorem 1.4.1 states that κ-contracting

rays are κ-curtain excursion rays and vice versa. One doesn’t need the curtains to be dual

to the geodesic to prove the reverse direction, as Proposition 5.3.2 shows, but a dual chain

is usually preferred for more straightforward arguments. In fact, Theorem 1.4.1 indirectly

shows that a geodesic meeting a chain as above will also give a dual chain that meets

the geodesic with the same properties as well (see Corollary 5.3.3). Theorem 1.4.1 plays a

critical role in the proof of Theorem 1.3.1 similarly to how the CAT(0) cube complex version

of Theorem 1.4.1 in [MQZ22] is used to prove main results in [IMZ23, DZ22, AIM22]. Now

such a characterization can be applied to all CAT(0) groups.
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Other characterizations of κ-contracting rays were shown in [MQZ22] in the CAT(0)

cube complex setting, one of which was later defined as a κ-persistent shadow [DZ22]. A

geodesic ray b in a CAT(0) space X with infinite diameter in the curtain model has a

κ-persistent shadow if there exists a C > 0 such that for all s < t,

d̂(b(s), b(t)) ≥ C · t− s

κ(t)
− C.

where d̂ is the distance in the curtain model X̂. We also give a similar characterization in

the CAT(0) setting.

Theorem 1.4.2. Let b be geodesic ray emanating from o ∈ X with infinite diameter in the

curtain model X̂.

• If b is κ-contracting and κ4 is sublinear, then b has a κ4-persistent shadow in the d̂

metric.

• If b has a κ persistent shadow in the d̂ metric and κ2 is sublinear, then b is κ2-

contracting.

In other words, κ-Morse rays make persistent and fast progress in the curtain

model (relative to κ). Note that when κ ≡ 1, Theorem 1.4.2 is equivalent to a geodesic

being contracting if and only if the geodesic projects to a parametrized quasi-geodesic in X̂.

This is a known result in the mapping class group setting when projecting to its curve graph

[Beh06, DR09], and [DZ22] extend the characterization to the sublinear Morse setting in

hierarchically hyperbolic spaces. Thus, Theorem 1.4.2 shows yet another comparison that

10



the curve graph is to the mapping class group as the curtain model is to its CAT(0) space

(see Section 8 of [Zal23]).

1.5 Quasi-Isometry Invariance and Hyperbolicity Criterion

Petyt-Spriano-Zalloum asked in [PSZ22] if a quasi-isometry between CAT(0) spaces always

induces a quasi-isometry between their corresponding curtain models. We answer this

question in the negative. For a CAT(0) space X, we denote X̂ to be its curtain model.

Theorem 1.5.1. There exists a CAT(0) space X and a self quasi-isometry ϕ : X −→ X

such that ϕ does not descend to a quasi-isometry for X̂. Further, there exists two quasi-

isometric CAT(0) spaces W,Z whose curtain models Ŵ , Ẑ are not quasi-isometric.

Our counterexample is based on a counterexample due to Cashen [Cas16], which

he used to show that quasi-isometries of CAT(0) spaces need not induce homeomorphisms

of their contracting boundaries when equipped with the Gromov product topology. Thus,

it also follows that we get an analogous result for the curtain models of CAT(0) spaces.

Corollary 1.5.2. There exist quasi-isometric CAT(0) spaces W,Z whose curtain models

have non-homeomorphic Gromov boundaries.

The counterexample for both Theorem 1.5.1 and Corollary 1.5.2 involve the gluing

of quarter-flats along their axes. In this counterexample, the curtain model crunches the

flat parts of the glued space resulting into a quasi-line. Berhstock-Hagen-Sisto show in

[BHS21] that a similar flavor happens to quasi-flats in hierarchically hyperbolic spaces. In

particular, they show that quasi-flats project to finite diameter sets in the top level curve
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graph of the hierarchically hyperbolic space. We show an analogous result for a CAT(0)

cubes complex and its curtain model.

Theorem 1.5.3. Let X be a CAT(0) cube complex and Q ⊂ X be an n-dimensional quasi-

flat. Then Q has bounded projection in X̂.

Lastly, Genevois has shown a hyperbolicity criterion for CAT(0) cubes complexes

through grids of hyperplanes. As an application of Theorem 1.4.1 in the Morse setting, we

create a curtain version for this criterion. Two collections of chains H,K are said to be a

curtain grid if all curtains in H cross all curtains in K. We prove the following.

Theorem 1.5.4. Let X be a CAT(0) space. Then X is hyperbolic if and only if every

curtain grid is E-thin for some uniform E > 0.

A curtain grid (H,K) is E-thin if min{|H|, |K|} ≤ E. So, similar to the cube

complex setting, the intuition behind Theorem 1.5.4 is that large regions of crossing curtain

chains imply large regions of flatness in the space. Thus, when one bounds the thickness of

all curtain grids in the space, one obtains hyperbolicity.

1.6 Outline of Thesis

Chapter 2 gives a small introduction to geometric group theory and serves as motivation

for why the problems answered in this thesis are relevant. This chapter is meant for those

with no familiarity with the field, and experienced readers are encouraged to skip. Chapter

3 gives a historical journey of relevant boundaries of metric spaces in the context of this

thesis. It starts with defining the visual boundary of a geodesic metric space, then the
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Morse and sublinearly Morse boundaries. Both Chapter 2 and Chapter 3 are introductory

in nature, so they are written with the audience of an inexperienced reader in mind.

Chapter 4 gives the relevant definitions for the curtain machinery introduced in

[PSZ22]. Then, we give the counterexample to prove Theorem 1.5.1 (Theorem 4.2.3). The

counterexample given involves an augmentation of the universal cover for R2 minus a disk.

This segues to the proof of Theorem 1.5.3. This is done in two parts. First, we show

orthants are of bounded diameter in the curtain model. Next, we use Huang’s main theorem

in [Hua17] that tells us quasi-flats are of bounded Hausdorff distance from some union of

orthants. We conclude the chapter by proving Theorem 1.5.4 (Theorem 4.4.2). The forward

and converse assumptions both give that curtains dual to the same geodesic at a sufficiently

far distance from each other must be L-separated for some uniform L. This connection

leads to the equivalence in our statement.

Chapter 5 proves Theorem 1.4.1, where the forward and backward directions are

Propositions 5.2.5 and 5.3.2, respectively. Our proofs required synthesizing the curtain

machinery along with techniques of [PSZ22, MQZ22] to give a more generalized character-

ization in the CAT(0) setting. Prior techniques for similar characterizations of Theorem

1.4.1 would give a weaker converse direction in our context, so we use different techniques

than prior literature to prove rays meeting a κ-chain of curtains will be κ-contracting.

Chapter 6 shows the continuous injection given in Theorem 1.3.1 with Theorem

6.3.5 stating continuity with respect to the sublinearly Morse topology and Theorem 6.3.8

giving a homeomorphic notion when ∂κX is endowed with the cone topology. A major

contribution of our work is showing κ-contracting rays are unbounded in the curtain model
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(Lemma 6.1.9), and it’s why we need the assumption that κ4 is also a sublinear function

(as Example 6.1.4 shows). This gives that the identity map X −→ X̂ can extend to a

well defined map φ : ∂κX −→ ∂X̂. Our arguments for injectivity rely heavily on the

characterization stated in Theorem 1.4.1 in order to give proofs of a combinatorial nature.

Chapter 6 also proves Theorem 1.4.2 (Theorem 6.4.3). The work in showing κ-contracting

rays are unbounded in the curtain model also shows the forward direction of Theorem 1.4.2,

and its argument has a similar flavor to the analogous arguments made in [MQZ22] for the

cube complex setting. The reverse direction of Theorem 1.4.2 is entirely original.
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Chapter 2

Preliminaries

The following will be a summary in the background information introduced at the

start of a geometric group theorist’s career. The goal of this chapter is for an aspiring math

student to be able to get a good intuition for what a geometric group theorist cares about

as well as the classic tools one uses in this field. Anyone with knowledge of the field already

should feel free to skip or reference when needed.

2.1 Motivation in Geometric Group Theory

The flavor of many fields of math, in general, involves thinking about a complicated task by

recontextualizing the problem in a different setting. For example, an algebraic topologist has

a primary interest of studying topological spaces. However, if one associated the topological

space to an algebraic object (such as its fundamental group, homology groups, cohomology

groups, etc.), one can learn about the topological space through the lens of algebra. An
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algebraic topologist might first and foremost consider themselves a topologist, but they

specifically use algebraic objects to learn about the topology (hence, the name).

For a geometric group theorist, the objects of interest are groups (in particular,

finitely generated groups), which can be tough to study in their own right. If one associates

the group to a metric space, we could possibly learn about the group by how we understand

the geometry of the metric space. The term “associates” is ill defined right now, but

most classical groups already have a natural metric space that even undergraduates readily

associate with.

Take the group of integers Z. If one thought of all integers as symbols in a bowl

of soup, it would be pretty tough to sift how certain numbers are related to each other.

However, we already have a canonical ordering of the integers that can be seen by drawing

the real line. Just by looking at the picture of the real line, one can already, say, compare

distances between integers. This natural association can actually always be found for any

group we can think of. In particular, one can associate any group to its Cayley Graph in

order to see the group in the light of a metric space.

Definition 2.1.1. Let G be a finitely generated group, with generating set S. (We assume

1 ̸∈ S and S−1 = S.) Then the Cayley Graph of G with respect to S, denoted Cay(G,S),

is a graph where the vertices are elements of G, and two vertices g, h ∈ G are connected by

an edge if g−1h ∈ S. The metric on Cay(G,S) is the path length metric, where every edge

has length 1.

Now, for the example G = Z, choosing S = {±1} will give the a graph that is

exactly a line. We give other classic examples below.
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Example 2.1.2. Consider the free group on two generators F2 = ⟨a, b⟩ Choosing S =

{a, b, a−1, b−1} gives the fractal tree displayed in Figure 2.1. Indeed, if one starts with

the identity element, e, in the middle of the figure, the surrounding vertices must be the

generating set by definition of a Cayley Graph. Thus, we can view the generator a as repre-

senting movement in the horizontal direction while the generator b represents movement in

the vertical direction. So the element a2b would be the vertex two notches to the right and

one notch up from the center, e, in Figure 2.1. Compare this Cayley Graph with the Cayley

Graph of Z2 = ⟨a, b : [a, b] = 1⟩. Again, choosing the generators S = {a, b, a−1, b−1}, the

Cayley Graph of Z2 becomes the grid lattice of R2. See Figure 2.1.

a

b
a2b

a

b

ab = ba

Figure 2.1: The Cayley graph of F2 and the Cayley graph of Z2 with respect to the natural
generating set S = {a, b, a−1, b−1}.

Notice that, since ab = ba in Z2 (unlike in F2), the ending vertex of the path ab is

the same as the ending vertex as the path ba in Cay(Z2, S). This is why Cay(Z2, S) creates

a grid. On the other hand, F2 has no relations, so Cay(F2, S) must not have any cycles.
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This means that Cay(F2, S) must remain a tree. It is important to note that the notion of

commuting generators creates a grid lattice of R2 in a Cayley Graph.

Example 2.1.3. As the number of generators increase, the complexity of the corresponding

metric space will also get more complicated. Take the groupG = Z2∗Z = ⟨a, b, c : [a, b] = 1⟩.

Since the group has a copy of of Z2 in it, one can expect, when using the generating

set S = {a, b, c, a−1, b−1, c−1}, Cay(G,S) will contain a grid lattice of R2. However, the

generator c tells us that on each vertex in our grid lattice, we must attach a c edge and

c−1 edge. Furthermore the endpoints of these edges must also connect to a different grid

lattice. The resulting space Cay(G,S) is depicted in Figure 2.2. The group, in a way, looks

like a combination of the two prior examples given in Example 2.1.2. Thus, it might make

sense that the corresponding Cayley Graph might have both the fractal-like nature of F2

combined with the Euclidean-like nature of Z2.

Figure 2.2: The Cayley graph of Z2 ∗ Z with respect to the generating set S =
{a, b, c, a−1, b−1, c−1}. Each c edge will have a grid lattice attached to both of their vertices.
Similarly, each vertex on a grid lattice will have a c edge and a c−1 edge emanating from
it. This space is commonly known as the tree of flats.
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Notice that the Cayley Graph of a group is dependant on the generating set we

choose. One can see in Figure 2.3 that the choice of generating set can make the resulting

Cayley Graph of the group look different. However, the difference is not as substantial

as one would think. Though the two Cayley graphs Cay(Z,±1)(with black edges) and

Cay(Z,±2,±3)(with red and blue edges) in Figure 2.3 look different, if one were to zoom

out farther and farther away, the weaving of the red and blue edges become minute compared

to the “large scale” geometry of the space. The following definition rigorously interprets

this idea.

0 1 2 3-1-2-3

Figure 2.3: Two different Cayley graphs of Z: Cay(Z,±1) (in black edges) and
Cay(Z,±2,±3) (in red and blue edges). Figure by Jacob Garcia.

Definition 2.1.4 (Quasi-isometric embedding, Quasi-isometry). Let (X, dX) and (Y, dY )

be metric spaces. A function f : X → Y is called a (K,C)-quasi-isometric embedding if,

for every pair of points x, x′ ∈ X we have

1

K
dX(x, x′)− C ≤ dY (f(x), f(x

′)) ≤ KdX(x, x′) + C.

If for all y ∈ Y , dY (f(X), y) ≤ C, we call f a quasi-isometry.

We see that when (K,C) = (1, 0), Definition 2.1.4 defines an exact isometry, so

the role of (K,C) determines how close to a isometry the function f is. A quasi-isometry is
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often the map that geometric group theorists care about. This, among many other reasons,

is due to the following fact (which is proven in Lemma 2.1.7).

Fact 2.1.5. Given any group G, and any two generating sets S and S′. We have Cay(G,S)

is quasi-isometric to Cay(G,S′).

Thus, up to quasi-isometry, all Cayley Graphs of a group are the same. This

fact might not be obvious to someone outside the field, but we can even do better, as the

following definitions show.

Definition 2.1.6 (Properly Discontinuous, Cocompact, Geometric Action). Let G be a

finitely generated group, and X be a geodesic metric space such that G acts on X by

isometries. We say the action is properly discontinuous if for any compact set K ⊂ X, the

set {g ∈ G : gK ∩ K ̸= ∅} is finite. We say the action is cocompact if for any basepoint

x ∈ X, there is an R > 0 such that the closed R-neighborhood of the G-orbit of x is all of X.

We say that the action of G on X is geometric if the action is both properly discontinuous

and cocompact.

One can think of a properly discontinuous action as making sure for any x ∈ X,

the orbit G ·x doesn’t “clump up” around x (in other words, x has finite stabilizers). On the

other hand, an action being cocompact ensures that any orbit G·x sufficiently “spreads out”

across the entire space. Together, these nice properties lead to the following foundational

lemma known as the Milnor-S̆varc Lemma.

Lemma 2.1.7 (Milnor-S̆varc Lemma ). Let G act by isometries on a geodesic metric space

X such that the action is geometric. Then the group is finitely generated and for every
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generating set S and any p ∈ X, the orbit map

fp : (G, dS) −→ X

g 7−→ g · p

where dS is the word metric to G corresponding to S, is a quasi-isometry.

In particular, this lemma proves Fact 2.1.5 as the action of G on any of its Cayley

Graphs via left translation is geometric. Lemma 2.1.7 shows us that quasi-isometry invariant

properties of metric spaces are a valuable commodity of groups. For example, as Theorem

2.2.4 shows, hyperbolicity is a quasi-isometry invariant property. Thus, if a group G acts

geometrically on some hyperbolic space, then all geometric actions of G are on a hyperbolic

space. There are also various kinds of boundaries of metric spaces that are quasi-isometry

invariant depending on the context (as Chapter 3 shows), and this can serve as a way to

characterize differences between groups.

The theme we try to leverage in Lemma 2.1.7 is as follows: If X is among a class

of spaces that has nice properties and G acts geometrically on X, there will likely be nice

properties of G that correspond to the nice properties of X. From Example 2.1.2, we see Z2

acts geometrically on R2, which gives us some intuition commuting generators of a group

equate to quasi-flat in the metric space. We can similarly see this observation in Figure

2.2,commonly known as the the tree of flats. The following instructive example shows an

application of this observation, which eventually leads us to an extremely useful tool in

geometric group theory.
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Example 2.1.8. Let Σ be a genus two surface. Consider the mapping class group of

Σ, Mod(Σ). That is, Mod(Σ) is the group of orientation preserving homeomorphisms up

to isotopy. For those unfamiliar with mapping class groups, [FM11] is a great reference.

However, for this example we can take as a fact that Mod(Σ) is generated by Dehn twists,

that is, homeomorphisms by twisting a full revolution along a simple closed curve. See

Figure 2.4

If one takes two simple closed curves in Σ that are disjoint, such as the red and

blue curves in Figure 2.4, we see that neither Dehn twist affects the other. That is, doing

a Dehn twist homeomorphism along the red curve and then a Dehn twist homeomorphism

along the blue curve is equivalent to first Dehn twisting along the blue curve and then Dehn

twisting along the red curve. In other words, if a, b ∈ Mod(Σ) are Dehn twists around the

red and blue curves, then a and b commute. As seen in Example 2.1.2 and 2.1.3, commuting

generators equate to a quasi-isometric copy of a Euclidean plane in the Cayley Graph. So,

even though Mod(Σ) is a rather complicated group, this observation already tells us that

certain group elements mimic some sort of zero curvature, or “flatness” behavior. If one

wanted to, say, cone off all zero curvature areas in a mapping class group, the resulting

space would be the curve graph — whose discovery of hyperbolicity is one of the greatest

recent tools developed in geometric group theory [MM99, BHS17].

We have now shown through numerous examples how one associates a group to a

metric space. Likely, if the metric space satisfies nice properties, then the group will also

satisfy nice properties. In general, the metric spaces of interest for this thesis are spaces
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Figure 2.4: A genus two surface with two disjoint simple closed curves. One can create a
homeomorphism, called a Dehn twist, by cutting along the blue curve, performing a full
revolution along the incision, and then gluing back together the incision. Similarly for the
red curve. Notice that these two homeomorphisms do not interact with each other, so the
homeomorphisms commute.

of a certain kind of curvature, and the following section gives the reasoning for why these

spaces are interesting.

2.2 Curvature

In the early 1900s, Max Dehn proved many results regarding groups that have actions on

the hyperbolic plane. For example, for any genus g surface with g ≥ 2, its fundamental

group has a natural action on the hyperbolic plane through the fact that the hyperbolic

plane is the universal cover of a genus surface with g ≥ 2. A notable result Dehn showed

is that, by utilizing this action on the hyperbolic plane, these groups can be proven to

have solvable word and conjugacy problems in linear time [Deh12]. It was much later when

Gromov made the observation in [Gro87] that most of the arguments Dehn made were due

to the hyperbolic plane having thin triangles. This inspired the following definition of a

δ-hyperbolic space.
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Definition 2.2.1. A proper geodesic metric space X is said to be δ-hyperbolic for some

δ ≥ 0 if, for every three points x, y, z ∈ X, we have that [x, z] ⊆ Nbhd([x, y] ∪ [y, z], δ). We

call such a triangle δ-thin.

x

y

z

δ = 0

x z

y

δ > 0

Figure 2.5: Two δ-thin triangles, one with δ = 0 and the other with δ > 0.

Note, this is often the most common definition, for equivalent definitions see

[CM17, Chapter 9]. There are many reasons to like hyperbolic spaces and groups (for

a survey showing some reasons not discussed here, see [BK02]), but the main reason it is

particularly useful for this thesis is due to the following definition and lemma.

Definition 2.2.2 (Geodesics, Quasi-geodesics). A geodesic ray in a space X is an isometric

embedding b : [0,∞) → X. Given two points a, b ∈ X, we often denote a geodesic between a

and b as [a, b]. Similarly, a quasi-geodesic ray is a quasi-isometric embedding β : [0,∞) → X.

Lemma 2.2.3 (Morse lemma). Let X be a δ-hyperbolic space. For every K,C ≥ 0 there

exists N = N(K,C) ≥ 0 such that, for every geodesic γ in X and every (K,C)-quasi-

geodesic ϕ with endpoints on [a, b], we have ϕ ⊂ Nbhd(γ,N). Similarly, γ ⊂ Nbhd(ϕ,N).

The Morse Lemma essentially states that quasi-geodesics always fellow travel

geodesics and vice versa. When formulating proofs in metric spaces, it is often natural for a
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o γ
ϕ

Figure 2.6: The Morse Lemma: If X is a hyperbolic space, then quasi-geodesics with
endpoints on geodesics must stay within the N -neighborhood of the geodesic.

geodesic to map to a quasi-geodesic if the mapping we are working with is a quasi-isometry.

Because, of this, it is often that geometric group theorists work with quasi-geodesics instead

of geodesics at some point in proofs. However, the Morse lemma states that quasi-geodesics

travel “close enough” to true geodesics in hyperbolic spaces, which allows us to find sufficient

information regarding distance. Theorem 2.2.4 is an instructive example.

Theorem 2.2.4. Let X be a geodesic metric space, Y be a δ-hyperbolic metric space, and

ϕ : X −→ Y be a (K,C)-quasi-isometry. Then X is a δ′-hyperbolic space, where δ′ depends

on δ,K, and C.

Proof. Since ϕ is a quasi-isometry, there exists an (K,C)-quasi-isometry ϕ−1 : Y −→ X

such that d(x, ϕ−1 ◦ ϕ(x)) ≤ C for all x ∈ X. Let △abc be a geodesic triangle in X. Put

a = ϕ(a), b = ϕ(b), and c = ϕ(c) Then ϕ(△abc) comprises of three (K,C)-quasi-geodesic

paths: one from a to b, one from b to c, and one from c to a. By the Morse lemma, each

of these paths is within N = N(K,C) distance of a corresponding geodesic in the triangle

△abc in Y . Since geodesic triangles are δ-slim in Y , any point on one geodesic in △abc is

within δ distance of the other two geodesics in △abc.

Now consider some point p ∈ [a, b]. Note, by the construction in the previous

paragraph, dY (ϕ(p), [a, b] ≤ N and [a, b] ⊂ Nbhd([b, c] ∪ [a, c], δ). Since [b, c] ∪ [a, c] is in

the N -neighborhood of ϕ([b, c]∪ [a, c]), we get that there exists a q ∈ [b, c]∪ [a, c] such that
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a b

c

ϕX Y

p a b

c

ϕ(p)

Figure 2.7: A picture for the proof of Theorem 2.2.4. The red path shows that the distance
from ϕ(p) to [a, c] ∪ [b, c] is bounded by 2N + δ.

dY (ϕ(p), ϕ(q)) ≤ 2N + δ. Hence, by the inequalities of a quasi isometry,

dX(p, q) ≤ KdY (ϕ(p), ϕ(q)) + C ≤ K(2N + δ) + C.

Setting δ′ = K(2N + δ) + C completes the proof. See Figure 2.7.

This classical result captures the use of the Morse Lemma quite nicely. In order

to leverage the hyperbolicity of Y , the proof of Theorem 2.2.4 required mapping geodesics

to Y via a quasi-isometry. Since these geodesics get mapped to quasi-geodesics in Y , the

Morse Lemma ensures that we have control over these quasi-geodesics.

Of course, the Morse Lemma is only a lemma that applies in δ-hyperbolic spaces —

spaces of negative curvature — and Chapter 3 works in extending this content to investigate

boundaries of proper geodesic metric spaces. Either way, this shows that hyperbolic spaces

are a quasi-isometry invariant, so hyperbolic spaces are spaces of interest in geometric

group theory due to Lemma 2.1.7. If one were to extend spaces of interest outside of
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negatively curved spaces, a natural step forward would be to investigate spaces of non-

positive curvature. This is precisely what the following definition formulates.

Definition 2.2.5 (CAT(0) Space). A geodesic metric space (X, dX) is said to be CAT(0)

if geodesic triangles in X are at least as thin as corresponding representative triangles in

Euclidean space. More precisely, given any triangle △xyz, one can create a representative

triangle in the Euclidean plane △xyz where matching sides of both triangles have the same

lengths. See Figure 2.8. If one picks any point p on △xyz, say p is on edge [y, z], there exists

a corresponding point p on △xyz such that dX(y, p) = dE2(y, p) and dX(p, z) = dE2(p, z).

Now, picking any two points p, q on △xyz, a CAT(0) space must have the relationship:

dX(p, q) ≤ dE2(p, q).

△xyz in X
x

y z
p

q

△xyz in E2

x̄

ȳ z̄p̄

q̄

Figure 2.8: For a CAT(0) space X, the geodesic [x, z] in X is the same length as the geodesic
[x, z] in E2. The same relationship holds for the other two sides of both triangles.

Lemma 2.2.6 (See [BH99]). A CAT(0) space X has the following properties:

1. It is uniquely geodesic, that is, for any two points x, y in X, there exists exactly one

geodesic connecting them.
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2. The nearest-point projection from a point x to a geodesic b is a unique point. In fact,

the closest-point projection map πb : X → b is 1-Lipschitz.

3. Convexity: For any convex set Z ∈ X, the distance function f : X → R+ given by

f(x) = d(x, Z) is convex in the sense of [BH99, II.2.1]

2.3 CAT(0) Cube Complexes

As many of our main results involve importing cubical techniques to non-cube complex

spaces, it is useful to have proper a background in cube complexes along with their useful

tools. We give the introduction and motivation necessary for CAT(0) cube complexes in

this section.

Given some n-dimensional cube [0, 1]n, we define the faces of the cube by isometri-

cally embedded copies of [0, 1]n−1 along the boundary of the n-cube. For instance, a 3-cube

has six faces (the six sides of the three dimensional cube). Likewise, a 2-cube, i.e. a square,

has four faces (the four sides of the square). A cube complex is defined by gluing Euclidean

cubes of varying dimensions via isometries along their faces. We call the 0-cubes of the

cube complex the vertices. For this thesis, it suffices to only consider cube complexes that

are simply connected — i.e. the cube complex has trivial fundamental group (see Defini-

tion 2.3.3). All these terms are the normal vocabulary for what’s to come. We now give

definitions that build up to CAT(0) cube complexes.

Definition 2.3.1 (simplicial complex, clique, flag complex). A simplicial complex, like a

cube complex, is formed by gluing varying dimensional simplicies together via isometries of

their faces. We also call the 0-simplicies vertices. A clique is a set of of k vertices for some
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k such that each pair of vertices has an edge connecting them. A simplicial complex is a

flag complex if each clique of k vertices spans a (k − 1)-simplex.

Definition 2.3.2 (vertex link). Let X be a cube complex, for each vertex v ∈ X, we create

the simplicial complex lk(v) as follows.

1. For each 1-cube ei with v as a face, create a vertex for lk(v). We will also label this

vertex ei. Thus, the set of vertices for lk(v) is E = {ei : ei is an edge that has v as a

face}

2. If ei, ej ∈ E are both among a shared n-cube in X, connect an edge between ei and

ej in lk(v)

3. Similarly, if {e1, · · · , en} ⊂ E are all among a shared n-cube in X, then {e1, · · · , en}

span a simplex in lk(v). See Figure 2.9 for examples.

Definition 2.3.3 (CAT(0) cube complex). Let X be a cube complex. X is a CAT(0) cube

complex if and only if

1. X is simply connected.

2. For each vertex v in X, its link lk(v) is a flag complex.

This equivalent definition to a CAT(0) cube complex is often nice because it can

be tough to establish the standard CAT(0) condition, in general. Under this definition, one

can restrict to just looking at vertices and their links, which is significantly easier. There

are many reasons to care about CAT(0) cube complexes. Among which are a few.
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Figure 2.9: A CAT(0) complex comprising of one 3-cube, three 2-cubes, and one 1-cube
glued together via isometries of their faces. For the vertices v, w, x, y, we see that all the
links are flag complexes. If, say, the 3-cube was instead not filled in, then lk(v) and lk(w)
would not have a filled in 2-simplex either. This would result in lk(v) and lk(w) not being
flag complexes and the cube complex not being CAT(0).

1. There are many groups that act geometrically on CAT(0) Cube Complexes. A few

popular examples are right angled Artin groups [CD95], some Coxter groups [NR03],

small cancellation groups [Wis04], and hyperbolic 3-manifold groups [KM12]. Thus,

as the beginning of this chapter showed, when one studies the metric behavior of a

CAT(0) cube complex, one also learns more about the above groups.

2. The use of CAT(0) cube complexes helped resolve the resolutions of the virtual Haken

and fibering conjectures in 3-manifold theory [Ago13, Wis21].

3. CAT(0) Cube Complexes have a strong relationship with Mapping Class Groups. For

one, they both fall into a class of spaces called hierarchically hyperbolic spaces, so

they already have comparable features. Also, mapping class groups can “locally”
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look like a CAT(0) cube complex. That is, given a finite set of points and unbounded

geodesic rays, the geodesic hull of this set is quasi-isometric to a CAT(0) cube complex

[BHS17, Dur23]. The usefulness of this property has turned into an investigation of

locally quasi-cubical spaces, i.e. the collection of spaces whose finite hulls are quasi-

isometric to a CAT(0) cube complex [DZ22].

4. CAT(0) cube complexes have a rank rigidity theorem [CS11]. Rank rigidity has been

conjectured to be true for all CAT(0) spaces, but it has only been proven for CAT(0)

cube complex due to the extra cubical structure.

All of these are very relevant reasons for the significance of CAT(0) cube complexes,

but perhaps the most important reason one likes CAT(0) cube complexes is because their

geometry is easy. This is due to the construction of hyperplanes, which we now discuss.

Given a CAT(0) cube complex X, edges e1, e2 in X will be among the same equivalence

class if e1 and e2 are on opposite ends of a square in X.

Definition 2.3.4 (Midcube, Hyperplane). for a cube [0, 1]n, a midcube is the subset formed

by restricting one of the intervals [0, 1] to 1
2 . So, each n-dimensional cube will have n

midcubes. Given an equivalence class of edges [e], the hyperplane dual to [e] is the collection

of midcubes which intersect edges in [e].

There are many nice features of hyperplanes, including but not limited to:

• Hyperplanes are CAT(0) cube (sub)complexes.

• Hyperplanes are closed as a set.
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Figure 2.10: Hyperplanes in CAT(0) cube complexes. Notice how hyperplanes of an edge
are just a point, and midcubes are codimension 1 in the cubes they live in.

• Each hyperplane creates two complement halfspace components. For example, in the

first figure in Figure 2.10, one halfspace is the part of the cube complex in front

of the hyperplane. The other halfspace is the part of the cube complex behind the

hyperplane.

• Hyperplanes are convex : for any two points in a hyperplane, the geodesic connecting

these two points is also contained in the hyperplane.

• Hyperplanes can determine the distance between two points. That is, for a CAT(0)

cube complex X, and any x, y ∈ X, we can define the metric

dH(x, y) =
∣∣{number of hyperplanes separatingx and y}

∣∣.
Denoting (X, d) as the CAT(0) cube complex with the CAT(0) metric, it turns out

that id : (X, dH) −→ (X, d) is a quasi-isometry. Since the field of geometric group

theory cares about quasi-isometry invariants, it suffices to uses the dH metric instead

of the CAT(0) metric.

32



This last point above might be the most relevant to us. Hyperplanes are a discrete

set of objects and are often easy to count. This allows us to view certain situations in a

combinatorial fashion. The following theorem is an example that shows this theme.

Theorem 2.3.5 ([CS15]). Let X be a CAT(0) cube complex. A geodesic ray α is D-

contracting if and only if there exists a C > 0 and an infinite sequence of hyperplanes

{h1, h2, · · · } crossing α such that

• hi, hi+1 are C-separated for all i.

• d(hi, hi+1) ≤ C for all i.

We will cover the definitions of contracting in Chapter 3 and C-separated in a

Chapter 4. For now, take as a fact that a contracting geodesic is a geodesic traveling

through negative curvature. Thus, Theorem 2.3.5 tells us one can find negative curvature

of a CAT(0) cube complex by only looking at hyperplanes. In fact, the list of reasons for the

relevance of CAT(0) cube complexes are all directly or indirectly because of the complex’s

hyperplane structure. This segues into a natural question:

Question 2.3.6. Hyperplanes in CAT(0) cube complexes are very useful. Is there a ana-

logue of a hyperplane in non-cube complex spaces that would also be similarly useful?

The answer of this is yes, and authors Petyt-Spriano-Zalloum in [PSZ22] create

one in the context of CAT(0) spaces (with foregoing work to generalize this further). A

recap of this work is given in Chapter 4. It is the utility of this new combinatorial tool that

allows us to generalize Theorem 2.3.5 in Chapter 5.
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Chapter 3

Quasi-Isometry Invariant

Boundaries

3.1 Visual Boundary

Depending on the context, there are many useful boundaries that are relevant for proper

geodesic metric spaces. The first boundary one likely gets exposed to is the visual boundary.

For a proper geodesic metric space X, fix a basepoint o ∈ X. Consider the collection of all

geodesic rays that start at o and extend out towards a direction of infinity. For a picture,

one can imagine these rays being eyesight lines that stretch out towards a horizon. Each

direction one looks at becomes a new eyesight line and, hence, a new ray. For a geodesic

ray γ, denote Nm(γ) as the set of all points within m distance of γ. Define an equivalence

class ∼ among geodesic rays based at o where γ1 ∼ γ2 if γ1 ⊂ Nm(γ2) for some m and vice
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versa. When γ1 ∼ γ2, we say that γ1 and γ2 fellow travel each other, or are of asymptotic

equivalence.

Definition 3.1.1 (Visual Boundary). Given a proper geodesic metric space X and base-

point o ∈ X, the visual boundary, denoted ∂∞X, is the set of equivalence classes of rays

based at o.

Note, it turns out that the visual boundary is not dependant on basepoint, so we

often omit o in the notation. The natural topology to endow on ∂∞X is as follows:

Definition 3.1.2 (Topology of the Visual Boundary). The cone topology of ∂∞X is gener-

ated by the basic open sets

UT,ϵ(γ) = {γ′ : d(γ(t), γ′(t) ≤ ϵ for all t ≤ T}

In other words, γ and γ′ are close in ∂∞X if they fellow travel each other for their

initial segments of length T . The larger T becomes, the longer the rays must fellow travel.

Example 3.1.3. For X = R2, choosing the basepoint as the origin for convenience, we see

that geodesic rays based at the origin linearly diverge from each other. Thus, any geodesic

ray γ based at the origin will be among its own equivalence class. This means that each

[γ] ∈ ∂∞R2 is synonymous with the angle γ has relative to the x-axis. With angles relative

to the x-axis ranging from 0 to 2π, the cone topology endowed on ∂∞R2 gives us that ∂∞X

is a circle.

Example 3.1.4. Similarly for X = H2, the hyperbolic plane, given any basepoint, no two

geodesic rays emanating from the same base point will fellow travel each other. Similarly,
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we get that ∂∞H2 is also a circle. This is intuitive since the Poincare disk model of H2 has

a circle that bounds H2 in the model.

Example 3.1.5. In the first example of Example 2.1.2, X = Cay(F2, S) will have a visual

boundary that is a Cantor set.

Now, in the context of hyperbolic groups, Gromov showed the following in [Gro87].

Theorem 3.1.6. If a finitely generated group G acts geometrically on two δ-hyperbolic

metric spaces X1, X2, then there is a G-equivariant homeomorphism ∂∞X1 −→ ∂∞X2.

In other words, Gromov showed that visual boundaries are a quasi-isometry in-

variant in the context of δ-hyperbolic spaces. This allows us to give a well-defined notion

of a visual boundary for a group. Gromov also asked whether the same result holds for

non-δ-hyperbolic spaces in [Gro92]. Croke and Kleiner show in [CK00] that this is not the

case even for CAT(0) spaces. We give non-exhaustive description of their counterexample

now. Let G = ⟨a, b, c, d : [a, b], [b, c], [c, d]⟩. There are two spaces that G acts geometrically

on. The first space is the universal cover of its Salvetti Complex (See [Cha07]), and the

second space is a slight perturbation of the first space:

Example 3.1.7. Let T2 be a flat torus. Let b′, c′ be cannonical π1-generating simple closed

curves of length 1 in T2 that meet at a single point at angle α = π
2 . Let T1, T3 also be flat

tori with a, b being π1-generating simple closed curves of length one in T1 and c, d being π1-

generating simple closed curves of length one in T3. Now, let Xπ
2
be the union of T1, T2, T3

with b′, c′ identified isometrically with b, c, respectively. See Figure 3.1. Let X̃π
2
be the

universal cover of Xπ
2
. Note X̃π

2
is a CAT(0) cube complex.
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T1 T2 T3

b b′ d

a c′ c

Figure 3.1: The space Xπ
2
. We identify the blue curves b and b′ as well as the red curves c

andc′. X̃π
2
is the universal cover of this space.

It might not be hard to see that G acts geometrically on X̃π
2
. Indeed, if one

coincides the natural generators of G with lifts of the simple closed curves of Xπ
2
(abusing

notation, we denote both the generators and the curves by a, b, c, d), one sees that the

Cayley graph of G becomes the 1-skeleton of the CAT(0) cube complex structure of X̃π
2
.

Now, let X̃α be a similarly constructed space, but with the simple closed curves

b′, c′ meeting at a single point at angle α for any 0 < α < π
2 . See Figure 3.2. It’s not tough

to also show that G acts geometrically on X̃α, and Croke and Kleiner showed, surprisingly,

that X̃π
2
and X̃α have visual boundaries of different homeomorphism type. In fact, Wilson

showed in [Wil05] that even though G acts geometrically on X̃α for every 0 < α ≤ π
2 , each

X̃α produces a different visual boundary.

T1 T2 T3

b b′ d

α

a c′ c

Figure 3.2: The space Xα. When one chooses a different b′ that meets c′ at a different angle,
its universal cover will have a visual boundary of different homeomorphism type from ∂∞X̃π

2
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So, even for CAT(0) groups, there is not a notion of a well-defined visual boundary

and Theorem 3.1.6 suggests that hyperbolicity is a key factor for a boundary that is quasi-

isometry invariant. So, in order to create a quasi-invariant boundary for a non-hyperbolic

space, one might instead restrict to only the “hyperbolic directions” of the non-hyperbolic

space. We explore this in the next section.

3.2 Morse Boundaries

More specifically, since the visual boundary was defined through geodesic rays emanating

from a chosen basepoint, restricting to geodesic rays that behave similarly to the geodesic

rays in δ-hyperbolic space might result in a boundary that is quasi-isometry invariant.

The Morse lemma (Lemma 2.2.3) gives a characterization of all geodesics in a δ-hyperbolic

space. In any proper geodesic metric space, we characterize geodesics that satisfy the same

property through the following definition.

Definition 3.2.1. Let X be a proper metric space. A set Z in X is said to be N -Morse

if there exists a function N = N(K,C) such that for any (K,C)-quasi-geodesic ϕ with

endpoints on Z, we have ϕ ⊂ Nbhd(Z,N). We call Z Morse if it is N -Morse for some N .

We call N the Morse gauge. Note, in this paper, all sets Z will be either a geodesic or a

quasi-geodesic.

Example 3.2.2. When X = R2, there are no Morse geodesic rays. As Figure 3.4 shows,

any geodesic ray γ in R2 has a class of (3, 0)-quasi-geodesic rays whose Hausdorff distance

grows farther and farther away from γ. However, every finite geodesic segment γ′ is Morse
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o γ
ϕ

Figure 3.3: A N -Morse geodesic γ. Given any (K,C)-quasi-geodesic ϕ, the N(K,C)-
neighborhood of γ will contain ϕ. Not surprisingly, this figure is a replica of Figure 2.6,
which represented the Morse Lemma.

in R2. For intuition behind this, if we tried our little trick of (3, 0)-quasi-geodesics again

for γ′, eventually the (3, 0)-quasi geodesics will not have endpoints on γ′. It follows that

for any (K,C), one can find a bounded neighborhood (namely N(K,C)) that contains all

(K,C)-quasi-geodesics. Thus, in the tree of flats example, a geodesic ray is Morse if and

only if there exists a uniform bounded length on the segments of the geodesic traveling

through a single flat. See Figure 3.4.

γ

(3, 0)-q.g.’s
γ

Figure 3.4: In the case of X = R2, there does not exist any N -Morse geodesic rays since
any geodesic ray has a class of (3, 0)-quasi-geodesics at a arbitrarily far Hausdorff distance
away from the geodesic. In the case X is the tree of flats, a geodesic is N -Morse provided
it has uniform bounded diameter in each flat it travels through.
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Definition 3.2.3 (Morse Boundary). Let o ∈ X be a base point. The Morse boundary,

denoted ∂MXo is the set of all Morse quasi-geodesic rays emanating from o up to asymptotic

equivalence. Note, there will always be a geodesic in each equivalence class.

One might decide to endow ∂MXo with the subspace topology of the cone topology

on the visual boundary. However, in [Cas16], Cashen provides two quasi-isometric CAT(0)

spaces that, under the cone topology, have Morse boundaries of different homeomorphism

type. This goes against the motivation to create the Morse boundary in the first place.

When the Morse boundary was first created by Cordes in [Cor17], he made the direct limit

topology which did indeed become a quasi-isometry invariant. However, instead of focusing

on the direct limit topology, we now make steps towards a different topology on the Morse

boundary we eventually generalize in future sections. We say a function ρ : [0,∞) → [1,∞)

is sublinear if limx→∞
ρ(x)
x = 0. We also require ρ to be increasing and concave.

Definition 3.2.4 (contracting). Let Z be a closed subset of X and πZ : X → 2Z be the

closest point projection to Z. We say that Z is contracting if there is a sublinear function

ρ such that for all x and y in X,

d(x, y) ≤ d(x, Z) =⇒ diam (πZ(x) ∪ πZ(y)) ≤ ρ(d(x, Z))

The authors of [ACGH17] prove that for every Morse gauge N , there exists a ρ

depending only on N so that every N -Morse set is contracting with respect to the sublinear

function ρ. Conversely, for every ρ, there exists an N so that every contracting ray with

respect to ρ is N -Morse. In other words, Morse and contracting are equivalent definitions.
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The following descriptions were taken from [IM21, He23]. Given a sublinear func-

tion ρ and constants K ≥ 1, C ≥ 0, define the constant

θ(ρ,K,C) = max
{
3K, 3C2, 1 + inf

{
R > 0 | ∀r ≥ R, 3K2ρ(r) < r

}}
.

Now fix o ∈ X. Let ξ ∈ ∂MXo. Then there exists ρ such that all geodesic representatives of

ξ based at o are contracting with sublinear function ρ. Choose one geodesic representative

γ ∈ [ξ] that is based at o. Let R ≥ 0. We say that a (K,C)-quasi-geodesic β fellow travels

along γ for distance R, if β ∩Nθ(ρ,K,C) (γ\BR(o)) ̸= ∅, where BR(o) denotes the open ball

of radius R centered at o. This is saying that β is within θ distance of γ at some point

past γ(R). We define the set Uo,R(ξ) := {η ∈ ∂MXo | All quasi-geodesic representatives of

η that are based at o fellow-travel along γ for distance R}.

Definition 3.2.5 (Cashen-Mackay Topology). For a proper geodesic metric space X and

fixed basepoint o ∈ X, the Cashen-Mackay topology of ∂MXo is the topology whose neigh-

borhood basis is formed by the sets {Uo,R(ξ)}R,ξ. We denote this topology by FQ for

“fellow-travelling quasi-geodesics”.

This gives the following useful properties for the Morse boundary, which have been

proven through [Cor17, CM19].

Theorem 3.2.6. Given a proper geodesic metric space X and a fixed basepoint o ∈ X, the

Morse boundary ∂MXo equipped with the FQ topology is

1. a visibility space, i.e., any two points in the Morse boundary can be joined by a bi-

infinite Morse Geodesic.
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2. independent of choice of basepoint.

3. a quasi-isometry invariant.

4. homeomorphic to the visual boundary if X is hyperbolic.

5. metrizable.

Note, all these results still hold under the direct limit topology as well besides

being metrizable, which was a motivation for the creation of the FQ topology [CM19].

Since the Morse boundary is independent of basepoint, we often omit the basepoint in the

notation and write ∂MX. Again, the most relevant result is the quasi-isometry invariance.

Indeed, since every finitely generated group acts geometrically on a proper geodesic metric

space, quasi-isometry invariance gives us the ability to define a Morse boundary for the

group.

Now, one could be content here with the Morse boundary, as it accomplishes the

goal of creating a well defined boundary of a finitely generated group. However, one can

still push for improvements.

Question 3.2.7. Is there a larger notion of a boundary compared to the Morse boundary

that still remains a quasi-isometry invariant?

The reasoning for such a question is that a boundary that is larger as a set than

the Morse boundary can likely contain more information than the Morse boundary. In fact,

one can ask a better question: what is the “largest” quasi-isometry invariant boundary for

proper geodesic metric spaces. This next section aims to step towards this direction.
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3.3 Sublinear Morse Boundaries

For further details and expansion on below definitions, see [QR22].

Definition 3.3.1 (Sublinear function). We fix a function

κ : [0,∞) → [1,∞) such that lim
t→∞

κ(t)

t
= 0.

This second requirement makes κ sublinear. We also add the convention that κ be monotone

increasing and concave. For the chosen fixed basepoint o ∈ X, we denote κ(x) = κ(d(o, x)).

Oftentimes, we create upper bounds of distances in terms of κ with a specific input.

The following computational lemma gives us a way to change our inputs of κ for a more

suitable upper bound, and it is used throughout the thesis.

Lemma 3.3.2 (Lemma 3.2 in [QR22]). For any D0 > 0, there exist D1, D2 > 0 depending

only on D0 and κ so that for x, y ∈ X, we have

d(x, y) ≤ D0κ(x) ⇒ D1κ(x) ≤ κ(y) ≤ D2κ(x).

Definition 3.3.3 (κ-neighborhood). Fix a basepoint o ∈ X once and for all. For a closed

set Z and a constant n ≥ 0, define the (κ,n)-neighbourhood of Z to be

Nκ(Z, n) = {x ∈ X | dX(x, Z) ≤ n · κ(x)} .

Note: We often abbreviate to κ-neighborhood, and our closed set Z will always be a geodesic

or quasi-geodesic in this thesis.
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o b

x

d(o, x)

πb(x)

n · κ(x)

Figure 3.5: A (κ, n)-neighborhood of geodesic b.

Definition 3.3.4 (κ-fellow travelling). Let α and β be two infinite quasi-geodesic rays in X.

If α is contained in some κ-neighbourhood of β and β is contained in some κ-neighbourhood

of α, we say that α and β κ-fellow travel each other. This defines an equivalence relation

on the set of quasi-geodesic rays in X. It is known that, in CAT(0) spaces, each equivalence

class of quasi-geodesics contains a unique geodesic ray emanating from o. (See [QR22]).

Definition 3.3.5 (κ-Morse geodesics). A geodesic b is κ-Morse if there is a function mb :

R2
+ → R+ so that if α : [s, t] → X is a (K, C)-quasi-geodesic with end points on b then

α[s, t] ⊂ Nκ (b,mb(K,C)) .

We refer to mb as the Morse gauge for b. We also always assume that mb(K,C)

is the largest element in the set {K,C,mb(K,C)}. Note that when κ ≡ 1 we recover the

standard definition of a Morse geodesic, so this definition can truly be seen as a sublinear

generalization of Morse.

Extending Morseness in a sublinear fashion is a rather intuitive try to create a

larger quasi-invariant boundary. The construction of the Morse boundary was not the

whole history of creating quasi-isometrically invariant boundaries. Relooking at Definition
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3.2.4, a geodesic is D-strongly contracting if the geodesic is contracting for ρ ≡ D where

D is a positive constant. All geodesics in a δ-hyperbolic space are uniformly D-strongly

contracting for some D = D(δ), so one could instead use the strongly contracting definition

instead of the Morse definition as a characterization for “hyperbolic” geodesics in non-

hyperbolic spaces. Charney and Sultan prove success of this in [CS15] as they created a

quasi-isometry invariant strongly contracting boundary in the context of CAT(0) spaces.

So, we have four kinds of characterizations for hyperbolic geodesics: strongly contracting,

contracting, Morse, and κ-Morse. Now, a strongly contracting geodesic is also contracting,

as Definition 3.2.4 is a sublinear extension of strongly contracting. Also, It is shown by

[ACGH17] that contracting is equivalent to Morse. Thus, as all Morse geodesics are also

κ-Morse, we have that the set of κ-Morse geodesic rays will be the largest collection of rays

compared to the three prior definitions. See Figure 3.6. So, if broadening from strongly

contracting to contracting (aka Morse) geodesics produces a larger quasi-isometry invariant

boundary, then possibly broadening from Morse to κ-Morse geodesics will also produce a

larger quasi-invariant boundary.

Strongly Contracting Contracting

Morse κ-Morse

∼=

Figure 3.6: A diagram comparing different definitions of “hyperbolic” geodesics. Strongly
contracting is the strongest definition. Contracting and Morse are equivalent via [ACGH17].
Lastly, κ-Morse is the weakest definition. That is, all other definitions imply κ-Morse.
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Definition 3.3.6 (Sublinearly Morse boundary). Let κ be a sublinear function and let X

be a proper metric space. We define the κ-Morse boundary, as a set, by

∂κX := { all κ-Morse quasi-geodesic rays }/κ-fellow travelling .

Definition 3.3.7 (Sublinearly Morse boundary, Sublinearly Morse topology). The κ-Morse

boundary, ∂κX, can be equipped with the sublinearly Morse topology : Fix a base point o,

let ξ ∈ ∂κX, and let b be the unique geodesic representative of ξ that starts at o. For

all r > 0, we define Uκ(b, r) to be the set of all points η ∈ ∂κX such that for every

(K,C)−quasi-geodesic β representing η, starting at o, and satisfying mb(K,C) ≤ r
2κ(r) , we

have β|[0,r] ⊂ Nκ (a,ma(K,C)). we denote the sublinear Morse topology as SM.

It’s clear that ∂MX ⊂ ∂κX and the SM topology is heavily based on the FQ

topology for the Morse Boundary. Thus, we get the following theorem for ∂κX.

Theorem 3.3.8 ([QR22, QRT20]). Given a proper geodesic metric space X and a fixed

basepoint o ∈ X, the Morse boundary ∂κX equipped with the SM topology is

1. a visibility space, i.e., any two points in the Morse boundary can be joined by a bi-

infinite κ-Morse Geodesic. [DZ22]

2. independent of choice of basepoint.

3. a quasi-isometry invariant.

4. homeomorphic to the visual boundary if X is hyperbolic.

5. metrizable.
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6. homeomorphic to ∂MX with the FQ topology if κ ≡ 1 [He23]

Example 3.3.9. Just like in Example 3.2.2, ∂κX = ∅ when X = R2. In the example where

X is the tree of flats, a geodesic γ is sublinearly Morse if it’s diameter in individual flats is

sublinearly bounded with respect to o. That is, the farther γ travels, the longer γ can stay

in a flat.

A great tool between the cone topology and the SM topology on ∂κX is the

following lemma. As many of our arguments in Chapter 6 use open sets from the cone

topology, the proofs also immediately transfer over to the SM topology due to this lemma.

Lemma 3.3.10 (Lemma 2.12 in [IMZ23]). Let X be a proper CAT(0) space. The cone

topology restricted to the set ∂κX is coarser than the SM topology.

The main new application in the κ-Morse boundary setting that prior quasi-

isometry invariant boundaries have failed in is it’s relationship to random walks and the Pois-

son Boundary. For background on the Poisson boundary and random walks, see [Woe94].

Being brief, Qing-Rafi-Tiozzo show in [QRT20] that if for almost every random walk there

exists a κ-Morse ray that the random walk sublinearly tracks, then ∂κX is a topological

model for the Poisson boundary. Since this result, random walks have been shown to sub-

linearly track κ-Morse geodesics in right angle Artin groups [QR22], mapping class groups

and relatively hyperbolic groups [QRT20], in hierarchically hyperbolic groups [NQ22] and

in CAT(0) groups [Cho22, GQR22] under various assumptions — all such groups of great

interest in geometric group theory. Thus, unlike the Morse boundary, ∂κX serves as a

bridge between two areas of research in geometric group theory: quasi-invariant boundaries

and genericity through random walks.
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Chapter 4

Curtains and the Curtain Model

We now import many cubical results created in [PSZ22]. The most important of

which is the definition of a curtain as defined below. Curtains in CAT(0) spaces become

the analogue of hyperplanes in CAT(0) cube complexes we desire. The main comparison

we are interested in is how geodesics crossing curtains in CAT(0) spaces mimic behavior of

geodesics crossing hyperplanes in CAT(0) cube complexes. In order to show this comparison

in Section 5, we review the lemmas and definitions below.

4.1 Curtain Machinery

Definition 4.1.1 (Curtain, Pole). Let X be a CAT(0) space and let b : I → X be a

geodesic. For any number r such that [r − 1
2 , r +

1
2 ] in in the interior of I, the curtain dual

to b at r is

h = hb = hb,r = hb,P = π−1
b (b[r − 1

2 , r +
1
2 ])
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where πb is the closest point projection to b. We call the segment b[r− 1
2 , r+

1
2 ] the pole of

the curtain which we denote as P when needed.

It is worth noting that curtains hb,r are defined from some geodesic b at time r, but

we often use the simpler notation h when such information is not needed or already implied.

There are certain properties that curtains and hyperplanes have in common. An example

is that both curtains and hyperplanes separate their complements into two component half

spaces which we denote as h− and h+. Also, both curtains and hyperplanes are closed as

sets.

Remark 4.1.2. A notable difference between curtains and hyperplanes is that curtains are

not convex, see [PSZ22, Remark 2.4] for more details.

Definition 4.1.3 (Chain, Separates). A curtain h separates sets A,B ⊂ X if A ⊂ h− and

B ⊂ h+. A set {hi} is a chain if each of the hi are disjoint and hi separates hi−1 and hi+1

for all i. We say a chain {hi} separates sets A,B ⊂ X if each hi separates A and B.

The notion of chains separating two sets A and B can give a description of the

distance between sets A and B. More specifically, a maximal chain that separates two

points x, y ∈ X tells us the distance between x and y, as shown in the following lemma.

Lemma 4.1.4 (Lemma 2.10 in [PSZ22]). For any x, y ∈ X, there is a chain c of curtains

dual to [x, y] such that 1 + |c| = ⌈d(x, y)⌉.

Many of our arguments involve a geodesic crossing a curtain. A geodesic b will

cross a curtain h if there exists s < t such that b(s) and b(t) are separated by h. The next

lemma describes how b interacts with the pole of h when b crosses h, and we use this lemma

implicitly throughout the paper.
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Lemma 4.1.5 (Lemma 2.5 in [PSZ22]). Let h = hb,r be a curtain, and let x ∈ h−, y ∈ h+.

For any continuous path γ : [c, d] → X from x to y and any t ∈ [r − 1/2, r + 1/2], there is

some p ∈ [c, d] such that πb(γ(p)) = b(t).

In particular, if a geodesic a crosses a curtain hb,r, there exists some p ∈ a such

that πb(a(p)) = b(r).

Definition 4.1.6 (L-separated, L-chain). Let L ∈ N. Disjoint curtains h and h′ are said

to be L-separated if every chain meeting both h and h′ has cardinality at most L. Two

disjoint curtains are said to be separated if they are L-separated for some L. If c is a chain

of curtains such that each pair is L-separated, then we refer to c as an L-chain. See Figure

4.1 for an example of L-separation.

Lemma 4.1.7 (Lemma 2.21 in [PSZ22]). Let L, n ∈ N, let
{
h1, . . . , h(4L+10)n

}
be an L-

chain, and suppose that A,B ⊂ X are separated by every hi. For any x ∈ A and y ∈ B, the

sets A and B are separated by an L-chain of length at least n+1 all of whose elements are

dual to [x, y] and separate h1 from h(4L+10)n.

Definition 4.1.8 (L-metric). Denote XL for the metric space (X, dL), where dL is the

metric defined as

dL(x, y) = 1 +max{|c| : c is an L-chain separating x from y}

with dL(x, x) = 0. The function is indeed a metric by [PSZ22, Lemma 2.17], and one can

replace the 1 in the above function by any ϵ > 0. Note that, by Remark 2.16 in [PSZ22],

we have that for any x, y ∈ X, it follows that dL(x, y) < 1 + d(x, y).
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h k

b

Figure 4.1: The above figure shows R2 with 2 strips cut out. We see the pair of curtains
h, k dual to the geodesic b are 4-separated. A maximal chain that crosses both curtains
would be 4 horizontal curtains. Thus, {h, k} is a 4-chain.

These XL spaces will be used as auxiliary spaces to define the curtain model (See

Definition 6.1.1).

Theorem 4.1.9 (Theorem 3.5 in [PSZ22]). For each L < ∞, the space XL is a quasigeodesic

hyperbolic space. Moreover, Isom X ⩽ Isom XL.

For a CAT(0) cube complex X, these XL spaces were first formed using hyper-

planes instead of curtains and were also hyperbolic [Gen19]. With a sufficiently large L, the

authors of [IMZ23] use this hyperbolic space to continuously inject the sublinearly Morse

boundary of X into the Gromov boundary of XL. However, they used the additional as-

sumption that X admits a factor system (see [BHS17]). This assumption makes these XL

spaces equal for all L ≥ L0, where L0 is some constant dependent on the hierarchical struc-

ture of X. Without these XL spaces stabilizing, it is possible for for κ-contracting geodesics

to be of bounded diameter in each XL for all L. This the main motivation for projecting

to the curtain model (see Definition 6.1.1) in Theorem 1.3.1 instead of XL for some L.
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Definition 4.1.10 (Curtain Model). Fix a sequence of number λL ∈ (0, 1) such that

∞∑
L=1

λL <

∞∑
L=1

LλL <

∞∑
L=1

L2λL < ∞

We consider the space (X, d̂), where the distance between two points x, y ∈ X is defined by

d̂(x, y) =

∞∑
L=1

λLdL(x, y)

and dL is the L-metric defined in Definition 4.1.8. We call (X, d̂) the curtain model of X

and denote it as X̂.

4.2 Quasi-Isometry Invariance Counterexample

Petyt-Spriano-Zalloum asked in [PSZ22] if a quasi-isometry between CAT(0) spaces always

induces a quasi-isometry between their corresponding curtain models. We answer this

question in the negative. Both of the following definitions will also help in the construction

of the counterexample.

Definition 4.2.1 (Angles in CAT(0) spaces, Section II.3.1 in [BH99]). Let X be a CAT(0)

space and let α : [0, a] → X and α′ : [0, a′] → X be two geodesic paths issuing from the

same point α(0) = α′(0). Then the comparison angle ∠E (α(t), α
′ (t′)) is a non-decreasing

function of both t, t′ ≥ 0, and the Alexandrov angle ∠ (α, α′) is equal to

lim
t,t′→0

∠E
(
α(t), α′ (t′)) = lim

t→0
∠E
(
α(t), α′(t)

)
.
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Hence, we define:

∠
(
α, α′) = lim

t→0
2 arcsin

1

2t
d
(
α(t), α′(t)

)
.

Definition 4.2.2 (Strongly Contracting). A geodesic α is D-strongly contracting if for any

ball B disjoint from α we have diam(πα(B)) ≤ D, where πα is the closest point projection

to α.

The following counterexample was used in [Cas16] to show that two quasi-isometric

CAT(0) spaces can have contracting boundaries of different homeomorphism type when

equipped with the Gromov product topology. We first introduce this space and its curtain

model.

Xi−1 Xi Xi+1 Xi+2 Xi+3

Figure 4.2: One level of the infinite parking lot X = ∪iXi/ ∼. The space would continue to
spiral upward and downward. Notice, since we are viewing the space from a birds eye view,
Xi−1 gets shadowed by Xi+3. This is due to Xi+3 forming the “next level” of the infinite
parking lot.

Let Y be R2 with a disc of radius one centered at the origin removed. Denote X

as the universal cover of Y . We can view X in the following way: Take Xi to be a quarter
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flat with the quarter disc centered at the origin removed. Then X = ∪iXi/ ∼ where ∼

denotes gluing the y-axis of Xi to the x-axis of Xi+1 for all i ∈ Z. One informally calls X

the “infinite parking lot” as it can be viewed as a collection of quarter flats glued together

that are spiraling up and down, giving the “infinite levels” of a parking lot. See Figure 4.2.

X is indeed a CAT(0) space since it is a gluing of CAT(0) spaces along single

geodesic lines. The result of this space is that a half flat with a half disc of radius one

removed at the origin can be isometrically embedded into each Xi ∪Xi+1/ ∼. In fact, for

any isometric spiral up or down by an angle θ, we get the same isometry of the half flat

with a half disc removed at the origin. Parameterize X via its natural polar coordinates

R × [1,∞), and define the spiral to be the line R × {1}. We now explain why X’s curtain

model X̂ is a quasi-line.

Take any geodesic ray γ such that γ(0) is on the spiral and the Alexandrov angle

between γ and the spiral is π
2 . Up to an isometric rotation of X by some θ along the spiral,

γ is the y-axis of some Xi. Since γ is the y-axis of some isometrically embedded half flat

(with a half disc removed), all curtains dual to γ will stay in its half flat, Xi ∪ Xi+1/ ∼.

As seen in Figure 4.3, if h1, h2 are two disjoint curtains dual to γ, then h1, h2 will be two

parallel, infinitely long strips of width one in Xi ∪Xi+1/ ∼. All curtains dual to the x-axis

of Xi will meet h1 and h2, which means h1 and h2 are not L-separated for any L. The same

is true for any two disjoint curtains dual to γ. Also, by Lemma 4.1.7, the max L-chain that

can cross γ is bounded above by 4L+ 10. Thus, the diameter of γ is

d̂iam(γ) =

∞∑
L=1

λLdiamL(γ) ≤
∞∑

L=1

λL(4L+ 10) < ∞.
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This is true for any geodesic ray that starts at the spiral and whose Alexandrov angle

with the spiral is π
2 . In particular, if we denote the spiral as α, then for any x ∈ X,

d̂(x, πα(x)) ≤ 4L+ 10.

XiXi+1

h1

h2

γ

Figure 4.3: Since γ can always be seen as in the middle of a half flat, its dual curtains will
behave like curtains in a half flat. This implies that any pair of curtains dual to γ will not
be L-separated for any L.

Now, fix some origin o ∈ X on α, and let α+ denote the positive spiral direction

and α− the negative spiral direction emanating from o. Both directions are π-strongly

contracting as balls disjoint from the axis can only project to half of the circumference of

one of the circles in the spiral. By Theorem 1.4.1 for κ ≡ 1 (this is equivalent to Theorem

4.2 in [PSZ22]), there exists an infinite L-chain dual to α+ for some L (similarly for α−).

Thus, in the curtain model X̂, the diameters of α+ and α− will both be unbounded. By

[PSZ22, Proposition 9.5], both α+ and α− are unparameterized quasi-geodesics in X̂. This

concludes α is a quasi-line in X̂. Since for any x ∈ X, d̂(x, πα(x)) ≤ 4L + 10, this yields

that X̂ is a quasi-line.
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Theorem 4.2.3. Given X above, there exists a self quasi-isometry ϕ : X −→ X such that

ϕ does not descend to a quasi-isometry for X̂. Further, there exists two quasi-isometric

CAT(0) spaces W,Z whose curtain models Ŵ , Ẑ are not quasi-isometric.

Proof. For some o ∈ X on the spiral, denote the points of X by (θ, r), where θ is the angle

traveled around the spiral starting at o, and r is the “radius” distance away from the spiral.

Consider the points (i, 2i) and (0, 2i) for all i ∈ N. Through a variation of the logarithmic

spiral quasi-isometry of the Euclidean plane

ϕ : X −→ X

(t, r) 7−→ (t− log2(r), r),

we see that ϕ
(
(i, 2i)

)
= (0, 2i). However, in the curtain model X̂, {(0, 2i)}i represents a

quasi-point, and {(i, 2i)}i represents a quasi-line. This means that the self-quasi-isometry

ϕ will not descend to a quasi-isometry for X̂.

Now, following the same vein as [Cas16], we construct two quasi-isometric CAT(0)

spaces whose curtain models are not quasi-isometric. Construct the space W by gluing a

geodesic ray γi to X at each (i, 2i) point. Similarly, construct the space Z by gluing a

geodesic ray γ′i to X at each (0, 2i) point. These spaces are quasi-isometric via the quasi-

isometry

ϕ : W −→ Z

(t, r) 7−→ (t− log2(r), r)
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γi 7−→ γ′i.

However, the curtain models will not be quasi-isometric. See Figure 4.4. Indeed, as {(0, 2i)}i

is a quasi-point in Ẑ, each of the geodesic rays in {γ′i}i emanate from a point which is within

bounded distance of o on the quasi-line X̂. Thus, Ẑ is quasi-isometric to an infinite wedge

of rays. On the other hand, {(i, 2i)}i represents some sub-quasi-line in X̂, so the geodesic

rays {γi}i have starting points at increasing distance away from o in X̂ as i increases. So,

Ŵ is quasi-isometric to R with a ray attached to each positive integer. These two spaces

are not quasi-isometric.

Ẑ

Ŵ ×××× ×
0 1 2 3 i· · ·

0 1 2 3 i
| | | |

· · ·×××××
×

Figure 4.4: In this picture, the red marks represent the starting points of the geodesic rays
that were glued to X. Notice that for Ŵ , there is a geodesic ray starting at each natural
number. On the other hand, the geodesic rays in Ẑ are all clumped at the origin. The
curtain models both crunch the flatness of the parking lot, but the geodesic rays still have
recognizable distance at their starting points in Ŵ . Thus, the two curtain models are not
quasi-isometric.

Corollary 4.2.4. There exist quasi-isometric CAT(0) spaces W,Z whose curtain models

have non-homeomorphic Gromov boundaries.

Proof. The same logic can also apply to show Ŵ and Ẑ have Gromov boundaries of different

homeomorphism type. The sequence {γi}i in the Gromov boundary of Ŵ converges to α+.
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No such converging sequence exists in Ẑ. Thus, the Gromov boundaries for Ŵ , Ẑ are not

homeomorphic.

4.3 Quasi-flats are Bounded in the Curtain Model

Work Behrstock, Hagen, and Sisto show in [BHS21] that quasi-flats have finite diameter

projections in top level curve graphs of mapping class groups. More generally, they also

showed the same applies for quasi-flats in any hierarchically hyperbolic space projecting to

its top level hyperbolic space. A quasi-flat is a quasi-isometric embedding of Rn for some

n. In this section, we prove the same result as in [BHS21] for quasi-flats in CAT(0) spaces

and their projections to the curtain model. Both arguments here and in [BHS21] leverage

Huang’s theory on orthants in [Hua17]. This is yet another result showing that the curtain

model shows striking similarities to the top level curve graphs of hierarchically hyperbolic

spaces. For this section, we set Λ =
∑∞

L=1
4L+10
L3 .

Lemma 4.3.1. R̂n
≥0 is bounded by nΛ.

Proof. Let n = 2 and denote the origin as o. Let a be one of the two geodesic axes in R2
≥0.

Let b be a geodesic ray perpendicular to a. Then, all of the curtains dual to b cross all of

the curtains dual to a and vice versa. Thus, any pair of curtains h1, h2 dual to b will not

be L-separated for any L. By Lemma 4.1.7, the max L-chain that can cross b is bounded

above by 4L+ 10. Thus, we get a bound on the diameter of b:

d̂iam(b) =

∞∑
L=1

diamL(b)

L3
≤

∞∑
L=1

4L+ 10

L3
= Λ.
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Now, let y ∈ R2
≥0. Then y is on a geodesic that is perpendicular to some axis, a.

Since a is perpendicular to the other axis of R2
≥0, and these axes connect at o, we have that

d̂(o, y) ≤ 2Λ. This gives the proof for n = 2. For any n > 2, any y ∈ Rn is an element of a

geodesic that is normal to some n− 1-quarter flat that contains n− 1 axes of Rn
≥0 . Thus,

for similar reasons from the n = 2 case, y is of distance at most 4L + 10 from the quarter

flat. By a standard induction argument, R̂n
≥0 is bounded by nΛ.

A orthant O of X is a convex subset which is isometric to the Cartesian product

of finitely many half-lines R≥0. If O is both a subcomplex and an orthant, then O is called

an orthant subcomplex.

Lemma 4.3.2. Let X be a CAT(0) cube complex, O be an n-dimensional orthant contained

in X, and ϕ : Rn
≥0 −→ O ⊂ X be the isometric embedding between Rn

≥0 and O. Let a, b be

geodesic rays in Rn
≥0 and ha, hb be curtains dual to a, b with poles Pa, Pb, respectively. If h1

and h2 meet in Rn
≥0, then the curtains hϕ(a),ϕ(Pa), hϕ(b),ϕ(Pb) meet in X

Proof. Let y ∈ ha ∩ hb. Then, πa(y) ∈ Pa and πb(y) ∈ Pb. Since ϕ is an isometry,

πϕ(a)(ϕ(y)) ∈ ϕ(Pa) and πϕ(b)(ϕ(y)) ∈ ϕ(Pb). Hence, ϕ(y) ∈ hϕ(a),ϕ(Pa) ∩ hϕ(b),ϕ(Pb).

Theorem 4.3.3 (Theorem 1.1 in [Hua17]). If X is a CAT(0) cube complex of dimension

n, then for every n-quasiflat Q in X, there is a finite collection O1, . . . , Ok of n-dimensional

orthant subcomplexes in X such that dH
(
Q,∪k

i=1Ok

)
< ∞ where dH denotes the Hausdorff

distance.

Theorem 4.3.4. Let X be a CAT(0) cube complex and Q ⊂ X be an n-dimensional quasi-

flat. Then Q has bounded projection in X̂.
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Proof. Both Lemma 4.3.1 and Lemma 4.3.2 together tell us that each n-dimensional orthant

in X has diameter bounded above by nΛ in X̂. By Theorem 4.3.3, there is a collection of

orthants O1, . . . , Ok in X so that dH
(
Q,∪k

i=1Ok

)
< ∞. Each Oi is a quasi-point in X̂,

so Theorem 4.3.3 tells us that Q is within finite Hausdorff distance of a finite collection of

quasi-points in X̂. Let D be the largest d̂ distance between two elements in ∪k
i=1Ok. Then,

for any x, y ∈ Q, d̂(x, y) ≤ 2dH
(
Q,∪k

i=1Ok

)
+D. Thus, Q has bounded projection in X̂

4.4 Genevois’s Hyperbolicity Criterion

Work of Genevois in [Gen16] has shown a hyperbolicity criterion for CAT(0) cube complexes.

We work to generalize this criterion to the CAT(0) setting.

Definition 4.4.1 (Curtain Grid, E-thin). Two chains of curtains H = {h1, · · · , hn} and

K = {k1, · · · , km} form a curtain grid if every curtain of H crosses every curtain of K.

We denote a curtain grid as (H,K). Given E > 0, a curtain grid is said to be E-thin if

min{|H|, |K|} ≤ E.

Comparing to the cube complex setting, two chains of hyperplanes forming a grid

will equate to a region of “flatness” with the intuition of larger grids equating to larger

areas of “flatness”. Thus, if one has an upper bound on how large these hyperplane grids

can get, one could expect a notion of hyperbolicity. This is precisely what Genevois proves

in [Gen16], and the following theorem uses curtains to get a similar criterion for the CAT(0)

setting.

Theorem 4.4.2. Let X be a CAT(0) space. Then X is hyperbolic if and only if every

curtain grid is E-thin for some uniform E > 0.
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Proof. If X is a hyperbolic space, then all geodesics in X are uniformly D-contracting for

some constant D. By Theorem C for κ ≡ 1 (this is equivalent to Theorem 4.2 in [PSZ22]),

we have there exists an L = L(D) such for any two curtains l1, l2 dual to the same geodesic

that are also of distance at least L apart, we get that l1 and l2 are L-separated.

Consider any curtain grid (H,K). So H = {h1, · · · , hn} for some n. Suppose

n > 5L + 8. Let x ∈ h−1 and y ∈ h+n and denote the unique geodesic between x and y as

[x, y]. Each hi crosses [x, y] by nature of H being a chain. Since all of the curtains in H

are disjoint, there exists ai ∈ [x, y] ∩ h+i ∩ h−i+1 for all i. Denote the curtains dual to [x, y]

and centered at ai by li. We now consider the chain L = {lL+3, l2L+4, ln−(2L+3), ln−(L+2)}.

Each curtain in L is distance at least L apart from the next curtain in L. Thus, L is an

L-chain. Notice the subchain of H that is {h2, · · · , hL+2} intersects nontrivially with l−L+3.

Thus, h1 cannot intersect l2L+4 or else we would contradict L-separation between lL+3 and

l2L+4. Similarly, hn cannot intersect ln−(2L+3). See Figure 4.5. Thus, l2L+4 and ln−(2L+3)

are L-separated curtains that both separate h1 and hn. Since all curtains in K cross both

h1 and hn, they must also cross both l2L+4 and ln−(2L+4). The L-separability of l2L+4 and

ln−(2L+3) implies that |K| ≤ L ≤ 5L+8. Hence, all curtain grids are uniformly (5L+8)-thin.

For the reverse direction, let all curtain grids be E-thin for some uniform integer

E. This means that any two curtains h1, hj dual to the same geodesic that are also greater

than E distance away from each other must be E-separated. Indeed, such a situation would

give a chain of E + 1 curtains {h1, h2, · · · , hj} all dual to the same geodesic, so any grid

made with this chain and some other chain K must give |K| ≤ E. Consider any x, y ∈ X.
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yx

h1 h2 hL+2

· · ·

hn−(L+1) hn−1 hn

· · ·

lL+3 l2L+4 ln−(2L+3) ln−(L+2)

L-separated L-separated

Figure 4.5: Since lL+3 and l2L+4 are L-separated and {h2, · · · , hL+2} is a chain of length
L, we must have that h1 cannot meet l2L+4. Similarly, hn cannot meet ln−(2L+3).

Then, there exists an n ∈ Z≥0 such that

n(E + 2) ≤ d(x, y) ≤ (n+ 1)(E + 2).

Thus, there exist a chain c = {h1, · · · , hn(E+2)−1} such that each hi is dual to [x, y]. We

can then conclude that {h1, h(E+2), h2(E+2), · · · , h(n−1)(E+2)} is an E-chain of length n. So

dE(x, y) ≥ n. Hence, we get

dE(x, y) ≤ d(x, y) ≤ dE(x, y)(E + 2) + (E + 2).

This gives that X is quasi-isometric to XE , a hyperbolic space. we conclude that X is

hyperbolic.
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Chapter 5

Curtain Characterizations of

Sublinearly Morse Geodesics

The point of this section is to give a characterization of κ-Morse rays in a more

combinatorial light. Though sublinear Morseness is a useful definition, it can often be tough

to prove things using this definition. In this chapter, we will be creating a equivalent notion

of a κ-Morse geodesic ray that can be described solely on the curtains the ray crosses.

This characterization was inspired from prior literature [CS15, MQZ22] that gave the same

characterization in the CAT(0) cube complex setting via hyperplanes. For the remainder

of the paper, we assume that X is a proper CAT(0) space.
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5.1 Prior κ-Morse Characterizations and Notation

Since Chapter 3 has shown the contracting definition to be a useful characterization for

Morse geodesics, we centrally use the following definition instead to characterize κ-Morse

geodesics.

Definition 5.1.1 (κ-contracting geodesic, contracting constant). A geodesic ray b is said

to be κ-contracting if there exists a constant C ≥ 0 such that for any x ∈ X and any ball

B centered at x with B ∩ b = ∅, we have diam (πb(B)) < C · κ(x). We call the constant C

the contracting constant.

Note, this is different than the definition of contracting given in Definition 3.2.4,

as that definition requires diam (πb(B)) < C · κ(d(x, b)) - the difference being that the

upper bound in Definition 5.1.1 involves the distance from x to o where the upper bound

in Definition 3.2.4 involves the distance from x to b. However, with this new definition, we

get the following characterization.

Theorem 5.1.2 (Theorem 3.8 in [QR22]). Let X be a proper CAT(0) space. A geodesic

ray b is κ-contracting if and only if it is κ-Morse.

The following definition from [MQZ22] gives another characterization of κ-contracting

rays that will be useful in the reverse direction of Theorem 5.2.2

Definition 5.1.3 (κ-slim geodesic). We say an infinite geodesic ray b is κ-slim if there

exists some C ≥ 0 such that for any x ∈ X, y ∈ b, we have d(πb(x), [x, y]) ≤ Cκ(πb(x)).

Lemma 5.1.4 (Proposition 3.6/Corollary 3.7 in [MQZ22]). In a CAT(0) space, a geodesic

ray b is κ-contracting if and only if it is κ-slim.
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As seen in Figure 5.1, an updated version of Figure 3.6, There have been a lot

of definitions attempting to categorize “hyperbolic” geodesics in non-hyperbolic spaces.

In [QR22, IMZ23, MQZ22], the characterizations between κ-Morse, κ-contracting, and κ-

slim were useful in applications to proofs in their respective papers. We introduce a new

definition, κ-curtain-excursion(Definition 5.2.1), that is also inspired from [MQZ22]. Like

similar characterizations before, we use our new definition and characterization in Chapter

6 to give continuous injection from ∂κX to the curtain model of X.

strongly contracting contracting

Morse κ-Morse

κ-contracting

κ-slim

∼= ∼=

Figure 5.1: An update for the diagram given in Figure 3.6. In the CAT(0) setting, κ-Morse,
κ-contracting, and κ-slim are equivalent definitions while still being our weakest definition
for a “hyperbolic” geodesic in a non-hyperbolic space.

Notation 5.1.5. For the remainder of this paper, we will denote elements of ∂κX as a∞,

b∞, and so on, where a and b will be the unique geodesics based at o that is in the equivalence

class of a∞ and b∞, respectively. When relevant, quasi-geodesics in the same equivalence

class as a∞ and b∞ will be denoted as α and β, respectively. We also often identify geodesics

and quasi-geodesics with their images in X and treat them as subset of X when convenient.

Lastly, we often use C and D to represent contracting and/or Morse constants.
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5.2 A Characterization via Dual Curtains

Definition 5.2.1 (κ-chain, κ-curtain-excursion geodesic, excursion constant). A κ-chain

meeting some geodesic b is a chain of curtains {hi} meeting b at points b(ti) such that

• ti+1 − ti ≤ Cκ(ti+1)

• hi and hi+1 are Cκ(ti+1)-separated

for some C > 0. If such {hi} are dual to b, then (up to a small increase in C) we choose

b(ti) to be the centers of the poles of each hi. A geodesic b is a κ-curtain-excursion geodesic

when it is dual to a κ-chain. We refer to C as the excursion constant.

In the CAT(0) cube complex setting, a geodesic crossing a κ-chain of hyperplanes

was defined as a κ-excursion geodesic in [MQZ22], so our above name of κ-curtain-excursion

geodesics as a curtain analogue is fitting. This section works to prove Theorem 5.2.2,

a dualized version of Theorem C in the introduction. Subsection 3.2 will recover all of

Theorem C by working with non-dual chains.

Theorem 5.2.2. A geodesic ray b is κ-contracting if and only if it is κ-curtain-excursion.

The forward direction is Proposition 5.2.5 whereas the backward direction is

Proposition 5.2.9. Before we prove the forward direction, we recall the following two lemmas.

Lemma 5.2.3 (Lemma 2.6 in [PSZ22]). Let h be a curtain with pole P . For every x ∈ h,

the geodesic [x, πP (x)] is contained in h. In particular, h is path-connected.

Lemma 5.2.4 (Lemma 4.14 in [MQZ22]). Assume X is a CAT(0) space. Let b be a κ-

contracting geodesic ray with contracting constant D starting at o, and let x, y ∈ X and
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not in b such that d(o, πb(x)) ≤ d(o, πb(y)). If the projection of [x, y] to b is larger than

4Dκ(πb(y)), then πb([x, y]) ⊆ N5Dκ(πb(y))([x, y]).

Lemma 5.2.3 tells us that for any curtain h and any x ∈ h, there will exist a

geodesic in h connecting x to the pole of h, and Lemma 5.2.4 gives us that geodesics with

large projections to a κ-contracting ray must get sublinearly close to the κ-contracting ray.

Proposition 5.2.5. Let b be a κ-contracting ray with contracting constant D, then there

exists ti ∈ R such that b is dual to a κ-chain {hi} at points b(ti) ∈ hi and

• ti+1 − ti ≤ Cκ(ti+1)

• hi and hi+1 are Cκ(ti+1)-separated

for some C ≥ 0 depending only on D. In other words, b is a κ-curtain-excursion geodesic.

Proof. Since κ is a sublinear function, we can choose some t0 such that κ(t) ≤ t for all

t ≥ t0. For i ∈ Z≥0, choose ti+1 such that

ti+1 − ti = 10Dκ(ti+1).

Note this is possible to do by the nature of κ being sublinear. Consider the chain

{hi = hb,i}. What is left is to show {hi} have the second condition of a κ-chain. Let k

be a curtain meeting both hi and hi+1 and let P be its pole. Notice πb(P ) has diameter

less than 1 since πb is 1−Lipschitz. Let x ∈ hi ∩ k, y ∈ hi+1 ∩ k. There exists x′, y′ ∈ P

such that [x, x′], [y, y′] ⊂ k by Lemma 5.2.3. Namely, x′ = πP (x) and y′ = πP (y). Now, the

projection of the concatenation [x, x′]∗ [x′, y′]∗ [y′, y] onto b will have diameter greater than

10Dκ(ti+1)− 1. Since πb([x
′, y′]) ⊂ πb(P ) has diameter less than 1, it must be that at least
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b

x

yx′
y′

[ ]

P

k

hi hi+1

b(ti) b(ti+1)πa(P )

Figure 5.2: A picture of the argument of Proposition 5.2.5. We have hi and hi+1 are
curtains dual to b such that d (b (ti) , b (ti+1)) = 10Dκ(ti+1), k is a curtain crossing both
hi and hi+1, and P is the pole of k. Note that, no matter where P projects down to b,
πb ([x, x

′] ∗ [x′, y′] ∗ [y′, y]) will contain
[
b
(
ti +

1
2

)
, b
(
ti+1 − 1

2

)]
and will be of length at least

10κ(ti+1)− 1.

one of the projections of [x, x′] or [y, y′] has diameter greater than 4Dκ(ti+1). See Figure

5.2.

Without loss of generality, we assume d(πb(x), πb(x
′)) ≥ 4Dκ(ti+1). Thus, there

exists a p ∈ [ti+5Dκ(ti+1)−1, ti+5Dκ(ti+1)+1] such that p /∈ πb(P ), but also p ∈ πb([x, x
′]).

By Lemma 5.2.4, we have that p is within 5Dκ(ti+1) of [x, x
′] ⊂ k. Hence, b(ti+5Dκ(ti+1))

is within 5Dκ(ti+1) + 1 of k. Since this is true for any curtain k meeting both hi and hi+1,

any chain that meets hi and hi+1 must be bounded by 10Dκ(ti+1) + 3. This gives the

well-separation bound for κ-excursion.

Remark 5.2.6. We have to double our bound since it is possible to have two chains of

length 5Dκ(ti+1) + 1 that are disjoint from each other. For example, in Figure 5.2 there

can be one chain “above” b and another chain “below” b.
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The above argument follows from the argument of [PSZ22, Theorem 4.2], which

showed that a D-contracting ray has a (10D + 3)-chain of curtains dual to the ray. The

reverse direction follows arguments in [MQZ22]. The following lemma shows that certain

curtains do not create bigons, and it will be used in Lemma 5.2.8.

Lemma 5.2.7 (Lemma 2.7 in [PSZ22]). Let b = [x1, x3] be a geodesic and let x /∈ b. For

any x2 ∈ b, if h is a curtain dual to [x2, x] that meets [x1, x2], then h does not meet [x2, x3].

Lemma 5.2.8. Let b be a κ-curtain-excursion geodesic ray with excursion constant C > 0

and κ-chain {hi}. If a is another geodesic and crosses hi−1, hi, hi+1 with πb(a(si)) = b(ti)

for some si > 0, then there exists a D > 0 depending only on C such that d(a(si), b(ti)) ≤

Dκ(ti).

Proof. The following argument is illustrated in Figure 5.3. Let si−1 < si < si+1 such that

πb(a(sj)) = b(tj) for j ∈ {i−1, i, i+1}. Consider geodesics [a(si), a(si+1)], [a(si+1), b(ti+1)],

[b(ti), b(ti+1)], and [a(si), b(ti)]. This is a quadrilateral in our space. Let c be a maximal chain

dual to [a(si), b(ti)]. Note that all curtains in c must cross at least one of [a(si), a(si+1)],

[a(si+1), b(ti+1)], or [b(ti), b(ti+1)]. Thus, denote c1, c2, and c3 as the collections of curtains

in c as seen in Figure 5.3. That is, c1 are the curtains in c that also meet [b(ti), b(ti+1)] and

so on. We get |c| ≤ |c1| + |c2| + |c3|. Also, define c′ as the curtains in c3 that also meet

[a(si−1), b(ti−1)] and c′′ as the curtains of c3 that also meet [b(ti−1), b(ti+1)]. No curtains in

c3 meet [a(si−1), a(si)] by Lemma 5.2.7. We have that |c3| ≤ |c′|+ |c′′|.

Now, |c1| ≤ Cκ(ti+1) since, by assumption of the κ-curtain-excursion chain, the

length of [b(ti), b(ti+1)] is bounded by Cκ(ti+1). Also, we have |c2| ≤ Cκ(ti+1) because hi
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and hi+1 are Cκ(ti+1)-separated. Similarly, we have |c′| ≤ Cκ(ti), and |c′′| ≤ Cκ(ti). Thus,

|c| ≤ |c1|+ |c2|+ |c3|

≤ |c1|+ |c2|+ |c′|+ |c′′|

≤ Cκ(ti+1) + Cκ(ti+1) + Cκ(ti) + Cκ(ti)

≤ 4Cκ(ti+1).

b(ti−1) b(ti) b(ti+1) b

a

a(si−1)

a(si)

a(si+1)

hi−1 hi hi+1

c3
c2
c1

c′

c′′

Figure 5.3: The set up of Lemma 5.2.8 with subchains c1, c2, and c3 included. The bounds
of c1, c2 and c3 will show that d(a(si), b(ti)) ≤ Dκ(ti) for some D depending on C.

Since |c| is a maximal chain of [a(si), b(ti)], we have that a(si) is within a distance

of (4Cκ(ti+1)+1) from b(ti). By Lemma 3.3.2, we have that there exists a D ≥ 0 such that

d(a(si), b(ti)) ≤ Dκ(ti).

Proposition 5.2.9. Let b be a κ-curtain-excursion geodesic with κ-chain {hi} dual to b.

Denote b(ti) as the centers of the poles of each hi, and put C ≥ 0 the excursion constant.
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Then b is κ-slim for constant D′ ≥ 0, depending only on C (and κ-contracting by Lemma

5.1.4).

Proof. Let x ∈ X. Then, there exists a minimal i such that x ∈ h−i . Let y ∈ b. We split

where y can be placed on b into three cases: y ∈ h+i+2, y ∈ h−i−4 and y ∈ [b(ti−4− 1
2), b(ti+2+

1
2)].

When y ∈ h+i+2, take [x, y] which will cross hi, hi+1 and hi+2. By Lemma 5.2.8,

we have b(ti+1) is within Dκ(ti+1) of [x, y] for some D > 0 depending only on C. We know

πb(x) ∈ h+i−2. Thus, d(πb(x), b(ti+1)) ≤ 3Cκ(ti+1). This gives

d(πb(x), [x, y]) ≤ (3C +D)κ(ti+1).

Since πb(x) is on the geodesic [b(ti−2), b(ti)], we get that Lemma 3.3.2 implies there exists

a D′ such that d(πb(x), [x, y]) ≤ D′κ(πb(x)). See Figure 5.4.

b

x

yπb(x)

hi−1 hi hi+1 hi+2

b(ti+1)

Figure 5.4: Picture of the first case of Proposition 5.2.9. Since d(b(ti+1), [x, y]) ≤ Dκ(ti+1)
and d(πb(x), b(ti+1)) ≤ 3Cκ(ti+1), we see that the πb(x) will also be sublinearly close to
[x, y].
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The proof in the case of y ∈ h−i−4 is the same and its corresponding picture will be

a mirrored version of Figure 5.4.

Lastly, when y ∈ [b(ti−4− 1
2), b(ti+2+

1
2)], we similarly have that πb(x) ∈ h+i−2∩h−i

will be within 5Cκ(ti+2) of y. Thus, again by Lemma 3.3.2, there will exist a D′ depending

only on C such that d(πb(x), [x, y]) ≤ D′κ(πb(x)). Hence the proof (and also the proof of

Theorem 5.2.2).

5.3 Dualizing a κ-Chain

In [PSZ22], the authors shows that if a chain of L-separated curtains meets a geodesic,

one can follow the process of [PSZ22, Lemma 4.5] to find a chain of L-separated curtains

dual to the geodesic. If one were to follow this process in the sublinear case, it is likely

that the dual curtains will be at a κ2 distance apart resulting in a dual κ2-chain instead

of a κ-chain. Instead, we rework Lemma 5.2.8 and Proposition 5.2.9 to allow for a κ-chain

that is not necessarily dual to the geodesic. This is Proposition 5.3.1 and Proposition 5.3.2,

respectively. Then, Proposition 5.2.5 finds a κ-chain dual to the geodesic.

Proposition 5.3.1. Let b be a geodesic ray that meets a κ-chain {hi} (not necessarily dual)

at points b(ti) with excursion constant C > 0. Put Pi as the poles of each hi. If a is another

geodesic and crosses hi−1, hi, hi+1 with πPi(a(si)) = πPi(b(ti)) for some si > 0, then there

exists a D > 0 depending only on C such that d(a(si), b(ti)) ≤ Dκ(ti).

Proof. Again, similar to Lemma 5.2.8, consider the geodesic [a(si), b(ti)] and let c be a

maximal chain dual to [a(si), b(ti)]. Since πPi(a(si)) = πPi(b(ti)), then due to Lemma 5.2.3,

the concatenation [a(si), πPi(b(ti))] ∗ [πPi(b(ti)), b(ti)] will be inside of hi. Since any curtain
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in the chain c must meet [a(si), πPi(b(ti))]∗ [πPi(b(ti)), b(ti)], we must have that any curtain

in c must meet hi (even though [a(si), b(ti)] might not stay inside of hi). On the other

hand, all curtains in c must also meet the concatenation [a(si), a(si+1)] ∗ [a(si+1), b(ti+1)] ∗

[b(ti+1), b(ti)]. So, like Lemma 5.2.8, one gets that d(a(si), b(ti) ≤ Dκ(ti) where D depends

only on C.

Proposition 5.3.2. Let b be geodesic that meets a κ-chain {hi} (not necessarily dual) at

points b(ti) with excursion constant C > 0. Then b is κ-slim for constant D′ ≥ 0, depending

only on C (and κ-contracting by Lemma 5.1.4).

b

x

yπb(x)

hi−4 hi−3 hi−2 hi−1
hi hi+1 hi+2

b(ti+1)

z
z′

b(ti−3)

· · · · · ·

Figure 5.5: A picture for the proof of Proposition 5.3.2. No matter how many curtains
in our κ-chain meet [x, πb(x)], we get that z′ and b(ti−3) will still be bounded by κ. The
blue path represents a path from πb(x) to z, and all geodesic subpaths of the blue path are
bounded by κ via the proof of Proposition 5.3.2.

Proof. Again we follow arguments in Proposition 5.2.9. Let x ∈ X and y ∈ b. There exists

a minimal i such that x ∈ h−i . To prove b is κ-slim, we again split where y ∈ b can be placed

on b into three cases: y ∈ h+i+2, y ∈ h−i−4, and y ∈ [b(ti−4 − 1
2), b(ti+2 +

1
2)].
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When y ∈ h+i+2, we get by Proposition 5.3.1 that there exists z ∈ [x, y]∩hi+1 such

that d(z, b(ti+1)) ≤ Dκ(ti+1) whereD depends on C. Now, since the {hi} are not necessarily

dual to b, it is possible that [x, πb(x)] will cross elements in our κ-chain {hi}. This gives

two subcases. In the subcase that πb(x) ∈ h+i−5 Then d(πb(x), b(ti+1) ≤ 5Cκ(ti+1) and so

d(πb(x), z) ≤ (5C +D)κ(ti+1) ≤ D′κ(πb(x)) for some D′ depending on C by Lemma 3.3.2.

In the subcase that πb(x) /∈ h+i−5, then [x, πb(x)] crosses hi−4, hi−3, hi−2 and, by Proposition

5.3.1, there exists a z′ ∈ [x, πb(x)] ∩ hi−3 such that d(z′, b(ti−3) ≤ Dκ(ti−3) for some D

depending on C. Since πb(z
′) = πb(x), it must be true that also d(z′, πb(x)) ≤ Dκ(ti−3).

Thus, we get,

d(π(x), z) ≤ d(π(x), z′) + d(z′, b(ti−3)) + d(b(ti−3), b(ti+1)) + d(b(ti+1), z)

≤ Dκ(ti−3) +Dκ(ti−3) + 4Cκ(ti+1) + Cκ(ti+1)

≤ (2D + 5C)κ(ti+1).

This gives, by Lemma 3.3.2, there exists a D′′ such that d(π(x), z) ≤ D′′κ(πb(x)). The cases

of y ∈ h−i−4 and y ∈ [b(ti−4 − 1
2), b(ti+2 +

1
2)] are done with a similar argument of the above

case and Lemma 5.2.9, so we will omit them. See Figure 5.5.

Corollary 5.3.3. If a κ-chain {hi} meets a geodesic b at points {b(ti)} such that ti+1−ti ≤

Cκ(ti+1) for some C > 0, then b is a κ-curtain-excursion geodesic.

Proof. Proposition 5.3.2 shows b is κ-contracting, and Proposition 5.2.5 finds a dual κ-chain

to b.
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Chapter 6

Genericity of Sublinear Morse

Geodesics in the Curtain Model

6.1 The Behavior of Projected Geodesics in the Curtain Model

We now reintroduce the curtain model, a hyperbolic space with a Gromov boundary that

∂κX can continuously inject into as formulated in [PSZ22]. As a set, we fix the CAT(0)

space X but change the metric.

Definition 6.1.1 (Curtain Model). We consider the space (X, d̂) where the distance be-

tween two points x, y ∈ X is defined by

d̂(x, y) =
∞∑

L=1

dL(x, y)

L3

where dL is the L-metric defined in Definition 4.1.8. We call (X, d̂) the curtain model of X

and denote it as X̂ as seen in the introduction.
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Remark 6.1.2. In [PSZ22] and Chapter 4, the curtain model metric used was D(x, y) =∑∞
L=1 λLdL(x, y) where λL ∈ (0, 1) such that

∑∞
L=1 λL <

∑∞
L=1 LλL <

∑∞
L=1 L

2λL < ∞.

By [PSZ22, Remark 9.1], the condition that
∑∞

L=1 L
2λL < ∞ was only used in Section

9.3 of [PSZ22], and none of Chapter 6 uses this content. Thus, the sequence λL = 1
L3 is

a sufficient sequence to use for this paper. It is also a desirable sequence since choosing

λL = 1
L3 allows our theory to work when regarding all κ such that κ4 is sublinear. This is

the largest class of sublinear functions our proofs can work for — if one uses λ′
L = 1

Ln for

any n > 2, we would require κ to be so that κn+1 is sublinear. (See the proof of Lemma

6.1.9 to see this relationship.) This observation suggests that choosing λL = 1
L3 might be

the preferred choice in the majority of contexts. Intuitively, it makes sense to choose the

slowest converging sequence possible because the slower our sequence of λL’s converges to

0, the more geometry each dL sees for larger L. Given the conditions needed for λL, our

choice of sequence is essentially the slowest converging sequence to 0 that fits the necessary

conditions.

The function d̂ is indeed a metric since each of the dL’s are metrics. Also, every

isometry of X is also an isometry of XL by Theorem 4.1.9. This implies also that any

isometry of X is an isometry of X̂. Hence Isom X acts on X̂ by isometries [PSZ22, Lemma

9.2].

Theorem 6.1.3 (Theorem 9.10 in [PSZ22]). There exists a δ such that X̂ is a quasigeodesic

δ-hyperbolic space.

Since X̂ is not a proper metric space, we cannot define its boundary via equivalence

classes of geodesic directions as we do for ∂κX or in Chapter 3. Rather, we will define
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the Gromov-boundary of X̂ in terms of equivalence classes of sequences. For more of the

following information, see [BK02] or [BH99]. Recall that a sequence {xn} Gromov-converges

to infinity if lim infi,j→∞ (xi · xj)o = ∞ where (xi · xj)o is the Gromov product, defined as

(xi · xj)o =
1

2

(
d̂ (o, xi) + d̂ (o, xj)− d̂ (xi, xj)

)
.

Two sequences {xi} and {yj} are said to be in the same equivalence class if

lim inf
i,j→∞

(xi · yj)o = ∞.

Thus, we can define the Gromov boundary ∂X̂ as the set of equivalence classes of sequences

Gromov-converging to infinity. Given s ∈ ∂X̂ and r > 0 the sets

U(s, r) =

{
[{yi}]

∣∣∣∣ lim inf
i,j→∞

(xi · yj)o ≥ r for some {xi} ∈ s

}

form a basis for the standard topology on the Gromov boundary ∂X̂. Furthermore, isome-

tries of X̂ induce homeomorphisms of ∂X̂ with respect to this topology.

We desire to create a map ∂κX −→ ∂X̂ that sends b∞ ∈ ∂κX to some s ∈ ∂X̂.

Ideally, the geodesic b will project to some unbounded set in X̂, and increasing sequences

of points on b will Gromov-converge to infinity in ∂X̂. However, it is not obvious that b will

always be unbounded in X̂. A potential problem is the strength of our sublinear function

κ, as the following example will show.

Example 6.1.4. Let κ =
√
·, i.e. the square root function, and consider the following

space:
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Put X√
· to be the subset of R2 between the square root function and the x-axis.

Put Xi =
[
i2 + 1

2 , (i+ 1)2 − 1
2

]
× [0,∞). Now denote X = X√

· ∪
⋃∞

i=1Xi. Notice that,

when b is the x-axis, b is κ-contracting, and a κ-chain dual to b is {hb,ti} where b (ti) is the

point
(
i2, 0

)
. See Figure 6.1, where X is the blue-shaded space.

1 4 9 16 25

1

2

3

4

5

X1 X2 X3 X4

Figure 6.1: The space X = X√
· ∪
⋃∞

i=1Xi

In this constructed space, any L-chain dual to b must only have one curtain in

each Xi. This is because any two curtains in Xi dual to b are not L-separated for any L.

Though it is possible to find a larger L-chain such that its curtains are not dual to b, the

remainder of Chapter 6 uses dual chains as a lower bound for distance. By observation we

have that, for any t with ti ≤ t ≤ ti+1, the largest L-chain dual to [o, b(t)] is 2L if L ≤ i

and 2i if L > i.

Thus, as i → ∞, we have

lim
i→∞

d̂ (o, b (ti)) = lim
i→∞

∞∑
L=1

dL (o, b (ti))

L3
≥

∞∑
L=1

2L

L3
.

Notice how the right hand side of the inequality is a finite value. This argument

is not sufficient to show that diam(b) is unbounded in X̂. Thus, it is possible b would not
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define a point in ∂X̂. It may still be possible to find collections of L-chains meeting b that

show b has infinite diameter in X̂, but finding such L-chains will be tougher. Since most

applications of sublinear functions involve a κ such that κ4 is sublinear, such as logarithmic

functions, we can afford to impose this stronger condition for cleaner arguments. Thus, for

the remainder of the paper, we assume κ is any continuous, bijective, and monotonically

increasing function such that κ4 is sublinear.

The following lemmas show that geodesics in X project to unparameterized quasi-

geodesics in X̂. Lemmas 6.1.5 and 6.1.6 assist in the proof of Lemma 6.1.7. Lemma 6.1.7

shows us that projections behave like rough geodesics. It should be noted that Lemma 6.1.7

shows the same result as [PSZ22, Propostion 9.5] but for when
∑∞

L=1 λL =
∑∞

L=1
1
L3 . Since

the proof of Lemma 6.1.7 was written before the the updated version of [PSZ22], we still

include Lemma 6.1.7 for completeness.

Lemma 6.1.5 (Lemma 2.13 in [PSZ22]). Suppose that c = {h1, . . . , hn} and c′ = {h′1, . . . h′m}

are L chains with n > 1 and m > L + 1, where h′−1 is the halfspace not containing h′2. If

h′−1 ∩ hj ̸= ∅ for all j and h+n ∩ h′i ̸= ∅ for all i, then c′′ =
{
h1, . . . , hn−1, h

′
L+2, . . . , h

′
m

}
is

an L-chain of cardinality n+m− L− 2.

Lemma 6.1.6 (Corollary 3.2 in [PSZ22]). If b is a CAT(0) geodesic and t1 < t2 < t3, then

any L-chain c separating b(t2) from {b(t1), b(t3)} has cardinality at most L′ = 1 +
⌊
L
2

⌋
.

Lemma 6.1.7. Let b : I → X be a geodesic ray in (X, d), then for any t1, t2, t3 ∈ I such

that t1 < t2 < t3 with b(t1) = x, b(t2) = y, b(t3) = z, we have d̂(x, z) ≥ d̂(x, y) + d̂(x, z)− C

where C is a constant independent of b.
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Proof. Let L ∈ N, and let c, c′ be maximal L-chains realizing dL(x, y) = 1+|c| and dL(y, z) =

1 + |c′|. Assume |c′| ≥ 3L
2 + 3. By Lemma 6.1.6, the maximum number of curtains in

c′ that cross [x, y] is 1 + ⌊L2 ⌋. Denote c′′ ⊆ c′ the set with such curtains deleted so that

|c′′| ≥ |c′|−1−⌊L2 ⌋. Ordering c′′ = {h1, h2 . . . , hn}, we denote h+1 as the halfspace containing

h2. Notice that h−1 must contain [x, y], which means every curtain in c meets h−1 . Thus, by

Lemma 6.1.5, dL(x, z) ≥ |c|+ (|c′| − 1−⌊L2 ⌋)− (L+2) ≥ dL(x, y) + dL(y, z)− 3L
2 − 5. Note

that this inequality is also trivially true if |c′| ≤ 3L
2 + 3. Thus, we get that

d̂(x, z) =
∞∑

L=1

dL(x, z)

L3

≥
∞∑

L=1

dL(x, y) + dL(y, z)− 3L
2 − 5

L3

= d̂(x, y) + d̂(y, z)−
∞∑

L=1

(
3

2L2
+

5

L3
).

Setting C =
∞∑

L=1

(
3

2L2
+

5

L3
) gives the desired result.

Remark 6.1.8. Lemma 6.1.7 shows a “coarse reverse triangle inequality” for geodesics

projecting into X̂. Looking at the the definition of an unparameterized quasi geodesic (see

[MMS12, Section 2.1]), one can use Lemma 6.1.7 to parameterize a projected geodesic into

a quasi-geodesic in X̂.

In order the show that any κ-contracting geodesic defines a point in ∂X̂, we must

also show that the geodesic will have infinite diameter with respect to d̂.
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Lemma 6.1.9. Let X be a CAT(0) space and b be a κ-contracting geodesic ray based at o

where κ is a sublinear function such that κ4 is sublinear. Then b has infinite diameter with

respect to the d̂ metric.

Proof. Denote {hi} the κ-chain dual to b and denote b(ti) the center of the poles of each hi.

Put C > 0 as the excursion constant. We know that ⌊Cκ(t1)⌋ = n for some n ∈ N. Thus,

for any i > 1, there exists some m ≥ n such that ⌈Cκ(ti)⌉ = m. Since, by definition of a

κ-chain, tj+1 − tj ≤ Cκ(tj+1), we have

ti − t1 =

i∑
j=1

(tj+1 − tj)

≤
i∑

j=1

Cκ(tj+1)

≤
i∑

j=1

Cκ(ti)

= iCκ(ti)

≤ im.

Thus, we have i ≥ ti−t1
m . Notice, since ⌈Cκ(ti)⌉ = m, this implies Cκ(ti)+ 1 ≥ m. Now, we

claim dm(o, b(ti)) ≥ i− 1 ≥ ti − t1
m

− 1. Indeed, [o, b(ti)] crosses curtains {h1, h2, . . . , hi−1},

and since each hj−1 and hj are Cκ(tj)-separated, they are also m-separated since Cκ(tj) ≤

m for all j ≤ i− 1. Thus, it follows that

dm(o, b(ti))

m3
≥

ti−t1
m − 1

m3
≥ ti − t1

m4
− 1 ≥ ti − t1

(Cκ(ti) + 1)4
− 1.
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By assumption, κ4 is a sublinear function. Hence, as i grows to infinity, the right

hand side of the above inequality grows to infinity. Since d̂(o, b(ti)) ≥ dm(o,b(ti))
m3 , we conclude

that

lim
i→∞

d̂(o, b(ti)) = ∞.

Hence, b is unbounded in X̂.

Remark 6.1.10. Notice, in the above proof, we showed that for each ti, we can find an

m ∈ N such that

dm (o, b (ti))

m3
≥ ti − t1

(cκ (ti) + 1)4
− 1.

This inequality also shows the possibility of κ-contracting rays having a κ-persistent

shadow as defined in [DZ22]. We show a notion of equivalence between a ray being κ-

contracting and having a κ-persistent shadow in Section 6.4, and we postpone further con-

versation to that section.

6.2 Creating an Injective Map

Assume X is a proper CAT(0) space with X̂ its curtain model and let κ be a sublinear

function such that κ4 is sublinear. We have that κ-contracting geodesics in X will be

unbounded quasi-geodesics in X̂. Since each b∞ ∈ ∂κX has only one geodesic emanating

from o in its equivalence class, we define φ by

φ : ∂κX −→ ∂X̂

b∞ 7−→
[
{b(n)}n∈N

]
.
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Notably, the map is well defined since b∞ only has one geodesic emanating from

o (namely, b). Also, given any increasing sequence {ti} with ti → ∞, we get that {b(ti)}

Gromov-converges to infinity and [{b(ti)}] = [{b(n)}]. This fact is useful because we can

choose any increasing sequence {b(ti)} ⊂ b that Gromov-converges to infinity to represent

φ(b∞) in our proofs. We now work to make φ injective.

Lemma 6.2.1. Let b1 be a κ-contracting geodesic ray. Denote {hi} the κ-chain dual to b1

with center of poles b1 (ti). If a geodesic b2 meets infinitely many of {hi}, then b2 is in a

κ-neighborhood of b1.

b1

b2
qi qi+1

b1(ti) b1(ti+1)

p

hi hi+1

Dκ(ti) ≥ ≤ Dκ(ti+1)

≤ D′κ(ti+1)

Figure 6.2: A picture for the proof of Proposition 6.2.1. We show that b2 is in a κ-
neighborhood of b1.

Proof. Since the {hi} are ordered, then b2 crossing hm and hn implies that b2 also crosses all

curtains of {hi} between hm and hn. Thus, b2 must cross all but finitely many hi. Removing

such finitely many curtains will still result in a κ-chain dual to b1, so we assume b2 meets

all of {hi} at points qi ∈ b2 such that πb1(qi) = b1(ti). Now, Lemma 5.2.8 tells us that

d(qi, b1 (ti)) ≤ Dκ (ti) for some D > 0 depending only on the contracting constant C. Also,
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by definition of a κ-chain and Lemma 3.3.2, d(b1 (ti) , b1 (ti+1)) ≤ D′κ (ti) for some D′ > 0

depending only on C. Thus, for any p ∈ b2 between qi and qi+1, we have

d (p, qi) ≤ d (qi, qi+1)

≤ d (qi, b1(ti)) + d (b1(ti), b1(ti+1)) + d (b1(ti+1), qi+1)

≤ Dκ (ti) +D′κ (ti) +Dκ (ti+1)

≤ D′′κ (ti)

for some D′′ > 0 by Lemma 3.3.2. This gives,

d (p, b1) ≤ d (p, qi) + d (qi, b1 (ti))

≤
(
D′′ +D

)
κ (ti)

≤
(
D′′ +D

)
κ(p).

This is true for any p ∈ b2 between some qi and qi+1, which gives us that b2 is in

a κ-neighborhood of b1. See Figure 6.2.

Remark 6.2.2. Note that, by the contrapositive, if b1 and b2 are κ-contracting rays that

are not in the same κ-equivalence class, then each only crosses up to finitely many curtains

in the other’s κ-chain.

Proposition 6.2.3 (Injectivity of φ). Let b∞1 , b∞2 ∈ ∂κX and let b1, b2 be the corresponding

κ-contracting geodesic rays based at o. If b∞1 ̸= b∞2 , then φ(b∞1 ) ̸= φ(b∞2 ) in ∂X̂.

Proof. Since b1 and b2 are both κ-contracting rays, they both have κ-chains dual to them.

Denote {hi} and
{
h′j

}
as the κ-chains dual to b1 and b2 with centers of poles {b1 (ti)} and
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{
b2

(
t′j

)}
, respectively. By Remark 6.2.2, b1 and b2 only cross finitely many of the other’s

κ-chain. Put hm to be the last curtain of {hi} that b2 crosses and h′n to be the last curtain

of {hj} that b1 crosses. Consider the sequence {xi} where xi = b1 (ti + 1) and {yj} where

yj = b2

(
t′j + 1

)
.

Now, hm+1 and hm+2 are L1-separated for L1 = ⌈κ(tm+2)⌉ and, for i ≥ m + 2,

separate xi from b2. Similarly, h′n+1 and h′n+2 are L2-separated for L2 = ⌈κ(t′n+2)⌉ and for

j ⩾ n+ 2, separate yj from b1. See the Figure 6.3.

b1

b2

o

hm

hm+1

hm+2

h′
n

h′
n+1

h′
n+2 L1−separated

L2−separated

yn+2

xm+2

Figure 6.3: Two L1−separated curtains separate xm+2 from b2. Similarly, two L2−separated
curtains separate yn+2 from b1.

We now investigate dL (xi, yj) for i > m + 2, j > n + 2. Let c be a maximal

L-chain that realizes dL (xi, xm+2) = 1 + |c|. Due to where hm+1 and hm+2 are placed,

at least |c| − L1 curtains in c will not intersect b2. Let c′ be a maximal chain realizing

dL (yj , yn+2) = 1+ |c′|. By a similar argument involving h′n+1 and h′n+2, we get that at least
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|c′| −L2 curtains in c′ will not intersect b1. By gluing these two chains together via Lemma

6.1.5, we obtain an L-chain of length at least |c|+ |c′| − L1 − L2 − L− 2 that separates xi

and yj . Thus,

dL (xi, yj) ≥ dL (xi, xm+2) + dL (yj , yn+2)− L1 − L2 − L− 4.

Hence,

(xi · yj)o =
1

2

(
d̂ (o, xi) + d̂ (o, yj)− d̂ (xi, yj)

)
=

1

2

(
d̂ (o, xi) + d̂ (o, yj)−

∞∑
L=1

dL (xi, yj)

L3

)

≤ 1

2

(
d̂ (o, xi) + d̂ (o, yj)−

∞∑
L=1

dL (xi, xm+2) + d2 (yi, yn+2)− L1 − L2 − L− 4

L3

)

=
1

2

(
d̂ (o, xi) + d̂ (o, yj)− d̂ (xi, xm+2)− d̂ (yi, yn+2) +

∞∑
L=1

L1 + L2 + L+ 4

L3

)

≤ 1

2

(
d̂ (o, xm+2) + d̂ (o, yn+2) +

∞∑
L=1

L1 + L2 + L+ 4

L3

)

where the last inequality is due to the triangle inequality. Thus, for any i ≥ m + 2 and

j ≥ n+ 2, we have that (xi · yj)o is bounded by the above constant. This gives

lim inf
i,j→∞

(xi · yj)o < ∞,

so {xi} and {yj} represent different equivalence classes in ∂X̂. This implies the same for

φ(b∞1 ) and φ(b∞2 ).
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6.3 Continuity of φ : ∂κX −→ ∂X̂

We now review the topologies of both ∂κX and ∂X̂ in preparation for showing continuity

of φ. Recall that we defined the topology of ∂X̂ by the basic open sets

U(s, r) =

{
[{yi}]

∣∣∣∣ lim inf
i,j→∞

(xi · yj)o ≥ r for some {xi} ∈ s

}

where s ∈ ∂X̂ and r > 0. Showing continuity will involve using intersections of cone

topology bases (Definition 6.3.1) and Curtain topology sets (Definition 6.3.2).

Definition 6.3.1 (Visual boundary, cone topology as a subspace topology). The visual

boundary of a proper CAT(0) space X, denoted ∂X as a set, is the set of all geodesic rays

emanating from o. The cone topology of ∂X is generated by the basic open sets

VR,ϵ(ξ) := {η ∈ ∂X | d (ξ(R), η(R)) < ϵ} .

When ∂X is equipped with the cone topology, we denote it ∂∞X. For convenience, we

denote such sets in the subspace ∂κX as

UR,ϵ(ξ) := VR,ϵ(ξ) ∩ ∂κX.

This defines a subspace topology on ∂κX.
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The following topology on ∂κX is a useful topology to be able leverage curtain

machinery in the same way hyperplanes were leveraged in the analogous topology defined

in [IMZ23].

Definition 6.3.2 (Curtain Topology Sets). Let b∞ ∈ ∂κX be a geodesic ray emanating

from o. We say a curtain h separates o from a∞ if there exists a T > 0 such that h separates

o from a[T,∞]. For each curtain h dual to b, we define

Uh (b
∞) = {a∞ ∈ ∂X : h separates o = a(0) from a∞} ∩ ∂κX.

We define the curtain topology on ∂κX as follows: a set O ⊂ ∂κX is open if for each

b∞ ∈ O, there exists a curtain h dual to b such that Uh(b
∞) ⊂ O. This yields a topology on

∂κX. Note, such a topology is actually the subspace topology of the curtain topology on

all of ∂X. However, for convenience of notation, we define Uh(b
∞) to be intersecting with

∂κX as above since we are only interested in ∂κX for this paper.

Lemma 6.3.3. The cone topology and the curtain topology agree on ∂κX.

Proof. Showing the curtain topology is coarser than the cone topology is given in the proof

of Theorem 8.8 in [PSZ22]. The reverse direction is a recreation of the proof of Theorem

4.2 in [IMZ23], but in the curtain setting.

Consider some UR,ϵ(b
∞) for some κ-contracting geodesic b and R, ϵ > 0. Then

there is an infinite κ-chain {hi} dual to b. Denote the center of poles of each hi as b(ti). Put

D as the constant in Lemma 5.2.8 (note thatD only depends on the excursion constant of b).

Fix m large enough so that tm > R and 2Dκ(tm) ≤ tm
R ϵ. We claim Uhm+1(b

∞) ⊂ UR,ϵ(b
∞).
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Indeed, let a∞ ∈ Uhm+1(b
∞), so a is a geodesic emanating from o that crosses hm+1. By

Lemma 5.2.8, there exists an s > 0 such that d(a(s), b(tm)) ≤ Dκ(tm). Note that, since a

and b are both geodesics emanating from o, we get that |s− tm| ≤ Dκ(tm) Thus,

d(a(tm), b(tm)) ≤ d(a(tm), a(s)) + d(a(s), b(tm)) ≤ 2Dκ(tm) ≤ tm
R

ϵ

Due to convexity of the CAT(0) metric (as shown in [BH99, II.2.1] and its proof),

d(a(R), b(R)) ≤ ϵ. Thus, a∞ ∈ UR,ϵ(b
∞).

Theorem 6.3.4. The map φ : ∂κX −→ ∂X̂ is a well-defined, injective, and continuous

map when ∂κX is endowed with subspace topology of the cone topology.

Proof. Proposition 6.2.3 shows that φ is injective. What is left is to show continuity. Let

U(s, r) be an open set in ∂X̂. If its preimage is nonempty, we can assume that there exists

a b∞ ∈ ∂κX such that φ(b∞) = s and it suffices to show that there exists a Uh(b
∞) ⊂

φ−1(U(s, r)) for some curtain h dual to b.

Let r′ > 0 and ϵ > 0. Since b is a κ-contracting geodesic, denote {hi} the κ-chain

dual to b with b (ti) the center of the pole of each hi. Since b is unbounded in X̂, there

exists an i = ir′ such that d̂
(
o, b
(
tir′
))

> r′. Consider the set Uhir′
(b∞) and the open

set UR,ϵ(b
∞) where R > tir′ . Since UR,ϵ(b

∞) is open, there exists a curtain k dual to b

such that Uk(b
∞) ⊆ UR,ϵ(b

∞) by Lemma 6.3.3 . Without loss of generality, the pole of the

curtain k is farther distance away from o in the CAT(0) metric than the pole of htir′
, so

Uk(b
∞) ⊂ Uhtir′

(b∞).
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We claim Uk(b
∞) ⊆ φ−1(U(s, r)). Indeed, let a∞ ∈ Uk(b

∞). So a is the geodesic in

a∞ emanating from o. Then, a crosses the first ir′ curtains of {hi} and also d(a(t), b) < ϵ for

all t ≤ R. See Figure 6.4. Now, consider any unbounded and increasing sequence {xi} ⊆ b

and {yj} ⊆ a with the added condition that, for some n, xn = b
(
tir′ +

1
2

)
and yn such that

d (xn, yn) < ϵ. What’s left to show is that (xm · ym′)o ≥ r for all m,m′ > n. By Lemma

6.1.7, we have there exists a constant C such that,

b

a

o xn

yn

ym

xm

hir′

< ϵ

Figure 6.4: Picture of b crossing hir′ as well as where xn and yn are placed.

d̂ (o, xm) ≥ d̂ (o, xn) + d̂ (xn, xm)− C

d̂ (o, ym′) ≥ d̂ (o, yn) + d̂ (yn, ym′)− C.

Also, by the triangle inequality,

d̂ (xm, ym′) ≤ d̂ (xm, xn) + d̂ (xn, yn) + d̂ (yn, ym′) .
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Thus, by the above inequalities, we get

(xm · ym′)o =
1

2

(
d̂ (o, xm) + d̂ (o, ym′)− d̂ (xm, ym′)

)
≥ 1

2

(
d̂ (o, xn) + d̂ (o, yn)− d̂ (xn, yn)− 2C

)

Since [o, xn] and [o, yn] both cross the curtains {h1, h2, · · · , hir′} we see that d̂ (o, xn) > r′

and d̂ (o, yn) > r′. Thus,

(xm · ym′)o ≥
1

2

(
r′ + r′ − ϵ− 2C

)
= r′ − 1

2
ϵ− C.

Since r′ and ϵ were arbitrary, we can fix ϵ and choose r′ such that (xm · ym′)o > r. Thus,

φ(a∞) ∈ U(s, r). This is true for any a∞ ∈ Uk(b
∞). Hence, φ is continuous.

Since the underlying sets of X and X̂ are the same, φ is an Isom X-equivariant

map. Due to Lemma 3.3.10, we get the same result when ∂κX is endowed with the SM

topology (see Definition 3.3.7).

Corollary 6.3.5. The map φ : ∂κX −→ ∂X̂ is a well-defined, injective, and continuous

map when ∂κX is endowed with the sublinear Morse topology.

Recent work of [AIM22] has shown new proving techniques when regarding cobounded

projections to hyperbolic spaces. With Definition 6.3.6 and Lemma 6.3.7, we can follow

[AIM22][Lemma 3.32] to upgrade φ in Theorem 6.3.4 to a homeomorphism.
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Definition 6.3.6. Let X be a metric space, C ≥ 0, and I ⊂ R a (possibly unbounded)

closed interval. A path γ : I → X is an unparameterized C-quasi-ruler if it satisfies the

following conditions.

• ∀t < s < r, we have d(γ(t), γ(s)) + d(γ(s), γ(r)) ≤ d(γ(t), γ(r)) + C.

• ∀t0 ∈ I, we have lim sup|t−t0|→0 d (γ(t), γ (t0)) < C.

We see that, for any κ-contracting ray b : [0,∞) −→ X, and any t0 ∈ [0,∞), we

have lim sup|t−t0|→0 d̂(b(t), b(t0)) ≤
∑ 1

L3 . This, along with Lemma 6.1.7 show that b is a

C-quasi-ruler for the constant C in Lemma 6.1.7.

Lemma 6.3.7 (Lemma A.11 in [AIM22]). Let X̂ be a δ-hyperbolic space with basepoint

o ∈ X, and let γ, γ′ : [0,∞) → X̂ be two C-quasi-rulers with unbounded image that start

at o and define points [{γ(n)}], [{γ′(m)}] in ∂X̂. If x′ ∈ γ and y′ ∈ γ′ are such that

d (o, x′) , d (o, y′) ≤ lim infm,n→∞ (γ(n) · γ′(m))o + C, then

(
x′ · y′

)
o
≥ min

{
d
(
o, x′

)
, d
(
o, y′

)}
− C − 2δ

and

d
(
x′, y′

)
≤ C + 2δ +

∣∣d (o, x′)− d
(
o, y′

)∣∣
Theorem 6.3.8. When ∂κX is endowed with the subspace topology of the cone topology of

∂X, the map φ : ∂κX −→ ∂X̂ is a homeomorphism onto its image.

Proof. Continuity is already shown in Theorem 6.3.4. We only need to show that, for any

open set O ⊂ ∂κX, φ(O) is open in φ(∂κX) when endowed with the subspace topology. Let
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b∞ ∈ O. By the definition of being open in the curtain topology, there exists a curtain k

dual to b such that Uk(b
∞) ⊂ O. We have b is κ-contracting, so there exists a κ-chain {hi}

dual to b with centers of poles b(ti) for each hi. Since k is dual to b, we have that there

exists a J such that k separates hj from o for all j ≥ J .

Let r > 0. Choose tr such that for all y ∈ X on the same side of k as o, d̂(y, b(tr)) >

r. Note, this is possible since, for large enough t, b(t) will be on the side of hJ opposite

of o. Since b([J,∞)) is unbounded, such a b(tr) will exist. Put R = d̂(o, b(tr)). Set

V = U(φ(b∞), R) ∩ φ(∂κX). We claim φ(b∞) ∈ V ⊆ φ(Uk(b
∞)) ⊆ φ(O).

Indeed, let η ∈ V , and put a as the geodesic emanating from o such that φ(a∞) = η.

So [{a(n)}] = η. Let m ∈ N be the smallest m such that d̂(o, a(m)) ≥ R for a(m) ∈ {a(n)}.

Since a is a C-quasi-ruler, we have that there exists a C such that d̂(o, a(m)) ≤ R+C. By

Lemma 6.3.7, we get that

d̂(b(tr), a(m)) ≤ C + 2δ + |d̂(o, b(tr))− d̂(o, a(m))| ≤ 2C + 2δ,

where δ is the hyperbolicity constant of X̂. Since r was arbitrary, we can choose r large

enough to force a(m) to be on the same side of k as b(tr). This means a crosses k. In other

words, a∞ ∈ Uk(b). This completes the proof.

6.4 A κ-Persistent Shadow Characterization

We now give our second characterization of κ-Morse rays (Theorem D in the introduction).

Just as how κ-Morse rays in mapping class groups project to curve graphs in a sublinearly

scaled way, we find an equivalent notion in the CAT(0) setting.
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Definition 6.4.1 (κ-persistent shadow, persistent shadow constant). A geodesic ray b with

infinite diameter has a κ-persistent shadow in X̂ if there exists a C > 0 such that for all

s < t,

d̂(b(s), b(t)) ≥ C · t− s

κ(t)
− C.

We refer to C above as the persistent shadow constant.

We show how this characterization is connected to κ-contracting in the next Theo-

rem 6.4.3. We repeat the following lemma first given in Chapter 4, which works in dualizing

L-chains that meet a geodesic. This Lemma is useful in the proof of Theorem 6.4.3.

Lemma 6.4.2 (Lemma 2.21 in [PSZ22]). Let L, n ∈ N, let
{
h1, . . . , h(4L+10)n

}
be an L-

chain, and suppose that A,B ⊂ X are separated by every hi. For any x ∈ A and y ∈ B, the

sets A and B are separated by an L-chain of length at least n+1 all of whose elements are

dual to [x, y] and separate h1 from h(4L+10)n.

Theorem 6.4.3. Let b be geodesic ray in a CAT(0) space X emanating from o with infinite

diameter projection onto X̂.

• If b is κ-contracting and κ4 is sublinear, then b has a κ4-persistent shadow in the d̂

metric.

• If b has a κ-persistent shadow in the d̂ metric and κ2 is sublinear, then b is κ2-

contracting.

Proof. For the forward direction, put D > 0 as the excursion constant, and denote {b(ti)}

as the center of poles of the dual curtains in the κ-chain {hi}. We follow the same process
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as in Lemma 6.1.9. That is, for any s ≤ t, we have that there exists a maximal j and

minimal i such that tj ≤ s ≤ t ≤ ti (if s ≤ t1, we choose t0 = 0). Following the proof of

Lemma 6.1.9 gives us

i− j ≥ ti − tj
Dκ(ti)

.

Thus, since ⌈Dκ(ti)⌉ = m for some m ∈ N, we get that dm(b(s), b(t)) ≥ i− j − 2 and

dm(b(s), b(t))

m3
≥

ti−tj
Dκ(ti)

− 2

m3

≥ ti − tj
Dκ(ti)(Dκ(ti) + 1)3

− 2

≥ t− s

D′κ(t)(D′κ(t) + 1)3
− 2.

for some D′ > 0 dependent on D by Lemma 3.3.2. Thus, b has a κ4-persistent shadow

For the reverse direction, put C as the persistent shadow constant. Since b has

infinite diameter and κ2 is sublinear, consider a sequence {ti} such that ti+1−ti =
D
C2κ

2(ti+1)

for some finite D > 0. Note that, for any i, ⌈κ(ti+1)⌉ ≥ 2, and
∑∞

L=2
1
L3 ≤

∑∞
L=2

1
L2 ≤ 2

3 .

Thus,

D

C
κ(ti+1)− C = C · ti+1 − ti

κ(ti+1)
− C

≤ d̂(b(ti), b(ti+1))

=

⌈κ(ti+1)⌉−1∑
L=1

dL(b(ti), b(ti+1))

L3
+

∞∑
L=⌈κ(ti+1)⌉

dL(b(ti), b(ti+1))

L3

≤
⌈κ(ti+1)⌉−1∑

L=1

dL(b(ti), b(ti+1))

L3
+

∞∑
L=⌈κ(ti+1)⌉

d(b(ti), b(ti+1)) + 1

L3
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=

⌈κ(ti+1)⌉−1∑
L=1

dL(b(ti), b(ti+1))

L3
+

∞∑
L=⌈κ(ti+1)⌉

D
C κ2(ti+1) + 1

L3

≤
⌈κ(ti+1)⌉−1∑

L=1

dL(b(ti), b(ti+1))

L3
+

D

C
κ(ti+1) ·

 ∞∑
L=⌈κ(ti+1)⌉

1

L2

+ 1

≤
⌈κ(ti+1)⌉−1∑

L=1

dL(b(ti), b(ti+1))

L3
+

D

C
κ(ti+1) ·

2

3
+ 1.

That is,

1

3C
Dκ(ti+1)− C − 1 ≤

⌈κ(ti+1)⌉−1∑
L=1

dL(b(ti), b(ti+1))

L3
. (6.1)

Since D was arbitrary, we now choose D = 3003C so that the left hand side of

(6.1) is greater than 1000κ(ti+1). We claim that for some L with 1 ≤ L ≤ ⌈κ(ti+1)⌉ − 1, we

get dL(b(ti), b(ti+1)) ≥ 8κ(ti+1) + 21. Indeed, if not, then

⌈κ(ti+1)⌉−1∑
L=1

dL(b(ti), b(ti+1))

L3
≤

⌈κ(ti+1)⌉−1∑
L=1

8κ(ti+1) + 21

L3
≤ 2(8κ(ti+1) + 21)

which contradicts (6.1). By Lemma 6.4.2, we get that there are three L-separated curtains

dual to [b(ti), b(ti+1)]. These curtains, by construction, are also κ(ti+1) separated. This is

true for all i. We choose hi to be the dual curtain of [b(ti), b(ti+1)] that is closest to b(ti),

and put si to be the center of the pole of hi. Then, we see that each of the pairs {hi, hi+1}

are κ(ti+1)-separated since there are two κ(ti+1)-separated curtains that separate hi and

hi+1. See Figure 6.5. Also,

si+1 − si ≤ ti+2 − ti ≤ 2
D

C2
κ2(ti+2) ≤ D′κ2(ti+1) ≤ D′κ2(tsi+1)
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for some D′ > 0 dependent on C by Lemma 3.3.2. Thus, we have an infinite chain of dual

curtains {hi} such that hi and hi+1 are κ(ti+1)-separated (which implies κ2(ti+1)-separated)

and ti+1 − ti =
D
C2κ

2(ti+1) for all i. We conclude that b is κ2-contracting.

b

hi hi+1 hi+2

b(ti) b(ti+1) b(ti+2) b(ti+3)

κ(ti+1)-separated κ(ti+2)-separated κ(ti+3)-separated

Figure 6.5: Creating a dual κ-chain to b. Since each pair {hi, hi+1} will have two κ(ti+1)-
separated curtains that separate the pair, we get that hi and hi+1 will be κ(ti+1)-separated.

6.5 Further Questions

Question 1. Future work of Petyt, Spriano, and Zalloum will extend curtain machinery

to a larger class of spaces than CAT(0) spaces. Zalloum gives a great survey discussing

the recent developments of curtains and their relationships with hierarchically hyperbolic

spaces in [Zal23]. If the curtain model can be extended to a larger class of spaces, will the

results and techniques in this paper also extend as well? In what generality can sublinear

Morseness be characterized by curtain excursion?

Question 2. As seen in Definition 6.1.1, the distance function in the curtain model is

described through a family of dL metrics inspired by Genevois’s hyperplane-separation met-

rics in [Gen19]. It is likely that, in the cube complex setting, one could create a hyperbolic
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“hyperplane model” that uses hyperplane-separating metrics instead of curtain-separating

metrics. If such a hyperplane model can be created, would this model be preferred to the

curtain model in the CAT(0) cube complex setting? Would the curtain model be quasi-

isometric to the “hyperplane model”?

Question 3. The study of acylindrical actions, as initiated by Osin in [Osi16], has been

a great tool for studying groups with aspects of non-positive curvature. In the context of

hierarchically hyperbolic spaces, Abbott-Behrstock-Durham show in [ABD21] that hierar-

chically hyperbolic groups have acylindrical actions which are largest and universal. Could

the same conclusion be made about CAT(0) groups via an action on their curtain model?

Question 4. The simplicial boundary of a CAT(0) cube complex was first created by

Hagen in [Hag13]. It is defined by classes of unidirectional boundary sets, i.e. nested sets

of halfspaces diverging in a single direction of infinity. In a CAT(0) cube complex, the

halfspaces mentioned are associated only to corresponding hyperplanes in the cube complex

structure. Could one create a well-defined unidirectional boundary set with curtains in a

CAT(0) space? Could this be extended to create a simplicial boundary for a CAT(0) space?

Could one use this simplicial boundary to study quasi-isometry invariants like divergence

[Hag13] and thickness [BH16]?

Question 5. Further work of Yulan Qing and Kasra Rafi is the creation of a quasi-

redirecting boundary — a quasi-invariant boundary even larger than the κ-Morse boundary

for a proper geodesic metric space. What can be said about the quasi-redirecting boundary?

For example, do groups have minimal actions on the quasi-redirecting boundary like they

do for the κ-Morse boundary?
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Question 6. The counterexample for quasi-isometry invariance given in Theorem 4.2.3 is

somewhat unsatisfying as the CAT(0) space does not have a cocompact action. Does there

exist two quasi-isometric spaces with cocompact actions with non-quasi-isometric curtain

models?
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