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Representations of (Degenerate) Affine and Double Affine Hecke Algebras of Type C

Abstract

We compute the images of polynomial GLN -modules and the coordinate algebra under the

Etingof-Freund-Ma functor [5]. These yield Y-semisimple representations of degenerate affine and

double affine Hecke algebra of type C. We give a combinatorial description of the image in terms

of standard tableaux on a collection of skew shapes and analyze weights of the image in terms of

contents. For the nondegenerate case, we consider Jordan-Ma functor [8]. We compute the images

of finite dimensional irreducible Uq(glN )-modules and the quantum coordinate algebra under the

Jordan-Ma functor, which are also Y-semisimple representations of affine and double affine Hecke

algebras respectively.
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CHAPTER 1

Introduction

Schur-Weyl duality connects polynomial representations ofGLN = GLN (C) and representations

of the symmetric group Sn. Let V = CN denote the vector representation of GLN . Then V ⊗n has

a GLN -action. Let Sn be the symmetric group on n indices. The tensor V ⊗n also has a natural

right Sn-action which commutes with the left GLN action. By Schur-Weyl duality, we have the

decomposition

V ⊗n =
⊕

|λ|=n,`(λ)≤N

V λ � Sλ,

where n ≤ N , λ is a partition of n with at most N rows, Sλ runs through all irreducible represen-

tations Sn and V λ is the irreducible GLN -module with highest weight λ. Moreover, the actions of

Jucys-Murphy elements are diagonalizable. In [1], Arakawa and Suzuki constructed a functor from

the category of U(glN )-modules to the category of representations of the degenerate affine Hecke

algebra of type An−1. In [2], Calaque, Enriquez and Etingof generalized this functor to the category

of representations of degenerate double affine Hecke algebra of type An−1. Etingof, Freund and

Ma [5] extended the construction to the category of representations of degenerate affine and double

affine Hecke algebra of type BCn by considering the classical symmetric pair (glN , glp×glN−p). As

a quantization of the functors by Etingof-Freund-Ma, Jordan and Ma in [8] constructed functors

from the category of Uq(glN )-modules to the category of representations of affine Hecke algebra of

type Cn and from the category of quantum D-modules to the category of representations of the

double affine Hecke algebra of type C∨Cn. The construction in [8] used the theory of quantum

symmetric pair (Uq(glN ), Bσ) where Bσ is a coideal subalgebra. This is a quantum analogue of the

classical symmetric pair.

On the other hand, in [18], Reeder did the classification of irreducible representations of affine

Hecke algebra of type C2 with equal parameters. In [9], Kato indexed and analyzed the weights

of representations of affine Hecke algebra of type Cn. In [12], Ma analyzed the image of principal
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series modules under the Etingof-Freund-Ma functor. Moreover, the combinatorial description of

Young diagrams is used to describe irreducible representations of the symmetric group and Hecke

algebra of type A with standard tableaux on the Young diagram indexing the bases. Similarly,

the skew shape and standard tableaux on it describes certain irreducible representations of the

affine Hecke algebra of type A. Moreover, in [19], Suzuki and Vazirani introduced a description

of some irreducible representations of the double affine Hecke algebra of type A by periodic skew

Young diagrams and periodic standard tableaux on it. In [16], Ram introduced the chambers and

local regions and described some representations of the affine Hecke algebra. In [3], Daugherty

introduced the combinatorial description of representations of degenerate extended two-boundary

Hecke algebra. In [4], Daugherty and Ram gave a Schur-Weyl type duality approach to the affine

Hecke algebra of type Cn.

This paper focuses on the representations of (degenerate) affine and double affine Hecke algebras

of type Cn under the Schur-Weyl type duality and explores the combinatorial descriptions. In the

second chapter, we talk about representations of degenerate affine Hecke algebras of type Cn and

give a combinatorial description which is similar to the combinatorial description in [3] and [4] but

is via a different structure, the Etingof-Freund-Ma functor. In the third chapter, we consider the

image of coordinate algebra and its combinatorial description under Etingof-Freund-Ma functor,

which is a representation of degenerate double affine Hecke algebra of type Cn. In the fourth chap-

ter, we consider the quantum case: images under Jordan-Ma functor, which are representations of

affine and double affine Hecke algebras of type Cn.
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CHAPTER 2

Degenerate affine Hecke algebras of type C and

Etingof-Freund-Ma functor

2.1. Definitions and notations

2.1.1. Root system of type Cn. Let h∗ be a finite-dimensional real vector space with basis

{εi|i = 1, · · · , n} and a positive definite symmetric bilinear form (·, ·) such that (εi, εj) = δij . Let

Rn be an irreducible root system of type Cn with

Rn = {εi + εj |i, j = 1, · · · , n} ∪ {εi − εj |i, j = 1, · · · , n and i 6= j},

and the positive roots are

Rn+ = {εi + εj |i, j = 1, · · · , n} ∪ {εi − εj |1 ≤ i < j ≤ n}.

For any root α ∈ Rn, the coroot is α∨ =
2α

(α, α)
. Let Q be the root lattice and Q∨ be the coroot

lattice. Let αi = εi − εi+1, for i = 1, · · · , n − 1 and αn = 2εn. Then the collection of simple roots

are

Πn = {αi|i = 1, · · · , n}.

For each simple root αi, define the reflection si := sαi ,

sαi(λ) = λ− (λ, α∨i )αi,

where λ ∈ h∗. Then the finite Weyl group W of type Cn is generated by the generators

s1, · · · , sn−1, sn
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with the relations

s2i = 1, for i = 1, · · · , n,(2.1)

sisi+1si = si+1sisi+1, for i = 1, · · · , n− 1,(2.2)

sn−1snsn−1sn = snsn−1snsn−1,(2.3)

sisj = sjsi, for |i− j| > 1,(2.4)

where the generator sn is also denoted by γn in some cases.

2.1.2. Affine Weyl group of type Cn. For any ι ∈ h∗, where ι = ι1ε1+ · · ·+ιnεn and ιk ∈ Z,

let yι = yι11 · · · yιnn and the action of w ∈ W0 by w.yι = yw(ι). Let Wa = W n Q∨ and the affine

Weyl group of type Cn is generated by s1, · · · , sn−1, sn and Y ±i , for i = 1, · · · , n with the following

additional relations to (2.1)-(2.4),

siYj = Yjsi, for j 6= i, i+ 1,(2.5)

YiYj = YjYi,(2.6)

siYisi = Yi+1, for i = 1, · · · , n− 1,(2.7)

snYnsn = Yn
−1.(2.8)

2.1.3. Definition of degenerate affine Hecke algebra of type Cn. Let κ1 and κ2 be two

parameters. The trigonometric degenerate affine Hecke algebra Hn(κ1, κ2), which we denote also by

dAHA, is an algebra generated over C by s1, · · · , sn−1, γn, where we take γn = sn, and y1, · · · , yn

with relations (2.1)-(2.6) and the following relations

siyi − yi+1si = κ1, for i = 1, · · · , n− 1,(2.9)

γnyn + ynγn = κ2.(2.10)

2.1.4. Y-semisimple degenerate affine Hecke algebra representations. Now let define

what we mean by Y-semisimple. Let Y = C[y1, · · · , yn] be the commutative subalgebra of the

degenerate affine Hecke algebra Hn(κ1, κ2). Let L be a representation of Hn(κ1, κ2). For a function

ζ : {1, · · · , n} → C, let ζi denote ζ(i) and ζ = [ζ1, · · · , ζn]. Define the simultaneous generalized
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eigenspace as

Lgenζ = {v ∈ L|(yi − ζi)kv = 0 for some k � 0 and for all i = 1, · · · , n}.

Since the polynomial algebra Y is commutative, the restriction of L on Y decomposes to a sum of

simultaneous generalized eigenspace, i.e. L = ⊕ζLgenζ . Similarly, define the simultaneous eigenspace

Lζ = {v ∈ L|yiv = ζiv for all i = 1, · · · , n}.

Definition 2.1.1. If the restriction of L on Y decomposes to a sum of simultaneous eigenspaces,

i.e. L = ⊕ζLζ , then call L is Y-semisimple. The function ζ is called a weight and Lζ is the weight

space of weight ζ.

2.2. Etingof-Freund-Ma Functor

We recall the definition of the Etingof-Freund-Ma functor Fn,p,µ in [5]. Let N be a positive

number and V be the vector representation of glN . Let p, q be positive integers such that N = p+q.

Let t = glp × glq and t0 be the subalgebra in t consisting of all the traceless elements in t. Let χ is

a character defined on t as

(2.11) χ

S 0

0 T

 = q · tr(S)− p · tr(T ),

where S ∈ glp and T ∈ glq. For a given µ ∈ C, define a functor Fn,p,µ from the category of glN -

modules to the category of representations of degenerate affine Hecke algebra Hn(1, p− q − µN)

Fn,p,µ(M) = (M ⊗ V ⊗n)t0,µ,

where the (t0, µ)-invariant corresponds A.v = µχ(A)v, for all A ∈ t0.

Let M be the 0-th tensor factor. Let Vi be the i-th tensor factor with Vi = V being the vector

representation for i = 1, · · · , n. In [8], the action of the degenerate affine Hecke algebra Hn(1, p−q−

µN) is the quasi classical limit of the action of the affine Hecke algebraHn(q, qσ, q(p−q−τ)) generated

by T1, · · · , Tn−1, Tn and Y ±1 , · · · , Y ±n . In the following figures, Vi is the vector representation for

i = 1, · · · , n. In [8], the action of Ti for i = 1, · · · , n− 1 was defined by τVi,Vi+1 ◦Ri,i+1, where the
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flip operator τVi,Vi+1 : Vi ⊗ Vi+1 → Vi+1 ⊗ Vi is defined by vi ⊗ vi+1 7→ vi+1 ⊗ vi and Ri,i+1 is the

R matrix acting on Vi ⊗ Vi+1 as in Figure 2.1. Let Ti = sie
~si/2. Proposition 39 in [7] and section

Ti = · · · · · ·

M

M

V1

V1

Vi

Vi

Vi+1

Vi+1

Vn

Vn

Figure 2.1. Action of Ti, i = 1, · · · , n− 1.

10.7 of [8] computed the action of si, i.e. si acts on Fn,p,µ(M) by exchanging the i-th and (i+ 1)-th

tensor factors.

The action of Tn was defined as the diagram in Figure 2.2, where the matrix JV is a right-handed

Tn = · · ·

M

M

V1

V1

V2

V2

Vn

Vn

JV

Figure 2.2. Action of Tn

numerical solution of the reflection equation R21(JV )1R12(JV )2 = (JV )2R21(JV )1R12 in section 7

of [8]. Section 10.7 of [8] compute the quasi classical limit of Tn. Then γn acts on Fn,p,µ(M) by

multiplying the n-th tensor factor by J = diag(Ip,−Iq).

The action of Y1 was define by Let Y1 = ey1~. By Proposition 10.13 in [8],

(2.12) y1 = −
∑
s,t

(Ets)0 ⊗ (Est )1 +
n

N
+
µ(q − p)

2
− N

2
,

where Ets is the N × N matrix with the (s, t) entry being 1 and other entries being 0 and (Ets)i

means Ets acting on the i-th tensor factor. Let sk,l denote the transposition (k, l) ∈ Sn and γk ∈W

denote the action multiplying the k-th factor by J . In [5], the action of y1 is given by

(2.13) −
∑
s|t

(Ets)0 ⊗ (Est )1 +
p− q − µN

2
γ1 +

1

2

∑
l>1

s1,l +
1

2

∑
l 6=1

s1,lγ1γl,
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where
∑

s|t =
∑p

s=1

∑n
t=p+1 +

∑p
t=1

∑n
s=p+1. In Section 2.5.3, we show that the computation via

(2.13) agrees with (2.12). By the relation yk = sk−1yk−1sk−1 − sk−1, we compute the action of yk

for k = 1, · · · , n.

2.3. GLN -module

We consider images of polynomial GLN -modules under Etingof-Freund-Ma functor. Recall the

facts about polynomial GLN -modules. Let M be a polynomial GLN -module and H ⊂ GLN be the

collection of invertible diagonal matrices. Let v ∈M satisfy

x.v = xλ11 · · ·x
λN
N v,

for any x = diag(x1, · · · , xN ) ∈ H. Then v is a weight vector of H-weight λ = (λ1, · · · , λN ). The

subspace

M(λ) = {v ∈M |x.v = xλ11 · · ·x
λN
N v, x ∈ H}

is called the weight space of weight λ. Then the polynomial GLN -module M is a direct sum of

weight spaces

M =
⊕
λ

M(λ).

Let B ⊂ GLN be the collection of all invertible upper triangular matrices. Let v ∈M be a generator

of M . If v satisfies x.v = c(x)v for some function c(x) and any x ∈ B, then v is called a highest

weight vector. If M has the unique highest weight vector up to a scalar of the highest weight

ξ, then M is a highest weight module with the highest weight ξ and let us denote M by V ξ. A

GLN -module M is irreducible if and only if M is a highest weight GLN -module. Furthermore, two

highest weight GLN -modules are isomorphic if and only if they have the same highest weight. Let

ξ =
∑N

i=1 ξiεi satisfying ξ1 ≥ ξ2 ≥ · · · ≥ ξN and ξi ∈ Z for i = 1, · · · , N . Then ξ is an integral

dominant weight of GLN . Let P+ denote the collection of all integral dominant weights and P+
≥0

denote the collection of all integral dominant weights ξ =
∑N

i=1 ξiεi with ξi ∈ N, for i = 1, · · · , N .

Then the highest weight modules with highest weights ξ ∈ P+
≥0 are all the irreducible polynomial

GLN -modules. Let M be a rational GLN -module. Then M = detm ⊗ N for some m ∈ Z and

a polynomial GLN -module N . Then the highest weight modules with integral dominant highest

weights are all the irreducible rational GLN -modules.
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The collection P+
≥0 has a one-to-one correspondence with the collection of partitions with at most

N parts and thus the one-to-one correspondence with Young diagrams with at most N rows. For

the ease of writing, for each irreducible polynomial GLN -module V ξ with highest weight ξ ∈ P+
≥0,

let us denote the corresponding partition (ξ1, · · · , ξN ) and Young diagram also by ξ. Moreover,

define |ξ| =
∑N

i=1 ξi for ξ ∈ P+.

For a highest weight GLN -module V ξ, ξ ∈ P+
≥0, with weight space decomposition V ξ =

⊕
V ξ(λ),

the character of V ξ

χV ξ =
∑
λ

dim(V ξ(λ))xλ11 · · ·x
λN
N

is the Schur polynomial sξ(x1, · · · , xN ) of shape ξ.

By Pieri’s rule,

sξe1 =
∑
ν

sν ,

where ν ∈ P+
≥0 runs through all the shapes obtained by adding a cell to some row of ξ. Observe

that e1 = sξ, where ξ = (1), is the character of the vector representation V of GLN . This fact indi-

cates how the tensor product of an irreducible polynomial GLN -module and vector representation

decomposes into a sum of irreducible polynomial GLN -modules.

2.4. Invariant space

In this section, we compute the underlying vector space Fn,p,µ(V ξ) = (M ⊗ V ⊗n)t0,µ by finding

a special basis of it and then index the basis elements by a collection of standard tableaux.

2.4.1. Definition of the invariant space.

Let M be a GLN -module, then M has a glN -module structure. For any X ∈ glN and v ∈M ,

X.v =
d

dt
(etX .v)t=0.

Recall the notations, K = GLp × GLq, Lie(K) = t and t0 ⊂ t which is the collection of traceless

matrices in t.

Proposition 2.4.1. The underlying vector space is invariant under tensoring powers of the

determinant representation, i.e. (detm ⊗M ⊗ V ⊗n)t0,µ ∼= (M ⊗ V ⊗n)t0,µ, for any m ∈ C.

8



Proof. Take any element from (detm ⊗ M ⊗ V ⊗n)t0,µ, we can denote it by 1 ⊗ w, where

w ∈M ⊗ V ⊗n. According to the definition of invariant space

(detm ⊗M ⊗ V ⊗n)t0,µ

={1⊗ w|A.(1 ⊗ w) = µχ(A)(1⊗ w), for any A ∈ t0}.

Compute the action of A ∈ t0

A.1 =
d

dt
(etA.1)t=0

=
d

dt
(detm(etA))t=0.1

=
d

dt
(em·tr(tA))t=0.1 = 0,

since tr(A) = 0. Then it follows

A.(1⊗ w) = (A.1)⊗ w + 1⊗ (A.w)

= 1⊗ (A.w).

Hence

(detm ⊗M ⊗ V ⊗n)t0,µ

={1⊗ w|1⊗ (A.w) = µχ(A)(1⊗ w), for any A ∈ t0}

∼={w|A.w = µχ(A)w, for any A ∈ t0}

=(M ⊗ V ⊗n)t0,µ.

�

Remark 2.4.2. For an irreducible rational GLN -module M , we write M = detm⊗V ξ for some

integer m and some highest weight module V ξ with the highest weight ξ ∈ P+
≥0 such that ξN = 0.

Then (M ⊗ V ⊗n)t0,µ = (V ξ ⊗ V ⊗n)t0,µ. So it is enough to consider highest weight module V ξ with

highest weight ξ ∈ P+
≥0 such that ξN = 0, which is associated to partitions ξ of length at most N−1.

9



2.4.2. Computation of the (t0, µ) invariant space.

Proposition 2.4.3. The (t0, µ) invariant space Fn,p,µ(V ξ) = (V ξ ⊗ V ⊗n)t0,µ, for µ ∈ C and

ξ ∈ P+
≥0.

(V ξ ⊗ V ⊗n)t0,µ ∼=Homt0(1µχ, Res
glN
t0
V ξ ⊗ V ⊗n)

∼=Homt(1θ, Res
glN
t V ξ ⊗ V ⊗n),

where 1θ is a one-dimensional t-module and

1θ = (µq +
|ξ|+ n

N
)trglp + (−µp+

|ξ|+ n

N
)trglq .

Proof. The (t0, µ) invariant space Fn,p,µ(V ξ) = (V ξ ⊗ V ⊗n)t0,µ is defined to be the subspace

{v ∈ V ξ ⊗ V ⊗n|Av = µχ(A)v for any A ∈ t0}.

To compute this subspace, we lift it to a t-invariant space. Let 1ψ the one-dimensional t-module

such that

(V ξ ⊗ V ⊗n)t0,µ

=(Res
glN
t (V ξ ⊗ V ⊗n)⊗ 1ψ)t.

Let t = t0 ⊕ C{IN}. For any P ∈ t, there is a unique decomposition P = A + B such that A ∈ t0

and B = bIN for some b ∈ C. So the t-invariant corresponds to

{v ∈ V ξ ⊗ V ⊗n|Pv + 1ψ(P )v = 0}

. Then Pv + 1ψ(P )v = Av +Bv + 1ψ(P )v = 0. And B = bIN acts by the scalar

b(|ξ|+ n) = (|ξ|+ n)
tr(B)

N

10



. Also, we have χ(P ) = χ(A) + χ(B) = χ(A), since χ(B) = qbp− pbq = 0. So

{v ∈ V ξ ⊗ V ⊗n|Pv + 1ψ(P )v = 0}

={v ∈ V ξ ⊗ V ⊗n|Av = µχ(A)v}.

For any P ∈ t with

P =

S 0

0 T


where S ∈ glp and T ∈ glq, we have

1ψ(P ) = −µχ(A)− |ξ|+ n

N
tr(B)

= −µχ(P )− |ξ|+ n

N
tr(P )

= (−µq − |ξ|+ n

N
)trglp(S) + (µp− |ξ|+ n

N
)trglq(T ).

Hence it follows that the one dimensional t-module

1θ = (µq +
|ξ|+ n

N
)trglp + (−µp+

|ξ|+ n

N
)trglq .

�

Remark 2.4.4. The (t,1θ) invariant space above is equivalent to the following K invariant

space.

(V ξ ⊗ V ⊗n)t0,µ ∼=Homt0(1µχ, Res
glN
t0
V ξ ⊗ V ⊗n)

∼=Homt(1θ, Res
glN
t V ξ ⊗ V ⊗n)

∼=HomK(deta � detb, V ξ � V ⊗n),

where a = µq + |ξ|+n
N and b = −µp+ |ξ|+n

N .

2.4.3. A basis of invariant space and standard tableaux.

The characters of irreducible polynomial GLN -modules are Schur functions. So we could consider

the restriction of V ξ⊗V ⊗n by exploring Schur functions. Recall the following fact of Schur functions.
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Proposition 2.4.5. Let sν(x1, · · · , xp, zp+1, · · · , zN ) be the character of V ν , then

sν(x1, · · · , xp, zp+1, · · · , zN ) = Σcνω1,ω2
sω1(x1, · · · , xp)sω2(zp+1, · · · , zN ),

where ω1 is a highest weight of GLp and ω2 is a highest weight of GLq, c
ν
ω1,ω2

is the Littlewood-

Richardson coefficient.

The Littlewood-Richardson coefficient cνω1,ω2
is the multiplicity of the K-module V ω1 � V ω2 in

the restriction of GLN -module V ν . Let V ξ ⊗ V ⊗n =
⊕

νmνV
ν as GLN -modules, where ν ∈ P+

≥0

and mν ∈ N is the multiplicity of V ν in V ξ. Then the (t0, µ) invariant space

Fn,p,µ(V ξ) = HomK(deta � detb, ResGLNK V ξ ⊗ V ⊗n)(2.14)

=
⊕
ν

mνHomK(deta � detb, ResGLNK V ν).(2.15)

Since ν ∈ P+
≥0, to guarantee HomK(deta � detb, ResGLNK V ν) 6= 0 for each ν in (13), it suffices to

consider a, b ∈ N, otherwise Fn,p,µ(V ξ) = (V ξ ⊗ V ⊗n)t0,µ = 0. Our goal is to compute the ν such

that the multiplicity of deta � detb in the K restriction of the GLN -module V ν is nonzero. To do

this, we need Okada’s theorem [15].

Theorem 2.4.6. For any two rectangular shapes (ap) and (bq), where a and b are nonnegative

integers and p ≤ q, then

sap · sbq =
∑

cν(ap)(bq)sν ,

where cν(ap)(bq) = 1 when ν satisfies the condition

νi + νp+q−i+1 = a+ b, i = 1, · · · , p,(2.16)

νp ≥ max(a, b)(2.17)

νi = b, i = p+ 1, · · · , q(2.18)

and cν(ap)(bq) = 0 otherwise.
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Corollary 2.4.7. Now we have the following fact, the (t0, µ) invariant space

Fn,p,µ(V ξ) = (V ξ ⊗ V ⊗n)t0,µ(2.19)

=
⊕
ν

HomGLN (V ν , V ξ ⊗ V ⊗n),(2.20)

where ν ∈ P+
≥0 runs through all partitions satisfying (2.16)-(2.18).

Moreover, by Pieri’s rule, the vector space HomGLN (V ν , V ξ ⊗ V ⊗n) has a basis indexed by

standard tableaux T such that the shape of T is ν/ξ and the dimension of this vector space

mν = dimHomGLN (V ν , V ξ ⊗ V ⊗n)

equals the number of standard tableaux T with the shape of T being ν/ξ. If mν 6= 0, then ξ ⊂ ν

and |ν| = |ξ|+ n.

Theorem 2.4.8. The (t0, µ) invariant space Fn,p,µ(V ξ) = (V ξ ⊗ V ⊗n)t0,µ has a one to one

correspondence to the set of standard tableaux T such that the shape of T is ν/ξ for ν ∈ P+
≥0 with

|ν| = |ξ|+ n, ν runs through all the partitions satisfying (2.16)-(2.18) and ξ ⊂ ν.

Let us consider the following example of (t0, µ) invariant space.

Example 2.4.9. Let M = V ξ be a GL3-module, ξ = 2ε1 + ε2, n = 3, p = 1 and µ = 0.

Then (ap) = (21) and (bq) = (22).

By Okada’s theorem in [15], we could compute the shapes ν such that the invariant space is

nonzero.

Then a basis of the invariant space is indexed by standard tableaux on skew shapes obtained by the

(21)

×
(22)

= + +

Figure 2.3. Shapes ν such that HomK(deta � detb, V ν 6= 0)
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shapes above skewed by ξ.

2
1
3 1

2
3

1
2

3

1
3

2

2
1

3

2
3

1

3
1

2

3
2

1

1
2 3

2
1 3

3
1 2

Figure 2.4. The collection of standard tableaux indexing a basis of F3,1,0(V
ξ)

In this example, we obtain an invariant space F3,1,0(V ) of 11 dimensions.

2.4.4. One skew shape. In this subsection, we associate a skew shape ϕξn,p,µ to the image

Fn,p,µ(V ξ) under Etingof-Freund-Ma functor and we call ϕξn,p,µ the minimal shape of Fn,p,µ(V ξ).

Let ξ =
∑N

i=1 ξiεi ∈ P
+
≥0. The corresponding Young diagram ξ = (ξ1, · · · , ξN ). The first q rows of

ξ forms a Young diagram denoted by ξ(1) and the last p rows of ξ forms a Young diagram denoted

by ξ(2). Fix a parameter µ, we have a pair of rectangles (ap) and (bq) denoting the K-module

deta � detb, where a = µq + |ξ|+n
N and b = −µp+ |ξ|+n

N .

Suppose p ≤ q. Placing the northwestern corner the rectangle (ap) next to the northeastern corner

of the rectangle (bq) forms a Young diagram β. Delete the Young diagram ξ(1) from northwestern

corner of β. Let

ξ(2) denote the skew shape obtained by rotating ξ(2) by π. Delete the rotated ξ(2)

from the southeastern corner of β, i.e. the skew shape ϕξn,p,µ is defined by ϕξn,p,µ = ν/ξ(1), where

νi = a+ b− ξN−i+1 for i = 1, · · · , p and νi = b for i = p+ 1, · · · , q.

Let ϕ = ϕξn,p,µ. If a cell (i, j) of the skew shape ϕ satisfy (i + 1, j) /∈ ϕ and (i, j + 1) /∈ ϕ,

then call (i, j) a corner of ϕ. Define γ-move on a skew shape ϕ: delete a corner (i, j) ∈ ϕ such

that j > max(a, b) and 1 ≤ i ≤ p, and add the cell (p + q − i + 1, a + b − j + 1). The condition

j > max(a, b) guarantees the new shape after γ-move is still a skew shape. Denote the γ-move by

ϕ → ϕ′ where ϕ′ = ϕ \ (i, j) ∪ (p + q − i + 1, a + b − j + 1). Note that for a given ϕ, the γ-move

14



(ap) (bq)

ξ(1)

ξ(2)

ξ =
∑N
i=1 ξiεi ∈ P

+
≥0

q

7−→
ξ(1)

ξ
(2)

max(a, b)

b

a

q
p

ϕξn,p,µ

Figure 2.5. One skew shape

stops when there is no cell (i, j) such that j > max(a, b). Given the skew shape ϕξn,p,µ, a collection

D(ϕξn,p,µ) of skew shapes consists of ϕξn,p,µ and all the skew shapes obtained by applying γ-moves

on ϕξn,p,µ for finitely many times. The shape ϕξn,p,µ is called the minimal shape of the representation

Fn,p,µ(V ξ).

Continue Example 2.4.9, the representation F3,1,0(V ) is index by the following skew shape ϕ.

The collection D(ϕ) of skew shapes is obtained as follows:

2.4.5. Skew shapes and standard tableaux. For the ease of description, let us use the

following definition of skew shapes and standard tableaux. Given a partition ξ = (ξ1, · · · , ξl), the

corresponding Young diagram ξ is a subset of Z2, consisting of (i, j) such that 1 ≤ i ≤ l and

1 ≤ j ≤ ξi. Let ν = (ν1, · · · , νl) and ξ = (ξ1, · · · , ξl) such that νi ≥ ξi for 1 ≤ i ≤ l, then for

the corresponding Young diagrams ξ ⊂ ν holds. A skew shape ν/ξ is the subset ν \ ξ of Z2. For

example, let ν = (7, 6, 5, 3, 2, 1) and ξ = (5, 5, 2, 2, 2, 1), then Young diagrams ν and ξ and the skew

shape ν/ξ are the following subsets of Z2.

ν = {(i, j)|1 ≤ i ≤ 6, 1 ≤ j ≤ νi},

ξ = {(i, j)|1 ≤ i ≤ 6, 1 ≤ j ≤ ξi}
15



ϕξn,p,µ

Figure 2.6. All skew shapes obtained by γ-move

Figure 2.7. The minimal skew shape of F3,1,0(V
ξ)

Figure 2.8. All skew shapes of F3,1,0(V
ξ)

and

ν/ξ = {(1, 6), (1, 7), (2, 6), (3, 3), (3, 4), (3, 5), (4, 3)}.
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Define a tableau T on n-indices {1, · · · , n} to be an injective map T

T : {1, · · · , n} → Z2

k 7→ (i(k), j(k))

where i and j being two maps from {1, · · · , n} to Z and the image Im(T ) of T being a skew

shape. The image Im(T ) is also called the shape of the tableaux T . Let contT be a map

contT : {1, · · · , n} → Z

k 7→ j(k)− i(k),

call contT (k) is the content of k in the tableau T . If

T−1(i+ 1, j) > T−1(i, j)

and

T−1(i, j + 1) > T−1(i, j)

hold for each cell (i, j) ∈ Im(T ), then call T is a standard tableau.

Let

Tabλ,µc = {T |T is a standard tableau and Im(T ) ∈ D(ϕξn,p,µ)}.

The invariant space Fn,p,µ(V ξ) = (V ξ ⊗ V ⊗n)t0,µ has a basis indexed by a collection of standard

tableaux on the skew shapes in D(ϕξn,p,µ), i.e. all the tableaux in Tabλ,µc . Let vT denote the basis

vector indexed by T ∈ Tabλ,µc . Then as a vector space

Fn,p,µ(V ξ) = (V ξ ⊗ V ⊗n)t0,µ

= spanC{vT |T ∈ Tabλ,µc }.

2.5. Y- semisimplicity

2.5.1. Action of Y. In this subsection let us computer the Y-actions on the invariant space

Fn,p,µ(V ξ) = (V ξ ⊗ V ⊗n)t0,µ. In [7], Jordan computed the action of y1 and used the fact that

Etingof-Freund-Ma functor is a trigonometric degeneration of the quantum case. Now let us review
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the computation and conduct it in the degenerate case. Let us use the following notations in [5]

for sums

∑
s,t

=

N∑
s=1

N∑
p=1

,(2.21)

∑
s|t

=

p∑
s=1

N∑
t=p+1

+

p∑
t=1

N∑
s=p+1

,(2.22)

∑
st

=

p∑
s=1

p∑
t=1

+
N∑

s=p+1

N∑
t=p+1

.(2.23)

It is easy to observe that the sum of (2.22) and (2.23) equals (2.21).

Review the definition of y1 on the (t0, µ)-invariant space Fn,p,µ(V ξ) = (V ξ ⊗ V ⊗n)t0,µ in [5],

y1 = −
∑
s|t

(Ets)0 ⊗ (Est )1 +
p− q − µN

2
γ1 +

1

2

∑
l>1

s1,l +
1

2

∑
l 6=1

s1,lγ1γl.

Compute the last two terms of y1, we have

1

2

∑
l>1

s1,l +
1

2

∑
l 6=1

s1,lγ1γl

=
1

2

∑
l>1

∑
s,t

(Ets)1 ⊗ (Est )l +
1

2

∑
l>1

∑
s,t

(EtsJ)1 ⊗ (Est J)l

=
∑
l>1

∑
st

(Ets)1 ⊗ (Est )l

=
∑
st

(Ets)1(
∑
l>1

1⊗ (Est )l)

=
∑
st

(Ets)1(∆
(n)(Est )− (Est )0 − (Est )1)

The last step follows the fact that
∑

l>1 1 ⊗ (Est )l = ∆(n)(Est ) − (Est )0 − (Est )1, where ∆ denotes

the comultiplication of Lie algebra glN and ∆(n)(Est ) =
∑n

l=0(E
s
t )l.

Applying the fact that y1 preserves on the (t0, µ)-invariant space Fn,p,µ(V ξ) = (V ξ ⊗ V ⊗n)t0,µ,

18



the computation of the last two terms of y1 above continues as follows.

∑
st

(Ets)1(∆
(n)(Est )− (Est )0 − (Est )1)

=

p∑
s=1

(µq +
|ξ|+ n

N
)(Ess)1 +

N∑
s=p+1

(−µp+
|ξ|+ n

N
)(Ess)1

−
p∑
s=1

p(Ess)1 −
N∑

s=p+1

q(Ess)1 −
∑
st

(Ets)1 ⊗ (Est )0

=(µq − p+
|ξ|+ n

N
)

p∑
s=1

(Ess)1 + (−µp− q +
|ξ|+ n

N
)

N∑
s=p+1

(Ess)1

−
∑
st

(Est )0 ⊗ (Ets)1

Combining other terms in the definition of y1,

y1 =−
∑
s,t

(Ets)0 ⊗ (Est )1 +
p− q − µN

2
γ1

+ (µq − p+
|ξ|+ n

N
)

p∑
s=1

(Ess)1 + (−µp− q +
|ξ|+ n

N
)

N∑
s=p+1

(Ess)1

=−
∑
s,t

(Ets)0 ⊗ (Est )1 + (µq − p+
|ξ|+ n

N
+
p− q − µN

2
)

p∑
s=1

(Ess)1

+ (−µp− q +
|ξ|+ n

N
− p− q − µN

2
)

N∑
s=p+1

(Ess)1

=−
∑
s,t

(Ets)0 ⊗ (Est )1 + (
|ξ|+ n

N
+
µq − µp

2
− N

2
)

N∑
s=1

(Ess)1

=−
∑
s,t

(Ets)0 ⊗ (Est )1 +
|ξ|+ n

N
+
µq − µp

2
− N

2
,

Remark 2.5.1. Since the action in [8] was define on Fn,p,µ(M) for M is a D-module, there is

a difference between equation (2.12) and the above result. If we input a D-module instead of V ξ,

the above result will be the same with equation (2.12).

Moreover, the action of yk for k > 1 is computed by induction.
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Proposition 2.5.2. The action of yk, for k = 1, · · · , n, on the invariant space (V ξ ⊗ V ⊗n)t0,µ

is computed by

yk = −
∑
s,t

(∆(k−1)Ets)(0,k) ⊗ (Est )k +
|ξ|+ n

N
+
µq − µp

2
− N

2
,

where (Ets)(0,k) denotes the tensor product (V ξ ⊗ V ⊗(k−1)) and hence ∆(k−1)Ets acting on (Ets)(0,k).

Proof. We verified the action of y1 above. Suppose the statement is true for yi, i < k. Let

compute the action of yk. By the relation sk−1yk−1−yksk−1 = κ1 = 1 and the inductive hypothesis,

it follows

yk = sk−1yk−1sk−1 − sk−1

= −
∑
s,t,j,l

(∆(k−2)Ets)(0,k−1) ⊗ (EtlE
s
tE

j
s)k−1 ⊗ (EltE

s
j )k

−
∑
s,t

(Ets)k−1 ⊗ (Est )k +
|ξ|+ n

N
+
µq − µp

2
− N

2

= −
∑
s,t,j

(∆(k−2)Ets)(0,k−1) ⊗ (Ejj )k−1 ⊗ (Est )k

−
∑
s,t

(Ets)k−1 ⊗ (Est )k +
|ξ|+ n

N
+
µq − µp

2
− N

2

Take the fact
∑

j(E
j
j )k−1 = (IN )k−1. The above computation continues

= −
∑
s,t

(∆(k−2)Ets)(0,k−1) ⊗ (IN )k−1 ⊗ (Est )k

−
∑
s,t

(Ets)k−1 ⊗ (Est )k +
|ξ|+ n

N
+
µq − µp

2
− N

2

= −
∑
s,t

(∆(k−1)Ets)(0,k) ⊗ (Est )k +
|ξ|+ n

N
+
µq − µp

2
− N

2
.

�

The Lie algebra glN has a basis {Ets|1 ≤ s, t ≤ N} with the dual basis {Est } with respect to the

Killing form. Let C denote the Casimir element of U(glN ), then C =
∑

s,tE
t
sE

s
t . The following
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computation follows

∆(C) =
∑
s,t

∆(Ets)∆(Est )

=
∑
s,t

(Ets ⊗ 1 + 1⊗ Ets)(Est ⊗ 1 + 1⊗ Est )

=(
∑
s,t

EtsE
s
t )⊗ 1 + 1⊗ (

∑
s,t

EtsE
s
t ) + 2

∑
s,t

Ets ⊗ Est .

Thus ∑
s,t

Ets ⊗ Est =
∆(C)− C ⊗ 1− 1⊗ C

2
.

2.5.2. Weights and contents. In [17], Ram talked about the standard tableaux and repre-

sentations of affine Hecke algebra of type C and analyzed the weights in terms of boxes. Now let

us analyze the weights of Fn,p,µ(V ξ) in terms of contents. In section 5, we obtain a basis of the

(t0, µ)-invariant space Fn,p,µ(V ξ) = (V ξ ⊗ V ⊗n)t0,µ indexed by Tab(ϕξn,p,µ), i.e. standard tableaux

on a family of skew shapes ν/ξ where ν are obtained by Okada’s theorem. The action of yk on the

basis element indexed by standard tableau T is by a scalar. Moreover, this scalar is computed in

terms of the content of the box fixed by k.

Theorem 2.5.3. Let vT denote the basis element of the invariant space indexed by standard

tableau T . Then vT is an eigenvector of yk and the eigenvalue is computed as

−contT (k) + S,

where S =
|ξ|+ n

N
+
µq − µp

2
− N

2
.
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Proof. Let us T ∈ Tab(ϕξn,p,µ). Since T is a standard tableau, then T corresponds to a

sequence (ν(k))k=nk=0 of Young diagrams, where

ν(0) = ξ,

ν(1) = ξ ∪ T ({1}),

ν(2) = ξ ∪ T ({1, 2}),

· · ·

ν(n) = ξ ∪ T ({1, 2, · · · , n}),

where T ({1, · · · , k}) is the collection of cells filled by numbers 1, · · · , k, i.e. the Young diagram

ν(k) is formed by adding the cells filled by numbers 1, · · · , k to the Young diagram ξ. So it follows,

for k = 1, · · · , n,

vT ∈ (V ξ ⊗ V ⊗k)[ν(k)]⊗ V ⊗(n−k),

where (V ξ ⊗ V ⊗k)[V ν(k) ] denotes the V νk -isotopic component of the tensor product V ξ ⊗ V ⊗k.

By the previous subsection 2.5.1, it follows that the term
∑

s,t(∆
(k−1)(Ets))(0,k)⊗ (Est )k acts on

vT by
C(0,k+1) − C(0,k) ⊗ 1k − 1(0,k) ⊗ Ck

2
.

Moreover, the Casimir element acts on the highest weight module V ν by the scalar 〈ν, ν + 2ρ〉,

where the weight 2ρ =
∑N

i=1(N − 2i + 1)εi. So for each k such that 1 ≤ k ≤ N , C(0,k+1) acts on

V ν(k) by the scalar 〈ν(k), ν(k) + 2ρ〉, C(0,k) acts on V ν(k−1)
by the scalar 〈ν(k−1), ν(k−1) + 2ρ〉 and Ck

acts on V by the scalar 〈ε, ε+ 2ρ〉 = N , namely

C(0,k+1) − C(0,k) ⊗ 1k − 1(0,k) ⊗ Ck
2

acts by
1

2
(〈ν(k), ν(k) + 2ρ〉 − 〈ν(k−1), ν(k−1) + 2ρ〉 − 〈ε, ε+ 2ρ〉).
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Let T (k) be the cell (i(k), j(k)), then ν
(k)
i(k) = j(k) = ν

(k−1)
i(k) + 1 and ν

(k)
i = ν

(k−1)
i , for i 6= i(k).

1

2
(〈ν(k), ν(k) + 2ρ〉 − 〈ν(k−1), ν(k−1) + 2ρ〉 − 〈ε, ε+ 2ρ〉)

=
1

2
((j(k) +N − 2i(k) + 1)(j(k))− (j(k) +N − 2i(k))(j(k)− 1)−N)

=j(k)− i(k).

Then the statement follows. �

Theorem 2.5.4. Let Fn,p,µ(V ξ) denote the image of the irreducible GLN -module V ξ, for some

ξ ∈ P+, under Etingof-Freund-Ma functor. Then Fn,p,µ(V ξ) has a basis indexed tableaux in Tabλ,µc ,

i.e. {vT |T ∈ Tabλ,µc }. This basis is a weight basis with each basis vector vT is a weight vector of

weight ζT = −contT + S. So Fn,p,µ(V ξ) is a Y-semisimple representation of Hn(1, p − q − µN).

Moreover, it is obvious different standard tableaux give different weights. Hence each weight space

is one dimensional.

2.6. Intertwining operators

2.6.1. Definition of intertwining operators.

Definition 2.6.1. For i = 1, · · · , n− 1, define the intertwining operators

φi = [si, yi],

and for γn, define

φn = [γn, yn].

Proposition 2.6.2. The intertwining operators φi satisfy the braid relations

φiφi+1φi = φi+1φiφi+1, i = 1, · · · , n− 1,

φiφj = φjφi, |i− j| > 1,

φn−1φnφn−1φn = φnφn−1φnφn−1.
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Since the operators φi’s satisfy the same braid relations with si’s and γn, it makes sense to

define the following.

Definition 2.6.3. Let W denote the finite Weyl group of type Cn, for each w ∈ W , it has a

reduced expression w = si1si2 . . . sim, l(w) = m, here we take the convention sn = γn. Define

φw = φi1φi2 . . . φim .

2.6.2. Properties of intertwining operators.

Some computations on intertwining operators:

(1) φi = si(yi − yi+1)− 1,

φn = 2γnyn − κ2.

(2) φ2i = (1− yi + yi+1)(1 + yi − yi+1),

φ2n = (κ2 − 2yn)(κ2 + 2yn).

Definition 2.6.4. Define the actions of W on weight ζ = [ζ1, · · · , ζn]: for an arbitrary w ∈W ,

the action of w is

w.ζ = ζ ◦ w−1,

where we take ζ−k = −ζk.

Theorem 2.6.5. Let L be a Y-semisimple module and Lζ denote the weight space of weight ζ,

then

φwLζ ⊂ Lw.ζ .

Proof. It suffices to show the statement is true for each operator φi.

Case 1. When 1 ≤ i ≤ n− 1. We have the following facts that

yiφi = φiyi+1,

yi+1φi = φiyi,
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and

yjφi = φiyj , j 6= i or i+ 1.

Case 2. Consider φn. We have facts that

ynφn = −φnyn,

yjφn = φnyj , j 6= n.

�

Remark 2.6.6. Since each weight space of Fn,p,µ(V ξ) is one dimensional, so the action of φi is

either 0 or an isomorphism.

Lemma 2.6.7. If ζi − ζi+1 6= ±1 for some i ∈ {1, 2, · · · , n− 1}, then φivζ 6= 0, where vζ is the

weight vector of the weight ζ.

Proof. Suppose that φivζ = 0. Then φ2i vζ = 0. By the computation above

φ2i = (1− yi + yi+1)(1 + yi − yi+1).

Then φ2i vζ = (1− ζi + ζi+1)(1 + ζi − ζi+1)vζ = 0. Then we have that ζi − ζi+1 = ±1. �

Similarly, we have the following fact.

Lemma 2.6.8. If ζn 6= ±κ2
2 , then φnvζ 6= 0, where vζ is the weight vector of the weight ζ.

Proof. Suppose that φnvζ = 0. Then φ2nvζ = 0. By the computation above

φ2n = (κ2 − 2yn)(κ2 + 2yn).

Then φ2nvζ = φ2n = (κ2 − 2ζn)(κ2 + 2ζn)vζ = 0. Then we have that ζ(n) = ±κ2
2 . �

2.6.3. Properties of irreducible Y-semisimple representations. Let L be an irreducible

Y-semisimple representation of Hn(κ1, κ2). Let ζ = [ζ1, · · · , ζn] is a weight L.

Theorem 2.6.9. If ζi = ζi+1 for some 1 ≤ i ≤ n− 1 , then Lζ = 0.
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Proof. Let ζ be a weight such that ζi = ζi+1. Suppose there exists a nonzero element v ∈ Lζ .

Consider the vector siv. Since φi = si(yi − yi+1)− 1 = (yi+1 − yi)si + 1, we have φiv = −v.

(yi − yi+1)siv =(1− φi)v

=2v 6= 0.

And act again by yi − yi+1,

(yi − yi+1)
2siv

=2(yi − yi+1)v = 0.

This means siv belongs to the generalized eigenspace of yi − yi+1 and does not belong to the

eigenspace of yi − yi+1, which contradicts Y-semisimplicity. �

Theorem 2.6.10. Let κ2 6= 0. If ζn = 0, then Lζ = 0.

Proof. Let ζ be a weight such that ζn = 0. Suppose there exists a nonzero element v ∈ Lζ .

Consider the vector γnv. Since φn = 2γnyn − κ2 = −2ynγn + κ2, we have φnv = −κ2v.

2ynγnv =(κ2 − φn)v

=2κ2v 6= 0.

Act again by yn, we have

2yn
2γnv

=2κ2ynv = 0.

his means siv belongs to the generalized eigenspace of yn and does not belong to the eigenspace of

yn, which contradicts Y-semisimplicity. �

Remark 2.6.11. When κ2 = 0, it is possible for an irreducible Y-semisimple module L to

contain a nonzero weight space Lζ with ζn = 0. In this case, γnv ∈ Cv. Otherwise, the vector

v + γnv generalizes a nonzero proper submodule of L, which contradicts the irreducibility.
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Lemma 2.6.12. For any arbitrary w ∈W , the intertwining operator

φw = wΠαij∈R(w)(yi − yj) +
∑
x<w

xQ(y),

where Q(y) is a polynomial of y1, · · · , yn.

Theorem 2.6.13. Let ζ be a weight of L such that Lζ 6= 0. Let v be a nonzero weight vector in

Lζ . Then the set {φwv|w ∈W} spans the irreducible representation L.

Proof. We need to show w.v lies in the span of {φwv|w ∈ W} for any arbitrary w ∈ W . We

prove by induction on the length of w. When the length of w is zero, the statement is trivial. Now

assume for w with l(w) < k, the statement holds, i.e. w.v can be expressed by a linear combination

of elements in {φwv|w ∈ W}. Set w is of length k and w = si1 · · · sik . Then by Lemma 2.6.12,

we have φw · v = Παij∈R(w)(ζi − ζj) · w · v + Σx<wcxx · v. Since l(x) < k, the terms x · v can be

express by {φwv|w ∈W}. As long as the coefficient Παij∈R(w)(ζi − ζj) 6= 0, w · v can be express by

{φwv|w ∈W}. So it is reduced to consider only the case when Παij∈R(w)(ζi − ζj) = 0.

In this case, there exists p ∈ [1, k] such that

Παij∈R(sip+1
···sik )

(ζi − ζj) 6= 0

and

Παij∈R(sip ···sik )
(ζi − ζj) = 0.

Set u = sip+1 · · · sik . When ip ∈ [1, n − 1], this implies (yip − yip+1)φuv = 0 and hence φuv = 0 by

Theorem 2.6.9. And when ip = n, this implies 2ynφuv = 0 and hence φuv = 0 by Theorem 2.6.10.

It follows Πaij∈R(u)(ζi − ζj)u.v =
∑

x<u xQ(y)v and hence

Πaij∈R(u)w.v =
∑
x<u

si1 · · · sipxQ(y).

Since l(si1 · · · sipx) < k, then (si1 · · · sipx).v and hence w.v can be expressed by a linear combination

of elements in {φwv|w ∈W}. �

Theorem 2.6.14. Let ζ be a weight such that Lζ 6= 0. Let w 6= 1 ∈W such that w.ζ = ζ. Then

φwv = 0.
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Proof. Let w = si1 · · · sik . since w.ζ = ζ, there is 1 ≤ p ≤ k such that si1 · · · sip = (hm) where

ζh = ζm. Consider φip−1 · · ·φi1φwv = Π1≤j≤p(1− ζij + ζij+1)(1 + ζij − ζij+1)φuv. It follows φuv = 0

and hence φwv = 0. �

Corollary 2.6.15. Let ζ be a weight such that Lζ 6= 0. Then it follows dim(Lζ) = 1.

Proposition 2.6.16. (1) Let v be a nonzero weight vector of weight ζ such that

|ζi − ζi+1| = 1.

Then φiv = 0.

(2) Let v be a nonzero weight vector of weight ζ such that ζn = ±κ2
2 . Then φnv = 0.

Remark 2.6.17. Some similar results also happen in degenerate affine Hecke algebra of type

An−1. Let Hn(1) be the degenerate affine Hecke algebra generated by si(i = 1, · · ·n − 1) and

yi(i = 1 · · ·n) with the following relations:

s2i = 1, i = 1, · · · , n− 1,

sisj = sjsi, |i− j| > 1,

sisi+1si = si+1sisi+1, i = 1, · · · , n− 1,

yiyj = yjyi,

siyi − yi+1si = 1,

siyj = yjsi, j 6= i, i+ 1.

There is the same definition of Y-semisimple representation. And for any Y-semisimple represen-

tation M , if a weight ζ with ζi = ζi+1, then Mζ = 0.

Furthermore, we still define the intertwining operator φ = siyi − yisi, then we will also have

φ2i = (1 − yi + yi+1)(1 + yi − yi+1). This also implies the fact that if φivζ = 0 then we have

ζi − ζi+1 = ±1. For the double affine Hecke algebra of type A, [19] explored similar properties in

details.
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2.7. Combinatorial moves

2.7.1. Moves among standard tableaux.

Let Tabλ,µc denote the collection of standard tableaux indexing the basis of Fn,p,µ(V ξ) in Section

2.4. We define a set of moves m1, · · · ,mn on Tabλ,µc t{0} as follows. The move mi for i−1, · · · , n−1

is defined as

mi(T ) =


T ′, T ′ is a standard tableau

0, otherwise,

where T ′(k) = T (si(k)). The move mn is defined to be

mn · T =


0, i(n) ≤ max(p, q) and j(n) ≤ max(a, b)

T ′′, otherwise,

where T ′′(j) = T (j) for each j 6= n and T ′′(n) = (N − i(n) + 1, a+ b− j(n) + 1).

Remark 2.7.1. There is a straightforward observation. For any shape ϕ′ ∈ D(ϕξn,p,µ) and any

i ≤ min(p, q), the sum of the column number of the last cell of the i-th row and the column number

of the last cell of the (N − i + 1)-th row equal a + b. So T ′′(n) = (N − i(n) + 1, a + b − j(n) + 1)

means that the mn-move takes the cell filled by n to the end of the (N − i(n) + 1)-th row.

here m be the column number of the last cell of the (N − i(n) + 1)-th row of Im(T ).

2.7.2. Correspondence between algebraic actions and combinatorial moves.

Let vT denote the basis vector indexed by T ∈ Tabλ,µc and ζT denote the weight of vT , namely

ζT = −contT + S.

Proposition 2.7.2. (1) For i = 1, · · · , n − 1, if mi(T ) 6= 0 holds, then mi(T ) ∈ Tabλ,µc

and the common eigenbasis vector vmi(T ) is of weight ζmi(T ) = si.ζT .

(2) If mn(T ) 6= 0, then mn(T ) ∈ Tabλ,µc and the common eigenbasis vector vmn(T ) is of weight

ζmi(T ) = γn.ζT

Proof. First, for i = 1, · · · , n − 1, if mi(T ) 6= 0, then by the definition of the move mi,

T ∈ Tabλ,µc and we want to show ζmi(T ) = si.ζT .

Then let us consider the case when w = γ. In this case w moves the box filled by n in the

i-th row of tableau T to the end of the (N − i + 1)-th row. So the only box in the new tableau
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γ.T with a different position comparing with the tableau T is the box filled by n. Thus the only

difference in the new weight associated to γ.T comparing with ζT is the eigenvalue of yn. Let (i, j)

denote the coordinates of the box filled by n in the tableau T . Then the coordinates of the box

filled by n in the new tableau γ.T is (N − i + 1, µ(q − p) + 2 |ξ|+nN − j + 1). Then the eigenvalue of

yn in the new weight ζγ.T associated to γ.T is j−i− |ξ|+nN +N
2 + µ(p−q)

2 . So the new weight equals γ.ζT .

�

Proposition 2.7.3. If w.T 6= 0 for some w ∈W , then φwvT 6= 0.

Proof. It is enough to verify the statement when w is the transposition si or γn.

First, consider the case when w = si, i = 1, · · · , n − 1. Suppose φivT = 0 for some 1 ≤ i ≤ n − 1

implies that φ2i vT = 0 and φ2i = (1 − yi + yi+1)(1 + yi − yi+1). Then ζT (i) − ζT (i + 1) = ±1. In

this case the contents of boxes filled by i and i+ 1 differ by 1 and hence the two boxes are adjacent

and in the same row or in the same column. We have si.T = 0 in this case. This contradicts the

condition. So we have φivT 6= 0.

Second, consider the case when w = γn. Suppose φnvT = 0 which implies the eigenvalue of yn is

±κ2
2 . Since φ2nvT = 0 in this case and φ2n = (κ2− 2yn)(κ2 + 2yn). Then the box filled by n is either

(p, µq + |ξ|+n
N ) or (q,−µp+ |ξ|+n

N ). But by the definition of action of γn on the tableau T , we have

in both cases that γn.T = 0. This contradicts the condition. Hence we have that φnvT 6= 0. �

Remark 2.7.4. (1) If mi(T ) 6= 0, then φivT = cvmi(T ) up to a nonzero scalar c ∈ C for

i = 1, · · · , n.

(2) If mi(T ) = 0, then φivT = 0 for i = 1, · · · , n.

Example 2.7.5. In Example 2.4.9, the action of intertwining operators are as follows. The

diagonals give the eigenvalue of yi’s.

Let k be the filling of the cell (q, b),we could compute that the eigenvalue of yk is −κ2
2 . Similarly,

let k be the filling of the cell (p, a), it follows the eigenvalue of yk is κ2
2 . Furthermore, κ2 = p−q−a+b.

2.8. Irreducible representations

2.8.1. The image Fn,p,µ(V ξ) is irreducible.
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Figure 2.9. Moves among weight basis vectors of F3,1,0(V
ξ)

Lemma 2.8.1. Let ϕ1 and ϕ2 be two skew shapes in D(ϕ) with ϕ1 → ϕ2. Then there exist

standard tableaux T1 and T2 with Im(T1) = ϕ1 and Im(T2) = ϕ2 such that γn(T1) = T2.

Proof. The ϕ1 → ϕ2 implies that ϕ2 is obtained by moving a corner (i, ϕi) of ϕ1 to the end

of the (N − i+ 1)-th row of ϕ1. Since (i, ϕ1) is a corner of ϕ1, there exists a standard tableau T1

such that (i, ϕ1) is filled by n. Applying the γn move to T1, let T2 = γn(T1). Then T2 is a standard

tableau with Im(T2) = ϕ2. �

We show in the following the representation of degenerate affine Hecke algebra obtained through

Etingof-Freund-Ma functor is irreducible.

Theorem 2.8.2. The image Fn,p,µ(V ξ) of a finite dimensional irreducible glN -module V ξ under

the Etingof-Freund-Ma functor is irreducible.

Proof. A basis of Fn,p,µ(V ξ) is indexed by

T ξµ,p = {T |T is a standard tableau and Im(T ) ∈ D(ϕξn,p,µ)}.
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It’s obvious to see that the underlying vector space of Fn,p,µ(V ξ) is isomorphic to the vector space

spanC{vT |T ∈ T ξµ,p}. Let N be a submodule of Fn,p,µ(V ξ). Then N contains at least one weight

vector of Fn,p,µ(V ξ). Let vT be a weight vector associated to the tableau T ∈ T ξµ,p and the submod-

ule N contains vT .

We show in the following we get every other weight vector from an arbitrary weight vector vT .

Consider the actions of signed permutations on standard tableaux since the actions of signed per-

mutations on standard tableaux are compatible with the actions of intertwining operators on weight

vectors.

Case 1. For any the standard tableau T ′ with the same shape of the tableau T , there exists w ∈ Sn

such that T ′ = w.T . Equivalently vT ′ = cφωvT where c ∈ C is nonzero.

Case 2. For standard T1 and T2 with Im(T1)→ Im(T2), combining Proposition 2.7.2 and Case 1,

it follows T2 = ω(T1) for some ω ∈W (BCn) and hence vT2 = cφωvT1 where c ∈ C is nonzero.

Furthermore, consider two arbitrary standard tableaux T1 and T2 in T ξµ,p. Let T be a standard

tableaux of shape ϕ. There is a path ϕ→ ϕ1 → · · · → Im(T1) and hence vT1 = c1φωvT0 .

�

2.8.2. Irreducible representation associated to a skew shape ϕξn,p,µ. Define a represen-

tation Lϕ
ξ
n,p,µ of Hn(1, p− q − µN) as follows. Let the underlying vector space be

spanC{wT |T ∈ T ξµ,p}.

The action of Hn(1, p− q − µN) is defined by

ykwT = (−contT (k) + S)wT ,(2.24)

siwT =
(1− contT (i) + contT (i+ 1))wsi(T )

contT (i)− contT (i+ 1)
+

1

contT (i)− contT (i+ 1)
wT ,(2.25)

γnwT =
(p− q − µN − 2contT (n))wγn(T )

2contT (n)
+ (p− q − µN)

1

2contT (n)
wT .(2.26)

Theorem 2.8.3. The representation Fn,p,µ(V ξ) is isomorphic to Lϕ
ξ
n,p,µ.
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Proof. Fix a T ∈ T ξµ,p. Define a map f : Fn,p,µ(V ξ)→ Lϕ
ξ
n,p,µ by

f(vT ) = wt

and f(φivT ) = (1− contT (i) + contT (i+ 1))wsi(T ). �

2.9. Combinatorial description

In this section, we first discuss some properties of a representation of the degenerate affine

Hecke algebra Hn(1, κ2) obtained via the Etingof-Freund-Ma functor, where κ2 = p− q− µN , and

then we show that any representation satisfying these properties is the image of some irreducible

polynomial representation of GLN via the Etingof-Freund-Ma functor.

2.9.1. Some facts of Fn,p,µ(V ξ). Let ξ ∈ P+ and F = Fn,p,µ(V ξ) be a representation

Hn(1, p− q − µN) obtained through Etingof-Freund-Ma functor and ζ = (ζ1, · · · , ζn) be weight of

F such that Fζ 6= 0. For i = 1, · · · , n, if there is an increasing sequence i = i0 < i1 < · · · < im ≤ n

such that |ζik − ζk+1| = 1 for k = 0, · · · ,m − 1 and ζim = ±κ2
2 , then we call the coordinate ζi is

fixed. It is easy to observe the following two properties.

Property 2.9.1. For i = 1, · · · , n, if |ζi| ≤ |κ22 |, then ζi is fixed, i.e. there is an increasing

sequence i = i0 < i1 < · · · < im ≤ n such that |ζik − ζk+1| = 1 for k = 0, · · · ,m− 1 and ζim = ±κ2
2 .

Property 2.9.2. The parameter κ2 is an integer. If κ2 is even, then all ζi’s, for i = 1, · · · , n,

are integers. If κ2 is odd, then all ζi’s, for i = 1, · · · , n are half integers.

Recall that the the cell (p, a) in ϕξn,p,µ gives the eigenvalue κ2
2 and that the cell (q, b) gives the

eigenvalue −κ2
2 . Then Property 2.9.2 follows.

In [17], Ram explored the facts of weights of a semisimple affine Hecke algebra representation.

Now let us explore facts of weights in the degenerate case. Let L be an irreducible and Y-semisimple

representation of Hn(1, κ2) satisfying Property 2.9.1 and Property 2.9.2 above and ζ be a weight

such that Lζ 6= 0. Then ζ satisfies the following proposition.
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Proposition 2.9.3. If there exist 1 ≤ i < j ≤ n such that ζi = ζj, then there exist i < k1 < j

such that ζk1 = ζi + 1 and i < k2 < j such that ζk2 = ζi − 1.

Proof. Let ζ be a weight such that Lζ 6= 0. Suppose there exist 1 ≤ i < j ≤ n such that

ζi = ζj and there is no i < k < j such that ζk = ζi. We proof by induction on j − i.

First, if j − i = 1, then ζi = ζi+1 which contradicts Theorem 2.6.9.

Second, if j − i = 2, by Theorem 2.6.9 and Lemma 2.6.7, it follows ζi+1 = ζi ± 1 = ζi+2 ± 1. Let

v be a nonzero weight vector of weight ζ. Proposition 2.6.16 implies φiv = φi+1v = 0. Combining

the definition of the intertwining operators, it follows siv = ∓v and si+1v = ±v and hence

±v = sisi+1siv = si+1sisi+1v = ∓v,

which is a contradiction.

So the base case of the induction is j− i = 3. If ζi 6= ζi+1±1 or ζj−1 6= ζj±1. Lemma 2.6.7 implies

the existence of a weight satisfying the condition in the case j − i = 2, which is a contradiction.

So it hold |ζi − ζi+1| = 1 and |ζj−1 − ζj | = 1. If ζi = ζi+1 + 1 and ζj−1 = ζj + 1, then k1 = j − 1

and k2 = i + 1. Similarly, if ζi = ζi+1 − 1 and ζj−1 = ζj − 1, then k1 = i + 1 and k2 = j − 1. If

ζi = ζi+1 ± 1 and ζj−1 = ζj ∓ 1, then ζi+1 = ζi+2 which contradicts Theorem 2.6.9.

Suppose the statement is true for all j − i < m, consider the case j − i = m.

Case1. If |ζi − ζi+1| 6= 1 or |ζj−1 − ζj | 6= 1 and v is a nonzero weight vector of weight ζ, then φiv

(or φj−1v respectively) is a nonzero weight vector of weight siζ (or sj−1ζ respectively) with siζ

(or sj−1ζ respectively) has ζi+1 = ζj (or ζi = ζj−1 respectively). Then the k1 and k2 exist by the

inductive hypothesis.

Case 2. If ζi = ζi+1 ± 1 and ζj−1 = ζj ∓ 1, this implies ζi+1 = ζj−1, the statement still holds by

inductive hypothesis.

Case 3. If ζi = ζi+1 + 1 and ζj−1 = ζj + 1, then k1 = j − 1 and k2 = i+ 1.

Case 4. If ζi = ζi+1 − 1 and ζj−1 = ζj − 1, then k1 = i+ 1 and k2 = j − 1.

�

Next let us explore another fact of L.
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Lemma 2.9.4. Let ζ = [ζ1, · · · , ζn] be a weight of L such that Lζ 6= 0 and ζ satisfies ζi >
|κ2|
2

for i = k, · · · , n. Then there is weight

ζ ′ = [ζ1, · · · , ζk−1,−ζn,−ζn−1, · · · ,−ζk+1,−ζk]

such that Lζ′ 6= 0.

Proof. Let v be a nonzero weight vector of ζ. Consider the element

h = φn(φn−1φn) · · · (φkφk+1 · · ·φn),

then hv ∈ Lζ′ and hv 6= 0 by Lemma 2.6.7 and Lemma 2.6.8. �

Definition 2.9.5. Let ζ = [ζ1, · · · , ζn] be a weight of L such that Lζ 6= 0 and ζ satisfies

the condition: if a coordinate ζi > 0, then ζi is fixed, i.e. there exists an increasing sequence

i = i0 < i1 < · · · < im ≤ n such that |ζik − ζik+1
| = 1 and ζim = ±κ2

2 . Then we call ζ is a minimal

weight of L.

Proposition 2.9.6. There exists at least one minimal weight ζ = [ζ1, · · · , ζn] of L such that

Lζ 6= 0.

Proof. Let ζ be any weight such that Lζ 6= 0. If 0 < ζi ≤ |κ2|2 , then ζi is fixed since L satisfies

Property 2.9.1. So it suffices to consider the coordinate ζi >
|κ2|
2 . We want to show that starting

with any weight ζ such that Lζ 6= 0, there is an algorithm to obtain a weight ζ ′ such that Lζ′ 6= 0

and ζ ′ satisfies the condition: if a coordinate ζ ′i > 0, then ζ ′i is fixed.

Suppose {ζr1 , ζr2 , · · · , ζrl} is the collection of all the coordinates such that ζri >
|κ2|
2 and ζri is not

fixed, for 1 ≤ r1 < r2 < · · · < rl ≤ n. Let v be a nonzero weight vector of weight ζ. We start with

the rightmost coordinate ζrl in this collection. If rl 6= n, there are only the following two cases.

Case 1. There exists an increasing sequence rl+1 = j0 < j1 < · · · < jl ≤ n such that |ζjk+1
−ζjk | = 1

and ζjl = ±κ2
2 . Then |ζrl − ζrl+1| 6= 1, otherwise there is an increasing sequence rl = j−1 < j1 <

j1 < · · · < jl ≤ n such that |ζjk+1
− ζjk | = 1 and ζjl = ±κ2

2 . So φrlv is a nonzero vector of weight

ζ(1) = srlζ.

Case 2. If ζrl+1 < − |κ2|2 , then |ζrl − ζrl+1| > 1 and hence φrlv is a nonzero weight vector of weight
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ζ(1) = srlζ.

Then we consider ζ
(1)
rl+1 and we are in the same situation. Hence we repeat this process for (n− rl)

times and obtain a nonzero weight vector (φn−1 · · ·φrl+1φrl)v of weight

ζ(n−rl) = (sn−1 · · · srl+1srl)ζ.

Next, we deal with the second rightmost coordinate ζrl−1
= ζ

(n−rl)
rl−1 in the collection above and

repeat the process above for (n− 1− rl−1) times. We obtain a nonzero weight vector

(φn−2 · · ·φrl−1+1φrl−1
)(φn−1 · · ·φrl+1φrl)v

of weight

ζ(2n−1−rl−1−rl) = (sn−2 · · · srl−1+1srl−1
)(sn−1 · · · , srl+1srl)ζ.

Next, we continue to deal with other coordinates in the collection in the order of ζrl−2
, ζrl−3

, · · · , ζr1
and repeat the process for (n − k − rk) times for the coordinate ζrk for k = 1, · · · , l. We obtain a

nonzero weight vector

(φn−l · · ·φr1+1φr1)(φn−l+1 · · ·φr2+1φr2) · · · (φn−1 · · ·φrl+1φrl)v

of weight

ζ(ln−l(l−1)/2−r1−r2···−rl) = (sn−l · · · sr1+1sr1)(sn−l+1 · · · sr2+1sr2) · · · (sn−1 · · · srl+1srl)ζ.

The weight ζ(ln−l(l−1)/2−r1−r2···−rl) satisfies the condition that

ζ
(ln−l(l−1)/2−r1−r2···−rl)
i >

|κ2|
2

for i = n− l + 1, · · · , n. Moreover, for i = 1, · · · , n− l, it follows either

ζ
(ln−l(l−1)/2−r1−r2···−rl)
i < 0
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or the coordinate ζ
(ln−l(l−1)/2−r1−r2···−rl)
i is fixed. Applying Lemma 2.9.4, there is a weight

ζ ′ = γn(sn−1γn) · · · (sn−l+1 · · · sn−1γn)ζ(ln−l(l−1)/2−r1−r2···−rl)

such that Lζ′ 6= 0 and satisfying the condition: if

ζ ′i > 0,

then ζ ′i is fixed for any i = 1, · · · , n. �

Remark 2.9.7. Lemma 2.9.4 and Proposition 2.9.6 indicate that for any weight ζ such that

Lζ 6= 0 and a nonzero v ∈ Lζ , there is a nonzero weight vector φωv ∈ Lζ′ such that ζ ′ satisfies the

condition in Proposition 2.9.6.

Example 2.9.8. Let ζ = [−2, 2, 4, 5, 6,−3, 1] and v ∈ L is a nonzero weight vector of weight ζ.

Locate the collection of all the coordinates which are positive and not fixed: {ζ3 = 4, ζ4 = 5, ζ5 = 6},

i.e. there are three coordinates with r1 = 3, r2 = 4 and r3 = 5. We deal with these coordinates from

right to left. First, we deal with the rightmost coordinate ζ5 = 6 in this collection and apply the

step for (n− r3) = 2 times. We obtain a nonzero weight vector

(φn−1 · · ·φr3)v = (φ6φ5)v

of weight

ζ(n−r3) = ζ(2) = (s6s5)ζ = [−2, 2, 4, 5,−3, 1, 6].

Then we work on with the coordinate ζ4 = ζ
(2)
4 = 5 and apply the step for (n − 1 − r2) times.

We obtain a nonzero weight vector

(φn−2 · · ·φr2)(φn−1 · · ·φr3)v = (φ5φ4)(φ6φ5)v

of weight

ζ(2n−1−r1−r2) = ζ(4) = (s5s4)ζ
(2) = (s5s4)(s6s5)ζ = [−2, 2, 4,−3, 1, 5, 6].
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Finally, we deal with the coordinate ζ3 = ζ
(4)
3 = 4 and apply the step for n − 2 − r3 times. We

obtain a nonzero weight vector

(φn−3 · · ·φr1)(φn−2 · · ·φr2)(φn−1 · · ·φr3)v = (φ4φ3)(φ5φ6)(φ6φ5)v

of weight

ζ(3n−3−r1−r2−r3) = ζ(6) = (s4s3)ζ
(4) = [−2, 2,−3, 1, 4, 5, 6].

Now the weight ζ(6) satisfies the condition in Lemma 2.9.4 with ζ
(6)
i > |κ2|

2 for i = 5, 6, 7. Moreover,

for each i = 1, · · · , 4, either ζ
(6)
i < 0 or that ζ

(6)
i is fixed.

Applying Lemma 2.9.4, we obtain a nonzero weight vector

φ7(φ6φ7)(φ5φ6φ7)(φ4φ3)(φ5φ6)(φ6φ5)v

of weight

ζ ′ = γ7(s6γ7)(s5s6γ7)ζ
(6) = [−2, 2,−3, 1,−6,−5,−4].

Example 2.9.9. Let ζ = [0, 4,−1, 6,−2, 5, 1] and v ∈ L is a nonzero weight vector of weight ζ.

There are three coordinates ζ2 = 4, ζ4 = 6 and ζ6 = 5 satisfying the condition that i = 2, 4, 6, there

is no increasing sequence i < i1 < · · · < il ≤ n such that |ζik+1
− ζik | = 1 and |ζil | = ±

κ2
2 . Starting

with the coordinate with maximal index i = 6 and applying the intertwining operators, it follows

[0, 4,−1, 6,−2, 5, 1] [0, 4,−1, 6,−2, 1, 5] [0, 4,−1,−2, 1, 6, 5] [0,−1,−2, 1, 4, 6, 5]
s6 s5s4 s4s3s2

and by Lemma 2.9.4, it follows

[0,−1,−2, 1, 4, 6, 5] [0,−1,−2, 1,−5, 4, 6] [0,−1,−2, 1,−5,−6, 4] [0,−1,−2, 1,−5,−6,−4]
s5s6γ7 s6γ7 γ7

Let ζ ′ = [0,−1,−2, 1,−5,−6,−4]. Then there is a nonzero weight vector

φ7(φ6φ7)(φ5φ6φ7)(φ4φ3φ2)(φ5φ4)φ6v ∈ Lζ′ .

Remark 2.9.10. For any minimal weight ζ of F = Fn,p,µ(V ξ) such that Fζ 6= 0, let Tζ be the

corresponding standard tableau. Then Im(Tζ) is the minimal shape ϕξn,p,µ of Fn,p,µ(V ξ).

Before introducing the third property of Fn,p,µ(V ξ), we need the following definition and lemma.
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Definition 2.9.11. Let ζ = [ζ1, · · · , ζn] be a weight. If a coordinate ζi, i = 1, 2, · · · , n, satisfies

the condition that there is no i < k ≤ n such that ζk = ζi ± 1, then the coordinate ζi is a corner of

ζ.

Remark 2.9.12. Let ζ = [ζ1, · · · , ζn] and Tζ is the corresponding standard tableau. For i =

1, · · · , n, ζi is a corner of ζ if and only if T (i) is a southeastern corner of Im(Tζ).

Example 2.9.13. Let ζ = [0,−1,−2, 1,−5,−6,−4]. Then ζ3 = −2, ζ4 = 1, ζ6 = −6 and

ζ7 = −4 are corners of ζ. The corresponding standard tableau Tζ has southeastern corners 3, 4, 6

and 7.

1

0
4

2 3

7

5 6

Lemma 2.9.14. Let L be an irreducible and Y-semisimple representation of Hn(1, κ2) satisfying

Property 2.9.1. Let ζ be a minimal weight of L such that Lζ 6= 0. For i = 1, · · · , n, if the coordinate

ζi is a corner of ζ, then ζi = ±κ2
2 or ζ < − |κ2|2 .

Proof. First, since L satisfies Property 2.9.1, if |ζi| < |κ2|
2 , then ζi is fixed, i.e. there is an

increasing sequence i = i0 < i1 < · · · < im ≤ n such that |ζik − ζk+1| = 1 for k = 0, · · · ,m− 1 and

ζim = ±κ2
2 . This contradicts the fact that ζi is a corner of ζ.

Second, suppose ζi >
|κ2|
2 . Since ζ is a minimal weight, ζi if fixed, which again contradicts the fact

that ζi is a corner. �

Now we introduce the third property of Fn,p,µ(V ξ).

Property 2.9.15. Let ζ be a minimal weight such that Fζ 6= 0. If ζk is the rightmost coordinate

equal to |κ2|
2 and ζr is the rightmost coordinate equal to − |κ2|2 , then at least one of these two

coordinates is not a corner.

Proof. Let Tζ be the corresponding standard tableau of weight ζ. Since ζ is a minimal weight,

the shape Im(Tζ) is the minimal shape ϕ = ϕξn,p,µ. So it suffices to show that it is impossible for

Tζ to have Tζ(k) and Tζ(r) at southeastern corners simultaneously, equivalently, it is impossible
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for ϕ to have a southeast corner at eigenvalue κ2
2 and a southeastern corner at eigenvalue −κ2

2

simultaneously. Let p ≤ q,

a = µq +
|ξ|+ n

N

and

b = −µp+
|ξ|+ n

N
.

Suppose ϕ simultaneously has a southeastern corner at eigenvalue κ2
2 and a southeastern corner at

eigenvalue −κ2
2 , then p < q and a > b follow. In this case, ϕ has cell (p, a) at eigenvalue − |κ2|2 and

cell (q, b) at eigenvalue |κ2|2 . Furthermore, the fact that cell (p, a) is a southeastern corner indicates

ξ
(2)
1 = ξq+1 = b. The fact that cell (q, b) ∈ ϕ indicates ξ

(1)
q = ξq < b. This contradicts ξ ∈ P+

≥0. �

2.9.2. Combinatorial description of irreducible representations in M. In the follow-

ing sections, let M(Hn(1, κ2)) be collection of Y-semisimple representations of Hn(1, κ2) satis-

fying Properties 2.9.1-2.9.15. In this subsection, we show that any irreducible representation in

M(Hn(1, κ2)) is isomorphic to the image Fn,p,µ(V ξ) for a tuple of n, p, µ and some ξ ∈ P+
≥0.

Let L ∈ M(Hn(1, κ2)) be irreducible and ζ be a minimal weight such that Lζ 6= 0. Recall, if

ζi ≥ 0, then there is an increasing sequence k1 < · · · < km such that ζki+1
= ζki±1 and ζkm = ±κ2

2 .

The weight ζ gives a standard tableau Tζ such that ζk = −contTζ (k) + s for some fixed number s

where s− κ2 is an integer. Let Im(Tζ) = ν/β such that β1 < ν1 and β`(ν) < ν`(ν). Let us explore

in different cases depending on corners. According to Lemma 2.9.14, if ζi is a corner of ζ, for some

i = 1, · · · , n, then ζi = ±κ2
2 or ζi < − |κ2|2 . For any minimal ζ, there is at least one corner of ζ. Let

the coordinate ζr1 be the corner of ζ such that i(r1) is the maximal of {i(i)|ζi is corner of ζ} and the

coordinate ζr2 is the corner of ζ such that i(r2) is the second largest number in {i(i)|ζi is corner of ζ}

if ζr2 exists. It is obvious ζr2 < ζr1 . There are the following cases. If ζr1 = |κ2|
2 , then ζr2 < −

|κ2|
2 or

ζr2 doesn’t exist. By Lemma 2.9.14, if ζr1 = |κ2|
2 and ζr2 = − |κ2|2 , then ζ violates Property 2.9.15.

When ζr1 = − |κ2|2 , ζr2 < −
|κ2|
2 or there is no ζr2 . When ζr1 < −

|κ2|
2 , ζr2 < −

|κ2|
2 or ζr2 doesn’t

exist. So let us discuss in five cases.

Case 1. The corner ζr1 = |κ2|
2 and the corner ζr2 < −

|κ2|
2 .

Denote Tζ(r1) = (i1, j1) and Tζ(r2) = (i2, νi2). Let j2 = i2 +s+ |κ2|2 . In this case, set two rectangles

(ap) = ((ν1 − j1)i2)
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and

(bq) = ((ν1 − j2)i1).

Claim 2.9.16. Following the setting above, the number νi2 − j1 − j2 ≥ 0.

Proof. Since ζr2 is a corner, there exists a weight ζ̃ such that Lζ̃ 6= 0, Im(Tζ̃) = Im(Tζ) and

Tζ̃(n) = (i2, νi2), where Tζ̃ denotes the standard tableau given by the weight ζ̃. Let v be a nonzero

weight vector of weight ζ̃. Since ζ̃n 6= ±κ2
2 , it follows that φnv is a nonzero weight vector of weight

γnζ̃. Moreover, the standard tableau Tγnζ̃ given by γnζ̃n satisfies that

Im(Tγnζ̃)) = Im(Tζ) \ {(i2, νi2)} ∪ {(i1 + 1, j1 + j2 − νi2 + 1)}

since (γnζ̃)n = −ζ̃n. It follows that Tγnζ̃ is a standard tableau and hence Im(Tγnζ̃) is a skew shape.

This fact forces j1 + j2 − νi2 + 1 ≤ 1 and thus

νi2 − j1 − j2 ≥ 0.

�

Set ξ(1) = (ξ
(1)
1 , · · · , ξ(1)i1

) with

ξ
(1)
k = βk + ν1 − j1 − j2,

for k = 1, · · · , i1 and ξ(2) = (ξ
(2)
1 , · · · , ξ(2)i2

) with

ξ
(2)
k = ν1 − νi2−k+1,

for k = 1, · · · , i2. Furthermore, set ξ = (ξ1, · · · , ξi1+i2) with

ξk = ξ
(1)
k ,

for k = 1, · · · , i1 and

ξk = ξ
(2)
k−i1 ,

for k = i1 + 1, · · · , i1 + i2.

Remark 2.9.17. Claim 2.9.16 implies the following two facts.
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(1) It follows ν1 − j1 − j2 ≥ 0.

(2) The inequality ν1 − νi2 = ξ
(2)
1 ≤ ξ(1)i1

= βi1 + ν1 − j1 − j2 holds and hence ξ ∈ P+.

Example 2.9.18. Continue Example 2.9.13. An irreducible representation L inM(H7(1,−2)),

we start with a minimal weight ζ = [0,−1,−2, 1,−5,−6,−4] and the standard tableau of ζ. The

corners of ζ are ζ3 = −2, ζ4 = 1,ζ6 = −6 and ζ7 = −4. Furthermore, ζr1 = ζ4 = 1 and

ζr2 = ζ3 = −2

1

4i1

j1

i2

j2

2 3

7

5 6

−1

1

−2

s = −2
ν = (5, 4, 3, 1)

β = (3, 3)

ν1 = 5

i1 = 4, j1 = 1

i2 = 3, j2 = 2

Place the southeastern corner of ((ν1−j2)i1) at the cell (i1, j1) and northeastern corner of (ν1 − j1)i2

at the cell (1, ν1). The gray part on the left forms ξ(1) and the gray part on the right forms

ξ(2) .

1

4i1

j1

1

ν1

2 3

7

5 6

−1

1

−2

(ap) = (43)

(bq) = (34)

ξ(1) = (5, 5, 2, 2)

ξ(2) = (2, 1, 0)

Furthermore, we obtain other parameters of Etingof-Freund-Ma functor as N = p + q = 7, p = 3

and µ = a−b
N = 1

7 .

ξ = (5, 5, 2, 2, 2, 1, 0)

ξ(1)

ξ(2)

ξ(1)

ξ
(2)

b a

q
p

Case 2. The corner ζr1 = − |κ2|2 and the corner ζr2 < −
|κ2|
2 .

Denote Tζ(r1) = (i1, j1) and Tζ(r2) = (i2, νi2). Let j2 = i2 +s− |κ2|2 . In this case, set two rectangles

(ap) = ((ν1 − j1)i2)
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and

(bq) = ((ν1 − j2)i1).

We have a similar claim to Claim 2.9.16.

Claim 2.9.19. Following the setting above, the number νi2 − j1 − j2 ≥ 0.

The proof is the same with the proof of Claim 2.9.16.

Similarly, let ξ(1) = (ξ
(1)
1 , · · · , ξ(1)i1

) with

ξ
(1)
k = βk + ν1 − j1 − j2,

for k = 1, · · · , i1 and ξ(2) = (ξ
(2)
1 , · · · , ξ(2)i2

) with

ξ
(2)
k = ν1 − νi2−k+1,

for k = 1, · · · , i2. Furthermore, set ξ = (ξ1, · · · , ξi1+i2) with

ξk = ξ
(1)
k ,

for k = 1, · · · , i1 and

ξk = ξ
(2)
k−i1 ,

for k = i1 + 1, · · · , i1 + i2.

Example 2.9.20. Let L be an irreducible representation inM(H7(1,−2)) with a minimal weight

ζ = [−1, 1, 0,−2,−1,−5,−3] and the standard tableau of ζ. The corners of ζ are ζ4 = −6,ζ6 = −4

and ζ7 = −2. Furthermore, ζr1 = ζ5 = −1 and ζr2 = ζ7 = −3

−3

−1

1

1 4

2 3

7

5i1

j1

i2

j2

6

s = −1
ν = (5, 4, 3)

β = (4, 1, 0)

i1 = 3, j1 = 3

i2 = 2, j2 = 0

Place the southeastern corner of (bq) at the cell (i1, j1) and northeastern corner of (ap) at the cell

(1, ν1). The gray part on the left forms ξ(1) and the gray part on the right forms

ξ(2) .
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1 4

2 3

7

5

6

i1

j1

1

ν1

−3

−1

1

(ap) = (22)

(bq) = (53)

ξ(1) = (6, 3, 2)

ξ(2) = (1, 0)

Furthermore, we obtain other parameters of Etingof-Freund-Ma functor as N = q + p = 5, q = 3

and µ = b−a
N = 3

5 .

ξ = (6, 3, 2, 1, 0)

ξ(1)

ξ(2)

b a

q
pξ(1) ξ

(2)

Case 3. The corner ζr1 = |κ2|
2 and the corner ζr2 doesn’t exist. Let j = s+ |κ2|

2 . Then the cell

(0, j) on the diagonal of weight − |κ2|2 . We explore the following in two subcases.

Case 3a. j ≥ 1. Set two rectangles

(ap) = (j1)

and

(bq) = (ν
`(ν)+1
1 ).

Moreover, ξ = (ξ1, · · · , ξ`(ν)) with ξ1 = ν1 + j and ξk = βk−1.

Example 2.9.21. Let L be an irreducible representation inM(H7(1,−2)) with a minimal weight

ζ = [−1, 2, 1, 0, 3, 2, 1] such that Lζ 6= 0. There is only one corner ζ7 = 1. So

ζr1 = ζ7 = 1 =
|κ2|
2
.

The standard tableau of ζ is as follows.

1

−1

1

42 3

75 6

j

0 s = 1

ν = (3, 3, 3)

β = (2, 0, 0)

`(ν) = 3

j = 2
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The two rectangles are (ap) = (21) and (bq) = (34). Place the southeastern corner of (bq) at

Tζ(r1) = Tζ(7) and the northwestern corner of (ap) at the cell (0, ν1 + 1). The gray area forms ξ.

j ν1 + 1

0

1

−1

1

42 3

75 6

(ap) = (21)

(bq) = (34)

ξ = (5, 2, 0, 0, 0)

Furthermore, we obtain other parameters of Etingof-Freund-Ma functor as N = p + q = 5, p = 1

and µ = a−b
N = −1

5 .

ξ = (5, 2, 0, 0, 0)

ξ

b a

q

p

Case 3b. j ≤ 0. Set two rectangles

(ap) = (11)

and

(bq) = ((ν1 − j + 1)`(ν)+1).

Moreover, ξ = (ξ1, · · · , ξ`(ν)) with ξ1 = ν1 − j + 2 and ξk = βk−1 − j + 1.

Example 2.9.22. Let L be an irreducible representation inM(H7(1,−2)) with a minimal weight

ζ = [0,−2,−1, 1, 2, 0, 1] such that Lζ 6= 0. There is only one corner ζ7 = 1. So

ζr1 = ζ7 = 1 =
|κ2|
2
.

The standard tableau of ζ is as follows.
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1

−1

0

j

1

4

2

3

75

6

s = −1
ν = (2, 2, 2, 2)

β = (1, 0, 0, 0)

`(ν) = 4

j = 0

The two rectangles are (ap) = (11) and (bq) = (35). Place the southeastern corner of (bq) at

Tζ(r1) = Tζ(7) and the northwestern corner of (ap) at the cell (0, ν1 + 1). The gray area forms ξ.

1

−1

0

j ν1 + 1

1

4

2

3

75

6

(ap) = (11)

(bq) = (35)

ξ = (4, 2, 1, 1, 1, 0)

Furthermore, we obtain other parameters of Etingof-Freund-Ma functor as N = p + q = 6,

p = 1 and µ = a−b
N = −1

3 .

ξ = (4, 2, 1, 1, 1, 0)

ξ

b a

q

p

Case 4. The corner ζr1 = − |κ2|2 and there is no corner ζr2 . Set j = s− |κ2|2 . Then the cell (0, j)

is on the diagonal of weight |κ2|2 . Let us discuss in two subcases.

Case 4a. When j ≥ 1. Set two rectangles

(ap) = (j1)

and

(bq) = (ν
`(ν)+1
1 ).
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Moreover, ξ = (ξ1, · · · , ξ`(ν)) with ξ1 = ν1 + j and ξk = βk−1.

Example 2.9.23. Let L be an irreducible representation inM(H7(1,−2)) with a minimal weight

ζ = [4, 3, 2,−2, 1, 0,−1] such that Lζ 6= 0. There is only one corner ζ7 = −1. So

ζr1 = ζ7 = −1 = −|κ2|
2
.

The standard tableau of ζ is as follows.

1

4

2 3 75 6

−1

1
j

0

s = 3

ν = (6, 6)

β = (5, 0)

`(ν) = 2

j = 2

The two rectangles are (ap) = (21) and (bq) = (63). Place the southeastern corner of (bq) at

Tζ(r1) = Tζ(7) and the northwestern corner of (ap) at cell (0, ν1 + 1) = (0, 7). The gray area forms

ξ.

−1

1
j ν1 + 1

0

1

4

2 3 75 6

(ap) = (21)

(bq) = (63)

ξ = (8, 5, 0, 0)

Furthermore, we obtain other parameters of Etingof-Freund-Ma functor as N = q + p = 4,

q = 3 and µ = b−a
N = 1.

ξ = (8, 5, 0, 0)

ξ

b a

q

p

Case 4b. When j ≤ 0. Set two rectangles

(ap) = (11)
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and

(bq) = ((ν1 − j + 1)`(ν)+1).

Moreover, ξ = (ξ1, · · · , ξ`(ν)) with ξ1 = ν1 − j + 2 and ξk = βk−1 − j + 1.

Example 2.9.24. Let L be an irreducible representation inM(H7(1,−2)) with a minimal weight

ζ = [0,−1, 2, 1,−2, 0,−1] such that Lζ 6= 0. There is only one corner ζ7 = −1. So

ζr1 = ζ7 = −1 = −|κ2|
2
.

The standard tableau of ζ is as follows.

0

j

−1

1

4

2

3 7

5

6

s = 1

ν = (4, 4)

β = (1, 0)

`(ν) = 2

j = 0

The two rectangles are (ap) = (11) and (bq) = (53). Place the southeastern corner of (bq) at

Tζ(r1) = Tζ(7) and the northwestern corner of (ap) at the cell (0, ν1 + 1). The gray area forms ξ.

0

j ν1 + 1

−1

1

4

2

3 7

5

6

(ap) = (11)

(bq) = (53)

ξ = (6, 2, 1, 0)

Furthermore, we obtain other parameters of Etingof-Freund-Ma functor as N = q + p = 4, q = 3

and µ = b−a
N = 1.

ξ = (6, 2, 1, 0)

ξ

b a

q

p

Case 5. The corner ζr1 < −
|κ2|
2 . Let j1 = ν

`(ν)+
|κ2|
2

+ ζr1 and j2 = ν
`(ν)− |κ2|

2

+ ζr1 . Set two

rectangles

(ap) = ((ν1 − j1)`(ν))
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and

(bq) = ((ν1 − j2)`(ν)).

Claim 2.9.25. According to the setting above, the number ν`(ν) − j1 − j2 ≥ 0

Proof. There exist a weight ζ̃ such that Lζ̃ 6= 0, Im(Tζ̃) = Im(Tζ) and Tζ̃(n) = (`(ν), ν`(ν)).

Let v be a nonzero weight vector of weight ζ̃. Since ζr1 < −
|κ2|
2 , we obtain a nonzero weight vector

φnv of weight γnζ̃. Moreover,

Im(Tγnζ̃) = Im(Tζ) \ {(`(ν), ν`(ν))} ∪ {(`(ν) + 1, 2`(ν)− ν`(ν) + 2s+ 1)}.

Since Im(Tγnζ̃) is a skew shape, it follows 2`(ν)−ν`(ν) + 2s+ 1 ≤ 1. Applying j1 = ν`(ν) + |κ2|2 + ζr1

and j2 = ν`(ν) −
|κ2|
2 + ζr1 , the statement ν`(ν) − j1 − j2 ≥ 0 follows. �

Set ξ(1) = (ξ
(1)
1 , · · · , ξ(1)`(ν)) with

ξ
(1)
k = βk + ν1 − j1 − j2

for k = 1, · · · , `(ν), ξ(2) = (ξ
(2)
1 , · · · , ξ(2)`(ν)) with

ξ
(2)
k = ν1 − ν`(ν)−k+1

for k = 1, · · · , `(ν) and ξ = (ξ1, · · · , ξ2`(ν)) with

ξk = ξ
(1)
k

for k = 1, · · · , `(ν) and

ξk = ξ
(2)
k−`(ν)

for k = `(ν) + 1, · · · , 2`(ν).

Remark 2.9.26. Claim 2.9.25 implies the following two facts.

(1) It follows ν1 − j1 − j2 ≥ 0.

(2) The inequality ν1 − ν`(ν) = ξ
(2)
1 ≤ ξ(1)`(ν) = ν1 − j1 − j2 holds and hence ξ ∈ P+.
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Example 2.9.27. Let L be an irreducible representation inM(H7(1,−2)) with a minimal weight

ζ = [−2,−1,−5,−6,−3,−4,−2] such that Lζ 6= 0. The corners of ζ are ζ4 = −6, ζ6 = −4 and

ζ7 = −2. So ζr1 = ζ7 = −2. The standard tableau of ζ is as follows.

−2−1

1

4

2 7

65

3 s = −3
ν = (4, 3, 2)

β = (2, 0, 0)

`(ν) = 3

The two rectangles (ap) = (33) and (bq) = (53) follow. Place the northeastern corner of (ap) = (33)

at the cell (1, ν1) and the southeastern corner of (bq) = (53) at the cell (`(ν), `(ν) + |κ2|
2 + s. The

gray area on the left forms ξ(1) and the gray area on the right forms

ξ(2) .

1 −1

`(ν)

`(ν) + s+
|κ2|
2

1

ν1

1

4

2 7

65

3
(ap) = (33)

(bq) = (53)

ξ(1) = (6, 4, 4)

ξ(2) = (2, 1, 0)

So the three shapes (ap), (bq) and ξ are set as follows. The other parameters of Etingof-Freund-Ma

functor are set as N = 6, p = 3 and µ = 1/3.

ξ(1)

ξ
(2)

b a

q p

ξ(1)

ξ(2)

ξ = (6, 4, 4, 2, 1, 0)

Remark 2.9.28. When we fix the number n, for different input (ξ,N, p, µ), we get isomorphic

Hn-modules. Consider the following example of representations of H3(1,−1).

Let ξ = (3, 3, 2), N = 4 , p = 1 and µ = −1
4 .

In this case,a = µq + |ξ|+n
N = 2 and b = −µp + |ξ|+n

N = 3. Then the image F = F3,1,− 1
4
(V ξ) is an

H3(1,−1)-module with the following minimal shape ϕξ
3,1,− 1

4

= (5, 3, 3)/(3, 3, 2).
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ξ

b a

q

p

1
2

Then the basis is indexed by the standard tableaux on the skew shapes: (5, 3, 3)/ξ, (4, 3, 3, 1)/ξ and

(3, 3, 3, 2)/ξ. There is a minimal weight ζ = [12 ,−
5
2 ,−

7
2 ] such that Fζ 6= 0. Now let us recover a func-

tor Fn,p′,µ′ such that Fn,p′,µ′(V
ξ′) is an H3(1,−1)-module with a minimal weight ζ = [12 ,−

5
2 ,−

7
2 ].

According to Case 1, (a′p
′
) = (31), (b′q

′
) = (32), ξ′ = (4, 2, 0) and µ′ = 0.

ξ′
1

2 3
b′ a′

q′
p′

1
2

− 7
2

2.9.3. Other Y-semisimple representations. The image of the Etingof-Freund-Ma functor

does not exhaust all the Y-semisimple representations. The following are two examples of Y-

semisimple Hn(1, κ2) representation which are not in M(Hn(1, κ2)).

Example 2.9.29. Obviously, the representation obtained under the Etingof-Freund-Ma does not

contain a weight vector of weight ζ with − |κ2|2 < ζn <
|κ2|
2 .

Consider the representation of H3(1,−6) generated by the weight vector of weight [1, 2,−3].

This representation has the following characters:
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[−3,−2,−1]

m3

[−3,−2, 1]

m2

[−3, 1,−2]

m3

[−3, 1, 2]

m1

[1,−3,−2]

m3

[1,−3, 2]

m1

[1, 2,−3]

m2
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CHAPTER 3

Degenerate double affine Hecke algebras of type C

3.1. Generators and relations of dDAHA

The degenerate double affine Hecke algebra Hn(u, k1, k2, k3), which we also denote by dDAHA,

is an algebra over C with parameters u, k1, k2, k3 ∈ C, generated by

s1, · · · , sn−1, γn, X±1 , · · · , X
±
n , y1, · · · , yn

with the following relations in addition to relations (2.1)-(2.4).

[Xi, Xj ] = [yi, yj ] = 0,(3.1)

[si, Xj ] = [si, yj ] = 0, for j 6= i, i+ 1,(3.2)

[γn, Xj ] = [γn, yj ] = 0, for j 6= n,(3.3)

siXi = Xi+1si, for i = 1, · · · , n− 1,(3.4)

γnXn = X−1n γn,(3.5)

siyi − yi+1si = k1, for i = 1, · · · , n− 1,(3.6)

γnyn + ynγn = k2 + k3,(3.7)

[yj , Xi] = k1Xjsij − k1X−1j sijγiγj , for i < j,(3.8)

[yi, Xi] = uXi − k1
∑
k>i

Xksik − k1
∑
k>i

X−1k sikγiγk − (k2 + k3)X
−1
i γi − k2γi,(3.9)

where sij denotes the element in Weyl group W which flips εi and εi+1 and γi denotes the element

in W sending εi to −εi.

3.1.1. Y-semisimple representation of degenerate DAHA. We define the definition of

Y-semisimple representations of a degenerate double affine Hecke algebra Hn(u, k1, k2, k3) as fol-

lows: Let Y = C[y1, · · · , yn] be the commutative subalgebra of the degenerate affine Hecke algebra
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Hn(u, k1, k2, k3). Let L be a representation of Hn(u, k1, k2, k3). For an n-tuple ζ = (ζ1, · · · , ζn),

define the simultaneous generalized eigenspace as

Lgenζ = {v ∈ L|(yi − ζi)kv = 0 for some k � 0 and for all i = 1, · · · , n}.

Since the polynomial algebra Y is commutative, its representation L decomposes to a sum of

simultaneous generalized eigenspace, i.e. L = ⊕ζLgenζ . Similarly, define the simultaneous eigenspace

Lζ = {v ∈ L|yiv = ζiv for all i = 1, · · · , n}.

Definition 3.1.1. If a degenerate double affine Hecke algebra representation L decomposes to

a sum of simultaneous eigenspaces as a Y-module, i.e. L = ⊕ζLζ , then L is Y-semisimple. If the

subspace Lζ 6= 0, then call ζ weight of the representation L, Lζ the corresponding weight space and

any nonzero element v ∈ Lζ weight vector of weight ζ.

3.1.2. Another set of generators of dDAHA. Let γi = sisi+1 · · · sn−1γnsn−1 · · · si+1si for

i = 1, · · · , n.

Lemma 3.1.2. It follows that X1γ1 = γ1X
−1
1 .

Proof. Applying Xisi = siXi+1, X
−1
i+1si = siX

−1
i and Xnγn = γnX

−1
n , then it holds that

X1γ1 = X1s1 · · · γn · · · s1

= s1X2s2 · · · γn · · · s1

= s1 · · · sn−1Xnγn · · · s1

= s1 · · · γnX−1n sn−1 · · · s1

= s1 · · · γn · · · s1X−11

= γ1X
−1
1 .

�

Lemma 3.1.3. It holds sjγ1 = γ1sj, j ≥ 2.
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Proof. Apply the relation sjsj−1sj = sj−1sjsj−1, it follows

sjγ1 = sj(s1 · · · γn · · · s1)

= s1 · · · sj−2(sjsj−1sj)sj+1 · · · γn · · · s1

= s1 · · · sj−2(sj−1sjsj−1)sj+1 · · · γn · · · s1

= s1 · · · sj−2sj−1sjsj+1 · · · γn · · · sj+1(sj−1sjsj−1)sj−2 · · · s1

= s1 · · · γn · · · sj+1(sjsj−1sj)sj−2 · · · s1

= s1 · · · γn · · · sj+1sjsj−1sj−2 · · · s1sj

= γ1sj .

�

Lemma 3.1.4. γ1yj = yjγ1 − k1γ1s1,j + k1s1,jγ1, j ≥ 2.

Proof. First, applying the relation yj−1sj−1 − sj−1yj = k1, it follows

γ1yj = s1 · · · γn · · · (sj−1yj)sj−2 · · · s1

= s1 · · · γn · · · (yj−1sj−1)sj−2 · · · s1 − k1s1 · · · γn · · · sj ˆsj−1sj−2 · · · s1

= s1 · · · sj−2(sj−1yj−1)sj · · · γn · · · s1 − k1γ1s1,j ,

where s1 · · · γn · · · sj ˆsj−1sj−2 · · · s1 = γ1(s1 · · · sj−1 · · · s1) = γ1s1,j .

Applying the relation sj−1yj−1 − yjsj−1 = k1, it follows

s1 · · · sj−2(sj−1yj−1)sj · · · γn · · · s1 − k1γ1s1,j

=s1 · · · sj−2(yjsj−1)sj · · · γn · · · s1 + k1s1 · · · sj−2 ˆsj−1sj · · · γn · · · s1 − k1γ1s1,j

=yjγ1 + k1s1,jγ1 − k1γ1s1,j .

�

Lemma 3.1.5. γ1y1 = −y1γ1γ1 + k1
∑n

j=2 s1,jγ1 + k1
∑n

j=2 γ1s1,j + (k2 + k3).
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Proof. Applying sjyj − yj+1sj = k1 for j = 1, · · · , n− 1,

γ1y1 = s1 · · · γn · · · s2y2s1 + k1γ1s1,2

= s1 · · · γnynsn−1 · · · s1 +

n∑
j=2

k1γ1s1,j .

Applying the relation γnyn + ynγn = k2 + k3, the above computation continues as

= −s1 · · · sn−1ynγn · · · s1 + (k2 + k3) +
n∑
j=2

k1γ1s1,j .

Applying the relation sj−1yj − yj−1sj−1 = −k1 for j = 2, · · · , n, it follows that

− s1 · · · sn−1ynγn · · · s1 + (k2 + k3) +
n∑
j=2

k1γ1s1,j

=− y1γ1 +

n∑
j=2

k1s1,jγ1 + (k2 + k3) +

n∑
j=2

k1γ1s1,j .

�

Let s0 := X1γ1 = X1s1 · · · γn · · · s1. Then we have the following relations.

Lemma 3.1.6. The element s0 satisfies

s20 = 1,(3.10)

[s0, sj ] = [s0, yj ] = 0, for j = 2, · · · , n(3.11)

s0y1 − (u− y1)s0 = −k2.(3.12)

Proof. By Lemma 3.1.2, s20 = X1γ1X1γ1 = γ1X
−1
1 X1γ1 = 1.

By Lemma 3.1.3, s0sj = X1γ1sj = X1sjγ1. Moreover, by (7), X1sjγ1 = sjX1γ1 = sjs0, for j ≥ 2.

By Lemma 3.1.4,

s0yj = X1γ1yj

= X1yjγ1 + k1X1s1,jγ1 − k1X1γ1s1,j .
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Applying the relation yjX1 −X1yj = k1X1s1,j − k1X1s1,jγ1γj , the above computation continues

X1yjγ1 + k1X1s1,jγ1 − k1X1γ1s1,j

=yjX1γ1 − k1X1s1,jγ1 + k1X1X1s1,jγ1γjγ1 + k1X1s1,jγ1 − k1X1γ1s1,j

=yjs0,

applying γ1γj = γjγ1 and γ1s1,j = s1,jγj in the last step.

By Lemma 3.1.5,

s0y1 = X1γ1y1

= −X1y1γ1 + k1X1

∑
j=2

s1,jγ1 + k1X1

n∑
j=2

γ1s1,j .

Applying the relation

y1X1 −X1y1 = uX1 − k1X1

n∑
j=2

s1,j − k1X1

n∑
j=2

s1,jγjγ1 − (k2 + k3)X1γ1 − k2γ1,

the computation above continues

=− y1X1γ1 + uX1γ1 − k1X1(
n∑
j=2

s1,j)γ1 − k1X1

n∑
j=2

s1,jγj − (k2 + k3)X1 − k2

+ k1

n∑
j=2

X1s1,jγ1 + (k2 + k3)X1 + k1

n∑
j=2

X1γ1s1,j

=− y1s0 + us0 − k2.

Then (3.12) follows. �

Proposition 3.1.7. Degenerate double affine Hecke algebra Hn(u, k1, k2, k3) is generated by

s0, s1, · · · , sn−1, γn, y1, · · · , yn with relations.
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Proof. Define a homomorphism of algebras f from degenerate double affine Hecke algebra

Hn(u, k1, k2, k3) to itself.

f : Hn(u, k1, k2, k3) −→ Hn(u, k1, k2, k3)

si 7→ si

yi 7→ yi

Xi 7→ si−1 · · · s1s0s1 · · · γn · · · si

�

3.1.3. Etingof-Freund-Ma Functor. Let λ ∈ C and Lx denote the vector field on GLN

generated by the left action of x ∈ glN . Let Dλ(G/K) be the sheaf of differential operators on

G/K twisted by the character λχ of t = glp × glq. The Etingof-Freund-Ma functor F λn,p,µ sends a

Dλ(G/K)- module M to a representation of degenerate double affine Hecke algebra Hn(u, k1, k2, k3),

where µ is a parameter in C. The underlying space F λn,p,µ(M) of the representation ofHn(u, k1, k2, k3)

is constructed as

F λn,p,µ(M) = (M ⊗ V ⊗n)t0,µ.

Then for k = 1, · · · , n, define the actions of Xk and yk as follows:

Xk =
∑
i,j

(AJA−1J)ij ⊗ (Eij)k,

where (AJA−1J)ij is a function of A for A ∈ G/K, taking the ij-th entry of AJA−1J , instead of

yk, define the action of ỹk = yk −
k2 + k3

2
γk −

k1
2

∑
i>k Ski +

k1
2

∑
i<k Ski −

k1
2

∑
i 6=k Skiγkγi as

ỹk =
∑
i|j

LEij ⊗ (Eji)k.

Theorem 3.1.8. [5]The actions of W , Xk and ỹk defined above makes the invariant space

F λn,p,µ(M) a representation of degenerate double affine Hecke algebra Hn(u, k1, k2, k3) with param-

eters

ξ =
2n

N
+ (λ+ µ)(q − p), k1 = 1, k2 = p− q − λN, k3 = (λ− µ)N.

We will compute the image of Aλ(G/K) under the functor in the following sections.

58



3.2. Invariant space

Before computing the invariant space F λn,p,µ(Aλ(G/K)), we introduce the combinatorial tools

we use, skew shapes and standard tableaux.

3.2.1. Integral dominant weights and skew shape. Now let us identity a pair of integral

dominate weights ν/β with a skew shape. Let ν = (ν1, · · · , νN ) and β = (β1, · · · , βN ) with

ν1 ≥ · · · ≥ νN ;

β1 ≥ · · · ≥ βN ;

νi ≥ βi, i = 1, · · · , N.

Let τ be the skew shape with τ ⊂ Z× Z and

τ = {(l,m)|1 ≤ l ≤ N, βl + 1 ≤ m ≤ νl}.

Furthermore, define the content of a cell (l,m) to be m−l. For instance, a pair of integral dominant

weights ν/β denotes a basis element with ν = (2, 2,−2) and β = (1, 1,−3), then define the skew τ

be the collection of cells (1, 2), (2, 2), (3, 2) and (4,−2). Let |ν| =
∑N

i νi and |β| =
∑N

i=1 βi. Let

(1, 2)

(2, 2)

(3, 2)

(4,−2)

Figure 3.1. Skew shape τ = (2, 2− 2)/(1, 1,−3).

|τ | denote the cardinality of τ , then |τ | = |ν| − |β| =
∑N

i=1(νi − βi).

Let τ be a skew shape defined above with |τ | = n. Let T : {1, · · · , n} → τ be a bijective map

T : {1, · · · , n} → τ

k 7→ T (k) = (i(k), j(k)),
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1

2

3

4

Figure 3.2. A standard tableaux on the skew shape τ = (2, 2− 2)/(1, 1,−3)

where i : {1, · · · , n} → Z is a function denoting the row number and j : {1, · · · , n} → Z is a function

denoting the column number. Then T is called a tableau on τ , namely Im(T ) = τ . If both i and j

are increasing, then T is called a standard tableau on τ .

3.2.2. Computation of Aλ(G/K). Let A(G) be the collection of all the analytic functions

f on a small open set U ⊂ G. Then A(G) has a G×G-module structure and it follows

A(G) =
⊕
β∈P+

V β ⊗ V β∗ ,

where β∗ is the dual of β, i.e. β∗i = −βN−i+1. Let |β| =
∑N

i=1 βi. Then |β∗| = −|β|. Let

Aλ(G/K) be the collection of all the analytic functions f on a small open set U ⊂ G such that

d
dt |t=0f(Aetz) = λχ(z)f(A) for any z ∈ t0, where t0 denotes the space of traceless matrices in t and

A ∈ G/K. Then as a left G-module, we have the following decomposition for Aλ(G/K),

Aλ(G/K) =
⊕
β∈P+

V β ⊗ (V β∗)t0,λχ,

where the G acts only on V β and (V β∗)t0,λχ only gives multiplicities.

Moreover, by Proposition 2.4.3, it follows that (V β∗)t0,λχ ∼= Homt(1ϕ, V β∗), where 1ϕ is a one-

dimensional character of Lie(K) = t and 1ϕ = (λq + |β∗|
N )trp + (−λp + |β∗|

N )trq. According to

Okada’s theorem [15], the dimension of the space (V β∗)t0,λχ is either 1 or 0 and the dimension is
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nonzero only when the dominant integral weight β∗ satisfies the following conditions:

β∗i ≥ max(s, t), i = 1, 2, · · · , p;

β∗i = t, i = p+ 1, · · · , q;

β∗N−i+1 = s+ t− β∗i ≤ min(s, t), i = 1, · · · , p.

where s = λq − |β|N and t = −λp− |β|N . Then β satisfies the conditions accordingly:

βi ≥ −min(s, t), i = 1, 2, · · · , p;(3.13)

βi = −t, i = p+ 1, · · · , q;(3.14)

βN−i+1 = −s− t− βi ≤ −max(s, t), i = 1, · · · , p.(3.15)

Remark 3.2.1. (1) It suffices to consider the case when both s and t are integers, other-

wise (V β∗)t0,λχ = 0.

(2) The character 1θ of t depends on |β∗| = −|β|. For each given number |β| such that both s

and t are integers, we compute β satisfying (3.13)-(3.15).

Let Bc denote the collection of dominant integral weights β such that |β| = c and β satisfies

(3.13)-(3.15). Let B = tc∈CBc, where C denotes the collection of numbers c such that both λq− c
N

and −λp− c
N are integers. Then we conclude that Aλ(G/K) decomposes as follows

Aλ(G/K) =
⊕
c∈C

(
⊕
β∈Bc

V β).

We will show in the following sections that for each c ∈ C, ((
⊕

β∈Bc V
β) ⊗ V ⊗n)t0,µ forms a

representation of Hn(u, k1, k2, k3).

Let us see the following example of computation of β ∈ Bc for some c ∈ C.

Example 3.2.2. Let G be GL4 and p = 1, i.e. K = GL1 × GL3 and t = gl1 × gl3. Consider

D1(G/K) be the sheaf of differential operators on G/K, twisted by the character χ, i.e. local

sections of D1(G/K) act on χ-twisted functions on G/K which are analytic functions f on a small

open set U ⊂ G such that d
dt |t=0f(Aetz) = χ(z)f(A), for z ∈ t. Now compute β∗ such that (V β∗)t0,χ
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is nonzero.

Fix c = |β∗| =
∑4

i=1 β
∗
i = 0, then

s = λq +
|β∗|
N

= 3, t = −λp+
|β∗|
N

= −1.

Thus we obtain β∗ satisfying the following conditions:

β∗1 ≥ 3;

β∗2 = β∗3 = −1;

β∗4 = 2− β∗1 ≤ −1.

Then the corresponding β satisfies:

β1 ≥ 1;(3.16)

β2 = β3 = 1;(3.17)

β4 = −2− β1 ≤ −3.(3.18)

So B0 = {β ∈ P+|β satisfies (3.16)− (3.18)}.

3.2.3. Computation of the invariant space F λn,p,µ(Aλ(G/K)). From last subsection we

obtain Aλ(G/K) =
⊕

c∈C(
⊕

β∈Bc V
β). In this subsection, we compute for each c ∈ C the (t0, µ)

invariant space

(V β ⊗ V ⊗n)t0,µ,

then the image F λn,p,µ(Aλ(G/K)) =
⊕

c∈C(
⊕

β∈Bc(V
β ⊗ V ⊗n)t0,µ).

According to Proposition 2.4.3, for each β ∈ Bc, the (t0, µ) invariant space (V β ⊗ V ⊗n)t0,µ is

computed by

(V β ⊗ V ⊗n)t0,µ ∼=Homt0(1µχ, Res
glN
t0
V β ⊗ V ⊗n)

∼=Homt(1θ, Res
glN
t V β ⊗ V ⊗n),
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where 1θ is a one-dimensional t-module related to the character µχ of t0 and

1θ = ((µq +
c+ n

N
)trp + (−µp+

c+ n

N
)trq.

Then the integral dominant weight ν such that the irreducible summand V ν of V β ⊗ V ⊗n with

Homt(1θ, V ν) 6= 0 satisfies the following conditions:

νi ≥ max(a, b), i = 1, 2, · · · , p;(3.19)

νi = b, i = p+ 1, · · · , q;(3.20)

νN−i+1 = a+ b− νi ≤ min(a, b), i = 1, · · · , p,(3.21)

where a = µq + c+n
N and b = −µp+ c+n

N . Then there exists a basis of the invariant space

⊕
β∈Bc

(V β ⊗ V ⊗n)t0,µ

which is indexed by the collection of standard tableaux on skew shapes ν/β such that β ⊂ ν, β

satisfies (3.13)-(3.15) and ν satisfies (3.19)-(3.21).

Continue with Example 3.2.2, where p = 1, µ = −1 for each β satisfying

β1 ≥ 1;

β2 = β3 = 1;

β4 = −2− β1 ≤ −3,

we compute the (t0, µ) invariant space

(V β ⊗ V ⊗n)t0,µ

=Homt(atrp + btrq, Res
glN
t V β ⊗ V ⊗n),

where a = µq + n
N = −2 and b = −µp + n

N = 2. Then by Okada’s theorem [15], the dominant

weight ν such that the irreducible summand V ν of V β ⊗ V ⊗n with HomK(deta � detb, V ν) 6= 0
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satisfies the following conditions:

ν1 ≥ 2,(3.22)

ν2 = ν3 = 2,(3.23)

ν4 ≤ −2,(3.24)

and thus there exists a basis of the invariant space
⊕

β∈Bc(V
β⊗V ⊗n)t0,µ indexed by the collection of

standard tableaux on skew shapes ν/β such that β satisfies (3.16)-(3.18) and ν satisfies (3.22)-(3.24).

Remark 3.2.3. We have the following facts for the vector space
⊕

β∈Bc(V
β ⊗ V ⊗n)t0,µ.

(1) The number of cells in row i such that p + 1 ≤ i ≤ q equals b + t and the sum of the

numbers of cells in row i and row N − i+ 1 equals a+ b+ s+ t for 1 ≤ i ≤ p. Moreover,

the numbers b+ t and a+ b+ s+ t do not depend on |β| = c.

(2) We only consider the image when b+ t ≥ 0, i.e. −p(µ+ λ) + n
N ≥ 0. Otherwise β 6⊂ ν for

all β satisfying (3.13)-(3.15) and ν satisfying (3.19)-(3.21) and hence the invariant space

F λn,p,µ(Aλ(G/K)) = 0.

(3) Similarly, we consider the image when a + b + s + t ≥ 0, i.e. (q − p)(µ + λ) + 2n
N ≥ 0.

Otherwise β 6⊂ ν for all β satisfying (3.13)-(3.15) and ν satisfying (3.19)-(3.21) and hence

the invariant space F λn,p,µ(Aλ(G/K)) = 0.

3.2.4. A skew shape. For the functor F λn,p,µ and a number c ∈ C, we associate a skew shape

τc to the vector space
⊕

β∈Bc(V
β ⊗ V ⊗n)t0,µ.

Let us define τc in different cases.
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Case 1. If t ≤ s and b ≤ a, then −t ≤ a and −s ≤ b. Set νc and βc as follows.

(νc)i = a, i = 1, 2, · · · , p;

(νc)i = b, i = p+ 1, · · · , q;

(νc)N−i+1 = b, i = 1, · · · , p

and

(βc)i = −t, i = 1, 2, · · · , p;

(βc)i = −t, i = p+ 1, · · · , q;

(βc)N−i+1 = −s, i = 1, · · · , p.

Let τc = νc/βc.

Case 2. If s < t and a < b, then we have three subcases.

Case 2a. If b+ s ≥ 0 and a+ t ≥ 0, set νc and βc as follows.

(νc)i = b, i = 1, 2, · · · , p;

(νc)i = b, i = p+ 1, · · · , q;

(νc)N−i+1 = a, i = 1, · · · , p

and

(βc)i = −s, i = 1, 2, · · · , p;

(βc)i = −t, i = p+ 1, · · · , q;

(βc)N−i+1 = −t, i = 1, · · · , p.
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Let τc = νc/βc.

Case 2b. If b+ s < 0 and a+ t > 0, set νc and βc as follows.

(νc)i = −s, i = 1, 2, · · · , p;

(νc)i = b, i = p+ 1, · · · , q;

(νc)N−i+1 = a+ b+ s, i = 1, · · · , p

and

(βc)i = −s, i = 1, 2, · · · , p;

(βc)i = −t, i = p+ 1, · · · , q;

(βc)N−i+1 = −t, i = 1, · · · , p.

Let τc = νc/βc.

Case 2c. If b+ s > 0 and a+ t < 0, set νc and βc as follows.

(νc)i = b, i = 1, 2, · · · , p;

(νc)i = b, i = p+ 1, · · · , q;

(νc)N−i+1 = a, i = 1, · · · , p

and

(βc)i = −a− s− t, i = 1, 2, · · · , p;

(βc)i = −t, i = p+ 1, · · · , q;

(βc)N−i+1 = a, i = 1, · · · , p.

Let τc = νc/βc.

Case 3. If s < t and b ≤ a, then we have the following two subcases since b + t ≥ 0 and

a+ b+ s+ t ≥ 0.
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Case 3a. If a+ s ≥ 0, set νc and βc as follows.

(νc)i = a, i = 1, 2, · · · , p;

(νc)i = b, i = p+ 1, · · · , q;

(νc)N−i+1 = b, i = 1, · · · , p

and

(βc)i = −s, i = 1, 2, · · · , p;

(βc)i = −t, i = p+ 1, · · · , q;

(βc)N−i+1 = −t, i = 1, · · · , p.

Let τc = νc/βc.

Case 3b. If a+ s < 0, set νc and βc as follows.

(νc)i = −s, i = 1, 2, · · · , p;

(νc)i = b, i = p+ 1, · · · , q;

(νc)N−i+1 = a+ b+ s, i = 1, · · · , p

and

(βc)i = −s, i = 1, 2, · · · , p;

(βc)i = −t, i = p+ 1, · · · , q;

(βc)N−i+1 = −t, i = 1, · · · , p.

Let τc = νc/βc.

case 4. If t ≤ s and b ≤ a, then we have the following two subcases since b+t ≥ 0 and a+b+s+t ≥ 0.
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Case 4a. If a+ s ≥ 0, set νc and βc as follows.

(νc)i = b, i = 1, 2, · · · , p;

(νc)i = b, i = p+ 1, · · · , q;

(νc)N−i+1 = a, i = 1, · · · , p

and

(βc)i = −t, i = 1, 2, · · · , p;

(βc)i = −t, i = p+ 1, · · · , q;

(βc)N−i+1 = −s, i = 1, · · · , p.

Let τc = νc/βc.

Case 4b. If a+ s < 0, set νc and βc as follows.

(νc)i = b, i = 1, 2, · · · , p;

(νc)i = b, i = p+ 1, · · · , q;

(νc)N−i+1 = a, i = 1, · · · , p

and

(βc)i = −a− s− t, i = 1, 2, · · · , p;

(βc)i = −t, i = p+ 1, · · · , q;

(βc)N−i+1 = a, i = 1, · · · , p.

Let τc = νc/βc.

3.2.5. Moves on τc. Our goal is to recover from τc all the skew shapes ν/β such that β ⊂ ν,

β satisfies (3.13)-(3.15) and ν satisfies (3.19)-(3.21). Now let us define two moves on a skew shape

τ = ν/β with N rows:
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β-move Let β′ ∈ P+ and β′ = β + εi − εN−i+1. The β-move on τ = ν/β gives a new skew shape

τ ′ = ν/β′. We denote β-move by

τ τ ′
β

ν-move Let ν ′ ∈ P+ and ν ′ = ν + εi − εN−i+1. The ν-move on τ = ν/β gives a new skew shape

τ ′ = ν ′/β. We denote the ν-move by

τ τ ′
ν

Example 3.2.4. Continue with Example 3.2.2 N = 4, p = 1, λ = 1 and µ = −1.

τ0 = (2, 2, 2,−2)/(1, 1, 1,−3)

β ν

Figure 3.3. β-move and ν-move

Let Dλ,µ
c denote the set of skew shapes obtained by applying β-moves and ν-moves on τc for finitely

many times. Then Dλ,µ
c consists of all the skew shapes ν/β such that β ⊂ ν, β satisfies (3.13)-(3.15)

and ν satisfies (3.19)-(3.21).

Theorem 3.2.5. Let Tabλ,µc denote the collection of standard tableaux T such that the shape

Im(T ) ∈ Dλ,µ
c . There is a basis of the invariant space

⊕
β∈Bc

(V β ⊗ V ⊗n)t0,µ

which is indexed by Tabλ,µc .
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3.3. Y-actions

In [5], the linear operator ỹk on the invariant space is defined by ỹk =
∑

i|j Lij⊗(Eji)k. Consider

Aλ(G/K) as a left G-module, then we have g · f(A) = f(g−1A) for each g ∈ G and A ∈ G/K. The

action of Lij is defined as

Lij · f(A) = LEij · f(A)

=
d

dt
|t=0f(etEijA)

=
d

dt
|t=0e

−tEij · f(A)

= −Eij · f(A).

Then the linear operator ỹk acts on F λn,p,µ(Aλ(G/K)) by −Eij ⊗ (Eji)k, which is the same of the

action of ỹk in the degenerate affine Hecke algebra case. Thus we apply Theorem 2.5.3 to compute

the Y-action. Let T ∈ Tabλ,µc and vT is a basis element indexed by the standard tableau T . It

follows that yk acts on vT by the scalar

ζTk = −contT (k) +
c+ n

N
− N

2
− µ(p− q)

2
.

So vT is weight vector of weight ζT = [ζT1 , · · · , ζTn ] and we conclude that
⊕

β∈Bc(V
β ⊗ V ⊗n)t0,µ is

a Y-semisimple representation of Hn(u, k1, k2, k3).

Example 3.3.1. Let us consider Example 3.2.2 and T ∈ Tab1,04,1,−1. Then the action of yk is

computed by the content of k.

1

2

3

4

4

−1

−2

−3

1

2

3

4

210−1−2−3

Figure 3.4. A standard tableau T of shape τ0 = (2, 2, 2,−2)/(1, 1, 1,−3)
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3.3.1. Degenerate double affine Hecke algebra Ĥn(u, k1, k2, k3). For the ease of combi-

natorial description, we take a different presentation of the degenerate double affine Hecke algebra.

Let Wa be the affine Weyl group of type Cn generated by γ1, s1, · · · , sn−1, sn with the following

relations:

s2i = 1, for i = 0, 1, · · · , n,(3.25)

sisi+1si = si+1sisi+1, for i = 1, · · · , n− 1,(3.26)

s0s1s0s1 = s1s0s1s0,(3.27)

snsn−1snsn−1 = sn−1snsn−1sn,(3.28)

sisj = sjsi, for |i− j| > 1,(3.29)

where we take the notation γ1 = s0.

Let Ĥn(u, k1, k2, k3) be the degenerate double affine Hecke algebra of type Cn generated by

s0, s1, · · · , sn−1, sn, y1, · · · , yn

with the relations (3.25)-(3.29) and additional relations:

s0y1 + y1s0 = k2 + k3,(3.30)

siyi − yi+1si = −k1, i = 1, · · · , n− 1(3.31)

snyn − (u− yn)sn = −k2,(3.32)

yiyj = yjyi,(3.33)

siyj = yjsi, j 6= i, i+ 1,(3.34)

s0yj = yjs0, j 6= 1,(3.35)

snyj = yjsn, j 6= n.(3.36)
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There is an isomorphism between Hn(u, k1, k2, k3) and Ĥn(u, k1, k2, k3)

σ :Hn(u, k1, k2, k3)→ Ĥn(u, k1, k2, k3)

si 7→ sn−i, i = 1, · · · , n− 1

s0 7→ sn,

sn 7→ s0

yi 7→ yn−i+1, i = 1, · · · , n.

Moreover, we take the following notations:

y−i = −yi,(3.37)

yk(2n+1)±i = k · u± yi,(3.38)

where i = 1, · · · , n. Let Zn = Z \ {k · (2n + 1)|k ∈ Z}. In this way we define yi for i ∈ Zn. In

particular, u − yn = y(2n+1)−n = yn+1. We also take the convention yk·(2n+1) = yk·(2n+1)−1. Then

the relations (3.30)-(3.32) are written by

(3.39) siyi − yi+1si = −ui,

where

(3.40) ui =


k2 + k3, i = 0

k1, i = 1, · · · , n− 1

k2, i = n.

3.3.2. Representations of Ĥn(u, k1, k2, k3). A representation ρ of Hn(u, k1, k2, k3) on M

induces a representation ρ̂ of Ĥn(u, k1, k2, k3) on M by

ρ̂(si) = ρ(sn−i), i = 0, 1, · · · , n

ρ̂(yi) = ρ(yn−i+1), i = 1, · · · , n.
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Moreover, if M is a Y-semisimple representation of Hn(u, k1, k2, k3), then M is also Y-semisimple

as a representation of Ĥn(u, k1, k2, k3). Let v ∈M be a weight vector of weight ζ = [ζ1, ζ2, · · · , ζn]

as a representation of Hn(u, k1, k2, k3), then v ∈M is also a weight vector of weight ζ̂ = [ζ̂1, · · · , ζ̂n]

as a representation of H, where ζ̂i = ζn−i+1.

Hence the Y-semisimple representation
⊕

β∈Bc(V
β ⊗ V ⊗n)t0,µ of Hn(u, k1, k2, k3) is also a Y-

semisimple representation of Ĥn(u, k1, k2, k3). Let τ = ν/β be the shape Im(T ) of the standard

tableau T with ν = (ν1, · · · , νN ) and β = (β1, · · · , βN ). Now we associate a standard tableau T̂

to T as follows. Let ν̂ ∈ P+ such that ν̂i = −νN−i+1 and β̂ ∈ P+ such that β̂i = −βN−i+1. Then

ν̂ ⊂ β̂ and set a new skew shape τ̂ = β̂/ν̂. Define a tableau T̂ by

T̂ : {1, 2, · · · , n} → τ̂

k 7→ (N − i(n− k + 1) + 1,−j(n− k + 1) + 1).

It is not hard to see that T̂ is also a standard tableau. Let D̂λ,µ
c be the collection of skew shapes

{τ̂ |τ ∈ Dλ,µ
c } and T̂ ab

λ,µ

c be the collection of standard tableaux {T̂ |T ∈ Tabλ,µc } which consists of

standard tableau T̂ such that Im(T̂ ) ∈ D̂λ,µ
c . Then

⊕
β∈Bc(V

β ⊗ V ⊗n)t0,µ as a representation of

Ĥn(u, k1, k2k3) has a weight basis indexed by T̂ ab
λ,µ

c . Similarly, we define β̂-move and ν̂-moves:

β̂-move Let β̂′ ∈ P+ and β̂′ = β̂ + εi − εN−i+1. The β̂-move on τ̂ = ν̂/β̂ gives a new skew shape

τ̂ ′ = ν̂/β̂′. We denote β̂-move by

τ̂ τ̂ ′.
β̂

ν̂-move Let ν̂ ′ ∈ P+ and ν̂ ′ = ν̂ + εi − εN−i+1. The ν-move on τ̂ = ν̂/β̂ gives a new skew shape

τ̂ ′ = ν̂ ′/β̂. We denote the ν̂-move by

τ̂ τ̂ ′.
ν̂

Then D̂λ,µ
c is the collection of shapes obtained by applying β̂-move and ν̂-move for finitely many

times on τ̂c. And T̂ ab
λ,µ

c consists of all the standard tableaux T̂ with Im(T̂ ) ∈ D̂λ,µ
c .

Let vT̂ ∈
⊕

β∈Bc(V
β ⊗V ⊗n)t0,µ be a weight vector corresponding to the standard tableau T̂ . Then

vT̂ is a weight vector of weight ζ T̂ = [ζ T̂1 , · · · , ζ T̂n ], where

ζ T̂k = contT̂ (k) +
c+ n

N
+
µ(q − p) +N

2
.
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T T̂

1

2

3

4

4

−1

−2

−3
2

3

4

1

4

−3

−2

−1

Figure 3.5. A standard tableau T and the corresponding standard tableau T̂

Example 3.3.2. Consider Example 3.2.2. The invariant space
⊕

β∈B0
(V β ⊗ V ⊗4)t0,−1 is rep-

resentation of H4(2, 1,−6, 8) which has a weight basis indexed by Tab1,04,1,−1. The invariant space⊕
β∈B0

(V β ⊗ V ⊗4)t0,−1 has an Ĥ4(2, 1,−6, 8)-representation structure which has a weight basis

indexed by T̂ ab
1,0

4,1,−1. Figure 3.5 is a standard tableau T ∈ Tab1,04,1,−1 and T̂ ∈ T̂ ab
1,0

4,1,−1 is the

corresponding standard tableau. Let ζT and ζ T̂ be weights corresponding to T and T̂ respectively.

Then ζT = [−3,−2,−1, 4] and ζ T̂ = [4,−1,−2,−3].

3.4. Intertwining operators

We define the intertwining operators in Ĥn(u, k1, k2, k3) for i = 0, 1, · · · , n:

φ0 = −2s0y1 + k2 + k3,(3.41)

φi = si(yi − yi+1) + k1, i = 1, · · · , n− 1,(3.42)

φn = sn(2yn − u) + k2.(3.43)

With notations (3.37), (3.38) and (3.40), we write (3.41)-(3.43) by

φi = si(yi − yi+1) + ui(3.44)

= −(yi − yi+1)si − ui.(3.45)
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By straightforward computation, we have

φ20 = (k2 + k3 − 2y1)(k2 + k3 + 2y1),(3.46)

φ2i = (k1 − yi + yi+1)(k1 + yi − yi+1), i = 1, · · · , n− 1,(3.47)

φ2n = (k2 − 2yn + u)(k2 + 2yn − u).(3.48)

Hence we write (3.46)-(3.48) by

(3.49) φ2i = (ui + yi − yi+1)(ui − yi + yi+1).

Proposition 3.4.1. The intertwining operators defined above satisfy the same braid relations

as relations (3.26)-(3.29), namely

φiφi+1φi = φi+1φiφi+1, for i = 1, · · · , n− 1,

φ0φ1φ0φ1 = φ1φ0φ1φ0,

φn−1φnφn−1φn = φnφn−1φnφn−1,

φiφj = φjφi, for |i− j| > 1.

So for each ω ∈ Wa, let ω = si1 · · · si` be a reduced expression. We define the intertwining

operator

φω = φi1 · · ·φi` .

The affine Weyl group Wa has an action on Zn. For k ∈ Zn and m ∈ Z,

s0(k) =


−k, k = ±1 +m(2n+ 1)

k, otherwise,

for i = 1, · · · , n− 1,

si(k) =


k ± 1, k = ±i+m(2n+ 1)

k ∓ 1, k = ±(i+ 1) +m(2n+ 1)

k, otherwise
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and

sn(k) =


k ± 1, k = ±n+m(2n+ 1)

k, otherwise.

We verify the following fact.

Proposition 3.4.2. For each ω ∈Wa, let ω = si1 · · · si` be a reduced expression. Then

φω = ω
∏̀
p=1

(yωp(ip) − yωp(ip+1)) +
∑
x<ω

xP (y),

where ωp = si`si`−1
· · · sip+1 and P (y) is some polynomial on y1, · · · , yn.

Now let us explore properties of these intertwining operators.

Proposition 3.4.3. The intertwining operators satisfy the following:

(1) y1φ0 = −φ0y1,

(2) yiφi = φiyi+1 and yi+1φi = φiyi, for i = 1, · · · , n− 1,

(3) ynφn = φn(u− yn),

(4) yiφj = φjyi, for i 6= j, j + 1.

Proof. We write (1) − (4) by yiφj = φjysj(i) for i ∈ Zn and j = 0, 1, · · · , n. Applying (3.44)

and then (3.39), we have for each i = 0, 1, · · · , n,

yiφi = yisi(yi − yi+1) + u1yi

= siyi+1(yi − yi+1)− u1(yi − yi+1) + u1yi

= si(yi − yi+1)yi+1 + u1yi+1

= φiyi+1.
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Similarly we show

yiφi−1 = yisi−1(yi−1 − yi) + u1yi

= si−1yi−1(yi−1 − yi) + u1(yi−1 − yi) + u1yi

= si−1(yi−1 − yi)yi−1 + u1yi−1

= φi−1yi−1.

By (3.34)-(3.36), we verify (4). �

Corollary 3.4.4. For ω ∈Wa, it follows that yiφω = φωyω−1(i).

For a weight ζ = [ζ1, · · · , ζn], we define for i = 1, · · · , n with

ζ−i = −ζi

ζk(2n+1)+i = k · u+ ζi.

Then we extend ζ for i ∈ Zn which is signed periodic, namely ζi+k(2n+1) = ζi + k · u −ζi = ζ−i for

i ∈ Zn. Then the action of ω ∈Wa on a weight ζ = [ζ1, · · · , ζn] is written by

(3.50) (ωζ)i = ζω−1(i).

Corollary 3.4.5. Let L be a representation of the degenerate double affine Hecke algebra

Ĥn(u, k1, k2, k3) and v ∈ Lζ is a weight vector of weight ζ, then φω.v ∈ Lωζ is 0 or a weight vector

of weight ωζ for any ω ∈Wa.

3.4.1. Properties of representations of Ĥn(u, k1, k2, k3). In [19], several properties of Y-

semisimple representations of a double affine Hecke algebra of type An are explored. Now let us

review these properties in the case of degenerate double affine Hecke algebra of type Cn.

Lemma 3.4.6. Let M be a Y-semisimple representation of Ĥn(u, k1, k2, k3) with k1, k2, k3 6= 0.

Let Mζ denote the weight space of weight ζ. If ζ1 = 0 or ζi = ζi+1 for i ∈ Zn, then Mζ = 0.
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Proof. Suppose v ∈Mζ and v 6= 0. Consider the vector siv. Applying (44), we have

(yi − yi+1)siv = (−si(yi − yi+1)− 2ui)v

= −2uiv

6= 0.

Acting (yi − yi+1) again, we have

(yi − yi+1)
2siv = −2ui(yi − yi+1)v

= 0,

So v ∈Mgen
ζ \Mζ , which contradicts the fact that M is Y-semisimple. Hence we conclude Mζ = 0

if ζi = ζi+1 for some i ∈ Zn. Similarly, we show Mζ = 0 if ζ1 = 0. �

Proposition 3.4.7. Let M be a Y-semisimple representation of Ĥn(u, k1, k2, k3) and v ∈ M

is nonzero weight vector of weight ζ. Let ω ∈ Wa be an element such that ω 6= id and ωζ = ζ. It

follows that φωv = 0.

Proof. The fact ωζ = ζ implies ζω−1(k) = ζk for all k = 1, · · · , n. Since ω 6= id, there is a

number k such that ω−1(k) 6= k. Let ω = si1 · · · si` be a reduced expression of ω. Then there is a

number p such that ωpsipω
−1
p is a transposition (k, ω−1(k)). Consider φω−1

p
v, which is weight vector

of weight ω−1p ζ. Then (ω−1p ζ)ip − (ω−1p ζ)ip+1 = ζωp(ip)− ζωp(ip+1) = ±(ζk− ζω−1(k)) = 0. By Lemma

3.4.6, the vector φω−1
p
v = 0. Hence

φωv = φsi1 ···sipφω−1
p
v = 0.

�

Proposition 3.4.8. Let L be an irreducible Y-semisimple representation of Ĥn(u, k1, k2, k3)

and v ∈ L is a nonzero weight vector of weight ζ. Then L = spanC{φωv|ω ∈Wa}.

Proof. We use the same idea in [19] to verify this fact. It suffices to show that each ωv ∈

spanC{φωv|ω ∈Wa}. Let us show by induction on the length `(ω) of ω.
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In the case `(ω) = 1, ω = si for some i = 0, 1, · · · , n. Then

φωv = φiv = si(yi − yi+1)v + uiv = (ζi − ζi+1)siv + uiv.

By Lemma 3.4.6 ζi 6= ζi+1, siv = (ζi − ζi+1)
−1φiv − ui(ζi − ζi+1)

−1v.

Suppose ωv ∈ spanC{φωv|ω ∈ Wa} for all ω ∈ Wa such that `(ω) < `. Let ω ∈ Wa with `(ω) = `

and ω = si1 · · · si` . By Proposition 3.4.2, φω = ω
∏`
p=1(yωp(ip) − yωp(ip+1)) +

∑
x<ω xP (y). If∏`

p=1(ζωp(ip) − ζωp(ip+1)) 6= 0, then ωv ∈ spanC{φωv|ω ∈ Wa}. Now let us consider the case∏`
p=1(ζωp(ip) − ζωp(ip+1)) = 0. Let k be the maximal number such that (ζωk(ik) − ζωk(ik+1)) = 0

and thus
∏`
p=k+1(ζωp(ip) − ζωp(ip+1)) 6= 0. Consider the vector φωk−1v, which is a weight vector of

weight ωk
−1ζ. Since (ωk

−1ζ)ik − (ωk
−1ζ)ik+1 = ζωk(ik) − ζωk(ik+1)=0, it follows that φω−1

k
v = 0 by

Lemma 3.4.6. Namely

(3.51)
∏̀

p=k+1

(ζωp(ip) − ζωp(ip+1))sik+1
· · · si`v + (

∑
x<ω−1

k

xP (y)).v = 0

Multiplying si1 · · · sik on both sides of (3.51), we have

∏̀
p=k+1

(ζωp(ip) − ζωp(ip+1))ωv + si1 · · · sik(
∑
x<ω−1

k

xQ(y)).v = 0,

which implies ωv ∈ spanC{φωv|ω ∈Wa}. �

Proposition 3.4.9. Let L be an irreducible Y-semisimple representation of Ĥn(u, k1, k2, k3).

Let v ∈ L is a nonzero weight vector of weight ζ. Then φ2i v = 0 implies φiv = 0 for i = 0, 1, · · · , n.

Proof. By (3.49), the fact that φ2i v = 0 implies (ui + ζi − ζi+1)(ui − ζi + ζi+1) = 0, namely

ζi − ζi+1 = ±ui. We want to show φiv = 0 in this case. Suppose the opposite, i.e. φiv 6= 0. Then

φiv is a nonzero weight vector of weight siζ. According to Proposition 3.4.8, L = spanC{φωφiv|ω ∈

Wa}. Then v =
∑

ω∈Wa
cωφωφiv for some numbers cω ∈ C. The vector is a weight vector of weight

ωsiζ. Hence cω 6= 0 implies ωsiζ = ζ. Let us explore in two cases. First, in the case `(ω) < `(ωsi),

φωφi = φωsi . The fact ωsiζ = ζ implies that φωsiv = φωφiv = 0 by Proposition 3.4.7. Second, in

the case `(ω) > `(ωsi), φωφiv = φωsiφ
2
i v = φωsi(ui − ζi + ζi+1)(ui + ζi − ζi+1)v = 0. So we have

v = 0, which contradicts the fact v 6= 0. �
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Remark 3.4.10. The following three conditions are equivalent: φ2i v = 0, ζi − ζi+1 = ±ui and

φiv = 0.

• φiv = 0 if and only if ζi − ζi+1 = ±1 for i = 1, · · · , n− 1.

• φ0v = 0 if and only if ζ1 = ±k2+k3
2 .

• φnv = 0 if and only if ζn = u±k2
2 .

Proposition 3.4.7 and 3.4.8 imply the following fact about irreducible Y-semisimple representa-

tions.

Corollary 3.4.11. Let L be an irreducible Y-semisimple representation of Ĥn(u, k1, k2, k3).

For each weight ζ, we have dimLζ = 1 or 0.

3.5. Combinatorial moves and irreducibility

3.5.1. Moves on standard tableaux. From last two sections, we obtain a basis of the

invariant
⊕

β∈Bc(V
β ⊗ V ⊗n)t0,µ and this basis is a common Y-eigenbasis which is indexed by

T̂ ab
λ,µ

c . Now we define a series of moves m0,m1, · · · ,mn on T̂ ab
λ,µ

c t {0}.

The move mi for i− 1, · · · , n− 1 is defined as

mi(T ) =


T ′, T ′ is a standard tableau

0, otherwise,

where T ′ is defined via T ′(k) = T (si(k)). The move mn is defined to be

mn(T ) =


T ′′, p+ 1 ≤ i(1) ≤ q and T ′′ is a standard tableau

0, otherwise,

where T ′′ is defined via T ′′(j) = T (j) for each j 6= n and T ′′(n) = (N − i(n) + 1,−a− b− j(n) + 1).

The move m0 is defined to be

m0(T ) =


T ′′′, p+ 1 ≤ i(n) ≤ q and T ′′′ is a standard tableau

0, otherwise,
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where T ′′′ is defined via T ′′′(j) = T (j) for each j 6= 1 and T ′′′(1) = (N − i(1) + 1, s+ t− j(1) + 1).

Remark 3.5.1. The move mi preserves the shape of T , i.e. Im(T ) = Im(mi(T )) for i =

1, · · · , n− 1. The moves m0 and mn do change the shape of T .

3.5.2. Correspondence between the algebraic action and moves. Recall that the pa-

rameters in Ĥn(u, k1, k2, k3) in Etingof-Freund-Ma functor [5] are computed by

u =
2n

N
+ (λ+ µ)(q − p), k1 = 1, k2 = p− q − λN, k3 = (λ− µ)N.

Let T ∈ T̂ ab
λ,µ

c and ζT denote the corresponding weight with ζT = [ζT1 , · · · , ζTn ] where for k =

1, · · · , n,

ζTk = contT (k) +
c+ n

N
+
µ(q − p) +N

2
.

Let vT denote a weight vector of weight ζT . Next we verify the correspondence between the algebraic

action and moves on T̂ ab
λ,µ

c t {0}.

Proposition 3.5.2. For i = 0, 1, · · · , n and T ∈ T̂ ab
λ,µ

c , mi(T ) = 0 if and only if φivT = 0.

Proof. We verify this proposition in three cases depending on i.

Case 1. i = 1, · · · , n− 1. The positions of i and i+ 1 in a standard tableau T might be: i+ 1 is

adjacent to i and is on the right of i; i+ 1 is adjacent to i and is below i; i+ 1 is not adjacent to

i. So it lies to the northeast or southwest of i.

i+ 1i

i

i+ 1

i+ 1

i

i

i+ 1

According to the move mi, mi(T ) = 0 if and only if i and i+1 are adjacent. The fact that i and i+1

are adjacent is equivalent to the fact that contT (i) − contT (i + 1) = ±1 and thus ζTi − ζTi+1 = ±1

which, by Remark 3.4.10, is equivalent to φivT = 0.

We use the similar idea to verify the other two cases.

Case 2. i = 0. The tableau T ′′ is not a standard tableau if and only if (i) p+1 ≤ i(1) ≤ q or (ii) T ′′ is

not a skew Young diagram. The row number p+1 ≤ i(1) ≤ q if and only if (i(1), j(1)) = (p+1,−b+1)
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which corresponds to

ζT1 = −b+ 1− (p+ 1) +
c+ n

N
+
µ(q − p) +N

2
= −k2 + k3

2

and thus implies φ0vT = 0 by Remark 5.10. The subset T ′′ is not a Young diagram if and only if

(i(1), j(1)) = (q + 1,−a+ 1) which corresponds to

ζT1 = −a+ 1− (q + 1) +
c+ n

N
+
µ(q − p) +N

2
=
k2 + k3

2

and thus implies φ0vT = 0 by Remark 5.10.

Case 3. i = n. The tableau T ′′′ is not a standard tableau if and only if (i) p+ 1 ≤ i(1) ≤ q or (ii)

T ′′′ is not a skew Young diagram. The row number p+1 ≤ i(1) ≤ q if and only if (i(n), j(n)) = (q, t)

which corresponds to

ζTn = t− q +
c+ n

N
+
µ(q − p) +N

2
=
u+ k2

2

and thus implies φnvT = 0 by Remark 5.10. The subset T ′′′ is not a Young diagram if and only if

(i(n), j(n)) = (p, s) which corresponds to

ζTn = s− p+
c+ n

N
+
µ(q − p) +N

2
=
u− k2

2

and thus implies φnvT = 0 by Remark 5.10. �

Moreover, we have the following proposition.

Proposition 3.5.3. Under the condition φivT 6= 0, the nonzero weight vector φivT is of weight

siζT . We have siζT = ζmi(T ).

Proof. We still verify this fact in three cases.

Case 1. i = 1, · · · , n− 1. By the definition of mi(T ) = T ′, ζTk = ζT
′

k for k 6= i or i+ 1, ζTi = ζT
′

i+1

and ζTi+1 = ζT
′

i . Namely siζ
T = ζmi(T ).
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Case 2. i = 0. By the definition of m0(T ) = T ′′, ζTk = ζT
′′

k for k 6= 1 and

ζT1 + ζT
′′

1

=j(1)− i(1)− a− b− j(1) + 1− (N − i(1) + 1) + 2
c+ n

N
+ µ(q − p) +N

=− a− b−N + a+ b−N + 2N

=0.

Namely s0ζ
T = ζm0(T ).

Case 3. i = n. By the definition of mn(T ) = T ′′′, ζTk = ζT
′′′

k for k 6= n and

ζTn + ζT
′′

n

=j(n)− i(n) + s+ t− j(n) + 1− (N − i(n) + 1) + 2
c+ n

N
+ µ(q − p) +N

=s+ t−N + a+ b−N + 2N

=u.

Namely snζ
T = ζmn(T ). �

Example 3.5.4. Continue with Example 3.2.2, when G be GL4, p = 1, λ = 1 and µ = −1, we

denote the image by just the skew shape τ = ν/β with β = (1, 1, 1,−3) and ν = (2, 2, 2,−2). From

a standard tableau on it we obtain other standard tableaux in Tab1,04,1,−1.

3.5.3. Irreducibility of
⊕

β∈Bc(V
β ⊗ V ⊗n)t0,µ as a representation of Ĥn(u, k1, k2, k3).

Lemma 3.5.5. Let τ1 and τ2 be two skew shapes in D̂λ,µ
c with

τ1 τ2
β̂

Then there exist standard tableaux T1 and T2 with Im(T1) = τ1 and Im(T2) = τ2 such that

m0(T1) = T2. Similarly, let τ3 and τ4 be two skew shapes in D̂λ,µ
c with

τ3 τ4
ν̂

Then there exist standard tableaux T3 and T4 with Im(T3) = τ3 and Im(T4) = τ4 such that

mn(T3) = T4.
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Figure 3.6. Moves on tableaux

Proof. The fact that

τ1 τ2
β̂

implies that τ2 is obtained by moving a northwestern corner (i, j) of τ1 to (N− i+1,−a−b−j+1).

Since (i, j) is a northwestern corner of τ1, there exists a standard tableau T1 ∈ T̂ ab
λ,µ

c with Im(T1) =

τ1 such that (i, j) is filled by 1. Applying the move m0 on T1, let T2 = m0(T1). Then T2 is a standard

tableau with Im(T2) = τ2. Similarly we verify the ν̂-move: if

τ3 τ4
ν̂

then there exist standard tableaux T3 and T4 with Im(T3) = τ3 and Im(T4) = τ4 such that

mn(T3) = T4. �
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We show in the following
⊕

β∈Bc(V
β ⊗ V ⊗n)t0,µ as a representation of Ĥn(u, k1, k2, k3) is irre-

ducible.

Theorem 3.5.6. The space ⊕
β∈Bc

(V β ⊗ V ⊗n)t0,µ

is irreducible as a representation of Ĥn(u, k1, k2, k3).

Proof. A basis of Lλ,µc =
⊕

β∈Bc(V
β ⊗ V ⊗n)t0,µ is indexed by

T̂ ab
λ,µ

c = {T |T is a standard tableau and Im(T ) ∈ D̂λ,µ
c }.

It’s obvious to see that the underlying vector space of
⊕

β∈Bc(V
β ⊗ V ⊗n)t0,µ is isomorphic to

spanC{vT |T ∈ T̂ ab
λ,µ

c }. Let N be a submodule of
⊕

β∈Bc(V
β ⊗V ⊗n)t0,µ. Consider the intersection

N ∩ (Lλ,µc )ζT for each T ∈ T̂ ab
λ,µ

c , where ζT is the weight associated to T . The intersection

N ∩ (Lλ,µc )ζT is of dimension 0 or 1 since (Lλ,µc )ζT is of dimension 1 and it is not possible that

N ∩ (Lλ,µc )ζT = 0 for any T ∈ T̂ ab
λ,µ

c since N = 0 otherwise. Then N contains at least one weight

vector of
⊕

β∈Bc(V
β ⊗ V ⊗n)t0,µ. Let vT be a weight vector associated to the standard tableau

T ∈ T̂ ab
λ,µ

c and assume the submodule N contains vT .

We show in the following we get every other weight vector from an arbitrary weight vector vT

with T ∈ T̂ ab
λ,µ

c . Consider the moves mi since the moves mi are compatible with the actions of

intertwining operators.

Case 1. For any the standard tableau T ′ with the same shape of the tableau T , there exists

ω ∈W and ω = si1 · · · si` such that T ′ = mi1(· · ·mi`(T )). Equivalently vT ′ = cφωvT where c ∈ C is

nonzero.

Case 2. For standard tableaux T1 and T2 with

τ1 τ2
β̂

By Lemma 3.5.5 and Case 1, it follows T2 = ω(T1) for some ω ∈Wa and hence vT2 = cφωvT1 where

c ∈ C is nonzero. Similarly, for standard tableaux T3 and T4 with

τ3 τ4
ν̂
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By Lemma 3.5.5 and Case 1, it follows T4 = ω(T3) for some ω ∈Wa and hence vT4 = cφωvT3 where

c ∈ C is nonzero.

Furthermore, consider two arbitrary standard tableaux T and T ′ in T̂ ab
λ,µ

c . Let Tc be a standard

tableau of shape τ̂c. There is a path τ̂c → τ1 → · · · → Im(T ) and hence vT = cφωvTc . There is also

a path τ̂c → τ1
′ → · · · → Im(T ′) and hence vT ′ = c′φω′vTc . Then vT ′ = c′′φω′φω−1vT . �

3.6. Another combinatorial description

The Ĥn(u, k1, k2, k3) representation Lλ,µc =
⊕

β∈Bλc (V β ⊗ V ⊗n)t0,µ has a weight basis indexed

by T̂ ab
λ,µ

c which consists of standard tableaux T with Im(T ) ∈ D̂λ,µ
c and D̂λ,µ

c consists of skew

shapes obtained by applying β̂-moves and ν̂-moves on the skew shape τ̂λ,µc . Now we introduce valid

pictures on τ̂λ,µc such that the collection of all the valid pictures on τ̂λ,µc indexes the weight basis.

3.6.1. The skew shape τ̂λ,µc and a collection of pictures on τ̂λ,µc . Let R1 ⊂ τ̂λ,µc be the

first p rows of the skew shape τ̂λ,µc , R2 ⊂ τ̂λ,µc be the (p + 1)-th row through q-th row of the skew

shape τ̂λ,µc and R3 ⊂ τ̂λ,µc be the last p rows of the skew shape htau. So the skew shape τ̂λ,µc is the

union of R1, R2 and R3. For any integer x ∈ Zn, there is a unique qx ∈ Z and a unique rx such

that

rx ∈ {−n, · · · ,−1, 1, · · · , n}

and x = (2n+ 1)qx + rx. Now we define a valid picture P on the skew shape τ̂λ,µc .

Definition 3.6.1. A valid picture P on τ̂λ,µc is an injective map P : τ̂λ,µc → Zn satisfying the

following condition:

(1) The picture P is row increasing and column increasing;

(2) The collection {|rx| | x ∈ Im(P )} is exactly the set {1, 2, · · · , n};

(3) The image of R2, {x | P−1(x) ∈ R2} ⊂ {1, 2, · · · , n};
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(4) It holds that 0 < x1 + x2 < 2n+ 1, for x1 and x2 such that P−1(x1) lies in row k of τ̂λ,µc

and P−1(x2) lies in row N − k + 1 of τ̂λ,µc , where k = 1, · · · , p;

(5) If P−1(x) ∈ R1, then x ≤ n;

(6) If P−1(x) ∈ R3, then x > 0.

And we denote the collection of all the valid pictures on τ̂λ,µc by Pλ,µc . Moreover, let (iP (x), jP (x))

denote the cell P−1(x) filled with x, namely iP (x) and jP (x) are the row number and the column

number respectively of the cell P−1(x).

Example 3.6.2. For instance, let λ = −1, µ = −1, n = 10, p = 2 and N = 5. We

consider the H10(2, 1, 4, 0)-representation L−1,−10 =
⊕

β∈B−1
0

(V β ⊗ V ⊗10)t0,−1. Then τ̂−1,−10 =

(2, 2, 2,−3,−3)/(1, 1,−4,−4,−4).

Figure 3.7 is a valid picture P on τ̂−1,−10 , where −11 = −21 + 10, −6 = 0 − 6, 13 = 21 − 8 and

2 3 4 5 7 9

−6

−11

13

22

−3−4 210−1−2col

R1

R2

R3

Figure 3.7. A valid picture on τ̂−1,−10 = (2, 2, 2,−3,−3)/(1, 1,−4,−4,−4)

22 = 21 + 1.

3.6.2. The basis indexed by the collection of valid pictures on τ̂ . We will verify that

there is a one-to-one correspondence between T̂ ab
λ,µ

c and Pλ,µc and hence the weight basis indexed

by T̂ ab
λ,µ

c is indexed by Pλ,µc correspondingly.

3.6.2.1. From a valid picture P to a standard tableau T . Now define a map f from the collection

Pλ,µc to the collection T̂ ab
λ,µ

c . Before the definition of the map, we introduce the periodic picture

associated to a valid picture P .
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Definition 3.6.3. Given a valid picture P on τ̂λ,µc , we define a periodic picture P associated

to P . Let Ip = {1, · · · , p, q + 1, · · · , N} and Rλ,µc be the subset of Z× Z

Rλ,µc = {(i, j)|i ∈ Ip and j ∈ Z} ∪R2.

The periodic picture P is a bijective map

P : Rλ,µc → Zn \ {(2n+ 1)k + x|k ∈ Z, k 6= 0, x ∈ Im(P ) and P−1(x) ∈ R2}

such that

(1) P((i, j)) = P ((i, j)) for (i, j) ∈ τ̂λ,µc ;

(2) P((N − i+ 1,−a− b− j + 1)) = −P ((i, j)) for (i, j) ∈ τ̂λ,µc ;

(3) P((i, j + k · u)) = P((i, j)) + k · (2n+ 1) for i ∈ Ip and j, k ∈ Z.

Moreover, let (iP(x), jP(x)) denote the cell P−1(x) filled with x in the periodic picture P. Namely

iP(x) and jP(x) are the row number and the column number respectively of the cell P−1(x).

Remark 3.6.4. From the definition of an periodic picture, it is easy to see the following facts:

(1) Equivalently to Definition 3.6.3, given a valid picture P , we get the periodic picture P by

adding numbers in the following way.

(i) Fill the cell (N − iP (x) + 1,−a− b− jP (x) + 1) by −x, for each x such that

P−1(x) = (iP (x), jP (x)) ∈ R1 tR3;

(ii) Fill the cell (iP (x), jP (x)± u) by x± (2n+ 1), for each x such that

P−1(x) = (iP (x), jP (x)) ∈ R1 tR3.

(2) Definition 3.6.3 is well-defined since for each i = 1, ·, p, the sum of the number of cells in

the i-th row and the number of cells in the N − i+ 1-th row equals u and thus there are u
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cells filled in i-th row for each i ∈ IP after Step (i).

(3) The periodic picture P is row increasing and column increasing.

Example 3.6.5. For instance, take a valid picture P above in Example 3.6.2, we have the pe-

riodic picture P as follows in Figure 3.8. Applying the steps in Remark 3.6.4, in Step (i) we add

−13,−22, 6 and 11. In Step (ii), let each color represent a period. We get −15,−10,−8, 1 by sub-

tracting 2n+1 = 21 from 6, 11, 13, 22 and −1, 8, 10, 15 by adding 2n+1 = 21 to −22,−13,−11,−6.

Continue Step (ii), we get −43,−34,−32,−27 by subtracting 2n+ 1 = 21 from −22,−13,−11,−6

and 27, 32, 34, 43 by adding 2n+ 1 = 21 to 6, 11, 13, 22. We get −64,−55,−53,−48 by subtracting

2 ·(2n+1) = 42 from −22,−13,−11,−6 and 48, 53, 55, 64 by adding 2 ·(2n+1) = 42 to 6, 11, 13, 22.

Continue Step (ii) for infinitely many times, then we get the periodic picture P.

2 3 4 5 7 9

· · ·

6

10 · · ·

13

1

−6−13−27−34

27 34

−48−55

−64 −53

· · ·

48 55

53 64

· · ·

8 15

−8−15· · ·

−1

−10· · · 11 22

−22 −11

32 43 · · ·

−43· · · −32

−3−4 210−1−2col

Figure 3.8. The periodic picture P of P .

Given a valid picture P , we extended it to a periodic picture P. Then we take the set consisting

of cells of P filled by {1, · · · , n}. Let us denote the shape by τ and let T be a tableau on τ such

that k 7→ (iP(k), jP(k)) for each k = 1, · · · , n.

Example 3.6.6. Continue Example 3.6.5, we take the collection of cells filled by {1, 2, · · · , 10}

and then obtain T .

Proposition 3.6.7. The subset τ is a skew shape and T is a standard tableau on τ .

Proof. Let τ1 ⊂ τ be the first p rows of τ , τ2 ⊂ τ be the (p+ 1)-th row to q-th row of τ and

τ3 ⊂ τ be the last p rows of τ . So τ2 is a rectangle R2 {(i, j)|p+1 ≤ i ≤ q and −a−b+1 ≤ j ≤ s+t}.
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2 3 4 5 7 9

6

10

8

1
−2 3

Figure 3.9. The tableau T obtained from a valid picture P

First, we verify τ1 and τ3 are skew shapes. We use the approach in [16] to show τ1 is a skew shape.

Let the cell (i, j) ∈ τ1 be filled with x1 such that 1 ≤ x1 ≤ n and the cell (i + 1, j + 1) ∈ τ1 be

filled with x2 such that 1 ≤ x2 ≤ n. Since the periodic picture P is row increasing and column

increasing, the cell (i, j + 1) is filled with x3 and x1 < x3 < x2. Similarly, the cell (i+ 1, j) is filled

by x4 and x1 < x4 < x2. It follow that x1, x2 ∈ {1, · · · , n} and hence (i, j + 1), (i + 1, j) ∈ τ1.

Namely, τ1 is a skew shape. We verify that τ3 is also a skew shape in a similar way.

Next we want to show τ1 ∪ τ2 ∪ τ3 is a skew shape. Let {(p, j)|j1 ≤ j ≤ j2} be the last row of τ1

and {(q + 1, j)|j3 ≤ j ≤ j4} be the first row of τ3. It suffices to show that j1 ≥ −b + 1, j2 ≥ t,

j3 ≤ −b+ 1 and j4 ≤ t.

Suppose j2 < t. Then (p + 1, j2 + 1) ∈ R2. Let (p, j2) be filled with x1 such that 1 ≤ x1 ≤ n

and the cell (p + 1, j2 + 1) be filled with x2 such that 1 ≤ x2 ≤ n. Since the periodic picture P is

row increasing and column increasing, the cell (p, j2 + 1) is filled with x3 and x1 < x3 < x2. This

contradict the fact that {(p, j)|j1 ≤ j ≤ j2} be the last row of τ1. So we have j2 ≥ t. We show

similarly that j3 ≤ −a− b+ 1.

Let j′ be the first column of the rectangle R1, then the first column of the rectangle R3 is −a−b−j′+

2. Let the cell (p, j′−1) be filled with x5. By part (2) of Definition 7.3, the cell (q+1,−a−b−j′+2)

is filled with −x5 in the periodic picture P. Since (q + 1,−a− b+ j′ + 2) ∈ R3, we have −x5 > 0

and thus x5 < 0. So we have j1 ≥ j′ and thus j1 ≥ −a− b+ 1.

Let j′′ be the last column of the rectangle R3, then the last column of the rectangle R1 is s+ t− j′′.

Let the cell (q + 1, j′′ + 1) be filled by x6. Then the cell (p, s + t − j′′) = (p,−a − b + u − j′′) is

filled with 2n+ 1− x6. The fact that (p, s+ t− j′′) ∈ R1 implies that 2n+ 1− x− 6 ≤ n and thus

x6 ≥ n+ 1. Hence we have j4 ≤ j′′ ≤ s+ t.

So we have τ is a skew shape since j1 ≥ −a − b + 1, j2 ≥ s + t, j3 ≤ −a − b + 1 and j4 ≤ s + t.
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Moreover, T is row increasing and column increasing by the fact that P is row increasing and

column increasing. �

3.6.2.2. From a standard tableau T to a valid picture P . We define a map g from T̂ ab
λ,µ

c to Pλ,µc .

Let T ∈ T̂ ab
λ,µ

c . We associate each standard tableau T a periodic tableau T by adding numbers to

T as follows.

Definition 3.6.8. Let the shape Im(T ) of T be τ̂ = β̂/ν̂

(1) For a cell (i, j) ∈ τ̂ with i = 1, · · · , p or q + 1, · · · , N , let x = T−1((i, j)). Fill the cell

(N − i+ 1,−a− b− j + 1) by −x.

(2) For i = 1, · · · , p or q + 1, · · · , N and a cell (i, j) filled by x, fill the cells (i, j ± u) by

x± (2n+ 1).

Remark 3.6.9. After the step (1), for each row i such that i = 1, · · · , p or q + 1, · · · , N , there

are exactly u cells filled by numbers. So the periodic T is well-defined and all the cells in the row i

are filled.

Example 3.6.10. Let λ = −1, µ = −1, n = 10, p = 2 and N = 5. With these parameters,

we will have a representation of H10(2, 1, 4, 0) which is indexed by the following region τ̂−1,−10 . We

have a standard tableau T in Figure 10 which represents a weight vector. From standard tableau T

2 3 4 5 7 9

6

10

8

1
−k2+k3

2 = −2 u+k2
2 = 3

Figure 3.10. A standard tableau T ∈ T̂ ab
−1,−1
0

in Figure 3.10, we get the periodic tableau T . First fill in −6, −8, −1 and −10 and then the whole

i-th row for i ∈ I2. The periodic tableau T is as Figure 3.11.

Lemma 3.6.11. The periodic tableau T is row increasing and column increasing.
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2 3 4 5 7 9

6

10 · · ·3120

8

1

−6−8−27−29

27 29

−48−50· · ·

48 50 · · ·

13 15 · · ·

−13−15· · ·

−1

−10 11 22

−22 −11

32 43 · · ·

−43· · · −32

−31· · · −20−31−20

Figure 3.11. The periodic tableau T associated to T

Next we need to find out the skew shape τ̂λ,µc by the parameters λ, µ, n and p. And the filling

on the skew shape τ̂λ,µc is a picture denoted by P .

(3, 2)

(1, 7)

(4, 2)

R1

R2

R3 −k2+k3
2 = −2 u+k2

2 = 3

Figure 3.12. The skew shape τ̂−1,−10

Example 3.6.12. Continue Example 3.6.5. We figure out the skew shape τ̂−1,−10 in Figure 3.12.

Take a standard tableau T ∈ T̂ ab
−1,−1
0 . Extend the standard tableau T to T . The red region is the

skew shape τ̂−1,−10 . Then the filling on the skew shape τ̂λ,µc is the picture P as in Figure 3.13.

Proposition 3.6.13. The picture P we obtained from the standard tableau T is a valid picture

on τ̂λ,µc .

Proof. Let us show the picture we obtained from T satisfies the conditions in Definition 3.6.1.

(i) Let x1 be a filling in the i-th row of R1 and x2 be a filling in the (p − i + 1)-th row of R3 for

1 ≤ i ≤ p, suppose x1 + x2 ≥ 2n+ 1. We need the following notation. For a subset τ ∈ Z× Z, let

−τ be the subset of Z× Z

−τ = {(N − i+ 1,−a− b− j + 1)|(i, j) ∈ τ}

and

τ (k) = {(i, j + k · u)|(i, j) ∈ τ}.
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2 3 4 5 7 9

6

10 · · ·

8

1

−6−8−27−29

27 29

−48−50· · ·

48 50 · · ·

13 15 · · ·

−13−15· · ·

−1

−10· · · 11 22

−22 −11

32 43 · · ·

−43· · · −32

2 3 4 5 7 9

−6

−11

8

22

Figure 3.13. From an extended tableau to a valid picture

Since T is periodic, there is a cell in the (p− i+ 1)-th row of −R1 filled by −x1 and thus a cell in

the (p− i+ 1)-th row of (−R1)
(1) filled by −x1 + 2n+ 1. Let the first column of R3 be j1 and the

last column of R3 be j2. Then the last column of −R1 is j1 − 1 and the first column of (−R1)
(1) is

j2 + 1. On the other hand, x1 + x2 ≥ 2n+ 1 implies x2 ≥ −x1 + 2n+ 1, which contradicts the row

increasing fact. So we have the fact that x1 + x2 < 2n+ 1.

Suppose x1 + x2 ≤ 0. Then we have −x1 ≥ x2, which contradicts the row increasing condition.

(ii) Let x be a filling in the i-th row of R1 for 1 ≤ i ≤ p.

First, consider the case s ≤ t, then R1 is above R2, namely the last column of R1 is less or equal

to t. Since the fillings in R2 are from {1, · · · , n} and the column increasing fact of T , x is forced

to be strictly less than n.

Second, consider the case s > t and suppose x > n. In this case, the last column of R3 is t. There

is a cell in (p − i + 1)-th row of −R1 filled by −x and a cell (N − i + 1, j3) in (p − i + 1)-th row

of (−R1)
(1) filled by −x + 2n + 1. It follows that j3 > t. On the other hand, x > n implies

−x+ 2n+ 1 < n+ 1. This fact contradicts the fact that the last column of R3 is t. So we conclude

x ≤ n.

(iii) Let x be a filling in the i-th row of R3. First, consider the case a ≤ b. In this case, R3 is below

R2, namely j1 ≥ −b + 1, thus we have x > 0 by the column increasing property of T . Second,
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consider the case a > b and suppose x < 0. Then there is a cell in the (p−i+1)-th row of −R3 filled

by −x. We have the fact −x < n since any filling y satisfies y ≤ n for y lying in the (p− i+ 1)-th

row of R1 and T is row increasing. This forces x to be −n < x < 0 and hence 0 < −x < n, which

contradicts the shape τ is a skew shape. So we still have x > 0 in the a > b case. �

3.6.2.3. One to one correspondence between Pλ,µc and T̂ ab
λ,µ

c .

Theorem 3.6.14. The weight basis of Lλ,µc is indexed by Pλ,µc the collection of all the valid

pictures P on a fixed shape τ̂λ,µc .

Proof. We prove the theorem by constructing a one-to-one correspondence between the col-

lection T̂ ab
λ,µ

c of standard tableaux T indexing the basis of invariant space and the collection Pλ,µc

of pictures P on a fixed region τ̂λ,µc . In Section 3.6.2.1, we define a map f : Pλ,µc → T̂ ab
λ,µ

c and in

Section 3.6.2.2, we define a map g : T̂ ab
λ,µ

c → Pλ,µc . Let us consider g ◦ f . For any valid picture

P ∈ Pλ,µc , extend P to the periodic picture P by Definition 3.6.1 and get f(P ) = T ∈ T̂ ab
λ,µ

c .

By Definition 3.6.8, the periodic tableau T associated to T is exactly P, namely T = P. Hence

g ◦ f(P ) = P . So g ◦ f = idPλ,µc
. Similarly, we show f ◦ g = id

T̂ ab
λ,µ

c

. Now we have a one-to-one

correspondence between Pλ,µc and T̂ ab
λ,µ

c .

Thus the weight basis is indexed by the following picture P on region τ̂λ,µc .

�

3.6.3. Moves on Pλ,µc . In Section 3.5 we defined moves on T̂ ab
λ,µ

c t {0} which has a corre-

spondence to the actions of intertwining operators on weight vectors. Now we extend the definition

of moves mi for i = 0, 1, · · · , n to Pλ,µc t {0} as follows. Let T ∈ T̂ ab
λ,µ

c be a standard tableau and

P be the corresponding valid picture in Pλ,µc . Let x denote the image P ((i, j)) of the cell (i, j) and

x = (2n+1)qx+rx with qx ∈ Z and rx ∈ {−n, · · ·−1, 1, · · · , n}. Then we have moves on Pλ,µc t{0}

defined as follows:

94



(1) For i = 1, · · · , n− 1, if P ′ ∈ Pλ,µc , set mi(P ) = P ′ and

P ′((i, j)) =


(2n+ 1)qx + rx rx 6= ±i or ± (i+ 1)

(2n+ 1)qx + rx + 1 rx = i or − (i+ 1)

(2n+ 1)qx + rx − 1 rx = i+ 1 or − i;

Otherwise, mi(P ) = 0.

(2) If P ′′ ∈ Pλ,µc , set m0(P ) = P ′′ and

P ′′((i, j)) =


(2n+ 1)qx + rx rx 6= ±1

(2n+ 1)qx − rx + 1 rx = ±1;

Otherwise, m0(P ) = 0.

(3) If P ′′′ ∈ Pλ,µc , set mn(P ) = P ′′′ and

P ′′′((i, j)) =


(2n+ 1)qx + rx rx 6= ±n

(2n+ 1)(qx ± 1)− rx rx = ±n.

Otherwise, mn(P ) = 0.

Let Pλ,µc denote the collection of periodic picture P associated to P ∈ T̂ ab
λ,µ

c . Since the one-to-one

correspondence between Pλ,µc and Pλ,µc , the collection Pλ,µc indexes the weight basis of Lλ,µc . Check

the moves on Pλ,µc t {0}.

(1) The move m0 exchanges fillings −1 + k(2n + 1) and 1 + k(2n + 1) in P for k ∈ Z, if the

new picture lies in Pλ,µc t {0} and m0(P) = 0 if otherwise;

(2) The move mi exchanges fillings±i+k(2n+1) and±(i+1)+k(2n+1) in P for i = 1, · · · , n−1

and k ∈ Z, if the new picture lies in Pλ,µc t {0} and m0(P) = 0 if otherwise;

(3) The move mn exchanges fillings n+ k(2n+ 1) and n+ 1 + k(2n+ 1) in P for k ∈ Z if the

new picture lies in Pλ,µc t {0} and mn(P) = 0 if otherwise.
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Example 3.6.15. Now let us look at several moves on standard tableaux and valid pictures. We

start with the following standard tableau T on τ̂−1,−10 .

2

3

4

1

4

−3

−2

−1

2

3

4

1

−1

−4−17−22 −8−13 105

138 2217−5−10

Applying m0, then we get

2

3

41

−4 −3

−2

−1

2

3

41

−19−22 −10−13 −1−4 85

1310 2219−5−8

Applying m4, then we get

2

3

1

4

5

−4

−2

−1

2

3

1

4−1

−4 5 10 14 19−8−13

−14−19 −5−10 8 13

Applying m3m2m1m2m3, then we get

2

3

4

1

5

−4

−2

−1

2

3

4

1−4

−1 8 13 17 22−5−10

−17−22 −8−13 5 10

Applying m0, then we get
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2

3

41

−5 −4

−2

−1

2

3

41

−4 −1

8 13 17 22−5−10

−17−22 −8−13 5 8

Applying m4, then we get

2

3

4

1

−5

6

−2

−1

2

3

4

1

−1

−4 5 10 14 19−8−13

−14−19 −5−10 8

The combinatorial description by T̂ ab
λ,µ

c consists of standard tableaux on a collection of skew

shapes and the moves m0 and mn on T̂ ab
λ,µ

c move the cells filled with 1 and n respectively, whereas

the combinatorial description by Pλ,µc consists of valid pictures on a fixed region τ̂λ,µc and moves on

Pλ,µc only changes the fillings. So we associate τ̂λ,µc to the representation Lλ,µc .
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CHAPTER 4

Affine and double affine Hecke algebras of type C and Jordan-Ma

functor

In this chapter, we consider the quantum cases, i.e. affine Hecke algebras and double affine

Hecke algebra of type C. We consider the representations of affine Hecke algebras which are images

of Uq(glN ) under the Jordan-Ma functor [8] and representations of double affine Hecke algebras

which are images of the quantum coordinate algebra Aq(GLN ) under the Jordan-Ma functor.

4.1. Affine and Double Affine Hecke Algebras

In [8], Jordan and Ma mentioned the following definitions of affine and double affine Hecke

algebras of type C.

Definition 4.1.1. The affine Hecke algebra Hn(t, t0, tn) of type C is a unital associative algebra

over C with three parameters t, t0, tn generated by T0, T1, · · · , Tn−1, Tn with the relations:

TiTj = TjTi, |i− j| > 1,(4.1)

TiTi+1Ti = Ti+1TiTi+1,(4.2)

Tn−1TnTn−1Tn = TnTn−1TnTn−1,(4.3)

T0T1T0T1 = T1T0T1T0,(4.4)

(Ti − t)(Ti + t−1) = 0, i = 1, · · · , n− 1,(4.5)

(Tn − tn)(Tn + t−1n ) = 0,(4.6)

(T0 − t0)(T0 + t−10 ) = 0.(4.7)

The double affine Hecke algebra H̃n(t, t0, tn, u0, un, w) of type C is a unital associative algebra

over C with six parameters generated by T0, T1, · · · , Tn−1, Tn and K0 with relations (4.1)-(4.7) and
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additional relations:

K0Ti = TiK0, i = 2, · · · , n,(4.8)

T1K0T1K0 = K0T1K0T1,(4.9)

T0T
−1
1 K0T1 = T−11 K0T1T0,(4.10)

(K0 − un)(K0 + u−1n ) = 0,(4.11)

(wK0P1T0 − u−10 )(wK0P1T0 + u0) = 0,(4.12)

where Pi = TiTi+1 · · ·Tn · · ·Ti+1Ti, for i = 1, · · · , n.

Set Xi, for i = 1, · · · , n.

Xi = T−1i · · ·T
−1
n · · ·T−11 K−10 T1 · · ·Ti−1.

Set Yi, for i = 1, · · · , n.

Yi = Ti · · ·Tn · · ·T1T0T−11 · · ·T−1i−1.

Now we explore the relations involving K0 and Yi’s.

Lemma 4.1.2. It follows

K0Yj = YjK0,

for j = 2, · · · , n.

Proof. For j = 2, · · · , n, we have K0Tj = TjK0 and K0T
−1
j = T−1j K0 by (4.8).

K0Yj = K0Tj · · ·Tn · · ·T1T0T−11 · · ·T−1j−1

= Tj · · ·Tn · · ·T2K0T1T0T
−1
1 · · ·T−1j−1

= Tj · · ·Tn · · ·T2T1(T−11 K0T1T0)T
−1
1 · · ·T−1j−1,
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By (4.10), we deduce that

Tj · · ·Tn · · ·T2T1(T−11 K0T1T0)T
−1
1 · · ·T−1j−1

=Tj · · ·Tn · · ·T2T1(T0T−11 K0T1)T
−1
1 · · ·T−1j−1

=Tj · · ·Tn · · ·T2T1T0T−11 K0T
−1
2 · · ·T−1j−1

=Tj · · ·Tn · · ·T2T1T0T−11 T−12 · · ·T−1j−1K0

=YjK0.

�

Instead of K0, T0, T1, · · · , Tn, [8] mentioned the generators

T1, · · · , Tn, Y ±1 , · · · , Y
±
n , X

±
1 , · · · , X

±
n .

In this paper, let us use the generators K0, T1, · · · , Tn and Y ±1 , · · · , Y ±n . The following definition is

equivalent to Definition 4.1.1.

Proposition 4.1.3. The affine Hecke algebra Hn(t, t0, tn) is generated by

T1, · · · , Tn, Y ±1 , · · · , Y
±
n

with relations (4.1)-(4.3), (4.5)-(4.6) and the following relations:

YiYj = YjYi,(4.13)

TiYi+1Ti = Yi, i = 1, · · · , n− 1,(4.14)

TiYj = YjTi, i = 1, ·, n− 1 and j 6= 0, i+ 1,(4.15)

TnYj = YjTn. j 6= n,(4.16)

(T−1n Yn − t0)(T−1n Yn + t−10 ) = 0.(4.17)

The double affine Hecke algebra H̃n(t, t0, tn, u0, un, w) is generated by

K0, T1, · · · , Tn−1, Tn, Y ±1 , · · · , Y
±
n
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with relations (4.1)-(4.3), (4.5)-(4.6), (4.8)-(4.9), (4.11), (4.13)-(4.17) and the additional relations:

K0Yj = YjK0, j ≥ 2,(4.18)

(wK0Y1 − u−10 )(wK0Y1 + u0) = 0.(4.19)

4.2. Intertwining Operators

In this section, we define a set of elements in double affine Hecke algebra H̃n(t, t0, tn, u0, un, w),

which we called by intertwining operators.

Set Y0 = wY1, define the following operators:

Φi = Ti(Yi − Yi+1)− (t− t−1)Yi, i = 1, · · · , n− 1,(4.20)

Φn = Tn(Yn − Y −1n )− (tn − t−1n )Yn − (t0 − t−10 ),(4.21)

Φ0 = K0(Y0 − Y −10 ) + (un − u−1n )Y0 + (u0 − u−10 ).(4.22)

We verify these operators satisfying the same braid relations with Ti’s. This verification is

straightforward. So we omit the proof here. As a result, we define the intertwining operator Φz for

each z ∈Wa. Let z = si1 · · · si` be a reduced expression, then

Φz = Φi1 · · ·Φi` .

The squares of intertwining operators are computed as follows.

Φ2
i = −(Yi − t2Yi+1)(Yi − t−2Yi+1), i = 1, · · · , n− 1,

Φ2
n = (tnYn − t−1n Y −1n + t0 − t−10 )(tnY

−1
n − t−1n Yn + t0 − t−10 ),

Φ2
0 = (unY0 − u−1n Y −10 + u0 − u−10 )(unY

−1
0 − u−1n Y0 + u0 − u−10 ).

Moreover, the following relations of Yi and Φi hold.
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Proposition 4.2.1.

YiΦi = ΦiYi+1.

YnΦn = ΦnY
−1
n ,

Y0Φ0 = Φ0Y
−1
0 .

Remark 4.2.2. Proposition 4.2.1 implies that the intertwining operators Φz moves one Y-weight

space to another Y-weight space, i.e.

ΦzLζ ⊂ Lzζ ,

where z ∈Wa, ζ and zζ are defined as (3.50).

4.3. Quantum General Linear Groups

4.3.1. Quantum Group Uq(glN ). We use the definition of quantum group Uq(glN ) in [13].

Let q ∈ C be a nonzero complex and q is not a root of unity. Let P be the weight lattice and

P∨ be the dual weight lattice with a symmetric bilinear pairing (, ) : P × P → Z such that

(εi, εj) = δij . The quantized enveloping algebra Uq(glN ) is generated by e1, · · · , eN−1, f1, · · · , fN−1

and qh, h ∈ P∨ with relations:

qh1 · qh2 = qh1+h2 ,(4.23)

qhejq
−h = q〈h,εj−εj+1〉ej ,(4.24)

qhfjq
−h = q〈h,−εj+εj+1〉fj ,(4.25)

eifj − fjei = δi,j
qεi−εi+1 − q−εi+εi+1

q − q−1
,(4.26)

eiej = ejei, |i− j| > 1,(4.27)

fifj = fjfi, |i− j| > 1,(4.28)

e2i ei±1 − (q + q−1)eiei±1ei + ei±1e
2
i = 0,(4.29)

f2i fi±1 − (q + q−1)fifi±1fi + fi±1f
2
i = 0.(4.30)
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The Hopf structure on Uq(glN ) is as follows: comultiplication ∆, counit ε and antipode S

∆(qh) = qh ⊗ qh,(4.31)

∆(ei) = ei ⊗ 1 + qεi−εi+1 ⊗ ei,(4.32)

∆(fi) = fi ⊗ q−εi+εi+1 + 1⊗ fi,(4.33)

ε(qh) = 1,(4.34)

ε(ei) = ε(fi) = 0,(4.35)

S(qh) = q−h,(4.36)

S(ei) = −q−εi+εi+1ei,(4.37)

S(fi) = −fiqεi−εi+1 .(4.38)

Let V = CN be an N -dimensional vector space over C with vi being the standard basis element.

Let Eij ∈ End(V ) be the N × N matrix with (i, j)-entry being 1 and other entries 0. Define the

Uq(glN )-module structure by ρV : Uq(glN )→ End(V )

ρV (qεi) = qEii +
∑
j 6=i

Ejj , i = 1, · · · , N,(4.39)

ρV (ei) = Ei,i+1, i = 1, · · · , N − 1,(4.40)

ρV (fi) = Ei+1,i, i = 1, · · · , N − 1.(4.41)

The vector space V together with the Uq(glN )-module structure is the vector representation of

Uq(glN ).

4.3.2. L-operators. Let R be the universal R-matrix. The R-matrix under the vector repre-

sentation is as follows:

R = (ρV ⊗ ρV )(R) =
∑
i,j

qδi,jEii ⊗ Ejj + (q − q−1)
∑
i>j

Eij ⊗ Eji.(4.42)

R− = (ρV ⊗ ρV )(R−1) =
∑
i,j

qδijEii ⊗ Ejj − (q − q−1)
∑
i>j

Eij ⊗ Eji.(4.43)
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Definition 4.3.1. The l-operators of Uq(glN ) are elements of Uq(glN ) satisfying

(1⊗ ρV )(R) =
∑
ij

l+ij ⊗ Eij(4.44)

(ρV ⊗ 1)(R−1) =
∑
ij

Eij ⊗ l−ij .(4.45)

In [13], there is a family of elements eij , for 1 ≤ i, j ≤ N and i 6= j defined as follows. Take

i < j,

ei,i+1 = ei, eij = eikekj − qekjeij , for an arbitrary i < k < j;

ei+1,i = fi, eji = ejkeki − q−1ekiejk, for an arbitrary i < k < j.

The l-operators are expressed in terms of eij as follows, for i < j,

l+ij = (q − q−1)qεieji;

l−ji = −(q − q−1)eijq−εi

and

(4.46) l±ii = q±εi .

We use the following notations. Let L± = (l±ij), L
±
1 = L± ⊗ id and L±2 = id⊗ L±.

Theorem 4.3.2. Klimyk and Schmudgen [10] proved the algebra Uq(glN ) is generated by l±ij,

i, j = 1, · · · , N with relations:

L±1 L
±
2 R = RL±2 L

±
1(4.47)

L−1 L
+
2 R = RL+

2 L
−
1(4.48)

l+ii l
−
ii = l−ii l

+
ii = 1, i = 1, · · · , N,(4.49)

l+ij = l−ji = 0, i > j.(4.50)
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The antipode S, comultiplication ∆ and counit ε on l-operators are given by

S(L±) = (L±)−1,(4.51)

∆(l±ij) =
∑
k

l±ik ⊗ l
±
kj ,(4.52)

ε(l±ij) = δij .(4.53)

4.3.3. Hopf ∗ algebra structure and right modules. In [13], Noumi explained the Hopf ∗

structure. The quantum group Uq(glN ) has a Hopf ∗ algebra structure, where ∗ : Uq(glN )→ Uq(glN )

is an involution and an algebra anti-automorphism, with

(qh)∗ = qh, h ∈ P∨, e∗k = q−1fkq
εk−εk+1 , f∗k = q−1ekq

−εk+εk+1 , 1 ≤ k ≤ N − 1.

The comultiplications of e∗i and f∗i are as follows,

∆(e∗i ) = e∗i ⊗ 1 + qεi−εi+1 ⊗ e∗i(4.54)

∆(f∗i ) = f∗i ⊗ q−εi+εi+1 + 1⊗ f∗i .(4.55)

And the ∗-operation on L-operators is

(l±ij)
∗ = S(l∓ji).

With the Hopf ∗ algebra structure, there is a one-to-one correspondence between left Uq(glN )-

modules and right Uq(glN )-modules. Let M be left Uq(glN )-module and we define a right Uq(glN )-

module structure on M and denote the right module by M◦,

v.x = x∗.v, x ∈ Uq(glN ) and v ∈M.

Conversely, let N be a right Uq(glN )-module, we define the left Uq(glN )-module structure on N by

x.v = v.x∗, x ∈ Uq(glN ) and v ∈ N.

105



Lemma 4.3.3. The comultiplication and ∗-operation commute.

∆ ◦ ∗ = (∗ ⊗ ∗) ◦∆.

Remark 4.3.4. Let M and K be two left Uq(glN )-modules. Then M⊗K is a left Uq(glN )-module

and (M ⊗K)◦ = M◦ ⊗K◦ is the corresponding right Uq(glN )-module.

4.4. Jordan-Ma functor and representations of AHA and DAHA

4.4.1. Coideal subalgebras. The following is the definitions of coideal subalgebras in [8].

Let Jσ be the N ×N complex matrix with σ ∈ R

Jσ =
∑

1≤k≤p
(qσ − q−σ)Ek,k −

∑
p+1≤k≤N−p

q−σEk,k +
∑

1≤k≤p
Ek,N−k+1 +

∑
1≤k≤p

EN−k+1,k.

Let Dp be the p× p anti-diagonal matrix with each entry on the anti-diagonal is 1. Then we have

Jσ =


(qσ − q−σ)Ip 0 Dp

0 −q−σIN−2p 0

Dp 0 0


Define the elements cil and c′il of Uq(glN ), i, l = 1, · · · , N as follows:

cil =
N∑

j,k=1

l+ijJ
σ
jkS(l−kl),

c′il =
N∑

j,k=1

S(l−ij)(J
ψ)−1jk l

+
kl.

Let Bσ and B′ψ be subalgebras of Uq(glN ) generated by {cil|i, l = 1, · · · , N} and {c′il|i, l = 1, · · · , N}

respectively. It is easy to check that

Remark 4.4.1. (1) It follows that Bσ is a left coideal subalgebra from the comultiplication

∆(cil) =

N∑
m,h=1

l+imS(l−hl)⊗ (

N∑
j,k=1

l+mjJ
σ
jkS(l−kh))

=
N∑

m,h=1

l+imS(l−hl)⊗ cmh.
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(2) It follows that B′ψ is a right coideal subalgebra from the comultiplication

∆(c′il) =

N∑
m,h=1

(

N∑
j,k=1

S(l−mj)(J
ψ)−1jk l

+
kh)⊗ (S(l−im)l+hl)

=

N∑
m,h=1

c′mh ⊗ (S(l−im)l+hl).

4.4.2. Characters and invariant spaces. Let M be a Uq(glN )-module and M be a DU -

module, where DU is the algebra of quantum differential operators defined in [8]. The characters

of Bσ and B′ψ are used to define the invariant spaces F σ,η,τn (M) and F σ,η,τn,ψ,ω,ι(M) which are the

underlying vector spaces of the representations of affine Hecke algebra and double affine Hecke

algebra in [8]. Let χητ be the character of the left coideal subalgebra Bσ such that

χητ (cil) = qηJτil.

Let λωι be the character of the right coideal subalgebra B′ψ such that

λωι (c′il) = qω(J ι)−1il .

The invariant spaces are defined as

F σ,η,τn (M) = HomBσ(1χητ ,M ⊗ V
⊗n)

and

F σ,η,τn,ψ,ω,ι(M) = HomB′ψ ,Bσ
(1λωι � 1χητ ,M⊗2 (1 � V )⊗2n),

for σ, τ, η, ψ, ι, ω ∈ R. In [8], Jordan and Ma showed that M has a Uq(glN ) ⊗ Uq(glN )-module

structure.

4.4.3. Computation of the invariant space. In this subsection, let us compute the invari-

ant space HomBσ(1χητ , V
ν) for any ν ∈ P+ in the case σ − τ is an even number.

By Theorem 4.3.2, we define a character of Uq(glN ) in terms of l-operators. Let 1η be the one
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dimensional character of Uq(glN ) with

1η(l
±
ij) =


0, i 6= j

q∓η/2, i = j.

It is straightforward to check that the definition of 1η is compatible with relations (4.47)-(4.50).

Moreover, the one dimensional character 1η is of highest weight (−η/2)
∑N

i=1 εi by (4.46).

Lemma 4.4.2. It holds that

HomBσ(1χητ , V
ν) ∼= HomBσ(1χ0

τ
, 1η ⊗ V ν)

Proof. We want to show the following two vector spaces are isomorphic to each, i.e.

HomBσ(1χητ , V
ν) ∼= HomBσ(1χ0

τ
, 1η ⊗ V ν).

Since

HomBσ(1χητ , V
ν)

∼={v ∈ V ν |cil.v = χητ (cil)v, i, j = 1, · · · , N}

and

HomBσ(1χ0
τ
,1η ⊗ V ν)

∼={v ∈ V ν |∆(cil).(1⊗ v) = χ0
τ (cil)(1⊗ v), i, j = 1, · · · , N},

It suffices to show that

{v ∈ V ν |cil.v = χητ (cil)v, i, j = 1, · · · , N}

={v ∈ V ν |∆(cil).(1⊗ v) = χ0
τ (cil)(1⊗ v), i, j = 1, · · · , N}.
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By the definition of 1η, we have

1η(S(l±ij)) =


0, i 6= j

q±η/2, i = j.

We compute the action of cil on 1η ⊗ V ν and we have

∆(cil).(1⊗ v) =

N∑
m,h=1

(l+imS(l−hl)⊗ cmh).(1⊗ v)

=
N∑

m,h=1

1η(l
+
imS(l−hl))⊗ (cmh.v)

= q−η ⊗ (cil.v)

Let v ∈ {v ∈ V ν |cil.v = χητ (cil)v, i, j = 1, · · · , N}, then

∆(cil).(1⊗ v) = q−η ⊗ (cil.v)

= q−η ⊗ (qηJτilv)

= Jτil(1⊗ v)

= χ0
τ (cil)(1⊗ v)

and hence v ∈ {v ∈ V ν |∆(cil).(1⊗ v) = χ0
τ (cil)(1⊗ v), i, j = 1, · · · , N}.

On the contrary, suppose v ∈ {v ∈ V ν |∆(cil).(1⊗ v) = χ0
τ (cil)(1⊗ v), i, j = 1, · · · , N}, then

∆(cil).(1⊗ v) =χ0
τ (cil)(1⊗ v)

q−η ⊗ (cil.v) =Jτil(1⊗ v).

This implies 1⊗ (cil.v) = qηJτil(1⊗ v) and hence cil.v = qηJτilv = χητ (cil)v. So we have

HomBσ(1χητ , V
ν) = HomBσ(1χ0

τ
, 1η ⊗ V ν).

�
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Now it suffices for us to compute in the case η = 0. To compute the space HomBσ(1χ0
τ
, V ν),

we deduce the following fact.

HomBσ(1χ0
τ
, V ν)

∼={v ∈ V ν |(L+JσS(L−))ij .v = Jτijv, 1 ≤ i, j ≤ N}

={v ∈ V ν |((L+JσS(L−))ij − Jτij).v = 0, 1 ≤ i, j ≤ N}

={v ∈ V ν |((JσS(L−))ij − (S(L+)Jτ )ij).v = 0, 1 ≤ i, j ≤ N}

={v ∈ (V ν)◦|v.(JσS(L−))ij − (S(L+)Jτ )ij)
∗ = 0, 1 ≤ i, j ≤ N}

={v ∈ (V ν)◦|v.((L+Jσ)ij − (JτL−)ij) = 0, 1 ≤ i, j ≤ N}.

Let tτσ denote the subalgebra of Uq(glN ) generated by

N∑
k=1

(l+ikJ
σ
kj − Jτikl−kj),

for i, j = 1, · · · , N . The fact above allows us to compute HomBσ(1χ0
τ
, V ν) by computing the vectors

in V ν killed by the right action of tτσ. Next we consider the invariant space HomBσ(1χητ , V
ν).

Theorem 4.4.3. In the case that σ − τ is an even number, the invariant space

HomBσ(1χητ , V
ν)

is either 0 or a one-dimensional vector space. The invariant space is nonzero if and only if ν ∈ P+

and

νi =
η + σ − τ

2
, i = p+ 1, · · · , N − p,(4.56)

νi + νN−i+1 = η, i = 1, · · · , p.,(4.57)

Proof. Consider the invariant space HomBσ(1χ0
τ
, 1η ⊗ V ν). Since this invariant space corre-

sponds to tτσ-invariants, by Proposition A.2.2, the invariant space HomBσ(1χ0
τ
,1η ⊗ V ν) is either 0

or one-dimensional.

Moreover, the Uq(glN )-module 1η ⊗ V ν is the irreducible highest weight module of highest weight
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ν − (η/2)(
∑N

i=1 εi). By Theorem A.1.1, the invariant space HomBσ(1χ0
τ
,1η ⊗V ν) is nonzero if and

only if ν ∈ P+ and

νi −
η

2
=
σ − τ

2
, i = p+ 1, · · · , N − p,

νi −
η

2
+ νN−i+1 −

η

2
= 0, i = 1, · · · , p,

which are equivalent to

νi =
η + σ − τ

2
, i = p+ 1, · · · , N − p,

νi + νN−i+1 = η, i = 1, · · · , p.

By Lemma 4.4.2, we have the invariant space HomBσ(1χητ , V
ν) is nonzero if and only if ν satisfies

conditions (4.56)-(4.57).

�

Remark 4.4.4. By A.2.12, the condition νi = η+σ−τ
2 for i = p+ 1, · · · , N − p, is necessary for

HomBσ(1χητ , V
ν) 6= 0. In the case that η + σ − τ is not an even number, νi is not an integer, then

HomBσ(1χητ , V
ν) = 0 for ν ∈ P+.

4.4.4. A basis of the invariant space.

4.4.4.1. Tensor product of Uq(glN )-modules. Let us consider the tensor product of an irreducible

highest weight Uq(glN )-module V ξ and the vector representation V .

Let χ(ξ) denote the character of the irreducible highest weight Uq(glN )-module with highest weight

ξ ∈ P+. Since ε1 is a minuscule dominant weight, we apply Lemma 5A.9 in [6] in the case ξ0 = ε1

and then

χ(ξ)χ(ε1) =
∑

1≤i≤N,ξ+εi∈P+

χ(ξ + εi).

The vector representation is an irreducible highest weight representation V = V ξ0 of highest weight

ξ0 = ε1. We have

V ξ ⊗ V =
⊕
ν(1)

V ν(1) ,
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the direct sum runs through ν(1) ∈ P+ and ν(1) = ξ + εk1 for some k1 = 1, · · · , N .

Continue tensoring the vector representation V . Let (ν(0), ν(1), · · · , ν(n)) be a sequence of integral

dominant weights such that ν(0) = ξ and ν(i) = ν(i−1) + εki for some ki = 1, · · · , N . We have

4.4.4.2. A combinatorial basis. Consider the invariant space

HomBσ(1χητ , V
ξ ⊗ V ⊗n)

=
⊕

(ν(0),ν(1),··· ,ν(n))

HomBσ(1χητ , V
ν(n)).

By Theorem 4.4.3, dimHomBσ(1χητ , V
ν(n)) = 1 if and only if ν(n) satisfies conditions (4.56)-(4.57).

Otherwise, HomBσ(1χητ , V
ν(n)) = 0. So the collection of sequences (ν(0), ν(1), · · · , ν(n)) such that

T(ν(0),ν(1),··· ,ν(n)) is a standard tableau and ν(n) satisfies (4.56)-(4.57),i.e.

{(ν(0), ν(1), · · · , ν(n))|T(ν(0),ν(1),··· ,ν(n)) is a standard tableau and ν(n) satisfies (4.56)− (4.57)}

indexes a basis of the invariant space HomBσ(1χητ , V
ξ ⊗ V ⊗n). Equivalently we have the following

result.

Theorem 4.4.5. The invariant space HomBσ(1χητ , V
ξ ⊗ V ⊗n) has a basis indexed by the col-

lection of standard tableaux T of shape ν/ξ such that ν satisfies (4.56)-(4.57).

4.5. Y-actions

4.5.1. Definition of Y-action on the invariant space. Jordan and Ma defined the action

of T0 in [8]. With the relation Y1 = T1 · · ·Tn · · ·T1T0, we deduce the action of Y1 is given by

qN−η(R−1
V ξ,V

◦ τV,V ξ ◦R−1V,V ξ ◦ τV ξ,V )(0,1) ⊗ idV2 ⊗ · · · ⊗ idVn ,

where (R−1
V ξ,V

◦ τV,V ξ ◦R−1V,V ξ ◦ τV ξ,V )(0,1) means R−1
V ξ,V

◦ τV,V ξ ◦R−1V,V ξ ◦ τV ξ,V acting on the tensor

product V ξ ⊗ V1. Here V1 = V2 = · · · = Vn = V . We use the following diagram in Figure 4.1 to

express Y1. By (4.14) TiYi+1Ti = Yi, we deduce the action of Yi, i = 1, 2, · · · , n as the following

diagram in Figure 4.2. Consider the action of Yi as diagram in Figure 4.3.

The category of finite dimensional complex representations of Uq(glN ) is a ribbon category.

Here we denote the universal R-matrix by R =
∑
xi⊗yi. For any finite dimensional representation
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Y1 = qN−η · · ·

V ξ

V ξ

V1

V1

V2

V2

Vn

Vn

Figure 4.1. The action of Y1

Yi = qN−η · · · · · ·

V ξ

V ξ

V1

V1

Vi−1

Vi−1

Vi

Vi

Vi+1

Vi+1

Vn

Vn

Figure 4.2. The action of Yi

Yi = qN−η · · ·

V ξ ⊗ V ⊗i−1

V ξ ⊗ V ⊗i−1

Vi

Vi

Vi+1

Vi+1

Vn

Vn

Figure 4.3. The action of Yi

M of Uq(glN ), let θM denote the twist on M . The ribbon element is q−2ρu with u =
∑
S(yi)xi.

Then the twist θM : M →M is given via acting by q−2ρu. Then we have Yi acts by

qN−η(R−1V(0,i−1),Vi
◦ τVi,V(0,i−1)

◦R−1Vi,V(0,i−1)
◦ τV(0,i−1),Vi)(0,i) ⊗ idVi+1 ⊗ · · · ⊗ idVn(4.58)

=qN−η(τVi,V(0,i−1)
◦RVi,V(0,i−1)

◦ τV(0,i−1),Vi ◦RV(0,i−1),Vi)
−1
(0,i) ⊗ idVi+1 ⊗ · · · ⊗ idVn(4.59)

=qN−η(θV(0,i−1)⊗Vi ◦ (θ−1V(0,i−1)
⊗ θ−1Vi ))−1(0,i) ⊗ idVi+1 ⊗ · · · ⊗ idVn(4.60)

=qN−η((θV(0,i−1)
⊗ θVi) ◦ θ

−1
V(0,i−1)⊗Vi)(0,i) ⊗ idVi+1 ⊗ · · · ⊗ idVn .(4.61)

Here V(0,i−1) = V ξ ⊗ V ⊗(i−1) and the subscript (0, i) means action on V ξ ⊗ V ⊗i.

4.5.2. Action of Yi on V(ν(0),ν(1),ν(2),··· ,ν(n)). By Theorem 4.4.3, we have a basis of the invariant

space

HomBσ(1χητ , V
ξ ⊗ V ⊗n)

indexed by the collection of sequences (ν(0), ν(1), ν(2), · · · , ν(n)) such that ν(0) = ξ and ν(n) satisfies

(4.56)-(4.57). Let T(ν(0),ν(1),ν(2),··· ,ν(n)) denote the standard tableau corresponding to the sequence
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(ν(0), ν(1), ν(2), · · · , ν(n)). Now let us denote by

V(ν(0),ν(1),ν(2),··· ,ν(i)),

i = 1, · · · , n, the irreducible summand of V ξ ⊗ V ⊗i indexed by the sequence

(ν(0), ν(1), ν(2), · · · , ν(i)).

This corresponds to a basis element of the invariant space HomBσ(1χητ , V
ξ ⊗ V ⊗n). We compute

the action of Yi on V(ν(0),ν(1),ν(2),··· ,ν(n)) to compute how Yi acts on the corresponding basis element.

Let ρ denote the half sum of positive roots. In [11], Leduc and Ram computed the action of

q−2ρ on an irreducible representation V ξ as multiplying by the scalar q−(ξ,ξ+2ρ). So we deduce the

action of Yi on V(ν(0),ν(1),ν(2),··· ,ν(n)).

Theorem 4.5.1. The action of Yi on V(ν(0),ν(1),ν(2),··· ,ν(n)) is multiplying by the scalar

q(ν
(i),ν(i)+2ρ)−(ν(i−1),ν(i−1)+2ρ)−(ε1,ε1+2ρ)−η+N .

Proof. Since V(ν(0),ν(1),ν(2),··· ,ν(n)) ⊂ V(ν(0),ν(1),··· ,ν(i)) ⊗ Vi+1 ⊗ · · · ⊗ Vn. By (4.61), we compute

the (θ−1V(0,i−1)⊗Vi)(0,i) action on the summand V(ν(0),ν(1),ν(2),··· ,ν(n)) of the tensor product V ξ ⊗ V ⊗n

via computing action θ−1V(0,i−1)⊗Vi on the irreducible summand

V(ν(0),ν(1),··· ,ν(i))

of the tensor product V ξ ⊗ V1 ⊗ · · · ⊗ Vi. By in [11], (θ−1V(0,i−1)⊗Vi)(0,i) acts by the scalar

q(ν
(i),ν(i)+2ρ).

Similarly, since V(ν(0),ν(1),ν(2),··· ,ν(n)) ⊂ V(ν(0),ν(1),ν(2),··· ,ν(i−1)) ⊗ Vi ⊗ · · · ⊗ Vn. We compute the

(θV(0,i−1)
)(0,i−1) action on the summand V(ν(0),ν(1),ν(2),··· ,ν(n)) of the tensor product V ξ ⊗ V ⊗n via
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computing action θV(0,i−1)
on the irreducible summand

V(ν(0),ν(1),··· ,ν(i−1))

of the tensor product V ξ ⊗ V1 ⊗ · · · ⊗ Vi−1. By in [11], (θV(0,i−1)
)(0,i−1) acts by the scalar

q−(ν
(i−1),ν(i−1)+2ρ).

Moreover, θV acts on V by the scalar q−(ε1,ε1+2ρ).

Hence Yi acts on V(ν(0),ν(1),ν(2),··· ,ν(n)) by the scalar

q(ν
(i),ν(i)+2ρ)−(ν(i−1),ν(i−1)+2ρ)−(ε1,ε1+2ρ)−η+N .

�

Corollary 4.5.2. Let v(ν(0),ν(1),ν(2),··· ,ν(n)) be the basis vector corresponding to

(ν(0), ν(1), ν(2), · · · , ν(n)).

Then it follows

Yi.v(ν(0),ν(1),ν(2),··· ,ν(n)) = q(ν
(i),ν(i)+2ρ)−(ν(i−1),ν(i−1)+2ρ)−(ε1,ε1+2ρ)−η+Nv(ν(0),ν(1),ν(2),··· ,ν(n)).

4.5.3. Y -actions in terms of contents. Let T = T(ν(0),ν(1),ν(2),··· ,ν(n)) be the standard tableau

corresponding to the sequence (ν(0), ν(1), ν(2), · · · , ν(n)) which corresponds to a basis element

vT = v(ν(0),ν(1),ν(2),··· ,ν(n))

of the invariant space F σ,η,τn (V ξ). We deduce the fact that

(ν(i), ν(i) + 2ρ)− (ν(i−1), ν(i−1) + 2ρ)− (ε1, ε1 + 2ρ)

=2contT (i).

So we have the action of Yi on vT is computed by

q2contT (i)−η+N .
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4.6. Image of the quantized coordinate ring Aq(GLN )

Let Aq(GLN ) be the quantized coordinate ring. We consider the image of Aq(GLN ) under the

Jordan-Ma functor and we use the Uq(glN )⊗ Uq(glN )-structure of Aq(GLN )

Aq(GLN ) =
⊕
β∈P+

V β∨ � V β,

where β∨ is the dual of β. If β =
∑N

i=1 βiεi, then β∨ =
∑N

i=1−βN−i+1εi.

4.6.1. The invariant space F σ,η,τn,ψ,ω,ι(Aq(GLN )). First, we compute the invariant space

HomB′ψ
(1χωι , V

β∨)

for any β ∈ P+.

Let 1ω be the one dimensional character of Uq(glN ) with

1ω(l±ij) =


0, i 6= j

q∓ω/2, i = j.

It is straightforward to check that the definition of 1ω is compatible with relations (4.47)-(4.50).

Lemma 4.6.1. It holds that

HomB′ψ
(1λωι , V

ν) ∼= HomB′ψ
(1λ0ι , V

ν ⊗ 1ω).

The proof of Lemma 4.6.1 is similar to Lemma 4.4.2. With Lemma 4.6.1, it suffices for us to

compute in the case ω = 0. To compute the invariant space HomB′ψ
(1χ0

ι
, V β∨), we deduce the
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following fact.

HomB′ψ
(1λ0ι , V

β∨)

∼={v ∈ V β∨ |(S(L−)(Jψ)−1L+)ij .v = (J ι)−1ij v, 1 ≤ i, j ≤ N}

={v ∈ V β∨ |((S(L−)(Jψ)−1L+)ij − (J ι)−1ij ).v = 0, 1 ≤ i, j ≤ N}

={v ∈ V β∨ |(((Jψ)−1L+)ij − (L−(J ι)−1)ij).v = 0, 1 ≤ i, j ≤ N}

={v ∈ V β∨ |((L+J ι)ij − (JψL−)ij).v = 0, 1 ≤ i, j ≤ N}.

So we compute HomB′ψ
(1λ0ι , V

β∨) by computing the vectors in V β∨ killed by the left action of tψι .

Then we have the theorem for the invariant space HomB′ψ
(1λωι , V

β∨).

Theorem 4.6.2. In the case ψ − ι is an even integer. The vector space HomB′ψ
(1λωι , V

β∨) is

either one dimensional or zero. Moreover, it is nonzero if and only if β =
∑N

i=1 βiεi, where β ∈ P+

and

βi =
−ω + ψ − ι

2
, i = p+ 1, · · · , N − p,(4.62)

βi + βN−i+1 = −ω, i = 1, · · · , p.(4.63)

Proof. This theorem is verified Lemma 4.6.1, Proposition A.2.2 and Theorem A.1.1 in terms

of β∨. Then (4.62) and (4.63) follow. �

Let Bψ ⊂ P+ denote the collection of β ∈ P+ satisfying (4.62)-(4.63). Then the vector space

F σ,η,τn,ψ,ω,ι(Aq(GLN ))

=HomB′ψ�Bσ
(1λωι � 1χητ , (

⊕
β∈P+

V β∨ � V β)⊗2 (1 � V1)⊗2 · · · ⊗2 (1 � Vn))

∼=
⊕
β∈Bψ

HomBσ(1χητ , V
β ⊗ V1 ⊗ · · · ⊗ Vn).

On the other hand, according to Theorem 4.4.3, for each β ∈ Bψ, the vector space

HomBσ(1χητ , V
β ⊗ V1 ⊗ · · · ⊗ Vn)
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has a basis indexed by the collection of sequences (ν(0), ν(1), · · · , ν(n)) such that ν(0) = β and ν(n)

satisfying (4.56)-(4.57). Equivalently, a basis indexed by the collection of standard tableaux T of

shape ν/β such that ν satisfying (4.56)-(4.57).

Theorem 4.6.3. The invariant space F σ,η,τn,ψ,ω,ι(Aq(GLN )) has a basis indexed by the collection

of sequences (ν(0), ν(1), · · · , ν(n)) such that ν(0) satisfying (4.62)-(4.63) and ν(n) satisfying (4.56)-

(4.57). Equivalently, a basis indexed by the collection of standard tableaux T of shape ν(n)/β such

that ν(n) satisfying (4.56)-(4.57) and β satisfying (4.62)-(4.63). In the case ω − ψ + ι or η + σ − τ

is not an even integer, the invariant space F σ,η,τn,ψ,ω,ι(Aq(GLN )) = 0.
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APPENDIX A

Coideal subalgebras and invariants spaces

The theorem we proof here is an analogue of the theory in [14].

A.1. Main result

Theorem A.1.1. Take σ − τ to be an even integer. There exist nonzero vectors v ∈ V ν such

that tτσ.v = 0 or (tτσ)∗.v = 0 if and only if ν =
∑N

i=1 νiεi, where ν ∈ P+ and

νi =
σ − τ

2
, i = p+ 1, · · · , N − p,(A.1)

νi + νN−i+1 = 0, i = 1, · · · , p.(A.2)

A.2. Proof of the main theorem

A.2.1. Properties of the invariants.

Lemma A.2.1. Let V ν be an irreducible highest weight Uq(glN )-module with highest weight

ν ∈ P+ and v ∈ V ν be a nonzero tτσ-invariant vector, i.e. tτσ.v = 0. Let vν denote the highest

weight component of v. Then vν 6= 0.

Proof. Let m̃ij = ((Jτ )−1L+Jσ −L−)ij = −l−ij + ((Jτ )−1L+Jσ)ij , which are generators of tτσ.

Consider the action of m̃ij for i < j,

m̃ij .v = 0.

Let vµ be the maximal weight component of v such that vµ 6= 0. Then take the µ+εi−εj component

of both sides of the equation above, we have l−ij .vµ = 0 for any i < j. This implies µ is the highest

weight of the module V ν and hence µ = ν.

�

Proposition A.2.2. Let v ∈ V ν be a nonzero tτσ-invariant. Then for any w ∈ V ν such that

tτσ.w = 0, w = kv for some k ∈ C.
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Proof. Let v and w be nonzero tτσ invariants of the highest weight module V ν . Then we have

vν 6= 0 and wν 6= 0. Since the ν-component of V ν is one dimensional. we have wν = kvν for

some k ∈ C. Consider the vector kv − w ∈ V ν , this is also a tτσ invariant. But the ν-component

(kv − w)ν = kvν − wν = 0, which forces kv − w = 0 and hence w = kv.

�

Remark A.2.3. The dimension of the tτσ-invariant subspace of V ν is either 0 or 1.

Proposition A.2.4. Let v ∈ V ν be a tησ-invariant and w ∈ V µ be a tτη-invariant. Then the

tensor w ⊗ v ∈ V µ ⊗ V ν is a tτσ-invariant.

Proof. This fact is verified by the following computation.

∆(L+Jσ − JτL−)

=L+ ⊗ L+Jσ − JτL− ⊗ L−

=L+ ⊗ L+Jσ − L+ ⊗ JηL− + L+ ⊗ JηL− − JτL− ⊗ L−

=L+ ⊗ L+Jσ − L+ ⊗ JηL− + L+Jη ⊗ L− − JτL− ⊗ L−

=L+ ⊗ (L+Jσ − JηL−) + (L+Jη − JτL−)⊗ L−

�

Remark A.2.5. By Proposition A.2.1, the image of w ⊗ v under the canonical map

V µ ⊗ V ν → V (ν + µ)

is a tτσ-invariant in V (ν + µ). It suffices to show Theorem A.1.1 in the case σ − τ = ±2.

Let tσσ be the subalgebra generated by the entries of the matrix L+Jσ − JσL−. We have the

following fact in [14].

Theorem A.2.6. [14] There exist a nonzero vector v ∈ V ν such that tσσ.v = 0 if and only if

νi = 0, i = p+ 1, · · · , N − p,

νi + νN−i+1 = 0, i = 1, · · · , p.
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Corollary A.2.7. Let v ∈ V ν be a tτσ-invariant and w ∈ V µ is a tσσ-invariant. Then

w ⊗ v ∈ V µ ⊗ V ν

is a tτσ-invariant.

Remark A.2.8. It suffices to show there is a nonzero vector in V ν which is killed by tτσ where

σ − τ = 2 and ν =
∑N−p

i=1 εi −
∑N

j=N−p+1 εj.

A.2.2. Actions of e∗i and f∗i . Let V = V ε1 be the vector representation of Uq(glN ) and V ∗

is the dual representation of the vector representation. We take the basis {v1, · · · , vN} of V and

the dual basis {v∗1, · · · , v∗N} of V ∗. We have

ei.vi+1 = vi, ei.vj = 0, , j 6= i+ 1,

fi.vi = vi+1, fi.vj = 0, j 6= i,

ei.v
∗
i = −q−1v∗i+1, ei.v

∗
j = 0, j 6= i,

fi.v
∗
i+1 = −qv∗i , fi.v

∗
j = 0, j 6= i+ 1.

We compute the actions of ei and fi on the representation (
∧N−p V )⊗ (

∧p V ∗). Let

I = {1 ≤ i1 < · · · < iN−p ≤ N}

and vI = vi1∧· · ·∧viN−p , then {vI |I ⊂ {1, · · · , N, |I| = N−p}} forms a basis of
∧N−p V . Similarly,

let

J = {1 ≤ j1 < · · · < jp ≤ N, |J | = p}
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and v∗J = v∗j1 ∧ · · · ∧ v
∗
jp

, then {v∗J |J ⊂ {1, · · · , N}} forms a basis of
∧p V ∗. The actions of ei and

fi are computed as follows.

ei.vI = vI−{i+1}∪{i}, (i /∈ I, i+ 1 ∈ I), ei.vI = 0 otherwise,

fi.vI = vI−{i}∪{i+1}, (i+ 1 /∈ I, i ∈ I), fi.vI = 0 otherwise,

ej .v
∗
J = −q−1vJ−{j}∪{j+1}, (j + 1 /∈ J, j ∈ J), ej .v

∗
J = 0 otherwise,

fj .v
∗
J = −qvJ−{j+1}∪{j}, (j /∈ J, j + 1 ∈ J), fj .v

∗
J = 0 otherwise.

Recall the Hopf ∗ structure of Uq(glN ). The actions of e∗i and f∗i on (
∧N−p V ) ⊗ (

∧p V ∗) are

as follows.

f∗i .vI = vI−{i+1}∪{i}, (i /∈ I, i+ 1 ∈ I), f∗i .vI = 0 otherwise,(A.3)

e∗i .vI = vI−{i}∪{i+1}, (i+ 1 /∈ I, i ∈ I), e∗i .vI = 0 otherwise,(A.4)

f∗j .v
∗
J = −q−1vJ−{j}∪{j+1}, (j + 1 /∈ J, j ∈ J), f∗j .v

∗
J = 0 otherwise,(A.5)

e∗j .v
∗
J = −qvJ−{j+1}∪{j}, (j /∈ J, j + 1 ∈ J), e∗j .v

∗
J = 0 otherwise.(A.6)

Similarly, we compute the actions of ei and fi on the representation (
∧p V )⊗ (

∧N−p V ∗). Let

I = {1 ≤ i1 < · · · < ip ≤ N} and vI = vi1∧· · ·∧vip , then {vI |I ⊂ {1, · · · , N}} forms a basis of
∧p V .

Similarly, let J = {1 ≤ j1 < · · · < jN−p ≤ N} and v∗J = v∗j1 ∧ · · · ∧ v
∗
jN−p

, then {v∗J |J ⊂ {1, · · · , N}}

forms a basis of
∧N−p V ∗.

We compute the actions of e∗i and f∗i on (
∧p V )⊗ (

∧N−p V ∗) as follows.

f∗i .vI = vI−{i+1}∪{i}, (i /∈ I, i+ 1 ∈ I), f∗i .vI = 0 otherwise,

e∗i .vI = vI−{i}∪{i+1}, (i+ 1 /∈ I, i ∈ I), e∗i .vI = 0 otherwise,

f∗j .v
∗
J = −q−1vJ−{j}∪{j+1}, (j + 1 /∈ J, j ∈ J), f∗j .v

∗
J = 0 otherwise,

e∗j .v
∗
J = −qvJ−{j+1}∪{j}, (j /∈ J, j + 1 ∈ J), e∗j .v

∗
J = 0 otherwise.
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A.2.3. tτσ-invariant vector. With the actions of e∗i and f∗i on (
∧N−p V )⊗ (

∧p V ∗), we com-

pute the actions of the generators mij of tτσ on (
∧N−p V )⊗ (

∧p V ∗). And we are going to show the

following fact that.

Theorem A.2.9. The vector v =
∑

I,J tIJvI ⊗ v∗J ∈ (
∧N−p V )⊗ (

∧p V ∗), with I satisfies

(1){p+ 1, · · · , N − p} ⊂ I

(2)|{i,N − i+ 1} ∩ I| = 1, i = 1, · · · , p

J satisfies

(1){p+ 1, · · · , N − p} ∩ J = ∅,

(2)|{i,N − i+ 1} ∩ J | = 1, i = 1, · · · , p

and tIJ = Πp
i=1ki, where

ki =



1, i ∈ I and i /∈ J

(−1)p−iq2N+σ+1−p−3i, i ∈ I and i ∈ J

(−1)N−p−i−1qN−p−i−1+σ, i /∈ I and i /∈ J

(−1)N−1q3N−2p−4i+2σ, i /∈ I and i ∈ J

in (
∧N−p V )⊗ (

∧p V ∗) is a tτσ-invariant, where σ − τ = 2.

Remark A.2.10. By Theorem A.2.9 above, we verify the existence of a nonzero tτσ-invariant in

V ν , where σ − τ = 2 and ν =
∑N−p

i=1 εi −
∑N

j=N−p+1 εj.

Moreover, we have a similar fact in the case σ − τ = −2.

Theorem A.2.11. The vector v =
∑

I,J tIJvI ⊗ v∗J ∈ (
∧p V )⊗ (

∧N−p V ∗), with I satisfies

(1){p+ 1, · · · , N − p} ∩ I = ∅

(2)|{i,N − i+ 1} ∩ I| = 1, i = 1, · · · , p
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J satisfies

(1){p+ 1, · · · , N − p} ⊂ J,

(2)|{i,N − i+ 1} ∩ J | = 1, i = 1, · · · , p

and tIJ = Πp
i=1ki, where

ki =



1, i ∈ I and i /∈ J

(−1)N−p−i+1qN+p−τ+3−3i, i ∈ I and i ∈ J

(−1)p−iqp−i+1+τ , i /∈ I and i /∈ J

(−1)N−1qN+2p−4i−2τ , i /∈ I and i ∈ J

in (
∧p V )⊗ (

∧N−p V ∗) is a tτσ-invariant, where σ − τ = −2.

We will compute the coefficient tIJ in the following subsections.

A.2.4. Proof of Theorem A.1.1. Let p be a positive integer such that p < N
2 .

Lemma A.2.12. Let v ∈ V ν be a tτσ-invariant and let vλ be the weight λ-component of v. If

vλ 6= 0, then λ satisfies

λi =
σ − τ

2
, i = p+ 1, · · · , N − p,(A.7)

λi + λN−i+1 = 0, i = 1, · · · , p.(A.8)

Proof. Consider the action of the (i, i)-entry mii of L+Jσ−JτL− on v, where p+1 ≤ i ≤ N−p.

We have

mii = −q−σl+ii + q−τ l−ii

= −q−σqεi + q−τq−εi .

and mii.v = 0. Let λ =
∑N

i=1 λiεi. So each λ-component (mii.v)λ of mii.v is also zero and we have

(mii.v)λ = mii.vλ. Then mii.vλ = −q−σqλi + q−τq−λi = 0, which implies

λi =
σ − τ

2
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for i = p+ 1, · · · , N − p. This proves (A.7).

Then consider the (N − i+ 1, i)-entry mN−i+1,i, where 1 ≤ i ≤ p with

mN−i+1,i = l+N−i+1,N−i+1 − l
−
ii = qεN−i+1 − q−εi .

This proves (A.8). �

Next we show Theorem A.1.1 in the case σ − τ = 2. Hence we compute nonzero tτσ-invariant

vectors in (
∧N−p V )⊗ (

∧p V ∗).

Remark A.2.13. Suppose v ∈ (
∧N−p V )⊗(

∧p V ∗) is a nonzero tτσ-invariant vector. Since each

weight λ-component vλ is a linear combination of vI ⊗ v∗J , we have λi = 1 for i = p+ 1, · · · , N − p,

λi = ±1 and λi + λN−i+1 = 0 for i = 1, · · · , p, according to Lemma A.2.12.

Lemma A.2.14. Let v be a tτσ-invariant vector in (
∧N−p V )⊗ (

∧p V ∗) and v is a linear combi-

nation of v =
∑

IJ tIJvI ⊗ v∗J . If the coefficient tIJ of vI ⊗ v∗J is nonzero in the linear combination,

then we have {p+ 1, · · · , N − p} ⊂ I and {p+ 1, · · · , N − p} ∩ J = ∅.

Proof. Let λ denote the weight of the tensor vI ⊗ v∗J , which is the sum of the weight of vI

and the weight of v∗J . The weight of vI is
∑

i∈I εi and the weight of v∗J is −
∑

j∈J εj . For each i

such that p + 1 ≤ i ≤ N − p, the fact that λi = 1 implies i ∈ I and i /∈ J . Then it follow that

{p+ 1, · · · , N − p} ⊂ I and {p+ 1, · · · , N − p} ∩ J = ∅. �

Lemma A.2.15. Let tIJ denote the coefficient of vI⊗v∗J in the tτσ-invariant v. Let ω =
∑N

i=1 ωiεi

be the weight of vI ⊗ v∗J and k is the largest integer less or equal to p such that ωk 6= 1. If tIJ 6= 0,

then the coefficient tI∪{k}−{N−k+1},J∪{N−k+1}−{k} 6= 0.

Proof. By Lemma A.2.13, ωk = 0 or ωk = −1. If ωk = 0, then there are two possibilities:

(1)k /∈ I and k /∈ J or (2) k ∈ I and k ∈ J . Consider the action of the (k,N − p)-entry mk,N−p of

the matrix L+Jσ − JτL−, where

mk,N−p = −q−σl+k,N−p − l
−
N−k+1,N−p

= −q−σ(q − q−1)qεkeN−p,k + (q − q−1)eN−p,N−k+1q
−εN−p
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and the condition m∗k,N−p.v = 0.

Case 1. ωk = 0, k ∈ I and k ∈ J .

The left action of e∗N−p,k on vI ⊗ v∗J gives a nonzero vector:

e∗N−p,k.(tIJvI ⊗ v∗J) = (−q)−N+p+k+1(1⊗ f∗N−p−1 · · · f∗k ).(tIJvI ⊗ v∗J)

= (−q)−2N+2p+2k+3tIJ(vI ⊗ v∗J∪{N−p}−{k})

6= 0.

Apart from vI⊗v∗J , the tensor vI⊗v∗J∪{N−k+1}−{k} is the only weight component of v gives nonzero

vI ⊗ v∗J∪{N−p}−{k} under the left action of m∗k,N−p.

e∗N−p,N−k+1.(vI ⊗ v∗J∪{N−k+1}−{k}) = (qεN−p−εN−k+1 ⊗ e∗N−k · · · e∗N−p).(vI ⊗ v∗J∪{N−k+1}−{k})

= q(−q)p−k+1(vI ⊗ v∗J∪{N−p}−{k}).

The condition m∗k,N−p.v = 0 implies the coefficient

tI,J∪{N−k+1}−{k} = tI∪{k}−{N−k+1},J∪{N−k+1}−{k} = −tIJ(−q)−2N+p+3k+1 6= 0.

Case 2. ωk = 0, k /∈ I and k /∈ J . The left action of e∗N−p,k on vI ⊗ v∗J gives a nonzero vector:

e∗N−p,k.(tIJvI ⊗ v∗J) = (−q)−N+p+k+1(f∗N−p−1 · · · f∗k ⊗ q−εk+εN−p).(tIJvI ⊗ v∗J)

= (−q)−N+p+k+1tIJ(vI∪{k}−{N−p} ⊗ v∗J)

6= 0.

Apart from vI⊗v∗J , the tensor vI∪{k}−{N−k+1}⊗v∗J is the only weight component of v gives nonzero

vI∪{k}−{N−p} ⊗ v∗J under the left action of m∗k,N−p.

e∗N−p,N−k+1.(vI∪{k}−{N−k+1} ⊗ v∗J) = (qεN−p−εN−k+1 ⊗ e∗N−k · · · e∗N−p).(vI∪{k}−{N−k+1} ⊗ v∗J)

= q(−q)p−k+1(vI∪{k}−{N−p} ⊗ v∗J).
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The condition m∗k,N−p.v = 0 implies the coefficient

tvI∪{k}−{N−k+1},J = tI∪{k}−{N−k+1},J∪{N−k+1}−{k} = −tIJ(−q)−N+2k−1 6= 0.

Case 3. ωk = −1. Then in this case, k /∈ I and k ∈ J .

The left action of e∗N−p,k on vI ⊗ v∗J gives two nonzero vectors:

e∗N−p,k.(tIJvI ⊗ v∗J) = (−q)−N+p+k+1(f∗N−p−1 · · · f∗k ⊗ q−εk+εN−p).(tIJvI ⊗ v∗J)

= q(−q)−N+p+k+1tIJ(vI∪{k}−{N−p} ⊗ v∗J)

6= 0

and

e∗N−p,k.(tIJvI ⊗ v∗J) = (−q)−N+p+k+1(1⊗ f∗N−p−1 · · · f∗k ).(tIJvI ⊗ v∗J)

= (−q)−2N+2p+2k+3tIJ(vI ⊗ v∗J∪{N−p}−{k})

6= 0.

Apart from vI⊗v∗J , the tensor vI∪{k}−{N−k+1}⊗v∗J is the only weight component of v gives nonzero

vI∪{k}−{N−p} ⊗ v∗J under the left action of m∗k,N−p.

e∗N−p,N−k+1.(vI∪{k}−{N−k+1} ⊗ v∗J) = (qεN−p−εN−k+1 ⊗ e∗N−k · · · e∗N−p).(vI∪{k}−{N−k+1} ⊗ v∗J)

= q(−q)p−k+1(vI∪{k}−{N−p} ⊗ v∗J).

The condition m∗k,N−p.v = 0 implies the coefficient

tI∪{k}−{N−k+1},J 6= 0.

Apart from vI⊗v∗J , the tensor vI⊗v∗J∪{N−k+1}−{k} is the only weight component of v gives nonzero

vI ⊗ v∗J∪{N−p}−{k} under the left action of m∗k,N−p.

e∗N−p,N−k+1.(vI ⊗ v∗J∪{N−k+1}−{k}) = (qεN−p−εN−k+1 ⊗ e∗N−k · · · e∗N−p).(vI ⊗ v∗J∪{N−k+1}−{k})

= (−q)p−k+1(vI ⊗ v∗J∪{N−p}−{k}).
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The condition m∗k,N−p.v = 0 implies the coefficient

tI,J∪{N−k+1}−{k} 6= 0.

Applying case 1 and case 2, we have

tI∪{k}−{N−k+1},J∪{N−k+1}−{k} 6= 0.

�

Lemma A.2.16. Let the vector v =
∑

I,J tIJvI ⊗ v∗J be a tτσ-invariant. Then the coefficient

tIJ is nonzero if and only if I satisfies |{i,N − i + 1} ∩ I| = 1, i = 1, · · · , p and J satisfies

|{i,N − i+ 1} ∩ J | = 1, i = 1, · · · , p.

Proof. Let us prove this lemma by contradiction. Let k be the maximal integer less or equal

to p such that |{k,N − k + 1} ∩ I| 6= 1. Then consider two cases: (1) |{k,N − k + 1} ∩ I| = 0

or (2) |{k,N − k + 1} ∩ I| = 2. The (k,N − p)-entry mk,N−p of the matrix L+Jσ − JτL− equals

−q−σl+k,N−p− l
−
N−k+1,N−p. The fact m∗k,N−p.v = 0 implies (m∗k,N−p.v)ω = 0 for every ω-component.

By Lemma A.2.15, we assume {k + 1, · · · , p} ⊂ I and {N − p+ 1, · · · , N − k} ⊂ J .

Case 1. |{k,N − k + 1} ∩ I| = 0. By (A.3)-(A.6), the action of e∗N−p,N−k+1 is as follows.

e∗N−p,N−k+1.(vI ⊗ v∗J) = (e∗N−k · · · e∗N−p+1e
∗
N−p ⊗ 1).(vI ⊗ v∗J)

= vI−{N−p}∪{N−k+1} ⊗ v∗J 6= 0.

Let λ denote the weight of vI ⊗ v∗J . Then λk = 0 by |{k,N − k + 1} ∩ I| = 0 and Lemma

A.2.12. The fact m∗k,N−p.v = 0 forces the existence of a term which gives vI−{N−p}∪{N−k+1} ⊗ v∗J
after the action of e∗N−p,k. The possible vector vI′ ⊗ v∗J ′ is of weight λ − εk + εN−k+1 and hence

k /∈ I ′, N − k + 1 ∈ I ′, k ∈ J ′ and N − k + 1 /∈ J ′. Then the action of e∗N−p,k on vI′ ⊗ v∗J ′

gives a linear combination of vI′−{N−p}∪{k} ⊗ v∗J ′ and vI′ ⊗ v∗J ′−{k}∪{N−p}, neither of which is

vI−{N−p}∪{N−k+1} ⊗ v∗J . So there is no vector gives vI−{N−p}∪{N−k+1} ⊗ v∗J after the action of

e∗N−p,k, which contradicts m∗k,N−p.v = 0.

128



Case 2. |{k,N − k + 1} ∩ I| = 2. The action of e∗N−p,N−k+1 gives the vector

e∗N−p,N−k+1.(vI ⊗ v∗J) = (qεN−p−εN−k+1 ⊗ e∗N−k · · · e∗N−p).(vI ⊗ v∗J)

= (−q)p−k(vI ⊗ v∗J−{N−k+1}∪{N−p}) 6= 0.

Let λ denote the weight of vI⊗v∗J . Then λk = 0 by |{k,N−k+1}∩I| = 2 and Lemma A.2.12. The

fact m∗k,N−p.v = 0 forces the existence of a term which gives vI⊗v∗J∪{N−p}−{N−k+1} after the action

of e∗N−p,k. The possible vector vI′⊗v∗J ′ is of weight λ−εk+εN−k+1 and hence k /∈ I ′, N−k+1 ∈ I ′,

k ∈ J ′ and N − k + 1 /∈ J ′. Then the action of e∗N−p,k on vI′ ⊗ v∗J ′ gives a linear combination of

vI′−{N−p}∪{k}⊗v∗J ′ and vI′⊗v∗J ′−{k}∪{N−p}, neither of which is vI−{N−p}∪{N−k+1}⊗v∗J . So there is

no vector gives vI−{N−p}∪{N−k+1}⊗ v∗J after the action of e∗N−p,k, which contradicts m∗k,N−p.v = 0.

�

Remark A.2.17. In summary, if the vI ⊗ v∗J with nonzero coefficient tIJ in the linear combi-

nation of a tτσ-invariant v, then the index I satisfies

{p+ 1, · · · , N − p} ⊂ I,(A.9)

|{i,N − i+ 1} ∩ I| = 1, i = 1, · · · , p(A.10)

J satisfies

{p+ 1, · · · , N − p} ∩ J = ∅,(A.11)

|{i,N − i+ 1} ∩ J | = 1, i = 1, · · · , p.(A.12)

So it suffices to compute the coefficients of the vectors with indices I, J satisfying (A.9)-(A.12).

Moreover, let

ν =

N−p∑
i=1

εi −
N∑

j=N−p+1

εj .

By Proposition A.2.1, the highest weight ν-component vν of v is nonzero, namely tI0,J0 6= 0.

Without loss of generality, take vν = v{1,2,··· ,N−p} ⊗ v∗{N−p+1,··· ,N}. Let I0 = {1, · · · , N − p} and

J0 = {N − p+ 1, · · · , N}. And we denote vν = vI0 ⊗ v∗J0 .
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Lemma A.2.18. Let v ∈ (
∧N−p V ) ⊗ (

∧p V ∗) be a tτσ-invariant with nonzero highest weight

component vν = vI0 ⊗ v∗J0. Then for 1 ≤ i ≤ p, the ν − εi + εN−i+1-component of v is a lin-

ear combination of vI0 ⊗ v∗J0−{N−i+1}∪{i} and vI0−{i}∪{N−i+1} ⊗ v∗J0. In particular, the coefficient

of vI0 ⊗ v∗J0−{N−i+1}∪{i} is (−1)p−iq2N+σ+1−p−3i and the coefficient of vI0−{i}∪{N−i+1} ⊗ v∗J0 is

(−1)N−p−i−1qN−p−i−1+σ.

Proof. The (i,N − p)-entry mi,N−p of the matrix L+Jσ − JτL− is

mi,N−p = −q−σl+i,N−p − l
−
N−i+1,N−p

= q−σ(q − q−1)qεieN−p,i + (q − q−1)eN−p,N−i+1q
−εN−p .

The condition m∗i,N−p.v = 0 implies (m∗i,N−p.v)ω = 0, for any weight ω-component. Consider the

case when ω = ν − εN−p + εN−i+1. Let xi denote the coefficient of vI0 ⊗ v∗J0−{N−i+1}∪{i} and yi

denote the coefficient of vI0−{i}∪{N−i+1} ⊗ v∗J0 . There are two terms of weight ω, i.e.

(m∗i,N−p.v)ω =− (l−N−i+1,N−p)
∗.(vI0 ⊗ v∗J0)

− q−σ(l+i,N−p)
∗.[xi(vI0 ⊗ v∗J0−{N−i+1}∪{i}) + yi(vI0−{i}∪{N−i+1} ⊗ v∗J0)]

=0.

To compute the first term,

(l−N−i+1,N−p)
∗.(vI0 ⊗ v∗J0)

=− (q − q−1)q−εN−pe∗N−p,N−i+1.(vI0 ⊗ v∗J0)

=− (q − q−1)q−εN−p [((eN−p · · · eN−i)∗ ⊗ 1).(vI0 ⊗ v∗J0)

+ (qεN−p−εN−i+1 ⊗ (eN−p · · · eN−i)∗).(vI0 ⊗ v∗J0)]

=− (q − q−1)[(vI0−{N−p}∪{N−i+1} ⊗ v∗J0)

− (−q)p−i+2(vI0 ⊗ v∗J0−{N−i+1}∪{N−p})].
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The second term is compute as follows. We have

q−σ(l+i,N−p)
∗.xi(vI0 ⊗ v∗J0−{N−i+1}∪{i})

=q−σ(q − q−1)e∗N−p,iqεi .xi(vI0 ⊗ v∗J0−{N−i+1}∪{i})

=xiq
−σ(q − q−1)(−q−1)N−p−i−1(1⊗ (fi · · · fN−p−1)∗)(vI0 ⊗ v∗J0−{N−i+1}∪{i})

=xiq
−σ(q − q−1)(−q−1)2N−2p−2i−1(vI0 ⊗ v∗J0−{N−i+1}∪{N−p})

and

q−σ(l+i,N−p)
∗.yi(vI0−{i}∪{N−i+1} ⊗ v∗J0)

=q−σ(q − q−1)e∗N−p,iqεi .yi(vI0−{i}∪{N−i+1} ⊗ v∗J0)

=yiq
−σ(q − q−1)(−q−1)N−p−i−1((fi · · · fN−p−1)∗ ⊗ q−εi+εN−p)(vI0−{i}∪{N−i+1} ⊗ v∗J0)

=yiq
−σ(q − q−1)(−q−1)N−p−i−1(vI0−{N−p}∪{N−i+1} ⊗ v∗J0).

Hence we obtain the following equations

(−q)p−i+2 + q−σ(−q−1)2N−2p−2i−1xi = 0,

− 1 + q−σ(−q−1)N−p−i−1yi = 0.

We have

(A.13) xi = (−1)p−iq2N+σ−p−3i+1

and

(A.14) yi = (−1)N−p−i−1qN−p−i+σ−1.

�

Lemma A.2.19. Let v ∈ (
∧N−p V ) ⊗ (

∧p V ∗) be a tτσ-invariant with nonzero highest weight

component vI0 ⊗ v∗J0. Then for 1 ≤ i ≤ p, the only basis element of weight ν − 2εi + 2εN−i+1 is
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vI0−{i}∪{N−i+1} ⊗ v∗J0−{N−i+1}∪{i}, the coefficient of which in v is

tI0−{i}∪{N−i+1},J0−{N−i+1}∪{i} = (−1)N−1q3N−2p−4i+2σ.

Proof. Consider the right action of (i,N − p)-entry mi,N−p of the matrix L+Jσ − JτL− on v.

The condition m∗i,N−p.v = 0 implies (m∗i,N−p.v)ω = 0, for any weight ω-component. Consider the

case when ω = ν− εi− εN−p+ 2εN−i+1. Let zi denote the coefficient tI0−{i}∪{N−i+1},J0−{N−i+1}∪{i}

of

vI0−{i}∪{N−i+1} ⊗ v∗J0−{N−i+1}∪{i}.

There are two terms of weight ω, i.e.

(m∗i,N−p.v)ω =− (l−N−i+1,N−p)
∗.[xi(vI0 ⊗ v∗J0−{N−i+1}∪{i}) + yi(vI0−{i}∪{N−i+1} ⊗ v∗J0)]

− q−σ(l+i,N−p)
∗.zi(vI0−{i}+{N−i+1} ⊗ v∗J0−{N−i+1}∪{i})

=0.

Computing the first term, we have

(l−N−i+1,N−p)
∗.xi(vI0 ⊗ v∗J0−{N−i+1}∪{i})

=− (q − q−1)q−εN−pe∗N−p,N−i+1.xi(vI0 ⊗ v∗J0−{N−i+1}∪{i})

=− xi(q − q−1)((e∗N−p · · · e∗N−i)∗ ⊗ 1).(vI0 ⊗ v∗J0−{N−i+1}∪{i})

=− xi(q − q−1)(vI0−{N−p}+{N−i+1} ⊗ v∗J0−{N−i+1}∪{i})

and

(l−N−i+1,N−p)
∗.yi(vI0−{i}∪{N−i+1} ⊗ v∗J0)

=− (q − q−1)q−εN−pe∗N−p,N−i+1.yi(vI0−{i}∪{N−i+1} ⊗ v∗J0)

=− yi(q − q−1)(qεN−p−εN−i+1 ⊗ (eN−p · · · eN−i)∗).(vI0−{i}∪{N−i+1} ⊗ v∗J0)

=− yi(q − q−1)(−q)p−i+1(vI0−{i}+{N−i+1} ⊗ v∗J0−{N−i+1}∪{N−p}).
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The second term is computed as follows. We obtain

q−σ(l+i,N−p)
∗.zi(vI0−{i}∪{N−i+1} ⊗ v∗J0−{N−i+1}∪{i})

=q−σ(q − q−1)e∗N−p,iqεi .zi(vI0−{i}∪{N−i+1} ⊗ v∗J0−{N−i+1}∪{i})

=ziq
−σ(q − q−1)q−1(−q−1)N−p−i−1

[((fi · · · fN−p−1)∗ ⊗ q−εi+εN−p).(vI0−{i}∪{N−i+1} ⊗ v∗J0−{N−i+1}∪{i})

+ (1⊗ (fi · · · fN−p−1)∗).(vI0−{i}∪{N−i+1} ⊗ v∗J0−{N−i+1}∪{i})]

=ziq
−σ(q − q−1)(−q−1)N−p−i−1(vI0−{N−p}∪{N−i+1} ⊗ v∗J0−{N−i+1}∪{i})

− ziq−σ(q − q−1)(−q−1)2N−2p−2i(vI0−{i}∪{N−i+1} ⊗ v∗J0−{N−i+1}∪{N−p}).

Then we obtain the equations

− xi + q−σ(−q−1)N−p−i−1zi = 0(A.15)

(−q)p−i+1yi + q−σ(−q−1)2N−2p−2izi = 0(A.16)

and thus we obtain from (A.13)-(A.14)

zi = (−1)N−1q3N−2p−4i+2σ.

�
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pp. 165–266.

[3] Z. Daugherty, Degenerate two-boundary centralizer algebras, Pacific J. Math., 258 (2012), pp. 91–142.

[4] Z. Daugherty and A. Ram, Two boundary Hecke Algebras and combinatorics of type C, arXiv e-prints, (2018),

p. arXiv:1804.10296.

[5] P. Etingof, R. Freund, and X. Ma, A Lie-theoretic construction of some representations of the degenerate

affine and double affine Hecke algebras of type BCn, Represent. Theory, 13 (2009), pp. 33–49.

[6] J. Jantzen, Lectures on quantum groups, (2021).

[7] D. Jordan, Quantum D-modules, elliptic braid groups, and double affine Hecke algebras, Int. Math. Res. Not.

IMRN, (2009), pp. 2081–2105.

[8] D. Jordan and X. Ma, Quantum symmetric pairs and representations of double affine Hecke algebras of type

C∨Cn, Selecta Math. (N.S.), 17 (2011), pp. 139–181.

[9] S. Kato, An exotic Deligne-Langlands correspondence for symplectic groups, Duke Math. J., 148 (2009), pp. 305–

371.

[10] A. Klimyk and K. Schmudgen, Quantum groups and their representations, 1997.

[11] R. Leduc and A. Ram, A ribbon hopf algebra approach to the irreducible representations of centralizer algebras:

The brauer, birman–wenzl, and type a iwahori–hecke algebras, Advances in Mathematics, 125 (1997), pp. 1–94.

[12] X. Ma, On some representations of degenerate affine hecke algebras of type bcn, 2008.

[13] M. Noumi, Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous

spaces, Advances in Mathematics, 123 (1995), pp. 16–77.

[14] M. Noumi, M. Dijkhuizen, and T. Sugitani, Multivariable askey-wilson polynomials and quantum complex

grassmannians, Fields Inst. Commun., 14 (1996).

[15] S. Okada, Applications of minor summation formulas to rectangular-shaped representations of classical groups,

J. Algebra, 205 (1998), pp. 337–367.

134



[16] A. Ram, Affine Hecke algebras and generalized standard Young tableaux, vol. 260, 2003, pp. 367–415. Special

issue celebrating the 80th birthday of Robert Steinberg.

[17] A. Ram, Calibrated representations of affine hecke algebras, arXiv: Representation Theory, (2004).

[18] M. Reeder, Nonstandard intertwining operators and the structure of unramified principal series representations,

Forum Math., 9 (1997), pp. 457–516.

[19] T. Suzuki and M. Vazirani, Tableaux on periodic skew diagrams and irreducible representations of the double

affine Hecke algebra of type A, Int. Math. Res. Not., (2005), pp. 1621–1656.

135


	Abstract
	Acknowledgments
	Chapter 1. Introduction
	Chapter 2. Degenerate affine Hecke algebras of type C and Etingof-Freund-Ma functor 
	2.1. Definitions and notations
	2.2. Etingof-Freund-Ma Functor
	2.3. GLN-module
	2.4. Invariant space
	2.5. Y- semisimplicity
	2.6. Intertwining operators
	2.7. Combinatorial moves
	2.8. Irreducible representations
	2.9. Combinatorial description

	Chapter 3. Degenerate double affine Hecke algebras of type C 
	3.1. Generators and relations of dDAHA
	3.2. Invariant space
	3.3. Y-actions
	3.4. Intertwining operators
	3.5. Combinatorial moves and irreducibility
	3.6. Another combinatorial description

	Chapter 4. Affine and double affine Hecke algebras of type C and Jordan-Ma functor 
	4.1. Affine and Double Affine Hecke Algebras
	4.2. Intertwining Operators
	4.3. Quantum General Linear Groups
	4.4. Jordan-Ma functor and representations of AHA and DAHA
	4.5. Y-actions
	4.6. Image of the quantized coordinate ring Aq(GLN)

	Appendix A. Coideal subalgebras and invariants spaces 
	A.1. Main result
	A.2. Proof of the main theorem

	Bibliography



