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Purpose: Intensity modulated radiation therapy (IMRT) is commonly employed for treating head
and neck (H&N) cancer with uniform tumor dose and conformal critical organ sparing. Accurate
delineation of organs-at-risk (OARs) on H&N CT images is thus essential to treatment quality. Man-
ual contouring used in current clinical practice is tedious, time-consuming, and can produce inconsis-
tent results. Existing automated segmentation methods are challenged by the substantial inter-patient
anatomical variation and low CT soft tissue contrast. To overcome the challenges, we developed a
novel automated H&N OARs segmentation method that combines a fully convolutional neural net-
work (FCNN) with a shape representation model (SRM).
Methods: Based on manually segmented H&N CT, the SRM and FCNN were trained in two steps:
(a) SRM learned the latent shape representation of H&N OARs from the training dataset; (b) the pre-
trained SRM with fixed parameters were used to constrain the FCNN training. The combined seg-
mentation network was then used to delineate nine OARs including the brainstem, optic chiasm,
mandible, optical nerves, parotids, and submandibular glands on unseen H&N CT images. Twenty-
two and 10 H&N CT scans provided by the Public Domain Database for Computational Anatomy
(PDDCA) were utilized for training and validation, respectively. Dice similarity coefficient (DSC),
positive predictive value (PPV), sensitivity (SEN), average surface distance (ASD), and 95% maxi-
mum surface distance (95%SD) were calculated to quantitatively evaluate the segmentation accuracy
of the proposed method. The proposed method was compared with an active appearance model that
won the 2015 MICCAI H&N Segmentation Grand Challenge based on the same dataset, an atlas
method and a deep learning method based on different patient datasets.
Results: An average DSC = 0.870 (brainstem), DSC = 0.583 (optic chiasm), DSC = 0.937 (mand-
ible), DSC = 0.653 (left optic nerve), DSC = 0.689 (right optic nerve), DSC = 0.835 (left parotid),
DSC = 0.832 (right parotid), DSC = 0.755 (left submandibular), and DSC = 0.813 (right sub-
mandibular) were achieved. The segmentation results are consistently superior to the results of atlas
and statistical shape based methods as well as a patch-wise convolutional neural network method.
Once the networks are trained off-line, the average time to segment all 9 OARs for an unseen CT scan
is 9.5 s.
Conclusion: Experiments on clinical datasets of H&N patients demonstrated the effectiveness of the
proposed deep neural network segmentation method for multi-organ segmentation on volumetric CT
scans. The accuracy and robustness of the segmentation were further increased by incorporating
shape priors using SMR. The proposed method showed competitive performance and took shorter
time to segment multiple organs in comparison to state of the art methods. © 2018 American Associ-
ation of Physicists in Medicine [https://doi.org/10.1002/mp.13147]

Key words: fully convolutional neural network, head and neck cancer, image segmentation, shape
representation model
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1. INTRODUCTION

Globally, there are an estimated 400,000–600,000 new head
and neck (H&N) cancer cases, resulting in between 223,000
and 300,000 deaths per year.1 Radiation therapy is one of the
mainstay modalities for H&N treatment. Owing to the
advance in shaping radiation dose for the morphologically
complex H&N anatomy and pathology, intensity-modulated
radiation therapy (IMRT) has become the preferred radiother-
apy method for H&N cancer. For instance, IMRT has been
shown to significantly reduce the parotid dose, which is asso-
ciated with a major long-term side effect: dry mouth or xeros-
tomia.2 In inverse optimization, the organs-at-risk (OARs)
sparing is achieved by penalizing doses to the correspond-
ingly delineated volumes. Undersegmenting the OARs would
expose them to unnecessarily high dose but oversegmenting
the OARs could make optimization goals unattainable.
Therefore, the effectiveness of IMRT depends on the accu-
racy of OAR segmentation, which is conventionally per-
formed by oncologists and dosimetrists. However, the manual
process is not only tedious but also introduces inconsistencies
due to both inter-patient and inter-observer variabilities.3

To alleviate these problems, automated segmentation has
been proposed. For it to be successfully applied to the H&N
application, automated segmentation needs to tackle the
inter-patient variability and the large number of anatomical
structures in a relatively small area, each presenting specific
challenges, including relatively low CT soft tissue contrast
and morphological complexity.4 The existing automatic
H&N OARs segmentation methods can be broadly catego-
rized as atlas or statistical shape-appearance based methods.

The atlas method builds a library of OARs from manual
segmentation and then extrapolates the library to a new
patient via image registration.5 For H&N CT image segmen-
tation, Han et al.5 employed a hierarchical atlas registration
strategy. Urban et al.6 applied a random forest classifier that
incorporates probabilistic atlas and image features of multi-
modal MRI images for the segmentation of H&N organs.
Once an atlas is established on previously delineated patients,
atlas methods can perform non-supervised segmentation on a
new patient. However, this method is sensitive to atlas selec-
tion and strongly depends on registration accuracy,7 making
it a challenge to generalize.

In contrast to the atlas method, shape, or appearance statis-
tical models based methods8,9 delineate organs by restricting
the final segmentation results to anatomically plausible
shapes described by the statistical model.10 Conventional
shape or appearance models based segmentation approaches
are thus limited to the shape representation capacity of the
statistical model, whose efficacy is diminished without
impractically large training sets.10 To overcome the limita-
tions of atlas and statistical appearance methods, multi atlas
segmentation was augmented by an intensity model to
improve segmentation accuracy. For instance, Fortunati
et al.11 combined atlas registration and intensity-based classi-
fication to handle local variations of H&N OARs. Fritscher
et al.10 enhanced multi atlas-based segmentation by geodesic

active contours and statistical appearance models for H&N
CT images.

In recent years, deep learning based methods, particu-
larly methods based on the convolutional neural network,
have shown great promise in medical image segmentation.
Applications include object or lesion classification,11,12

organ or lesion detection,13,14 organ and lesion segmenta-
tion,15–17 registration,18 and other tasks.18–20 Specifically,
deep learning methods have been used for brain segmenta-
tion and achieved significantly better performance than con-
ventional methods.21–23 In one of the few deep learning
H&N OARs segmentation studies, Ibragimov et al.24 mod-
eled the task as multi-segmentation sub-tasks and trained
13 convolutional neural networks for the OARs. The
trained networks were sequentially applied to patches of
the test image in a sliding-window fashion to locate the
expected H&N OARs. After that, a Markov random field
algorithm was used to refine the obtained classification
results. Drawbacks of such patch-based segmentation meth-
ods are redundant computation and inability to learn global
features.25 Wang, et al.26 proposed a hierarchical vertex
regression based segmentation model, which employed a
novel learning-based mechanism to locate critical model
vertices. An iterative random-forests framework was utilized
to jointly learn shapes and appearance features. The model
is computationally impractical, taking ~36 min to segment
a single organ (brainstem) for a new subject. Its robustness
is also affected by the accuracy of the shape correspon-
dence detection method.

In this study, to further improve the accuracy and robust-
ness of automated H&N segmentation, we integrate fully
convolutional neural network (FCNN) and shape representa-
tion model (SRM) into a unified framework.

2. MATERIALS AND METHODS

In the unified framework, SRM is pre-trained to learn the
latent shape representation of the organs-at-risk (OARs). It is
then employed as a regularizer in the training stage to enforce
the predictions of the segmentation network for the H&N
OARs anatomical properties. Specifically, the proposed
framework is trained in the following steps: (a) train SRM
using the labels of the training set to learn the latent shape
representation of H&N OARs, which is employed to incorpo-
rate prior shape information into the segmentation network in
the next step; (b) train the segmentation model, which combi-
nes FCNN and the pre-trained SRM using 3D H&N CT scans
with SRM parameters inherited from step 1. Once the net-
work is trained, it is used to segment the H&N OARs of a
new subject in a single forward pass.

2.A. Shape representation model

Learning and incorporating the shape characteristics of
the OARs is of great importance when solving image-wise
prediction problems.27 To increase the robustness and stabil-
ity of the segmentation network, a shape representation
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model is constructed and employed as prior information in
the training stage of the segmentation network.

Stacked convolutional auto-encoder is an artificial neural
network used for learning a generative model of input data. It
learns the latent representation in the encoder and recon-
structs the input in the decoder.28 Due to its simple architec-
ture and strength in learning the latent representation of the
input data, stacked convolutional auto-encoder is employed
in this work as an SRM to learn the latent shape characteris-
tics of the H&N OARs. The architecture of the SRM contain-
ing encoder and decoder blocks is illustrated in Fig. 1.

Training with the binary shape masks of the OARs, the
encoder block projects the predicted shape mask of the seg-
mentation network onto the latent representation for the deco-
der to accurately reconstruct. Once the stacked convolutional
auto-encoder is trained, it will be incorporated into the seg-
mentation network as a regularizer to constrain FCNN.

2.B. Fully convolutional neural network for
segmentation

Classic convolutional neural network methods commonly
formulate a segmentation task as a pixel level classification
problem. Each pixel is classified by extracting a patch around
it using the network.25 To obtain the classification of every
pixel in the image, this operation has been performed using a
sliding window. Subsequently, the patch-wise segmentation
method has high computational redundancy and can only
capture local features. Moreover, fully connected layers in
convolutional neural network limit the network to using
fixed-sized input images and generating non-spatial predic-
tions.29

To overcome these limitations, a fully convolutional neural
network (FCNN) is formulated in this work, which can effi-
ciently segment arbitrarily sized images. The architecture of
the proposed fully convolutional neural network is shown in
Fig. 2. Similar to the network architecture proposed by Kay-
alibay et al.,25 the FCNN is built upon a U-net30 and com-
prises a contracting pathway (left side) that encodes abstract
representations of the input, followed by an expansive path-
way (right side) that recombines these representations with
high-resolution features from the contracting pathway to pre-
cisely localize the OARs.

In our segmentation network, each processing block in the
contracting pathway is in fact a residual block with two
3 9 3 9 3 convolutional layers and a dropout layer, which

we refer to as the context module. Each context module is
connected by two steps of 3 9 3 9 3 convolution operations
(stride 2). In contrast, the processing blocks in the expansive
pathway are referred to as the localization module, which
increases the resolution of the feature maps by 3D deconvolu-
tion (size 2, stride 2) followed by a 3 9 3 9 3 convolutional
layer. Following the deconvolution, the feature maps from the
localization pathway are concatenated with the feature maps
from the context pathway and passed to the next localization
module. As illustrated in Fig. 2, each localization module
consists of a 3 9 3 9 3 convolution followed by a
1 9 1 9 1 convolution layer with half the number of feature
volumes.

Training such a 3D network often suffers from gradients
vanishing or exploding, which impedes convergence.31 To
speed up network convergence, deep supervision25 is
employed in the localization pathway by integrating segmen-
tation layers at different levels of the network and combining
them via element-wise summation to form the final network
output. This mechanism aims at improving the convergence
rate by guiding the training of the lower layers in the network.

2.C. Combination of SRM and FCNN for H&N CT
segmentation

The pre-trained SRM is employed as a regularizer to guide
the training of FCNN. Let X = {x1, x2, . . ., xN} denote the
training images with corresponding ground truth
S = {s1, s2, . . ., sN}, si ¼ ðs1i ; s2i ; . . .; sLi Þ; i 2 N are available,
where N denotes the number of images and
si ¼ ðs1i ; s2i ; . . .; sLi Þ denotes the ground truth masks of image
si for each class l = {1, 2, . . ., L}. During the training of
FCNN, for each image xi, the multi-class output of the net-
work is calculated using:

F : xi ! s0i (1)

where s0i ¼ ðs0i1; s0i2; . . .s0iLÞ stands for the predictions using
FCNN for xi, which is its semantic class with certain proba-
bility.

To evaluate the predictions and update the network param-
eters, a loss function is needed to quantify the error between
the network output s0i and the ground truth si. In this work, to
constrain the training of FCNN and enhance its discrimina-
tion capability, multi-type loss functions are jointly employed
to optimize the parameters of our FCNN as shown in Eq. (2).

FIG. 1. The architecture of shape representation model. [Color figure can be viewed at wileyonlinelibrary.com]
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Loss ¼ min
hs

ðlosssegðS; S0Þ þ k1lossshapeðEðSÞ;EðS0ÞÞ
þ k2lossreconðS;DðEðS0ÞÞÞÞ

(2)

where hS denotes the trainable parameters of our FCNN.
E(.) and D(.) represent the encoder and decoder blocks in
the shape representation model, respectively. k1 and k2
determine the weights of the shape representation loss and
reconstruction loss terms used in the training. lossseg and
lossrecon are formulated as dice coefficient loss functions,
and lossshape is formulated as a cross entropy loss func-
tion. The optimized loss function is composed of three
types of loss functions, that is, segmentation loss lossseg,
shape representation loss lossshape, and reconstruction loss
lossrecon. Besides the segmentation loss between the pre-
dictions of FCNN and the ground truth, the shape repre-
sentation loss and reconstruction loss are included in the
loss function. During training, SRM is utilized to encode
the predictions of FCNN s0i into latent space
Eð:Þ : s0i ! Eðs0iÞ and extract its latent shape representation
Eðs0iÞ, which is used to calculate the shape representation
loss against the latent shape representation of the ground
truth E(si). To further enforce the predictions of FCNN
following the OARs shape distribution, the reconstruction
loss between the decoded Eðs0iÞ and the ground truth is
also incorporated into the loss function. The flowchart of
the training process of FCNN is presented in Fig. 3.

2.D. Data acquisition and pre-processing

The dataset used for the training and evaluation of the
proposed framework was obtained from Public Domain
Database for Computational Anatomy (PDDCA) version
1.4.1. The original CT data were derived from the Radia-
tion Therapy Oncology Group (RTOG) 0522 study, a
multi-institutional clinical trial led by Kian Ang.32 The
dataset contains 48 patient CT volumes with anisotropic

pixel spacing ranging from 0.76 to 1.27 mm and inter-
slice thickness ranging from 1.25 to 3.0 mm. It is worth
pointing out that the same dataset was used in MICCAI
2015 Head and Neck Auto Segmentation Grand Chal-
lenge. The result of the competition was summarized in
Ref. 4. Thirty-two of the 48 patients in the database with
complete manual labeling of nine structures, including left
and right parotid glands, brainstem, optic chiasm, optic
nerves (both left and right), mandible, and submandibular
glands (both left and right), were used in this study. The
remaining 16 patients missed one or more of the nine
structures and were excluded.

The 32 patients were randomly and asymmetrically
divided into a training set (22 subjects) and a testing test (10
subjects). To homogenize the data, reduce memory consump-
tion, and increase computational speed, all images were re-
sampled to isotropic resolution of 2 9 2 9 2 mm3 and then
cropped to fit the patient contour, resulting in a uniform
matrix size of 144 9 144 9 112, which was used for both
training and testing.

To tackle the model robustness and avoid overfitting, we
augmented the data by introducing rotation (90°, 180°, 270°)
and randomly scaling between 0.8 and 1.2. In total, we used
102 variations to train our FCNN and SRM.

2.E. Evaluation metrics

Five metrics including Dice Similarity Coefficient (DSC),
Positive Predictive Value (PPV), Sensitivity (SEN), Average
Surface Distance (ASD), and 95% maximum surface distance
(95% SD) are used to quantitatively evaluate the performance
of the proposed segmentation framework against manual seg-
mentation. The segmentation evaluation metrics are defined
as below:

• Dice Similarity Coefficient (DSC) measures the volu-
metric overlap degree between the manual and auto-
matic segmentations. It is defined as33:

FIG. 2. The architecture of FCNN. [Color figure can be viewed at wileyonlinelibrary.com]
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DSC ¼ 2kA \ Bk
kAk þ kBk (3)

where A and B refer to the set of nonzero voxels in the man-
ual and automatic segmentations, respectively.

• Positive Predictive Value (PPV) measures the propor-
tion of correctly nonzero voxels in the automatically
segmented organ. It is defined as:

PPV ¼ kA \ Bk
kBk (4)

• Sensitivity (SEN) measures the proportion of correctly
nonzero voxels in the manually segmented organ. It is
defined as:

SEN ¼ kA \ Bk
kAk (5)

• Average Surface Distance (ASD) measures the average
distance between the surface of A and B. It is defined
as34:

ASD ¼ 1
2

P
z2B dðz;AÞ
jBj þ

P
u2A dðu;BÞ

jAj
� �

(6)

where d(z, A) is the minimum distance of voxel z on the auto-
matically segmented organ surface B to the voxels on the
ground truth surface A, d(u, B) is the minimum distance of
voxel u on the ground truth surface A to the voxels on the
automatically segmented organ surface B.

• 95% Maximum Surface Distance (95% SD) is based on
the calculation of 95th percentile of the distances

between the boundary points of A and B, which is
expected to eliminate the impact of a very small subset
of incurrent segmentations on the evaluation of the
overall segmentation quality.

The paired Student’s t-test is used to compare the segmen-
tation accuracy of FCNN with and without SRM. Results are
considered significant if P < 0.05.

2.F. Implementation details

Our experiments were carried out using Keras35 with Ten-
sorflow, whose backend is Python 2.7. The hardware is a
GeForce GTX 1080 GPU for acceleration. The learning rate
was initially set as 5 9 10�4, which was divided by a factor
of 5 every 10 epochs when the validation loss stopped
improving. The weights of the shape representation loss term
k1 and reconstruction loss term k2 in the loss function were
set as 0.01 and 0.001, respectively. All the networks were
optimized using the Adam algorithm.36 Moreover, to prevent
over-fitting, a dropout value of 0.3 and an early stopping
strategy were utilized in this work if there was no improve-
ment in the validation loss after 50 epochs.

It took approximately 2 and 10 h to train the SRM and
FCNN, respectively. With the trained network, the average
time for segmenting all nine OARs in a testing H&N CT vol-
ume was 9.50 s, which was a significant improvement over
conventional segmentation methods.

3. RESULTS

3.A. Qualitative evaluation

Figures 4–7 visually compare the segmentation results of
the 9 H&N OARs between the proposed method with and

FIG. 3. The flowchart of the training process of FCNN. [Color figure can be viewed at wileyonlinelibrary.com]
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without the SRM. It can be observed that although FCNN
alone can approximately segment the OARs, it leads to iso-
lated false-positive volumes as shown in the first rows of
Figs. 4 and 5. The additional SRM regularization removes
these false-positive islands by better regularizing the segmen-
tation shapes (Fig. 4 subject 1). Leveraging the latent shape
representation learned by SRM, the FCNN segmentation
results show robustness to inter-patient shape variations.

3.B. Quantitative evaluation

Table I shows the average Dice Similarity Coefficient,
Positive Predictive Value (PPV), Sensitivity (SEN), Average

Surface Distance (ASD), 95% Maximum Surface Distance
(95%SD), and the standard deviation of all the OARs by
FCNN with and without SRM. Figure 8 shows the bar plots
of DSC (%) for all organs compared to FCNN alone and
CNN.24 It can be observed that our method leads to a signifi-
cant improvement in segmentation accuracy for all consid-
ered organs by incorporating the shape constraint provided
by SRM. The paired Student’s t-test further demonstrates that
the segmentation performance of FCNN with SRM is signifi-
cantly higher than that of FCNN alone (P = 0.0018). Mean-
while, as illustrated in Fig. 8, the standard deviations of our
method are smaller than those of the other method, demon-
strating superior robustness to inter-patient variability.

FIG. 4. Visual comparison of segmentation results of the brainstem (the first and second rows) and mandible (the third and fourth rows) using our method with
and without SRM. The three columns show the segmentation results and ground truth overlaid on the CT. Yellow and green denote the FCNN segmentations with
and without SRM respectively. The red contours denote the ground truth. [Color figure can be viewed at wileyonlinelibrary.com]
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3.C. Comparison with state-of-the-art methods

The FCNN+SRM segmentation method is compared with
several state-of-the-art methods based on DSC (%) in
Table II. Table III compares the segmentation time to seg-
ment a new patient using our method versus the state-of-the-
art methods. It is worth noting that the active appearance
model-based method36 was the winner of the MICCAI Grand
Challenge using the same dataset, providing a frame of refer-
ence for direct comparison. FCNN+SRM shows competitive
performance in direct comparison with the active appearance
model method, and in indirect comparison with the atlas and
CNN methods using different patient data. Furthermore, the
segmentation time is shorter than that previously reported.

4. DISCUSSION

In this work, we present a robust and efficient segmenta-
tion method for H&N CT images that combines the strengths

of existing methods. The proposed method uses a novel shape
representation model (ie, SRM), to learn the highly represen-
tative shape characteristics of H&N OARs, model the rela-
tionships among them, constrain the training of the
segmentation network (ie, FCNN), and improve its segmenta-
tion performance. During the training of FCNN, SRM serves
as a regularizer to reduce false-positivity and help the final
segmentation of FCNN to better follow the shape distribu-
tions of the H&N OARs.

A direct comparison between FCNN with and without
SRM demonstrates that SRM significantly improves segmen-
tation accuracy for nine organs with varying sizes, morpho-
logical complexities, and CT contrasts.

Although the performance of compared methods can be
influenced by underlying H&N datasets, the SRM+FCNN
method is shown to be competitive when compared with
existing conventional segmentation methods and a deep-
learning based method by demonstrating consistently higher
DSC (%) and lower standard deviations. Another advantage
of our method is that post-processing was not needed to pro-
duce the completive results, thus further improving its gener-
alizability.

Besides SRM regularization, we made several additional
improvements to the existing deep learning segmentation

FIG. 5. Visual comparison of segmentation results of the parotid glands (the
first and second rows) and submandibular glands (the third and fourth rows)
using our method with and without SRM. The three columns show the seg-
mentation results and ground truth overlaid on the CT. Yellow and green
denote the FCNN segmentations with and without SRM respectively. The
red contours denote the ground truth. [Color figure can be viewed at wileyon
linelibrary.com]

FIG. 6. Visual comparison of segmentation results of the optic chiasm (the
first and second rows) and optic nerves (the third row) using our method with
and without SRM. The three columns show the segmentation results and
ground truth overlaid on the CT. Yellow and green denote the FCNN segmen-
tations with and without SRM respectively. The red contours denote the
ground truth. [Color figure can be viewed at wileyonlinelibrary.com]
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studies. In the current implementations, owing to the difficul-
ties of optimizing 3D networks and inadequate training sam-
ples, many existing deep learning segmentation studies

formulated the problem as a patch-wise classification task,
which is inefficient due to computational redundancy and
restricted to learning local features that are only visible in

FIG. 7. 3D visual representation of H&N OARs segmented by the proposed method. The first and second rows present the segmentations using our method with
and without SRM; the third row shows the ground truth. Brainstem (Dark blue), Optic Chiasm (Brown), Mandible (Red), Left Optic Nerve (pink), Right Optic
Nerve (Yellow), Left parotid gland (Orange), Right Parotid gland (green), Left Submandibular (Light blue), Right Submandibular (Purple). [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE I. Quantitative comparison of segmentation results between our method with and without SRM.

Organ Method DSC (%) PPV (%) SEN (%) ASD (mm) 95%SD (mm)

Brainstem FCNN 82.86 � 2.68 81.72 � 4.75 84.06 � 4.54 1.58 � 0.33 4.05 � 1.09

FCNN+SRM 86.97 � 2.95 85.39 � 2.15 87.99 � 2.57 1.17 � 0.56 4.01 � 0.93

Optic chiasm FCNN 46.19 � 8.35 40.91 � 12.62 51.63 � 6.68 1.35 � 0.98 3.76 � 3.05

FCNN+SRM 58.35 � 10.28 55.92 � 10.03 60.95 � 9.85 0.65 � 0.21 2.17 � 1.04

Mandible FCNN 92.07 � 1.15 94.65 � 1.34 91.09 � 1.77 0.51 � 0.12 2.01 � 0.83

FCNN+SRM 93.60 � 1.21 94.86 � 4.52 92.09 � 2.26 0.37 � 0.11 1.50 � 0.32

Left optic nerve FCNN 60.66 � 9.01 59.67 � 7.50 61.62 � 4.09 1.94 � 0.38 2.65 � 1.08

FCNN+SRM 65.31 � 5.75 63.74 � 5.77 67.11 � 4.20 1.14 � 0.75 2.52 � 1.04

Right optic nerve FCNN 61.94 � 4.63 54.00 � 7.5 68.97 � 9.38 1.33 � 0.59 3.29 � 1.23

FCNN+SRM 68.89 � 4.71 60.73 � 5.77 74.00 � 5.54 1.15 � 0.65 2.90 � 1.88

Left parotid FCNN 81.69 � 3.23 84.93 � 1.35 77.26 � 4.85 2.28 � 1.78 5.35 � 3.30

FCNN+SRM 83.87 � 2.87 86.48 � 1.52 80.07 � 5.30 0.96 � 0.34 3.97 � 2.15

Right parotid FCNN 81.31 � 5.88 81.91 � 1.35 81.06 � 7.73 1.68 � 0.67 4.83 � 2.95

FCNN+SRM 83.46 � 2.34 84.11 � 1.52 82.42 � 4.55 1.12 � 0.56 4.20 � 1.27

Left submandibular FCNN 71.55 � 5.51 76.02 � 4.94 67.57 � 6.12 2.21 � 1.28 5.98 � 2.14

FCNN+SRM 76.7 � 7.31 80.20 � 8.10 72.28 � 6.35 0.90 � 0.46 5.59 � 3.93

Right submandibular FCNN 75.48 � 6.49 76.49 � 6.01 73.83 � 7.43 1.66 � 0.42 5.47 � 2.42

FCNN+SRM 81.31 � 6.45 77.45 � 6.43 85.35 � 6.09 1.33 � 0.57 4.84 � 1.67
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individual patches.25 In this paper, we employ a fully convo-
lutional architecture where all layers are either convolutional
or pooling. As a result, the network can use arbitrarily sized
volumetric images as input, and then perform probability pre-
dictions. This novel architecture simultaneously eliminates
computational redundancy and enables learning global fea-
tures of the images. To further improve the convergence rate,
a deep supervision mechanism25 is integrated into our FCNN
by providing additional guidance to the training of the lower
layers in the network.

Besides segmentation performance, the improvements in
algorithm resulted in a major advantage in computational
speed. The incorporation of SRM slightly increases the com-
putational cost in the training stage of FCNN. After training,
multiple OARs in a new patient CT can be segmented
in under 10 s using FCNN. The fast segmentation time is
particularly valuable to applications such as adaptive radio-
therapy.

The performance of the novel segmentation network can
be limited by latent anatomy shape characteristics captured

by the SRM. In the case where the testing patient has sub-
stantially different anatomies, such as the post-surgical
patients, an incorrect SRM may reduce segmentation net-
work performance. In such case, the SRM regularization
may require a more specific training dataset. Furthermore,
as a regularization term, the severity of the problem is
expected to be less than that of the atlas and statistical shape
methods which rely on the shape representation model
alone. There are two more limitations of this study. First,
among the three existing methods used for comparison, only
one was performed on the same dataset. This difference pre-
vents us from more clearly affirming the accuracy of our
method. Second, the training and testing datasets were lim-
ited in size. Although good performance was observed, its
robustness and potential improvement need to be tested on a
larger patient dataset and preferably in a multi-institutional
study.

5. CONCLUSION

A fully automatic and efficient multi organ segmentation
method for H&N CT images is demonstrated and tested.
When combined with SRM, FCNN is constrained to follow
the latent shape characteristics of OARs in the training set,
which not only improves the segmentation accuracy of
FCNN, but also eliminates the need for post-processing. The
SRM-constrained FCNN shows competitive performance
compared to conventional atlas and statistical shape-based
methods as well as a deep learning method, in both accuracy
and computational efficiency.

FIG. 8. Bar chart results of CNN, and FCNN with and without SRM.
Colored bars represent the average DSC(%) value of segmentation results of
each structure by CNN,23 and using our proposed method with and without
SRM. Note that the brainstem was not segmented in Ref. [23]. [Color figure
can be viewed at wileyonlinelibrary.com]

TABLE II. Comparison of segmentation accuracy between the state-of-the-art methods and our method (Dice %), bold fonts indicate the best performer for that
structure.

Organ/method Atlas-based5 Model-based37 CNN24 FCNN(our) FCNN+SRM(our)

Brainstem 82 87 � 4 Unavailable 82.86 � 2.68 86.97 � 2.95

Chiasm Unavailable 35 � 16 37.4 � 13.4 46.19 � 8.35 58.35 � 10.28

Mandible 89 91 � 2 89.5 � 3.6 92.07 � 1.15 93.67 � 1.21

Left optic nerve Unavailable 63 � 5 63.9 � 6.9 60.66 � 9.01 65.31 � 5.75

Right optic nerve Unavailable 63 � 5 64.5 � 7.5 61.94 � 4.63 68.89 � 4.74

Left parotid 82 82 � 10 76.6 � 6.1 81.69 � 3.23 83.49 � 2.29

Right parotid 82 82 � 10 77.9 � 5.4 81.31 � 5.88 83.18 � 1.45

Left Submandibular 69 78 � 8 69.7 � 13.3 71.55 � 5.51 75.48 � 6.49

Right submandibular 69 78 � 8 73.0 � 9.2 76.7 � 7.31 81.31 � 6.45

TABLE III. Comparison of segmentation time between the state-of-the-art
methods and our method.

Method Segmentation time
Experimental
equipment

Atlas-based5

(multi-atlas)
Over an hour per patient
for 9 H&N organs

CPU

Model-based37 30 min per image for 9 H&N organs CPU

CNN24 4 min per patient for 13 H&N organs GPU

Our 9.50 s per patient for 9 H&N organs GPU
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