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Traumatic brain injury (TBI) can result in persistent cognitive, behavioral and emotional
deficits. However, the vast majority of patients are not chronically hospitalized; rather
they have to manage their disabilities once they are discharged to home. Promoting
recovery to pre-injury level is important from a patient care as well as a societal
perspective. Electrical neuromodulation is one approach that has shown promise in
alleviating symptoms associated with neurological disorders such as in Parkinson’s
disease (PD) and epilepsy. Consistent with this perspective, both animal and clinical
studies have revealed that TBI alters physiological oscillatory rhythms. More recently
several studies demonstrated that low frequency stimulation improves cognitive outcome
in models of TBI. Specifically, stimulation of the septohippocampal circuit in the theta
frequency entrained oscillations and improved spatial learning following TBI. In order
to evaluate the potential of electrical deep brain stimulation for clinical translation we
review the basic neurophysiology of oscillations, their role in cognition and how they
are changed post-TBI. Furthermore, we highlight several factors for future pre-clinical
and clinical studies to consider, with the hope that it will promote a hypothesis driven
approach to subsequent experimental designs and ultimately successful translation to
improve outcome in patients with TBI.

Keywords: traumatic brain injury, electrical neuromodulation, deep brain stimulation, oscillations,
hippocampus, theta

INTRODUCTION

There are an estimated 3.8 million new traumatic brain injury (TBI) cases annually, and
well over 5.3 million patients report chronic TBI-related deficits (Langlois et al., 2006;
DeKosky et al., 2010). Ultimately, an estimated $221 billion (combined acute and chronic
care) is spent to treat TBI annually (Coronado et al., 2012). Critically, however, only 7%
($14.6 billion) of the estimated $221 billion is spent on direct medical costs (Coronado
et al., 2012) and therefore, the vast majority of the financial burden is related to the
long-term care of patients with chronic disabilities. In addition to the financial cost, there is
a significant and well-documented emotional toll of caring for chronic TBI patients both
on caregivers and society at large (Roozenbeek et al., 2013). Therefore, there is a critical
need to develop innovative strategies to specifically address and improve the quality of life
for patients with chronic disability following TBI. In the following review, we propose
that oscillations observed in the electroencephalogram (EEG) play a key role in cognitive function
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and that a TBI-induced change in oscillations can result in
impaired behavioral function. Finally, we discuss the potential
for electrical neurostimulation to improve chronic behavioral
outcome in TBI patients.

A REVIEW OF THE IMMEDIATE EFFECTS
OF TBI

The application of mechanical force on the brain initiates
a complex series of interacting (sometimes non-monotonic)
biochemical cascades, which, along with the initial impact,
characterize TBI pathophysiology. Disruption of the cell
membrane can lead to an ionic disturbance of Na+, K+, Ca2+,
Mg2+, and Zn2+ (Vink et al., 1988; Katayama et al., 1990;
Soares et al., 1992; Nilsson et al., 1993; Smith et al., 1993).
The high concentration of K+ and Ca2+ in the extracellular
space triggers release of neurotransmitters (e.g., glutamate),
which can further exacerbate the ionic disturbance creating
a vicious cycle (Faden et al., 1989; Katayama et al., 1990;
Nilsson et al., 1990; Lyeth et al., 1993; Reeves et al., 1997;
Shin and Dixon, 2015). This wave of depolarization can lead
to excitotoxic cell death beyond what is observed in the
injury core and surrounding penumbra (Sullivan et al., 1976;
Dixon et al., 1987; Lowenstein et al., 1992; Hicks et al.,
1993; Yamaguchi et al., 1996; Leonard et al., 1997; Yakovlev
et al., 1997; Floyd et al., 2002; Witgen et al., 2005; Fedor
et al., 2010). Moreover, there is considerable evidence that
the pathophysiological release of neurotransmitters can alter
the function of glutamatergic (Faden et al., 1989; Miller
et al., 1990; Smith et al., 1993; Schwarzbach et al., 2006),
cholinergic (Robinson et al., 1990; Yamamoto et al., 1993; Jiang
et al., 1994; Lyeth et al., 1994; Delahunty et al., 1995; Shin
and Dixon, 2015), GABAergic (Reeves et al., 1997; Witgen
et al., 2005; Bonislawski et al., 2007; Gupta et al., 2012),
and dopaminergic receptor systems (Donnemiller et al., 2000;
Massucci et al., 2004; Shin et al., 2011), resulting in potential
long-term cellular and circuit dysfunction independent of cell
death.

One specific change related to excessive activation of the
nervous system following TBI is the accumulation of intracellular
calcium and the subsequent activation of calcium dependent
catalytic enzymes such as calpain (Kampfl et al., 1997; Khorchid
and Ikura, 2002). While hyperactivation of calpains is commonly
associated with apoptosis (Patel et al., 1996), calpains also
advance cytoskeletal and plasma membrane breakdown as well
as disruption of Na+ channel function (Hicks et al., 1995;
Folkerts et al., 1998; Saatman et al., 1998; Johnson et al.,
2013). Changes in the cytoskeleton and membrane can trigger
further ionic imbalance and specifically lead to high intra-
axonal Ca2+ levels, which further challenge the already damaged
axons resulting from the primary injury (Graham et al., 2000;
Kita et al., 2000; Baker et al., 2002; Johnson et al., 2013; Li
et al., 2014). Not surprisingly, for a prolonged period after
the initial injury, neurons in the corrupted neural network
can have impaired neurophysiological responses (Reeves et al.,
1997; Golarai et al., 2001; Santhakumar et al., 2001; Kao et al.,
2004; Goforth et al., 2011) including long-term potentiation

(LTP; Miyazaki et al., 1992; Reeves et al., 1995; D’Ambrosio
et al., 1998; Sick et al., 1998; Sanders et al., 2000; Schwarzbach
et al., 2006; Li et al., 2014). In addition, TBI results in deficits
impacting certain forms of behavioral plasticity (Ip et al., 2002;
Griesbach et al., 2004) and formation of long term memories
(Rimel et al., 1981; Leininger et al., 1990; Fedor et al., 2010;
Gurkoff et al., 2013; Zhang et al., 2015). Disruption to cognition
and plasticity following TBI is of particular relevance to our
research interests and will be the focus of this review. Specific
emphasis will be placed on how oscillatory activity contributes
to information processing and how modifying injury- perturbed
EEG could be relevant to reversing deficits in the clinical
population. To this end we will first elaborate on what local
field oscillations are and how they are generated in the
brain.

DEFINING AN OSCILLATION

There is both growing evidence and excitement that
neuromodulation, and specifically invasive electrical
neurostimulation, can be used to improve function in patients
with neurological disorders (Lozano and Lipsman, 2013; Suthana
and Fried, 2014; Tekriwal and Baltuch, 2015). In the case of TBI
it is clear that functional consequences can be severe and persist
for many years after the insult (Jennett et al., 1981; Whiteneck
et al., 2004; DeKosky et al., 2010; Ponsford et al., 2014). And
at least some of these cognitive and behavioral deficits could
be mitigated with neurostimulation (Buzsáki and Watson,
2012; Lozano and Lipsman, 2013; Shin et al., 2014). Although the
precise mechanism is still being delineated, it is hypothesized that
driving specific neural circuits can entrain physiological circuit
activity ultimately improving behavioral outcomes. Stemming
from this, based on our recent findings we hypothesize that
TBI-induced alterations in neural connectivity result in altered
oscillations, as observed in the EEG. Further, we hypothesize that
stimulating the injured nervous system to restore or substitute
these oscillations will improve outcome. However, essential to
the implementation and assessment of any intervention is the
knowledge of the underlying mechanisms involved. Therefore,
the next sections will summarize the basic neurophysiology
associated with brain oscillations observed in the EEG and
how these oscillations contribute to neural function. Critically
this overview will introduce concepts from the perspective of
developing research strategies to determine whether electrical
neurostimulation can be used to improve cognitive outcome in
TBI patients.

EEG is the measurement of change in the extracellular field
potential recorded from the scalp that is generated by the sum
of ionic movements across synapses, dendrites, soma, axons
and the electroconductive cerebral spinal fluid. Similar activity
measured from intracranial electrodes is commonly referred to
as intracranial EEG (iEEG) or electrocorticography (ECoG). For
simplicity, we will refer to all recordings, scalp and intracranial,
as EEG for the remainder of this manuscript. The average of
ionic movements within the immediate surrounding volume of
an implanted electrode is referred to as the local field potential
(LFP). There are many cellular actions that sum together to
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contribute to the total change in the ionic balance measured by
a depth electrode, such as synaptic activity, Ca2+ fluctuations,
intrinsic currents and resonances, spike after-hyperpolarization,
gap junctions and glial interaction (Berridge and Rapp, 1979;
Buzsáki et al., 2012). The magnitude of the electric field
detected in the EEG is related to the alignment of the electrode
relative to the processes of cells in any given region (Buzsáki
et al., 1986; Montgomery et al., 2009). Specifically, an electrode
placed parallel to the dipole created by ionic movements will
result in the highest amplitude recording (Kringelbach et al.,
2007).

A synchronized and reoccurring change in ionic movements
results in an oscillation that can be observed in the EEG.
Oscillations may arise due to a variety of mechanisms, such
alternating excitation-inhibition (or excitation-excitation or
inhibition-inhibition) of neurons, pacemaker cells, resonance
or subthreshold membrane oscillation (James et al., 1977;
Buzsáki et al., 1983; McCormick and Bal, 1997; Marshall
et al., 2002; Klausberger et al., 2003; Wang, 2010). There
are multiple discrete oscillatory bands ranging from 0.05
to 500 Hz that have been operationally defined based on
functional states of the brain (Klausberger et al., 2003;
Penttonen and Buzsáki, 2003; Buzsáki and Watson, 2012).
While the general structure of many oscillations is similar (e.g.,
alternating excitation-inhibition, pacemaker cell), granularly
each rhythm is quite distinct from one other. How, when,
and where an oscillation is generated defines its operation
and contribution to information processing, and in the
case of a brain injury, the pathophysiology of a disorder.
Therefore, in order to understand how TBI might affect
the generation or maintenance of oscillations, and how to
develop and assess potential strategies to restore oscillations,
it is critical to consider how mechanistically an oscillation is
generated.

UNDERSTANDING HOW OSCILLATIONS
ARE GENERATED

One of the earliest and most studied examples of oscillations
observed in the EEG is from studies of sleep progression.
For example, a defining characteristic of early non-REM
(NREM) sleep is the presence of spindle waves, which are
1–3 s bursts of activity in the 7–14 Hz range every 3–10 s
(Brown et al., 2012). To describe spindle generation it is
important to consider both which brain regions as well
as which specific cellular mechanisms are responsible for
generating rhythmicity. Spindles arise due to the thalamic
reticular nucleus (TRN) hyperpolarizing thalamocortical
neurons with a rhythmic burst of inhibitory synaptic potentials
(IPSPs; Avanzini et al., 1989; Bal et al., 1995a,b). This
hyperpolarization leads to the activation of low-threshold
T-type Ca2+ channels (IT), which even at low, negative
membrane potentials can generate an action potential.
Subsequently thalamocortical neurons generate a burst of
excitatory synaptic potentials (EPSPs) that activate the TRN
as well as corticothalamic neurons giving rise to a spindle
(Crunelli et al., 1989; Bal et al., 1995a,b). Convergence of

excitatory input onto TRN activates low-threshold Ca2+

channels, which send prolonged IPSPs back to thalamocortical
neurons starting the oscillatory cycle anew (Steriade and
Deschenes, 1984; Avanzini et al., 1989; McCormick and
Bal, 1997). Thus, the time to go through one full cycle
prescribes the observed frequency of a spindle (Bal et al.,
1995a).

Thalamocortical bursting activity gives rise to another
dominant NREM sleep oscillation in the delta frequency band
(0.5–4 Hz; McCormick and Bal, 1997; Brown et al., 2012). Unlike
the spindle waves, delta oscillations are generated in a single
cell by the interplay between ionic currents (Steriade et al.,
1993b). Low-threshold Ca2+ bursting in thalamocortical neurons
is followed by a hyperpolarizing overshoot. This de-inactivates
IT and opens the hyperpolarization-activated cation channel
causing an h-current (Ih). Ih slowly depolarizes the cell towards
the threshold for a Ca2+ spike by activating IT. Depolarization
past −65 mV and subsequently −35 mV inactivates IT and
deactivates Ih, respectively, and leads to an action potential
(Crunelli et al., 1989; McCormick and Bal, 1997). Repolarization
overshoots start the cycle again. However, it should be noted
that other mechanisms have been proposed to account for the
thalamocortical delta oscillation (Ball et al., 1977; Steriade et al.,
1993a).

Specific to our understanding of oscillations during sleep it is
easy to imagine how the precise activity of a series of receptor
systems and the related interaction of ionic currents would be
sensitive to the large ionic imbalance that follows TBI (Vink
et al., 1988; Katayama et al., 1990; Soares et al., 1992; Nilsson
et al., 1993; Smith et al., 1993). Consistent with this assertion,
TBI is associated with sleep disturbances (Mathias and Alvaro,
2012) and specifically a decrease in delta power during NREM
sleep for at least 12 weeks post injury (Parsons et al., 1997).
Therefore, when considering how TBI alters oscillations and the
potential for neurostimulation one has to determine not only
which circuits and specific mechanisms are affected, but also
when one needs to stimulate.

Our primary interest related to TBI and EEG is how injury
may alter hippocampal oscillations and cognitive function. This
interest is driven by a rich history in TBI-induced spatial learning
deficits, deficits that we now know are concurrent with altered
hippocampal oscillations (Fedor et al., 2010; Lee et al., 2013,
2015). Unlike the previously described oscillations, hippocampal
theta (3–12 Hz), and specifically in CA1 is generated and
maintained by the interaction of multiple rhythm generators as
well as intrinsic membrane properties of hippocampal neurons
that contribute to the detected rhythmic slow wave (Green and
Arduini, 1954; Vanderwolf, 1969; Buzsáki et al., 1986; Kirk, 1998;
Kocsis et al., 1999; Mormann et al., 2008; Montgomery et al.,
2009; Colgin, 2013; Watrous et al., 2013). In the hippocampal
CA1 subfield there are two well characterized dipoles of theta:
the distal dendrites and soma (Figure 1). The first dipole,
measured strongest near the hippocampal fissure, is attributed
to layer 3 entorhinal cortex (EC) and CA3 subfield rhythmic
excitation of distal dendrites of CA1 (Bland, 1986; Alonso and
García-Austt, 1987; Konopacki et al., 1987; Kamondi et al.,
1998; Kocsis et al., 1999). This dendritic depolarization co-occurs
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FIGURE 1 | Schematic of CA1 theta generators. Illustrated is a CA1 pyramidal cell (blue triangle) and hippocampal GABAergic interneurons (peach circle) within
each CA1 layer. Approximate CA1 layers are indicated by dashed horizontal lines (so, stratum oriens; sp, stratum pyramidale; sr, stratum radiatum; slm, stratum
lacunosum-moleculare). Interneurons within each layer represent a subclass of interneurons (e.g., O-LM, PV basket, axo-axonic) for that layer, which receive different
inputs and have distinct projections (e.g., back projecting). Dashed boxes represent CA1 inputs from medial septal nucleus (MSN), entorhinal cortex (EC) and the
CA3 subfield. Arrows represent excitatory (blue-Glu: glutamate, green: ACh- acetylcholine), whereas short vertical lines are inhibitory (red and peach: GABA)
connections. Projections from the MSN are left out for clarity and are represented by halos (circular on interneurons, linear on CA1 pyramidal cell).

with somatic hyperpolarization, which reflects inputs from the
medial septum nucleus (MSN; Green and Arduini, 1954; Petsche
et al., 1962; James et al., 1977; Bland, 1986; Vertes et al.,
2004). The MSN consists of three types of neurons: GABAergic,
cholinergic and glutamatergic. In fact, afferents from each of
these neuronal subtypes play a role in the generation of the
second dipole. Specifically, the interplay of phasic GABAergic
inhibition, tonic cholinergic and glutamatergic excitation of
hippocampal interneurons results in CA1 theta (Cole and
Nicoll, 1984; Smythe et al., 1992; Tóth et al., 1997; Apartis
et al., 1998; Wang, 2002; Hajszan et al., 2004; Colom et al.,
2005; Vandecasteele et al., 2014; Fuhrmann et al., 2015). The
septal GABAergic cells act as pacemakers of theta generation
in CA1 pyramidal cells through disinhibiting hippocampal
interneurons (Freund and Antal, 1988; Ylinen et al., 1995; Wang,
2002). In addition, MSN cholinergic and glutamatergic neurons
directly modulate excitability in CA1 pyramidal cells, which

in turn excite back projecting hippocamposeptal interneurons
completing the septohippocampal loop (Figure 1; Gaykema
et al., 1991; Tóth and Freund, 1992; Tóth et al., 1993; Manseau
et al., 2008; Mattis et al., 2014; Sun et al., 2014). This interplay
between septohippocampal interneurons has the added effect
of disinhibiting and inhibiting the soma of CA1 pyramidal
neurons at the theta frequency, which can be measured at
or dorsal to the pyramidal layer. Interestingly, hippocampal
interneurons are vulnerable to cell death after TBI (Tóth et al.,
1997b; Almeida-Suhett et al., 2015; Huusko et al., 2015). In
addition there is evidence that injury can alter function in
these neurons (O’Dell et al., 2000; Ross and Soltesz, 2000;
Mtchedlishvili et al., 2010; Gupta et al., 2012; Almeida-Suhett
et al., 2015; Drexel et al., 2015). Any change in interneuronal
number or function could contribute to changes seen in the
theta band post injury. While it is well accepted that TBI can
result in cell death and dysfunction in interneurons in general,
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in order to get a better understanding of the hippocampal
pathophysiology it will be important for future studies to
examine which specific classes of interneurons (Figure 1,
e.g., O-LM, PV basket, axo-axonic) that contribute to CA1
theta generation are also affected by TBI (Klausberger et al.,
2003).

These theta rhythm generators also work in concert with the
intrinsic properties of hippocampal neurons. Specifically, there
are intrinsic resonant and subthreshold membrane oscillating
events which contribute to the hippocampal oscillations.
For example, CA1 pyramidal cells have resonance (preferred
frequency for maximal response) at theta frequency due to the
interplay between voltage gated ionic currents. Depolarizations
activate IM (K+ current), which has the effect of hyperpolarizing
the cell. Hyperpolarization activates Ih (mix Na+/K+ current),
which brings the potential closer to spike threshold. With the
addition of a persistent Na+ current (INAP) these currents
oppose each other resulting in a membrane resonance in the
theta frequency (Pike et al., 2000; Hu et al., 2002). This CA1
rhythmicity is further amplified with subthreshold membrane
oscillations via persistent Na+ and Ca2+ currents (Leung and
Yim, 1991; García-Muñoz et al., 1993; Fransén et al., 2004).
In a similar vein, both EC cells projecting to the hippocampus
(Alonso and Llinas, 1989; Alonso and Klink, 1993; Klink and
Alonso, 1993; Dickson et al., 2000; Quilichini et al., 2010) and
hippocampal inhibitory interneurons (Maccaferri and McBain,
1996; Chapman and Lacaille, 1999; Pike et al., 2000) have a
natural resonance and subthreshold membrane oscillation in the
theta frequency range due to a mix of voltage-sensitive Na+ and
K+ currents. Furthermore, the MSN displays intrinsic bursting
in the theta range (Vinogradova et al., 1980; Zhadina and
Vinogradova, 1983). Thus, the magnitude of synaptically driven
theta from the generators in the EC and septum is boosted by
multiple intrinsic resonances from cells within the hippocampus
as well as extrinsic to the hippocampal formation (Goutagny
et al., 2009).

In summary, there are bands of oscillations starting as low as
<0.1 Hz and ranging to as high as 600 Hz. Over the years we
have operationally defined discrete ranges of oscillations (e.g.,
theta and gamma) based on specific cellular mechanisms as
they relate to observed behavioral relationships. Research into
individual oscillatory bands has revealed that mechanisms for
the generation and maintenance of oscillations are complex and
varied, with interactions of synaptic and intrinsic generators
summing together to provide a single detected change in the
LFP. However, it remains an open question to what extent TBI
alters any, or perhaps all, of the specific mechanisms involved in
the generation of individual oscillatory bands and ultimately the
neural network underlying cognition.

HOW OSCILLATIONS INTERACT AND
CONTRIBUTE TO INFORMATION
PROCESSING

While each electrode yields a single LFP measure, that LFP
is made up of several components. In fact, the combination

FIGURE 2 | Oscillations of varying frequency. MATLAB generated sine
curves to represent neuronal oscillations that make up the unfiltered
electroencephalogram (EEG). Each panel represents a distinct frequency and
in parentheses the corresponding oscillatory band name most often
associated with it.

of synaptic and intrinsic membrane events frequently leads
to power in multiple oscillatory bands. Specifically, when one
decomposes an individual LFP one can see that each oscillation
occurs simultaneously (Figure 2). Figure 2 illustrates sinusoidal
waves whose frequency corresponds to the slow, delta, theta and
gamma oscillatory bands. A more exhaustive list of oscillatory
frequencies was described by Penttonen and Buzsáki (2003).
In general slow wave oscillations, and relevant to the current
discussion those in the theta frequency range, are thought to
synchronize distal regions of the brain promoting plasticity,
while faster gamma oscillations are hypothesized to link and/or
activate local neuronal ensembles (Bragin et al., 1995; Penttonen
and Buzsáki, 2003; Buzsáki and Draguhn, 2004). There are
several published reviews relating to a broader analysis of
EEG and their role in plasticity and learning (Baş ar et al.,
2001; Buzsáki, 2005; Lakatos et al., 2008; Knyazev, 2012; De
Gennaro and Ferrara, 2003). However, based on the current
level of understanding of these oscillations as they pertain to
TBI is limited and therefore an in depth description of these
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findings is beyond the scope of this review. But, if we want to
understand the extent of the effect of TBI on oscillations, it is
important to not only consider one specific frequency band at
a single electrode, for example hippocampal theta, but instead
consider how multiple frequency bands are related at a single
recording site (i.e., cross frequency coupling), and also how
similar frequency bands are related between distal electrodes
(i.e., phase coherence). Thus, in order to better understand
the effects of brain injury on EEG it will be necessary to
sample from multiple regions within a circuit as well as to
investigate a range of frequency interactions in addition to a
power analysis.

Interactions that take place across different frequencies at
a single recording site are referred to as cross frequency
coupling. The interplay between two frequencies could take place
across several different domains (Figure 3). For example, cross-
frequency power-power coupling (amplitude-amplitude) occurs
when the power of the low frequency oscillation dictates the
power of the high frequency oscillation; cross-frequency phase-
phase coupling (n:m phase locking) refers to a fixed number of
high frequency oscillations nested in each slower cycle; cross-
frequency phase-frequency and phase-power coupling indicates
that the frequency and power of the faster wave is modulated
by the phase of the slower oscillation, respectively (Jensen and
Colgin, 2007; Belluscio et al., 2012). For a more thorough review
on the significance of each of these interactions as they relate to
cognition see (Axmacher et al., 2006; Lisman and Buzsáki, 2008;
Colgin, 2013; Lisman and Jensen, 2013).

Phase coherence is the relationship of two oscillations of the
same frequency across different electrodes. For example, there
can be phase-phase coupling of oscillations such that the phases
of each ongoing oscillation are in sync (i.e., the peak of one
oscillation always occurs in the same phase of a second oscillation
measured at a second site). Likewise, two similar frequencies can
correlate in their power, independent of the phase. Specifically,
as the power of an oscillation increases at one recording site, a
similar increase in power is observed at a second electrode. These
types of specific interactions suggest that oscillations are not
simply a local phenomenon but instead have a role in network
activity.

In addition to phase coherence, oscillations can organize the
firing of individual neurons by summing together subthreshold
excitatory inputs or organizing the firing procession of
assemblies of neurons (O’Keefe and Recce, 1993; Skaggs et al.,
1996; Tukker et al., 2007). While there are different implications
for the specific type of interaction observed, in general
interaction between rhythms supports neural communication,
plasticity, formation of functional ensembles and consolidation
of long-term memories (Buzsáki and Draguhn, 2004; Fell and
Axmacher, 2011; Belluscio et al., 2012). The common variable is
that oscillatory patterns contribute to higher order information
processing including the formation of neuronal ensembles.

Ensemble formation, or the linking of a group of cells,
is at the heart of information processing (Fries, 2005;
Buzsáki, 2010). Oscillations are capable of promoting ensembles
partly through temporally precise segregation and boosting of

FIGURE 3 | Illustrations of cross-frequency coupling. (A) A slow oscillation in the theta range, along with its power indicated by the red line. (B–E) Illustrate the
different types of interplay that faster oscillations (e.g., gamma) can have with the slower trace in (A). (B) Power–power: the power (amplitude) of the faster wave
correlates with the power of the slower wave. (C) Phase–phase: a fixed number of faster cycles within each phase of the slower oscillation. In this case there are four
cycles within each phase. (D) Phase–frequency: the number of cycles in the faster wave correlates with specific phase of the slower wave. (E) Phase–power: the
power of the faster wave correlates with the specific phase of the slower wave, independent of the power of the slower wave. Reproduced with permission from
Elsevier (Jensen and Colgin, 2007).
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communication between some groups of neurons. Theta-gamma
phase modulation (cross frequency phase-amplitude coupling)
can explain how one region of the hippocampus, say CA1, can
be involved in multiple networks virtually simultaneously. For
instance, CA3-CA1 shows the greatest coherence and phase
locking of single unit firing in the slow gamma band (gammaS:
25–50 Hz), which peaks in the early descending phase of the
CA1 theta. On the other hand, medial EC (MEC)-CA1 has
high coherence at mid gamma frequency (gammaM 50–90 Hz)
which is strongest at the peak of theta (Colgin et al., 2009;
Belluscio et al., 2012; Schomburg et al., 2014). Thus, CA1
inputs are segregated across the phase of theta cycle and
therefore individual pyramidal neurons have the potential to
temporally align with multiple ensembles within a phase of theta
(for detailed discussion, see Buzsáki and Schomburg, 2015).
Alternating back and forth between functional networks could
be important, as an example, for shifting between encoding
new and retrieval of previous information (Montgomery and
Buzsáki, 2007; Colgin et al., 2009), assembling discrete stimuli
into a single representation (Gray et al., 1989; Engel et al.,
1991), selective attention/gain modulation (Fries et al., 2001)
and associative binding (Headley and Paré, 2013). Critically,
in many cases theta provides the temporal structure for
local gamma, while simultaneously coupling cell assemblies
between regions and ‘‘chunking’’ (Buzsáki, 2010) information
into discrete processing units (Senior et al., 2008; Buzsáki
and Moser, 2013; Colgin, 2013). Given that theta is altered
post-TBI (Fedor et al., 2010; Lee et al., 2013, 2015), it will
be important for future studies to examine how TBI may
affect these tightly coupled interactions and whether changes
in these interactions might underlie injury-induced behavioral
deficits.

Theta modulation can also strengthen synaptic connections
and organize information flow. For instance, hippocampal theta
phase locks local cortical gamma activity across multiple regions
and the firing of individual cortical neurons (Sirota et al.,
2003; Hyman et al., 2005; Jones and Wilson, 2005; Siapas
et al., 2005; Fujisawa and Buzsáki, 2011). Convergence of
cortical inputs onto the hippocampus coincides with a time
(i.e., theta phase) that is optimized to support hippocampal
synaptic plasticity (Berry and Thompson, 1978; Huerta and
Lisman, 1995; Seager et al., 2002). In turn, local hippocampal
plasticity is shaped by a difference in gamma phase-phase
synchronization between subfields. During tonic REM sleep
CA3-CA1 gamma coherence is decreased, while dentate gyrus-
CA3 gamma is increased. This releases CA1 from CA3 recurrent
collateral control and allows the dentate gyrus to modify CA3
synaptic activity. However, during brief interspersed periods
of phasic REM theta and gamma coherence across all three
subfields is increased and so is CA1 firing (Montgomery et al.,
2008). Thus, it seems that CA1 is excluded until hippocampal
information is transmitted back to the cortex (Buzsáki, 1989;
Wilson and McNaughton, 1994; Ji and Wilson, 2007). Shifting
between local cell assemblies ensures accurate transmission of
information, discrete synaptic modifications free of interference
and a receptive receiver to form an ensemble. Unfortunately,
it is yet to be determined if these interactions are affected by

TBI and if they are correlated with cognitive and behavioral
deficits.

While to this point we have focused on theta, ensemble
formation can be modulated at other frequencies. For example,
during NREM sleep cortical slow oscillations (0.02–0.8 Hz)
drive the cortex to alternate between a depolarized and a
hyperpolarized (up/down) state (Steriade et al., 1993a; Cowan
and Wilson, 1994; Timofeev et al., 2001). This slow oscillation
also propagates to the thalamus and the hippocampus. A
depolarized cortical state is associated with thalamacortical
spindles which can bias high frequency CA1 burst activity,
commonly referred to as sharp wave-ripples (Buzsáki et al.,
1992; Battaglia et al., 2004; Mölle et al., 2006; Buzsáki and
Silva, 2012). These ripples are synchronized to a particular
phase of the spindles and drive the activation of specific
cortical ensembles (Siapas and Wilson, 1998; Sirota et al., 2003;
Isomura et al., 2006; Wierzynski et al., 2009). This hippocampo-
cortical interplay may bind hippocampal output with coactive
cortical ensembles. Together, these interactions have the added
effect of associating two different networks in the spirit of
coordinating information storage and promoting formation of
long term memories through reciprocal excitation of ensembles.
Ultimately, depending on the effect of TBI these ensembles could
be as important of targets as those organized by theta oscillations.

It is important to note that the very functions ascribed
to oscillations are perturbed in TBI patients. On a variety
of neuropsychological exams patients score worse on tests
of attention, concentration, working memory, reaction time,
judgement and measures of effort (Rimel et al., 1981; Levin
et al., 1988a; McDowell et al., 1997; Bales et al., 2009). These
failures of information processing consolidate into deficiencies
in verbal and visual memory, episodic memory, multitasking,
executive function and cognition (Levin et al., 1988b; Hanks
et al., 1999; Millis et al., 2001; Alvarez et al., 2003; Bales et al.,
2009; Bootes and Chapparo, 2010; McCauley et al., 2014; Mäki-
Marttunen et al., 2015). Deficits in higher order information
processing are compounded by sleep-wake disturbances (Kempf
et al., 2010; Shay et al., 2014; Skopin et al., 2015). TBI patients
report a range of sleep-related disorders including difficulty
falling asleep, more nighttime awakenings and daytime naps,
increased fatigue, and prolonged sleep (Parcell et al., 2006;
Kempf et al., 2010; Mathias and Alvaro, 2012). These sleep
deficits are accompanied by altered REM and NREM sleep as
detected by nighttime scalp recordings, as well as changes in
nocturnal hormone secretion (Parsons et al., 1997; Frieboes
et al., 1999). Given the overlap between functions associated
with oscillations and observed deficits in TBI patients, additional
research is critical to understand whether dysfunction can be
ascribed to an alteration in oscillations. Moreover, if there is a
relationship between oscillations and outcome in brain injured
patients treatments aimed at modulating EEG are seemingly an
appropriate starting point.

ALTERED EEG AFTER TBI

There are data that clearly indicate that TBI alters oscillations
both in pre-clinical models as well as in patients (for detailed
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table on altered EEG, see Thatcher et al., 1989; Wallace
et al., 2001; Rapp et al., 2015). In rodent models, there is
a pronounced decrease in alpha, beta, delta and theta power
following mechanical injury (Dixon et al., 1987; Ishige et al.,
1987; McIntosh et al., 1987; Paterno et al., 2016). While most
of these reductions return to baseline levels within minutes to
hours after the injury (Sullivan et al., 1976; Dixon et al., 1988;
McIntosh et al., 1989), some, like diminished theta, can persists
for as long as 8–10 weeks after the insult (Fedor et al., 2010).
A prolonged decrease in theta power is accompanied by other
neurophysiological irregularities, even in brain regions spared
from significant cell death. One such area, the CA1 subfield,
exhibits altered excitation and inhibition, reduced LTP and
pathological spine anatomy days to weeks after injury (Reeves
et al., 1997; Sick et al., 1998; Sanders et al., 2000; Schwarzbach
et al., 2006).

Analysis of human TBI patients resembles the reported
prolonged recovery of EEG in experimental models of TBI.
While modifications in brain activity can be seen as early as
24 h even after a subconcussive head trauma (Johnson et al.,
2014), altered EEG following TBI can last for years after injury
(Thatcher et al., 1989; Alvarez et al., 2008; Kempf et al., 2010;
Slobounov et al., 2012). The changes in the EEG are not confined
to a single oscillatory band, as they have been reported for
the alpha, beta, delta, theta and gamma range (Alvarez et al.,
2008; Tomkins et al., 2011; Rapp et al., 2015). Alterations of
EEG activity are not state dependent, as changes are observed
when a patient is at rest (Virji-Babul et al., 2014; Borich et al.,
2015), actively moving (Slobounov et al., 2012) and during sleep
(Parsons et al., 1997; Frieboes et al., 1999). In fact, abnormalities
in scalp EEG are so consistent in patients they have been used to
differentiate between injured and non-injured subjects, classify
the severity of the injury, and some suggest, predict long term
outcome after TBI (Thatcher et al., 1989, 1991, 2001; Alvarez
et al., 2003; Arciniegas, 2011). For example, one of the criteria
used to diagnose mild TBI many months after injury is an
increase in coherence and a decrease in phase offset between
frontal and temporal lobes, along with a decrease in power
between frontal and posterior cortical regions (Thatcher et al.,
1989). Furthermore, reversal of pathological EEG power ratio
with administration of a neurotrophic peptide correlated with
improvement in attention and working memory (Alvarez et al.,
2008). The persistence of an abnormal EEG after a head injury
suggests a potential link to prolonged psychological symptoms.

As is clear from the previous sections, it is not rigorous
enough to determine that EEG is altered following injury.
Unfortunately for the patient, it is also unlikely that there is
a single mechanism that can easily explain why the EEG has
changed. Therefore, it is critical to identify a starting point for
research. While many neural systems and processes may be
affected by a head injury, of particular interest (in our laboratory)
is hippocampal dysfunction and the generation/maintenance of
theta. TBI alters hippocampal neurotransmitter systems involved
in the generation of theta, including acetylcholine, glutamate
and GABA (Saija et al., 1988; Faden et al., 1989; Katayama
et al., 1990; Robinson et al., 1990; Marshall et al., 2002). Rapid
and prolonged increases in neurotransmitter levels act on local

receptors causing long-lasting adaptation (Miller et al., 1990;
Delahunty, 1992; Jiang et al., 1994; Delahunty et al., 1995;
Schwarzbach et al., 2006). Thus, even after the injury-induced
alteration of extracellular concentration of neurotransmitters
returns to basal levels, modified receptors may have an ectopic
response to subsequent activation, potentially affecting the
timing and strength of receptor coupled processes essential to
rhythm generation (Lyeth et al., 1992; Fineman et al., 1993;
Kato et al., 2007; Marcoux et al., 2008). Another consequence
of an intense glutamate discharge is excitotoxicity (Choi, 1988).
This cell loss is readily observed in CA3 and dentate gyrus
(Hicks et al., 1993; Floyd et al., 2002; Witgen et al., 2005),
both of which are contributing nodes to CA1 theta (Bland,
1986; Kocsis et al., 1999; Marshall et al., 2002). Within the
dentate gyrus, GABAergic interneurons in the hilus seem to
be especially vulnerable to excitotoxicity, due to an increased
excitatory drive onto their glutamatergic receptors (Tóth et al.,
1997b; Hunt et al., 2011). Consequently, GABAergic cell death
profoundly alters the excitability of not only the dentate gyrus,
but the hippocampus as a whole leading to deficits in LTP and
theta generation (Reeves et al., 1995, 1997; van den Pol et al.,
1996; Witgen et al., 2005; Mtchedlishvili et al., 2010; Dinocourt
et al., 2011). This hippocampal pathological process results in
delayed degeneration in the MSN, a critical pacemaker for theta
generation (Leonard et al., 1997). More specifically, cholinergic
neurons within the septum show a marked susceptibility to cell
death days to weeks following mild/moderate fluid percussion
(Leonard et al., 1994; Schmidt and Grady, 1995) and a controlled
cortical impact injury (Dixon et al., 1997). Such neuronal
atrophy leads to enlarged ventricles and a proliferation of
astrocytes, detected up to a year after TBI (Smith et al.,
1997). Furthermore, downstream structures to the MSN, such
as the hippocampus, show changes consistent with cholinergic
hypofunction. In order to compensate for a decrease in evoked
cholinergic neurotransmission (Dixon et al., 1996), there is an
increase in the protein responsible for packing acetylcholine into
presynaptic vesicles, downregulation of inhibitory autoreceptors
and a hypersensitivity hippocampal cholinergic receptors and
subsequent response of 2nd messengers (Jiang et al., 1994;
Delahunty et al., 1995; Ciallella et al., 1998). MSN function could
be further encumbered by post-traumatic epilepsy (Santhakumar
et al., 2001; Frey, 2003; Pitkänen and McIntosh, 2006). Chronic
seizure activity is related to a decrease (Garrido Sanabria et al.,
2006) and altered firing of putative theta generating GABAergic
cells in the septum (Colom et al., 2006). These observations
have fueled the hypothesis that at least temporal lobe epilepsy in
part arises due to an imbalance in septohippocampal theta and
that theta stimulation could potentially be used as antiepileptic
(Kitchigina et al., 2013; Fisher, 2015).

Degeneration and white matter damage also likely interfere
with normal patterns of brain oscillations. Axonal abnormalities
may arise from the initial shearing forces from the impact and
an ionic imbalance in the extracellular space (Hicks et al., 1995;
Graham et al., 2000; Li et al., 2014). Loss of ionic equilibrium
leads to axonal increase of Ca2+ permeability, calpain activation,
mitochondrial dysfunction and eventually breakdown of the
cytoskeleton (Maxwell et al., 1997; Johnson et al., 2013). These
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changes may culminate in deafferentation/denervation and
inappropriate synaptic plasticity (Povlishock and Katz, 2005;
Hunt et al., 2011). Many of these axonal changes can be
detected weeks after the insult and correlate with behavioral
abnormalities (Kempf et al., 2010; Spain et al., 2010). It is not
surprising then that compromised axonal structure and function
results in irregular oscillatory interactions, even years after the
injury. These structural deformities along with neurochemical
aberrations contribute significantly to the observed deficits in the
propagation of functionally relevant hippocampal theta (Fedor
et al., 2010), and subsequently brain function after TBI (Hanks
et al., 1999; Millis et al., 2001). These data clearly indicate that
multiple TBI-induced mechanisms can play a role in altered
brain oscillations and their interactions thus contributing to
long-term impaired cognition.

THETA DBS

Pathologies associated with TBI are wide-ranging, occurring
at the molecular, physiological and structural level. These
alterations in turn may lead to changes in network activity,
affecting neural communication and plasticity. Abnormal
rhythm generation could potentially hinder and prolong
recovery after a TBI insult (Thatcher et al., 1991; Tomkins et al.,
2011). Furthermore, once a patient has progressed out of the
acute post-injury phase of the disease, neuroprotection is no
longer a viable therapeutic option. Therefore, there is an urgency
to develop treatment strategies for TBI patients who have chronic
disability. DBS represents a potential intervention that can
drive neural networks, improve neurophysiology and ultimately
behavioral outcome in a subset of brain-injured patients. The
advantage of neurostimulation, say over pharmacology, is its
ability to target specific regions, inherent higher temporal
resolution and ability to generate specific patterns of electrical
input, all of which are critical factors in the generation and
interaction of oscillations. Furthermore, neurostimulation has
shown promise in alleviating symptoms in motor, cognitive,
behavioral and psychiatric conditions (Brunoni et al., 2011;
Lozano and Lipsman, 2013; Suthana and Fried, 2014). The
relative success of DBS in each specific situation is determined
by a growing body of parameters, beyond the scope of this article
to survey (Kuncel and Grill, 2004; Butson and McIntyre, 2007;
Birdno and Grill, 2008). Therefore, given the focus of this review
we will highlight the potential use of one stimulation strategy, the
use of low frequency stimulation within the theta range.

Exogenous induction of theta in structures like the
hippocampus can improve cognitive processes in experimental
animals. Hippocampal theta can be achieved either with
direct hippocampal stimulation or by targeting afferent
structures such as the fornix or MSN. Using rodent models,
pre-training stimulation of MSN decreased the time to
acquire discriminatory learning (Deupree et al., 1982) while
post-training stimulation facilitated memory consolidation
(Landfield, 1977; Wetzel et al., 1977). These results mirror the
positive correlations observed between endogenous theta and
enhanced acquisition and retention (Landfield et al., 1972; Berry
and Thompson, 1978; Seager et al., 2002; Mandile et al., 2003;

Mitchell et al., 2008). Importantly, the uniqueness of these
findings lies not in the MSN per se, but in the theta oscillation.
The critical role of theta oscillations specifically was revealed in
studies were theta stimulation of the fornix was able to drive
hippocampal theta oscillations following chemical inactivation
of the MSN (Green and Arduini, 1954; Petsche et al., 1962;
Vertes et al., 2004). Not only did stimulation drive theta, but
also rescued the behavioral impairment (McNaughton et al.,
2006). Further substantiating the selectivity of theta range,
high frequency MSN stimulation does not facilitate mnemonic
processes (Landfield, 1977; Wetzel et al., 1977). Therefore
hippocampal theta, generated endogenously or extrinsically,
plays a critical role in neural computations supporting animal
cognition.

The beneficial effects of stimulation in the theta range are
not limited to cognitive processes. For example, low frequency
stimulation has been shown to be beneficial after an acute spinal
cord contusion where an 8 Hz stimulation of the raphe nucleus
improved motor coordination and sensory processing, increased
white matter integrity and reduced astrocytosis (Hentall and
Burns, 2009; Hentall and Gonzalez, 2012). Therefore it is
possible that stimulation of theta following TBI might also have
indirect effects that could improve the hippocampal milieu post-
injury facilitating anatomical as well as physiological recovery.
Epilepsy treatment is also closely associated with low frequency
stimulation. Effective reduction of kindling from a 60Hz induced
seizure is achieved with 3–5 Hz stimulation (Gaito et al., 1980;
Kile et al., 2010; Koubeissi et al., 2013). Building on this
framework, Fisher recently proposed a novel hypothesis that
MSN stimulation in the theta range may benefit patients with
epilepsy (Fisher, 2015). Therefore stimulation following severe
TBI might also have the added benefit of reducing or preventing
post-traumatic epilepsy.

THETA DBS IN TBI MODELS

Recently, several studies have described the restorative effect
of theta stimulation after TBI injury. Lee et al. (2013,
2015) stimulated the MSN at 7.7 Hz and recorded an
increase in hippocampal theta power along with better spatial
performance in the Barnes maze following a moderate lateral
fluid percussion injury (Figure 4). Several stimulation controls
bolstered the hypothesis that theta band stimulation was
specifically augmenting the septohippocampal system in TBI
rats. In particular, successful MSN stimulation in the theta
range was intensity specific, there was no effect on overall
motor output (i.e., distance traveled) and MSN stimulation
at 100 Hz did not rescue the deficit in spatial performance
(i.e., spatial search strategy) in the maze (Lee et al., 2015).
Moreover, the authors concluded the effect was restorative
and not simply enhancing function as similarly stimulated
sham animals experienced no improvement in spatial learning.
Likewise, the Hentall group observed positive effects on spatial
memory in the watermaze and forelimb reaching movements
when, following lateral fluid percussion, they stimulated the
raphe nucleus, part of the ascending system that generates theta,
at 8 Hz (Vertes et al., 2004; Carballosa Gonzalez et al., 2013).

Frontiers in Systems Neuroscience | www.frontiersin.org 9 April 2016 | Volume 10 | Article 30

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Pevzner et al. Making Waves in the Brain

FIGURE 4 | Systems level overview of septohippocampal theta. Blue arrows represent proposed theta generators and essential modulators of hippocampal
theta. Red arrows, stemming from the hippocampus, represent various structures that are known to be modulated/interact with hippocampal theta. ∗Raphe only
projects to the hippocampus, not MSN.

In conjunction with behavioral outcomes, stimulation reversed
cortical cell loss, white matter degeneration and decreases
in cortical and hippocampal levels of cAMP, an intracellular
second messenger (Carballosa Gonzalez et al., 2013). These
proof of principle studies illustrate the potential of theta
stimulation to augment physiological and behavioral outcome
following TBI.

Importantly, theta stimulation has not been the only
successful stimulation paradigm observed in experimental
models of TBI. In a model of mild TBI, theta burst stimulation
(TBS) was able to rescue working memory in the T-maze delayed
non-match to sample task. Rather than using a continuous single
pulse (7.7 or 8 Hz) fixed stimulation (Sweet et al., 2014) used
a TBS protocol to stimulate the fornix, specifically with five 50
ms long bursts of high frequency (200 Hz) pulses per second.
The hypothetical advantage of TBS as compared to continuous
theta stimulation is that the 200 Hz gamma stimulation partially
recapitulates endogenous patterned firing at a physiologically
relevant theta frequency. In fact TBS has been demonstrated to
induce long lasting LTP (Rose and Dunwiddie, 1986; Staubli
and Lynch, 1987; Diamond et al., 1988; Kirkwood et al., 1993).
Accordingly, Sweet et al. (2014) reported that TBS, but not
low (5 Hz) or high (130 Hz) frequency stimulation of the
fornix, improved performance of TBI rats in the T-maze. Spatial

memory in the watermaze was also improvedwith TBS; however,
5 Hz stimulation was not tested.

There are several key takeaways from these two successful
stimulation paradigms. The first is that task might matter.
There is evidence that, depending on task, there is a shift
in the frequency of the theta oscillation (Kramis et al., 1975;
Watrous et al., 2013). Therefore, the specific frequency within
the theta range may be critical to improving outcome and
the target may be different for different behaviors. Following
that reasoning, while 5 Hz stimulation may not have improved
T-maze performance, it is possible that 7.7 (or some other
frequency) may have. In fact, in a study by McNaughton et al.
(2006), it was observed that to optimally restore behavior in the
watermaze after chemical inactivation of the MSN, it was best to
stimulate the fornix with an endogenous EEG pattern recorded
from the supramamillary nucleus as compared to fixed 7.7 Hz or
an irregular theta stimulation pattern (with an average frequency
of 7.7 Hz). These data indicate that not all ‘‘theta’’ is the same,
and that the specific frequency within the theta band may be
highly relevant.

The fact that these initial reports of DBS in TBI did
not report completely homogenous results is worth noting.
The data highlights the need for additional research to
investigate the large parametric space available for potential
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stimulation parameters. There are many additional variables to
be considered: intermittent vs. constant stimulation; endogenous
stimulation (where theta is recorded from an uninjured site
and played back in the injured hippocampus as in McNaughton
et al., 2006) vs. exogenous fixed frequency; theta burst vs. single
pulse; variants in voltage, pulse width and square as compared
to sinusoidal; which regions, nuclei or subfields to target; at
which point during the task/behavior to stimulate or whether
to stimulate offline during sleep or to stimulate relative to an
endogenous oscillation independent of the behavior. A closed
loop system where stimulation was based on the recorded
EEG (from a different region) would subsequently be amenable
to biofeedback (Wallace et al., 2001; Rosin et al., 2011; de
Hemptinne et al., 2015).

Different stimulation parameters will not only influence
the efficacy of the treatment, but also most likely the extent
of unintended effects. The most commonly reported adverse
events are related to the implant rather than stimulation and
include inflammation, headache, pain at the implant site, and
mild paresthesia surrounding the implant (Kenney et al., 2007;
Fisher et al., 2010; Salanova et al., 2015). However, in studies
of stimulation for treatment of epilepsy there are reports
of cognitive dysfunction, depression and suicide in a small
number of patients (Bergey et al., 2015; Salanova et al., 2015).
Therefore it will be important to monitor which symptoms
TBI patients report receiving low frequency stimulation of the
septohippocampal system. While complications with the surgery
and device itself are minimal, as argued by Fisher (2015) in
his proposal to stimulate the MSN in epileptic patients, there
are however potential risks of eliciting seizures or promoting
addiction to constant stimulation (for discussion on long-term
safety of DBS, see Kenney et al., 2007). These potential risks (e.g.,
prior epileptic activity, predisposition to addiction, mood/affect
disorders) should be taken into consideration when enrolling
patients so as tominimize potential harm. The inclusion criterion
could be further refined based on the mechanism of action
of neurostimulation in the theta range. If DBS is masking
an enduring effect or if it is restorative will potentially influence
the type of therapy one gets, such as; when should DBS be
administered relative to the injury and in response to what
type of injury? Will immediate intervention interfere with the
healing process or will waiting too long make the system
unamenable? How long will the benefits of DBS persist, if

stimulation is discontinued? Should the treatment continue
indefinitely or should there be a clinical marker/threshold
to stop or augment the stimulation? Thus, there is a clear
need for considerable pre-clinical animal work and potentially
computational modeling to better understand and explore the
complex parameter space that is DBS and the mechanisms
behind it, if we are to optimize the potential of neurostimulation
for clinical translation.

CONCLUSION

After years of research, there are few proven interventions
that reduce injury-induced cellular cascades and ultimately, cell
death and dysfunction following TBI. While the latest census
estimates over 5.3 million patients live with chronic disability,
it is clear that that number has grown and continues to grow.
Therefore, there is a clear need for pre-clinical research expressly
focused on the injured nervous system in the chronic stages
of the disease. Oscillations are known to play a key role
in physiological circuit function, whether it is the progression
of oscillations through the sleep cycle or theta oscillations in
the hippocampus. Initial evidence suggests that injury-induced
disruption of these oscillations has a profound impact on
neural connectivity and behavior. In fact, changes in EEG
can be used as a biomarker to confirm mild and moderate
TBI. Additionally, limited studies of DBS in brain injured
rats demonstrate that the injured brain can be modulated by
entraining or replacing oscillations, with improved outcomes.
Future preclinical studies are needed to explore a very large
parametric space that spans not only multiple stimulation
targets and paradigms but also different injury mechanisms as
well as a range of cognitive behavioral tasks and dependent
measures, extending beyond spatial navigation. The potential
for DBS is clear. We believe that further research into electrical
neuromodulation of the injured brain will result in an exciting
avenue to promote behavioral, cognitive and neurophysiological
recovery following TBI.
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