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Simple Summary: Efforts have been directed toward exploring the pathophysiology underlying
virus-positive and virus-negative Merkel cell carcinoma. An increasing amount of research has
underlined the role of T-cells in the initiation, progression, and clearance of this rare skin cancer. An
updated summary of recent research exploring T-cell-mediated immunity in Merkel cell carcinoma
informs future research directions as well as targets for immunotherapy.

Abstract: Merkel cell carcinoma (MCC) is a rare and frequently lethal skin cancer with neuroendocrine
characteristics. MCC can originate from either the presence of MCC polyomavirus (MCPyV) DNA
or chronic ultraviolet (UV) exposure that can cause DNA mutations. MCC is predominant in sun-
exposed regions of the body and can metastasize to regional lymph nodes, liver, lungs, bone, and
brain. Older, light-skinned individuals with a history of significant sun exposure are at the highest
risk. Previous studies have shown that tumors containing a high number of tumor-infiltrating T-cells
have favorable survival, even in the absence of MCPyV DNA, suggesting that MCPyV infection
enhances T-cell infiltration. However, other factors may also play a role in the host antitumor
response. Herein, we review the impact of tumor infiltrating lymphocytes (TILs), mainly the CD4+,
CD8+, and regulatory T-cell (Tregs) responses on the course of MCC, including their role in initiating
MCPyV-specific immune responses. Furthermore, potential research avenues related to T-cell biology
in MCC, as well as relevant immunotherapies are discussed.

Keywords: Merkel cell carcinoma; T-cell immunity; tumor infiltrating lymphocytes; MCC; MCPyV

1. Introduction

Merkel cell carcinoma (MCC) is a rare, aggressive neurocutaneous malignancy most
often occurring in older White patients [1]. The estimated 5-year recurrence rate is 40–63%
and mortality rate is 33–46% [2–4]. The incidence of MCC has increased by 95% in the past
decade, presumed to be due to an aging population, increased aggregate sun exposure,
and higher numbers of immunosuppressed individuals [5]. Similar to other skin cancers,
MCC is typically observed on sun-exposed areas such as the head, face, and neck. As
suggested above, the risk factors include advanced age, fair skin, ultraviolet (UV) exposure,
and a weakened immune system [6]. In particular, recipients of solid organ transplants
taking immunosuppressive medications, as well as immunocompromised individuals, are
at a higher risk of MCC and have an increased likelihood of recurrence, metastasis, and
death [7]. While the exact cause is yet to be elucidated, MCC pathogenesis is typically
categorized by two main etiologies: Merkel cell polyomavirus (MCPyV) (80% of cases) or
extensive UV exposure (20% of cases) [8] (Figure 1).
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Figure 1. Proposed etiological pathways for Merkel cell carcinoma (MCC). (A) UVA and UVB rays 
cause DNA damage, which generates ROS that contributes to the oxidation of DNA bases. This 
results in the accumulation of mutations, especially in the TP53 and RB1 genes, leading to the inac-
tivation of tumor suppressive pathways. Additionally, increased ROS levels increase HIF-1α activ-
ity. HIF-1α activates NF-κB/STAT 3 pathways and angiogenesis, leading to increased tumor cell 
proliferation and the promotion of metastasis. (B) 80% of MCC cases are attributed to MCPyV eti-
ology, which is first initiated by MCPyV infection. Following integration of the viral genome into 
the host genome, two neoantigens: sT and LT antigens, are expressed. sT and LT are involved in the 
inhibition of cell pathways: retinoblastoma, tumor suppressor p53, 4E-BP1, and Fbw7, which con-
tribute to increased cell cycle progression, decreased tumor suppression, increased translation, and 
decreased proteasomal activity, respectively. Activation of PP4C and PP4R1 subunits inhibit 
NEMO, which decreases antiviral response and leads to failure of NF‒kB signaling. Abbreviations: 
UVA, Ultraviolet A; UVB, Ultraviolet B; ROS, reactive oxygen species; RB, retinoblastoma; TP53, 
Tumor protein P53; 4E-BP1, eukaryotic translation initiation factor 4E-binding protein 1; HIF-1α, 
Hypoxia-inducible factor 1-alpha; STAT3, Signal transducer and activator of transcription 3; 
MCPyV, Merkel cell polyomavirus; sT, small tumor; LT, large tumor; PP4C, protein phosphatase 4 
catalytic, PP4R1, protein phosphatase 4 regulatory; NEMO, NF-kappa-B essential modulator; NF-κB, Nuclear factor-κB; Fbw7, F-Box and WD Repeat Domain Containing 7. Created with Bioren-
der.com. 

Since the emergence of reports suggesting that MCC disproportionately affects im-
munocompromised individuals, an infectious cause had been suspected. Feng et al. per-
formed the whole transcriptome sequencing of MCC tumors in their search for a patho-
genic cause, leading to the discovery that MCPyV DNA was clonally integrated into the 
genome of MCC tumor cells [9]. This finding underlined the association of MCPyV with 
MCC [9]. Additional evidence revealing that virus-positive MCC tumors generally pos-
sess few somatic mutations suggests that these tumors have MCPyV gene products that 
may drive MCC tumorigenesis [10,11]. Furthermore, studies on the pathophysiology of 

Figure 1. Proposed etiological pathways for Merkel cell carcinoma (MCC). (A) UVA and UVB rays
cause DNA damage, which generates ROS that contributes to the oxidation of DNA bases. This
results in the accumulation of mutations, especially in the TP53 and RB1 genes, leading to the
inactivation of tumor suppressive pathways. Additionally, increased ROS levels increase HIF-1α
activity. HIF-1α activates NF-κB/STAT 3 pathways and angiogenesis, leading to increased tumor
cell proliferation and the promotion of metastasis. (B) 80% of MCC cases are attributed to MCPyV
etiology, which is first initiated by MCPyV infection. Following integration of the viral genome into
the host genome, two neoantigens: sT and LT antigens, are expressed. sT and LT are involved in
the inhibition of cell pathways: retinoblastoma, tumor suppressor p53, 4E-BP1, and Fbw7, which
contribute to increased cell cycle progression, decreased tumor suppression, increased translation,
and decreased proteasomal activity, respectively. Activation of PP4C and PP4R1 subunits inhibit
NEMO, which decreases antiviral response and leads to failure of NF–kB signaling. Abbreviations:
UVA, Ultraviolet A; UVB, Ultraviolet B; ROS, reactive oxygen species; RB, retinoblastoma; TP53,
Tumor protein P53; 4E-BP1, eukaryotic translation initiation factor 4E-binding protein 1; HIF-1α,
Hypoxia-inducible factor 1-alpha; STAT3, Signal transducer and activator of transcription 3; MCPyV,
Merkel cell polyomavirus; sT, small tumor; LT, large tumor; PP4C, protein phosphatase 4 catalytic,
PP4R1, protein phosphatase 4 regulatory; NEMO, NF-kappa-B essential modulator; NF-κB, Nuclear
factor-κB; Fbw7, F-Box and WD Repeat Domain Containing 7. Created with Biorender.com.

Since the emergence of reports suggesting that MCC disproportionately affects im-
munocompromised individuals, an infectious cause had been suspected. Feng et al. per-
formed the whole transcriptome sequencing of MCC tumors in their search for a pathogenic
cause, leading to the discovery that MCPyV DNA was clonally integrated into the genome
of MCC tumor cells [9]. This finding underlined the association of MCPyV with MCC [9].
Additional evidence revealing that virus-positive MCC tumors generally possess few so-
matic mutations suggests that these tumors have MCPyV gene products that may drive
MCC tumorigenesis [10,11]. Furthermore, studies on the pathophysiology of virus-positive
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MCC revealed the functional domains of the small tumor (sT) and large tumor (LT) antigens
in mediating MCPyV-associated tumorigenesis [12]. Both antigens are required for MCPyV-
positive MCC cell survival and proliferation and have been shown to dysregulate cell
pathways by interacting with host proteins, including those regulating tumor suppression,
cell cycle progression, and proteasomal activity [13–17].

Although the majority of MCC cases are virally mediated, the true origin of MCC
remains debatable [18]. UV radiation (UVR) is a general risk factor for skin cancers, as
it can cause both direct skin damage (most frequently through formation of cyclobutane
pyrimidine dimers) and mutations (e.g., to p53 tumor suppressor genes), meaning that UVR
plays a critical role in tumor initiation [19]. Skin exposure to UVR prompts infiltration by
neutrophils, key producers of reactive oxygen species that can further activate downstream
signaling pathways associated with cancer-related inflammation [20]. Supporting the asso-
ciation of UVR with the development of MCC are observations that MCC lesions typically
occur on sun-exposed areas, primarily in fair-skinned individuals. It has been reported
that MCPyV-negative tumors develop as a direct result of UV-associated mutations [21].
Additionally, a dose-dependent increase in mRNA transcripts of the MCPyV sT antigen
can be observed upon UVR exposure [10,22,23].

Regardless of the specific etiology, MCPyV and UV-related MCC exhibit clinical and
histopathological similarities [24]. Efforts have been directed towards exploring the patho-
physiology underlying these two etiologies of MCC. In particular, the exploration of the
role T-cells play in the initiation, progression, and clearance of MCC is of interest [25]. In
this review, we discuss the role of tumor infiltrating lymphocytes (TILs) in driving the
development and clearance of MCC. We begin by addressing the current landscape of
knowledge regarding MCC pathogenesis, highlighting how MCPyV infection influences
T-cell infiltration and promotes tumor progression. The proposed mechanisms for how
T-cells drive the pathogenesis of MCC, specifically regarding initiation of MCPyV-specific
immune responses, will be explored. Throughout, we draw connections to specific im-
mune factors within the tumor microenvironment (TME) that relate to the etiology and
pathogenesis of MCC. Finally, we will highlight future directions regarding the current
immunotherapy paradigm for MCC and potential research avenues related to T-cell biology.
By elucidating how T lymphocyte-mediated cellular events relate to initiation, progression,
and clearance of MCC, we may consider how T-cell-mediated therapeutic strategies can
target the TME to eradicate MCC.

2. Tumor Microenvironment in MCC

Aberrant innate and adaptive immune processes contribute to the selection of aggres-
sive clones and the proliferation and metastasis of cancer cells [26]. In the initial stages
of tumor development, cytotoxic immune cells, including natural killer (NK) and CD8+

T-cells, detect and eliminate immunogenic cancer cells. This tumoricidal attack results in a
selection process that favors cells that can evade tumor-specific immune responses [26]. The
fate of the tumor largely depends on the balance between antitumor and immune escape
processes in the TME—the environment around the tumor consisting of the extracellular
matrix and diverse cell types such as stromal, endothelial, and immune cells [27–29].

Many biomarkers have been implicated as potential prognosticators in MCC [30–35],
but the integrity of the host immune system has been argued to be the most significant [36].
Indeed, antigen-specific T-cells detected in patients demonstrate a reduced expression
of CD69 and CD25. In addition, 50% of the nonactivated T-cells in MCC express PD-1,
a marker of T-cell exhaustion. PD-1 interacts with PD-L1, which is often expressed by
MCC cells leading to T-cell dysfunction [37,38]. Previous studies have indicated that
the density, location, and organization of immune cells within tumors at the time of
diagnosis can reflect the host’s immune response and help predict the course of tumor
progression [39–42]. In various malignancies, including melanoma and colorectal, lung, and
breast cancers, increased numbers of immune cells have been associated with improved
prognosis [43–47]. While some immune cells, such as cytotoxic T-cells, helper T-cells
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(TH), dendritic cells (DC), and NK cells, provide antitumor responses, others, such as
regulatory T-cells (Tregs), have been associated with immunosuppressive functions favoring
tumor progression [48]. These opposing effects are further mediated by the production of
chemokines and cytokines that can facilitate bidirectional crosstalk between cancer cells and
the immune microenvironment [49,50]. Further efforts aimed at quantifying tumor immune
cells and characterizing the immune landscape in MCC may help identify individuals at an
increased risk of MCC recurrence or mortality.

3. Role of Tumor Infiltrating Lymphocytes in MCC

Within most tumors exist TILs, a heterogeneous lymphocyte population composed
primarily of T-cells that penetrates the tumor upon the recognition of cancer antigens,
therefore potentially contributing to tumor destruction or escape [51]. The prognostic sig-
nificance of TILs in MCC has been recognized for many years [38,52]. The immunostaining
of MCC tumor cryosections has revealed tumor infiltration by various subpopulations of
T-cells, including effector, regulatory, and central memory (TCM) [38] (Figure 2). MCCs
with higher levels of T-cells expressing CLA (cutaneous lymphocyte-associated antigen)
demonstrate increased infiltration, while the subset of MCC tumors with T-cells lacking
CLA expression fail to penetrate the tumor. Although this CLA-negative peritumoral
pattern is typically associated with poor survival, the presence of CLA-positive TILs alone
was not necessarily protective, as these individuals still experience MCC recurrence and
mortality [38]. Among T-cells that infiltrate MCC, researchers have observed decreased
CD69 expression compared to T-cells from normal, non-inflamed skin, suggesting that the
MCC:TME modulates the expression of T-cell-associated activation markers [38]. Observa-
tional studies using data from the National Cancer Database have found the presence of
TILs to be associated with improved overall survival in MCC [53,54]. Although researchers
recognize that TILs may portend improved prognosis in MCC, it will be important to tease
apart the differential clinical relevance of individual subsets of TILs in order to inform
management (e.g., optimizing the use of adjuvant immunotherapeutic agents to enhance
antitumor immune response) of MCC.

3.1. CD8+ and CD4+ T-Cells

Abundant numbers of infiltrating CD4+ and CD8+ T-cells have been observed in
MCC tumors. The high numbers of intra-tumoral CD8+ T-cells infiltrating the MCC
microenvironment have been associated with MCC survival, regardless of the tumor stage
at diagnosis [55,56]. In MCC, the MCPyV gains oncogenic potential via rare integration
and T-antigen (T-Ag) truncation mutations [57]. The association of high CD8+ T-cell
counts with improved survival is mediated by virus-specific CD8+ T-cells recognizing a
broad range of peptides and oncoproteins expressed by tumor cells to effect cell lysis [25].
The mutations within these epitopes may exert their influence on TIL recognition via
allostery and alterations in local folding, leading to reduced CD8-mediated cytotoxicity.
As demonstrated by Samimi et al., CD8+ T-cells may additionally have antitumor activity
in virus-negative MCC through their recognition of the melanoma-associated antigen 3,
which is often expressed in MCC [58].

Immuno-oncology studies have traditionally focused on the role of CD8+ T-cells in
antitumor immune responses, largely due to the ~100–1000-fold lower relative frequency of
antigen-specific CD4+ T-cells compared to CD8+ T-cells [59]. However, the fact that MCC
results from MCPyV oncoproteins in 80% of cases has facilitated the study of the role of
tumor-specific CD4+ T-cell help in MCC antitumor activity. While most CD4+ T-cells act
as helper T-cells that activate CD8+ T-cells, some also activate B-cells to differentiate into
plasma cells or memory B-cells, as evidenced by the high prevalence of MCPyV-specific
antibodies in healthy individuals [25]. MCPyV antibodies have been detected in a majority
(77%) of the general population without observed variations according to sex or age [60].
Furthermore, the administration of MCPyV viral-like proteins (VLPs) induced a strong
immune response in mice, suggesting a good requisite for the development of preventive
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VLP-based cancer vaccines, since VLPs can trigger a strong CD4+ T-cell-mediated immune
responses against oncoviruses [60,61]. Furthermore, Longino et al. identified CD4+ T-cell
responses against six MCPyV epitopes, most notably the WEDLT209-228 epitope within a
key oncogenic region of the MCPyV LT antigen [62]. This epitope was found to include
a conserved, essential oncogenic domain that upon modification disabled the binding of
MCPyV to the retinoblastoma tumor suppressor gene [57,62]. CD4+ T-cells specific to
the WEDLT209-228 epitope were enriched 250-fold within MCC tumor samples compared
to blood and exhibited diverse T-cell receptor (TCR) repertoires, therefore suggesting
in vivo antigen recognition and therapeutic potential of CD4+ T-cell responses targeting of
specific cancers [62].
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Figure 2. Immune cells and secretory molecules within the tumor microenvironment (TME) shape
the course of Merkel cell carcinoma. Shown here are several key cellular components and secretory
molecules that mediate the balance of cytotoxic versus suppressive responses surrounding tumor
cells. Presence of CD8+ T-cells, CD4+ TH1, NK cells, DN γδ T-cells, and TAMs contribute to antitumor
effects through the secretion of inflammatory cytokines. During early stages of tumor development,
immune cells, namely NK and CD8+ T-cells, recognize and eliminate immunogenic cancer cells,
promoting the selection of less immunogenic cancer cells. Activated M1 macrophages contribute
to antitumor responses, but as the tumor progresses, shift toward M2-like-polarization of TAMs
contributing to anti-inflammatory pro-tumorigenic responses. Selection of tumor cells that evade or
resist tumor killing cells lead to development of the tumor. Tumor cells can secrete molecules that
recruit suppressive cells, including Tregs, which can suppress CD4+ and CD8+ T-cell proliferation
and activity. The TME can activate pDCs to secrete cytokines that induce the generation of CD8+

Tregs, leading to inhibition of CD4+ T-cells. Binding of PD-1 receptor on T-cells to PD-L1 expressed on
tumor cells results in the suppression of T-cell proliferation and the host immune response. Antibody
blockade of PD-1 and PD-L1 disrupts this tumor escape mechanism, paving the way for development
of new therapeutics for MCC. Abbreviations: NK, Natural Killer; TH1: Type 1 T helper; DN, double
negative; TAM, tumor associated macrophages; Tregs, Regulatory T-cells; pDCs, plasmacytoid
dendritic cells; PD-1; programmed cell death protein 1 receptor; and PD-L1, programmed death
ligand 1. Adapted from “Skin Epithelium Cross Section with Blood and Lymphatic Vessels (Layout)”,
by Biorender.com (2022). Retrieved from https://app.biorender.com/biorender-templates accessed
on 10 November 2022.
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3.2. Regulatory T-Cells

The higher proportion of Tregs within the TME may promote tumor development and
proliferation [63]. Tregs secrete anti-inflammatory cytokines, such as IL-10, transforming
growth factor (TGF)-β, and IL-35, and express inhibitory receptors, lymphocyte-activation
gene 3 (LAG-3), and T-cell immunoreceptor with Ig and ITIM domain (TIGIT) that suppress
DC function and TH1 responses [38,64–66]. TIGIT is expressed in immune cells, including
T-cells, natural killer cells, and Tregs. This coinhibitory molecule is known to bind to two
ligands CD155 and CD112 expressed by tumor cells and APCs within the TME. It has
been demonstrated that TIGIT+ Tregs are highly suppressive and enriched in cutaneous
tumors, such as melanoma. Therefore, a dual PD-1/TIGIT blockade is a potential therapy
for cancers, including MCC [67–69].

Dowlatshahi et al. observed that MCC TILs comprised primarily CD25+ FOXP3+

Tregs, which contrasts with normal human skin that contains a higher proportion of CD25+

FOXP3− activated T-cells [38]. Additionally, MCC tumors containing CD8+ FOXP3+ Tregs
contained plasmacytoid dendritic cells (pDCs), which are known to secrete cytokines
that promote the formation of CD8+ Tregs [38]. Together, CD8+ FOXP3+ Tregs and pDCs
contribute to an immunosuppressive TME, which has been associated with resistance to
immunotherapy and poor patient prognosis [70,71] (Figure 2).

3.3. Other T-Cell Subsets

Gherardin et al. found a large proportion of T-cells in MCC that expressed neither
CD4 nor CD8 on their surfaces, termed double negative (DN) T-cells [52]. Using flow
cytometry, they revealed that γδ T-cells represent the majority of DN T-cells in MCC tumors.
T-cells have classically been divided into αβ or γδ lineages based on the expression of
either the αβ or γδ T-cell receptor (TCR) [52,72]. Unlike the αβ T-cell lineage, γδ T-cells
have non-major histocompatibility complex (MHC) restricted antigen recognition, which
allow them to mediate quick immune inflammatory responses [73]. Following activation,
γδ T-cells rapidly proliferate and produce inflammatory cytokines, such as IFN-γ and
IL-17, as well as release cytotoxic granules such as granzymes and perforin [74]. γδ T-cells
have been shown to be able to exert direct tumor killing effects, as well as regulate other
proinflammatory and antigen-driven responses that may involve other immune cells [73].
The abundance of γδ T-cells have been correlated with improved survival in numerous
cancers, including MCC [52]. More studies are required to elucidate the role of γδ T-cells in
immune surveillance, regulation and antitumor immunity.

4. T-Cell Receptor Repertoires

The sequencing of TCR repertoires has been used to study various medical conditions,
such as autoimmune diseases, infections, and cancer [75–77]. In recent years, researchers
have sought to associate the TCR repertoire with MCC patients’ risk for disease-specific
morbidities and how they might respond to specific immunotherapies. Farah et al. evalu-
ated the TCR repertoire associated with 72 primary MCCs and correlated metrics of the
TCR repertoire with clinicopathologic characteristics and patient outcomes [36]. They
found that higher TCR diversity was associated with fewer metastases, lower stages at
presentation, and longer times until first lymph node metastasis [36]. In a separate study,
Spassova et al. observed that a predominance of TCM with high TCR repertoire diversity
and expression of genes associated with lymphocyte chemotaxis and activation in MCC
patients responding to immune checkpoint inhibition of PD-1 and its ligand PD-L1 [78]. In
non-responders, terminally differentiated effector T-cells with a constrained TCR repertoire
prevailed. Furthermore, sequential analyses of tumor tissue obtained during immunother-
apy revealed a more pronounced and diverse clonal expansion of TILs in responders,
indicating an impaired proliferative capacity among TILs of non-responders following
checkpoint inhibition [78].
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5. Chemokines and Cytokines in T-Cell Recruitment

Positive and negative signals for immune cell recruitment play influential roles in
regulating the TME [79]. Various families of cytokines regulate tumorigenesis-related
processes, including those related to tumor cell survival, senescence, angiogenesis, metas-
tasis, and immune escape [80]. In the early stages of tumor development, chemokines
are secreted by both tumor and immune cells, initiating the recruitment of naïve Tregs to
the TME [81]. These chemokines can act in an autocrine manner to promote the prolifer-
ation and migration of tumor cells to the tumor. In melanoma, specific chemokines and
chemokine receptors, such as chemokine (C-C motif) ligand (CCL)27-CCR10, chemokine
(C-X-C motif) ligand (CXCL)12-CXCR4, CCL20-CCR6, CCL19/CCL21-CCR7, CCL9/10/11-
CXCR3, CCL17/22-CCR4, and sphingosine-1-phosphate (S1P)-S1PR1, are involved in
Treg-mediated immune homeostasis [82–87]. However, the pathways by which specific
chemokines contribute to T-cell homing in MCC are still underexplored.

Currently, there is evidence for the increased expression of CCL17 in virus-positive
cell lines compared to virus-negative cell lines [88], suggesting that CCL17 may contribute
to the host immune responses targeting virus+ MCC. CCL17 is a chemoattractant that helps
in the recruitment of CD4+ Tregs, TH2, and TH17 cells, emphasizing its important role in
orchestrating the immune responses within the TME [88,89]. A key concept in the field of
oncology recognizes tumor-promoting inflammation as a hallmark of cancer. Importantly,
oncogenic cellular changes can promote the induction of inflammatory pathways in both
pre-malignant and malignant cells [79,90]. Subsequently, this leads to increased expression
of various inflammatory mediators (cytokines and chemokines) that further recruit inflam-
matory cells. These mediators can alter the TME and are therefore targets to prevent the
progression and metastasis of disease [79,90].

The release of proinflammatory cytokines into the TME is critical for MCC devel-
opment. For example, recent work has focused on IL-33, a ligand for ST2 and IL1RAcP
(suppression of tumorigenicity 2 receptor and IL-1 receptor accessory protein, respectively).
IL-33 is an endogenous danger signal released following cellular damage and is known
to activate various immune cells [91,92]. In MCC, IL-33 has been linked with increased
risk of malignancy and worse disease prognosis [92–96]. Additionally, its receptor, ST2,
has been implicated as a potential checkpoint target, as high ST2 expression has been
correlated with low CD8+ T-cell cytotoxicity, as well as increased tumor number and size
in colorectal cancer [97,98]. In a recent study, MCPyV-derived T antigens were found to
induce the IL-33/ST2 axis and potentially serve as a key regulator in the tumorigenesis of
virus-positive MCC [93]. This provides evidence that an interplay exists between cytokine
expression and MCPyV replication. Further studies are required to identify additional
cytokines/chemokines pathways that may affect anti-tumor response.

6. Formation of Tertiary Lymphoid Structures

Tertiary lymphoid structures (TLS) are organized clusters of immune cells in non-
lymphoid tissues that, unlike secondary lymphoid organs, are formed in response to inflam-
matory conditions, including within the tumor site [99]. TLS are sites rich in T-cells, with
densities that correlate with CD8+ T-cells and CD4+ T-cells in tumors [100]. Increasingly,
TLSs have been suggested to induce long-lasting antitumor responses, with increasing
evidence that the identification of TLSs in tumors can be associated with better progno-
sis and immunotherapy treatment outcomes [101]. Behr et al. first showcased that the
presence of TLS significantly correlated with recurrence-free survival of MCC after exam-
ining virus-positive cases [102]. Additionally, they observed that TLS were significantly
associated with higher CD8:CD4 T-cell ratio in the tumor periphery, but not within the
tumor center [102]. Recently, Nakamura et al. examined both virus-positive and negative
cases and determined that there are five chemokine genes—CCL5, CCR2, CCR7, CXCL9,
and CXCL13—with significantly higher expressions in TLS-positive samples compared
to TLS-negative samples [103]. Regardless of the expression of TLS in MCPyV-positive
tissue samples, virus-positive tissue samples had a similar prognosis. On the other hand,
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virus-negative tissue samples with TLS-positive expression had a similar prognosis to
virus-positive tissue samples, while virus-negative/TLS-negative samples had a signifi-
cantly worse prognosis [101]. Interestingly, the chemokine genes CXCL10 and CX3CR1 had
different expression levels in the presence of MCPyV infection (compared to lack of infec-
tion) in TLS-negative samples. It was also shown that patients with high CXCL13 or CCL5
expression had better prognosis compared to those with lower expression, suggesting that
chemokine expression profiles may offer insights into the TME and thereby may represent
a potential prognostic marker [103].

7. MCPyV-Positive and MCPyV-Negative MCC

MCC is categorized as either MCPyV-positive or MCPyV-negative, depending on
whether there is a persistent expression of the viral products LT and sT antigens. Both
categories respond similarly to anti-PDL-1 therapy, but there is evidence that virus-positive
and virus-negative MCC have distinct morphological and immunohistochemical fea-
tures [104,105]. It currently remains unclear whether virus-positive and virus-negative
MCC are two subtypes of MCC or represent two different tumors that share similar fea-
tures. Therefore, to administer a more targeted treatment approach for MCC, there is a
need to explore the specific immune responses and tumorigenic pathways related to these
two MCC types.

7.1. T-Cell Responses to Oncogenic Merkel Cell Polyomavirus Proteins

Several lines of evidence are compatible with a role for the adaptive arm of the
immune system in recognizing and eliciting protective responses to oncogenic MCPyV
proteins. Human leukocyte antigen (HLA) class I tetramers have been used to determine
CD8+ T-cells that recognize unique epitopes of the persistently expressed T antigens of
MCPyV [25,42,106]. Despite the induction of T-cells that recognize immunogenic MCPyV
capsid proteins and oncoproteins, the MCC tumors continue to progress, suggesting
that MCPyV may have unique capabilities that allow them to escape host the immune
defenses [25]. Specifically, it has been observed that MCPyV can consistently downregulate
Toll-like receptor 9, as well as gene expression associated with NF-κB signaling pathways
eventually leading to immune escape.

The diversity or functional avidity of the TCR repertoire that recognizes CD8+ T-
cell specific tumor epitopes may be associated with the effectiveness of T-cell responses
to MCC [106]. Miller et al. explored how primary CD8+ T-cells recognize the epitope
KLLEIAPNC, which is derived from the MCPyV common T-Ag and has been associated
with intra-tumoral infiltration and positive patient outcomes [106]. The authors observed
that patients with greater KLL-specific clonotype diversity in their tumors had significant
improvements in MCC and recurrence-free survival. Additionally, T-cell clones generally
expressing a narrow range of functional avidities were similar within each patient and
tumor cell recognition by these clones had a higher functional avidity [106].

7.2. T-Cell Responses in Virus-Negative MCC

Several studies have demonstrated that T-cells reactive to MCPyV are present in MCC
patients’ blood and tumors [25,42,106,107]. When compared to virus-positive tumors,
virus-negative MCC have lower intra-tumoral T lymphocyte counts, including fewer CD3+,
CD8+, CD16+, FoxP3+, and CD68+ cells [108]. However, studies suggest that virus-negative
MCCs still exhibit T-cell tumor specificity and that increased lymphocyte infiltration in
these tumors is associated with fewer metastases and improved overall survival [25,108].
Additionally, UVR can promote the recruitment of Tregs and the secretion of IL-10, an
immunosuppressive cytokine that facilitates immunologic tolerance. This mechanism of
Tregs recruitment and IL-10 secretion is a counterproductive process that sustains MCC
tumor development and may be an important treatment consideration for virus-negative
MCC [109]. Still, the research on the role of T-cell responses in virus-negative MCC remains
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limited. Future work should aim to elucidate the role of T-cell mediated immunity in the
virus-negative subset of MCC.

8. Tumor Immune Escape and Targets for Immunotherapy

According to National Comprehensive Cancer Network guidelines, the current im-
munotherapy treatment paradigm for MCC involves the use of immune checkpoint in-
hibitors targeting PD-1 (e.g., pembrolizumab, nivolumab) and PD-L1 (e.g., avelumab) for
distant metastatic disease [110]. This is due to MCC promoting immune escape by upregu-
lating PD-1 in TILs, resulting in decreased immune function in response to intra-tumoral
expression of PD-L1 [111]. Yet, the majority of patients still does not achieve long-lasting
clinical responses with these therapies [112]. Combining novel treatment regimens such as
checkpoint inhibitors and contemporary therapies that target immune pathways of T-cells
may hold a promise in treatment-refractory patients.

Tumor immune escape refers to the critical event in oncogenesis in which selection
pressure from the TME results in the emergence of cells that evade immune surveillance
and destruction [113]. The mechanisms of immune escape in MCC may involve tumor
cells acquiring new features to become either “less visible” or “more resistant” to tumor-
killing immune cells [114]. For example, the MCPyV associated with MCC may facilitate
the loss of tumor antigen expression by downregulating MHC-I subsequently resulting
in impaired presentation of MCC intracellular peptides to CD8+ T lymphocytes, hence
rendering tumor cells “less visible” [114,115]. On the other hand, tumor cells may become
“more resistant” through MCC oncoproteins targeting tumor suppressor pathways such
as the p53 pathway [116,117]. As MCC tends to occur in elderly patients, who typically
have weaker immune systems as a direct result of aging (i.e., immunosenescence), immuno-
suppression leading to T-cell dysfunction may represent another mechanism of tumor
immune escape [114].

MCC tumor immune escape secondary to impaired T-cell immunity may represent
a promising therapeutic target. For example, the natural killer group 2D (NKG2D) trans-
membrane receptor, which signals cellular stress to the immune system, and whose ligands
include the MHC class I chain-related proteins (MIC) A and B, may be evaded by MCC
as a means of immune escape [112]. Cancer cells and viruses interfere with MICA- and
MICB-induced NKG2D signaling through various mechanisms, including epigenetic silenc-
ing via chromatin remodeling [118]. Ritter et al. described how a reversal of MIC A and B
silencing ameliorates the immune recognition of MCC [112]. Furthermore, the introduction
of histone deacetylase inhibitors to MCC cells both in vitro and in vivo reversed the epige-
netic silencing of MICA and MICB, resulting in increased susceptibility of MCC cells to
immune-mediated tumor lysis [112,119]. In a follow-up study, they demonstrated that the
pharmacological inhibition of histone deacetylases restored HLA class-1 expression [120].
Consequently, this targeted restorative approach may be an effective means to improve
viral antigen processing and surface presentation in most MCCs [120].

TCR-based immunotherapies aimed at strengthening the endogenous T-cell response
may also augment patient response to PD-1/PD-L1 axis blockade. Chimeric antigen
receptor (CAR) T-cell therapy, which involves genetically altering a patient’s T-cells with
viral vectors to express CAR constructs, expanding these newly engineered T-cells ex vivo,
and reinfusing them into the patient so that they exert anti-tumor effects, may show promise
in MCC patients refractory to PD-1/PD-L1 axis blockade [121]. One future approach might
involve the infusion of genetically modified CAR T-cells against MCPyV antigens. Similarly,
Gavvovidis et al. targeted the MCPyV itself by targeting MCPyV-encoded T antigens using
the ABabDII mouse model known to express a diverse human TCR repertoire [122]. These
researchers identified naturally processed epitopes of MCPyV-encoded T antigens and
isolated TCRs specific to these T antigens. Then, they engineered human T-cells to express
these TCRs in vitro and these T-cells were able to recognize MCC tumor cell lines and
demonstrate cytotoxic activity [123]. Therefore, isolating TCRs for MCPyV-encoded T
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antigens may have potential applications in TCR gene therapy designed to augment patient
response to current first-line immunotherapies for MCC.

Moving forward, it will be important to elucidate mechanisms explaining the atten-
uation of CAR T-cell therapy efficacy in MCC. One such mechanism involves effector
trogocytosis between tumor-specific cytotoxic T-cells and tumor cells. In this process,
cytotoxic T-cells ingest a piece of cancer cell membrane and begin expressing that antigen
on their own cell surface, therefore appearing as a cancer cell to other T-cells [124]. Lu et al.
demonstrated that tumor-derived factors induce trogocytosis by altering the lipid profile of
cytotoxic T-cells, including the depletion of 25-hydroxycholesterol (25HC) by inducing the
ATF3 transcription factor to suppress the expression of the 25HC-regulating gene choles-
terol 25-hydroxylase (CH25H). The effector trogocytosis was found to weaken anti-tumor
immunity, stimulate tumor growth, and impede the efficacy of CAR T-cell therapy [125].
Moreover, the effects of the ATF3-CH25H axis could be reversed using CH25H-armored
CAR constructs, suggesting that inhibiting trogocytosis via this pathway may improve the
anti-tumor effects of CAR T-cell therapy.

9. Potential Role of Extracellular Traps in MCC

Since the discovery of neutrophil extracellular traps (NETs) two decades ago, sig-
nificant progress has been achieved in defining their role in antimicrobial defense [126].
Extracellular trap (ET) formation is not unique to neutrophils as ETs have been described
in other immune cells [127–137]. The work from our lab and others has shown that
antigen-specific T-cells can release T-cell ETs that trap and kill microbes [128,138]. These
observations suggest a role for ETs in immunity. Additionally, ETs have been shown to
have the capacity to either inhibit tumor metastases/development or drive tumor progres-
sion [139]. In animal models, the experimental data suggest a pro-tumor effect of NETs on
cancer, though these findings have been inconsistent and controversial [139,140]. Currently,
the complete role of ETs in MCC is unknown and likely to emerge as other unknown
circumstantial factors may also be at play.

9.1. Extracellular Traps: Strands in the Dark Web

Studies suggest a pro-cancer effect of ET components [139]. The DNA component of
ETs (ET-DNA) has been associated with cancer metastasis in animal models, suggest-
ing that NETs can act as chemotactic factors that attract cancer cells to form distant
metastases [141,142]. Other studies in humans have observed an abundance of NETs
in the liver metastases of patients with breast and colon cancers and suggested that serum-
NET levels could act as predictors of occurrence of liver metastases in early stage breast
cancer [143–146]. Yang et al. identified the transmembrane protein CCDC25 as an NET-
DNA receptor on cancer cells that senses extracellular DNA, thus leading to the activation
of the ILK-β-parvin pathway enhancing cell motility [146]. In all, these studies lay the
groundwork for the investigation of how ETs might be initiated in and directed to target
MCC or particular antitumor responses.

9.2. Extracellular Traps: Keeping the Peace

More than 90% of the MCC patients demonstrate normal immune function but fail to
clear tumors [114,147]. However, the presence of CD8+ T-cells in MCC tumors is positively
associated with patient survival [55,56,108,148]. Still, MCPyV-positive MCCs have been
hypothesized to escape immunological elimination by infiltrating T-cells via repressing
their activation, although the specific mechanism of immune evasion remains unknown. It
also remains unclear whether therapies stimulating intra-tumoral T-cell recruitment and
activation, and ET release, can be successful as an immunotherapeutic strategy. Some
studies have suggested that baseline levels of ETs can produce an anti-tumor effect, thereby
killing cancer cells or limiting tumor growth and metastasis through immune activation
within the TME [139]. Importantly, ETs derived from neutrophils suppress the proliferation
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of cancer-associated intestinal microbial populations, hence inhibiting the proliferation and
metastasis of colorectal cancer cells [140].

Altogether, these studies challenge our current understanding of the ET-MCC tumor
microenvironment. Promising future areas of investigation include studying 1) how ETs
produced by the same cells within the TME simultaneously inhibit the proliferation of
tumor cells and enhance their motility, 2) whether ETs derived from different immune cells
are similar in composition, and 3) how ETs are initiated and regulated within the TME.
Improved understanding of the role of ETs in cancer will facilitate the answering of these
and other relevant questions. Above all, targeting NET-dependent metastases may be an
appealing therapeutic strategy for preventing cancer metastasis, including in MCC [146].

Some studies have reported ETs to be composed of mitochondrial DNA (mtDNA)
suggesting that the mitochondria can be involved in the process of ET formation and in-
flammatory response [149]. Tumors that cause the disruption of mitochondrial homeostasis
can lead to the accumulation of mtDNA, a dominant driver of systemic inflammatory
response. mtDNA is recognized as an “alarmin” that stimulates immune cells at physiolog-
ical concentrations [150–154] Both mtDNA and genomic DNA released from dying cells
activate the cyclic GMP-AMP synthase (cGAS) stimulator of the interferon genes (STING)
pathway and type I IFN signaling. Since cancer cells often maintain high levels of damaged
DNA, this could potentiate the cGAS–STING pathway and the subsequent secretion of
type I IFNs as well as pro-inflammatory cytokines [155–159]. These molecules can not
only display direct cytotoxic antitumor activity, but also promote tumor antigen-specific
intra-tumoral T-cell infiltration, activation, and tumor repression [156–161]. Further studies
investigating the critical role of the ET:cGAS–STING connection in mediating antitumor
T-cell responses are therefore warranted.

10. Novel Methods for MCC Studies

With the introduction of novel technologies in recent years, exciting opportunities for
hypothesis testing in MCC research and the more precise characterization of the phenotype
and functional status of immune cells are possible. For example, FAUST, a new machine-
learning method for single-cell cytometry studies, offers an unbiased method for cell
population discovery and annotation [162]. Already, it has been used to test cytometry
data generated from blood isolated from patients with MCC who received pembrolizumab
as part of a phase 2 clinical trial [162]. FAUST was able to visualize baseline T-cells
in the blood of subjects (pre-treatment) and associate these samples with the subjects’
responses to therapy in the clinical trial. Additionally, the development of a viable mouse
model that can test the role of MCPyV T-Ags in MCC development has recently emerged,
providing a new model for addressing scientific questions related to MCC. Verhaegen et al.
have generated and validated transgenic mouse strains with the doxycycline-inducible
expression of MCPyV sT and LT antigens that carry internal ribosome entry site-driven
(IRES-driven) red and green fluorescent protein reporters [163]. This development offers
future areas to explore and may be helpful for future research seeking to examine the MCC
biological mechanisms that underlie viral T-Ag-driven tumorigenesis, as well as the testing
of novel therapeutics.

11. Conclusions

Since MCC was first described in 1972 [164], substantial research efforts have been
dedicated toward the characterization of the cancer, as well as its optimal management
and treatment. Namely, uncovering the pathophysiology of MCC and its relationship with
the host immune response has been of interest. Our current understanding suggests that
TILs play diverse roles during MCC development with observations that the increased
abundance of CD8+ T-cells is associated with favorable outcomes, while other T lymphocyte
subsets, such as Tregs, contribute to an immunosuppressant tumor microenvironment that
can promote tumor escape [38]. Still, unanswered questions related to T-cell responses in
MCC remain and must be addressed.
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Additional research is needed to identify not only the relevant T lymphocyte popula-
tions, but also the specific cytokines they secrete, which can modulate the TME and alter
immune surveillance and response. Currently, it is known that cytokines and chemokines
contribute to the inflammation and recruitment of cells to the tumor site and that the dys-
regulation of their balance can impair immune responses to control tumor growth [81,165].
For example, pro-inflammatory cytokines, such as TNF-α, IL-17, IL-22, and IL-23 have been
associated with tumorigenesis, whereas IFN-γ and IL-12 have been associated with medi-
ating cytolytic attack [81]. On the other hand, IL-10 and TGF-β are immune modulating
cytokines that contribute to immunosuppressive TME and promote cancer progression and
metastasis [166]. Additionally, chemokines are critical for the recruitment of immune cells
and can either promote homeostasis or drive inflammation. However, the categorization of
these various regulatory and inflammatory elements as prognostic factors for MCC-related
outcomes can be difficult as their roles are typically context dependent and are related to
the balance of all immune players in the TME. Therefore, it will be of interest to understand
the immune networks that are driven by both MCPyV and UV radiation within the TME. It
is important to highlight that the tumor origin cell in MCC has not yet been identified, so
further studies aiming to characterize the origin cell may lead to the identification of an
alternative target in therapy for MCC.

The clarification of the unique differences of the two etiologies of MCC, specifically the
T-cell responses of virus-negative MCC, for which few studies detail the immune responses
involved, can inform the future work on targeted therapies. While we understand that both
etiologies contribute to similar phenotypical characteristics of the tumor, the elucidation of
the unique and common pathways shared between the two etiologies as well as the inter-
play of genetic, epigenetic, and environmental factors involved in MCC are important for
more targeted therapies. Given the well-understood role of transplantation in skin cancer
development, additional effort to understand how specific types of immunosuppressants
may differentially affect the distribution of T lymphocytes and their functionality within
the TME may be vital. The knowledge of how to create therapies that boost antitumor
responses of TILs seems promising. As we continue to define the molecular fingerprint of
TILs, the identification of new targets for immunotherapy is imminent.
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