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Treponema denticola upregulates MMP-2 activation in
periodontal ligament cells: interplay between epigenetics and
periodontal infection

Di Miao2,‡, Valentina Godovikova1, Xu Qian2, Suchithra Seshadrinathan1, Yvonne L.
Kapila2, and J. Christopher Fenno1,*

1Departments of Biologic and Materials Sciences, School of Dentistry, University of Michigan,
Ann Arbor, MI

2Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI

Abstract

Objective—Periodontal pathogens initiate chronic dysregulation of inflammation and tissue

homeostasis that characterize periodontal disease. To better understand oral microbe - host tissue

interactions, we investigated expression and activation of MMP-2 in periodontal ligament cells

following Treponema denticola challenge.

Design—Cultured PDL cells were challenged with T. denticola, and bacterial adherence,

internalization and survival were assayed by immunofluorescence microscopy and antibiotic

protection assays, respectively. MMP-2 activation was detected by zymography. MMP-2,

MT1/MMP and TIMP-2 expression following T. denticola challenge was determined by qRT-

PCR. Promoter methylation of MMP-2 and MT1/MMP was screened by methylation-sensitive

restriction analysis and by bisulfite DNA sequencing.

Results—T. denticola adhered to and was internalized by PDL cells but did not survive

intracellularly beyond 24 hours. Importantly, while dentilisin activity in PDL culture supernatants

gradually decreased following T. denticola challenge, MMP-2 activation persisted for up to 5

days, suggesting involvement of other regulatory mechanisms. Transcription and expression of

MT1/MMP and TIMP-2 increased in response to T. denticola challenge. However, consistent with

previously reported constitutive pro-MMP-2 expression in PDL cells, the MMP-2 promoter was

hypomethylated, independent of T. denticola challenge.

Conclusions—MMP-2 promoter hypomethylation is consistent with constitutive pro-MMP-2

expression in PDL cells. This, coupled with T. denticola-mediated upregulation of MMP-2-related
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genes and chronic activation of pro-MMP-2, mimics key in vivo mechanisms of periodontal

disease chronicity, in particular MMP-2-dependent matrix degradation and bone resorption.

Adherence and/or internalization of T. denticola may contribute to these processes by one or more

regulatory mechanisms, including contact-dependent signal transduction or other epigenetic

mechanisms.

Keywords

Treponema; proteases; MMP-2; TIMP-2; MT1/MMP; epigenetics; regulation

Introduction

Periodontal pathogens, including Treponema denticola, initiate the dysregulation of

inflammation and tissue homeostasis that characterize periodontal disease. Early studies

proposed a direct role of bacterial proteases in periodontal tissue destruction (1-3). It has

more recently became apparent that host enzymes involved in inflammatory responses and

tissue remodeling were the direct causes of periodontal destruction (4) while the specific

roles of bacterial enzymes in the destructive processes remain unresolved (5, 6).

The dynamics of attachment loss in periodontal disease are centered in tissues comprising

the junctional epithelium and periodontal ligament (7, 8). Breakdown of this tissue results in

apical migration of the junctional epithelium and eventual alveolar bone loss. During

periodontal disease, host-derived proteases cleave extracellular matrix (ECM) components

and release ECM fragments, including fibronectin fragments, into the inflammatory milieu.

Specific fibronectin fragments (40-, 68- and 120-kDa) in gingival crevicular fluid are

markers of periodontal disease status (9). Evidence from cell culture studies suggests that

these fibronectin fragments induce apoptosis or suppress osteoblast differentiation of

periodontal ligament (PDL) cells (10, 11). The mechanisms by which this proteolytic

signature of fibronectin fragments is generated, including the relative contributions of

bacterial and host-derived proteases, are not clearly understood.

Inactive pro-MMP-2 is constitutively expressed and secreted by PDL cells (12). This is of

interest because, while many cell types express MMP-2, high-level expression of MMP-2

correlates with disease, such as in both the metastatic state of tumor cells (13) and early

stages of aneurysm formation (14). The T. denticola dentilisin protease activates pro-

MMP-2 secreted by PDL cells, inducing MMP-2-dependent fibronectin fragmentation (15).

While the mechanism by which dentilisin activates pro-MMP-2 has not been conclusively

determined, this activity suggests that the constitutive pro-MMP-2 expression combined

with its activation by bacterial proteases could play a pivotal role in periodontal disease.

The mechanisms controlling MMP-2 expression in PDL cells have not been previously

investigated. Emerging evidence suggests that epigenetic modifications play a major role in

inflammatory diseases, perhaps including periodontal disease (16). Disease-associated DNA

methylation changes can result in either hypermethylation, which tends to suppress gene

expression, or hypomethylation and resultant elevation of gene expression (17). Several

etiologic and contributing factors mediating periodontal disease pathogenesis (including

levels of periodontopathic bacteria, smoking and diabetes status) are associated with marked
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epigenetic changes in certain periodontal tissue components (18, 19). Herein we report

persistent activation of pro-MMP-2 and upregulation of associated regulatory proteins

subsequent to infection of cultured PDL cells with T. denticola. Furthermore, we present

evidence that constitutive expression of pro-MMP-2 in PDL cells is due to hypomethylation

of the MMP-2 promoter, while T. denticola dentilisin activity induces persistent activation

of pro-MMP-2.

Materials and Methods

Primary periodontal ligament cells (PDL) culture

PDL cells were obtained from extracted third molars of healthy subjects. Cells were cultured

as described previously (12) in minimal essential medium (αMEM) supplemented with 10%

fetal bovine serum and 1% penicillin-streptomycin and used from passages 2 to 6. For use in

experiments, culture medium was replaced with serum- and antibiotic-free αMEM. Use of

human PDL cells for these studies was approved by the University of Michigan Health

Sciences Institutional Review Board.

T. denticola culture conditions

T. denticola ATCC 35405 and an isogenic dentilisin mutant (20) were grown at 37°C under

anaerobic conditions in NOS broth or semisolid agar medium as previously described (21,

22). Culture purity was monitored by darkfield microscopy.

Treatment of PDL cells with T. denticola

PDL cells were challenged with T. denticola at a multiplicity of infection (MOI) =100 in

serum- and antibiotic-free medium for indicated times, as described previously (15).

Bacteria were removed by washing with PBS. Fresh medium was added and changed at

indicated intervals.

To detect uptake and survival of T. denticola within PDL cells, we used the well-established

antibiotic protection assay (23, 24). Briefly, T. denticola at MOI=100 was added to PDL

cultures and incubated at 37°C for 2h, after which PDL cells were treated (“uptake”) or not

treated (“adherence + uptake”) with 200 μg ml-1 gentamicin for 1h. Gentamicin (10 μg ml-1,

45 min) completely inhibits subsequent growth of planktonic T. denticola (data not shown).

After washing and incubation in fresh αMEM for the indicated times, PDL cells were lysed

with sterile water, and serial dilutions of the lysates were mixed with NOS semisolid

medium and incubated anaerobically at 37°C for 2 weeks.

Immunofluorescence microscopy

PDL cells, 75% confluent on glass coverslips, were challenged with T. denticola (2h,

MOI=100), washed with PBS and incubated in serum-free medium for the indicated times.

PDL cells were then fixed (3.5% glutaraldehyde, 15 min), washed with PBS, blocked (PBS,

1% BSA, 0.05% Tween-20) for 1h and probed with rabbit anti-T. denticola Msp IgG

followed by Alexa 555-conjugated goat anti-rabbit IgG to detect T. denticola and

phalloidin-647 (Invitrogen, Carlsbad, CA) to detect cytoskeletal actin of PDL cells,

respectively. To detect intracellular T. denticola, PDL cells were permeabilized (0.2% Triton
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X-100) prior to probing and examination under fluorescence illumination using a Nikon TI

(Eclipse) instrument. For immunofluorescence microscopy to detect colocalization of T.

denticola and LAMP1, PDL cells were treated, challenged and fixed as above, then

permeabilized with (0.2% Triton X-100) prior to probing with rabbit anti-T. denticola whole

cell IgG and mouse anti-LAMP1 IgG (Enzo Life Sciences, Farmingdale, NY) followed by

fluor-conjugated secondary antibodies. The slides were examined under fluorescence

illumination using a Nikon Eclipse TE300 instrument, and red-filter, green filter and merged

images were prepared.

Gelatin zymography

Gelatin zymography of T. denticola-challenged PDL cells and culture supernatants was

conducted as described previously (15).

Western immunoassays

Detection of proteins of interest in PDL cell lysates or culture supernatants by Western

immunoblotting was done as described previously (15) using antibodies specific for

MT1/MMP (Abcam, Eugene, OR), actin (Abcam) and TIMP-2 (Triple Point Biologics,

Forest Grove, OR).

Purification of T. denticola dentilisin complex

The dentilisin complex was purified from T. denticola outer membrane extracts as described

previously (15).

Quantitative RT-PCR

PDL cell RNA was isolated using the RNeasy Mini kit (Qiagen, Valencia, CA), reverse

transcribed to cDNA and amplified by qRT-PCR using gene-specific primers for MMP-2,

MT1/MMP, TIMP-2(25) and 18S rRNA (26). Cycle threshold values of the genes of interest

and the quantitative gene expression levels normalized to 18S rRNA were determined and

compared with unchallenged control.

Methylation assays

For DNA methylation screening, equal portions genomic DNA purified from T. denticola-

challenged and unchallenged PDL cell cultures using the DNeasy Blood and Tissue Kit

(Qiagen) were digested with methylation-sensitive or -resistant enzymes using the EpiTect

MethylDNA Restriction Kit (Qiagen). DNA regions of interest were amplified in qPCR

using primers for CpG islands in MMP-2 and MT1/MMP promoter regions provided with

the EpiTect Primer Assay (Qiagen). Data were analyzed using the EpiTect Methyl qPCR

assay template (Qiagen).

Bisulfite DNA sequence analysis was performed on genomic DNA from T. denticola-

challenged and unchallenged PDL cell cultures. DNA was purified from PDL cultures as

described above. Unmethylated cytosines were converted to thymidines using the EpiTect

Bisulfite Kit (Qiagen) following the manufacturer's instructions. Regions of interest,

amplified by nested PCR using the primer sets described by Chernov et al. (27), were cloned
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in E. coli plasmid vector pSTBlue-1 (EMD Biosciences). Nine clones from each

experimental condition were selected for DNA sequencing at the University of Michigan

DNA Sequencing Core Facility. The entire experimental procedure was replicated using

PDL cells independently isolated from another subject.

Statistical analysis

Data on expression and methylation status of MMP-2, MT1/MMP and TIMP-2 were

analyzed using Student's t-test.

Results

Persistence of MMP-2 activation and dentilisin activity following T. denticola challenge

T. denticola dentilisin mediates MMP-2-dependent fibronectin fragmentation and these

effects are detectable up to 48 h following replacement of culture medium (15). We

extended the experiment to five days with daily medium changes to assay persistence of

MMP-2 activation. Zymography of culture supernatants shows MMP-2 activation from 72-

kDa pro-MMP-2 to 64-kDa active MMP-2 throughout the experiment (Fig. 1A). In contrast,

while pro-MMP-2 is present in PDL cell lysates, activated MMP-2 is absent in cell lysates at

all time points (Fig. 1B). This is consistent with activation of pro-MMP2 following its

secretion. Dentilisin activity is absent in unchallenged controls (Fig. 1A, B). In T. denticola-

challenged PDL cultures, dentilisin activity decreased over the course of the experiment, yet

remained detectable for at least five days in both culture supernatants (Fig. 1A) and in

lysates of washed PDL cells (Fig. 1B).

Uptake and intracellular survival of T. denticola

Persistence of PDL cell-associated dentilisin activity suggested strong association between

PDL cells and either intact T. denticola or secreted dentilisin. Using a standard antibiotic

protection “invasion assay,” we tested the ability of PDL cells to internalize T. denticola. As

shown in Fig. 2A and 2B, large numbers of viable T. denticola were recovered immediately

following gentamicin treatment and washing of challenged PDL cultures. Intracellular T.

denticola viability decreased rapidly, but was detectable in gentamicin-treated cultures up to

7h following treatment. No viable T. denticola were recovered after 24 h under aerobic cell

culture conditions, with or without gentamicin treatment. Uptake of an isogenic T. denticola

dentilisin mutant was not observably different from that of the parent strain (data not

shown).

We then performed standard immunofluorescence microscopy under conditions permitting

differentiation of intracellular and extracellular T. denticola. As shown in Fig. 2C, T.

denticola is adherent to the surface of washed PDL cells after 2h challenge and is present

within PDL cells after 2h challenge followed by 24h incubation in fresh medium.

Extracellular T. denticola exhibit typical spirochete morphology whereas intracellular T.

denticola appear as coiled structures apparently within vacuoles, suggesting that T. denticola

is internalized by a phagocytic mechanism and does not survive within vacuoles. To further

examine the fate of intracellular T. denticola, we performed confocal immunofluorescence

microscopy (Fig. 2D) using antibodies specific for T. denticola (red fluorescence) and

Miao et al. Page 5

Arch Oral Biol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



lysosomal-associated membrane protein 1 (LAMP1, green fluorescence). The merged image

indicates close association between T. denticola and LAMP1 in what appear to be endocytic

vacuoles.

T. denticola challenge induces MMP-2, MT1/MMP and TIMP-2 expression

Transcription of MMP-2 and its modulators MT1/MMP and TIMP-2 was significantly

increased at one or more timepoints during the five-day period following T. denticola

challenge (Fig. 3A). With increased (12h) T. denticola challenge time, transcription of all

three genes increased after further 24h incubation (Fig. 3B). Immunoblots of PDL cell

lysates probed with antibodies against MT1/MMP (Fig. 3C) and PDL cell culture

supernatants probed with antibodies against TIMP-2 (Fig. 3D) confirmed increased protein

expression following challenge with purified dentilisin or T. denticola, respectively for 2h,

followed by washing and incubation in fresh medium for 5 days. Interestingly, the post-

challenge increase in TIMP-2 was quite marked compared with that of MT1/MMP.

Promoter methylation status of genes controlling MMP-2 expression following T. denticola
challenge

Persistence of MMP-2 activation after washing and medium changes suggested that T.

denticola challenge might have long-term effects on PDL cells. We screened for changes in

DNA methylation status of CpG islands in MMP-2 and MT1/MMP promoters 24h after 2h

T. denticola challenge. As shown in Fig. 4A, T. denticola challenge resulted in detectable

decreases in methylation of the already hypomethylated MMP-2 promoter (p<0.05). To

confirm hypomethylation of the MMP-2 promoter, we conducted bisulfite DNA sequencing

of the same CpG island in the MMP-2 promoter region under the same challenge conditions.

As shown in Fig. 4B, CpG island DNA from both control and challenged PDL cultures

showed extremely low levels of methylated cytosine residues. This experiment was repeated

with PDL cells independently isolated from a different subject, yielding similar results (data

not shown). We also performed methylation screens of the CpG-rich promoter region of the

MT1/MMP gene, with inconclusive results. While the methylation-sensitive restriction assay

suggested significant decreases in CpG methylation 24h after 2h T. denticola challenge,

these results could not be confirmed by the more reliable bisulfite DNA sequencing method

(data not shown).

Discussion

Emerging evidence suggests epigenetic modifications to gene regulatory sequences play a

significant role in inflammatory diseases, including periodontal disease. Important questions

as to the identity and importance of factor(s) instigating epigenetic regulation of gene

expression remain largely unanswered. Several etiologic and contributing factors mediating

periodontal disease pathogenesis, including bacteria and their byproducts, smoking and

diabetes are associated with apparent epigenetic changes in certain periodontal tissue

components (16, 18, 19). Epigenetic processes are consistent with and may underlie the

chronic nature of periodontal disease and thus may contribute to the relative ineffectiveness

of standard treatment modalities in arresting and reversing periodontal pathogenesis.
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Previous studies by our group characterized the role of T. denticola dentilisin in activation of

pro-MMP2 secreted into PDL cell culture supernatants and subsequent MMP-2-dependent

degradation of PDL cell-associated fibronectin into a consistent pattern of fragments (15). A

similar pattern of specific fibronectin fragments in gingival crevicular fluid is a marker of

periodontal disease status (9) and fibronectin fragments induce apoptosis in and suppress

osteoblast differentiation of PDL cells (10, 11). Clearly, determining the mechanisms by

which disease-associated fibronectin fragments are generated is of high interest, and our

results support the hypothesis that bacterial protease-induced MMP-2 activation is key factor

in this process. We hypothesize that T. denticola and its dentilisin protease contribute to

both MMP-2 activation and to activation of expression of genes regulating MMP-2

activation. Results of the present study implicate T. denticola and the dentilisin protease as

contributors to increased expression of genes controlling MMP-2 expression and activity.

Further studies will focus on distinguishing between direct activation of pro-MMP-2 by T.

denticola proteolytic activity and indirect activation by T. denticola-dependent influences on

expression of MMP-2 and related genes.

Our previous work demonstrated that dentilisin is necessary but not sufficient for MMP-2-

dependent fibronectin fragmentation in cultured PDL cell supernatants (15). The present

study focused on potential mechanisms responsible for persistence of MMP-2 activation in

PDL cell cultures. While T. denticola dentilisin activity was detectable for at least 5 days in

cultures that were challenged with T. denticola and washed to remove unattached bacteria,

the level of dentilisin activity decreased markedly while the level of MMP-2 expression

increased significantly, and the activation level was consistent over the 5-day period. This

suggests that the mechanisms driving MMP-2 expression and activation extend beyond the

putative direct activation of pro-MMP-2 by dentilisin cleavage of the MMP-2 pro-peptide.

In addition to MMP-2 activation, T. denticola induced increased transcription of MMP-2

and modulators of its activation: TIMP-2, one of the tissue inhibitors of metalloproteinases,

and MT1/MMP, a member of the metalloproteinase family that, when complexed with

TIMP-2, induces MMP-2 activation (28). Our previous study showed that T. denticola

dentilisin induces increased MMP-2 protein levels in PDL cell culture supernatants. Here we

show that T. denticola challenge also induces increased TIMP-2 and MT1/MMP protein

levels. In the present study, increased MMP-2 transcription was seen only at endpoints of T.

denticola challenge experiments, a result consistent with prior studies reporting that PDL

cells constitutively express pro-MMP-2 (12). Similarly, TIMP-2 expression was

significantly increased only at the last timepoint. In contrast, MT1/MMP transcription was

increased at all timepoints. These results suggest that PDL cell responses to T. denticola are

both persistent and, surprisingly, increase over time despite the removal of most of the T.

denticola challenge by repeated washing.

To explore a mechanism that could be responsible for the observed long-term effects of T.

denticola, we assayed epigenetic modifications to the promoter regions of MMP-2 and MT1/

MMP. Both of these genes contain 1.0-1.4 kb CpG-rich islands in their promoter regions,

which may be subject to epigenetic control or modification. Both MMP-2 and MT1/MMP

showed significantly decreased DNA methylation in CpG-rich promoter regions of these

genes in PDL cells challenged with T. denticola, consistent with higher levels of expression
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at the endpoint of the 5-day experiment. Bisulfite DNA sequence analysis confirmed the

hypomethylation of the MMP-2 promoter, independent of T. denticola challenge and

identified a likely molecular basis for the unusually high level of constitutive pro-MMP-2

expression in this particular cell type. Pretreatment of PDL cells with chemical epigenetic

inhibitors prior to T. denticola challenge resulted in slightly decreased levels of MMP-2

activation (data not shown), though determination of the biological significance of this

observation will require more extensive characterization of the effects of these inhibitors on

PDL cell growth and behavior. The extremely low DNA methylation level of the MMP-2

promoter in untreated cells suggests that any T. denticola-dependent change in methylation

status may not be biologically significant by itself and that other modes of gene regulation

may be involved. The potential roles of other epigenetic mechanisms such as histone

modification remain to be tested.

The mechanism by which T. denticola challenge results in persistent changes in expression

of genes controlling MMP-2 activity is not yet known. Using bisulfite DNA sequencing, we

were unable to confirm methylation changes in the MT1/MMP promoter that were

suggested by methylation-sensitive restriction screening. Another likely possibility is that

increases in MMP-2 expression and activity are a consequence of T. denticola adherence to

and uptake into PDL cells. Numerous bacterial pathogens, including several periodontal

pathogens, survive uptake by actin-mediated phagocytic mechanisms in epithelial and other

cell types and have intracellular effects that contribute to pathogenesis (29-31), To

determine the persistence and localization of T. denticola following PDL cell challenge, we

measured adherence and uptake of T. denticola using an antibiotic protection assay and

performed immunofluorescence microscopy under conditions that distinguish intra- and

extracellular compartments. While T. denticola did not remain viable in the intracellular

environment, detection of T. denticola antigens within PDL cells suggests that they may

contribute to intracellular signaling pathways important to maintenance of intracellular

dynamics. Such a process has been described by Visser et al. as a potential mechanism for

the role of T. denticola Msp protein in modulating intracellular actin dynamics in

neutrophils and fibroblasts (32, 33).

In contrast to well-characterized cellular invasion behavior of Porphyromonas gingivalis

(23) and Aggregatibacter actinomycetemcomitans (34), uptake and intracellular survival of

T. denticola has not been extensively examined, nor has any specific role in disease been

proposed. A few studies have reported detection of apparently intracellular T. denticola by

immunofluorescence or transmission electron microscopy (31, 35). A recent manuscript

reported uptake and survival of T. denticola within immortalized epithelial cells (36). To our

knowledge, the present work is the first to both distinguish intra- and extracellular T.

denticola and to simultaneously assay its intracellular viability within primary human cell

cultures. Additionally, ours is the first report of uptake of viable bacteria by cultured PDL

cells. A recent report by Konerman et al. reported that PDL cells, which have documented

collagen phagocytosis activity (37), take up heat-killed bacterial cells into phagosomes (38).

Studies are in progress to determine the fate of intracellular T. denticola cells and proteins

including dentilisin, as well as potential intracellular signaling pathways induced in response

to T. denticola adherence and uptake.
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Taken together, these data suggest that T. denticola infection may chronically “imprint”

periodontal tissues toward a destructive phenotype through persistent activation of MMP-2

that is constitutively expressed at high levels in a key cell population in the periodontium. It

is important to note that we are not claiming that the consequences of dentilisin activity are

unique in the complex subgingival environment. Several reports have suggested that P.

gingivalis may also have the ability to activate MMP-2, though the mechanism has not been

determined (39-41). Rather, this systematic approach to understanding the pathways by

which T. denticola modulates tissue homeostasis serves as a useful model to study biological

roles of bacterial proteases in periodontal disease. This model can be used to generate new

knowledge on the ongoing communication between oral microbiota and host tissue required

both for maintenance of health and induction of disease.

From a clinical standpoint, this suggests retooling our thinking about therapeutic approaches

used to treat severe or refractory periodontal disease. PDL cells, by constitutively expressing

pro-MMP-2, are essentially “primed” for responding to challenge by bacterial proteases

capable of activating pro-MMP-2 and initiating a cascade of tissue-destructive processes.

Targeting of periodontal pathogen proteolytic activity is problematic due to the fact that

these proteases are members of ubiquitous conserved protease families. A more refined

therapeutic approach might target mechanisms required for stability of specific protease

complex types (dentilisin, gingipain) rather than conserved catalytic domains. For example,

studies in our laboratory have identified specific domains in non-protease components of the

dentilisin complex that are required for expression of dentilisin activity (42, 43). These

surface-expressed proteins are unique to oral spirochetes and are being examined as

potential targets for therapeutic agents capable of blocking formation of the active dentilisin

protease complex.

Our in vitro results mimic key in vivo mechanisms of periodontal disease chronicity, in

particular MMP-2-dependent matrix degradation and bone resorption (44). Adherence

and/or internalization of T. denticola may contribute to these processes by one or more

regulatory mechanisms, including contact-dependent signal transduction or other epigenetic

mechanisms. This new paradigm of chronic disease pathogenesis rooted in epigenetic

“imprinting” may help explain part of our failure to control periodontal disease despite an

array of non-surgical and surgical treatments combined with local delivery and systemic

therapeutics.
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• T. denticola dentilisin activates constitutively expressed pro-MMP-2 of PDL

cells.

• MMP-2 activation persists for up to 5 days after a brief T. denticola challenge.

• T. denticola is taken up into vacuoles by PDL cells and rapidly loses viability.

• PDL cells' MMP-2 promoter is hypomethylated, independent of T. denticola

challenge.

• T. denticola dentilisin upregulates expression of TIMP-2 and MT1/MMP.
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Figure 1. Zymograms showing gelatinase activity of T. denticola dentilisin protease, pro-MMP-2
and activated MMP-2
PDL cells were challenged with T. denticola at MOI=100 for 2h, washed twice in PBS and

incubated in serum- and antibiotic-free medium with daily changes. Panel A: Gelatinase

activity in equal volumes of conditioned medium collected on the indicated days following

T. denticola challenge. Panel B: Gelatinase activity in lysates of PDL cells collected on the

indicated days following T. denticola challenge and medium replacement as in Panel A.

Equal amounts of protein were loaded per lane. The locations of the active dentilisin

complex (95-100 kDa), 72-kDa pro-MMP-2 and 64-kDa activated MMP-2 are indicated, as

are the positions of relative molecular mass markers in kDa.
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Figure 2. T. denticola adherence to and uptake by PDL cells
Panels A and B: T. denticola at MOI=100 was added to PDL cultures for 2h, after which

PDL cells were treated (“uptake”) or not treated (“adherence + uptake”) with 200 μg ml-1

gentamicin for 1h to kill extracellular bacteria. After washing and incubation in fresh

αMEM for the indicated times, PDL cells were lysed with sterile water, and lysates were

mixed with NOS semisolid medium and incubated anaerobically at 37°C. Panel A: T.

denticola colony forming units recovered per well of PDL cells (approximately 105 cells)

after 0, 7 and 24 h post-challenge incubation. The data represent two independent

experiments conducted in triplicate. Panel B: T. denticola colonies recovered from PDL cell

lysates in a representative experiment. Panel C: Immunofluorescence microscopy of PDL

cells with or without 2h T. denticola challenge (2h, MOI=100) followed by washes, with or

without further incubation in culture medium and membrane permeabilization. Slides were

probed with rabbit anti-T. denticola Msp IgG followed by Alexa 555-conjugated goat anti-

rabbit IgG to detect T. denticola and phalloidin-647 to detect cytoskeletal actin in PDL cells.

Panel D: Imunofluorescence microscopy of PDL cells challenged with T. denticola (2h,
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MOI=100) followed by washes and membrane permeabilization, probed with rabbit anti-T.

denticola whole cell IgG and mouse anti-LAMP1 IgG followed by fluor-conjugated

secondary antibodies.
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Figure 3. Expression of MMP-2, MT1/MMP and TIMP-2 following T. denticola challenge
Panels A and B: Transcript levels in PDL cells after T. denticola challenge and incubation in

fresh medium for indicated times, assayed by qRT-PCR. The Y-axis in each panel represents

fold-expression level of each gene relative to unchallenged control at day 1 shown in Panel

A. Panel A: gene expression after 2h T. denticola challenge and incubation in fresh medium

for 1, 3 or 5 days. Panel B: gene expression after 4h, 8h or 24h T. denticola challenge and

incubation in fresh medium for 24h. Data were analyzed using Student's t-test. Panel C:

Western blots showing levels of MT1-MMP expression in PDL cells treated with purified

dentilisin (50 ng/ml, 2h) or media control (Ctrl), then washed and maintained in fresh media

for 5 days (MT1-MMP1 antibody; Abcam; actin antibody). Panel D: Western blot of

TIMP-2 expression in PDL cells (conditioned media) treated for 2h with wildtype T.

denticola, T. denticola dentilisin mutant (Td-ΔP) or media control (Ctrl), then washed and

maintained in antibiotic supplemented media for 5 days (TIMP-2 antibody, Triple Point

Biologics).
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Figure 4. Analysis of MMP-2 promoter methylation in PDL cells following T. denticola challenge
PDL cells were challenged with T. denticola for 2h, washed, and incubated in fresh medium

for 24 h prior to analysis. The vertical scale indicates percent of total DNA. Panel A:

methylation analysis of the MMP-2 promoter region as determined by MethylDNA

Restriction Screen (Qiagen). Results are expressed as the percentage of hyper-methylated

and unmethylated DNA, which sum to 100%. Data were analyzed using Student's t-test.

Panel B: DNA methylation analysis of the MMP-2 promoter region as determined by

sequencing of independent PCR clones of bisulfite-converted DNA from T. denticola

challenged and unchallenged PDL cell cultures. Each circle represents an individual CpG

within residues 236-456 of MMP2-exon 1-transcript variant 1. Open and closed circles

indicate unmethylated and methylated CpGs, respectively within residues 236-456 of

MMP2-exon 1.
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