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ABSTRACT
Finding Bayesian optimal designs for nonlinear models is a difficult task because the optimality criterion
typically requires us to evaluate complex integrals before we perform a constrained optimization. We
propose a hybridized method where we combine an adaptive multidimensional integration algorithm and
a metaheuristic algorithm called imperialist competitive algorithm to find Bayesian optimal designs. We
apply our numerical method to a few challenging design problems to demonstrate its efficiency. They
include finding D-optimal designs for an item response model commonly used in education, Bayesian
optimal designs for survival models, and Bayesian optimal designs for a four-parameter sigmoid Emax dose
response model. Supplementary materials for this article are available online and they contain an R package
for implementing the proposed algorithm and codes for reproducing all the results in this paper.
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1. Introduction

The cost of running an experiment is rising and optimal design

Q1

ideas are increasingly used in various disciplines to rein in
experimental expenses. Given the objective or objectives of the

Q2

study, an optimal design determines how to take observations
from the experimental region to realize maximum statistical

Q3

efficiency. Given a statistical model defined on an interval and
a design criterion, the model-based optimal design problem is
to determine the optimal number of design points to observe
the responses, their optimal locations and the optimal number
of replications at the design points.

A popular design criterion for estimating model parame-
ters accurately is D-optimality. When errors are normally dis-
tributed, D-optimal designs minimize the volume of the con-
fidence ellipsoid of the model parameters by minimizing the
generalized variance. For nonlinear models, the generalized
variance depends on the unknown parameters which we want
to estimate. The simplest approach is to replace the unknown
parameters by some initial estimates from a similar study or a
pilot study so that the criterion is free of unknown parameters
and can be directly optimized. Such an approach results in
optimal designs that depend on the initial estimates or nominal
values and are called locally optimal designs (Chernoff 1953).

Locally optimal designs are not generally robust to mis-
specification in the nominal parameters. This means that, if
the nominal values are wrongly specified, the resulting locally
D-optimal design can be inefficient under the true values of
the parameters. One method to overcome this drawback is to
adopt a minimax approach. A minimax optimal design problem
specifies a known region for the parameter values and finds

CONTACT Ehsan Masoudi ehsan.masoudi@wwu.de Department of Psychology, University of Münster, Fliednerstr. 21, 48149 Münster, Germany.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/r/JCGS.

Supplementary materials for this article are available online. Please go to www.tanfonline.com/r/JCGS.

a design under the worst-case scenario. For example, Sitter
(1992) proposed minimax optimal designs assuming a known
parameter space for the unknown parameters and minimized
the maximum inefficiency that arises from using the worst set of
values for the model parameters. Minimax types of design cri-
teria are complicated and usually require advanced algorithms
to solve nested multimodal continuous optimization problems
(see, e.g., Masoudi, Holling, and Wong 2017; Chen et al. 2015).

Another approach to quantify the uncertainty in the

Q4

unknown parameters is to use a prior distribution for the
unknown parameters and optimize the criterion averaged over
the prior distribution. The resulting optimal design is termed
Bayesian optimal design (Chaloner and Larntz 1989; Chaloner
and Verdinelli 1995; Atkinson 1996). Bayesian optimal designs
are difficult to determine because they involve evaluating
multiple integrals before a global optimization algorithm can
be applied to optimize the averaged criterion, which typically
has many variables and constraints to account for.

The purpose of our work is to propose a novel method for
finding Bayesian optimal designs by combining a metaheuris-
tic algorithm with a hcubature algorithm to efficiently tackle
the optimization problem. The hcubature algorithm is a self-
learning algorithm that uses a multivariate subdivision strategy
to learn the behavior of the integrand and provide a reliable esti-
mate of the integral. In contrast, a metaheuristic algorithm is a
heuristic designed to find or generate a sufficiently good solution
to an optimization problem with incomplete or imperfect infor-
mation. Evolutionary algorithms are metaheuristic algorithms
that are increasingly used in artificial intelligence and typically
inspired by biological evolution or occurrences in nature. There

© 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
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are many such algorithms widely used to solve optimization
problems in computer science and engineering (Yang 2010).

Our interest is in one such algorithm called imperialist com-
petitive algorithm (ICA), which is inspired from the socio-
political process of humans and proposed in Atashpaz-Gargari
and Lucas (2007). Our choice of ICA is in part due to our earlier
positive experience, where we were successful in our search
for hard-to-find minimax and standardized maximin optimal
designs for different nonlinear models and where we experi-
enced fewer premature convergence issues (Masoudi, Holling,
and Wong 2017). Furthermore, as a state-of-the-art optimiza-
tion algorithm, ICA: (a) does not require the design space to be
discretized, (b) is a multi-start or population-based derivative-
free algorithm and usually is not sensitive to the starting designs,
and (c) can be easily modified to find other types of optimal
designs.

To improve performance of a metaheuristic algorithm, it is
a common practice to hybridize it with another metaheuristic
algorithm or a numerical procedure so that it captures the
advantages of both algorithms. Our main challenge here is to
hybridize ICA with another numerical method to find Bayesian
optimal designs efficiently. Specifically, we search for one that
is capable of handling numerical integration well and which is
able to compromise on the speed required to find the sought-
after design and optimality of the generated design.

A common method to approximate the integrals in a
Bayesian approach is the Monte Carlo (MC) integration
method. The MC method uses a sequence of random draws
from the prior distribution to approximate the integral and
it usually requires a large number of function evaluations to
provide accurate estimates of the integrals. Quadrature formulas
are alternative deterministic methods that approximate the
integrals by a weighted sum of the integrand values at specific
points, called nodes; for a review, see Goos and Mylona (2018).
Although the quadrature techniques are fast, they usually do
not provide estimation errors and their accuracy depends on
the prior distribution and properties of the integrand. Further,
quadrature rules usually need to be extended to solve high-
dimensional integrals and sometimes the extension rules can
make them inefficient and slow. Quadrature rules in higher
dimensions are called cubature rules.

To achieve a better trade-off between the speed of the algo-
rithm and the accuracy of the generated designs, we imple-
ment an adaptive multidimensional integration method over
hypercubes named hcubature in ICA. This algorithm studies
properties of the integrand using a subdivision strategy and
concentrates on the subregions where the shape of the integrand
is most irregular. Unlike the traditional quadrature methods, the
hcubature algorithm provides an estimation error that is used to
build stopping rules to determine if and when to increase the
reliability of the approximations. To emphasize the difference
between the previous minimax algorithm in Masoudi, Holling,
and Wong (2017) and the current version, we call the algo-
rithm proposed here Bayesian imperialist competitive algorithm
(BICA). Our work is novel because this is the first study that
hybridizes a subregion adaptive algorithm with a metaheuristic
algorithm to find Bayesian optimal designs.

In the next section, we review the statistical setup and
theory for finding optimal designs. Section 3 provides a

general description of the hcubature algorithm and Section 4
presents details and implementation information for BICA.
In Section 4.1, we apply our algorithm to find Bayesian
D-optimal designs for test-item calibration using the two-
parameter logistic (2PL) model frequently used in item response
theory (IRT). We use different prior distributions for the item
parameters and show that BICA can find the optimal designs
efficiently. In Section 4.2, we apply BICA to find Bayesian D-
optimal designs for a four-parameter sigmoid Emax model
where we have to evaluate a four-dimensional integral and the
design space is large. Section 4.3 presents Bayesian optimal
designs for the Cox proportional hazards model in survival
analysis. We also investigate the performance of BICA for a
compound criterion called DP-criterion in Section 4.4. Section 5
provides a sensitivity analysis of BICA with respect to the
tuning parameters of the hcubature algorithm. In Section 6,
we compare BICA with recent algorithms for finding Bayesian
optimal designs and provide details in the supplementary
materials, which also contains R codes for implementing BICA
and generating all the results in our paper. Section 7 concludes
with a discussion.

2. Bayesian Optimal Design

Following Kiefer (1985), an approximate design is a probability
measure defined on a user-selected design space χ . Let � be
the space of all such designs on χ and let ξ be an approximate
design with k support points at x1, x2, . . . , xk from χ with cor-
responding weights w1, . . . , wk, wi > 0,

∑k
i=1 wi = 1. Given

a predetermined total number of observations for the study,
say N, we implement ξ by taking Nwi number of observations
at xi subject to Nw1 + · · · + Nwk = N and each Nwi is
an integer. Pukelsheim and Rieder (1992) provide details for
various rounding procedures.

Let Y be a univariate response variable and x be the set
of covariates in the model. Let E(Y) = f (x, θ), where f is
a known function and θ = (θ1, θ2, . . . , θq)T is the vector of
unknown parameters. Assuming errors are independent and
normally distributed with mean zero, we first calculate its Fisher
information matrix (FIM), which measures the worth of the
design. If ξ has k support points, its FIM is proportional to

M(ξ , θ) =
k∑

i=1
wiI(xi, θ), (1)

where

I(xi, θ) = 1
var(Yi)

∇f (xi, θ)∇f (xi, θ)T ,

and ∇f (xi, θ)T =
(

∂f (xi,θ)

∂θ1
, ∂f (xi,θ)

∂θ2
, . . . , ∂f (xi,θ)

∂θq

)
. The FIM

depends on θ for nonlinear models and it does not for linear
models; in the latter case, we denote it by M(ξ). We note that
the FIM is singular if k < q and for this reason, our work here
assumes k ≥ q.

We formulate a design optimality criterion, ψ , as a con-
vex function of the FIM, and a design that minimizes ψ is
a ψ-optimal design. This means that we have to determine
the optimal number of support points, k, the optimal support
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points x1, . . . , xk and their corresponding w1, . . . , wk. The min-
imization is among all designs defined on � = χk × [0, 1]k,
where the symbol × is the Cartesian product. An example is D-
optimality for linear models defined by ψ(ξ) = − log |M(ξ)|
and |.| denotes determinant. It is probably the most widely used
criterion for estimating the model parameters and it can be
shown to be a convex function of FIM (Kiefer 1985). When the
model is nonlinear, the dependence of the FIM on θ may be
averaged out by a prior distribution. The Bayesian D-optimality
criterion is

ψD(ξ ; π) =
∫

θ∈	

− log |M(ξ , θ)|π(θ)dθ , (2)

where π(θ) is a user-selected prior distribution for the unknown
parameters θ and 	 is the set of all possible values of θ . It can
be shown the criterion is convex as a function of the FIM (Firth
and Hinde 1997) and a Bayesian D-optimal design is a design
that minimizes (2) over �.

One advantage of working with approximate designs is that
we can use an equivalence theorem to verify the optimality of a
given design if the criterion is a convex function of the FIM. For
example, for Bayesian D-optimality, the equivalence theorem
states that ξ∗

D is D-optimal if and only if

cD(x, ξ∗
D; π)

=
∫

	

tr{M−1(ξ∗
D, θ)I(x, θ)}π(θ)dθ − q ≤ 0, ∀x ∈ χ(3)

with equality in (3) at all support points of ξ∗
D (Kiefer and

Wolfowitz 1959; Chaloner and Larntz 1989). The equivalence
theorem is obtained by considering the directional derivative of
the convex functional at the optimum in the direction of ξx, the
degenerate design at x, that is, the design that puts all its mass at
x. For this reason, the function cD(x, ξ∗

D; π) is sometimes called
the derivative function. When χ is one- or two-dimensional,
one may plot cD(x, ξ∗

D; π) versus x ∈ χ and visually inspect
whether the graph meets the conditions in the equivalence
theorem. If it does, the design ξ∗

D is Bayesian optimal; otherwise,
it is not. All of the BICA-generated designs in this paper have
been validated by the equivalence theorem.

We measure the closeness of a design ξ to the Bayesian D-
optimal design ξ∗

D by its Bayesian D-efficiency defined by

effD(ξ , ξ∗
D; π) = exp

(
ψD(ξ∗

D; π) − ψD(ξ ; π)

q

)
. (4)

Using argument similar to Atwood (1969), it is straightfor-
ward to obtain a Bayesian D-efficiency lower bound (ELB)
for any design ξ without knowing ξ∗

D. This ELB is q/(q +
maxx∈χ cD(x, ξ ; π)) and its value may be used to measure prox-
imity of the generated design ξ to the optimum without know-
ing the latter.

3. A Short Description of the hcubature Algorithm

The basic version of the hcubature algorithm was introduced
in Van Dooren and de Ridder (1976) and named HALF. Genz

and Malik (1980) replaced the basic rule of HALF with a sym-
metric multidimensional polynomial degree 7 rule. Berntsen,
Espelid, and Genz (1991a) proposed another version of the algo-
rithm called DCUHRE (Berntsen, Espelid, and Genz 1991b)
that allows parallelism at the lowest level during the integrand
evaluations and at the subregion level. A free/open-source ver-
sion of the algorithm is available in the C package cubature
under the name hcubature (Johnson 2013). In what is to follow,
we present in Algorithm 1, a pseudo-code of the hcubature
algorithm and explain the general structure of the hcubature
algorithm for scalar integrands (nonparallel version), assuming
that the integration region is 	 ∈ R

q, and q is the number of
unknown model parameters.

The algorithm begins with the original integration region 	

and dynamically subdivides it into finer and finer subregions,
with smaller subregions concentrated at where the integrand
is most irregular. At stage i, the subdivision Si of 	 is defined
as a set of disjoint subregions Si = {R1i , R2i , . . . , RMi} with⋃

Rj = 	 and S0 = 	, where Mi is the total number of
subregions at stage i. The hcubature algorithm applies a degree
7 Genz-Malik’s rule to each subregion to estimate the local
integrals. The local error at each subregion is estimated by the
absolute difference between the degree 7 Genz-Malik’s rule and
an embedded degree 5 rule (Genz and Malik 1980). The nodes
of the degree 5 Genz-Malik’s rule belong to a subset of the
nodes produced by the 7 degree rule. Therefore, no additional
integrand evaluations are necessary to estimate the errors. The
global estimate of the integral L̂g and error Êg are equal to
the sum of the estimated local integrals and errors over all
the subregions. Let tol denote the user-specified tolerance
and let maxEval denote the maximum number of function
evaluations. The algorithm stops if abs(Êg) < abs(L̂g).tol
or the total number of function evaluations is (approximately)
larger thanmaxEval. Here, “abs” is the absolute function and “.”
is the scalar multiplication. If neither of the stopping conditions
is met, to create subdivision Si+1, the algorithm chooses the
subregion with the largest error estimate and subdivides it in
half along a coordinate axis l, where the integrand has the largest
local absolute fourth difference along it. Similar to the local error
estimates, calculating the local absolute fourth difference does
not require extra integrand evaluations to be performed and is
already embedded in the degree 7 Genz-Malik’s rule.

The hcubature algorithm can produce a very accurate esti-
mate of the integral and is best suited for a moderate number of
dimensions, say, less than 7, which is the case for many prob-
lems. For more details, see Genz and Bretz (2009) and Evans
and Swartz (2000). In this paper, we incorporate the hcubature
algorithm into BICA using the R (R Core Team 2018) package
cubature (Narasimhan and Johnson 2017) to approximate
all the integrals. To produce accurate results in our examples,
we set the values of maxEval and tol equal to 50,000 and
10−5, respectively. Since the equivalence theorem is only used
to verify the optimality of the generated design, the associated
values of the hcubature tuning parameters for approximating
the derivative function do not influence the convergence speed
of the algorithm. Our reported CPU times do not include time
for verifying optimality of a design by plotting the derivative
function or calculating the ELB.
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Algorithm 1 Pseudo-code for the hcubature algorithm (nonpar-
allel version)

1: Input tol, maxEval, 	
2: Initialization Set S0 = 	 and apply the Genz-Malik’s rule,

returning L̂g , Êg .
3: while abs(Êg) ≥ abs(L̂g).tol or total number of function

evaluations <= maxEval do
4: Choose the subregion with largest estimated error from

the collection of subregions.
5: Select the coordinate axis l where the integrand has the

largest local absolute fourth difference along it.
6: Divide the chosen subregion in half along axis l and

create two new subregions.
7: Apply the Genz-Malik’s rule to each new resulted sub-

region.
8: Return local integral estimates and local error estimates

from each subregion.
9: Update L̂g and Êg by aggregating the local integral esti-

mates and error estimates.
10: end while
11: Output L̂g and Êg .

4. ICA for Bayesian Optimal Design Problems

The structure of BICA is similar to the minimax version intro-
duced in Masoudi, Holling, and Wong (2017). The major dif-
ference lies in the evaluation of the cost function or, equiva-
lently, the optimality criterion. The minimax ICA is a nested
optimization algorithm and calls another optimization problem
over the parameter space to evaluate the cost function, while the
Bayesian version runs the hcubature algorithm to approximate
the integrals over the parameter prior distributions. Therefore,
the cost value of each solution or design in BICA is equivalent
to the approximated value of the Bayesian criterion.

Similar to the ICA algorithm, BICA requires the user to select
the number of support points, k, in advance. In practice, one
can start with k = q and incrementally increase this value until
the equivalence theorem verifies the generated k-point design as
the global optimal design. After choosing k, the algorithm starts
with a random population of solutions, named countries, and
Ncount is the number of countries. In optimal design problems,
the position of a country is identical to the location of the
support points and the associated weights of a design. The
population of countries is divided into some subpopulations
called empires. Each empire consists of one imperialist and the
remaining countries form the colonies. The number of colonies
of an empire is proportional to the power of the associated
imperialist, which in turn is a function of its cost value. In this
scheme, the more powerful imperialists receive a larger number
of colonies.

After initialization step, BICA enters the evolution stage. The
most influential steps that govern the evolution of the algorithm
are the assimilation within each empire and the competition
among the empires. In the assimilation step, the colonies of each
empire improve their power by moving toward their relevant
imperialist. During the competition, powerful empires take pos-
session of the colonies of the weaker empires. For more details,

see Atashpaz-Gargari and Lucas (2007) and Masoudi, Holling,
and Wong (2017).

BICA inherits the tuning parameters of ICA and the hcu-
bature algorithm. According to Masoudi, Holling, and Wong
(2017), the most influential ICA tuning parameter is the number
of countries Ncount. Its value should be set according to the
number of support points k and number of model covariates
n. Larger k and n mean a larger number of decision variables
in the optimization problem and, as a result, BICA requires
more number of countries to be able to find the optimal design.
Our numerical results suggest that a value between 40 and
300 for Ncount usually results in a (nearly) optimal design. The
first strategy when encountering a premature convergence is to
increase the value of Ncount. For more discussion about the ICA
tuning parameters, see Masoudi, Holling, and Wong (2017).
We delay the sensitivity analysis of BICA with respect to the
hcubature tuning parameters until Section 5.

In what is to follow, we apply BICA to find Bayesian optimal
designs for different types of problems. Except for the results in
Section 6, all the BICA-generated designs in this paper were con-
structed using a Macintosh machine with a Core i5 processor
running macOS version 10.12.6. BICA was written in R version
3.5.2.

4.1. Bayesian D-Optimal Designs for Test-Item Calibration

The 2PL model is frequently used in IRT to describe the proba-
bility of an examinee answering a particular item correctly, given
the examinee’s ability level and the item parameters. The 2PL
model is given by

E(Y) = P(Y = 1) = 1
1 + exp(−b(x − a))

, (5)

where a and b are, respectively, the difficulty and discrimination
item parameters, and the variable x is the examinee’s ability
known as the person parameter. In practice, θ = (a, b)T

belongs to 	 = [aL, aU ] × [bL, bU ], where aL, aU , bL, bU are the
prespecified lower and upper bounds for a and b. The estimation
of the item parameters a and b is known as item calibration.
In optimal calibration designs the purpose is to find the best
ability levels over a prespecified space of abilities χ (design
interval) to obtain efficient item parameter estimates (Berger
and Wong 2009, chap. 5). A common design interval in IRT is
χ = [−3, 3], where small values denote examinees with lower
ability levels to solve the item and large values denote examinees
with higher ability levels. Similar to Lu (2014), Passos and Berger
(2004), and Berger, King, and Wong (2000), we assume that the
experimenter is able to find examinees whose abilities match the
ability levels of the optimal design.

One application of the 2PL model is in computerized adap-
tive testing (CAT), which is a computer-based test that tailors
the items to the examinee’s ability. CAT requires a large col-
lection of calibrated items known as item pool or item bank
and it is heavily dependent on the efficient prior estimation of
the item parameters. Thus, using optimal calibration designs
is necessary to achieve the best efficiency. Test administrations
typically calibrate multiple items at the same time. A typical
assumption in IRT is that the dependency among responses
for each pair of items of a test for a fixed ability level is zero.
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This well-known assumption in IRT is called stochastic local
independence (Fischer 2004; Rost 2001). Therefore, the total
information for a whole test with m items is a block-diagonal
matrix M(ξ , θ̃), with main diagonal design matrices Mi(ξ , θ i),
where θ i = (ai, bi)T , i = 1, . . . , m and θ̃ = (θ1, θ2, . . . , θm)T .
The Bayesian D-criterion based on the FIM for the m items is∫

	̃

− log |M(ξ , θ̃)|π(θ̃)dθ̃

=
∫

	̃

(
−

m∑
i=1

log |Mi(ξ , θ i)|
)

π(θ̃)dθ̃ , (6)

where 	̃ = 	1×	2×· · ·×	m, π(θ̃) = π1(θ1)×π2(θ2)×· · ·×
πm(θm) and πi(θ i) is the prior distribution for θ i on 	i. Clearly,
even a moderate number of items requires a large number of
integrals over the items prior distributions. In practice, πi(θ i)
and 	i are chosen to be the same for all m items, and (6)
simplifies to

− m
∫

	i
log |Mi(ξ , θ i)|πi(θ i)dθ i, (7)

where only a two-dimensional integral must be approximated.
This means that the optimal design obtained for one item is
also optimal for the rest of the items under a common prior
distribution for the item parameters. The shape of the common
prior distribution may be specified in a way that reflects the
variation among the item parameters for different items of a
test. For example, an uncertain prior distribution for the item
difficulty is appropriate when a test includes both easy and
difficult items.

We now apply BICA to find Bayesian D-optimal designs for
the 2PL model assuming one item and different prior distri-
butions on 	 = [−3, 3] × [0.1, 2]. The prior distributions of
interest come from Blum et al. (2016) and they are:

1. Independent uniform priors with a ∼ U(−3, 3) and b ∼
U(0.1, 2) . We denote the prior distributions and the BICA-
generated design by πuni and ξuni, respectively.

2. Two normal prior distributions πnorm1 = N	(μ, �1) and
πnorm2 = N	(μ, �2), where

μ = (0, 1)T , �1 =
[

1.00 −0.17
−0.17 0.50

]
, and

�2 =
[

1.00 0
0 0.50

]
. (8)

We denote the BICA-generated designs by ξnorm1 and ξnorm2,
respectively, and also use the same mean μ and �1 in the
specification of the next two sets of prior distributions.

3. A bivariate t prior distribution πt = t	(μ, �1, df ) where μ

and �1 are, respectively, the mean vector and the covariance
matrix for θ = (a, b)T and df is the number of degrees of
freedom. Following Dunnett and Sobel (1954), we set df = 3
and denote the BICA-generated design by ξt .

4. Two bivariate skewed normal prior distributions denoted by
πskew1 = SN	(μ, �1, α1) and πskew2 = SN	(μ, �1, α2),
where μ and �1 are the location parameters and the scale
matrix for θ = (a, b)T , respectively. The vectors of skewness
factors are α1 and α2 and they are set to α1 = (1, 0)T and

Table 1. BICA-generated designs ξ for the 2PL model for different prior distribu-
tions for θ = (a, b)T when 	 =∈ [−3, 3] × [0.1, 2] and x ∈ [−3, 3].

ξ ξuni ξt ξnorm1 ξnorm2

−3.000(0.247)

−1.208(0.183)

0.000(0.140)

1.208(0.183)

3.000(0.247)

−2.417(0.263)

−1.167(0.182)

0.044(0.142)

1.185(0.168)

2.406(0.244)

−2.255(0.318)

−0.763(0.182)

0.546(0.182)

2.160(0.319)

−2.230(0.314)

−0.670(0.186)

0.672(0.186)

2.231(0.314)

π πuni πt πnorm1 πnorm2
ψD(ξ ; π) 3.931 2.567 2.968 2.972
effD(ξuni, ξ ; π) 1.000 0.985 0.979 0.981
CPU(s) 354 4788 861 719

ξ ξskew1 ξskew2

−1.512(0.377)

0.120(0.141)

1.053(0.127)

2.597(0.356)

−2.509(0.358)

−1.168(0.110)

−0.369(0.156)

1.292(0.376)

π πskew1 πskew2
ψD(ξ ; π) 2.925 2.935
effD(ξuni, ξ ; π) 0.970 0.952
CPU(s) 835 1273

α2 = (−1, 0)T , respectively. If the experimenter believes
the item is difficult prior to data collection, choosing α1 is
appropriate. On the other hand, if the experimenter feels that
the item is more likely to be easy, α2 is a more appropriate
choice. We denote the BICA-generated designs by ξskew1 and
ξskew2, respectively, and note that such prior distributions
were considered in Azzalini and Capitanio (1999).

Table 1 displays BICA-generated designs after running our
algorithm 1000 iterations. In this and subsequent tables, a design
is presented in one column where each of the support points is
listed one on top of the other with its corresponding weight in
parentheses. The value of Ncount for the independent uniform
and both the bivariate normal prior distributions was set to 40,
for the bivariate skewed normal priors it was set to 80 and for
the bivariate t distribution, it was increased to 200.

A direct calculation shows that the value of the ELB of each
of the BICA-generated design is at least 0.999 and so all of
them are optimal for all practical purposes. Figure 1 displays
the plots of the derivative functions cD(x, ξ ; π) on the design
space [−3, 3] for some BICA-generated designs ξ from Table 1.
The values of all derivative functions are equal or less than zero
on the design space and equal to zero at the support points of
the BICA-generated designs. Based on the equivalence theorem,
this confirms the Bayesian D-optimality of the obtained designs.

We observe from Table 1 that ξuni has 5 support points with
nearly 50% of its weight at the endpoints of the design interval.
In practice, it is unlikely that we have this distribution of test-
takers in an examinee sample, having extreme abilities at the
endpoints of χ with very competent or incompetent examinees.
The designs ξnorm1 and ξnorm2 have one less support point
than ξuni because the assumed bivariate normal prior distribu-
tions provide more information about the locations of the item
parameters and reduce the uncertainty about the parameters.
Compared to ξuni, the support points of ξnorm1 and ξnorm2
are closer to each other, which implies that there is no need
to have examinees with extremely high and low ability levels.
The design ξt has more support points than the design ξnorm1,
partly because the assumed bivariate t distribution increases
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Figure 1. Plots of the nonpositive derivative functions cD(x, ξ ; π) of the BICA-generated designs ξ for selected prior distributions π from Table 1 on the design space
[−3, 3].

the uncertainty about the locations of the item parameters by
having more mass on the tails. The designs ξskew1 and ξskew2 have
the same number of support points as ξnorm1, but they differ
in locations and the weight distributions. The design ξskew1
requires examinees with higher ability levels when the item was
assumed to be difficult and the design ξskew2 requires examinees
with lower ability levels when the item was assumed to be easy.

Our work suggests that BICA requires the shortest CPU
time to find ξuni because, unlike other prior distributions stud-
ied here, no function evaluation is required to calculate the
probability density of the uniform distribution. Uniform prior
distribution generally allows more uncertainty on the unknown
parameters and results in a larger number of support points,
therefore, a larger number of decision variables in the optimiza-
tion problem. We also calculated Bayesian D-efficiency of ξuni
relative to each ξ from Table 1, and effD(ξuni, ξ ; π) in the same

table shows the results. Its values suggest that in our design
setting, ξuni is very efficient under other prior distributions.

The above examples show that BICA is a flexible algorithm
and can be applied for different prior distributions. To fix ideas,
we assume independent uniform prior distributions for the
unknown parameters in the models for the rest of the examples
in this paper. In what follows, we investigate situations where
Bayesian optimal designs have more design points and how the
uncertainty of the prior information for each parameter affects
the number of support points of the optimal design.

4.2. Sigmoid Emax Model

The sigmoid Emax model belongs to the class of nonlinear sig-
moid models commonly used in pharmacokinetics to describe
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Table 2. BICA-generated designs ξ for the sigmoid Emax model when θ has independent uniform prior distributions on π	i , i = 1, 2, 3, 4 and χ = [0.001, 500].

ξ ξ	1 ξ	2 ξ	3 ξ	4

0.003(0.250)

84.751(0.250)

123.833(0.250)

500.000(0.250)

0.089(0.250)

90.194(0.250)

127.843(0.250)

500.000(0.250)

0.362(0.243)

94.593(0.194)

113.665(0.116)

138.300(0.203)

500.000(0.244)

0.018(0.205)

96.433(0.112)

117.319(0.102)

133.068(0.100)

152.844(0.130)

188.081(0.139)

500.000(0.212)

π π	1 π	2 π	3 π	4
ψD(ξ , π	) 12.159 12.325 12.724 13.332
effD(ξ , ξ	4 , π	4 ) 0.364 0.451 0.680 1.000
Ncount 40 40 40 300
CPU(s) 18 18 243 21654

the dose-response S-shape curves (Macdougall 2006). The mean
of the response variable Y at a given dose x is given by

E(Y) = f (x, θ) = θ1 + (θ2 − θ1)
xθ4

xθ4 + θ
θ4
3

, (9)

where θ = (θ1, θ2, θ3, θ4)
T , θ2 > θ1, θ3 > 0, x ∈ χ =

(0, x0] and x0 (in mg) is user-selected. All errors are assumed to
be independent and normally distributed with mean zero and
constant variance. Here, θ1 is the minimum mean response, θ2
is the maximum mean response, θ3 is the ED50, that is, the dose
at which 50% of the maximum mean effect is achieved, and θ4
is the slope parameter.

Dragalin, Hsuan, and Padmanabhan (2007) and Wang and
Yang (2014) introduced adaptive D-optimal designs for the sig-
moid Emax model. Roughly, such procedures find an adaptive
design by first estimating the unknown parameters from an
initial design in the first stage. The parameter estimates will
then be used in the next stage to find the locally optimal design.
The process is repeated until some user-specified stopping con-
ditions are met. Obviously, replicating the experiment at each
stage is likely going to take a considerable amount of time
and effort. Further, the efficiency of adaptive designs usually
depends on the sample size and the quality of the initial design.

Bayesian optimal designs avoid the necessity of having just a
single set of best initial estimates for the parameters. However,
finding them is a challenge here because a four-dimensional
integral must first be solved to evaluate the D-optimality cri-
terion. Let θi ∼ U(θL

i , θU
i ), i = 1, 2, 3, 4 and all the uniform

prior distributions be independent. For simplicity, we denote
the independent uniform distributions for θi, i = 1, 2, 3, 4 by
π	, where 	 = [θL

1 , θU
1 ] × [θL

2 , θU
3 ] × [θL

3 , θU
3 ] × [θL

4 , θU
4 ] is

the parameter region. To gain insights into the properties of the
Bayesian D-optimal design when the spread in π	 varies, we
assume different parameter regions as follows: 	1 = [4, 5] ×
[11, 12]×[100, 105]×[5, 6], 	2 = [4, 6]×[11, 13]×[100, 115]×
[5, 7], 	3 = [4, 8] × [11, 15] × [100, 130] × [5, 9], and 	4 =
[4, 10] × [11, 18] × [100, 180] × [5, 11], where the symbol ×
is the Cartesian product. We applied BICA to find Bayesian
D-optimal designs ξ	i when the prior distribution is π	i , i =
1, 2, 3, 4. Table 2 reports the results when the design interval is
χ = [0.001, 500].

A direct calculation shows that the value of the ELB of each
of the BICA-generated designs is approximately 1. Figure 2
displays the plots of the derivative functions on the design space

[0.001, 500] for the BICA-generated designs from Table 2 and
they confirm the Bayesian D-optimality of the obtained designs.

We observe that as the uniform prior distributions become
more diffuse, the number of support points of BICA-generated
designs increases and so do the CPU times, especially when
π = π	4 . This is because the number of countries was increased
to 300 to find the sought-after design accurately under this prior
distribution. Furthermore, the hcubature algorithm requires
subdividing a larger number of subregions to estimate the inte-
grals when the integrand domain is larger.

To investigate the efficiency loss due to misspecification of
the prior distribution in this scenario, we assume the true prior
distribution is π	4 , but the Bayesian D-optimal design is found
under a more informative prior distribution, say π	1 , π	2 , or
π	3 . We calculated the Bayesian D-efficiencies (4) of designs
ξ	1 , ξ	2 , and ξ	3 relative to ξ	4 , when the prior distribution
is π	4 , and denote them in Table 2 by effD(ξ , ξ	4 , π	4) when
ξ = ξ	i , i = 1, 2, 3. Their values suggest that, at least in our
scenario, the Bayesian D-optimal designs for the sigmoid Emax
model are not robust with respect to the misspecification of the
prior. For example, ξ	1 has only around 36% of the efficiency of
ξ	4 when the prior distribution is π	4 .

4.3. Cox Proportional-Hazards Model

A popular model for analyzing survival data is the Cox pro-
portional hazards model. The model relates the constant hazard
function λ(t; xi) for the ith subject at a given time t to the vector
of covariates xi. We investigate the proportional hazards model
with a constant baseline hazard function that is λ0(t) = λ =
exp(β0) when all covariates are zero. Then, we obtain the model

λ(t, xi) = exp(g(xi)
Tβ), (10)

where λ(t, xi) is the constant hazard function for the ith indi-
vidual given xi ∈ χ , g = (1, g1, g2, . . . , gq−1) is a q-dimensional
vector of some known regression functions of the covariates and
β = (β0, . . . , βq−1)

T ∈ R
q. It follows that the survival time Yi

is exponentially distributed

Yi ∼ Exp{exp[g(xi)
Tβ]}. (11)

Suppose the duration of the study is the interval [0, c] where
c is known. In type one censoring, all the individuals enter the
experiment at the same time and stay until either the censoring
time c or failure, whichever is earlier (right censored data). In
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Figure 2. Plots of the nonpositive derivative functions cD(x, ξ ; π) of the BICA-generated designs ξ from Table 2 on the design space [0.001, 500] using different prior
distributions.

random censoring, the individuals join the experiment at ran-
dom times before c. Because the procedure of finding optimal
designs for the random censoring model is very similar to the
type one censoring, we only focus on the latter.

A direct calculation shows that the FIM of a k-point design ξ

for the type one censoring has the form (Schmidt and Schwabe
2014)

M(ξ , β) =
k∑

i=1
wi

{
1 − exp

[−c exp(g(xi)
Tβ)

]}
g(xi)

T g(xi).

(12)
The FIM depends on the unknown regression parameters and
some locally and standardized maximin optimal designs have
been found for this model. Qiu et al. (2014) applied particle
swarm optimization (PSO) to find locally optimal designs
for the two-parameter model. Schmidt and Schwabe (2014)

obtained the locally D-optimal designs for the two- and three-
parameter models. Konstantinou, Biedermann, and Kimber
(2014) assumed a plausible region for the unknown parameters
and found standardized maximin D-optimal designs within the
class of two-point designs for the two-parameter model. We
now apply BICA to generate Bayesian optimal designs for the
above model for two cases: (1) a two-parameter model when
g = (1, x) and β = (β0, β1) and (2) a three-parameter model
when g = (1, x, x2) and β = (β0, β1, β2). We suppose the prior
distributions on the three parameters β0, β1, β2 are independent
uniform densities over the interval [−d, d], x ∈ χ = [0, 1] and
c = 30 in (12).

To investigate the influence of the diffuseness of the uni-
form prior distributions on the number of support points of
the Bayesian optimal design, we set d = 3, 11, and denote
the resulting independent uniform distributions by πd and the
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Table 3. BICA-generated designs ξd for the two- and three-parameter proportional
hazards models on χ = [0, 1] with c = 30 in (12).

Two-parameter model Three-parameter model

d 3 11 3 11

ξd
0.000(0.500)

1.000(0.500)

0.000(0.405)

0.307(0.173)

0.553(0.014)

1.000(0.407)

0.000(0.333)

0.490(0.333)

1.000(0.333)

0.000(0.303)

0.188(0.102)

0.453(0.197)

0.645(0.129)

1.000(0.269)

ψD(ξd , πd) 1.529 4.705 6.372 11.366
¯effD 0.995 0.721 0.966 0.552

CPU(s) 29 272 407 9847

NOTE: The two sets of independent uniform prior distributions πd for the parame-
ters are given by β0 ∼ U(−d, d), β1 ∼ U(−d, d), and β2 ∼ U(−d, d) with d = 3
and d = 11.

BICA-generated design by ξd. Table 3 reports the designs ξd for
the two- and three-parameter Cox proportional hazard models
found using 40 countries in BICA. The last three rows report the
criterion values, the average simulated D-optimal efficiencies of
the locally optimal designs relative to the corresponding ξd, and
the CPU times for the four cases.

A direct calculation shows that all the generated designs have
a minimum ELB of 0.998 and the derivative plots in Figure 3
confirm they are (nearly) optimal. Similar to the previous exam-
ples, the number of support points in the Bayesian optimal
designs increases as the uniform distributions become more
diffuse. We also note that the increase in the CPU time is
substantial when d is increased from 3 to 11 and the two extreme
ends of the design interval χ = [0, 1] are always the support
points of the optimal designs.

It is interesting to assess the performance of the locally D-
optimal designs when we use different prior distributions for
the unknown parameters. We first consider the three-parameter
Cox proportional hazards model. To investigate this, we first
sampled 20 equidistant points from the interval [−d, d] to con-
struct 203 = 8000 vectors of initial estimates for the vector
of parameters (β0, β1, β2). Next, we found locally D-optimal
design for each vector of initial estimates using the ICA algo-
rithm (Masoudi, Holling, and Wong 2018) and, then, using (4),
we calculated the Bayesian D-efficiency of the obtained locally
D-optimal design relative to the BICA-generated design ξd when
π = πd. A similar procedure was done for the two-parameter
Cox proportional hazards model. In Table 3, ¯effD is the averaged
value of the Bayesian D-efficiencies for each model and d =
3, 11. The results suggest that in our design settings, locally
D-optimal designs have on average at least 96% Bayesian D-
efficiencies when d = 3, but their performance deteriorates
when the prior distributions become more diffuse, that is, when
d = 11. This observation is similar to locally optimal designs
becoming less efficient when the initial estimates are far from
the true values of the unknown parameters, which is the case
when the prior distributions become diffuse.

4.4. Compound DP-Criterion for the Logistic Model With
Two Predictors

Sometimes, it is desirable to find a design that maximizes the
probability of the occurrence of an event. For example, in medi-
cal trials we want to have a design that maximizes the probability

that patients receive an effective treatment. McGree and Eccle-
ston (2008) introduced probability-based optimal designs that
maximize the weighted sum or average of the probabilities of
success. The average P-optimal criterion is defined by

φP(ξ , θ) =
k∑

i=1
wipi(xi, θ), (13)

where xi and wi are the support points and weights of the design
ξ , and pi(xi, θ) is the probability of success at xi in a binary
response model with parameter θ .

For the average P-optimal criterion, the P-efficiency of a
design ξ is given by

Peff(ξ) = φP(ξ , θ)

φP(ξ∗
P , θ)

, (14)

where ξ∗
P is the average P-optimal design. McGree and Eccleston

(2008) presented the equivalence theorem for the P-optimality
criterion: given θ , a design ξ∗

loc,P is locally P-optimal design if
and only if for all x ∈ χ

dloc,P(x, ξ∗
loc,P, θ) =

{
φP(ξx, θ) − φP(ξ∗

loc,P, θ)

φP(ξ∗
loc,P, θ)

}
≤ 0, (15)

with equality at the support points of ξ∗
loc,P.

A study may have two or more objectives at the onset. For
example, D-optimality may be of interest in addition to P-
optimality. To find a design that meets the dual goals of param-
eter estimation and that maximizes the probability of an event,
a compromise is necessary. McGree and Eccleston (2008) pro-
posed a compound or combined DP-criterion that is a weighted
product of the D- and average P-efficiencies of a design. The
weight is a predefined mixing constant α between 0 and 1
and represents the relative importance of the two criteria. This
criterion is similar to that of A. C. Atkinson (2008) for DT-
optimality for both model discrimination and parameter esti-
mation. Specifically, for fixed α and θ , the compound criterion
that we want to maximize by choice of a design is

φDP(ξ , θ) = α

q
log |M(ξ , θ)|

+(1 − α) log

( k∑
i=1

wipi(xi, θ)

)
, (16)

and a locally DP-optimal design maximizes (16) over all possible
designs.

When a prior distribution π(θ) is available for θ , similar to
(2), a Bayesian P-optimal design ξ∗

P minimizes

ψP(ξ , π) =
∫

	

− log φP(ξ , θ)π(θ)dθ . (17)

The closeness of a design ξ to ξ∗
P can be measured by its Bayesian

P-efficiency given by

effP(ξ , ξ∗
P ; π) = exp(ψP(ξ∗

P ; π) − ψP(ξ ; π)). (18)

The equivalence theorem for (17) comes from Theorem 2
of McGree and Eccleston (2008): given π(θ), a design ξ∗

P is
Bayesian P-optimal design if and only if

cP(x; ξ∗
P ; π) =

∫
	

dloc,P(x; ξ∗
P ; θ)π(θ)dθ ≤ 0 (19)
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Figure 3. Plots of the nonpositive derivative functions cD(x, ξd ; π) of the BICA-generated designs ξd on the design space [0, 1] from Table 3 when d = 3 and d = 11.

for all x ∈ χ with equality at the support points of ξ∗
P . Accord-

ingly, given α, a Bayesian DP-optimal design ξ∗
DP is the design

that maximizes a weighted product of the Bayesian P- and D-
efficiencies

{effP(ξ , ξ∗
P ; π)}1−α{effD(ξ , ξ∗

D; π)}α , (20)

or equivalently, minimizes the negative of the log function of
(20). After ignoring constant terms involving ξ∗

P and ξ∗
D, we have

ψDP(ξ ; π) = α

q

∫
	

− log |M(ξ , θ)|π(θ)dθ

+(1 − α)

∫
	

− log

( k∑
i=1

wipi(xi, θ)

)
π(θ)dθ

= α

q
ψD(ξ ; π) + (1 − α)ψP(ξ ; π). (21)

The derivative function for (21) is a weighted sum of (3) and
(19) and one can directly show that ξ∗

DP is a Bayesian DP-optimal
design if and only if

cDP(x, ξ∗
DP; π) = α

q
cD(x, ξ∗

DP; π) + (1 − α)cP(x, ξ∗
DP; π) ≤ 0,

(22)
for all x ∈ χ with equality at the support points of ξ∗

DP.
As an illustrative application, consider a logistic model with

two factors of the form
P(Yi = 1) = pi(xi, θ)

= exp(θ0 + θ1xi1 + θ2xi2 + θ3xi1xi2)

1 + exp(θ0 + θ1xi1 + θ2xi2 + θ3xi1xi2)
, (23)

where xi = (xi1, xi2), θ = (θ0, θ1, θ2, θ3)
T and x ∈ χ =

[xL
1xU

1 ]×[xL
2 , xU

2 ]. McGree and Eccleston (2008) used simulated
annealing to find locally DP-optimal designs for different α

where χ = [−1, 1] × [−1, 1].
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Table 4. BICA-generated Bayesian DP-optimal designs ξDP on χ = [−1, 1] × [−1, 1] for different values of α for model (23).

α 0.25 0.5 0.75 1

ξDP

1.000, −1.000(0.085)

−0.625, 1.000(0.431)

0.114, −1.000(0.012)

−1.000, −1.000(0.145)

1.000, 1.000(0.059)

0.282, 1.000(0.090)

−1.000, 0.094(0.177)

−1.000, −0.083(0.092)

0.302, 1.000(0.103)

1.000, −1.000(0.156)

1.000, 1.000(0.131)

0.074, −1.000(0.020)

−1.000, −1.000(0.224)

−0.320, 1.000(0.275)

1.000, 1.000(0.190)

−1.000, −1.000(0.240)

0.283, 1.000(0.100)

1.000, −1.000(0.205)

−1.000, −0.168(0.039)

−0.197, 1.000(0.201)

0.033, −1.000(0.025)

1.000, 1.000(0.230)

−1.000, −0.205(0.016)

0.266, 1.000(0.095)

−0.134, 1.000(0.162)

1.000, −1.000(0.237)

−0.009, −1.000(0.027)

−1.000, −1.000(0.232)

ψDP(ξDP ; πU) 0.929 1.539 2.064 2.554
effD(ξDP , ξ∗

D ; πU) 0.644 0.911 0.987 1.000
effP(ξDP , ξ∗

P ; πU) 0.805 0.667 0.588 0.545

NOTE: The prior distribution πU for θ = (θ0, θ1, θ2, θ3)T is a product of independent uniform priors for each of its components with θ0 ∼ U(−0.5, 2.5), θ1 ∼ U(−3.5, −0.5),
θ2 ∼ U(−0.5, 2.5), and θ3 ∼ U(−2.5, 0.5). The last three rows show the criterion values, the Bayesian D-efficiencies, and the P-efficiencies of the designs ξDP as the α

values for the weighted criterion vary from 0.25, 0.50, 0.75 to 1.

We extend their application by finding Bayesian optimal
designs. Let πU be the prior distribution for the model param-
eters θ = (θ0, θ1, θ2, θ3)

T and suppose it comprises the fol-
lowing independent uniform prior distributions for the four
parameters: θ0 ∼ U(−0.5, 2.5), θ1 ∼ U(−3.5, −0.5), θ2 ∼
U(−0.5, 2.5), and θ3 ∼ U(−2.5, 0.5). Given πU and different
values for α, we used BICA to minimize (21) over the space
of all possible designs to find Bayesian DP-optimal designs. In
the algorithm, we used 40 countries and it was run for 1000
iterations. Table 4 displays the BICA-generated Bayesian DP-
optimal designs for four weight values of α: 0.25, 0.50, 0.75, and
1.00.

A direct calculation shows that the values of the ELB of
the BICA-generated designs are all nearly equal to 1. Figure 4
displays the derivative plot for the BICA-generated design when
α = 0.5 and confirms its optimality. The CPU time to find
each design was about 50 min. This is not a surprise given
that a four-dimensional integral has to be approximated with
high accuracy and the optimization problem has 21 decision
variables. Table 4 displays the Bayesian D- and P-efficienciesQ5
of the obtained designs using (4) and (18), respectively. The
Bayesian P-optimal design ξ∗

P in our example is obtained when
α = 0 and the Bayesian D-optimal design is obtained when
α = 1. The Bayesian P-optimal design is not shown and
is the degenerate design at (x1, x2) = (−1, 1). As expected,
the design efficiencies under one criterion increase and the
efficiencies under the other criterion decrease as α varies. The
varying values of the Bayesian D- and P-efficiencies suggest
that a compromise between the two opposing criteria may be
achieved by choosing an appropriate value for α. For example,
by choosing α = 0.5, the generated design has a Bayesian P-
efficiency of 0.667 and a Bayesian D-efficiency of 0.911.

5. Sensitivity Analysis

This section briefly evaluates the sensitivity of the BICA-
generated designs to the tuning parameters in the hcubature
algorithm (tol and maxEval). To fix ideas and for space
consideration, we chose a benchmark problem that required
the longest CPU time for BICA to find the optimal design
among all the examples in this paper. The benchmark problem
is the Bayesian D-optimal design problem for the sigmoid Emax
model in Section 4.2 when π = π	4 . To investigate the influence
of different combinations of tuning parameters on the final

result, we assigned one conservative and one less conservative
value to each of the tuning parameters below. We note that the
last pair of the tuning parameters is the most conservative and is
the one used to produce all the previous examples in this paper.
The complete set of scenarios is:

1. tol = 10−4,maxEval = 1000 and the BICA-generated
design is denoted by ξ1.

2. tol = 10−4,maxEval = 50000 and the BICA-generated
design is denoted by ξ2.

3. tol = 10−5,maxEval = 1000 and the BICA-generated
design is denoted by ξ3.

4. tol = 10−5,maxEval = 50000 and the BICA-generated
design is denoted by ξ4.

We ran BICA for each pair of the tuning parameters using
the same design setting and initialization and Table 5 reports
the results.

In all cases, the values of the criterion ψD(ξ ; π	4) at ter-
mination are approximately the same and equal to 13.33. The
optimal designs are close to one another even though their CPU
times differ. Figure 5 displays the derivative plots for the four
generated designs and shows that they are closer to optimality
when we set tol = 10−5. However, based on the equivalence
theorem, design ξ4 is only optimal because the corresponding
derivative plot (d) is the only one that is nonpositive for every
x ∈ [0.001, 500] and equal to zero at the support points of ξ4 (see
red points). This suggests that using less conservative values for
maxEval and tol is unlikely going to impact the generated
designs in practice for this example.

6. Comparison With Other Algorithms

There are recent algorithms proposed for finding Bayesian opti-
mal designs. For example, Duarte and Wong (2014) proposed
a semidefinite programming (SDP) based algorithm to find
approximate designs on a discretized design space. Some disad-
vantages of such an algorithm and others that require the search
space to be discretized are that the generated designs depend
on the grid set and the algorithm can become ineffective for
models with many covariates because the optimization problem
becomes high dimensional. Duarte, Wong, and Oliveira (2016)
introduced a nonlinear programming (NLP) based algorithm
that does not need any discretization on the design space. This
algorithm uses a multistart heuristic algorithm named OQNLP
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Figure 4. The left panel displays the derivative function cDP(x, ξDP ; πU) for model (23) for (x1, x2) ∈ χ = [−1, 1] × [−1, 1] when α = 0.5 (a). The right panel displays
the corresponding contour plot on χ (b).

Table 5. BICA-generated designs ξ for the sigmoid Emax model when θ ∼ π	4 and χ = [0.001, 500].

ξ ξ1 ξ2 ξ3 ξ4

12.726(0.206)

97.294(0.111)

115.720(0.090)

133.616(0.119)

152.882(0.123)

188.346(0.141)

500.000(0.211)

6.851(0.204)

96.599(0.113)

117.937(0.110)

136.465(0.118)

155.945(0.110)

188.795(0.133)

499.998(0.212)

0.699(0.205)

96.922(0.117)

120.154(0.131)

139.606(0.095)

154.525(0.102)

187.974(0.139)

500.000(0.212)

0.018(0.205)

96.433(0.112)

117.319(0.103)

133.068(0.100)

152.844(0.130)

188.081(0.139)

500.000(0.212)

ψD(ξ , π	4 ) 13.331 13.333 13.333 13.332
maxEval 1000 50000 1000 50000
tol 10−4 10−4 10−5 10−5

CPU(s) 3338 4600 3185 21,654

NOTE: The designs were found using different pairs of values for the tuning parameters maxEval and tol.

(Ugray et al. 2005) to determine an optimal design and it is
codified in GAMS (GAMS Development Corporation 2013).
Both of the SDP and the NLP-based algorithms are equipped
with Gauss quadrature formulas to approximate the integrals.
Duarte, Wong, and Oliveira (2016) showed that the NLP-based
algorithm tend to generate more efficient designs with fewer
number of support points than those designs found by the SDP-
based algorithm.

This section compares our algorithm with the NLP-based
algorithm for finding D-optimal designs for a three-parameter
alcohol kinetics model (Box and Hunter 1965) and the four-
parameter sigmoid Emax model presented in Section 4.2. Due
to space consideration, we offer details in Supplementary Sec-
tion S1. In our comparison, the two algorithms produced very
similar results, except that for the sigmoid Emax model when
π = π	4 , the NLP-based algorithm was only able to obtain a
local optimum. Our comparison using our examples suggests
that BICA tends to be faster than the NLP-based algorithm
when the prior distributions are uniform even when we use
conservative default values for the hcubature tuning parameters.
On the other hand, when the prior is normal, BICA tends to
be slower than the NLP-based algorithm in finding the optimal
design for the alcohol kinetics model. However, if we reduce the

value of maxEval to 2000, BICA becomes considerably faster
than the NLP-based algorithm again. A drawback of the NLP-
based algorithm is that it relies on the expensive commercial
software GAMS which we believe many statisticians may be
unfamiliar with. Accordingly, we have devoted considerable
effort to make our algorithm available in R and allow it to be
directly amendable to find a wide variety of optimal designs for
various nonlinear models. Our algorithm is free, open-source
and available in the R package ICAOD (Masoudi, Holling, and
Wong 2018).

7. Discussion

Metaheuristic algorithms are important and modern tools for
tackling complicated optimization problems. They have been
shown to be flexible, powerful and frequently give high qual-
ity solutions in computer science, engineering, and artificial
intelligence (Yang 2010, 2011). Most metaheuristic algorithms
including BICA are assumptions-free and this property makes
them especially useful. They can even help to find a formula for
the optimal design in a difficult problem. For instance, Chen,
Chen, and Wong (2017) first applied PSO to find standardized
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Figure 5. Plots of the derivative function cD(x, ξ ; π	4 ) for the four designs in Table 5 found by BICA using different pairs of values for maxEval and tol. The derivative
plot (d) proves the optimality of ξ4.

maximin optimal designs for a three-parameter enzyme kinetic
nonlinear model and then used information from the design
structure and the equivalence theorem to obtain a formula for
the optimal design. Two recent applications of using a nature-
inspired metaheuristic algorithm to find optimal designs are
Lukemire, Mandal, and Wong (2018) and Xu et al. (2018).

Convergence properties of metaheuristic algorithms are hard
to study and we are not aware that there are rigorous proofs for
many of them, even for the popular nature-inspired metaheuris-
tic algorithms like PSO and ICA. The difficulty is largely due to
the interactions of the various components in the algorithm that
are highly nonlinear, complex, and stochastic (Yang 2011). Our
view is that the lack of proof of convergence should not limit
their use in practice, especially when there are theoretical meth-
ods to assess the proximity of a solution to the optimum without

knowing the latter. In our case, a proof of convergence of ICA is
not needed because with a convex functional to be optimized,
an equivalence theorem is available to confirm optimality, or
alternatively, an ELB can be theoretically constructed to assess
proximity of the generated design to the optimum.

It is quite common to hybridize a metaheuristic algorithm
with a properly selected procedure to enhance its performance.
For example, if an algorithm is especially good at exploring
where the optimum is, one may want to hybridize it with another
algorithm that is very good for exploiting the neighborhood of
the so optimum to locate it quickly. Generally, the two algo-
rithms should have complementary advantages and be able to
perform specific tasks that the other does not do as well. In
this paper, we hybridized ICA with the hcubature algorithm
which we found to be quite efficient for approximating the
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Bayesian optimality criteria for models with a moderate number
of parameters. The hcubature algorithm is distribution-free and
may be used for evaluating integrals with different types of
prior distributions. However, its performance depends on the
spread and the shape of the prior distribution. In the current
version (cubature-1.0.2), when the prior distribution is normal
and located in the middle of the integral domain, the error
estimation in the hcubature algorithm can become very con-
servative. For such a prior distribution, we recommend using
a smaller value for maxEval, say 2000, to have a shorter CPU
time.

Gaussian quadrature formulas are alternative methods to
approximate the Bayesian optimality criteria. In Gaussian
quadrature, the way in which the systematic nodes are
determined depends on the underlying prior distributions. For
example, when a uniform distribution is used, the systematic
nodes and weights are usually obtained from a special type
of orthogonal polynomials known as Legendre polynomials
and the corresponding formula is called Gauss–Legendre
quadrature. Similarly, the Gauss–Hermite formula, which is
based on the Gauss-Hermite polynomials, can be applied when
we have a normal prior distribution. For more details, see K.
E. Atkinson (2008) and Goos and Mylona (2018). The ICA
algorithm is very flexible and can also be combined with the
Gaussian quadrature formulas. To avoid confusion, we call this
algorithm BICA-Quad.

To compare the performance of the hcubature algorithm
relative to results from the Gaussian quadrature formulas, we
executed BICA and BICA-Quad in Section S2 of the supple-
mentary materials to find Bayesian D-optimal designs for two
benchmark models: the four-parameter sigmoid Emax model
presented in Section 4.2, and a six-parameter generalized linear
model with a Gamma distributed response. The results show
that when we have a large enough number of nodes for the
appropriately selected Gaussian quadrature formula, both algo-
rithms can generate very similar designs. However, we experi-
enced difficulty in finding the appropriate number of nodes for
the sigmoid Emax model when π = π	4 and we were only
able to find nearly optimal designs. When the prior distribution
is uniform, BICA was marginally slower than BICA-Quad for
easy problems, that is, smaller parameter regions. This comes
as no surprise because we used the conservative values for the
hcubature tuning parameters and the number of nodes in the
Gaussian quadrature was set to be the minimum sufficient value
found by trial-and-error for each problem. If we were to use such
a strategy for, say, maxEval, we could also reduce the CPU
time for BICA. Further, when we used the uniform prior for
the six-parameter generalized linear model, BICA became faster
than BICA-Quad even when we used only a 3-point Gauss–
Legendre quadrature formula. This was also the case when
we required a larger number of nodes (more than 8) to find
accurate designs for the four-parameter sigmoid Emax model.
These observations suggest that the curse of dimensionality can
have more negative effects on BICA-Quad than BICA, particu-
larly when the prior is uniform. For the assumed normal prior
distribution for the six-parameter generalized linear model, as
explained above, the hcubature algorithm became very conser-
vative and, therefore, we had to reduce the value of maxEval.
For this example, the Gauss–Hermite formula resulted in a

faster algorithm, although the CPU time for BICA was still
reasonable.

To further emphasize that our approach is flexible, we note
that our codes can be directly modified to find other types of
optimal designs, including optimal exact designs. For example,
to find the Bayesian D-optimal exact design in Table 3 of Got-
walt, Jones, and Steinberg (2009) with N = 18 observations,
we can set k = 18 and modify our algorithm to find the optimal
approximate design within the class of equally weighted designs.
In this case, the support points of the generated approximate
design are the same as the exact design with 18 observations.
Upon execution, BICA generates a design similar to the one in
Gotwalt’s paper and the Bayesian D-efficiency of the Gotwalt’s
design relative to our design is approximately equal to 0.99.
The main difference between optimal approximate designs and
optimal exact designs is that the former can be constructed and
confirmed using theory whereas there is no unified theory for
finding and confirming optimality of an exact design. Since we
are proposing a new algorithm, it is desirable to have mathemat-
ical tools to confirm the optimality of the generated design and
this explains why we have focused on approximate designs.

We conclude with a reminder that nature-inspired meta-
heuristic algorithms like ICA, BICA, and PSO are general pur-
pose optimization tools and can be used to solve nondesign opti-
mization problems. We encourage the readers to explore and
apply such algorithms for solving other optimization problems
in statistics.

Supplementary Materials

Here, we provide two packages of computer codes: one for implementing
the BICA and the other for replicating all examples in this article. In
addition, we compare performances of BICA and other algorithms in the
supplementary materials.

ICAOD R package contains codes of the BICA algorithm (ICAOD_
0.9.8.tar.gz, zipped tar file).

Rcodes contains codes that can be used to replicate all the examples,
simulations and plots in this study (Rcodes.zip, .zip archive). Please see
the file README.txt contained in the zip file for more details.

Sections S1 and S2 “Supplementary materials: a comparison between
BICA and other algorithms” (a PDF file).
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