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Abstract New models for evolutionary processes of mutation accumulation al-
low hypotheses about the age-specificity of mutational effects to be translated
into predictions of heterogeneous population hazard functions. We apply these
models to questions in the biodemography of longevity, including proposed
explanations of Gompertz hazards and mortality plateaus.

Keywords Evolution · Genetic load · Senescence · Gompertz hazard ·
Mortality plateau

Mutation Accumulation

Why are flies, worms, and humans subject to laws of age-specific adult
mortality that are uncannily similar in shape? After suitable species-specific
changes in scale, organisms with different environments, life histories, body
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plans, and lifespans turn out to resemble each other in the statistics of their
demise. Similarities are typically expressed in terms of hazard functions. The
hazard function is a summary measure of rates of death by age across a
population, equal to the negative slope of the logarithm of the population
survivorship function. Hazard functions for populations from many species
show two common features: exponential increase with age over a stretch of
ages and attenuated increase over later ages, generating the visual appearance
of a plateau. The recognition of these commonalities goes back at least as far as
Pearl and Miner (1935); the generalisation and quantitative elaboration have
been signal achievements of the new biodemography, summed up by Vaupel
et al. (1998), Carey (2003), Wachter and Finch (1997), Carey and Tuljapurkar
(2003).

Explanations for shared features of senescent mortality across species
are sought in considerations from reliability engineering, from optimal life-
history theory, and from evolutionary processes of antagonistic pleiotropy
and mutation accumulation. Reliability engineering is a functional approach
to senescence, picturing the organism as a machine with some component
structure, attempting to derive the failure modes of the whole from some
presumably simpler failure modes of the components. The aim is usually to
draw inferences from qualitative classes of structures to general shapes of
mortality curves. The enterprise is considered successful if the broad features
common to many real-world mortality rates are reproduced in the model.
Some examples are Strehler and Mildvan (1960), Rosen (1978), Gavrilov
(1978), Gavrilov and Gavrilova (1991), Weitz and Fraser (2001), Finkelstein
and Esaulova (2006).

Functional models start from the structure of the organism, while evolu-
tionary models pose prior questions: What kind of machine is the organism,
and why is it put together the way it is? Many functional models lead to the
same general pattern for mortality rates, after all, and each generic class of
models can yield diverse shapes of age-specific mortality. Optimal life-history
approaches try to narrow down the choices a priori, by explaining why a given
structural framework, or a certain choice of parameters within the structural
framework, might be evolutionarily preferred. Much work in this area (for
example, Rose 1985; Schnebel and Grossfield 1988; Hedrick 1999; Wachter
1999; Williams and Day 2003) builds on the concept of antagonistic pleiotropy,
introduced into the theory of senescence by George Williams (1957). Williams
held that early reproduction and late survival would be negatively associated
through direct genetic mechanisms. Recent research often abstracts from the
genetic term “pleiotropy”, to contemplation of more general trade-offs and
compromises that operate across time within the lifetime of an organism
and across generations (cf. Toupance et al. 1998; Hasty 2001; Campisi 2003;
Nyström 2003).

The other side of the conventional evolutionary theory of aging, called
mutation accumulation, views senescence not as an optimal trade-off between
early- and late-life reproductive success, but rather as the age-specific effect of
genetic load, a concept developed by Peter Medawar (1952). Ongoing random
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mutation spews mostly deleterious changes into the genome. Since the only
genetic “repair mechanism” is the death of the organism carrying the defect,
there is perpetually an overhang of deaths not yet realized, stretching from
the time of the initial mutation until all descendants have died from the effect
of the allele. Less nocive mutations linger. Since an individual may not live
long enough to experience the harm from a late-acting mutation, this provides
another process through which natural selection reshapes demographic sched-
ules. At equilibrium, mortality rates trend upward with age in proportion to
the weakening force of selection. The population observed at any given time
will be found to be genetically heterogeneous, because new mutations with
particular age effects are scattered independently across the individuals in a
population and the mutations act together to alter each individual’s internal
susceptibilities to causes of death.

All these approaches have something to contribute to an understanding
of the central phenomenon at issue, that risks of impairment and death
increase with age. None of the approaches excludes the others. This article
treats mutation accumulation, but in a way that incorporates, as a start, one
characteristic feature from reliability models, early-age concomitants of late-
age debilitation. In future work we hope to tackle head-on the challenge
of linking evolutionary models with mechanistic and physiological models.
Trade-offs and impacts on age-specific mortality must be embodied in complex
reliability structures. With the exception of Pletcher and Neuhauser (2000), the
mathematical development on both sides has up to now lacked the flexibility
required for a more synoptic model.

Decades of research have established, piece by piece, a mathematical
framework for characterizing genetic load and the interplay between mu-
tation, selection, and recombination. Developments through the end of the
Twentieth Century are presented in an authoritative book by Bürger (2000).
Early achievements addressed single-locus and several-locus systems with rich
genetic structure, but did not attempt to superimpose demographic dimen-
sions. During the 1990s, Brian Charlesworth (1994) succeeded in consolidat-
ing an age-specific demographic treatment based on a linear approximation.
Charlesworth (2001) showed that both of the tell-tale common features of
hazard functions across species, the exponential Gompertzian rise and the
eventual onset of plateaus, could be predicted by the linear approximate model
from simple, minimalist assumptions. His ideas have attracted wide attention.

Three obstacles have hitherto blocked the path to a broader application
of mutation-accumulation models: first, the limited versions of age-specific
genetic harm under consideration, second, the assumption that genetic loci
affecting different ranges of ages evolve independently, and, third, inattention
to heterogeneity.

The early work of W. D. Hamilton (1966) posited mutations that apply a
single bolus of mortality at one fixed age, what we call a “point-mass” model. B.
Charlesworth (2001) tried other stylized patterns: mortality increments within
specified windows, in Gaussian shapes around specified centers, or beyond
specified ages of onset. He also tried coupling these age-specific patterns with
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an increment independent of age; our coupling of late-age with early age
effects follows in this spirit precedent.

A provision that late-acting effects carry with them some early manifesta-
tions is characteristic of reliability models for senescent mortality. A typical
example is the model of Gavrilov and Gavrilova (2001), which posits an
underlying structure of independent components and identifies death with the
first component failure. Waiting time until death may have a mean or mode
late in life, but its distribution will have a left-hand tail showing up in some
early deaths. We appropriate this feature for our applications of mutation
accumulation. Building evolutionary structure directly into reliability models
remains a project for the future.

On the issue of independence, it is an essential feature of demographically-
based models that the evolution at distinct sites fails to be independent even
if sites act independently; that is, even if the mortality increment due to two
alleles co-occurring is merely the sum of their individual effects. To put it
simply, death comes to an individual only once, so that any mutation that
increases mortality makes a second mutation that also increases mortality
less costly, as measured in lost reproductive opportunity. Linearization, as
previously employed, treats multiple mutations as though they were evolving
independently and so misses the critical interaction effect in the cumulative
demographic impact.

On the issue of heterogeneity, natural selection must have variability on
which to act. Selection can only balance mutation when some members of
the population carry more deleterious mutant alleles than others. The levels
of the mean counts of mutant alleles at equilibrium are altered by the vari-
ability of counts about their means, the variability which drives the whole
mutation-selection process. The feedback from variances to means is typically
suppressed by linearization.

All three of these imperatives, flexible profiles for effects, interactions,
and heterogeneity, call for a fully nonlinear model, such as the one applied
here. The need for such a model seems to have been appreciated already in
Brian Charlesworth’s (2001) pathbreaking paper. In his Section 4 he sought to
incorporate nonlinear interactions through an iterative numerical procedure,
making survivorship at each step in time depend on the previous mean accumu-
lation of mutant alleles en route to an equilibrium. This procedure suppresses
heterogeneity and leads to different answers from our fully nonlinear model,
but in some circumstances it generates usable approximations. It highlights the
importance of nonlinear effects. Even in the “point-mass” setting, nonlinearity
can produce outcomes qualitatively different from those predicted with the
linearized approach, as shown in Steinsaltz et al. (2005) and Wachter et al.
(2008). The full model also makes it possible to prove conditions for the
existence of equilibria and Walls of Death.

In our application here, mutant alleles arise that each increase age-specific
mortality rates according to the profile of a Gamma probability density func-
tion. The model builds in the nonlinear demographic interactions among the
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accumulating mutant alleles, and takes explicit account of the heterogeneity
in genetic endowment among individuals. Investigating a range of choices of
parameter values, we show that the features of prime demographic interest,
Gompertzian stretches and late-age plateaus, can be produced within this
setting.

The Gamma profiles adopted here are reminiscent of functional forms com-
mon in reliability models, but no precise analogy is intended. Our choice was
guided by the idea that the “essential organs” of Gavrilov and Gavrilova (1991)
might be replaced by a large number of “useful organs”, of similar internal
redundancy, whose propensity to failure could be triggered or exacerbated
by the presence of one or more mutant alleles. Ultimately we hope it will be
feasible to situate reliability models explicitly within the context of mutation
accumulation. The evolutionary unified failure theory of our aspiration would
also need to incorporate elements of optimal life history, as well as accounting
for the complex hierarchy of trade-offs, from the level of single genes and
organelles up to ecosystems, and on timescales from the milliseconds of RNA
transcription to the millennia of evolutionary time.

For our present, more modest, purposes the Gamma family was chosen
because it has the desired property that late-age increments in mortality are
systematically tied to early-age increments in a fashion that varies smoothly
with the mean age of effect. This specification takes us beyond the highly
stylized setting of point-mass cases, while retaining enough familiarity for
ready interpretation.

We describe the model in the section headed “The Mutation-Selection
Model”, the formulas that go into demographic calculations in the section
headed “Formulas”, and the detailed specification of ingredients and parame-
ters in the section headed “Specifications”. We present the mortality outcomes
predicted by the theory in the section headed “Predictions”.

The Mutation-Selection Model

Medawar’s idea of mutation accumulation as a cause of senescence depends
upon the action of large numbers of mutations, each with small deleterious
effects on survival at specific ranges of age. Mutations which affect young
ages are weeded out of the population quickly by natural selection, because
members who carry them contribute fewer offspring to the next generation.
Mutations affecting older individuals, with less reproductive potential re-
maining to lose, are weeded out less rapidly. While weeding progresses, new
mutations are being introduced at random into the population. Mutant alleles
accumulate until a balance is reached between the force of mutation and the
force of selection. All things being equal, the less costly mutations—those that
produce their harm later—will be more common at equilibrium.

Our model for mutation accumulation is an infinite-population model in
continuous time with large or infinite numbers of genetic loci, in the tradition
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of a famous paper by Kimura and Maruyama (1966). The model comes
in two versions. The version applied here incorporates what we call “Free
Recombination”, in which recombination is assumed to operate on a more
rapid time scale than mutation and selection. For mathematical details we refer
the reader to Wachter et al. (2008) and to Evans et al. (2009) which shows that
this version can be regarded as a limiting case of discrete-generation models
in the limit of weak selection and mutation. A companion version in which
recombination is assumed to be negligible is developed in Steinsaltz et al.
(2005). Our two treatments of recombination bracket a potential continuum
of more complex treatments.

For each version of the model, there are analytic solutions available to
describe entire time trajectories for the population. In this paper, we are
primarily concerned with equilibrium states. Equilibrium states are distribu-
tions of genotypes which are stable in time under the joint action of mutation
and selection. In many situations, including those treated here, we can prove
that there is a unique equilibrium state, and that this state represents the
distribution to which the population converges over time.

The accumulating mutations under study here are germ-line mutations
maintained in the genome over long stretches of evolutionary time. Our
framework may also have some application to somatic mutations accumulating
within the cells of an individual individual organism during its lifecourse, but
that is not our current focus.

The model has three ingredients which must be specified for each applica-
tion. First is a set of profiles for the age-specific action of deleterious mutant
alleles. Second is a specification of the rates at which mutant alleles of different
kinds arise, the mutation part of mutation-selection balance. Third is a function
determining selective cost, the selection part of mutation-selection balance.
In this section we develop the framework, with notation and formulas in the
following section. Our choices for the ingredients, which serve as illustrations
in this section, are spelled out in detail in the section headed “Specifications”.

Our first ingredient is a set of profiles for age-specific action. Examples of
profiles are the four functions of age in Fig. 1, a figure discussed further in the
section headed “Specifications”. A profile is added onto the age-specific hazard
function for each mutant allele carried by an individual.

In general, we posit a set M of potential mutations fitted with a geometric
structure to allow us to describe the process of picking a new set of random
mutations which are passed on to the next generation. In our application, the
profiles form a one-parameter family of curves, and we can identify M with
the interval of the real line containing the permitted values of the parameter.
Picking a set of random mutations comes down to picking a random set of
points from the real line, what probability theorists call a point process, in
this case a Poisson point process. The important feature of the profiles is their
dependence on age. No attempt is being made to identify alleles with genes
on chromosomes or otherwise to model biological structures. Versatile age-
specific structure is achieved in conjunction with a degree of stylization in the
representation of the genome.



Vital Rates from the Action of Mutation Accumulation 11

Fig. 1 Gamma profiles for
increments to the hazard
function for four selected
values of the mutation index
m, namely 1.125, 2.250, 4.125,
and 6.000 (from left to right as
they rise from the axis).
Background parameters are
α = 15 and φ = 1/20, and
η = 0.100
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Our second ingredient gives rates at which mutant alleles arise, rates
expressed in general by a measure ν on M. When we take M to be a real
interval, we can identify ν with a non-negative function, the density of the
measure, and we often take ν constant over the interval for the sake of having
a neutral choice. Time is continuous in our model. It is convenient to scale the
time axis so that one unit of time corresponds to one generation in discrete
settings. The rate ν is then expressed in units of mutations per generation.

Our third ingredient is a selective cost function S. It evaluates (on a
logarithmic scale) the loss in fitness produced by any batch of mutant alleles
which an individual may carry. The alleles are dominant, back-mutation is
not allowed, and costs are evaluated under the assumption that age-specific
fertility rates fx are being rescaled to keep population size stationary and
are otherwise exogenous. The general form of the model allows fertility as
well as mortality to be shaped endogenously by the action of deleterious
mutations with a background level of any chosen form, but those options are
not pursued in this paper. In the present context, as discussed in Wachter et al.
(2008), following Charlesworth (2000), page 930, there are good reasons for
identifying the selective cost of a batch of mutations with the resulting lifetime
loss of net reproduction, and we do so here.

Formulas

We now introduce formal notation and describe how the ingredients of our
model fit together in terms of the formulas from which predictions are calcu-
lated.

We use the letter g and the word “genotype” as shorthand to refer to the
finite batch of mutant alleles carried by a member of the population. Alleles
with the same profile of action are treated as copies of the same allele even
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though they are found at different sites in the genome. An individual without
mutant alleles has the “null genotype” g = 0 with wild-type alleles at every site.

The survivorship function �x(g) for a subpopulation of members with geno-
type g is the proportion of members of the subpopulation living beyond age
x. When we take the logarithm of �x(g) and multiply by −1, we obtain the
cumulative hazard function, whose derivative, when it exists, is the hazard
function itself, also called the “force of mortality”. The cumulative hazard
function at age x is the area under the hazard function up to age x. We
work with cumulative hazard functions in order to have simpler expressions
for survivorships �x, as well as to have formulas that apply without change to
discrete-age and continuous-age cases.

We write η(m)κ(m, x) for the increment to the cumulative hazard function
at age x produced by allele m from M. The cumulative profile function
κ(m, x)—the area up to age x under a curve like the curves in Fig. 1—
represents the shape of the age profile of mortality effects, normalised to have
total effect 1: that is, with

∫ ∞
0 κ(m, x)dx = 1. The factor η(m) then adjusts the

overall size of the effect.
To write the survivorship function, we start with an exogenous baseline

cumulative hazard �(x) and add to it a term η(m)κ(m, x) for each m in the
batch g to obtain the cumulative hazard. We multiply the cumulative hazard
by −1 and apply the exponential function to obtain the survivorship.

We write capital G for the random batch of mutant alleles carried by an
individual selected at random from the population. The count of alleles in
G with values of m in any given subset of M is thus a random variable. An
example would be the count of alleles with parameters between 2 and 3. The
mean of this random variable is just the population average number of mutant
alleles in the interval (2, 3), and it equals the area within the interval (2, 3)

under a curve ρ called the intensity of G.
We now touch on some probability theory, the tool which enables us to go

beyond linear approximations and treat interactions and heterogeneity. The
intensity ρ gives information about overall genetic load, but on its own it
may not provide a complete description of the genetics of the population. The
function ρ only specifies for each region of M the population average number
of mutant alleles in that region and a priori does not enable one to compute
the proportion of the population that have more than some number of mutant
alleles in a given region of M or to determine whether a randomly chosen
individual who happens to have larger than expected numbers of mutant alleles
in one region is more or less likely to have a larger than expected number
in another region. In this model, there is a distribution of genotypes, which
are batches of mutant alleles from M; the intensity only describes the overall
frequency of each mutation, with no information about its genetic partners.

When selective costs are linear—effectively, the non-epistatic case in which
distinct loci evolve independently—the genotype distribution is a Poisson
random measure, a mathematical construct whose properties are described,
for instance, in Kallenberg (1983). Intuitively, the genotype of an individual
sampled at random from the population can be described by going through M
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point by point, and taking mutations independently at random with probabili-
ties governed by ρ. In the setting of interest to us, however, when the selective
cost is nonlinear, there will be a complex structure of interactions between
mutations.

It is surprising, then, that the simple Poisson structure returns, regardless
of the complexity of the epistasis, in our model with Free Recombination,
as shown in Evans et al. (2009). While distinct loci now do not evolve
independently, the distribution at any given time does have a the structure of a
Poisson random measure and is completely described by the intensity alone.
The population average or “expectation value” of any quantity of interest
depends only on ρ; we use the notation Eρ .

Our goal, then, is to determine the intensity ρ(m) of mutations at equilib-
rium. From it we can find the expected (aggregate) population survival curve
Eρ [�x(G)], the proportion of the whole population living beyond age x.

The selective cost S(g) for genotype g is calculated under our assumption of
zero population growth and is given by the difference in its Net Reproduction
Ratio from the Net Reproduction Ratio for the null genotype:

S(g) :=
∫

fx �x(0) dx −
∫

fx �x(g) dx. (1)

Survivorship for genotype g is given by

�x(g) = exp

⎛

⎝−�(x) −
∑

m∈g

η(m)κ(m, x)

⎞

⎠ . (2)

Section 3 in Wachter et al. (2008) shows that the general formulas in Evans
et al. (2009) along with properties of Poisson point processes imply that
aggregate survivorship is given by

Eρ [�x(G)] = �x(0) exp

(

−
∫

(1 − e−η κ(m,x)) ρ(m) dm
)

. (3)

The slope of minus the logarithm of the left-hand side is the population
hazard. The increment to the cumulative population hazard due to the accu-
mulation of copies of allele m can be written

H(m, x) = (1 − e−η κ(m,x)) ρ(m). (4)

In this way the left-hand side of Eq. 3 takes the form �x(0) exp(− ∫
H(m, x)dm).

The equilibrium intensity ρ has to satisfy

0 = ν(m) − ρ(m)

∫
(1 − e−ηκ(m,x)) fxEρ [�x(G)] dx (5)
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The Eq. 5 can be solved numerically by an iterative scheme. We start
out with ρ0 ≡ 0, corresponding to the null genotype and, supposing we have
already constructed the approximate solutions ρ0, . . . , ρn, define ρn+1 by

ρn+1(m) := ν(m)

/ [∫
(1 − e−ηκ(m,x)) fxEρn [�x(G)] dx

]

. (6)

Under appropriate conditions, it is possible to prove that this sequence does
in fact converge to a solution of Eq. 5. For our numerical calculations, we
approximate the continuous range of values of m by a grid with one thousand
points and evaluate integrals over age by a grid with steps of 0.10 years.
Calculations are implemented in the open-source R Statistical System based
on the computer system S developed at Bell Laboratories.

Specifications

We now turn to the detailed specification of the cases treated in this paper,
going into the particular choices for the three ingredients of the model and
accompanying parameters.

The first ingredient, the profiles for mutational action, have been introduced
in the section headed “Mutation Accumulation”. We set

κ(m, x) =
{

(1/
(m))
∫ x
α

φm (y − α)m−1 e−φ(y−α) dy, x ≥ α,

0, x < α.
(7)

The profile function κ(m, x) is the cumulative distribution function for a shifted
Gamma probability distribution. The Gamma shape parameter equals the
index value m and varies from allele to allele. The Gamma rate parameter
φ is the same for all alleles. The shift α for the origin is the age of maturity;
alleles affect only adult mortality. The quantity 
(m) is the ordinary gamma
function. Each effect is assigned an effect size η(m) which adjusts the strength
of the action.

In addition to their association with reliability models, Gamma distribution
functions offer advantages of familiarity and flexibility. They offer a clear
contrast to the point-mass profiles going back to W. D. Hamilton already
studied in Wachter et al. (2008). In the point-mass setting, κ(m, x) is a unit
step-function and m indexes the age at the step. In our present setting, higher
values of m still correspond to later-acting alleles, but effects are spread across
ages, with wider spread for later-acting alleles. Even late-acting alleles have
some small effect at young adult ages, a salient difference from the point-mass
case. The more the mutational effect is spread over older ages, the lower is the
selective cost, and the more copies there will be of m on average when natural
selection manages to balance recurrent mutation.



Vital Rates from the Action of Mutation Accumulation 15

The mean age of action for allele m is the mean of the shifted Gamma
distribution α + m/φ, the mode is α + (m − 1)/φ, and the standard deviation
in age of action is

√
m/φ.

Figure 1 shows the shapes of the age-specific increments to the hazard func-
tion for four typical alleles in our setting, with η ≡ 0.100, α = 15, and m equal
to 1.125, 2.250, 4.125, and 6.000. The value η = 0.100 is a typical standard value.
We discuss the impact of other values in the section headed “Predictions”.

Our second ingredient, the mutation rate ν(m), is taken to be constant over
an interval [1, ξ ] and zero outside it. In the choice of a constant mutation rate
we follow the practice of Charlesworth (2001), seeking to keep our assumption
about mutation as neutral as possible. The total rate per generation νtot of
the deleterious mutations treated in the model amounts to the length of the
interval, ξ − 1, times the ν value in the interval. We use νtot as a label. It is the
mean number of new mutations per zygote per generation. We consider cases
with ξ between 5 and 7 and νtot between 0.120 and 0.170 per generation.

The final ingredient of model specification is the selective cost of a batch
of mutations. We assume that mutations affect an individual’s fitness only
through their effect on mortality rates, and that the cumulative mortality
effects of multiple mutations are additive contributions to the hazard function.
Our selective cost function is a difference in Net Reproduction Ratios, quan-
tities which depend on fertility as well as survival. We assume a fixed fertility
schedule fx equal to 0 below an age of maturity α and above a latest age at
reproduction β and equal to a non-zero constant between these ages. The value
of the constant is tuned to produce an overall stationary population size. For
the predictions of the section headed “Predictions”, α = 15 and β = 50.

The inclusion of an upper age limit on fertility is important to the interpre-
tation of our results. The values of the age-specific profile κ(m, x) for x above
β are irrelevant to the selective cost imposed by m and therefore to the equilib-
rium frequency of m, but they make significant contributions to the predicted
post-reproductive hazard. It is the association between early-age and late-age
hazards built into our family of profiles that drives the predicted outcomes.
Biologically, we are assuming a correlation between young and old ages in
phenotypic effects. Reasons for doing so, in relation to reliability models for
aging, have been discussed in the section headed “Mutation Accumulation”.
The correlation across ages prevents the occurrence of a Wall of Death at the
end of reproduction, and shapes the old-age hazards.

The selective cost function also depends on the choice of baseline sur-
vival schedule, the schedule for the null genotype. Following the lead of
Charlesworth (2001), we assume a constant baseline hazard λ above the age
of maturity α, corresponding to a cumulative baseline hazard �(x) = λ(x − α)

above α and zero below. Since we are rescaling fertility to achieve stationarity,
pre-reproductive mortality can be ignored. The baseline hazard can be taken
to represent a minimum realizable rate, sometimes identified with the so-
called the extrinsic mortality rate despite the problems inherent in this notion
discussed by Williams and Day (2003). As with fertility, our choice of baseline
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hazard is intended to be as neutral as possible, in order to concentrate on
structure arising from the dynamics of mutation and selection.

Predictions

We now examine predicted hazard functions at mutation-selection equilibrium
when the age-specific action of mutant alleles takes the form of Gamma
profiles described in the section headed “Specifications”. We begin with a case
chosen to serve as a standard example, to which we shall compare other cases.
It is illustrated in Fig. 2.

For our standard example, we set the upper cutoff on shape parameters ξ =
6, and the total mutation rate νtot = 0.150, along with an effect size η constant
at 0.100. a baseline mortality level λ = 1/20, and a rate parameter φ = 1/20.
The maximum increment at any one age associated with our Gamma profiles
is then a little more than three per thousand per year. For the sake of analogy
with human life history, we set the age of initial reproduction (also the age of
earliest action of the mortality profiles) to be α = 15, and the age at end of
reproduction to be β = 50.

Figure 2 shows the population hazard rate calculated from Eq. 3. It rises
slowly from the background level and then accelerates, giving the impression
of a Gompertz-Makeham curve in the middle of the age range, and straight-
ening out at older ages. About one in ten-thousand individuals survive beyond
age 70.

In this illustration, the equilibrium density of mutations ρ turns out to
be closely approximated by an exponential function of the shape parameter,
namely ρ(m) ≈ 0.170 exp(1.377 m). On average, individuals in the population
carry about two mutant alleles with m < 2.0, a bit over a dozen with 3.5 < m <

4.0, and nearly three-hundred with 5.5 < m < 6.0, for an average total of 526.

Fig. 2 Predicted hazard for a
standard example with
λ = φ = 1/20, νtot = 0.150,
ξ = 6, α = 15, and β = 50
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The Poisson standard deviation of the total number of alleles across individuals
is around 23.

The effect for a given m peaks at age 15 + (m − 1)/φ. The effects for m < 2.0
are peaking before age 35, an age to which most members of the population
survive. The cost in net reproduction from an additional mutation affecting
these ages is high, and selection keeps their equilibrium representation low.
Effects for m > 5.5 only become substantial at ages at which most individuals
have already died. Selective costs are low and copies persist long enough to be
found at high numbers in the population despite the rarity of new mutations.

Figure 3 shows the logarithm of the population hazard rate for three
comparative cases. The standard example is the solid curve. The dotted curve
has νtot = 0.170 and an upper shape parameter cutoff of ξ = 5.5. The dashed
curve has νtot = 0.120 and ξ = 7. These alternatives have been chosen from
among cases for which the predicted equilibrium hazard is between 0.300 and
0.550 at the age to which one in ten thousand survive, respectively equal to
69.9, 71.9, and 66.7 years.

The higher hazards at old ages in the dotted curve are due to the presence
of later-acting alleles with m ranging up to 7. These alleles have effects whose
age-specific profiles increase throughout the range of ages to which population
members survive. The mode for m = 7 is not reached until 135 years. Although
the mutation rate is lower for the dotted curve, the shapes of the age-specific
effects lead to higher hazards toward the end of life.

We see that mutation accumulation with the given profiles and parameters
produces a long middle stretch of nearly loglinear hazards, corresponding to a
Gompertz form. At young ages the curves are convex on the logarithmic scale,
bending upward, as effects of mutant alleles come into play. At older ages, the
curves turn concave. Accumulation of mutational effects concentrated at late
ages is held in check by their small accompanying effects at young ages in this
specification.

Fig. 3 Logarithm of
predicted hazard for three
cases showing early upward
bend, straight middle
Gompertzian stretch, and late
downward bend. The cases all
have λ = φ = 1/20 and
η ≡ 0.100. The solid curve has
νtot = 0.150, and ξ = 6.0; the
dashed curve has νtot = 0.170,
and ξ = 5.5; the dotted curve
has νtot = 0.120, and ξ = 7.0
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Fig. 4 Probability of survival
by age for the standard
example as predicted by the
full nonlinear model (circles),
by a linear approximate
model (dots), and by the
baseline model
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The interactions among effects at different ages taken into account by
the nonlinear model turn out to have a substantial impact on predictions, as
expected from results in Wachter et al. (2008). We compare predictions from
the full nonlinear model to predictions from a linear approximate model of the
kind on which earlier studies have relied. Figure 4 shows the population sur-
vivorship function for our standard example in a thick line, along with baseline
survivorship in a dashed line, and survivorship from the linear approximate
model between them in a dotted line. Only about a third of the reduction in
life expectancy from 35.0 years to 28.8 years due to mutation accumulation is
captured by the linear approximate model.

The sizes of effects, in contrast to their shapes, turn out to have only
modest influence on the predictions. Alleles with smaller effects accumulate
at equilibrium in greater numbers. Changes in the intensity ρ roughly balance
changes in effect size η. Figure 5 shows the predicted hazard functions with
parameters taken from our standard example but with different choices of η.

Fig. 5 The influence of effect
size is shown with predicted
hazard functions from seven
cases described in the text,
some with indistinguishable
outcomes, sharing all
parameter values except
effect size with the example of
Fig. 1
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Three uppermost curves, almost indistinguishable, have constant η =
0.0001, η = 0.001, and η = 0.010. The mean total number of mutant alleles
runs to a bit over five hundred thousand in the first case, fifty-thousand in
the second, and five thousand in the third. Three slightly lower curves, also
hardly distinguishable, include our example with η constant at 0.100 and two
examples with changing η, one rising linearly with the shape parameter from
0.020 to 0.200 and one falling linearly from 0.200 to 0.020. Mean counts of
alleles are 527, 309 and 1493 respectively. Small effect sizes accompany larger
mean numbers when they occur for alleles with late action. The lowermost
curve has η = 1.000 and a mean of only 51 alleles. Only as η becomes this large,
outside the range of intended application of the model, do we see substantially
different predicted hazard functions.

The approximate invariance of predicted hazard functions with effect sizes
is an expression of Haldane’s Principle, enunciated by Haldane (1937) and
discussed in terms of our nonlinear models in Wachter et al. (2008). In Eq. 4,
the contribution H(m, x) from allele m is nearly linear in η(m)ρ(m) for small
η, so scaling η(m) up can be nearly compensated, allele by allele, by scaling
ρ(m).

One of the most familiar general predictions of the evolutionary theory
of senescence is a positive relationship between the extrinsic mortality rate
associated with unavoidable risks in natural settings such as predation and
accidents that are present even the young and healthy, and the “rate of
senescence” measured by the slope of the logarithm of the hazard rate with
respect to age. Our predictions hint at such a relationship, but only for
substantial values of the baseline hazard λ. Figure 6 shows the logarithms of
the predicted equilibrium hazard for our standard set of parameters as the
level of the constant baseline hazard is raised from 0.020 to 0.050 and on to
0.080.

Slopes computed over the middle range of ages from 30 to 50 to which a
Gompertz fit is roughly appropriate hover around 0.050 for the first two cases
but rise to 0.074 as λ increases to 0.080. In cases not shown here in which non-

Fig. 6 The influence of the
level of extrinsic hazards on
the pace of senescent
mortality is shown by
predicted log hazards from
three cases sharing
parameters with the standard
example of Fig. 1 except for λ,
which ranges, from bottom to
top, over values 0.020, 0.050,
and 0.080
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zero fertility extends to higher ages, there is a closer match between values of
the slope and values of the parameter λ itself, paralleling a relationship found
with linear approximate models in Charlesworth (2001).

The stretch of ages with exponentially increasing hazards, corresponding
to linear increase in log hazards, visible in Figs. 2 and 3 does not extend out
to extreme ages. Attenuation of increase is already visible in the upper ages
toward right of those figures. We focus on this attenuation in Fig. 7, which
shows the predicted hazard rate for the same standard example of Fig. 2 but
with a horizontal axis extending all the way out to an age of 120 years. The
vertical scale also differs from Fig. 2. Around 100 years, the hazard levels
off, establishing a brief plateau phase, and by 120 years a declining hazard
is apparent. Only one in ten billion survive to 100 years with our standard
parameter choices, but the plateau and subsequent decline are to be expected
with parameters leading to milder mortality regimes as well.

The plateau at extreme ages is due to the property of the profiles for the
age-specific action of mutant alleles to which we have already called attention,
namely that even alleles whose action is spread over old ages all have some
small effects at young ages. These small effects rein in the accumulation of
late-acting mutant alleles. They prevent any Wall of Death; that is, any finite
age at which the hazard rate goes to infinity and survivorship reaches zero.
Walls of Death occur in many elementary cases for profiles with Hamilton-
style, point-mass profiles, as shown in Wachter et al. (2008). The proposal
for generating plateaus by assuming some small effects at young ages for all
mutant alleles was put forward by Charlesworth (2001) and shown to be valid
for the linear approximate model. We now see that these outcomes also hold
in the full nonlinear model with the particular profiles we are studying.

In summary, we have found that the process of mutation accumulation can
readily produce predicted population hazard functions with the chief features
highlighted by the cross-species comparisons of biodemographers. It can pro-
duce a stretch of ages with an exponential, Gompertzian rise in hazards and
it can produce a late-age hazard plateau. These outcomes arise from a set of

Fig. 7 A plateau in the
predicted hazard function at
extreme ages in the standard
example of Fig. 2 with a
longer range of ages
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assumptions about the age-specific action of mutant alleles that are suggested
by examples from reliability theory and from the functional approach to the
study of senescence. It remains, however, to develop comprehensive models
in which the generic mutation accumulation machinery is driven by plausible
genetic and physiological mechanisms, and in which age-specific tradeoffs are
derived compellingly from reliability theory. It also remains to be determined
whether the examples studied here are typical, or whether they represent
peculiar outcomes of our specific choices of parameter values. More generally,
the field is open for attempts to characterize the conditions under which the
force of natural selection in the presence of recurring deleterious mutation
will mold hazard functions into familiar forms.
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