
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Binary Conic Quadratic Knapsacks

Permalink
https://escholarship.org/uc/item/8zj7p436

Author
Bhardwaj, Avinash

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8zj7p436
https://escholarship.org
http://www.cdlib.org/

Binary Conic Quadratic Knapsacks

by

Avinash Bhardwaj

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Industrial Engineering and Operations Research

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alper Atamtürk, Chair
Professor Ilan Adler

Professor Bernd Sturmfels
Professor Philip Kaminsky

Fall 2015

Binary Conic Quadratic Knapsacks

Copyright 2015

by

Avinash Bhardwaj

1

Abstract

Binary Conic Quadratic Knapsacks

by

Avinash Bhardwaj

Doctor of Philosophy in Engineering – Industrial Engineering and Operations Research

University of California, Berkeley

Professor Alper Atamtürk, Chair

Binary Conic Quadratic Knapsack set is the lower level set of the conic quadratic set func-
tions. They are natural generalizations of linear knapsack sets, and have several applications
in several areas, such as, combinatorial optimization, finance, and optimal control. In par-
ticular, conic quadratic knapsacks can be used to model the 0− 1 linear knapsack sets with
uncertain coefficients. In addition to being of theoretical interest, these problems are prac-
tically relevant as they can be used to mathematically formulate probabilistic and robust
equivalents of the deterministic combinatorial and decision problems.

Although the non-linear binary sets, specifically the quadratic knapsack sets have been
studied in the literature, the specific combinatorial structure associated with these sets re-
mains to be explored. Non-linear binary sets involving bilinear terms are at present solved
using a combination of lift and project relaxations and a branch-and-bound scheme that
solves continuous non-linear relaxations at the nodes of a branch-and-bound search tree.
The branch-and-cut methods developed for general integer conic quadratic sets make use
of the problem’s geometrical structure for removing fractional solutions of conic relaxations
can be employed to solve the particular case of 0 − 1 conic quadratic knapsacks, however
these approaches do not utilize the additional combinatorial structure specific to these sets.
Motivated by the performance improvement observed by exploring geometrical structure for
conic mixed integer programs, and the fact that exploring combinatorial structure has proven
extremely useful in addressing the linear 0− 1 knapsack sets, we expect this to work well in
the case of conic quadratic knapsacks as well.

In this dissertation, we study pure-binary programs with conic quadratic constraints and
develop branch-and-cut algorithms to solve them with applications to robust network design
problem. First, we study the combinatorial structure embedded into these problems with

2

assumptions of monotonicity and develop valid inequalities for these problems. In Chapter 2,
we consider a more general version of the problem without any monotonicity assumptions on
the conic constraint, and derive valid inequalities linear in the space of the original variables.
These cuts generalize a well-known class of linear cuts for binary knapsacks, and turn out
to be very effective in reducing the computational effort involved in solving some practical
problems.

In Chapter 3, we propose a further generalization of the problem without any structural
assumptions of the constraint in context and study the binary quadratically constrained
set. We show that our results generalize several known results for the 0 − 1 non-linear
constrained sets. We take a detour from combinatorial discussion and develop a geometrical
understanding for 0−1 quadratic problems in Chapter 4. We develop convexifications for the
non-convex quadratic sets defined over a hypercube and provide strengthening procedures
for the same.

Finally, in Chapter 5, we study the problem of robust network design with uncertainties
on the arc capacities. We formulate the robust network design problem as a 0 − 1 conic
quadratic program without particular assumptions on the characteristics of uncertainties.
We consider the scenarios when the uncertainties on the arc capacities are independent and
correlated. We show that the inequalities derived prove to be useful in our computational
experiments.

i

Acknowledgments

“ It is good to have an end to journey toward; but it is the journey that
matters, in the end. ”

Indeed, we can only connect the dots looking backwards. It has been quite a while, though it
seems like just yesterday that I embarked on this journey which has resulted in and essentially
culminates with this dissertation. A journey that has both been academically challenging
and personally gratifying. Ever since my arrival at Berkeley, I have been bestowed with love
and wisdom of people who I had the biggest fortune of sharing my journey with. People who
witnessed every step of it, celebrating with me the joys of reaching milestones, inspiring me
through the struggles and believing in me during the moments of self-doubt. This dissertation
would not have been remotely possible without their persistent guidance and unconditional
support. Even though I am soundly aware that I cannot express my heartfelt gratitude
enough, however hard I try; I take this opportunity, nevertheless, to convey my sincerest
appreciation for everyone who has made this journey possible for me.

There are only few who are aware of the fact that I almost did not come to Berkeley.
In retrospect, it seems almost serendipitous, and it wouldn’t have been possible without the
efforts of my academic advisor Professor Alper Atamtürk. Alper has been an unabating
source of inspiration for me. Throughout my journey as a doctoral student he has found and
instilled confidence in me, and mentored me at every step both personally and professionally.
His attitude towards research and passion for mathematical rigour is extremely infectious
and I have always come out feeling highly invigorated from our countless meetings over all
these years. Along with his academic mentorship, I will always be grateful for his solicitude
towards my non-academic pursuits. I find myself extremely fortunate and will forever cherish
this enriching relationship that I had the fortune of sharing with him.

I have been very fortuitous to have had the opportunity of learning under the tutelage
of great scholars. During the first two years of my coursework I took several classes with
Professor Ilan Adler. It was his enthusiasm and excitement for the subject matter that
rooted my interest in Optimization and propelled me to pursue my doctoral dissertation in
this field. My first interaction with Professor Bernd Sturmfels was during Fall of 2010 which
was an extremely stimulating experience and helped me appreciate and develop an algebraic
geometry perspective for Mathematical Optimization problems. I will always remember my
interactions with Professor Phil Kaminsky. Talking to Phil has always been an uplifting
experience. Even with his busy schedule and responsibilities as Chair of the department,
Phil has always been available, supportive and ever so helpful. I feel overwhelmed to have
all of them as members of my dissertation committee. Most of this dissertation can very
justly be attributed to their invaluable suggestions and thought-provoking questions.

ii

While the faculty was instrumental in helping me develop an academic penchant, having
multifaceted cohorts with interests ranging from creating origamis to discussing chess strate-
gies made the “ungodly hour” discussions at office fun beyond measure. I could not have
asked for better fellow group members than Chen, Birce, Qi, Carlos and Andrés. Chen has
always been excited about any and every discussion I have had with him, regardless of the
topic of discussion. With a passion for research and a drive for mathematical elegance, I have
always found him ready for our white-board rundowns. I am also grateful for all the mentors
I have had throughout this journey. In particular, I would like to convey my ernest gratitude
to Nitish Bahadur, Nguyen Truong, Caitlin Marshall, Vishnu Narayanan and Deepak Rajan
for their prudent guidance which has been pivotal during several indecisive junctions.

I consider myself blessed to have been surrounded by friends who have gradually become
a second family to me thousands of miles away from home. Friends, who cheered me during
my successes, laughed with me when I was happy, embraced me when sad, patiently lent
me their ears when I was disconcerted, and their time, irrespective of the hour, when I was
struggling. They came together to form a support system that not only would always break
the fall when I fell, but also reinvigorated me to go beyond what I thought were my limits.
There have been several who I have had the greatest fortune of meeting, acquaintances
who left a consequential influence on me during the short sparks of times we spent together.
However, there are only a handful who have known me since my very first days in Berkeley. I
met Debanjan moments after I arrived in Berkeley, little did I know about what was to follow.
I have known Debanjan as a roommate, an academic, a musician but most importantly as a
friend who would go out of his way to make sure things are good with me. Having Sharanya as
a friend has influenced me in ways more than I can imagine. She has been the quintessential
and generous host whenever I reached out to her. She has lent me ears when I needed to
vent and she has most graciously obliged whenever I was missing home food. Together with
Debanjan, she makes for the two friends whom I have spent the most time with in Berkeley.
In Aditya, I found a very special friend with whom I have shared many a laughs and just
as well my anxieties and worries. I have known Aditya for eleven years since college, and
during all these years he’s been the sagacious voice that calms me during the moments of
apprehension. I can’t forget the hours Anuj and I have spent drinking adrak wali chai while
discussing matters of earthly importance. Anuj and I have many common academic and
non-academic interests, though with a passion for Hindi language we both share a special
inclination towards poetry and have spent innumerable hours with our own version of poetry
slam. He is someone I have always considered to be my partner in crime in whatever I do.
With Shachi, I share some of my most happy and indelible memories. Not only we share a
fortunate coincidence that we started graduate school together and we finished our doctoral
dissertations together, but she has always been ever so excited and actively partaken in my
long-distance running endeavors, whether it was my first half-marathon or the ultra distance
races. She was my first pacer and I can’t imagine being the runner and in turn the person
I am had it not been for her relentless support during the early days. She has seen the best
and the worst of me, and continues to motivate me while I keep trying to push my limits.

iii

There are times when I reminisce about the person I was when I came to Berkeley. The
stark contrast between the past and present leaves me perplexed and fascinated at the same
time. Most of how much I have grown personally can be attributed to a very special friend I
found in Shweta and with whom I got the chance to discover, re-discover and further explore
lot of my creative interests. Words are insufficient to express how fortunate I am to have
had her as a friend thus far, and her relentless efforts in looking out for me and ensuring
my well-being. She simultaneously takes on the part of one of my biggest critics, and one
of my strongest supports - and leaves me amazed every time, wondering how she manages
to do that. It is with her that I have learnt to adorn successes and failures just the same.
As this dissertation comes to an end and nostalgia fills me up, I can’t help but reflect on
all the adventures we have undertaken together over the years. We have laughed together
over anything and everything, be it our most savored obsessions or most dreaded phobias.
Although it was serendipitous, it is however unfathomable for me to envisage this journey
without her endearing friendship and unrelenting support.

Words fail me every time I try to express my love and thanks for my parents. Pursuing
doctoral studies involves remarkable levels of support and patience from one’s family. I
am forever indebted to my father, mother, and my brother for being there for me and for
supporting me from the other end of the the planet. They always had kind words and loving
embraces for me. My father and mother have always valued education as the highest priority
in an individuals life. They fought against all hardships and made immense sacrifices to make
me what I am today. My mother has been my rock all through my life. As a housewife,
and more importantly as an air force wife, she has faced a lot of adversities herself but
has always shielded me from anything and everything. My father is my idol, he has never
let anything hinder my academic and creative pursuits and continued to provide us with
top-class resources even with a modest family income. I am thankful that I had such a
background to inspire me during the course of my doctoral studies. The true extent of their
heroic feat I perhaps will be able to fathom one day. Till then, I will continue to be amazed
and astonished at the tremendous support and unconditional love they have showered me
with. Trying to grow up would not have been half as much fun had it not been for my little
brother being around me and being my partner in crime. He has a determined self-belief,
and an infectious energy that has often taught me a thing or two. I am thankful to him
for having made such invaluable contributions in constructing a support system for me as I
began my doctoral studies thousands of miles away from home. I thank them from the very
bottom of my heart, and hope to continue to make them proud in the times to come. This
dissertation is dedicated to them.

Last but certainly not the least, I am thankful that I had the opportunity to have lived
this experience in the city that is Berkeley. There has not been a single day that I have
spent here without being overwhelmed by the ecosystem it fosters and humbled by the
boundless ocean or the monumental hills that lie on its extremities. Exuberating knowledge
and spawning curiosity, there is something about this city that makes one disregard the

iv

norms and reach for the stars. Whether it is the confidence it has instilled in me to question
everything, or the courage to fearlessly take on the biggest challenges, or the weather it has
spoilt me with, Berkeley has continued to amaze me, inspire me, challenge me, and pamper
me through these years, so much so that it has become my second home.

“ Too many fragments of the spirit have I scattered in these streets, ..and I
cannot withdraw from them without a burden and an ache. ”

Kahlil Gibran, The Prophet, 1923

v

To Ma and Pa

vi

Contents

Contents vi

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Notation . 3
1.2 An Overview of Mixed-Integer Programming 3
1.3 Lifting for Linear Mixed-Integer Programming 6
1.4 Submodular Functions and Related Polyhedra 7
1.5 Applications of Binary Conic Quadratic Programs 8
1.6 Solution Approaches for Binary Conic Quadratic Programs 9
1.7 Final Remarks . 11

2 Supermodular Covering Knapsack Polytope 12
2.1 Introduction . 12

2.1.1 Relevant Literature . 13
2.2 Polyhedral Analysis . 14

2.2.1 Pack Inequalities . 15
2.2.2 Extended Pack Inequalities . 17
2.2.3 Lifted Pack Inequalities . 20

2.3 Separation of Pack Inequalities . 24
2.4 Computational Experiments . 25

3 General Submodular Knapsacks 29
3.1 Introduction . 29
3.2 Linear 0-1 Knapsack Set . 30

3.2.1 Cover Inequalities . 31
3.2.2 Pack Inequalities . 34
3.2.3 Generalizing the Linear 0-1 Knapsack 38

3.3 General Submodular Knapsack Polytope . 45

vii

3.3.1 Submodular Functions and Extended Polymatroids 45
3.3.2 Polyhedral Analysis of Kf . 47
3.3.3 Valid Inequalities for Kf . 48
3.3.4 Submodular Cover Inequalities . 48
3.3.5 Submodular Pack Inequalities . 51
3.3.6 Lifted Submodular Cover Inequalities 53
3.3.7 Strengthening the Valid Inequalities via Extensions 53
3.3.8 Sequence Independent Bounds on Lifting Coefficients 54

3.4 Lifting via Extended Polymatroids . 55
3.5 Separating Submodular Cover Inequalities 60
3.6 Computational Analysis . 62

3.6.1 Submodular Quadratic Set Functions 63
3.6.2 General Quadratic Set Functions . 65

4 Convex Envelopes of Binary Quadratic Sets 67
4.1 Introduction . 67
4.2 The Sums of Squares (SOS) Reformulation 67
4.3 Strengthening the SOS Relaxation . 70
4.4 A Convexification Approach via Eigendecomposition 75
4.5 Strengthening SOS Relaxation via Linearization 76

5 Network Design with Uncertain Arc Capacities 78
5.1 Introduction . 78

5.1.1 Network Design with Uncertain Capacities 79
5.2 Problem Formulation . 80
5.3 Linearization of the Constraints . 81

5.3.1 McCormick Linearizations . 81
5.3.2 Supporting Hyperplane Relaxation 81

5.4 Strengthening the Formulation . 82
5.4.1 Independent Arc Capacities . 83
5.4.2 Correlated Arc Capacities . 83

5.5 Separation Problem . 84
5.5.1 Independent Arc Capacities . 85
5.5.2 Correlated Arc Capacities . 87

5.6 Computations . 88
5.6.1 Independent Arc Capacities . 90
5.6.2 Correlated Arc Capacities . 92

6 Conclusion 94

Bibliography 97

viii

List of Figures

3.1 Lifting function Λ(a) and subadditive upper bound ψ(a), a ≥ 0 37
3.2 Convex hull conv(K) . 51

4.1 Non-convex set F and the convex relaxation F̃ 70
4.2 Non-convex set F and the convex relaxation F 73
4.3 Non-convex set F and the convex relaxations F̃ and F , face y = 1 74
4.4 Strengthening the SOS reformulation via linearization 77

ix

List of Tables

2.1 Effect of cuts with barrier algorithm. 26
2.2 Effect of cuts with outer linear approximation. 27

3.1 Submodular QCP : Cplex barrier and cplex outer approximation 64
3.2 Submodular QCP : Extended polymatroids vs aggregated polymatroid covers . . 64
3.3 General 0− 1 QCP : Cplex barrier and cplex outer approximation 65
3.4 General 0− 1 QCP : Extended polymatroids vs aggregated polymatroid covers . 66

5.1 Separation problem : MIQP vs supermodular linearizations 86
5.2 Separation problem : McCormick vs MIQCP (times in seconds.) 89
5.3 Comparison between effectiveness of adding supporting hyperplanes vs extended

pack inequalities . 91
5.4 Comparison of computational effectiveness: Cplex vs. extended polymatroid in-

equalities with aggregated covers . 93

1

Chapter 1

Introduction

The aim of this dissertation is to develop new methodologies and algorithms to solve binary
conic quadratic programs (BCQPs), which are 0−1 optimization problems with second order
cone constraints. This dissertation consists of four parts. The first part focuses on defining
valid inequalities for second-order conic binary programs under structural assumptions of
monotonicity. In subsequent chapters, we relax these assumptions in order to develop a gen-
eralization of the aforementioned inequalities for second order cone programs and quadrat-
ically constrained programs with pure binary variables. Finally, we present an application
of the developed solution methodologies in form of a robust network design problem with
uncertain arc capacities.

In the last three decades, there have been major advances in our capability of solving
linear mixed-integer programming problems. Strong cutting planes obtained through polyhe-
dral analysis of problem structure contributed to this success by strengthening the continuous
relaxations of the mixed-integer programs. Powerful cutting planes based on simple substruc-
tures of problems are standard features of state-of-the-art optimization software packages,
and help a long way in the computational efficiency in solving these problems.

While the 80’s and 90’s saw the advent in studies of polyhedral structure of linear inte-
ger programming, the last decade witnessed conic integer programming receiving particular
attention from the mathematical programming community, not only because they are hard
to solve and have extremely rich structural properties, but also because of the numerous
applications that can be modeled as conic mixed integer programs. Some of these appli-
cations are in robust optimization, finance, control theory, and combinatorial optimization.
Specifically, the PSD cone (cone of the positive semidefinite matrices) and the second order
cone (Lorentz cone) have been the center of attention with respect to the mixed integer conic
programming. Most of the research in the theory of cutting plane algorithms and studying
polyhedral structure for mixed integer conic programming has been focused on generalizing
the ideas from mixed integer linear programming.

A structured variant of these problems arises when the feasible set of the problem is

CHAPTER 1. INTRODUCTION 2

restricted to be a subset of the hypercube. In addition to being of theoretical interest,
these problems are practically relevant as they can be used to mathematically formulate
probabilistic and robust equivalents of the deterministic combinatorial and decision problems.
Uncertainties in data are naturally prevalent in all practical optimization problems, and thus
the importance of making decisions under uncertainty cannot be discounted. It is thus of
interest to study the probabilistic counterparts of deterministic combinatorial polytopes,
in particular exploring the polyhedral structure of binary conic optimization problems and
studying their generalizations in form of mixed binary conic optimization problems.

However, the study of solution procedures for BCQPs has not received particular atten-
tion. At present, BCQPs are solved using the generic cutting planes developed for mixed
integer conic quadratic programs in the branch-and-bound tree, without exploring the un-
derlying combinatorial structure prevailing in such problem. In this dissertation we attempt
to address this issue. We develop specific cutting planes that can be incorporated into
branch-and-bound solvers for binary conic quadratic problems.

In Chapter 2, we develop valid inequalities for solving BCQPs under structural assump-
tions which ensure monotonicity of the underlying set functions. While the discussion is
motivated by understanding the polyhedral structure of BCQPs, the derived inequalities
are valid for a much bigger class of problems with similar combinatorial structure namely
supermodular covering constraints.

We then relax the monotonicity assumptions for the underlying set functions and study
the problem of understanding the polyhedral structure of the general submodular knapsack
polytope. In Chapter 3, we show, without any monotonicity assumptions on the underlying
set function, that the valid inequalities for this polytope are closely related to the linear 0−1
knapsack set. In addition, our results directly reduce to the corresponding results for special
cases such as linear 0− 1 programs and monotone submodular set functions.

In Chapter 4 we focus our attention to a superclass of BCQPs, i.e. quadratically con-
strained problems with 0− 1 variables. We provide a geometric understanding of these sets
and develop convexifications for the non-convex quadratic sets defined over a hypercube.
We also provide a contrast between the geometrical and combinatorial approaches to solve
quadratically constrained problems. In Chapter 5 we study an application of the binary conic
quadratic programs in form of robust network design problem with uncertain arc capacities.
We formulate the robust network design problem as a 0−1 conic quadratic program without
particular assumptions on the characteristics of uncertainties. A row generation approach is
proposed with robust minimum cut problem as a separation problem. In the particular case
when arc capacities are independent, we exploit the supermodularity of the set functions
of the underlying constraints. A reformulation is proposed to recover the supermodularity
in case of correlations. Our preliminary computational results indicate that exploring this
combinatorial structure of problem provides significant advantages over straightforward use
of commercial solvers.

CHAPTER 1. INTRODUCTION 3

1.1 Notation

We assume that all data is rational throughout this dissertation.

For a finite set N , we use 2N to denote the set of all subsets of N .

The integers, real numbers, and rational numbers are denoted by Z, R, and Q, respectively.
We use R+ to denote the set of all non-negative real numbers (and similarly for other sets).
Given a set N , we use RN to denote the set (Euclidean inner-product space) of real vectors
whose components are indexed by the elements of N . Given n ∈ Z+, we use Rn to denote
R{1,...,n}. For x ∈ RN , we define x(S) :=

∑
j∈S xj, for S ⊆ N . We use similar notation for

QN , ZN , etc.

For α ∈ R, we define bαc := max {x ∈ Z : x ≤ α} and dαe := min {x ∈ Z : x ≥ α}.
Also, we use (α)+ to denote max {α, 0} (the parentheses will be omitted when there is no
ambiguity), α− := (−α)+ and |α| := max {α,−α}.

For notational simplicity, we denote a singleton set {i} with its unique element i. For a
vector v ∈ RN , we use v(S) to denote

∑
i∈S vi for S ⊆ N . For an ordered set {s1, s2, . . . , sn},

the subset {si, si+1, . . . , sj} = ∅, ∀i > j.

Given a matrix A, we use A> to denote its transpose.

1.2 An Overview of Mixed-Integer Programming

A mixed-integer program (MIP) is an optimization problem of the form

min
{
c>x+ h>y : (x, y) ∈ S, (x, y) ∈ Zn × Rp

}
, (1.1)

where S ⊆ Rn+p is some constraint set, and c ∈ Rn, h ∈ Rp. Let T ⊆ S denote the feasible
region of (1.1). We may assume that the objective function is linear without any loss of
generality: If the objective is f(x, y), we can add an auxiliary variable z and minimize z
subject to the original constraints along with f(x, y) ≤ z. If p = 0, we call the MIP a pure
integer program (IP). It is known that unless S is bounded, (1.1) is undecidable [50] for an
arbitrary S.

Definition 1.1. Given a ∈ Rn and b ∈ R, the set H :=
{
x ∈ Rn : a>x = b

}
is called an

affine hyperplane.

Definition 1.2. Given a hyperplane H =
{
x ∈ Rn : a>x = b

}
⊆ Rn, the set Rn \H is

the union of two open convex sets called open halfspaces: H− :=
{
x ∈ Rn : a>x < b

}
, and

H+ :=
{
x ∈ Rn : a>x > b

}
. The closed sets H+ := H+ ∪H and H− := H− ∪H are called

closed halfspaces.

Definition 1.3. A polyhedron P ⊆ Rn is an intersection of a finite number of (closed)
halfspaces.

CHAPTER 1. INTRODUCTION 4

If the set S in (1.1) is polyhedral, we call the MIP a linear mixed-integer program (LMIP).
See [81], [71], and [97] for a comprehensive study on linear mixed-integer programming.

The feasible region of a mixed-integer program need not be convex. However, we can use
a convex set containing the feasible region instead.

Definition 1.4. Given a set W ⊆ Rk (for a given k ∈ Z+), the convex hull of W is defined
as the set of all finite convex combinations of points in W . It is denoted by conv(W).

It is well-known that the convex hull of a set W is the smallest convex set containing W ,
and is equal to the intersection of all convex sets containing W .

Theorem 1.1. (Theorem I.4.6.3, [71]) If T 6= ∅, it follows that

min
{
c>x+ h>y : (x, y) ∈ T

}
= min

{
c>x+ h>y : (x, y) ∈ conv(T)

}
.

Definition 1.5. The inequality f(x, y) ≤ γ is called a valid inequality for T if f(x, y) ≤ γ
for all (x, y) ∈ T .

The following definitions are concerned with linear mixed-integer programs, i.e., when S
is a polyhedron.

Definition 1.6. Any valid inequality π>x+ µ>y ≤ π0 for T defines a face

F :=
{

(x, y) ∈ conv(T) : π>x+ µ>y = π0

}
of conv(T).

Note that the face of a polyhedron is a polyhedron.

Definition 1.7. A set of points (x1, y1), . . . , (xk, yk) is affinely independent if λ = 0 is the
unique solution to the set of equations

∑k
i=1 λi(x

i, yi) = 0,
∑k

i=1 λi = 0.

Definition 1.8. The dimension of a polyhedron P ⊆ Rn is k (denoted dim(P) = k) if the
maximum number of affinely independent points in P is k + 1.

Definition 1.9. A face F of a polyhedron P is called a facet of P if dim(F) = dim(P)− 1.
Any valid inequality defining F is called a facet-defining inequality.

In the polyhedral case, the strength of an inequality is measured by the dimension of the
face it defines. An inequality that defines a face of higher dimension is considered to be a
stronger inequality. Thus, the strongest valid inequalities for polyhedra are the facet-defining
inequalities.

CHAPTER 1. INTRODUCTION 5

We now present the Branch-and-Bound algorithm [58] to solve the MIP (1.1). There are
several other approaches to solve MIPs, such as Lagrangian Relaxation, Benders’ Decom-
position, and Column Generation. We direct the reader to Nemhauser and Wolsey [71] for
details of these other methods.

1. (Initialization) Let L = {MIP}, Q0 = Q,
¯
z0 =∞, and zMIP =∞.

2. (Termination test) If L = ∅, then the solution (x0, y0) with objective zMIP = c>x0 +
h>y0 is optimal. Stop.

3. (Problem selection and relaxation) Select and delete a problem MIPi from L. Solve its
relaxation RPi to obtain an optimal solution (xiR, y

i
R) (if it exists) with objective value

ziR.

4. (Pruning)

a) If ziR ≥ zMIP , go to Step 2.

b) If (xiR, y
i
R) is infeasible, go to Step 5.

c) If (xiR, y
i
R) is feasible with ziR < zMIP , Let zMIP = ziR. Delete from L all problems

i with
¯
zi ≤ zMIP .

5. (Division) Let Qi be the feasible region of MIPi and let {Qij : j = 1, . . . , k} be a
division of Qi. Add problem MIPij to L where

¯
zij = ziR for all j = 1, . . . , k. Go to

Step 2.

In practice, the Branch-and-Bound algorithm alone is never used. Instead, a modified form
called the Branch-and-Cut algorithm is used. In this algorithm, whenever the continuous
relaxation is solved, the algorithm checks whether there exists a valid inequality that is
violated by the optimal solution (xiR, y

i
R) to the relaxation RPi. In case such an inequality

f(x, y) ≤ γ is found, it is added as an additional constraints to RPi, and the problem is
re-solved, and the algorithm goes back to step 3. If no such inequality is found, the algorithm
continues with step 5.

In general, the number of nodes explored by the Branch-and-Bound algorithm is exponen-
tial in the input size of the problem. By the addition of valid inequalities as cuts, the lower
bound can be improved, and so the number of nodes can be reduced at the cost of the effort
taken to compute such cuts. If the extreme point solution to RP i is fractional, there always
exists such a cut (follows from Theorem 1.1 and the Separation Theorem for convex sets).
However, in practice, finding such cuts is computationally hard, and the Branch-and-Cut
algorithm usually checks whether the relaxation solution violates a certain class of prede-
termined valid inequalities. Typically, Branch-and-Cut outperforms the Branch-and-Bound
algorithm both in terms of computational time and the number of nodes explored.

CHAPTER 1. INTRODUCTION 6

1.3 Lifting for Linear Mixed-Integer Programming

Lifting refers to the process of extending inequalities that are valid for a restriction SR of
a mixed integer set S to S. Here, we limit our attention to lower dimensional restrictions
obtained by fixing variables (usually to their bounds). For a detailed exposure to lifting, we
direct the reader to references such as [6, 7, 44, 74, 62, 77, 78, 96, 98].

Consider the feasible region

F := {x ∈ Rm : Ax ≤ b,
∑
j∈Si

gjxj ≤ vi, i = 1, . . . , t xj ∈ {0, 1} for j ∈ I}.

Here, {Si}>i=1 is a partition of the set {1, . . . ,m}. Let us fix xj = dj for j 6∈ S1. Let Fk = {x ∈
RS1 :

∑k
m=1

∑
j∈Sm

Ajxj ≤ bk,
∑

j∈Si
gjxj ≤ vi, i = 1, . . . , k xj ∈ {0, 1}, j ∈ I ∩ ∪km=1Sm}.

Here bk = b−
∑>

j=k+1 Ajdj. Suppose we have a valid inequality
∑

j∈S1
αjxj ≤ β for conv(F1),

and we wish to find a valid inequality of the form∑
j∈S1

αjxj +
∑

2≤k≤t

∑
j∈Sk

αj(xj − dj) ≤ β (1.2)

for conv(F). The problem of finding such an inequality is known as the lifting problem [41].
We introduce all variables in Sk at a time simultaneously into the inequality and sequentially
lift in the order S2, . . . , St. At stage k, when we have lifted S2, . . . , Sk−1, the lifting function
is defined as

fk(z) := min β −
∑
j∈S1

αjxj −
∑

2≤m<k

∑
j∈Sm

αj(xj − dj)

s.t.
∑
j∈S1

αjxj +
∑

2≤m<k

αj(xj − dj) ≤ b1 − z∑
j∈Sm

gjxj ≤ vm, m = 1, . . . , k − 1

xj ∈ {0, 1}, j ∈ I ∩ (S1 ∪ · · · ∪ Sk−1),

where ∑
j∈S1

αjxj +
∑

2≤m<k

∑
j∈Sm

αj(xj − dj) ≤ β (1.3)

is valid for conv(Fk−1). The corresponding support function is

hk(z) := max
∑
j∈Sk

αj(xj − dj)

s.t.
∑
j∈Sk

Aj(xj − dj) = z∑
j∈Sk

gjxj ≤ vk

xj ∈ {0, 1}. j ∈ Sk ∩ I.

CHAPTER 1. INTRODUCTION 7

The following are well known results on lifting.

Theorem 1.2. ([41]) If we choose αj, j ∈ Sk such that hk(z) ≤ fk(z) for all z, then the
lifted inequality (1.2) is valid for conv(Fk).

Theorem 1.3. ([41]) If hk(z) = fk(z) has |Sk| solutions x1, . . . , x|Sk| such that x1−d, . . . , x|Sk|−
d are linearly independent, and (1.3) is facet defining for conv(Fk−1), then the lifted inequal-
ity (1.2) is facet defining for conv(Fk).

For k = 2, . . . , t, let Zk denote the feasible region on which the associated support function
hk(z) attains a finite value. Let Z be a convex set such that Zk ⊆ Z for all k = 2, . . . , t.

Theorem 1.4. ([41]) Suppose f̃ is a superadditive function on Z, (i.e., f̃(z1) + f̃(z2) ≤
f̃(z1 + z2) for all z1, z2 ∈ Z), such that f̃ ≤ f(z), then if αj, j ∈ Sk are chosen such that
hk(z) ≤ f̃(z) for all k = 2, . . . , t, then (1.2) is valid for conv(F).

1.4 Submodular Functions and Related Polyhedra

In this section, we present some background information on submodular functions and poly-
matroids that will be used later in this dissertation. Throughout this section, we assume
that N is a finite set.

Definition 1.10. A function f : 2N → R is called a set function on N .

Definition 1.11. Let f be a set function on N . Then, f is said to be nondecreasing if
f(S) ≤ f(T) for all S ⊆ T ⊆ N .

Definition 1.12. Let f be a set function on N . Then, f is said to be submodular if
f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T) for all S, T ⊆ N .

The next theorem gives an alternate characterization for submodular functions.

Theorem 1.5. [80] Let f be a set function on N . Then, f is submodular if and only if

f(S ∪ {j})− f(S) ≥ f(S ∪ {j, k})− f(S ∪ {k})

for all S ⊆ N , j, k 6∈ S, j 6= k.

We now introduce two polyhedra associated with submodular functions.

Definition 1.13. Let f be a set function on N . Let

EPf :=
{
x ∈ RN : x(S) ≤ f(S) for all S ⊆ N

}
.

If f is submodular, then EPf is called the Extended Polymatroid associated with f .

CHAPTER 1. INTRODUCTION 8

Definition 1.14. Let f be a nondecreasing submodular set function on N . Then, the
polymatroid associated with f is

Pf :=
{
x ∈ RN+ : x(S) ≤ f(S) for all S ⊆ N

}
.

Polymatroids have the nice property that the greedy algorithm solves the optimization
problem

min
{
c>x : x ∈ Pf

}
. (1.4)

Note that EPf 6= ∅ if and only if f(∅) ≥ 0, and Pf is nonempty if and only if f(S) ≥ 0 for
all S ⊆ N . Let N = {1, . . . , n} and let c1 ≥ · · · ≥ ck ≥ 0 > ck+1 · · · cn for some k ∈ N .

Theorem 1.6. [80] Let f be a nonnegative submodular set function on N , an optimal solution
to (1.4) is given by

xj =

{
f(Sj)− f(Sj − 1) for 1 ≤ j ≤ k,

0 for j > k,

where Sj = {1, . . . , j} for j ∈ N , and S0 = ∅.

1.5 Applications of Binary Conic Quadratic Programs

In this section, we summarize some of the applications of binary conic quadratic programs.
Our prime motivation to study knapsack sets with submodular set functions stems from the
need to analyze linear 0 − 1 covering constraints with uncertain coefficients. For example,
consider the following covering constraint,

ξ>x ≥ d (1.5)

where ξi, i ∈ {1, 2, . . . , N} are random with a support Ξ. Constraint (1.5) does not define a
deterministic feasible set. We can approximate the above covering constraint by the following
probabilistic constraint,

P(ξ>x ≥ d) ≥ 1− ε, ε > 0. (1.6)

The probabilistic constraint (1.6), on x ∈ {0, 1}N with , 0 < ε < 0.5, can be modeled as a
conic quadratic 0− 1 covering knapsack,

XCQ :=
{

x ∈ {0, 1}m : u>x− Ω(ε) ‖ Σ
1
2 x ‖≥ d

}
(1.7)

where ue is the nominal value of ξe, Σ is the covariance matrix, and Ω(ε) > 0 is the scal-
ing factor. The term Ω(ε) ‖ Σ x ‖ is used to build sufficient slack into the constraint to
accommodate the variability of ξi around the nominal value ui. Indeed, if ξi’s are normally
distributed independent random variables, then letting ui and σii be the mean and standard

CHAPTER 1. INTRODUCTION 9

deviation of ξi, 0 ≤ i ≤ m, and Ω(ε) = −ϕ−1(ε) with 0 < ε < 0.5, where ϕ is the stan-
dard normal cumulative distribution function, the set of 0− 1 solutions for the probabilistic
covering constraint (1.6) is exactly XCQ [31]. On the other hand, if ξi’s are known only

through their first two moments ui and σ2
ii, then any point in XCQ with Ω(ε) =

√
(1− ε)/ε

satisfies the probabilistic constraint (1.6) [24, 37]. Alternatively, if ξi’s are only known to be
symmetric with support [ui− σii, ui + σii], then points in XCQ with Ω(ε) =

√
ln(1/ε) satisfy

constraint (1.6) [23, 22]. Hence, under different assumptions of uncertainty on ξ, one arrives
at different instances of the conic quadratic knapsack set XCQ.

There are several important applications of BCQPs that can be modeled in the aforemen-
tioned framework of incorporating uncertainty. Despite the similarities in the structures of
the systems, the applications all have different objectives and concerns. Pinar [76] describes
a pricing problem for an American option in a financial market under uncertainty. Hijazi
et al. [47] investigate a telecommunications network problem that seeks to minimize the
network response time to a user request. Mak et al. [63] consider the problem of creating
a network infrastructure and providing coverage for battery swapping stations to service
electric vehicles. The number of electric vehicles that travel along a path (portion of a path)
is random, so demand at each swapping station is uncertain.

In addition to being of theoretical interest, binary conic-quadratic programming problems
are practically relevant as they can be used to mathematically formulate probabilistic and
robust equivalents of the deterministic combinatorial and decision problems. Uncertainties in
data are naturally prevalent in all practical optimization problems, and thus the importance
of making decisions under uncertainty cannot be discounted.

1.6 Solution Approaches for Binary Conic Quadratic

Programs

A popular approach for linearization of bilinearities occuring in the binary (conic) quadratic
knapsacks is due to McCormick. McCormick [66] proposes to relax the set

B = {(x1, x2, z) ∈ [0, 1]× [0, 1]× R : z = x1x2}

with the following inequalities, which we refer to as the McCormick inequalities :

z ≥ max (x1 + x2 − 1, 0), z ≤ min (x1, x2) (1.8)

Al-Khayyal and Falk [54] show that the convex hull of B is described by the McCormick
inequalities. Padberg [73] studies the Boolean Quadric Polytope associated with the bilin-
earities and derives facet defining inequalities for the same. This however is a theoretical
work and these inequalities have not been used in literature for computational analysis.

CHAPTER 1. INTRODUCTION 10

Clearly, any method for general nonlinear integer programming applies to conic integer
programming. Sherali and Adams [82] generalize the idea of McCormick as Reformulation-
Linearization Technique (RLT). Initially developed for linear 0 − 1 programming, RLT has
been extended to nonconvex optimization problems [86]. Stubbs and Mehrotra [87, 88]
generalize the lift-and-project method [16] of Balas et al. for 0−1 mixed convex programming.
See also Balas [14] and Sherali and Shetti [84] on disjunctive programming methods. Kojima
and Tunçel [57] give successive semidefinite relaxations converging to the convex hull of a
nonconvex set defined by quadratic functions. These relaxations can be used to model
second order conic mixed 0 − 1 programs as follows. The second order conic constraints
can be written as nonconvex quadratic constraints. For the binary variables xj, j ∈ N , we
can add the nonconvex quadratic equality constraint xj − x2

j = 0. Lasserre [59] describes a
hierarchy of semidefinite relaxations of nonlinear 0− 1 programs.

Common to all of these above general approaches is a hierarchy of convex relaxations
in higher dimensional spaces whose size grows exponentially with the size of the original
formulation. Therefore, using such convex relaxations in higher dimensions is impractical
except for very small instances. On the other hand, projecting these formulations to the
original space of variables is also difficult except for certain special cases.

Another stream of research is the development of branch-and-bound algorithms for non-
linear integer programming based on linear outer approximations [2, 91, 21, 93]. Duran and
Grossmann [35] in their seminal work develop the idea of deriving polyhedral approximations
of mixed integer non-linear programs (linear in integer variables) by solving an alternating
finite sequence of nonlinear programming subproblems and relax versions of a mixed-integer
linear master program. Fletcher and Leyffer [39] discuss non-differentiable functions in the
context of outer approximation approaches for MINLP, where the authors prove conver-
gence of outer approximation algorithms for nonsmooth penalty functions. The only article
dealing with outer approximation techniques for MISOCPs is by Vielma et al. [93], which
is based on Ben-Tal and Nemirovski’s polyhedral approximation of the second order cone
constraints [21]. Drewes and Ulrich [34] present a hybrid branch and bound based outer
approximation scheme for MISOCPs, where the entire outer approximation is not chosen in
advance, however is strengthened iteratively in order to guarantee convergence of the algo-
rithm. The proposed idea is to iteratively compute integer feasible solutions of a subgradient
based linear outer approximation of a MISOCP and to tighten this outer approximation by
solving nonlinear continuous problems. The advantage of linear approximations is that they
can be solved fast; however, the bounds from linear approximations may not be strong. In
the case of conic programming, and in particular second-order cone programming, existence
of efficient algorithms permits the use of continuous conic relaxations at the nodes of the
branch-and-bound tree, although the lack of effective warm-starts is a significant disadvan-
tage.

One of the first studies on developing valid inequalities for conic integer sets directly is
due to Çezik and Iyengar [30]. They study techniques for generating valid convex constraints

CHAPTER 1. INTRODUCTION 11

for mixed 0-1 conic programs and show that many of the techniques developed for generating
linear cuts for linear mixed 0-1 optimization, such as the Gomory cuts, the lift-and-project
cuts, and cuts from other hierarchies of tighter relaxations, extend to conic mixed 0-1 opti-
mization. Atamtürk and Narayanan [9] describe a general mixed-integer rounding approach
for conic quadratic mixed-integer sets. Their approach for deriving valid inequalities for
SOCMIP is to reformulate second-order conic constraints in a higher dimensional space that
leads to a natural decomposition into simpler polyhedral sets and to analyze each of these
sets. Atamtürk and Narayanan [10] describe lifting techniques for conic discrete optimiza-
tion. Belotti et al. [19] give conic cuts for conic quadratic integer optimization. Anderson
and Jensen [4] give intersection cuts for conic quadratic mixed-integer sets. Kilinç-Karzan
[55] describes minimal inequalities for conic mixed-integer programs. Modaresi et al. [67]
give split cuts and extended formulations for conic quadratic mixed-integer programming.
Kilinç-Karzan and Yildiz [56] describe two-term disjunction inequalities for the second-order
cone.

These aforementioned works however are on general conic quadratic discrete optimization
and do not exploit any special structure specifically the combinatorial structure associated
with the problem studied here.

1.7 Final Remarks

From the previous sections, we see that although Binary Conic Quadratic Programs have
several applications in important problems, the current state of solution technologies do
not exploit any specific structure related to these problems. Solution approaches including
deriving strong valid inequalities that have earlier been developed for linear programming
have been generalized to conic optimization problems. We also have readily available open
source software for continuous conic optimization, e.g., CSDP[27], DSDP[20], SDPA[99],
SDPT3[92], SeDuMi[89]. Commercial software vendors, e.g., ILOG and MOSEK, have re-
sponded to the demand for solving (continuous) conic optimization problems by including
solvers for second-order cone programming (SOCP) in their recent versions.

We attempt to make use of these above developments to study the combinatorial structure
of these problems and improve the computational effort involved in solving Binary Conic
Quadratic Programs, by designing strong valid inequalities that can be used at the nodes
of the Branch-and-Bound tree to cut off fractional solutions. Our attention is restricted to
those classes of inequalities that can be easily incorporated in the above mentioned solvers
(i.e., linear and conic inequalities).

12

Chapter 2

Supermodular Covering Knapsack
Polytope

2.1 Introduction

Our main motivation for studying the supermodular covering knapsack set is to address
linear 0-1 covering constraints with uncertain coefficients. If the coefficients ũi, i ∈ N , of
the constraint are random variables, then a probabilistic (chance) constraint

P(ũ>x ≥ d) ≥ 1− ε (2.1)

on x ∈ {0, 1}N with , 0 < ε < 0.5, can be modeled as a conic quadratic 0-1 covering knapsack

KCQ :=
{
x ∈ {0, 1}N : u>x − Ω ‖ Dx ‖ ≥ d

}
,

where ui is a nominal value and di is a deviation statistic for ũi, i ∈ N , D = diag(d1, d2, . . . , d|N |),
Ω > 0. Now, consider f : 2N → R defined as

f(S) = u(S)− g(c(S)), (2.2)

where g : R → R is a concave function and u, c ∈ RN . It is easily checked that if c ≥ 0,
then f is supermodular on N (e.g. Ahmed and Atamtürk [3]). Letting ci = Ω2d2

i for i ∈ N ,
we see that

f(S) = u(S)−
√

c(S) ≥ d (2.3)

if and only if χS ∈ KCQ. Moreover, f is non-decreasing if ui ≥ Ωdi for i ∈ N .

Although the polyhedral results in this chapter are for the more general supermodular
covering knapsack polytope conv(K), we give examples and a separation algorithm for a
specific set function of form (2.2). Because K reduces to the linear 0− 1 covering knapsack
set when f is modular, optimization over K is NP-hard.

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 13

For a set function f on N and i ∈ N , let its difference function be

ρi(S) := f(S ∪ i)− f(S) for S ⊆ N \ i.

Note that f is supermodular if and only if ρi(S) ≤ ρi(T), ∀S ⊆ T ⊆ N \ i and i ∈ N ; that
is, the difference function ρi is non-decreasing on N \ i (e.g. Schrijver [80]). Furthermore, f
is non-decreasing on N if and only if ρi(·) ≥ 0 for all i ∈ N .

2.1.1 Relevant Literature

In a closely related work, Atamtürk and Narayanan [12] study the lower level set of a non-
decreasing submodular function. Negating inequality (2.3) yields a knapsack set with non-
increasing submodular function −f , and, therefore, their results are not applicable here.
Indeed, as the upper level set of a non-decreasing supermodular function is equivalent to the
lower level set of a non-increasing submodular function, this chapter closes a gap by covering
the case complementary to the one treated in Atamtürk and Narayanan [12].

Although there is a rich body of literature in approximation algorithms for submodular
or supermodular functions, polyhedral results are scarce. Nemhauser et al. [72], Sviridenko
[90], Iwata [49], Lee et al. [60] give approximation algorithms for optimizing submodu-
lar/supermodular functions over various constraints. There is an extensive literature on the
polyhedral analysis of the linear knapsack set. The polyhedral analysis of the linear knapsack
set was initiated by Balas [15], Hammer et al. [45], and Wolsey [95]. For a recent review
of the polyhedral results on the linear knapsack set we refer the reader to Atamtürk [6, 5].
Martello and Toth [65] present a survey of solution procedures for linear knapsack prob-
lems. Covering knapsack has also been extensively studied in the purview of approximation
algorithms and heuristics [33, 26]. Carnes and Shmoys [29] study the flow cover inequali-
ties (Aardal, Pochet and Wolsey [1]) in the context of the deterministic minimum knapsack
problem. The majority of the research on the nonlinear knapsack problem is devoted to the
case with separable nonlinear functions (Morin [68]). Hochbaum [48] maximizes a separa-
ble concave objective function, subject to a packing constraint. There are fewer studies on
the nonseparable knapsack problem, most notably on the knapsack problem with quadratic
objective and linear constraint. Helmberg et al. [46] give semidefinite programming relax-
ations of knapsack problems with quadratic objective. Ahmed and Atamtürk [3] consider
maximizing a submodular function over a linear knapsack constraint. We refer the reader
to also Bretthauer et al. [28], Kellerer [52] for a survey of nonlinear knapsack problems.

The rest of the chapter is organized as follows: Section 2.2 describes the main polyhedral
results. It includes pack inequalities, their extensions and lifting. The lifting problems
of the pack inequalities are themselves optimization problems over supermodular covering
knapsack sets. We derive sequence-independent upper bounds and lower bounds on the
lifting coefficients. In Section 2.3 we give a separation algorithm for the pack inequalities
for the conic quadratic case. In Section 2.4 we present a computational study on using the
results for solving 0-1 optimization problems with conic quadratic constraints.

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 14

2.2 Polyhedral Analysis

In this section we analyze the facial structure of the supermodular knapsack covering poly-
tope. In particular, we introduce the pack inequalities and discuss their extensions and
lifting. Throughout the rest of this chapter we make the following assumptions:

(A.1) f is non-decreasing,

(A.2) f(∅) = 0,

(A.3) f(N \ i) ≥ d for all i ∈ N .

Because f is supermodular, assumption (A.1) is equivalent to ρi(∅) ≥ 0, ∀ i ∈ N , which
can be checked easily. Assumption (A.1) holds, for instance, for a function f of the form
(2.3) if ui ≥ Ωdi, ∀ i ∈ N . Assumption (A.2) can be made without loss of generality as f
can be translated otherwise. Finally, if (A.3) doesn’t hold, i.e., ∃ i ∈ N : f(N \ i) < d,
then xi equals one in every feasible solution.

Proposition 2.1. conv(K) is a full-dimensional polytope.

Proof. Define 1 to be an n-dimensional vector of ones. From Assumptions (A.1) and (A.3)
it can be seen that the points 1− ei, i ∈ N along with 1 belong to the set K and constitute
a set of n+ 1 affinely independent points in K. The result follows.

Proposition 2.2. Inequality xi ≤ 1, i ∈ N , is facet-defining for conv(K).

Proof. The points 1 and 1− ej, j ∈ N \ {i} constitute a set of n affinely independent points
satisfying xi = 1.

Proposition 2.3. Inequality xi ≥ 0, i ∈ N , is facet-defining for conv(K) if and only if
f(N \ {i, j}) ≥ d, ∀ j ∈ N \ {i}.

Proof. If f(N \ {i, j}) ≥ d, ∀ j ∈ N \ {i}, then 1−ei and 1−ei−ej, j ∈ N \ {i} constitute
a set of n affinely independent points satisfying xi = 0. Conversely, if f(N \ {i, j}) < d, for
some j ∈ N \ {i} then

{x ∈ K : xi = 0} = {x ∈ K : xi = 0, xj = 1} .

which cannot have a dimension more than n − 2. Hence xi ≥ 0 is not facet-defining for
conv(K).

We refer to the facets defined in Propositions 2.2–2.3 as the trivial facets of conv(K).

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 15

Proposition 2.4. If inequality
∑

j∈N πjxj ≥ π0 defines a non-trivial facet of conv(K), then
π0 > 0 and 0 ≤ πj ≤ π0, ∀ j ∈ N .

Proof. Assume that the inequality
∑

j∈N πjxj ≥ π0 defines a facet of conv(K). Now consider
a point x∗ ∈ K such that

∑
j∈N πjx

∗
j = π0 (such a point exists). Without loss of generality

assume the aforementioned inequality is different from xj ≤ 1, we can assume that x∗j < 1.
Since conv(K) is full dimensional, the point x = x∗ + εej ∈ K for sufficiently small ε > 0.
This yields,

∑
j∈N πjxj =

∑
j∈N πjx

∗
j + επj = π0 + επj ≥ π0, implying πj ≥ 0,∀ j ∈ N .

Reconsider the point x∗ on the facet
∑

j∈N πjx
∗
j = π0. Since x∗ = 0 6∈ K and π 6= 0, it

can be seen that π0 > 0. For the last part assume ∃ j ∈ N such that πj > π0. This implies
that ej ∈ K and hence the inequality

∑
k∈N \ j πkxk + π0xj ≥ π0 is also valid for conv(K).

However this inequality dominates the original inequality which is a contradiction to our
assumption that the original inequality defines a facet of conv(K).

2.2.1 Pack Inequalities

In this section we define the first class of valid inequalities for K.

Definition 2.1. A subset P of N is a pack for K if δ := d−f(P) > 0. A pack P is maximal
if f(P ∪ i) ≥ d, ∀ i ∈ N \P.

For a pack P ⊆ N for K, let us define the corresponding pack inequality as

x(N \P) ≥ 1. (2.4)

The pack inequality simply states that at least one element outside the pack P has to be
picked to satisfy the knapsack cover constraint f(x) ≥ d. Consider the non-empty restriction
K(P) = {x ∈ K : xi = 1,∀ i ∈ P} of K.

Proposition 2.5. If P ⊆ N is a pack for K, then the pack inequality (2.4) is valid for K.
Moreover, it defines a facet of conv(K(P)) iff P is a maximal pack.

Proof. Define K :=
{
x ∈ {0, 1}N : x(N \P) < 1

}
. It is sufficient to show that f(x) < d

for all x ∈ K. Since ∀x ∈ K, we have x(N \P) = 0, implying x ≤ y, ∀x ∈ K, and
∀y ∈ K(P); implying

f(x) ≤ f(P) < d,

where the first inequality follows from assumption (A.1), that f is non-decreasing.

For the second part, consider the |N \P | points

xk ∈ {0, 1}N such that xkj =

{
1 if j ∈ P ∪ k,

0 if j ∈ N \ {P ∪ k}
, ∀ k ∈ N \P. (2.5)

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 16

Since f is non-decreasing and P is a maximal pack, we have xk ∈ K, ∀ k ∈ N \P . The
|N \P | points xk, k ∈ N \P are in conv(K(P)) and satisfy (2.4) as equality. It is easily
seen that these |N \P | points are linearly independent. Hence for a maximal pack P , (2.4)
defines a facet of conv(K(P)).

Conversely suppose that pack P is not maximal. Thus, ∃ i ∈ N \P such that f(P∪i) < d.
Then the corresponding valid pack inequality

x(N \ (P ∪ i)) ≥ 1

and xi ≥ 0 dominate (2.4).

Example 2.1. Consider the conic-quadratic covering knapsack set

K =

{
x ∈ {0, 1}4 : x1 + 2.5x2 + 3x3 + 3x4 −

√
x2

3 + x2
4 ≥ 5.5

}
.

The maximal packs for K and the corresponding pack inequalities are

{1, 2} : x3 + x4 ≥ 1 {1, 3} : x2 + x4 ≥ 1 {1, 4} : x2 + x3 ≥ 1

{2, 3} : x1 + x4 ≥ 1 {2, 4} : x1 + x3 ≥ 1 {3, 4} : x1 + x2 ≥ 1.

It is of interest to note that the pack inequalities derived above require only that f be
non-decreasing. Following result proves the validity of pack inequalities in a special case
when the covariance matrix Σ is not necessary diagonal.

Proposition 2.6. The set function f : {0, 1}|N | 7→ R defined as,

f := u>x−
√

x>Σx

is non-decreasing on N if ui ≥
√

2 Ωσi, ∀ i ∈ N and Σ is diagonally dominant, i.e. σ2
i ≥∑

j∈N \ i

|σij| ∀ i ∈ N .

Proof. Consider the following (wlog) for i ∈ N, S ⊆ N \ i,

ρi(S) = f(S ∪ i)− f(S)

= ui − Ω

√√√√√ ∑

j ∈S∪i

σ2
j +

∑
k∈S∪i \ j

σkj

−
√√√√√∑

j ∈S

σ2
j +

∑
k∈S \ j

σkj

≥ ui − Ω

√σ2
i +

∑
j ∈S

σij

≥ ui −

√
2 Ωσi

≥ 0

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 17

where the first inequality follows from the triangle inequality (for a, b, c ≥ 0, s.t. a2 = b2+c2,
then a ≤ b + c), the second inequality follows from diagonal dominance of Σ and the final
inequality follows from the assumption ui ≥

√
2 Ωσi, ∀ i ∈ N .

2.2.2 Extended Pack Inequalities

The pack inequalities (2.4), typically, do not define facets of conv(K); however, they can
be strengthened by extending them with the elements of the pack. Though unlike in the
linear case, for the supermodular covering knapsack set, even simple extensions are sequence-
dependent. Proposition 2.7 describes such an extension of the pack inequalities (2.4).

Definition 2.2. Let P ⊆ N be a pack and π = (π1, π2, . . . , π|P |) be a permutation of the
elements of P . Define Pi := P \ {π1, π2, . . . , πi} for i = 1, . . . , |P | with P0 = P . The
reduction of P with respect to π is defined as Rπ(P) := P \Uπ(P), where

Uπ(P) :=

{
πj ∈ P : max

i∈N \P
ρi(N \ i) ≤ ρπj(Pj)

}
. (2.6)

For a given pack P and reduction Rπ(P) = P \Uπ(P), we define the extended pack
inequality as

x(N \Rπ(P)) ≥ |Uπ(P)|+ 1. (2.7)

Proposition 2.7. If P ⊆ N is a pack for K and Uπ(P) is defined as in (2.6), then the
extended pack inequality (2.7) is valid for K.

Proof. Let L ⊆ N \Rπ(P) with |L| ≤ |Uπ(P)|. To prove the validity of (2.7) it suffices to
show that f(Rπ(P)∪L) < d. Let J = Uπ(P) \L =:

{
j1, j2, . . . , j|J |

}
be indexed consistently

with π. Note that for Q = Uπ(P) ∩ L, we have |L \Q| ≤ |J |. Then

f(Rπ(P) ∪ L) = f(Rπ(P) ∪Q) + ρL \Q(Rπ(P) ∪Q)

≤ f(Rπ(P) ∪Q) +
∑

`∈L \Q

ρ`(N \ `)

≤ f(Rπ(P) ∪Q) +
∑
πj∈J

ρπj(Pj)

≤ f(Rπ(P) ∪Q) +
∑
ji∈J

ρji
(
Rπ(P) ∪Q ∪

{
ji+1, . . . , j|J |

})
= f(P) < d,

where the first and third inequalities follow from supermodularity of f and the second one
from (2.6), |L \Q| ≤ |J |, and (A.1).

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 18

We now provide a sufficient condition for the extended pack inequality to be facet-defining
for conv(K(Rπ(P))).

Proposition 2.8. The extended pack inequality (2.7) is facet-defining for conv(K(Rπ(P)))
if P is a maximal pack and for each i ∈ Uπ(P) there exist distinct ji, ki ∈ N \P such that
f(P ∪ {ji, ki} \ i) ≥ d.

Proof. Consider the points χP∪i, ∀ i ∈ N \P and χP∪{ji,ki} \ i, ∀ i ∈ Uπ(P) and ji, ki ∈
N \P , which are on the face defined by (2.7). The proof will be completed by showing that
these |N \P | + |Uπ(P)| points are linearly independent. Let M be the matrix containing
these points as rows. Observe that M can be represented as

M =

(
1n×m Idn

1m×m − Idm Hm×n

)

where n = |N \P | and m = |Uπ(P)|. Here 1n×m denotes an n × m matrix all of
whose entries are 1. Idn refers to the n × n identity matrix and Hm×n is an m × n bi-
nary matrix (Hij ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ j ≤ n) such that all of its rows sum to two(∑n

j=1 Hij = 2, ∀ 1 ≤ i ≤ m
)

. Now, M is non-singular if and only of

M

(
α
β

)
= 0 ⇒ α,β = 0, (2.8)

where α,β are vectors of length of m and n, respectively. The solutions to (2.8) thus satisfy

1n×mα+ β = 0, (2.9)

(1m×m − Idm)α+ Hm×nβ = 0. (2.10)

Substituting for β, in (2.10) from (2.9) yields

(1m×m − Idm)α− Hm×n1n×mα = 0

(1m×m − Idm)α− 21m×mα = 0

(1m×m + Idm)α = 0.

Thus the problem of proving non-singularity of M boils down to proving non-singularity
of 1m×m + Idm. To see that 1m×m + Idm is non-singular, consider the following claim.

Claim 2.1. det(1m×m + Idm) = m+ 1

Proof. (Proof by Induction): Let D(m) = det(1m×m + Idm).

Initial/Base Step: D(1) = det(1 + 1) = 2 = 1 + 1.

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 19

Now, assume D(m) = m+ 1, ∀ 1 ≤ k ≤ m

Inductive Step: 1(m+1)×(m+1) + Idm+1 =

2 1 · · · 1
1 2 · · · 1
...

. . .

1 1 · · · 2

m×m

D(m+ 1) = 2D(m)−m ∗ det

1 1 · · · 1
1 2 · · · 1
...

. . .

1 1 · · · 2

(m−1)×(m−1)

D(m+ 1) = 2D(m)−m ∗ 1∗

D(m+ 1) = 2(m+ 1)−m = (m+ 1) + 1.

The proof is now complete.

Example 2.2. (cont.) Consider the conic-quadratic covering knapsack set in the previous
example:

K =

{
x ∈ {0, 1}4 : x1 + 2.5x2 + 3x3 + 3x4 −

√
x2

3 + x2
4 ≥ 5.5

}
.

For the maximal pack P = {3, 4}, we gave the corresponding pack inequality

x1 + x2 ≥ 1.

For permutation π = (3, 4), P1 = {4} and P2 = ∅. As ρ3(P1) = 4 −
√

2 ≈ 2.586 and
ρ1({2, 3, 4}) = 1, ρ2({1, 3, 4}) = 2.5, the corresponding reduction R(3,4)(P) = {4} gives the
extended pack inequality

x1 + x2 + x3 ≥ 2. (2.11)

Alternatively, π = (4, 3) yields the reductionR(4,3)(P) = {3} and the corresponding extended
pack inequality

x1 + x2 + x4 ≥ 2. (2.12)

Observe that inequalities (2.11) and (2.12) are the non-trivial facets of conv(K(4)) and
conv(K(3)), respectively.

∗det

1 1 · · · 1
1 1 + n · · · 1
...

. . .

1 1 · · · 1 + n

m×m

= nm−1 (c.f. Muir, T., 1960)

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 20

2.2.3 Lifted Pack Inequalities

In this section we study the lifting problem of the pack inequalities in order to strengthen
them. Lifting has been very effective in strengthening inequalities for the linear 0−1 knapsack
set [15, 17, 18, 42, 45, 95]. The lifting problem for the pack inequalities for K is itself an
optimization problem over the supermodular covering knapsack set.

Precisely, we lift the pack inequality (2.4) to a valid inequality of the form

x(N \P)−
∑
i∈P

αi(1− xi) ≥ 1. (2.13)

The lifting coefficients αi, i ∈ P can be computed iteratively in some sequence: Suppose
the pack inequality (2.4) is lifted with variables xi, i ∈ J ⊆ P to obtain the intermediate
valid inequality

x(N \P)−
∑
i∈ J

αi(1− xi) ≥ 1 (2.14)

in some sequence of J , then xk, k ∈ P \ J , can be introduced to (2.14) by computing

αk = ϕ(I, k)− 1−α(J), (2.15)

where ϕ(I, k) is the optimal objective value of the following lifting problem, L(I, k):

ϕ(I, k) := min
T⊆I

{
|(N \P) ∩ T |+

∑
i∈ J∩T

αi : f(T ∪ P \ (J ∪ k)) ≥ d

}
(2.16)

and
I = (N \P) ∪ J.

The lifting coefficients are typically a function of the sequence used for lifting. The
extension given in Proposition (2.7) may be seen as a simple approximation of the lifted
inequalities (2.13).

Proposition 2.9. If P ⊆ N is a pack for K, and αi, ∀ i ∈ P are defined as in (2.15), then
the lifted pack inequality (2.13) is valid for K. Moreover, inequality (2.13) defines a facet of
conv(K) if P is a maximal pack.

Proof. Proof by contradiction : Assume ∃ x̂ ∈
{
X : x(N \P)−

∑
i∈P αi(1− xi) < 1

}
.

W.L.O.G. assume the order in which the lifting coefficients were generated to be K =
{1, 2, . . . , |P |}. Now, consider k = max {i ∈ K : x̂i = 0}. Now,

x(N \P)−
k−1∑
i=1

αi(1− xi) < 1 + αk = ϕ(I, k)−α({1, 2, . . . , k − 1})

x(N \P) +
k−1∑
i=1

αixi < ϕ(I, k)

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 21

where I = (N \P) ∪ {1, 2, . . . k − 1}. However by definition of ϕ(I, k), the right hand
side of the above inequality is the lower bound on the left hand side for any given feasible
x̂ ∈ X, which is the contradiction above. Hence, (2.13) is satisfied ∀x ∈ X.

Corollary 2.1. The lifted pack inequality

x(N \P)−
∑
i∈P

α̂i(1− xi) ≥ 1, (2.17)

where α̂k = dϕ̂(I, k)e − 1 − α̂(J), k ∈ P \ J and ϕ̂(I, k) is any lower bound on ϕ(I, k), is
valid for K.

Computing the lifting coefficients αk, k ∈ P , exactly may be computationally prohibitive
in general as the feasible set of the lifting problem (2.16) is defined over a supermodular
covering knapsack. For a deeper understanding of the structure of the lifted inequalities, it
is of interest to identify bounds on the lifting coefficients that are independent of a chosen
lifting sequence. As we shall see later, these bounds may help to generate approximate lifting
coefficients quickly. We start with the following lemma.

Lemma 2.1. Let P ⊆ N be a maximal pack with δ := d − f(P)(> 0) and for h =
0, 1, 2, 3, . . . , |N \P |, define

µh := max {f(T ∪ P) : |T | = h, T ⊆ N \P} (2.18)

νh := min {f(T ∪ P) : |T | = h, T ⊆ N \P} . (2.19)

Then, for all h = 0, 1, 2, 3, . . . , |N \P | − 1, the following inequalities hold:

(i) νh+1 ≥ νh + δ,

(ii) µh+1 ≥ µh + δ.

Proof. Since P is a maximal pack, ρk(P) ≥ δ, ∀ k ∈ N \P .

(i) Let T ∗h+1 be an optimal solution corresponding to (2.19) and let k ∈ T ∗h+1. Then by
supermodularity of f and maximality of P , we have

δ ≤ ρk(P) ≤ ρk
(
(T ∗h+1 \ k) ∪ P

)
= f(T ∗h+1 ∪ P)− f

(
(T ∗h+1 \ k) ∪ P

)
.

Adding νh to both sides yields,

δ + νh ≤ f(T ∗h+1 ∪ P) = νh+1.

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 22

(ii) Let T ∗h be an optimal solution to (2.18) and let k ∈ N \ {P ∪ T ∗h}. It follows from
supermodularity of f and maximality of P that

δ ≤ ρk(P) ≤ ρk(T
∗
h ∪ P)

≤ f(T ∗h ∪ k ∪ P)− f(T ∗h ∪ P).

Adding µh to both sides yields,

δ + µh ≤ f(T ∗h ∪ k ∪ P) ≤ µh+1.

In summary, for a maximal pack P , νh ≤ f(T ∪ P), ∀T ⊆ N \P with |T | ≥ h, and
µh ≥ f(T ∪ P), ∀T ⊆ N \P with |T | ≤ h.

Proposition 2.10 is inspired by a similar result by Balas [15] for the linear 0-1 knapsack
problem.

Proposition 2.10. Let P ⊆ N be a pack with δ := d − f(P) > 0 and µh and νh, h =
0, 1, 2, 3, . . . , |N \P | be defined as in (2.18) and (2.19). Suppose that the lifted pack inequality

x(N \P)−
∑
i∈P

αi(1− xi) ≥ 1 (2.20)

defines a facet of conv(K). For any i ∈ P , the following statements hold:

(i) if ρi(∅) ≥ f(N)− ν|N \P |−h, then αi ≥ h;

(ii) if ρi(N \ i) ≤ µ1+h − d, then αi ≤ h.

Proof. (i) The lifting coefficient of xi, i ∈ P , is the smallest if xi is the last variable
introduced to (2.20) in a lifting sequence. Let αi = ϕ(N \ i, i) − 1 − α(P \ i). Also,
because the intermediate lifting inequality before introducing xi is valid for K, we have
ϕ(N \ i, ∅) ≥ 1 +α(P \ i). Thus, it is sufficient to show that ϕ(N \ i, i)− ϕ(N \ i, ∅) ≥ h.

We claim that in any feasible solution S to the lifting problem L(N \ i, i) (when xi is
lifted last), at least h+ 1 variables in N \P are positive. For contradiction, suppose that at
most h variables in N \P are positive. Let J ⊆ N \P and P̃ ⊆ P \ i be such that S = J∪ P̃ .

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 23

We have

f(J ∪ P̃) ≤ f(J ∪ P \ i)
= f(J ∪ P)− ρi(J ∪ P \ i)
≤ f(J ∪ P)− ρi(∅)
≤ f(J ∪ P)− f(N) + ν|N \P |−h

= f(P) + ρJ(P)− f(N) + ν|N \P |−h

≤ f(P) + ρJ(N \ J)− f(N) + ν|N \P |−h

= f(P)− f(N \ J) + ν|N \P |−h

≤ f(P) < d,

where the penultimate inequality follows from the fact that f(N \ J) ≥ ν|N \P |−h, ∀ J ⊆
N \P, |J | ≤ h. Thus, χS is infeasible for L(N \ i, i).
Now let S∗ = J∗ ∪ P ∗ with J∗ ⊆ N \P, P ∗ ⊆ P \ i, be an optimal solution to L(N \ i, i).
Let J ⊆ J∗ be such that |J | = h. The existence of such a J is guaranteed by the argument
in previous paragraph. We claim that S∗ \ J is a feasible solution to L(N \ i, ∅). To see this,
observe that

f((S∗ \T) ∪ i) ≥ f(S∗ \T) + f(i)

= f(S∗ \T) + ρi(∅)
≥ f(S∗)− f(N) + f(N \T) + ρi(∅)
≥ f(S∗)− f(N) + ν|N \P |−h + ρi(∅)
≥ f(S∗) ≥ d,

where the third inequality follows from the supermodularity of f and the penultimate in-
equality follows from our assumption ρi(∅) ≥ f(N)−ν|N \P |−h. Thus, we see that ϕ(N \ i, i)−
ϕ(N \ i, ∅) ≥ |T | = h.

(ii) For this part, it is sufficient to show that if the pack inequality (2.4) is lifted first with
xi, then αi ≤ h. Consider the lifting problem, Li(N \P). Let T ⊆ N \P , |T | = h+ 1, such
that f(T ∪ P) = µh+1. We claim that T is feasible for Li(N \P). Consider the following

f(T ∪ P \ i) = f(T ∪ P)− ρi(T ∪ P \ i)
≥ µh+1 − ρi(N \ i)
≥ d.

Hence an optimal solution to Li(N \P) has at most h+1 variables positive, i.e., ϕ(N \P, i) ≤
h+ 1. Thus we have αi = ϕ(N \P, i)− 1 ≤ h.

Computing the bounds µh and νh, h = 1, . . . , |N \P | is NP-hard as they require mini-
mizing and maximizing supermodular functions over a cardinality restriction. Nevertheless,

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 24

Lemma 2.1 and Proposition 2.10 can be utilized together in order to derive approximate
lifted inequalities efficiently as µ1, ν1 and µ|N \P |−1, ν|N \P |−1 can be computed in linear time
by enumeration.

Proposition 2.10 yields that for a maximal pack P if for any i ∈ P , ρi(N \ i) ≤ µ1 − d,
then the corresponding lifting coefficient αi for xi is zero and thus xi can be dropped from
consideration for extensions and lifting of the pack inequality. Similarly, if for any i ∈ P ,
ρi(∅) ≥ f(N)−ν|N \P |−1, then the lifting coefficient αi of xi is at least one and thus xi can be
included in every extension or lifting of the pack inequality. Also, if ρi(∅) ≥ f(N)−ν1, i ∈ P ,
then the corresponding lifting coefficient is set to |N \P |−1. Furthermore, Proposition 2.10
and a repeated application of Lemma 2.1 suggest the following corollary.

Corollary 2.2. For h = 1, . . . , |N \P | − 1

1. if ρi(∅) ≥ f(N)− ν1 − δ(|N \P | − h− 1), then αi ≥ h.

2. if ρi(N \ i) ≤ µ1 + hδ − d, then αi ≤ h.

2.3 Separation of Pack Inequalities

In this section, we give a separation algorithm for the pack inequalities for the supermodular
covering knapsack set K defined with respect to any supermodular set function f assuming
the functional form (2.2) with g concave and increasing on R+ and c ≥ 0. Observe that
conic quadratic supermodular function defining KCQ assumes this functional form.

Given x ∈ RN such that 0 ≤ x ≤ 1, we are interested in finding a pack P with∑
i∈N \P xi < 1, if there exists any. Then, the separation problem with respect to the pack

inequalities can be formulated as

ζ = min
{
x>(1− z) : u>z− g(c>z) < d, z ∈ {0, 1}N

}
, (2.21)

where the constraint u>z−g(c>z) < d ensures that a feasible z corresponds to a pack. Thus,
there is a violated pack inequality if and only if ζ < 1.

In order to find violated pack inequalities quickly, we employ a heuristic that rounds off
fractional solutions to the continuous relaxation of (2.21):

max
{
x>z : u>z− y ≤ d, c>z ≥ h(y), 0 ≤ z ≤ 1, y ∈ R

}
, (2.22)

where h is the inverse of g (h exists as g is increasing). Because g is increasing concave, h
is increasing convex; hence (3.51) is a convex optimization problem. Also, observe that, for
a fixed value of y ∈ R, there can be at most two fractional zi, i ∈ N in any extreme point
solution to (3.51).

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 25

For the convex relation (3.51) let λ ≥ 0, ν ≤ 0,α ≤ 0,β ≤ 0 be the dual variables for
the constraints in the order listed. From the first order optimality conditions

xi − λui − νci − αi + βi = 0, ∀ i ∈ N,

λ+ νh′(y) = 0,

and the complementary slackness conditions

αizi = 0, ∀ i ∈ N,

βi(zi − 1) = 0, ∀ i ∈ N,

we see that optimal solutions satisfy

xi

≤ λui + νci, zi = 0

= λui + νci, 0 < zi < 1

≥ λui + νci, zi = 1.

Since in an extreme point of (3.51) there are at most two variables with 0 < zi, zj < 1,

we compute
(|N |

2

)
candidate values for λ and ν, which are solutions of

xi = λui + νci, xj = λuj + νcj, i, j ∈ N, i < j.

For candidate values (λ, ν) satisfying λ ≥ 0, ν ≤ 0, we assign variables zi, i ∈ N equal to
one, in the non-increasing order of xi/(λui + νci), until z defines a pack and check for the
violation of the corresponding pack inequality.

2.4 Computational Experiments

In this section we present our computational experiments on testing the effectiveness of
the pack inequalities and their extensions for solving 0-1 optimization problems with conic
quadratic covering knapsack constraints. For the computational experiments we use the
MIP solver of CPLEX† (version 12.5) that solves conic quadratic relaxations at the nodes
of the branch-and-bound tree. CPLEX heuristics are turned off and a single thread is used.
The search strategy is set to traditional branch-and-bound, rather than the default dynamic
search as it is not possible to add user cuts in CPLEX while retaining the dynamic search
strategy. In addition, the solver time limit and memory limit have been set to 3600 secs. and
1 GB, respectively. All experiments are performed on a 2.93GHz Pentium Linux workstation
with 8GB main memory.

In Tables 2.1 and 2.2 we report the results of the experiments for varying number of vari-
ables (n), constraints (m), and values for Ω. For each combination, five random instances are

†CPLEX is a registered trademark of IBM ILOG

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 26

generated with ui from uniform [0, 100] and σi from uniform [0, ui/5]. The covering knapsack
right-hand-side constant d is set to 0.5κ, where κ = max

i∈N
f(N \ i). So that constraints are

not completely dense, we set the density of the constraints to 20/
√
n.

In Table 2.1 we compare the initial relaxation gap (igap), the root relaxation gap (rgap),
the end gap (egap), the gap between best upper bound and lower bound at termination,
the number of cuts generated (cuts), the number of nodes explored (nodes), the CPU time
in seconds (time), and the number of instances solved to optimality (#) using the barrier
algorithm and several cut generation options. The initial relaxation gap (igap) is computed

as
(fu − fi)

fu
, where fi denotes the objective value of the initial relaxation and fu denotes

the objective of the best feasible solution found across all versions. The root gap (rgap) and

the end gap (egap) are computed as
(fu − fr)

fu
and

(fu − fl)
fu

, where fr is the objective value

of the relaxation at the root node and fl is the best lower bound for the optimal objective
at termination. The columns under heading cplex show the performance of CPLEX with no
user cuts added. The other columns show the performance of the algorithm using maximal
pack cuts and extended maximal pack cuts with preprocessing as described in Corollary 2.2.
The pack inequalities and their extensions are added only at the root node of the search tree
using the separation algorithm discussed in Section 2.3.

Table 2.1: Effect of cuts with barrier algorithm.

cplex barrier packs extended packs

m n Ω igap rgap egap nodes time # cuts rgap egap nodes time # cuts rgap egap nodes time #

10

50

1 22.8 22.8 0 4,087 27 5 31 7.0 0 367 4 5 40 3.9 0 188 2 5

3 22.4 22.4 0 4,673 29 5 28 8.6 0 338 4 5 31 5.5 0 120 2 5

5 25.1 25.1 0 15,854 92 5 31 8.7 0 503 5 5 33 6.0 0 249 3 5

100

1 11.4 11.4 0 153,652 2,673 2 25 7.6 0 27,394 599 5 30 6.6 0 15,214 345 5

3 10.4 10.4 0 95,758 1,688 5 24 7.1 0 16,167 324 5 28 5.9 0 11,737 254 5

5 11.1 11.1 0 160,024 2,726 2 22 8.1 0 50,734 1,021 5 27 7.4 0 26,763 581 5

20

50

1 18.5 18.5 0 74,833 1,209 5 51 8.2 0 4,104 98 5 59 5.8 0 2,115 55 5

3 21.1 21.1 0.4 129,208 1,943 3 49 8.0 0 9,028 208 5 63 5.6 0 4,764 126 5

5 21.5 21.5 0 68,563 1,043 5 48 8.1 0 1,028 26 5 55 5.2 0 433 12 5

100

1 11.3 11.3 5.6 71,460 3,589 0 27 9.1 4 58,659 3,329 1 34 8.6 3.2 54,293 3,146 1

3 11.3 11.3 5.2 78,661 3,589 0 35 9.1 4 66,359 3,589 0 42 8.4 3.4 61,112 3,589 0

5 11.3 11.3 4.0 77,952 3,589 0 31 9.0 3 61,461 3,159 1 39 8.3 2.3 56,462 3,085 1

Average 16.5 1.27 77,894 1,850 8.2 0.92 24,679 1,031 6.4 0.74 19,454 933

Stdev 5.82 0.72 1.46

We observe in Table 2.1 that the addition of the pack cuts reduces the root gap and the
number of nodes and leads to faster solution times. As expected, the extended pack cuts

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 27

Table 2.2: Effect of cuts with outer linear approximation.

cplex outer approx. packs extended packs

m n Ω igap rgap egap nodes time # cuts rgap egap nodes time # cuts rgap egap nodes time #

20

50

1 22 8.9 0 1,942 1 5 64 4.8 0 587 1 5 71 3.6 0 260 1 5

3 24.7 10.7 0 2,792 1 5 71 6.2 0 744 1 5 82 4.3 0 396 1 5

5 22.9 9.7 0 1,834 1 5 64 4.8 0 217 0 5 72 3.1 0 134 0 5

100

1 11.7 7.0 0 517,570 575 5 57 6.8 0 195,698 229 5 62 6.8 0 151,307 157 5

3 13.1 7.7 0 249,849 234 5 52 7.4 0 127,090 138 5 57 6.9 0 113,878 124 5

5 12.4 7.0 0 242,291 211 5 50 6.7 0 106,121 126 5 61 6.4 0 94,831 105 5

30

50

1 24.2 12.4 0 3,393 3 5 67 9.7 0 1,108 1 5 84 8.4 0 572 1 5

3 23.6 10.2 0 1,335 1 5 66 7.2 0 481 1 5 81 5.9 0 121 1 5

5 23.9 10.8 0 2,241 2 5 67 7.3 0 368 1 5 78 6.0 0 274 1 5

100

1 13.6 9.4 0.3 1,160,006 2,159 4 61 8.9 0.3 755,204 1,458 4 73 8.6 0.2 790,050 1,585 4

3 12.9 8.6 0.3 1,094,672 2,238 2 67 8.2 0 686,178 1,451 4 78 8.0 0 596,803 1,195 5

5 12.9 8.3 0 1,047,374 1,903 5 64 8.2 0 636,519 1,319 5 77 7.7 0 387,649 698 5

Average 9.2 0.05 360,442 611 7.2 0.03 209,193 394 6.3 0.02 178,023 322

Stdev 1.64 1.48 1.83

are more effective than the simpler pack cuts. On average, the root gap is reduced from
16.5% to 6.43% for all instances with the extended pack cuts. Using extended packs leads
to a reduction of 49.5% in the solution times and 75% in the number of branch and bound
nodes explored. For problems that could be solved by CPLEX alone, the average solution
time is reduced from 769 seconds to mere 97 seconds. For problems that could not be solved
by either of the three versions, the average end gap is reduced from 4.8% to 2.8% using the
extended packs. Over all instances, the average number of nodes are 77, 894, 24, 679 and
19, 454 for CPLEX with barrier algorithm without user cuts, with packs and extended packs,
respectively. On the other hand, the average CPU times are 1, 850, 1, 031 and 933 seconds
for CPLEX without user cuts, with packs and extended packs, respectively.

In Table 2.2 we present similar comparisons, but this time using the CPLEX linear outer
approximation for solving conic quadratic problems at the nodes instead of the barrier algo-
rithm. We observe, in this case, that CPLEX adds its own cuts from the linear constraints.
Therefore, compared to Table 2.1, in general the root gaps are smaller and the solution times
are faster. Adding extended pack cuts reduces the average root gap from 9.23% to 6.31%.
This leads to 50.6% reduction in the number of search nodes and 47.2% reduction in the
solution times. For larger instances that are not solved to optimality, the average end gap
is reduced from 0.9% to 0.3%.

In conclusion, we find the pack inequalities and their extensions to be quite effective
in strengthening the convex relaxations of the conic quadratic covering 0-1 knapsacks and

CHAPTER 2. SUPERMODULAR COVERING KNAPSACK POLYTOPE 28

reducing the solution times of optimization problems with such constraints.

29

Chapter 3

General Submodular Knapsacks

3.1 Introduction

The submodular knapsack set is the discrete lower level set of a submodular function. Sub-
modular and supermodular knapsack sets arise naturally when modeling utilities, risk and
probabilistic constraints on discrete variables. In a recent paper Atamtürk and Narayanan
[12] studied the lower level set of a non-decreasing submodular function. In Chapter 2,
we explored the structure of this polyhedral set when the underlying set function is non-
increasing to complement and complete the discussion on monotone submodular knapsacks.
It is of interest to study the polyhedral structure of this level set when the monotonicity
assumptions are relaxed. An additional application lies in form of the following second order
cone set

SSOC :=
{

x ∈ {0, 1}n : a>x− Ω
√

x>Σx ≥ b
}
,

where Σ = [σij]1≤i,j≤n � 0, ai ≥ Ω · σi ∀ 1 ≤ i ≤ n. This is the inner approximation of the
chance constraint (1.6) when ξi, i ∈ N are correlated.

It can be seen SSOC = SQP ∩
{
x ∈ {0, 1} : a>x ≥ b

}
, where

SQP :=

{
x ∈ {0, 1}n :

∑
i

αixi + 2
∑
j>i

βijxixj ≤ γ

}
and αi = (2aib+ Ω2σ2

ii − a2
i), βij = −(aiaj − Ω2σij) ≤ (Ω2σiσj − aiaj) ≤ 0 and γ = b2.

Proposition 3.1. (Fisher, Nemhauser and Wolsey, 1978 [72])
Consider a set function f : {0, 1}n 7→ R, defined as a binary quadratic mapping,

f(x) := x>Qx (3.1)

where Q is a n× n off-diagonal matrix. f(·) is submodular if and only if

Qij ≤ 0, 1 ≤ i, j ≤ n.

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 30

Proof. Consider, S ⊆ T ⊆ N \ i for some i ∈ N .

ρi(T)− ρi(S) = f(T ∪ i)− f(S ∪ i)− f(T) + f(S)

= Qi(j∈T) −Qi(j∈S)

= Qi(j∈T \S)

≤ 0

where the last inequality follows from non-positivity of Qij ≤ 0, 1 ≤ i, j ≤ n. Thus, we
have ρi(S) ≤ ρi(T) ∀ S ⊆ T ⊆ N \ i i ∈ N proving submodularity of f(·).

Alternatively, assume f(·) is submodular, thus ∀ S ⊆ T ⊆ N \ i i ∈ N

0 ≤ ρi(S)− ρi(T)

0 ≤ f(S ∪ i)− f(T ∪ i)− f(S) + f(T)

0 ≤Qi(j∈S) −Qi(j∈T)

0 ≥Qi(j∈T \S)

Thus, Qi(j∈T \S) ≤ 0, ∀ S ⊆ T ⊆ N \ i i ∈ N , which yields Qij ≤ 0, 1 ≤ i, j ≤ n.

Corollary 3.1. Consider a set function f : {0, 1}n 7→ R, defined as a binary quadratic
mapping

f(x) := a>x+ x>Qx, (3.2)

where Q is a n× n matrix and a ∈ R. f(·) is submodular if and only if

Qij ≤ 0, 1 ≤ i, j ≤ n , i 6= j.

Proposition 3.1 and Corollary 3.1 in effect suggest that SQP is the lower level set of
a submodular set function. The associated set however is not necessarily monotone. A
requirement to study the polyhedral structure of the level sets associated with the generic
submodular set functions is thus apparent. Albeit the motivation stems from the submodular
quadratic maps, the following discussion is valid for knapsack sets associated with submod-
ular functions in general.

3.2 Linear 0-1 Knapsack Set

The knapsack problem is one of the most celebrated problems in optimization literature.
Most of the literature available on the knapsack problem is for the linear knapsack set
(binary, integer, mixed-integer). The polyhedral analysis of the linear knapsack set was
initiated by Balas [15, 17], Hammer et al. [45], and Wolsey [95]. For an extensive review of
theoretical and computational results on linear knapsacks we refer the reader to [6, 5, 42,

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 31

65]. In this section we’ll review the results and literature for the case of linear 0−1 knapsack
set K :=

{
x ∈ {0, 1}n : a>x ≤ b

}
, a ≥ 0.

In the following, we review some of the results on the valid inequalities for conv(K)

Proposition 3.2. Inequality xi ≥ 0, i ∈ N is facet defining for conv(K).

Proposition 3.3. Inequality xi ≤ 1, i ∈ N is facet defining for conv(K) if and only if
ai + aj ≤ b, ∀ j ∈ N \ {i}.

Proposition 3.4. If the inequality α>x ≤ β defines a facet for conv(K) not including 0
then β > 0 and αj ≥ 0, ∀ j ∈ N .

3.2.1 Cover Inequalities

Definition 3.1. A subset C of the index set N is called a cover if λ := a(C)− b > 0.

For a cover C, let us consider the restriction KC obtained by fixing all xi, i ∈ N \C to
zero. Since the sum of the coefficients ai, i ∈ C exceeds the knapsack capacity by λ > 0, all
variables xi, i ∈ C cannot take a value of one simultaneously for any x ∈ K. Therefore,
the cover inequality [15, 45, 95]

x(C) ≤ |C| − 1 (3.3)

is valid for conv(K). Cover inequality defines a facet for conv(KC) if and only if C is a
minimal cover, that is, a(C \ {i}) ≤ b, ∀ i ∈ C.

Extensions of Cover Inequalities

Extensions are a means to strengthen the inequalities based on restrictions of feasible sets,
in this case the cover inequalities. For a cover C ⊆ N , consider the cover inequality (3.3).

x(C) ≤ |C| − 1

An important and very useful concept in deriving strong valid inequalities is lifting of
inequalities. Lifting refers to extending valid inequalities for low dimensional restrictions
of polyhedra to ones that are valid in high dimensions. The concept of lifting has been
introduced by Gomory [40] in the context of the group problem. Padberg [74] described
the sequential lifting procedure for 0− 1 programming. Since then lifting has been studied
and used extensively (Atamtürk [7]; Balas and Zemel, [17]; Escudero, Gaŕın, and Péres,
[38]; Gu, Nemhauser, and Savelsbergh,[43, 41, 42, 44]; Johnson and Padberg, [51]; Louveaux
and Wolsey, [62]; Marchand and Wolsey, [64]; Nemhauser and Vance, [69]; Padberg, [75];
Richard, de Farias, and Nemhauser, [77]; Sherali and Lee, [83]; Wolsey, [95, 98]; Zemel, [101,

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 32

100]), particularly, for 0−1 and mixed 0−1 programming problems. We can strengthen the
cover inequality by introducing the variables not present in the inequality (xi, ∀ i ∈ N \C)
multiplied with appropriate coefficients. The lifted cover inequality in this case can be
represented as

x(C) +
∑

i∈N \C

αixi ≤ |C| − 1, (3.4)

where αi ≥ 0, i ∈ N \C are the corresponding lifting coefficients. Obtaining exact lifting
coefficients entails computing the lifting function Θ(·) of cover inequality (3.3)

Θ(a) := |C| − 1−max

{∑
i∈C

xi :
∑
i∈C

aixi ≤ b− a

}
(3.5)

for a ≥ 0. Obtaining a closed form expression for the lifting function is not always
trivial. Extensions are computationally inexpensive special cases of lifting, wherein instead
of deriving the exact lifting coefficients, we identify whether a variable xi, i ∈ N \C can be
introduced into the cover inequality with a coefficient αi ≥ 1. Let E be a set of all such
indices, i.e. E := {i ∈ N \C : αi ≥ 1}. The extended cover inequality thus is

x(C ∪ E) ≤ |C| − 1. (3.6)

Consider a subset of indices E ⊆ N \C. Assume that the corresponding variables xi, i ∈
E have been included in the extended cover inequality. Consider the variable xk, k ∈ N \ (C∪
E) to be included next in the extended cover.

Proposition 3.5. αk ≥ 1, if ak > max
j∈C∪E

aj − λ

Atamtürk [5], Balas and Zemmel [17], Gu et al. [44] provide a characterization of the
lifting function Θ(a) for the cover inequalities for 0 − 1 integer knapsack set. This charac-
terization yields a sequence independent lifting procedure, and as a special case, a sequence
independent extension for the cover inequalities. Attributed to this, we can further simplify
the extension procedure to a sequence independent extension.

Corollary 3.2. For k ∈ N \C, αk ≥ 1, if ak ≥ max
j∈C

aj.

The corresponding extension set E ⊆ N \C can now be defined as

E :=

{
i ∈ N \C : ai ≥ max

j∈C
aj

}
. (3.7)

Proposition 3.6. The extended cover inequality (3.6) is valid for conv(K). In addition,
inequality (3.6) defines a facet of conv(KC∪E) if and only if C is minimal and ∀ i ∈ E
∃ distinct {j, k} ∈ C such that a(C ∪ {i} \ {j, k}) ≤ b.

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 33

Sequence Independent Bounds for Lifting Coefficients

As a follow up to extensions, it is of interest to understand whether the lifting coefficients
αi, i ∈ N \C in the lifted cover inequality (3.4) can be computed efficiently in general.
Sequential lifting and simultaneous lifting of cover inequalities have been studied extensively
(Balas, [15]; Balas and Zemel, [17, 18]; Gu, Nemhauser, and Savelsbergh, [43, 42]; Hammer,
Johnson, and Peled, [45]; Wolsey, [95]; Zemel, [100]) to extend them to strong inequalities for
conv(K). Wolsey [98] introduced the idea of superadditivity to strengthen valid inequalities
for 0 − 1 integer programs. Gu et al. [44] and Atamtürk [7] have explored the idea of
superadditive lifting further in relation to mixed integer programming.

Atamtürk [5] present a unified review of the inequalities, whilst focusing on the use of
superadditive functions for the analysis of knapsack polyhedra. They present a superadditive
lower bound on the lifting function for cover inequalities. Following is a direct consequence
of the subadditive lower bound ϕ(·) on the lifting function Θ(·) which can be used to obtain
lower bounds on the lifting coefficients αi, i ∈ N \C.

Proposition 3.7. For k ∈ N \C, αk ≥ h, if ak ≥ Ah, where Ah = max
T⊆C
|T |=h

a(T).

Observe that Ah, 0 ≤ h ≤ |N | can be efficiently computed using greedy algorithm since
ai ≥ 0, i ∈ N . Conversely, to obtain an upper bound on the lifting coefficients, consider the
lifting function Θ(a) (3.5). It is easy to observe that any feasible solution to the optimization
problem

max

{∑
i∈C

xi :
∑
i∈C

aixi ≤ b− a

}
(3.8)

provides an upper bound on Θ(a). A greedy algorithm yields a feasible solution to (3.8).
Consider T ⊆ S such that |T | = h. It can be seen that αk ≤ |C| − 1 − h, if a(T) ≤ b − ak
for k ∈ N \C for all possible lifting sequences. This yields the following result.

Proposition 3.8. For k ∈ N \C, αk ≤ h, if ak ≤ b−B|C|−1−h, where Bh = min
T⊆C
|T |=h

a(T).

As earlier, Bh can be computed efficiently using a greedy approach.

The motivation for deriving these bounds will become more apparent in Section 3.3.8
where we will derive sequence independent lifting coefficients for submodular knapsack poly-
tope, since deriving exact lifting coefficients for the submodular knapsack polytope can be
computationally intractable.

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 34

3.2.2 Pack Inequalities

As seen in previous section, covers in effect are infeasible sets, and cover inequalities (3.3) are
valid inequalities obtained from these infeasible sets. Contrary to that, we can also derive
valid inequalities related to the feasible sets termed as packs. These inequalities have been
studied in different forms and by different names in the literature viz. weight inequalities
[94], reverse-cover inequalities [64], pack inequalities [5]. We refer to these feasible sets as
packs through out the following discussion, starting with the preliminaries.

Definition 3.2. A subset P of the index set N is called a pack if δ := b− a(P) > 0.

For a pack P , consider the restriction KP , obtained by fixing all xi, i ∈ P to one. Since
any xi, i ∈ N \P with coefficient ai greater than the residual capacity δ cannot take the
value one in a feasible solution to KP , the weight inequality [94]/pack inequality [5]∑

i∈N \P

(ai − δ)+xi ≤ 0 (3.9)

is valid for conv(KP). Weismantel [94] extended these inequalities to derive valid inequalities
for conv(K), their main result on reduction of weight inequalities,

Proposition 3.9. [Weismantel [94]] Let P ⊆ N satisfy a(P) < b and the index set M :=
{i ∈ N \P : ai > δ} 6= ∅ where δ = b− a(P). For an item k ∈ P such that ak ≥ ai for all
i ∈ P and ψ ∈ [0, δ] with ak − ψ > 0 the weight-reduction inequality with respect to T (and
k) and ψ is defined as ∑

i∈P \ {k}

aixi + (ak − ψ)xk +
∑
j∈M

cjxj ≤ a(P)− ψ, (3.10)

where

cj =

(aj − δ), if δ < aj ≤ ak + δ − ψ,
(aj − ψ), if ak + δ − ψ < aj ≤ ak + δ,

(aj − δ − ψ), if aj > ak + δ.

The weight reduction inequality with respect to T and ψ is valid for conv(K).

Atamtürk [5] strengthened the result of Weismantel [94] via superadditive lifting of the
inequality (3.9).

Proposition 3.10 (Atamtürk [5]). Suppose {i ∈ N \P : ai > δ} = {1, 2, . . . , q} and a1 ≥
a2 ≥ . . . ≥ aq. Then let Ai = −

∑i
k=1 ak for i ∈ {1, 2, . . . , q} and A0 = 0. The inequality∑

i∈P

ψ(−ai)(1− xi) +
∑

i∈N \P

(ai − δ)+xi ≤ 0

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 35

is valid for conv(K) where,

ψ(a) =

iδ + a, if Ai+1 + δ ≤ a ≤ Ai,

iδ + Ai, if Ai ≤ a ≤ Ai + δ,

qδ + Aq, if a ≤ Aq + δ.

is the superadditive lower bound on the lifting function of weight inequality (3.9).

In the following, we will discuss the inequalities obtained from aforementioned feasible
sets, and derive extensions and sequence independent bounds on lifting coefficients as in the
case of covers. To begin with, consider the index set M := {i ∈ N \P : ai > δ}∑

i∈M

xi ≤ 0 (3.11)

is an alternate version of the weight inequality (3.9) and is thus valid for KP . We term
the class of inequalities (3.11) derived from feasible sets (packs) as pack inequalities. Fur-
thermore, pack inequality defines a facet of KP if and only if P is a maximal pack, that is,
a(P ∪ {i}) > b, ∀ i ∈ N \P .

Extensions of Pack Inequalities

Pack inequalities obtained from the feasible lower dimensional restrictions of the knapsack
set K are valid for the respective restrictions. Lifting of pack inequalities is thus necessary
to obtain valid inequalities for conv(K). Atamtürk [5] explore superadditive lower bounds
for the lifting functions of the weight inequality (3.9) to derive the valid inequalities for
conv(K).

For a pack P ⊆ N and the index set M as defined in Section 3.2.2, consider the pack
inequality (3.11).

x(M) ≤ 0

As in the case of cover inequalities, we can strengthen the above inequality by introducing
the variables not present in the inequality (xi, ∀ i ∈ N \M) multiplied with appropriate
coefficients. A trivial procedure to extend the pack inequality (3.11) is by extending the
pack P to obtain a maximal pack P (if ∃ aj ≤ δ, j ∈ N \P define P = P ∪ {j}) and
δ = b− a(P). The corresponding maximal pack inequality

x(N \P) ≤ 0. (3.12)

The maximal pack inequality can further be lifted to the lifted pack inequality

x(N \P)−
∑
i∈P

αi(1− xi) ≤ 0,

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 36

where αi, i ∈ P are the corresponding lifting coefficients. The lifting function of (3.12) can
be expressed as

Λ(a) = max

x(N \P) :
∑

i∈N \P

aixi ≤ δ + a

 (3.13)

for a ≥ 0.

Define

(i) Ai = min
{
a(T) : T ⊆ N \P , |T | = i

}
(ii) Bi = max

{
a(T) : T ⊆ N \P , |T | = i

}
Observe that Ai and Bi can both be computed efficiently by a greedy approach. Suppose

(without loss of generality) N \P = {1, 2, 3, . . . ,m} and a1 ≥ a2 ≥ . . . ≥ am. Then Ai =∑m
j=m−i+1 aj and Bi =

∑i
j=1 ai with A0 = B0 = 0. The lifting function Λ(a), a ≥ 0, can be

expressed in closed form as

Λ(a) =

0, if A0 ≤ a < A1 − δ,
i, if Ai − δ ≤ a < Ai+1 − δ,
m, if Am − δ ≤ a.

(3.14)

Λ(·) is a step function, however ψ(·) defined as

ψ(a) =

i+
(

a−Ai

Ai+1−Ai−δ

)
, if Ai ≤ a ≤ Ai+1 − δ,

i, if Ai − δ ≤ a ≤ Ai,

m, if Am − δ ≤ a.

(3.15)

for a ≥ 0, and i ∈ {0, 1, 2 . . . ,m− 1} represents a subadditive upper bound on Λ(a).

Proposition 3.11. The lifted pack inequality

x(N \P)−
∑
i∈P

ψ(ai)(1− xi) ≤ 0 (3.16)

is valid for conv(K). In addition, (3.16) defines a n−m− 1 dimensional face of convK if
Aik − δ ≤ ak ≤ Aik , for some ik ∈ {0, 1, 2, . . . ,m− 1} for all k ∈ P .

As in the case of cover inequalities, a computationally inexpensive procedure to lift
maximal pack inequalities is to identify whether a variable xi, i ∈ P can be introduced into

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 37

a

ψ(a)

Λ(a)

Ā0 Ā1 Ā2 Ā3 Ām − δ̄ ĀmĀ1 − δ̄ Ā2 − δ̄ Ā3 − δ̄

·
·
·
·

· · · · ·

1

Figure 3.1: Lifting function Λ(a) and subadditive upper bound ψ(a), a ≥ 0

the maximal pack inequality with a coefficient αi ≥ 1. Let E be a set of all such indices, i.e.
E :=

{
i ∈ P : αi ≥ 1

}
. The extended pack inequality thus is

x(E ∪ (N \P)) ≤ |E|. (3.17)

Consider a subset of indices E ⊆ P . Assume that the corresponding variables xi, i ∈ E have
been included in the extended cover inequality. Consider the variable xk, k ∈ P \E) to be
included next in the extended cover.

Proposition 3.12. αk ≥ 1, if ak + δ ≥ max
j∈N \P

aj.

where δ := b − a(P) is the residual capacity of the maximal pack. The corresponding
extension set E ⊆ P can now be defined as

E :=

{
i ∈ P : ai + δ ≥ max

j∈N \P
aj

}
. (3.18)

Proposition 3.13. The extended pack inequality (3.17) is valid for conv(KP \E). In addi-

tion, inequality (3.17) defines a facet of conv(KP \E) if and only if P is maximal and ∀ i ∈ E

∃ distinct {j, k} ∈ N \P such that a(P ∪ {j, k} \ {i}) > b.

Sequence Independent Bounds on the Lifting Coefficients

As in the case of covers, it is of interest to determine sequence independent bounds on
the lifting coefficients of the lifted pack inequality (3.13). The particular bounds can be

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 38

obtained using the lifting function Λ(·) and the subadditive upper bound ψ(·). Observe that

any feasible solution to max
{

x(N \P) :
∑

i∈N \P aixi ≤ δ + aj

}
provides a lower bound

on the lifting coefficient αj, j ∈ P . Alternatively, the subadditive upper bound ψ(aj) yields
an upper bound on αj, j ∈ P . Consider the following

Proposition 3.14. Suppose that P ⊆ N is a maximal pack, and the lifted pack inequality
(3.13) defines a n−m− 1 dimensional face of conv(K), then the following statements hold
for all αj, j ∈ P

(i) αj ≤ h, if aj ≤ Ah.

(ii) αj ≥ h, if aj ≥ Bh − δ.

Proof. (i) Follows from the definition of subadditive upper bound ψ(aj), j ∈ P .
(ii) Consider T ⊆ S such that |T | = h. Observe that, for j ∈ P , αj ≥ h, if a(T) ≤ δ+ aj for
all possible lifting sequences. In other words

αj ≥ h if max
T⊆N \P
|T |=h

a(T) ≤ aj + δ

αj ≥ h if Bh ≤ aj + δ.

The result follows.

Corollary 3.3. The extended pack inequality,

x(N \P) +
∑
j∈P

cjxj ≤ c(P) (3.19)

is valid for conv(K), where cj = h, if Ah ≤ aj ≤ Bh − δ, j ∈ P .

3.2.3 Generalizing the Linear 0-1 Knapsack

In this section, we present a more general expression for the cover inequalities whilst relaxing
the earlier assumption of a > 0. While this is a trivial exercise for the reader, and these
expressions can be readily obtained via complementing variables xi where corresponding
ai < 0, we present the following results to provide a sense of completeness to this analysis.

Reconsider the knapsack set K, with a ∈ R.

Define the indexed sets, I+ and I− as following

I+ := {i ∈ N : ai > 0} I− = N \ I+ := {i ∈ N : ai < 0} .

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 39

The knapsack set K can be redefined for the aforementioned indexed sets as following

K =

x ∈ {0, 1}n :
∑
i∈I+

aixi +
∑
j∈I−
|aj|xj ≤ b+

∑
j∈I−
|aj|

 , (3.20)

where xj = 1− xj, ∀ j ∈ I−.

Proposition 3.15. Inequality xi ≥ 0, i ∈ I+ is facet defining for conv(K).

Proposition 3.16. Inequality xi ≤ 1, i ∈ I− is facet defining for conv(K).

Proposition 3.17. Inequality xi ≤ 1, i ∈ I+ is facet defining for conv(K) if and only if
ai + |ak| ≤ b+ |a|(I−), ∀ k ∈ N \ {i}.

Proposition 3.18. Inequality xi ≥ 0, i ∈ I− is facet defining for conv(K) if and only if
|ai|+ |ak| ≤ b+ |a|(I−), ∀ k ∈ N \ {i}.

Proposition 3.19. If the inequality α>x ≤ β defines a facet for conv(K) not including 0
then β > α(I−), αi ≥ 0, ∀ i ∈ I+ and αj ≤ 0, ∀ j ∈ I−.

Cover Inequalities, a ∈ R

Consider sets, C+ ⊆ I+ and C− ⊆ I−, such that C+ ∪ C− constitutes a cover, i.e.∑
i∈C+

ai +
∑
j∈C−

|aj| > b+
∑
j∈I−
|aj|∑

i∈C+

ai −
∑

j∈I− \C−
|aj| > b

∑
i∈C+

ai +
∑

j∈I− \C−
aj > b

∑
i∈C+∪I− \C−

ai > b.

then, the corresponding cover inequality can be expressed as∑
i∈C+

xi +
∑
j∈C−

xj ≤ |C+ ∪ C−| − 1

∑
i∈C+

xi +
∑
j∈C−

(1− xj) ≤ |C+|+ |C−| − 1

∑
i∈C+

xi −
∑
j∈C−

xj + |C−| ≤ |C+|+ |C−| − 1

∑
i∈C+

xi −
∑
j∈C−

xj ≤ |C+| − 1.

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 40

The following result follows

Proposition 3.20. The generalized cover inequality

x(C+)− x(C−) ≤ |C+| − 1. (3.21)

is valid for conv(K). Furthermore, inequality (3.21) defines a facet for convKC+∪C− if and
only if C+ ∪ C− is of minimal cardinality, i.e.

|ai| ≥ λ, ∀ i ∈ C+ ∪ C−, where λ = a(C+ ∪ (I− \C−))− b.

It can also be seen that the corresponding the generalized lifted cover inequality in this
case can be represented as

x(C+) +
∑

i∈I+ \C+

αixi +
∑

j ∈I− \C−
αjxj − x(C−) ≤ |C+| − 1

x(C+) +
∑

i∈I+ \C+

αixi +
∑

j ∈I− \C−
αj(1− xj)− x(C−) ≤ |C+| − 1

x(C+) +
∑

i∈I+ \C+

αixi −
∑

j ∈I− \C−
αjxj − x(C−) ≤ |C+| −α(I− \C−)− 1

which yields the generalized lifted cover inequality

x(C+) +
∑

i∈I+ \C+

αixi −
∑

j ∈I− \C−
αjxj − x(C−) ≤ |C+| − (α(I− \C−) + 1), (3.22)

where αi ≥ 0, i ∈ I+ \C+ and αj ≥ 0, j ∈ I− \C− are the corresponding lifting coefficients.
Let E be a set of all such indices, i.e. E := {i ∈ N \ (C+ ∪ C−) : αi ≥ 1}.

Sequence independent extensions for this generalization can also be obtained in a manner
similar to Section 3.2.1. We characterize the extension set E with respect to (C+ ∪ C−) as

E :=

{
i ∈ N \ (C+ ∪ C−) : |ai| ≥ max

j∈C+∪C−
|aj|
}
. (3.23)

Further define subsets E+ and E− as

E+ := I+ ∩ E E− := I− ∩ E.

The generalized extended cover inequality can now be expressed as

x(C+ ∪ E+) + x(C− ∪ E−) ≤ |C+|+ |C−| − 1

x(C+ ∪ E+) + |C− ∪ E−| − x(C− ∪ E−) ≤ |C+|+ |C−| − 1

x(C+ ∪ E+) + |C−|+ |E−| − x(C− ∪ E−) ≤ |C+|+ |C−| − 1

x(C+ ∪ E+)− x(C− ∪ E−) ≤ |C+| − (|E−|+ 1).

The following result is immediate.

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 41

Proposition 3.21. The generalized extended cover inequality

x(C+ ∪ E+)− x(C− ∪ E−) ≤ |C+| − (|E−|+ 1) (3.24)

is valid for conv(K). In addition, inequality (3.24) defines a facet of conv(KC+∪C−∪E+∪E−) if
and only if C+∪C− is of minimal cardinality and ∀ i ∈ E+∪E− ∃ distinct {j, k} ∈ C+∪C−
such that |a|(C+ ∪ C− ∪ {i} \ {j, k}) ≤ b+ |a|(I−).

Sequence Independent Bounds on Lifting Coefficients

As a direct generalization of the results presented in Section 3.2.1 we present the following
conditions to provide sequence independent bounds on the lifting coefficients of the lifted
cover inequality (3.22)

x(C+) +
∑

i∈I+ \C+

αixi −
∑

j ∈I− \C−
αjxj − x(C−) ≤ |C+| − (α(I− \C−) + 1),

where αi ≥ 0, i ∈ I+ \C+ and αj ≥ 0, j ∈ I− \C− are the corresponding lifting coefficients.

To obtain the lower bounds on the aforementioned lifted coefficients, we use the alternate
representation of the linear 0− 1 knapsack (3.20). Proposition 3.7 and Proposition 3.8 can
be readily extended to this case to yield lower and upper bounds on the lifting coefficients,
αi, i ∈ N \ (C+ ∪ C−).

Definition 3.3. Let (C+ ∪ C−) ⊆ N be of minimal cardinality such that

a(C+ ∪ (I− \C−)) > b.

For h = 0, 1, 2, 3, . . . , |(C+ ∪ C−)|, define

Ah := max {|a|(T) : T ∈ Th} , (3.25)

Bh := min {|a|(T) : T ∈ Th} , (3.26)

where Th := {T : |T | = h, T ⊆ (C+ ∪ C−)}.

Proposition 3.22. Let (C+ ∪ C−) ⊆ N be a cover with λ := a(C+ ∪ (I− \C−)) − b and
Ah and Bh, h = 0, 1, 2, 3, . . . , |C+ ∪C−| be defined as in (3.25) and (3.26). Suppose that the
lifted pack inequality (3.22) defines a facet of conv(K). Then, for k ∈ N \ (C+ ∪ C−), the
following statements hold:

(i) If |ak| ≥ Ah, then αk ≥ h.

(ii) If |ak| ≤ b+ |a|(I−)−B|C+∪C−|−1−h, then αk ≤ h.

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 42

Pack Inequalities, a ∈ R

Akin to the cover inequalities presented for K, a ∈ R above, we can rewrite the pack in-
equalities similarly, i.e. (via. complementation)

Reconsider the knapsack set K, with a ∈ R. Apropos of the index sets I+ and I− and
corresponding feasible set K (3.20) defined earlier in Section 3.2.3

Consider now, P+ ⊆ I+ and P− ⊆ I−, such that P+ ∪ P− defines a pack, i.e.∑
i∈P+

ai +
∑
j∈P−

|aj| < b+
∑
j∈I−
|aj|∑

i∈P+

ai −
∑

j∈I− \P−
|aj| < b

∑
i∈P+

ai +
∑

j∈I− \P−
aj < b

∑
i∈P+∪I− \P−

ai < b.

For δ := b−a(P+∪ (I− \P−)) and M := {i ∈ N \ (P+ ∪ P−) : |ai| > δ}, the correspond-
ing pack inequality can be expressed as∑

i∈M∩I+
xi +

∑
j∈M∩I−

xj ≤ 0

∑
i∈M∩I+

xi +
∑

j∈M∩I−
(1− xj) ≤ 0

∑
i∈M∩I+

xi + |M ∩ I−| ≤
∑

j∈M∩I−
xj∑

i∈M∩I−
xi −

∑
j∈M∩I+

xj ≥ |M ∩ I−|.

Proposition 3.23. The generalized pack inequality

x(M ∩ I−)− x(M ∩ I+) ≥ |M ∩ I−| (3.27)

is valid for conv(KP+∪P−). Furthermore, inequality (3.27) defines a facet for conv(KP+∪P−)
if and only if P+ ∪ P− is of maximal cardinality, i.e.

|ai| > δ, ∀ i ∈ N \ (P+ ∪ P−)

or M = N \ (P+ ∪ P−).

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 43

In addition, attributing to the above preliminaries we can rewrite the weight inequalities
for the generalized 0− 1 knapsack.

Proposition 3.24. The generalized weight inequality∑
i∈P−

aixi −
∑
i∈P+

ai(1− xi) +
∑

j∈M∩I+
(aj − δ)+xj +

∑
j∈M∩I−

(−aj − δ)+(1− xj) ≤ 0 (3.28)

is valid for conv(K).

For P = P+ ∪ P− maximal and corresponding residue δ = b − a(P+ ∪ (I− \P−)), we
have the maximal pack inequality

x(I− \P)− x(I+ \P) ≥ |I− \P |. (3.29)

and the maximal weight inequality∑
i∈P−

aixi −
∑
i∈P+

ai(1− xi) +
∑

j∈I+ \P+

(aj − δ)+xj +
∑

j∈I− \P−
(−aj − δ)+(1− xj) ≤ 0. (3.30)

It can also be seen that the corresponding generalized lifted pack inequality for P maxi-
mal, can be represented as

x(I− \P)−
∑
i∈P+

αi(1− xi)− x(I+ \P)−
∑
j ∈P−

αj(1− xj) ≥ |I− \P |

x(I− \P) +
∑
i∈P+

αixi −α(P+)− x(I+ \P)−
∑
j ∈P−

αjxj ≥ |I− \P |

x(I− \P) +
∑
i∈P+

αixi − x(I+ \P)−
∑
j ∈P−

αjxj ≥ |I− \P |+α(P+)

which yields the generalized lifted pack inequality

x(I− \P) +
∑
i∈P+

αixi − x(I+ \P)−
∑
j ∈P−

αjxj ≥ |I− \P |+α(P+), (3.31)

where αi, i ∈ P+ := P ∩ I+ and αj, j ∈ P− := P ∩ I− are the corresponding lifting
coefficients. Let E be a set of all such indices, i.e. E :=

{
i ∈ P : αi ≥ 1

}
.

We characterize the extension set E with respect to (P+ ∪ P−) as

E :=

{
i ∈ P : |ai|+ δ ≥ max

j∈N \P
|aj|
}
, (3.32)

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 44

where δ = b− a(P+ ∪ (I− \P−)).

Further define subsets E+ and E− as

E+ := I+ ∩ E E− := I− ∩ E.

The generalized pack inequality can now be expressed as

x(E+ ∪ I− \P)− x(E− ∪ I+ \P) ≥ |I− \P |+ |E+|.
Proposition 3.25. The generalized extended pack inequality

x(E+ ∪ I− \P)− x(E− ∪ I+ \P) ≥ |I− \P |+ |E+|. (3.33)

is valid for conv(KP+∪P− \ (E+∪E−)). In addition, (3.33) defines a facet of conv(KP+∪P− \ (E+∪E−))

if and only if P is of maximal cardinality and ∀ i ∈ E ∃ distinct {j, k} ∈ N \P such that
|a|(P ∪ {j, k} \ {i}) > b+ |a|(I−).

The extended pack inequalities are often valid for low dimensional extensions of the
knapsack set and not the original set itself. Lifting the pack inequalities yields us strong
inequalities that are valid for the convex hull of the original knapsack set, conv(K). The
lifted pack inequality for the generalized linear 0− 1 knapsack can be expressed as (3.31)

x(I− \P) +
∑
i∈P+

αixi − x(I+ \P)−
∑
j ∈P−

αjxj ≥ |I− \P |+α(P+),

where P represents a maximal pack, and αi ≥ 0, i ∈ P+ and αj ≥ 0, j ∈ P− are the
corresponding lifting coefficients.

Sequence independent bounds on the aforementioned lifting coefficients can be obtained
as a direct generalizations of Proposition 3.14.

Proposition 3.26. Suppose that P ⊆ N is a maximal pack. Let m = |N \P | and suppose
the lifted pack inequality (3.13) defines a n −m − 1 dimensional face of conv(K), then the
following statements hold for all αj, j ∈ P .

(i) αj ≤ h, if |aj| ≤ Ah,

(ii) αj ≥ h, if |aj| ≥ Bh − δ,

where Ah = min
{
a(T) : T ⊆ N \P , |T | = h

}
and Bh = max

{
a(T) : T ⊆ N \P , |T | = h

}
for h = 0, 1, 2, . . . ,m and the excess δ = b− a(P+ ∪ (I+ \P−)).

Corollary 3.4. The extended generalized pack inequality

x(I− \P) +
∑
i∈P+

cixi − x(I+ \P)−
∑
j ∈P−

cjxj ≥ |I− \P |+ c(P+) (3.34)

is valid for conv(K), where cj = h, if Ah ≤ aj ≤ Bh − δ, j ∈ P .

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 45

3.3 General Submodular Knapsack Polytope

In this section we will extend the results of the 0−1 linear knapsack to submodular knapsacks.
Consider a set function f : {0, 1}n 7→ R, f(∅) = 0. For f submodular on a finite set N and
b ∈ R, we define the submodular knapsack set Kf as lower level set of f

Kf = {x ∈ {0, 1}n : f(x) ≤ b} .

Special cases for the submodular knapsack polytope, namely when f is non-decreasing on
N and when f is non-increasing have been studied by Atamtürk and Narayanan [12] and
Atamtürk and Bhardwaj [8] respectively, where they derive valid cover/pack inequalities
and their extensions for this special case. The generalization of cover inequalities to this
special case, although interesting appears to lack the understanding of their evolution. It
also appears that the general submodular knapsack has not been studied yet in the liter-
ature. In this particular section we will present the corresponding valid inequalities and
their extensions for the generalized submodular polytope conv(Kf), whilst also providing
an understanding vis-à-vis how these inequalities can be derived from the conjunction of
two of the main understandings for knapsacks and submodular functions, namely the cover
inequalities and the extended polymatroids. These inequalities per our understanding serve
as the most generalized version of the cover and pack inequalities for the knapsack polytope.

3.3.1 Submodular Functions and Extended Polymatroids

Let N := {1, . . . , n} be a finite set and f : 2N → R be a set function on N . Assume without
loss of generality that f(∅) = 0 since f can be translated otherwise. Define the convex lower
envelope of f as

Pf := conv {(x, z) ∈ {0, 1}n × R : f(x) ≤ z} .

Observe that Pf is a polyhedron since it is the convex hull of disjunction of 2n polyhedra
obtained for each assignment of x ∈ {0, 1}n.

Definition 3.4. We define a bijection σ : S ⊆ N 7→ {1, 2, . . . , |S|} called a labeling of S
and σi is the corresponding label of i ∈ S. We define the inverse function of σ with π and
refer to π = {π1, π2, . . . , π|S|} as a permutation (ordering) of S.

Definition 3.5. For S ⊆ N , we define OS as the set of all labelings of the set S.

Definition 3.6. For a set function f on N satisfying f(∅) = 0, define

EPf := {v ∈ Rn : v(S) ≤ f(S) for all S ⊆ N} .

The next simple proposition shows a polarity relationship between EPf and a subset of
the valid inequalities for Pf .

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 46

Proposition 3.27. (Atamtürk and Narayanan, 2008, [11]) Inequality v>x ≤ z is valid for
Pf if and only if v ∈ EPf .

Proposition 3.31 also implies the following result:

Proposition 3.28. (Atamtürk and Narayanan, 2008, [11]) Inequality v>x ≤ z is facet-
defining for Pf if and only if v is an extreme point of EPf .

If f is a submodular function, EPf is called the extended polymatroid associated with f
[80]. Edmonds [36] characterized the extreme points of the extended polymatroid EPf .

Theorem 3.1. (Edmonds, 1970, [36]) For any submodular function f on a finite set N
(f(∅) = 0), the vertices of the extended polymatroid EPf are given by

vπj = f({π1, π2, . . . , πj})− f({π1, π2, . . . , πj−1}),

for a permutation π of N . We denote the vertex of EPf corresponding to π as vπ.

We refer to inequalities v>x ≤ z defined by the extreme points of the extended polyma-
troid EPf as the extended polymatroid inequalities.

Definition 3.7. Let Vf denote the set of all extreme points of EPf .

Definition 3.8. For b ∈ R define

Kv :=
{
x ∈ {0, 1}n : v>x ≤ b

}
for some v ∈ Vf and Kf := {x ∈ {0, 1}n : f(x) ≤ b} .

Proposition 3.29. Kf ⊆ Kv for all v ∈ Vf .

Proof. Suppose that x ∈ Kf . Then, v>x ≤ f(x) ≤ b for all v ∈ Vf . Thus, x ∈ Kv for all
v ∈ Vf .

Proposition 3.30.
⋂

v∈Vf

Kv = Kf .

Proof. It follows from Proposition 3.29 that Kv ⊇ Kf for all v ∈ Vf . It follows that⋂
v∈Vf

Kv ⊇ Kf .

To see the containment
⋂

v∈Vf

Kv ⊆ Kf , suppose that x ∈
⋂

v∈Vf

Kv. Then, by Corollary

44.3e of Schrijver [80], we see that there exists v ∈ Vf such that f(x) = v>x, and hence,
f(x) ≤ b.

Proposition 3.31. If α>x ≤ β, is valid for Kv for some v ∈ Vf then α>x ≤ β is valid
for Kf .

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 47

Proof. Proposition 3.29 implies that for v ∈ Vf , Kv ⊆ Kf . Since α>x ≤ β is valid for
Kv ⊇ Kf , it is valid for conv(Kf).

Proposition 3.32. Let α>x ≤ β be valid Kv, for some v ∈ Vf and ∃ x1,x2, . . . ,xk, k
(≤ n) affinely independent points on the hyperplane α>x = β satisfying f(xi) ≤ b for all
1 ≤ i ≤ k then α>x ≤ β defines a k−1 dimensional face of conv(Kf) if and only if α>x ≤ β
defines a k − 1 dimensional face of conv(Kv). In particular, when k = n, α>x ≤ β then
defines a facet of both conv(Kv) and conv(Kf).

Proof. Sufficiency follows from the validity of α>x ≤ β for Kv and hence Kf . Since ∃
x1,x2, . . . ,xk, k (≤ n) affinely independent points on the hyperplane α>x = β satisfying
f(xi) ≤ b for all 1 ≤ i ≤ k thus α>x ≤ β defines a k − 1 dimensional face of conv(Kf).

To see the necessity, observe that since xi, 1 ≤ i ≤ k are on the hyperplane α>x = β
satisfying f(xi) ≤ b, it follows from Proposition 3.29 that xi ∈ Kv. Since α>x ≤ β is valid
Kv it follows that α>x ≤ β defines a k − 1 dimensional face of conv(Kv).

In particular, when k = n, α>x ≤ β defines a n − 1 dimensional face (facet) of both
conv(Kf) and conv(Kv).

3.3.2 Polyhedral Analysis of Kf

In this section we analyze the polyhedral structure of Kf . Specifically, we derive valid
inequalities for Kf and conditions under which these valid inequalities are facet defining. As
earlier, let f : {0, 1}n 7→ R be a submodular set function on a finite set N . Assume without
loss of generality f(∅) = 0. Furthermore, we assume min

S⊆N \ i
f(S) ≤ b for all i ∈ N . Define

the sets, I+ and I− as

I+ = {i ∈ N : ρi(N \ i) > 0} . (3.35)

I− = {j ∈ N : ρi(∅) < 0} . (3.36)

Observe that for
∑

i∈S vπi = f(S) irrespective of the ordering π of the elements of N .
For the permutation π, define the index sets Iπ and Jπ as following

Iπ = {πi ∈ π : vπi > 0} . (3.37)

Jπ = {πj ∈ π : vπi < 0} . (3.38)

One can easily observe that I+ ⊆ Iπ and I− ⊆ Jπ. In particular, I+ =
⋂

π∈Vf

Iπ and

I− =
⋂

π∈Vf

Jπ.

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 48

3.3.3 Valid Inequalities for Kf

We begin our subsequent discussion on valid inequalities for Kf by presenting the results on
the trivial facets of the Kf .

Proposition 3.33. Inequality xi ≥ 0, i ∈ I+ defines a non-empty face of conv(Kf).

Proof. Consider for permutation π the corresponding set Iπ as defined in (3.37). xi ≥ 0,

i ∈ Iπ is facet defining for Kvπ . Let S =

{
Si : Si = arg min

S⊆N \ i
f(S) ≤ b, i ∈ I+

}
. Observe

that |S| ≥ 1 since min
S⊆N \ i

f(S) ≤ b for all i ∈ N . Thus there is at least one point xS, S ∈ S

such that f(xS) ≤ b on the face xi = 0, i ∈ I+. The result follows.

Proposition 3.34. Inequality xi ≤ 1, i ∈ I− defines a non-empty face of conv(Kf).

Proof. Consider for permutation π the corresponding set Jπ as defined in (3.38). xi ≤ 1,

i ∈ Jπ is facet defining for Kvπ . Let S =

{
Si : Si = arg min

S⊆N \ i
f(S) ≤ b, i ∈ I−

}
. Observe

that f(S ∪ i) ≤ b for all S ∈ S, i ∈ I−. Furthermore, see that |S| ≥ 1 since min
S⊆N \ i

f(S) ≤ b

for all i ∈ N . Thus there is at least one point xS, S ∈ S such that f(xS) ≤ b on the face
xi = 1, i ∈ I−. The result follows.

We now present the notion of submodular covers analogous to linear 0 − 1 knapsack
covers as discussed in Section 3.2.3.

3.3.4 Submodular Cover Inequalities

Definition 3.9. S ⊆ N is a submodular cover if f(S) > b with excess λ := f(S)− b > 0.

In particular, submodular covers are the sets that are infeasible for Kf . Valid inequalities
from this characterization follow immediately.

Proposition 3.35. For a submodular cover S ⊆ N the cover inequality

x(S)− x(N \S) ≤ |S| − 1 (3.39)

is valid for Kf .

Proof. DefineKf := {x ∈ {0, 1}n : x(S)− x(N \S) ≥ |S|}. It suffices to show that f(x) >
b, ∀x ∈ Kf . It is easy to see that Kf = {x ∈ {0, 1}n : xi = 1 ∀ i ∈ S, xi = 0 ∀ i ∈ N \S}.
The result follows from Definition 3.9.

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 49

A close observation yields that the cover inequalities (3.39) are weak. In the following
discussion we will propose strong inequalities for the lower dimensional restrictions of Kf .
Throughout the rest of the discussion we assume, without lost of generality, that ρi(S \ i) > 0
∀i ∈ S.

Definition 3.10. For S1, S2 ⊆ N , we define a restriction of Kf as

Kf (S1, S2) = {x ∈ Kf : xi = 1 for all i ∈ S1, xj = 0 for all j ∈ S2} .

Valid inequalities for this restriction follow from the characterization of submodular covers
immediately.

Proposition 3.36. For a submodular cover S ⊆ N the cover inequality

x(S) ≤ |S| − 1 (3.40)

is valid for conv(Kf (∅, N \S)). In addition, (3.40) defines a facet of conv(Kf (∅, N \S)) if
and only if f(S \ i) ≤ b for all i ∈ S.

Proof. Consider Kf (S) := {x ∈ Kf (∅, N \S) : x(S) ≥ |S|}. It is easy to see that Kf (S) =
∅ since S is a cover. For the second part consider the |S| affinely independent points 1−ei ∈
Kf (∅, N \S) for 0 ≤ i ≤ |S| on the face x(S) = |S| − 1. Conversely, assume ∃ i ∈ S such
that f(S \ i) > b. The valid cover inequality

x(S \ i) ≤ |S \ i| − 1

and xi ≤ 1 dominate inequality (3.40).

Definition 3.11. For a cover S ⊆ N define the index set

S := {j ∈ N \S : ρj(N \ j) < 0} .

Proposition 3.37. For a submodular cover S ⊆ N , the submodular cover inequality

x(S)− x(S) ≤ |S| − 1 (3.41)

is valid for conv(Kf). In addition, (3.41) is facet defining for conv(Kf (∅, N \ (S ∪ S))) only
if

f(S \ i) ≤ b ∀ i ∈ S and

f(S ∪ j) ≤ b ∀ j ∈ S,

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 50

Proof. Define Kf :=
{
x ∈ {0, 1}n : x(S)− x(S) ≥ |S|

}
. It suffices to show that f(x) >

b, ∀x ∈ Kf . It is easy to see that Kf =
{
x ∈ {0, 1}n : xi = 1 ∀ i ∈ S, xi = 0 ∀ i ∈ S

}
.

Since ρj(N \ j) ≥ 0 ∀ j ∈ N \ (S ∪ S), f(S ∪ T) > b ∀ T ⊆ N \ (S ∪ S). The result follows.

For the second part consider the |S|+ |S| points xk ∈ {0, 1}n defined as

xk = (1− ek,0) ∀ k ∈ S,
xk = (1, ek) ∀ k ∈ S.

The |S|+ |S| points defined above are affinely independent. Since

f(S \ i) ≤ b ∀ i ∈ S and

f(S ∪ j) ≤ b ∀ j ∈ S,

xk ∈ conv(Kf (∅, N \ (S ∪ S))) and lie on the face x(S)− x(S) = |S| − 1.

Remark 3.1. In the special case when S = ∅ i.e. f is non decreasing on N , inequality (3.41)
yields the cover inequalities considered in [12]. When S = ∅ i.e. f is non increasing on N ,
inequality (3.41) yields the pack inequalities discussed in [8] (Chapter 2). Proposition 3.37
thus generalizes the results of Atamtürk and Narayanan [12] and Atamtürk and Bhardwaj
[8] for monotone submodular set functions.

In the special case when S \ {j ∈ N \S : ρj(S) ≤ −λ} = ∅, we can further strengthen
the result of Proposition 3.37.

Proposition 3.38. If S \ {j ∈ N \S : ρj(S) ≤ −λ} = ∅ then (3.41) is facet defining for
conv(Kf (∅, N \ (S ∪ S))) if and only if f(S \ i) ≤ b ∀ i ∈ S.

Proof. Necessity follows from Proposition 3.37. To observe sufficiency observe that if ∃ i ∈ S
such that f(S \ i) > b then the valid submodular cover inequality

x(S \ i)− x(S) ≤ |S \ i| − 1

and xi ≤ 1 dominate inequality (3.41).

Example 3.1. Consider the set K defined as

K =
{
x ∈ {0, 1}3 : 2x2

1 + x2
2 + 2x2

3 − x1x2 − 2x1x3 − 4x2x3 ≤ 1
}
.

The set K can be enumerated as K = {(0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1)}.

For strong submodular cover S = {1} and T = {2, 3}, we write the submodular cover
inequality

x1 ≤ x2 + x3.

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 51

Figure 3.2: Convex hull conv(K)

For strong submodular cover S = {3} : T = {1, 2}, submodular cover inequality

x3 ≤ x1 + x2.

Both inequalities define facets of conv(K).

Proposition 3.36 and Proposition 3.37 provide conditions under which the corresponding
cover and submodular cover inequalities are valid and facet defining for the restrictions of
Kf . These conditions, however, are not sufficient for the corresponding inequalities to be
facet defining for Kf itself. An approach to derive strong inequalities for Kf is to study the
lower dimensional projections of Kf and derive strong valid inequalities for these projections
and lift the same to original variable space.

Proposition 3.37 provides necessary conditions to derive strong valid inequalities for low
dimensional restrictions of Kf . These inequalities can then be lifted to yield strong valid
inequalities in the original space. Lifting, and in particular, sequential lifting to obtain exact
lifting coefficients can be computationally expensive. In Section 3.4 we present efficient ways
to lift the low dimensional restrictions of Kf via the extended polymatroids associated with
the set function f .

3.3.5 Submodular Pack Inequalities

With apropos to the preliminaries defined in Section 3.3.4, we define the notion of submodular
packs

Definition 3.12. P ⊆ N is a submodular pack if f(P) < b with residual δ := b−f(P) > 0.

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 52

For a submodular pack P ⊆ N , define the index set P+ := {i ∈ I+ \P : ρi(P) > δ}.
The following result is an immediate consequence.

Proposition 3.39. For a submodular pack P ⊆ N , the submodular pack inequality

x(P+) ≤ 0 (3.42)

is valid for Kf (P,N \ (P ∪ I+)).

Observe that, given any pack P ⊆ N , it is trivial to introduce elements from the com-
plement set N \P to obtain a pack P such that P+ = I+ \P . This observation can be used
to further strengthen submodular pack inequalities.

Proposition 3.40. For a submodular pack P ⊆ N such that P+ = I+ \P , the submodular
pack inequality (3.42) defines a facet of Kf (P,N \ (P ∪ I+)).

Submodular pack inequalities (3.42) are derived from the restrictions of the submodular
knapsack polytope and are valid for the corresponding projections and not necessarily for Kf .
Weight inequalities [94] as seen in Sections 3.2.2 and 3.2.3 that are valid for the knapsack set,
can be directly generalized to the case of submodular knapsack via extended polymatroid
associated with the corresponding set function f . We formalize this in the following result.

Proposition 3.41. The submodular weight inequality∑
j∈Jπ \P

ρj(N \ j)xj −
∑

i∈P∩Iπ

f(i)(1− xi) +
∑

i∈Iπ \P

(ρi(N \ i)− δ)+xi +

∑
j∈P∩Jπ

(−f(j)− δ)+(1− xj) ≤ 0

is valid for Kf , where P ⊆ N is a pack and δ = b− f(P).

Proof. Consider a permutation π = {1, 2, . . . , n} of the elements of the index set N . Define
the corresponding index sets Iπ and Jπ. Proposition 3.24 suggests that the following weight
inequality∑

j∈Jπ \P

vπj xj −
∑

i∈P∩Iπ

vπi (1− xi) +
∑

i∈Iπ \P

(vπi − δ)+xi +
∑

j∈P∩Jπ

(−vπj − δ)+(1− xj) ≤ 0

is valid for Kf . Furthermore, submodularity of the set function f suggests

ρj(N \ j) ≤ vπj ≤ f(j),∀ j ∈ N, ∀ π.

The result follows.

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 53

3.3.6 Lifted Submodular Cover Inequalities

In this section we study the lifting problem of the valid inequalities discussed earlier in
order to strengthen them. The lifting procedure has been very effective in strengthening
inequalities for the linear 0 − 1 min-knapsack set [15, 17, 18, 43, 45, 95] as described in
Section 3.2.1. The lifting problem for the submodular cover inequalities for Kf is itself an
optimization problem over the submodular knapsack set.

In particular, we lift the submodular cover inequality (3.41) to a valid inequality of the
form,

x(S)− x(S) +
∑

i∈Iπ \S

αixi −
∑

j ∈Jπ \S

αjxj ≤ |S| − (α(Jπ \S) + 1) (3.43)

where αi ≥ 0, i ∈ N \ (S ∪ S) are the corresponding lifting coefficients. Observe that unlike
in the linear 0− 1 knapsack case, the lifted cover inequalities are dependent on the sequence
π used for lifting.

3.3.7 Strengthening the Valid Inequalities via Extensions

As in the case of linear 0− 1 knapsack, we can strengthen the inequalities corresponding to
submodular covers (3.39) via computationally efficient extensions. In the following discussion
we provide an analogous procedure to extend these inequalities as in Section 3.2.1.

Definition 3.13. For a submodular cover S ⊆ N and S = {j ∈ N \S : ρj(N \ j) < 0} let
π be a permutation of elements of N \ (S ∪ S). Define Sk := Sk−1 ∪ (k), with S0 = S.
Extension of S ∪ S w.r.t. π is defined as

Eπ(S) :=

{
(k) ∈ π : ρ(k)(Sk−1) ≥ max

j∈(S∪S)
{ρj(∅), |ρj(N \ j)|}

}

With apropos to the extension set Eπ(S) we can extend the submodular cover inequalities
in the following manner.

Proposition 3.42. Extended submodular cover inequality

x(S ∪ Eπ(S))− x(S) ≤ |S| − 1 (3.44)

is valid for K.

Proof. Let U be a subset of S ∪ Eπ(S) and R ⊆ S such that |U | − |R| is at least |S|. It is
sufficient to show f(U∪R) > b. Let K = S \U and L ⊆ Eπ(S) := {l1, l2, . . . , l|L \R|, . . . , l|L|}

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 54

indexed consistently with π such that U = S ∪ L \K.

f(U ∪R) = f(S ∪ L ∪R \K)

= f(S \K) +
∑
li∈L

ρli(S ∪ {l1, l2, . . . li−1} \K) + ρR(S ∪ L \K)

= f(S \K) +

|L \R|∑
i=1

ρli(S ∪ {l1, l2, . . . li−1} \K)+

|L|∑
i=|L \R|+1

ρli(S ∪ {l|L \R|+1, l|L \R|+2, . . . li−1} \K) + ρR(S ∪ L \K)

≥ f(S \K) +

|L \R|∑
i=1

ρli(S ∪ {l1, l2, . . . li−1} \K)+

|L|∑
i=|L \R|+1

ρli(S ∪ {l|L \R|+1, l|L \R|+2, . . . li−1} \K) +
∑
j∈R

ρj(N \ j)

≥ f(S \K) +
∑

(k)∈π

ρ(k)(Sk−1)

≥ f(S \K) +
∑
i∈K

ρi(∅)

≥ f(S \K) +
∑
i∈K

ρi(S \K) ≥ f(S) > b.

The second inequality follows from the definition of Eπ(S), submodularity of f and the
observation that ρj(N \ j) ≥ 0 ∀ j ∈ N \ (S ∪ S).

Remark 3.2. It should be observed that as in the case of 0− 1 linear knapsack, and stated
in Proposition 3.21, the extensions for submodular knapsack are not sequence independent.

Remark 3.3. In the special case when S = ∅, ∀π i.e. f is non decreasing on N , inequality
(3.44) yields an extension for the case considered in [12].

3.3.8 Sequence Independent Bounds on Lifting Coefficients

Akin to the linear 0−1 knapsacks, we can derive the sequence independent lifting coefficients
for the submodular knapsack Kf . It is now that we will utilize the results from Section 3.2.3
to derive these bounds. In addition we will also demonstrate that the earlier results by
Atamtürk and Narayanan [12] are a special case of these generalizations. Before proceeding,
we define the following preliminaries.

Definition 3.14. For an index set T , let σT = {1, 2, . . . |T |} be a labeling of elements of T
and πT = σ−1

T consistent with Definition 3.4. We define the set function g : {0, 1}|T | 7→ R

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 55

as

g(πT) =

|T |∑
i=1

|ρπi ({π1, π2, . . . , πi−1})| . (3.45)

Observe that when f is monotone non-decreasing (non-increasing) then g(πT) is inde-
pendent of the permutation πT and evaluates to f(T) (−f(T)).

Definition 3.15. For h ≥ 0, we define

Ah := max
{
g(πT) : T ⊆ S ∪ S, |T | = h, πT = σ−1

T , ∀ σT ∈ OT
}
, (3.46)

Bh := min
{
g(πT) : T ⊆ S ∪ S, |T | = h, πT = σ−1

T , ∀ σT ∈ OT
}
. (3.47)

Owing to the above characterizations of Ah and Bh the following results follow from
Proposition 3.22 and Proposition 3.31.

Proposition 3.43. Let the submodular cover inequality (3.41) be lifted to a valid inequality
of the form (3.43). Then for k ∈ N \ (S ∪ S)

1. αk ≥ h, if min{|f(k)|, |ρk(N \ k)|} ≥ Ah.

2. αk ≤ h, if max{|f(k)|, |ρk(N \ k)|} ≤ b−B|S∪S)|−1−h.

Remark 3.4. In the special case when f is non decreasing on N , Proposition 3.43 yields
the result of Proposition 7 in [12].

3.4 Lifting via Extended Polymatroids

In the previous section we generalized the existing results on monotone submodular knap-
sacks to general submodular knapsack set. Monotonicity however is an important assump-
tion in this context. To observe this, note that in the case when the underlying submodular
function is monotone (non-decreasing/non-increasing) then the coefficients of each extended
polymatroid inequality are all non-negative/non-positive. Louveaux and Weismantel [61]
showed that in the case of intersection of multiple 0− 1 linear knapsacks constraints, if the
coefficient matrix is all non-negative/non-positive then each of the facets for the intersection
of the knapsacks can be derived from the individual knapsack constraints. This explains the
computational effectiveness of the cover inequalities in the monotone case [12, 8]. The same
argument however doesn’t extend to the case of general submodular knapsack.

In this section we propose a way to utilize the extended polymatroid inequalities to
strengthen the submodular cover inequalities. As a preliminary consider the following,

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 56

Definition 3.16. For the extended polymatroid inequality corresponding to a permutation
π = {π1, π2, . . . , πn} of the index set N , we define an extended polymatroid cover as any
cover corresponding to the linear 0− 1 knapsack vπx ≤ b, vπ ∈ Vf .

Definition 3.17. Let S ⊆ N be a submodular cover. Also let σS = {1, 2, . . . |S|} be a
labeling of elements of S and σN \S = {1, 2, . . . |N \S|} be a labeling of elements of N \S.
Define the set

PS :=
{
π = {πS,πN \S} : πS = σ−1

S and πN \S = σ−1
N \S for all σS ∈ OS,σN \S ∈ ON \S

}
Observe that |PS| = |S|!×|N \S|!. The following result serves as a preliminary to derive

strong valid inequalities using the extended polymatroid of f .

Proposition 3.44. For S ⊆ N defining a submodular cover, the submodular cover inequality
(3.41) is valid for all extended polymatroid inequalities vπ>x, π ∈ PS.

Proof. Consider the submodular cover S and the extended polymatroid inequality vπ>x ≤ b
corresponding to some π ∈ PS. The cover inequality

x(S)− x(Jπ) ≤ |S| − 1.

is valid for the linear 0 − 1 knapsack defined by vπ>x ≤ b. Since Jπ ⊆ S, ∀ π ∈ PS, we
obtain that

x(S)− x(S) ≤ |S| − 1.

is valid for vπ>x ≤ b, π ∈ PS.

Proposition 3.44 suggests a way to utilize the extended polymatroid inequalities to lift
the submodular cover inequality. Indeed the submodular cover inequality is valid for the
extended polymatroid inequalities for permutations π ∈ PS. Lifting these inequalities while
utilizing information from an aggregation of subset of extended polymatroid inequalities will
yield valid inequalities for Kf .

The following example serves as a motivation to consider the aggregation of extended
polymatroid inequalities to lift the cover inequalities of the form (3.41).

Example 3.2. Consider the following conic-quadratic knapsack set defined by a submodular
set function.

X =

{
x ∈ {0, 1}5 : 2x1 + 2x2 + x3 + x4 + x5 +

√
9x2

3 + 9x2
4 + 9x2

5 ≤ 3.5

}

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 57

For submodular cover = {1, 2}, we can obtain the following extended submodular cover
inequalities [12].

x1 + x2 + x3 + x4 ≤ 1

x1 + x2 + x4 + x5 ≤ 1

x1 + x2 + x3 + x5 ≤ 1

The corresponding extended polymatroid inequalities are

2x1 + 2x2 + 4.000x3 + 2.242x4 + 1.954x5 ≤ 3.5

2x1 + 2x2 + 2.242x3 + 1.952x4 + 4.000x5 ≤ 3.5

2x1 + 2x2 + 1.952x3 + 4.000x4 + 2.242x5 ≤ 3.5.

A simple aggregation of the extended polymatroid inequalities yields the aggregated extended
polymatroid inequality

6x1 + 6x2 + 8.196x3 + 8.196x4 + 8.196x5 ≤ 10.5

which yields the extended polymatroid cover inequality,

x1 + x2 + x3 + x4 + x5 ≤ 1.

The extended polymatroid cover inequality obtained via aggregation of extended polymatroid
inequalities dominates each of the extended submodular cover inequalities.

We refer to the inequality obtained by aggregation of extended polymatroid inequali-
ties as the aggregated extended polymatroid inequality. Example 3.2 motivates aggregation
of extended polymatroid inequalities to derive strong valid inequalities. As employed in
the example, a trivial way to aggregate the extended polymatroid inequalities is via sim-
ple addition. Once we obtain an aggregated extended polymatroid inequality we can lift
the submodular cover inequality (valid for aggregation) using sequence independent lifting
techniques for linear 0 − 1 knapsacks [43, 42, 44, 7, 17]. We formalize the idea of extended
polymatroid aggregation in the following.

For a submodular cover S ⊆ N , let {πi}1≤i≤m ⊆ PS be a set of permutations corre-
sponding to the extended polymatroid inequalities vπi>x ≤ b, 1 ≤ m to be aggregated.
Furthermore, let w = {w1, w2, . . . , wm} such that 1>w = 1 be the normalized aggregation
weights apropos to the extended polymatroid inequalities. Define A = [vπ1 ,vπ2 ,vπm] as
the matrix with extended polymatroid coefficients. The aggregated extended polymatroid
inequality obtained using weights w is

(Aw)>x ≤ b (3.48)

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 58

Corollary 3.5. For S ⊆ N defining a submodular cover, the submodular cover inequality
(3.41) is valid for the aggregated extended polymatroid inequality (3.48).

Proof. Proposition 3.44 yields that the submodular cover inequality (3.41) is valid for all
extended polymatroid inequalities vπ>x, π ∈ PS. the submodular cover inequality (3.41)
is thus valid for any convex combination of the extended polymatroid inequalities vπ>x for
π ∈ PS. The result follows.

The corresponding cover inequality to be lifted is

x(S)− x(S) ≤ |S| − 1.

Indeed the obvious question regarding the aggregation of extended polymatroid inequalities
pertains to deriving aggregation weights w. The problem of finding the best aggregation
weights to lift the aggregated extended polymatroid inequality depends on the lifting proce-
dure to be used as well. As seen in Example 3.2, one way to lift inequality (3.41) is by using
the sequence independent bounds introduced by Balas [17]. These sequence independent
bounds on the lifting coefficients have been used to lift cover inequalities using efficiently
computable extensions in the case of monotone submodular knapsacks [12, 8]. The prob-
lem of finding optimal aggregation weights w to derive extensions of inequality (3.41) using
sequence independent bounds can be formulated as

minimize 1>s

(AEPW) subject to
n∑

i=|S|+1

|vπiwi| ≥ (1− s) · α

1>w = 1

s ∈ {0, 1}|N \S|

w ≥ 0

where α = max
j∈S∪S

(|f(j)| − |ρj(N \ j)|)++|ρj(N \ j)|. Let (s∗,w∗) denote the optimal solution

to (AEPW). The extended submodular cover inequality derived via aggregation of extended
polymatroids is

x(S ∪ E+)− x(S ∪ E−) ≤ |S| − (|E−|+ 1) (3.49)

where E+ :=
{
j ∈ N \ (S ∪ S) : (Aw∗)j · (1− s∗j) > 0

}
and

E− :=
{
j ∈ N \ (S ∪ S) : (Aw∗)j · (1− s∗j) < 0

}
.

Proposition 3.45. Finding optimal aggregation weights w∗ to derive extensions of the sub-
modular cover inequality is NP-hard.

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 59

Proof. Finding optimal aggregation weights w to to derive extensions of the submodular
cover inequality is equivalent to finding an optimal solution for (AEPW). (AEPW) is an
instance of MAX-CSP which is NP-hard.

Finding optimal aggregation weights in general is computationally expensive. Observe
that any feasible solution (s,w) can be used to derive a valid lifted submodular cover in-
equality. In Example 3.2 we utilized equal weights to aggregate the extended polymatroid
inequality. Better heuristics can be used to derive good aggregation weights and in turn com-
putationally efficient valid inequalities. As we will see in Section 3.6 even simple heuristics
yield substantial computational performance improvement. For the computational analysis
we will employ simple addition as an aggregation heuristic.

Observe that deriving extensions of the submodular cover inequality is a very special
case of the lifting. In particular, for extended valid inequalities the lifting coefficients are
restricted to take values from the set {−1, 0, 1}. In other words, the primary objective while
extending any valid inequality is to establish whether or not a variable currently not present
in the valid inequality can be introduced in the inequality with a non-zero lifting coefficient.
Indeed, deriving tighter bounds on the exact lifting coefficients with further help strengthen
the submodular cover inequalities.

Superadditive lifting techniques have been studied quite extensively with reference to
linear 0 − 1 knapsacks in literature [43, 42, 44, 7]. This lifting procedure involves deriving
superadditive lower bounds on the exact lifting functions to yield sequence independent
lifting. We refer the reader to [5] for a survey of sequence independent lifting procedures
using superadditive lower bounds. For given weights w, the aggregated extended polymatroid
inequality (3.48) can be lifted using the superadditive lifting techniques in the following
manner.

Consider a submodular cover S ⊆ N . For S, A as defined earlier and given aggregation
weights w let ω = Aw and define the index sets,

A+ :=
{
j ∈ N \ (S ∪ S) : ωj > 0

}
A− :=

{
j ∈ N \ (S ∪ S) : ωj < 0

}
Define Lh = max

{∑
j∈T

|ωj| : T ⊆ (S ∪ S), |T | = h

}
.

With the preliminaries defined above we can now derive the lifted submodular cover
inequality.

Proposition 3.46. The lifted submodular cover inequality

x(S) +
∑

i∈A+ \S

ψ (|ωi|)
λ

xi −
∑

i∈A− \S

ψ (|ωi|)
λ

xi − x(S) ≤ |S| −
∑

i∈A− \S

ψ (|ωi|)
λ

− 1 (3.50)

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 60

where

ψ(a) =

hλ if Lh ≤ a ≤ Lh+1 − λ
hλ+ (a− Lh) if Lh − λ ≤ a ≤ Lh

pλ+ (a− Lp) if Lp − λ ≤ a

,

is a superadditive lower bound on the lifting function of (3.48), λ :=
∑

j∈(S∪A− \S)

|ωj|− b and

p =
∣∣{i ∈ (S ∪ S) : |ωi| > λ

}∣∣ is valid for conv(Kf).

3.5 Separating Submodular Cover Inequalities

In this section, we provide an algorithm to separate the submodular cover inequalities 3.41
for the submodular knapsack set Kf defined with respect to any submodular set function f .

Given a solution x on the continuous relaxation of Kf , we wish to derive a valid submod-
ular cover inequality that separates x from convKf . In particular, given x ∈ RN such that
0 ≤ x ≤ 1, we are interested in finding a submodular cover S with

∑
i∈S xi −

∑
i∈S xi >

|S| − 1, if there exists any.

As a preliminary, consider the set I+ = {i ∈ N : ρi(N \ i) < 0}. It is easy to see that
for any submodular cover S, S = I+ \S. The separation problem with respect to the
submodular cover inequalities can now be formulated as

ζ = max

∑
i∈N

(1− xi)zi +
∑
i∈I+

xi(1− zi) : f(z) > b, z ∈ {0, 1}n
 , (3.51)

where the constraint f(z) ensures that Sz is a submodular cover. Observe that submodular
cover corresponding to z yields a violated submodular cover inequality if and only if ζ < 1.

Finding exact solutions to (3.51) is in general computationally expensive. The problem
becomes further complicated when the closure of the continuous relaxation of feasible set
corresponding to (3.51), namely the set {z ∈ [0, 1]n : f(z) ≥ b}, is non-convex. Observe that
any feasible solution z to (3.51) satisfying ζ(z) =

∑
i∈N (1− xi)zi +

∑
i∈I+ xi(1− zi) < 1

yields a violated submodular cover inequality. In the following we provide an algorithm to
yield a submodular cover S, if one exists.

Without loss of generality, assume that x = (x1, x2, . . . , xn)> such that

x1 ≥ x2 ≥ . . . ≥ xn.

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 61

Algorithm 1 Greedy Algorithm to find Submodular Covers

1: procedure GREEDY-SEP(x)
2: initialize S = ∅, i = 1
3: while f(S) ≤ b and i ≤ n do
4: if ρi(S) > 0 and ρk(S ∪ i \ k) > 0, ∀ k ∈ S then
5: update zi ← 1, S ← (S ∪ i), i← (i+ 1)
6: else
7: update zi ← 0, i← (i+ 1)
8: end if
9: end while

10: return z and Sz = S
11: end procedure

Proposition 3.47. Let S = GREEDY-SEP(x), then exactly one of the following holds:

(a) S is a submodular cover.

(b) f(S ∪ T) ≤ b for all T ⊆ N \S.

Proof. For S = GREEDY-SEP(x) assume f(S ∪ T) ≤ b for all T ⊆ N \S. This implies, for
T = ∅, f(S) ≤ b. Hence S is not a submodular cover.

Alternatively, assume S = GREEDY-SEP(x) is not a submodular cover. Since ρk(S \ k) > 0
for all k ∈ S, it must hold that f(S) ≤ b. It suffices to show that @ T ⊆ N \S such that

(i) f(S ∪ T) > b and

(ii) ρi(S ∪ T \ i) > 0 for all i ∈ S ∪ T .

It follows from submodularity of f that (i) and (ii) hold only if

ρi(S) > 0 and ρk(S ∪ i \ k) > 0 ∀ k ∈ S, for all i ∈ T.

Furthermore, observe that for all i ∈ N \S, either ρi(S) ≤ 0 or ρk(S ∪ i \ k) ≤ 0 for some
k ∈ S.

The result follows.

The submodular cover S = GREEDY-SEP(x) yields a violated submodular cover inequality
to separate a given x 6∈ conv(Kf) if and only if ζ(zS) < 1.

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 62

3.6 Computational Analysis

In this section we report our computational results with the submodular cover inequali-
ties and their extensions. We tested the effectiveness of these inequalities on two different
problems sets with and without structure. The first set of problems consist of randomly gen-
erated 0− 1 quadratically constrained problems with non-positive coefficients corresponding
to all bilinear terms so that the resulting constraint is a general submodular knapsack. The
second set also consists of 0 − 1 quadratically constrained problems however without any
assumptions on the coefficients.

All experiments were performed on a 2.93GHz Pentium Linux workstation with 8GB
main memory using CPLEX∗ (version 12.6). We used CPLEX’s barrier algorithm to solve
quadratically constrained problems at the nodes of a branch-and-bound algorithm. CPLEX
heuristics are turned off and a single thread is used. The search strategy is set to traditional
branch-and-bound, rather than the default dynamic search as it is not possible to add user
cuts in CPLEX while retaining the dynamic search strategy. CPLEX user cuts are turned
off. In addition, the solver time limit and memory limit have been set to 3600 secs. and
4GB respectively for both sets of problem instances.

For both sets of problem instances we compare the performance of CPLEX with barrier
algorithm, CPLEX with outer approximation, linearization via. extended polymatroid in-
equalities, and lifted covers derived via aggregated extended polymatroid inequalities. For
the aggregation of the polymatroid inequalities we employ the following heuristic: we add
the coefficients of all tight extended polymatroid inequalities and derive lifted covers us-
ing superadditive lifting technique. The cuts are added throughout the branch and bound
tree. In all of the tabulated results we compare the algorithms with respect to following
performance measures.

1. Integrality gap (igap).

2. Root relaxation gap (rgap).

3. End gap (egap).

4. Time to optimality in seconds (time).

5. Nodes explored in the branch-and-bound tree (nodes).

6. Number of instances solved to optimality (#).

Integrality gap (igap) is computed as
(fu − fi)

fu
, where fi denotes the objective value of the

initial continuous relaxation and fu denotes the objective of the best feasible solution found

∗CPLEX is a registered trademark of IBM ILOG

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 63

across all versions. The root gap (rgap) and the end gap (egap) are computed as
(fu − fr)

fu

and
(fu − fl)

fu
, where fr is the objective value of the relaxation at the root node and fl is the

best lower bound for the optimal objective at termination.

3.6.1 Submodular Quadratic Set Functions

Proposition 3.1 provides a characterization for a quadratic set function to be submodular.
In particular, the problem set instances considered here are 0− 1 quadratically constrained
knapsacks of the form

f(x) = x>Q x + p>x ≤ γ, Qij ≤ 0, 1 ≤ i, j ≤ n , i 6= j.

In Tables 3.1 and 3.2 we report the results of the experiments for varying number of variables
(n), and the number of constraints (m). For each combination, five random instances are
generated where the coefficients for Q are generated from uniform [−20, 0]. Coefficients for
p are generated from uniform [0, 20]. The knapsack budget γ is set to 0.5 ∗ f(N). So that
constraints are not completely dense, we set the density of the constraints to 50%.

For each solution procedure we report root relaxation gap, end gap, time to optimality,
number of user cuts added, number of nodes explored in the branch-and-bound tree and the
number of (out of five) instances solved to optimality. Each row in Tables 3.1 and 3.2 shows
the averages of 5 instances.

In Table 3.1 we report the computational summary when the problem instances are solved
using CPLEX barrier algorithm and CPLEX Outer Approximation strategy. As expected
the root relaxation gaps and the number of nodes are higher for the outer approximation
algorithm. Also observe that CPLEX cannot solve any of the problem instances in the given
time limit for n = 40 and m > 10.

In Table 3.2 we present similar comparisons, but this time using the linearizations via
extended polymatroid inequalities and lifted cover inequalities derived from aggregation of
extended polymatroids. We report the number of respective cuts added in addition to the
computational measures used earlier in Table 3.1. The high rgap values can be attributed
to the fact that the extended polymatroids are linear relaxations of the original non-linear
set. However the computational efficiency of these linearizations is evident from over 86.5%
reduction in the solution times and the number of instances solved to optimality. When
used in conjunction with the lifted covers obtained via aggregation of extended polymatroid
inequalities the effectiveness of these linearization is further established. The root relaxation
gaps are reduced by more than 42% on average. For the instances that are not solved to
optimality within the time limit we see a reduction of 68% in the end gap values.

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 64

Table 3.1: Submodular QCP : Cplex barrier and cplex outer approximation

n m igap
CPLEX Barrier CPLEX OA

rgap egap nodes time # rgap egap nodes time #

30

1 23.8 23.8 0 697 1 5 25.3 0 6641 2 5

5 23.5 23.5 0 6251 72 5 23.9 0 89036 184 5

10 27.6 27.6 0 19035 620 5 27.7 0 139835 720 5

20 28.7 28.7 0 9914 966 5 28.8 0 99122 519 5

30 31 31 0.3 14674 2316 4 31.1 1 105185 1145 4

40

1 22.3 22.3 0 11648 28 5 25.3 1.9 148346 1030 4

5 23.4 23.4 0 64183 1256 5 24.1 9.1 454805 3067 1

10 24.4 24.4 3.1 51149 3092 1 24.8 15.7 386499 3588 0

20 26.8 26.8 8.5 19228 3589 0 26.9 16 301495 3588 0

30 27.9 27.9 12.6 11337 3589 0 28 21.9 152771 3588 0

Mean 25.9 25.9 2.5 20812 1553 26.6 6.6 188374 1743

Stdev. 2.9 2.9 2.3

Table 3.2: Submodular QCP : Extended polymatroids vs aggregated polymatroid covers

n m igap
Extended Polymatroids Aggregated Polymatroid Covers

rgap egap cuts nodes time # rgap egap ep cuts ac cuts nodes time #

30

1 23.8 70 0 96 1579 0 5 10.8 0 443 53 50 0 5

5 23.5 66.5 0 359 14036 4 5 10.5 0 343 1362 7995 20 5

10 27.6 61.6 0 826 38913 21 5 19.1 0 803 4149 20748 66 5

20 28.7 65.9 0 1077 30449 21 5 20 0 794 2656 14956 37 5

30 31 64.3 0 1879 34357 42 5 24.1 0 1546 4404 21825 101 5

40

1 22.3 68.4 0 555 31293 16 5 10.1 0 1199 256 1504 5 5

5 23.4 68 0 1207 155869 221 5 9 0 915 4694 41969 417 5

10 24.4 63 1.7 1685 291989 397 4 12.7 1.3 1259 642669 80785 1075 3

20 26.8 67.4 1.9 3196 266027 809 4 14.8 0.9 1446 8303 102717 934 4

30 27.9 60.4 9.1 4686 152921 547 1 20.9 6.2 2893 573563 80939 1269 1

Mean 25.9 65.6 1.3 1557 101743 208 15.2 0.8 1164 124211 37349 392

Stdev. 2.9 3.1 5.4

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 65

3.6.2 General Quadratic Set Functions

The second set of problem instances belong to the general quadratic set functions. We relax
the restrictions on the matrix Q as imposed in previous set of problem data. In particular,
we solve general 0− 1 quadratically constrained problems. The constraint set in context is

f(x) = x>Q x + p>x ≤ γ.

Since the set function in context is not necessarily submodular, the inequalities derived in
this paper cannot be applied to the problem instances as is. We reformulate the set function
f(x) using additional variables z to yield a submodular set function f(x, z).

For all the bilinear terms in the quadratic function with positive coefficients we can relax
the bilinearity using McCormick Relaxations [66]. Specifically, we define zij = xixj s.t.

zij ≥ (xi + xj − 1)+

zij ≤ min(xi, xj),

for all pairs (ij) : Qij > 0. The set function f(x, z) thus obtained

f(x, z) =
∑
i

Qiixi +
∑

ij:Qij≤0

Qijxixj +
∑

ij:Qij>0

Qijzij + p>x ≤ γ

is submodular.

Table 3.3: General 0− 1 QCP : Cplex barrier and cplex outer approximation

n m igap
CPLEX Barrier CPLEX OA

rgap egap nodes time # rgap egap nodes time #

30

10 59.06 59.06 0 4046 136.9 5 59.17 0 38993 80.9 5

20 64.45 64.45 0 1532 162.8 5 64.7 0 28252 89.6 5

30 54.88 54.88 0 3403 665.4 5 54.93 0 55069 382.3 5

40

10 72.16 72.16 0 1069 56.2 5 72.31 0 15889 27.3 5

20 61.38 61.38 0 5426 1204.9 5 61.9 3.42 102359 888.2 4

30 57.2 57.2 12.78 5367 2446.9 2 57.56 18.37 137770 2575.7 2

50

10 65.3 65.3 5.35 8686 907.5 4 65.75 9.61 114396 1224.4 4

20 63.97 63.97 15.25 6379 2419.4 3 64.54 22.66 129926 2078.1 3

30 58.92 58.92 26.36 3466 2961.6 1 59.42 32.91 151610 2872.3 1

Mean 61.9 61.9 6.6 4375 1218 62.3 9.7 86029 1135

Stdev. 5.2 5.2 5.2

CHAPTER 3. GENERAL SUBMODULAR KNAPSACKS 66

In Tables 3.3 and 3.4 we report the results of the experiments for varying number of variables
(n), and the number of constraints (m). For each combination, five random instances are
generated where the coefficients for Q,p are generated from uniform [−20, 20]. The knapsack
budget γ is set to 0.5∗f(N). So that constraints are not completely dense, we set the density
of the constraints to 50%.

For each solution procedure we report root relaxation gap, end gap, time to optimality,
number of user cuts added, number of nodes explored in the branch-and-bound tree and the
number of (out of five) instances solved to optimality. Each row in Tables 3.3 and 3.4 shows
the averages of 5 instances.

Table 3.4: General 0− 1 QCP : Extended polymatroids vs aggregated polymatroid covers

n m igap
Extended Polymatroids Aggregated Polymatroid Covers

rgap egap cuts nodes time # rgap egap ep cuts ac cuts nodes time #

30

10 59.06 91 0 471 9337 11.4 5 51.73 0 1703 34 2148 10.6 5

20 64.45 93.31 0 382 4550 5.2 5 50.96 0 1064 45 1381 4.3 5

30 54.88 86.1 0 808 13131 44 5 43.56 0 1557 47 7361 30.9 5

40

10 72.16 91.63 0 298 2917 2.7 5 50.22 0 1698 13 105 7.4 5

20 61.38 90.01 0 853 37927 287.3 5 40.79 0 4013 41 11415 215.4 5

30 57.2 89.24 1.34 2867 94947 1544.4 4 45.14 0 5306 220 53934 1275.8 5

50

10 65.3 91.94 6.45 1293 42550 747.6 4 36.08 4.9 5464 22 5318 745.1 4

20 63.97 95.58 8.08 3215 63312 1448 4 46.31 5.61 4734 145 21624 1084.3 4

30 58.92 89.3 17.61 5192 91698 2870.2 1 49.32 12.7 8479 186 35091 2290.8 2

Mean 61.9 90.9 3.7 1709 40041 773 46 3 3780 84 15375 629

Stdev. 5.2 2.7 5.2

As in the previous case, in Table 3.3 we report the computational summary when the
problem instances are solved using CPLEX barrier algorithm and CPLEX Outer Approxi-
mation strategy. In Table 3.4 we present similar comparisons, but this time using the lin-
earizations via extended polymatroid inequalities and lifted cover inequalities derived from
aggregation of extended polymatroids. Similar to our observations in the case of submodular
quadratically constrained problem sets we see that application of extended polymatroid in-
equalities improved the solution times reduce by over 36.5%. Using aggregated polymatroid
covers on these problem instances furthers this observation. We see a root gap reduction of
25% when using these inequalities that translates into halving the solution times on average
for the problem instances in this case.

67

Chapter 4

Convex Envelopes of Binary
Quadratic Sets

4.1 Introduction

In Chapter 3 we studied the submodular knapsack polytope and derived valid inequalities
for the same. We also provided a reformulation for a general quadratic knapsack to a
submodular quadratic knapsack. Taking a detour from the combinatorial discussion of the
0− 1 conic-quadratic sets, this chapter provides a slightly different geometrical perspective.
In this chapter we provide a brief discussion for some convexification techniques for 0−1 non-
convex quadratic sets. We will also establish some geometrical understanding with respect
to these convexifications. In addition, a key result of this chapter yields a recipe to half the
number of constraints used in standard linearization of the 0− 1 quadratic sets in a higher
dimensional space.

4.2 The Sums of Squares (SOS) Reformulation

For t0 ∈ R define

F :=
{

(x, y) ∈ [0, 1]2 : ±xy ≤ t0
}

(4.1)

F :=
{

(x, y) ∈ [0, 1]2 : (x± y)2 ≤ x+ y + 2t0
}

(4.2)

While F is not necessarily convex, F is convex. In addition

1. F ⊆ F ,

2. F ∩ Z2 = F ∩ Z2.

This provides us with a means to derive convex reformulations of the general binary
knapsack sets. Consider the following.

CHAPTER 4. CONVEX ENVELOPES OF BINARY QUADRATIC SETS 68

Definition 4.1. Let Q = [qij]1≤i,j≤n ∈ Rn×n be any real n×n matrix map, p = [pi]1≤i≤n ∈
Rn be any n dimensional real vector and r ∈ R be a constant. We define F and F̃ as

F :=
{
x ∈ [0, 1]n : x>Q x + p>x + r ≥ 0

}
(4.3)

F̃ :=

{
x ∈ [0, 1]n :

n∑
i=1

n∑
j=1

[
q+
ij

(xi − xj)2

2
+ q−ij

(xi + xj)
2

2

]

≤
n∑
i=1

n∑
j=1

|qij|
(
xi + xj

2

)
+ p>x + r

}
(4.4)

Proposition 4.1. Let F and F̃ be defined as in 4.3 and 4.4 respectively, then

(i) F ⊆ F̃ ,

(ii) F ∩ Zn = F̃ ∩ Zn.

Proof. Consider x ∈ F . We have

x>Q x + p>x + r ≥ 0

p>x + r ≥ −x>Q x

= −
n∑
i=1

n∑
j=1

qijxixj

= −
n∑
i=1

n∑
j=1

[
q+
ijxixj − q−ijxixj

]
≥ −

n∑
i=1

n∑
j=1

[
q+
ijxixj − q−ijxixj + (q+

ij + q−ij)
(xi − x2

i + xj − x2
j)

2

]

= −
n∑
i=1

n∑
j=1

[
(q+
ij + q−ij)

(
xi + xj

2

)
− q+

ij

(xi − xj)2

2
− q−ij

(xi + xj)
2

2

]

n∑
i=1

n∑
j=1

(q+
ij + q−ij)

(
xi + xj

2

)
+ p>x + r ≥

n∑
i=1

n∑
j=1

[
q+
ij

(xi − xj)2

2
+ q−ij

(xi + xj)
2

2

]
⇒ x ∈ F̃.

Third inequality above follows from the fact that x2 ≤ x, x ∈ [0, 1] where equality holds iff
x ∈ {0, 1}.

Proposition 4.1 yields convex relaxations for the non-convex set F .

CHAPTER 4. CONVEX ENVELOPES OF BINARY QUADRATIC SETS 69

Definition 4.2. Define the set of indices

I :=

{
i : qii + pi +

n∑
j=1

(q+
ij + q+

ji) + |r| < 0, 1 ≤ i ≤ n

}
.

Definition 4.3. Define the set

F c :=

{
x ∈ {0, 1}n :

∑
i∈ I

xi ≥ 1, xj = 0, ∀ j ∈ N \ I

}
.

Proposition 4.2. F ∩ F c = ∅.

Proof. Assume ∃ x ∈ F ∩ F c such that
∑

i∈ I xi = k ≥ 1. Then

0 ≤ x>Q x + p>x + r

=
n∑
i=1

qii + pi +
n∑
j=1
j 6=i

(q+
ij + q+

ji)xi −
n∑
j=1
j 6=i

(q−ij + q−ji)xj

 xi + r

=
∑
i∈ I

qii + pi +
∑
j ∈ I
j 6=i

(q+
ij + q+

ji)xj

−∑
j ∈ I
j 6=i

(q−ij + q−ji)xixj + r

<− k|r|+ r −
∑
j ∈ I
j 6=i

(q−ij + q−ji)xixj.

However this presents a contradiction since −
∑
j ∈ I
j 6=i

(q−ij + q−ji)xixj ≤ 0 and k ≥ 1 implies

−k|r|+ r ≤ 0.

Example 4.1. Consider the sets

F =
{

(x, y, z) ∈ [0, 1]3 : x2 ≤ y2 + z2 − 0.2xy + 0.27yz
}
,

F̃ =
{

(x, y, z) ∈ [0, 1]3 : 0.135(y − z)2 + 0.1(x+ y)2 + 2x2 ≤ 1.1x+ 1.235y + 1.135z
}
.

Figures 4.1(a) and 4.1(b) represent the non-convex set F and convex relaxation F̃ .

Observe that F ∩ Zn = F̃ ∩ Zn = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)}.
In addition, we have I = {1} and F c = {(1, 0, 0)}. Clearly F ∩ F c = ∅.

CHAPTER 4. CONVEX ENVELOPES OF BINARY QUADRATIC SETS 70

(a) Non-convex set F (b) convex relaxation F̃

Figure 4.1: Non-convex set F and the convex relaxation F̃

4.3 Strengthening the SOS Relaxation

Definition 4.4. Define the set F as

F :=

x ∈ [0, 1]n :
n∑
i=1

 n∑
j=1
j 6=i

(
q+
ij

(xi − xj)2

2
+ q−ij

(xi + xj)
2

2

)
+ q−iix

2
i

≤
n∑
i=1

 n∑
j=1
j 6=i

|qij|
(
xi + xj

2

)
+ q+

iixi

+ p>x + r

 . (4.5)

Proposition 4.3. For F , F̃ and F defined as in 4.3, 4.4 and 4.5 respectively, F ⊆
F ⊆ F̃ .

Proof. (i) F ⊆ F

CHAPTER 4. CONVEX ENVELOPES OF BINARY QUADRATIC SETS 71

Consider x ∈ F . Now

x>Q x + p>x + r ≥ 0

p>x + r ≥ −x>Q x

= −
n∑
i=1

n∑
j=1

qijxixj

= −
n∑
i=1

n∑
j=1
j 6=i

[
q+
ijxixj − q−ijxixj

]
+

n∑
i=1

q−iix
2
i −

n∑
i=1

q+
iix

2
i

p>x + r ≥ −
n∑
i=1

n∑
j=1
j 6=i

[
q+
ijxixj − q−ijxixj + |qij|

(xi − x2
i + xj − x2

j)

2

]
+

n∑
i=1

q−iix
2
i −

n∑
i=1

q+
iixi

= −
n∑
i=1

n∑
j=1
j 6=i

[
|qij|

(
xi + xj

2

)
− q+

ij

(xi − xj)2

2
− q−ij

(xi + xj)
2

2

]
+

n∑
i=1

q−iix
2
i −

n∑
i=1

q+
iixi

n∑
i=1

 n∑
j=1
j 6=i

|qij|
(
xi + xj

2

)
+ q+

iixi

+ p>x + r

≥
n∑
i=1

 n∑
j=1
j 6=i

(
q+
ij

(xi − xj)2

2
+ q−ij

(xi + xj)
2

2

)
+ q−iix

2
i

 .
⇒ x ∈ F .
Third inequality follows from the fact that x2 ≤ x, x ∈ [0, 1].
(ii) F ⊆ F̃

CHAPTER 4. CONVEX ENVELOPES OF BINARY QUADRATIC SETS 72

Consider x ∈ F . We have

n∑
i=1

 n∑
j=1
j 6=i

|qij|
(
xi + xj

2

)
+ q+

iixi

+ p>x + r

≥
n∑
i=1

 n∑
j=1
j 6=i

(
q+
ij

(xi − xj)2

2
+ q−ij

(xi + xj)
2

2

)
+ q−iix

2
i

≥
n∑
i=1

 n∑
j=1
j 6=i

(
q+
ij

(xi − xj)2

2
+ q−ij

(xi + xj)
2

2

)
+ q−iix

2
i + q−ii (x

2
i − xi)

n∑
i=1

 n∑
j=1
j 6=i

|qij|
(
xi + xj

2

)
+ |qii|xi

+ p>x + r ≥

n∑
i=1

 n∑
j=1
j 6=i

(
q+
ij

(xi − xj)2

2
+ q−ij

(xi + xj)
2

2

)
+ q−ii

(xi + xi)
2

2

n∑
i=1

n∑
j=1

|qij|
(
xi + xj

2

)
+ p>x + r ≥

n∑
i=1

n∑
j=1

[
q+
ij

(xi − xj)2

2
+ q−ij

(xi + xj)
2

2

]
⇒ x ∈ F̃.

Second inequality follows from the fact that x2 ≤ x, x ∈ [0, 1].

Corollary 4.1. F ∩ Zn = F ∩ Zn = F̃ ∩ Zn.

Example 4.2. Consider the sets as defined in Example 4.1

F =
{

(x, y, z) ∈ [0, 1]3 : x2 ≤ y2 + z2 − 0.2xy + 0.27yz
}

F̃ =
{

(x, y, z) ∈ [0, 1]3 : 0.135(y − z)2 + 0.1(x+ y)2 + 2x2 ≤ 1.1x+ 1.235y + 1.135z
}

A stronger convex relaxation for F is given by

F =
{

(x, y, z) ∈ [0, 1]3 : 0.135(y − z)2 + 0.1(x+ y)2 + x2 ≤ 0.1x+ 1.235y + 1.135z
}

CHAPTER 4. CONVEX ENVELOPES OF BINARY QUADRATIC SETS 73

(a) Non-convex set F (b) convex relaxation F

Figure 4.2: Non-convex set F and the convex relaxation F

Figure 4.2(b) represents the convex relaxation F

In addition observe the face y = 1 in the following for the two relaxations as compared
to F .

Definition 4.5. Define the set of indices J and the set X ⊆ F as

J :=
{
j ∈ {1, 2, . . . , n} : q+

jj > 0
}
,

X := {x ∈ [0, 1]n : xj ∈ {0, 1} ∀ j ∈ J} .

Proposition 4.4. If qij = 0 ∀ i ∈ N \ J, j ∈ N, j 6= i, then, F ∩X = F ∩X.

Proof. Assume, qij = 0 ∀ i ∈ N \ J, j ∈ N, j 6= i. It follows from Proposition 4.3 that
F ∩X ⊇ F ∩X. Thus it suffices to show that F ∩X ⊆ F ∩X.

Consider x ∈ F ∩X. We have

n∑
i=1

 n∑
j=1
j 6=i

|qij|
(
xi + xj

2

)
+ q+

iixi

+ p>x + r

≥
n∑
i=1

 n∑
j=1
j 6=i

(
q+
ij

(xi − xj)2

2
+ q−ij

(xi + xj)
2

2

)
+ q−iix

2
i

CHAPTER 4. CONVEX ENVELOPES OF BINARY QUADRATIC SETS 74

(a) F

(b) F̃ (c) F

Figure 4.3: Non-convex set F and the convex relaxations F̃ and F , face y = 1

n∑
i=1

 n∑
j=1
j 6=i

|qij|
(
xi + xj

2

)
+ q+

iix
2
i − q−iix2

i

+ p>x + r

≥
n∑
i=1

 n∑
j=1
j 6=i

(
q+
ij

(xi − xj)2

2
+ q−ij

(xi + xj)
2

2

)

CHAPTER 4. CONVEX ENVELOPES OF BINARY QUADRATIC SETS 75

n∑
i=1

n∑
j=1

qijxixj + p>x + r ≥
∑

i∈N \ J

∑
j ∈N \ J

|qij|
(

(xi − x2
i + xj − x2

j)

2

)
= 0

⇒ x ∈ F ∩X.

The last equality follows from the stated assumption.

Proposition 4.4 yields strong convex relaxations with exact extreme points for the feasible
sets of the form

P :=
{

(x,y) ∈ {0, 1}n× Rm : y> Q̃ y + p̃>y ≤ x>Q x + p>x + r
}
,

where Q̃ ∈ Rm×m�0 and p̃ ∈ Rm. An intuition to this is that since the left hand side is
already convex and Proposition 4.3 gives a means to convexify the right hand side.

Before we proceed further, observe the following preliminary. Let Q be a n × n matrix
with real eigenvalues and a spectral decomposition Q = U Λ U>, then

1. qij =
∑n

k=1 λkuikujk,

2. Q � 0⇒ qii ≥ 0 ∀ i ∈ {1, 2, . . . , n}.

4.4 A Convexification Approach via

Eigendecomposition

Proposition 4.5. Let Q ∈ Rn×n be a n × n matrix with real eigenvalues and a spectral
decomposition as, Q = U Λ U>. Let FΛ be defined as

FΛ :=

x ∈ [0, 1]n :
n∑
i=1

 n∑
j=1
j 6=i

(
q̂+
ij

(xi − xj)2

2
+ q̂−ij

(xi + xj)
2

2

)
+ λ−i (u>i x)2

≤
n∑
i=1

 n∑
j=1
j 6=i

|q̂ij|
(
xi + xj

2

)
+ q̂iixi

+ p>x + r

 ,

where q̂ij =
n∑
k=1

λ+
k uikujk ∀ i, j ∈ {1, 2, . . . , n} and ui denotes the ith column of U, then

F ⊆ FΛ.

CHAPTER 4. CONVEX ENVELOPES OF BINARY QUADRATIC SETS 76

Proof. Consider x ∈ F , thus,

x>Q x + p>x + r ≥ 0

p>x + r ≥ −x>Q x

= −x>U Λ U> x

= −
n∑
i=1

λi(u
>
i x)2

=
n∑
i=1

λ−i (u>i x)2 −
n∑
i=1

λ+
i (u>i x)2

=
n∑
i=1

λ−i (u>i x)2 −
n∑
i=1

λ+
i (u>i x)2

=
n∑
i=1

λ−i (u>i x)2 −
n∑
i=1

n∑
j=1

q̂ijxixj

≥
n∑
i=1

 n∑
j=1
j 6=i

(
q̂+
ij

(xi − xj)2

2
+ q̂−ij

(xi + xj)
2

2

)
+ λ−i (u>i x)2

−
n∑
i=1

 n∑
j=1
j 6=i

|q̂ij|
(
xi + xj

2

)
+ q̂iixi

The result follows.

4.5 Strengthening SOS Relaxation via Linearization

For any xi, xj ∈ {0, 1} define

F+
ij =

{
(xi, xj, yij) ∈ {0, 1}2 × Z : (xi + xj)

2 ≤ yij
}
,

P+
ij =

{
(xi, xj, yij) ∈ [0, 1]2 × R : max{3(xi + xj)− 2, xi + xj} ≤ yij

}
,

F−ij =
{

(xi, xj, yij) ∈ {0, 1}2 × Z : (xi − xj)2 ≤ yij
}
,

P−ij =
{

(xi, xj, yij) ∈ [0, 1]2 × R : |xi − xj| ≤ yij
}
.

It follows that

1. P+
ij = conv(F+

ij),

2. P−ij = conv(F−ij).

CHAPTER 4. CONVEX ENVELOPES OF BINARY QUADRATIC SETS 77

0.5 1.0 1.5 2.0

1

2

3

4

(a) t2 ≤ s, max{t, 3t−2} ≤ s, 0 ≤ t ≤ 4

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

(b) t2 ≤ s, |t| ≤ s, 0 ≤ t ≤ 4

Figure 4.4: Strengthening the SOS reformulation via linearization

The following result is immediate.

Proposition 4.6. For set P defined as

P := {(x,y) ∈ {0, 1}n × R(n
2)|

n∑
i=1

[
n∑
j>i

(
q+
ijy
−
ij + q−ijy

+
ij − |qij|(xi + xj)

)
− qiixi

]
≤ 0

|xi − xj| ≤ y−ij ∀(i, j) : qij > 0

max{3(xi + xj)− 2, xi + xj} ≤ y+
ij ∀(i, j) : qij < 0},

Projy P = F ∩ Zn.

Observe that the linearizations derived in Proposition 4.6 are a modified version of the
McCormick linearizations with half the number of constraints. McCormick linearizations [66]
linearize each bilinear term using four inequalities, however only two suffice for each bilinear
term. SOS linearizations provide a way to distinguish these sufficient inequalities. The two
sufficient inequalities depend only on the sign of the coefficient of the bilinear term.

78

Chapter 5

Network design with uncertain arc
capacities

This chapter presents an application of the solution approaches discussed in this disserta-
tion. We address the network design problem with uncertain arc capacities. We formulate
the robust network design problem as a 0 − 1 conic quadratic program without particular
assumptions on the characteristics of uncertainties.

5.1 Introduction

Uncertainties in network design problems have been primarily addressed in the previous lit-
erature from the viewpoint of uncertain demands and costs [13, 25, 32, 79]. While these
parameters are certainly important, another crucial issue that needs to be addressed in
many real-world situations is the presence of potential disruptions of network arcs, which
are uncertain by nature and may be caused by natural or artificial factors. In the context
of transportation network infrastructure (e.g., air or ground transportation), the uncertain
disruptions are often caused by weather conditions along with many other possible factors.
Similar issues also often occur in the design and operation of communication network infras-
tructure, power grid, and related applications [53].

The main conceptual difference of the problem setup with multiple uncertain arc capac-
ities from the previously considered problem formulations with uncertain demands and/or
costs is the fact that the structure (topology) of the network itself is not deterministic any-
more, which creates challenges in terms of optimal robust flow assignments in these networks,
since the obtained optimal solutions need to be not only cost efficient, but also robust with
respect to potential arc capacity disruptions. These disruptions can cause the reduced flow
through a network, and the important question that needs to be rigorously addressed is: How
to efficiently minimize the costs of network design in the framework of large-scale fixed-charge
network flow problems with probabilistic arc capacities?

CHAPTER 5. NETWORK DESIGN WITH UNCERTAIN ARC CAPACITIES 79

In this paper, we address both the conceptual and computational issues associated with
the above question. Specifically, this paper addresses the network design problem with un-
certainties in arc capacities. Using concepts from robust optimization, we formulate the
robust network design problem as a 0 − 1 conic quadratic program without particular as-
sumptions on the characteristics of uncertainties. We propose a row generation approach to
ascertain demand satisfaction at each possible s-t cut in the network, yielding an iterative
solution procedure for the problem. We show that when capacities are independent, under
mild assumptions, the feasible set is the intersection of supermodular covering knapsacks.
A reformulation of the problem is proposed in the presence of correlations in order to re-
cover the combinatorial structure of the set function in the underlying constraints. We show
that exploring this combinatorial structure of problem significantly reduces the LP relax-
ation gaps and the solution times. The separation problem for the constraints is modeled
as a robust minimum cut problem. We show that this separation problem is NP hard and
provide reformulations to obtain computationally effective solution procedures. Finally, we
present a computational analysis contrasting the various solution methodologies discussed
in the paper to solve the problem to global optimality.

The remainder of this paper is organized as follows: In Section 5.2 we present a formula-
tion for network design problem with uncertain capacities. Section 5.5 entails outlining the
separation problem in the case of both uncorrelated and correlated capacities respectively.
In Section 5.6 we present the computational results contrasting the efficiency of discussed
solution approaches vis-à-vis CPLEX in case of both uncorrelated and correlated capacities.

5.1.1 Network Design with Uncertain Capacities

Consider a flow network N(V,A), with n nodes, m arcs, a single source s and a single sink
t. Observe that the assumption of single source and single sink can be made without loss
of generality, since we can collate multiple sources and sinks into one node each respectively
via arcs with deterministic capacities. The arc capacities ξij in N(V,A) are assumed to be
random with a support Ξ. Every arc (ij) ∈ A has a fixed, one time cost fij associated with
it (the variable costs incurred as a part of per unit flow through the arcs have been assumed
to be negligent in comparison with fixed costs and are ignored for the purpose of analysis).
With the aforementioned setup, we illustrate the problem of determining the network setup
with minimum cost that satisfies the demand with at least probability 1− ε, (0 < ε < 0.5).
Since the capacities are stochastic, we need to ensure that every s-t cut in the network
satisfies the demand probabilistically. We write the demand satisfiability constraints as

P

(∑
e∈C

ξexe ≥ d

)
≥ 1− ε ∀ C ∈ C, (5.1)

where x ∈ {0, 1}m denotes the arc assignments in a network setup and C denotes the set of
all s-t cuts in the network N(V,A).

CHAPTER 5. NETWORK DESIGN WITH UNCERTAIN ARC CAPACITIES 80

Demand satisfiability constraints (5.1) thus ensure that any s-t cut in the feasible network
setup will have a flow of at least d with a confidence level 1 − ε. Notice that if ξ’s are
normally distributed independent random variables, then letting u and Σ denote the mean
and variance covariance matrix of ξ, the set of 0− 1 solutions satisfying (5.1) is exactly the
following conic quadratic 0-1 covering knapsack

X :=
{

x ∈ {0, 1}m : u>x− Ω ‖ Σ1/2 x ‖≥ d
}
, (5.2)

where Ω = ϕ−1(ε), (0 ≤ ε ≤ 0.5) and ϕ is the standard normal cumulative distribution
function. The observation connecting the conic quadratic form of (5.2) and the probabilistic
constraint (5.1) can however be stated more generally without empirical knowledge of the
underlying distribution of ξ. In particular, for x ∈ {0, 1}m

P
(
ξ>x ≥ d

)
≥ 1− ε ⇒ u>x− Ω ‖ Σ1/2 x ‖≥ d,

where Ω > 0.

5.2 Problem Formulation

We will focus our attention to the conic quadratic restriction (5.2) of the probabilistic con-
straint (5.1) for the remaining analysis in the paper. In addition, we assume the coefficient
of variation for each arc e ∈ A is bounded (Ω as defined earlier).

σe
ue
≤ 1

Ω

We can formulate the following MIQCP, a robust formulation for network design with
uncertain arc capacities (R-FCNF).

minimize f >x

(R-FCNF) subject to u>CxC − Ω ‖ Σ
1/2
C xC ‖≥ d, ∀ C ∈ C

x ∈ {0, 1}m

where uC is vector of nominal values of arc capacities corresponding to the cut C ∈ C and
ΣC denotes the variance-covariance matrix of arc capacities corresponding to C ∈ C, Ω > 0.

It can be easily seen that (R-FCNF) is NP-hard as it generalizes (FCNF). The feasible set
is obtained by intersection of exponentially many second order integer cone constraints. The
following sections entail deriving fast solution procedures by analyzing the structure of the
problem in context, first generally and subsequently with particular attention to independent
and correlated nature of the arc capacities respectively.

CHAPTER 5. NETWORK DESIGN WITH UNCERTAIN ARC CAPACITIES 81

5.3 Linearization of the Constraints

One of the main hurdles that makes solving non-linear integer problems computationally
intractable is the need to solve non-linear continuous relaxations of these problems at each
node of the branch and bound tree. Linearizations of the non-linear programs have proven
to be effective [21, 93, 34]. The most common procedures to linearize a conic constraint
entail either lift and project methods such as Reformulation Linearization Technique [85] or
Outer Approximations [34, 21]. In the following, we contrast two such procedures relevant
in the problem context.

5.3.1 McCormick Linearizations

Consider the conic quadratic constraint corresponding to C ∈ C

Ω
√

x>CΣCxC ≤ u>CxC − d ⇔
(

Ω2
(
x>CΣCxC

)
≤
(
u>CxC − d

)2
)
∩
(
u>CxC ≥ d

)
We can linearize the above conic quadratic constraint using McCormick inequalities (1.8) in
the following manner∑

i∈C

(
u2
i − Ω2σ2

i − 2uid
)
xi + 2

∑
i∈C

∑
j∈C
j>i

(
uiuj − Ω2σij

)
yij + d2 ≥ 0

xi + xj ≤ yij + 1 ∀ i, j ∈ C
yij ≤ xi ∀ i, j ∈ C
yij ≤ xj ∀ i, j ∈ C
xi ∈ {0, 1} ∀ i ∈ C.

It is worth a notice the aforementioned constraints implicitly restrict yij to be binary. A
problem with the above linear constraints however is that instead of strengthening the feasible
set they lead to a relaxation of the original problem more often than not. Besides further
weakening the relaxation, the number of new variables incorporated in the above linearization
is O(|A|2), which adds to another difficulty in the aforementioned formulation. Padberg
[73] studied the convex hull of the boolean quadric polytope and further strengthened the
relaxations arising from linearizations of bilinear terms. McCormick relaxations in particular
and lift and project procedures suffer from a curse of dimensionality, growing quadratically
in the lifted solution space. As we will see in the following, we can explore the structure
of the problem in context to provide a computationally effective reformulation. In general
solving large problems (|V| ≥ 50) using this approach is rather inconceivable.

5.3.2 Supporting Hyperplane Relaxation

This linearization approach utilizes the gradient of the second order cone constraints to
compute their outer approximation. Let the conic constraint obtained from the separation

CHAPTER 5. NETWORK DESIGN WITH UNCERTAIN ARC CAPACITIES 82

problem be f(x) ≤ 0. First order Taylor approximation of f(x) around x is given by

f(x) = f(x) + (x− x)>∇f(x). (5.3)

Since we are interested in a tangential approximation of the conic constraint, we need to
choose x on the surface f(x) = 0, thus f(x) = 0, which implies

f(x) = (x− x)>∇f(x). (5.4)

We chose x as the projection of the relaxation solution on the surface f(x) = 0, i.e. point
on the conic surface at the minimum (euclidean) distance from x and use the gradient at
that point to construct the supporting hyperplane. This choice of x, ensures the convergence
of the algorithm. We incorporate the obtained linear constraint to obtain the new feasible
set of the relaxation of (R-FCNF). In particular, we add the linearized constraint(

u− Ω
Σx√

x>Σ x

)>
(x− x) ≥ 0 . (5.5)

Observe that while the hyperplane relaxation doesn’t require incorporating additional
variables in the formulation, one cannot provide bounds on number of hyperplanes required
to represent the feasible set of (R-FCNF). Even though we cannot reduce the size of lin-
earizations obtained using McCormick Inequalities, we can still strengthen the relaxations
obtained by the supporting hyperplanes while preserving the dimensionality of the original
solution space.

Although the linearizations discussed provide a way of eliminating the non-linearities
in the formulation, they still do not provide an efficient procedure to solve (R-FCNF).
Adding the additional variables leads to an explosion in terms of the number of variables
for large problems, and the outer approximation whilst guaranteeing convergence, cannot
ensure finiteness of the relaxation. Notice that since the network design problem in context
involves only binary variables, the underlying feasible set of the problem is polyhedral. The
following section discusses the polyhedral structure of the feasible regions in context of the
aforementioned cases.

5.4 Strengthening the Formulation

The specific case when the arc capacities are independent warrants individual consideration
as we can explore the specific combinatorial structure of the problem. We will thus discuss
the two cases : independent capacities and correlated capacities, separately in Sections 5.4.1
and 5.4.2 respectively.

CHAPTER 5. NETWORK DESIGN WITH UNCERTAIN ARC CAPACITIES 83

5.4.1 Independent Arc Capacities

In this section we address the case when the capacities on the given arcs although uncertain,
are independent. In particular, we will consider the case when the variance covariance matrix
Σ is diagonal. In this particular case the probabilistic constraint (5.1) can be modeled as
the following conic quadratic 0-1 covering knapsack

X :=
{

x ∈ {0, 1}m : u>x− Ω
√
σ> x ≥ d

}
,

where σ is the vector of the variances σ := (σ2
1, σ

2
2, . . . , σ

2
m).

As observed in Chapter 2, conv(X) is a special case of a supermodular covering knap-
sack set. We will use the inequalities developed in Chapter 2 to strengthen the continuous
relaxation of the master problem and thus improving solution times for the network design
problem. The computational effectiveness of the pack inequalities and their extensions for
the robust network design problem vis-à-vis CPLEX is highlighted in Section 5.6.

We lose this explicit combinatorial structure once the correlations are introduced in the
robust network design problem, and in turn the valid inequalities derived thereof. In the
following section we highlight how we can recover this combinatorial structure when taking
into account the correlations amidst the arc capacities.

5.4.2 Correlated Arc Capacities

As observed in the earlier section, incorporating correlations into the robust network design
problem voids the validity of pack inequalities and their extensions. Notice however, that
the pack inequalities derived in Chapter 2 only require the underlying set function to be
non-decreasing. Proposition 2.6 provides a sufficient condition that preserves the validity of
pack inequalities in a special case when the covariance matrix Σ is not necessary diagonal.
This sufficiency condition is often hard to satisfy and in general the pack inequalities and
their extensions as discussed in Chapter 2 are not valid necessarily. While we cannot preserve
the monotonicity of f , Chapter 3 provides a way to preserve the combinatorial structure of
the set function in presence of correlations.

Define the set function fd : {0, 1}n 7→ R as

fd :=
∑
i

αixi + 2 ∗
∑
i

∑
j>i

βijxixj + d2, (5.6)

where αi = (Ω2σ2
i + 2uid− u2

i) and βij = (Ω2σij − uiuj) ≤ (Ω2σiσj − uiuj) ≤ 0. Observe the
following equivalence with reference to the set functions f and fd.

{x ∈ {0, 1}n} f(x) ≥ d = {x ∈ {0, 1}n} fd(x) ≤ 0 ∩ u>x ≥ d. (5.7)

While f is neither monotone nor submodular/supermodular, there are special properties and
structure associated with fd that can be explored to derive strong valid inequalities for the
feasible set in consideration.

CHAPTER 5. NETWORK DESIGN WITH UNCERTAIN ARC CAPACITIES 84

Corollary 5.1. The set function fd(x) is submodular.

This combinatorial characterization of the master problem yields a means to explore the
polyhedral structure of the problem as discussed in Chapter 3. We present our computational
analysis with the inequalities developed in Chapter 3 applied to the network design problem
in Section 5.6.

5.5 Separation Problem

In Section 5.2 we presented the mathematical formulation for the robust network design
problem and the studied the polyhedral structure of the constituting conic quadratic con-
straints. Besides being a computationally hard problem, (R-FCNF) incorporates exponential
number of such conic quadratic constraints, since the number of s-t cuts in a connected graph
is 2n−2. Pertaining to this concern, we suggest an implicit formulation which incorporates
a row generation method to determine solutions to (R-FCNF). For this formulation we re-
quire a separation oracle which either provides a violated conic constraint or a certificate of
optimality for (R-FCNF). Given a feasible solution x, and the projections of u and Σ on x
as ux and Σx to any relaxation of (R-FCNF) we can find a violated conic constraint using
the following separation problem (SEP-x), formulated as the robust minimum-cut problem.

minimize Θ(x) = uxz− Ω
√

z>Σxz

(SEP-x) subject to λi − λj ≤ zij (ij) ∈ A (5.8)

λi ≥ zij (ij) ∈ A (5.9)

λj ≤ 1− zij (ij) ∈ A (5.10)

λs = 1 (5.11)

λt = 0 (5.12)

λi, λj ≥ 0 (ij) ∈ A (5.13)

zij ∈ {0, 1} (ij) ∈ A. (5.14)

Constraints (5.8), (5.9) and (5.10) ensure that only the arcs going from source set to sink
set are included in the cut-set. Notice that for the deterministic minimum cut problem,
only (5.8) is sufficient. Observe that (SEP-x) is NP-hard, since for u = 0 and Σ diagonal,
(SEP-x) reduces to the max-cut problem.

A close look at the separation problem reveals that unlike master problem the separation
problem does not have a convex continuous relaxation which in turn renders this problem
in the present form computationally intractable. Solving separation problem fast is of deep
interest and importance to developing fast solution procedures for (R-FCNF). In the following
sections we will explicitly discuss the two cases with reference to the separation problem,
namely - independent capacities and correlated capacities. As we will demonstrate the two

CHAPTER 5. NETWORK DESIGN WITH UNCERTAIN ARC CAPACITIES 85

cases indeed require separate analyses because of completely different underlying polyhedral
structure for the problem.

5.5.1 Independent Arc Capacities

In the particular case when the arc capacities are independent, the variance covariance
matrix is diagonal and the separation problem for a relaxation solution x can be formulated
as following.

minimize Θ(x) = u>x z− Ω

√∑
e∈A

σ2
ex

2
e z

2
e

(SEP-x) subject to (5.8)− (5.14).

As observed earlier, (SEP-x) has a concave objective function Θ(x). Utilizing the fact
that Θ(x) is a set function and, in particular, z is a binary vector, Θ(x) can be equivalently
expressed as

Θ(x) = u>x z− Ω

√∑
e∈A

σ2
ex

2
e ze . (5.15)

The objective function Θ(x) expressed as in (5.15) assumes the form (2.2) and hence is
thus a non-decreasing supermodular set function. Minimizing a supermodular set function is
a hard problem in general. Consider the following preliminaries with respect to the problem
of minimizing a supermodular set function.

Proposition 5.1. [72] If f is a supermodular set function on an index set N, then

1. f(T) ≥ f(S)−
∑

i∈S \T ρi(N \ i) +
∑

i∈T \S ρi(S), ∀S, T ⊆ N ;

2. f(T) ≥ f(S)−
∑

i∈S \T ρi(S \ i) +
∑

i∈T \S ρi(∅), ∀S, T ⊆ N .

Proposition 5.1 implies that the either of the two inequalities

w ≥ f(S)−
∑
i∈S

ρi(N \ i)(i− xi) +
∑

i∈N \S

ρi(S)xi, ∀S ⊆ N (5.16)

w ≥ f(S)−
∑
i∈S

ρi(S \ i)(i− xi) +
∑

i∈N \S

ρi(∅)xi, ∀S ⊆ N (5.17)

can be used to formulate the problem of minimizing supermodular f as a linear mixed 0-1
program [70]. Ahmed and Atamtürk [3] observed that for higher dimensions the linearizations
using (5.16) or (5.17) aren’t computationally effective.

CHAPTER 5. NETWORK DESIGN WITH UNCERTAIN ARC CAPACITIES 86

Alternativerly, observe that Θ(x) expressed as (5.15) is convex over z ∈ [0, 1]m. The sep-
aration problem can thus be reformulated as the following convex quadratically constrained
problem.

minimize Θ(x) = u>x z− t

(SEP-x - MIQP) subject to t2 ≤ Ω2
∑
e∈A

σ2
ex

2
e ze

(5.8) − (5.14).

Solving the separation problem fast is imperative to the computational effectiveness of any
algorithm to find an optimal solution of the robust network design problem. In the following
we contrast the two methodologies discussed above to solve the separation problem in case
of independent arc capacities namely, via the MIQP reformulation (SEP-x-MIQCP) and via
the linearization obtained using (5.16) and (5.17). We use the MIP solver of CPLEX version
12.6 on a 2.93GHz Pentium Linux workstation with 8GB main memory.

Table 5.1: Separation problem : MIQP vs supermodular linearizations

nodes arcs Ω
MIQP Inequalities (5.16)-(5.17)

nodes time nodes time

50 1225
1 0 0.4 15 0.9
3 0 0.4 18 1.1
5 0 0.4 21 1.5

70 2415
1 0 1.4 12 3.2
3 0 1.4 17 4.4
5 0 1.4 30 6.4

100 4950
1 0 5.3 14 16.9
3 0 5.6 25 20.3
5 0 5.6 41 26.6

Table 5.1 contrasts the computational performance of the two approaches. The results
tabulated are averaged over 5 randomly generated instances. The first column lists the
number of nodes, the second column tabulates the number of arcs. The following columns
depict the scaling factor Ω, number of nodes explored and times to optimal solutions for
MIQP reformulation and linearization respectively. We observed that the convex quadratic
reformulation of the separation problem can be solved manyfold faster. We will utilize this
reformulation to solve the separation problem during our computational analysis in the case
of independent capacities.

CHAPTER 5. NETWORK DESIGN WITH UNCERTAIN ARC CAPACITIES 87

5.5.2 Correlated Arc Capacities

Amongst various other issues, the dependence of the arc capacities primarily affects the
solution times for the separation problem (SEP-x). From a computational perspective the
problem of network design with stochastic correlated arc capacities is prohibitive as such.
This can be attributed to the non-convexities in the continuous relaxation of the feasible set
of the separation problem resulting from the bilinear terms involved in the constraint set.

Although we have a convexification/linearization procedures to address the non-convexities
arising due to bilinear terms as discussed in Section 5.3, these reformulations fail to address
large problems. An alternative approach to address this issue can be devising a reformu-
lation without lifting the feasible set into higher dimensions. In particular, we reformulate
the separation problem with correlations as a MIQCP using a similar set function as in
Section 5.4.2. In the following we devise a reformulation for the separation problem as a
quadratically constrained program.

To introduce the idea of a MIQCP reformulation, we will first introduce the nesting of
three sets corresponding to feasible solutions of

a) all possible network configurations, A,

b) network configurations which satisfy the demand d nominally, An, and

c) network configurations that satisfy the demand d in a robust manner Ar.

Observe that Ar ⊆ An ⊆ A. An can be obtained by separating minimum cuts with
cut capacities satisfying the demand d. In this case, the separation problem reduces to the
deterministic minimum cut problem which can be solved efficiently. To reduce An to Ar we
solve the following MIQCP for d′ = d− ε, and sufficiently small ε > 0.

minimize Θ(x) = u>x z

(SEP-x-MIQCP) subject to (u>x z− d′)2 ≤ Ω2 · z>Σxz (5.18)

(5.8)− (5.14).

Any feasible solution to (SEP-x-MIQCP) yields a violated conic constraint for the master
problem. Infeasibility of (SEP-x-MIQCP) on the other hand serves as the certificate of
optimality for the solution x. We summarize the algorithm to solve the separation problem
with correlations as below.

CHAPTER 5. NETWORK DESIGN WITH UNCERTAIN ARC CAPACITIES 88

Algorithm 2 Algorithm to solve Separation Problem with Correlations
1: Input Present incumbent solution from the master problem x

2: Output Violated Cut C

3: Solve the deterministic minimum cut problem with the incidence vector x.

4: If the nominal minimum cut capacity < d, add the minimum cut constraint to the master
problem. Else go to next step (for all subsequent relaxation solutions).

5: Add the convex quadratic constraint fd′(x) ≤ 0 and resolve the separation problem.

6: If the separation problem is infeasible, x is optimal network configuration. Else return violated
cut C.

Observe that with fd′ , α and β as defined in (5.6), constraint (5.18) can be equivalently
stated as

fd′(x) ≥ 0⇔
∑
i

αixi + 2 ∗
∑
i

∑
j>i

βijxixj + d′2 ≥ 0, (5.19)

In addition, since β ≤ 0, constraint (5.19) is convex over x ∈ [0, 1]n. Solvers such as CPLEX
cannot explore this particular observation, however CPLEX can handle pure 0−1 quadratic
constraints very effectively using a combination of linearizations and cutting planes.

In the following, we tabulate the times to first feasible and optimal solution for two
different solution approaches that we have seen in this section, namely the McCormick
relaxation and the 0− 1 quadratic reformulation. The results tabulated are averaged over 5
randomly generated instances. The first column lists the number of nodes, the second column
tabulates the number of arcs. The following columns depict the scaling factor Ω, and times
to first feasible and optimal solutions for McCormick relaxation and MIQCP reformulation
respectively.

It is evident from the computations listed in Table 5.2 that the MIQCP reformulation
provide much better computational performance with respect to the McCormick Lineariza-
tions. This is also of significance because the separation problem is called several times from
the master problem and the smaller solution times can lead to high impact in the overall
solution times for the robust network design problem with correlations.

5.6 Computations

In this section we present our computational experiments for testing the effectiveness the
inequalities for solving the network design problems with probabilistic capacities. For the
computational experiments we use the MIP solver of CPLEX∗ (version 12.6) that solves conic

∗CPLEX is a registered trademark of IBM ILOG

CHAPTER 5. NETWORK DESIGN WITH UNCERTAIN ARC CAPACITIES 89

Table 5.2: Separation problem : McCormick vs MIQCP (times in seconds.)

nodes arcs Ω
McCormick MIQCP

feasible optimal feasible optimal

1 4 4 0.05 0

20 105 3 5 5 0.08 0.1

5 5 6 0.07 0.1

1 80 100 0.5 0.5

30 231 3 105 137 0.4 0.6

5 105 201 0.6 9

1 1062 1242 6 19

40 432 3 1342 1440 6 12

5 1620 1857 7 18

quadratic relaxations at the nodes of the branch-and-bound tree. CPLEX heuristics are
turned off, and a single thread is used. When comparing to default CPLEX, the MIP search
strategy is set to traditional branch-and-bound, rather than the default dynamic search as
it is not possible to add users cuts in CPLEX while retaining the dynamic search strategy.
Owing to significantly different solution procedures, we have addressed both the master
problem and the separation problem in the context of independent and correlated capacities
individually. The solver time limits and memory limits have been appropriately adjusted to
represent the difficulty of the problem instances. In case of the independent capacities the
time limit and the memory limits are set to 1800 secs. and 500 MB respectively, whereas in
the case of correlations, the respective numbers are 3600 secs. and 1 GB. All experiments
are performed on a 2.93GHz Pentium Linux workstation with 8GB main memory.

We contrast the computational performance of various algorithms discussed in Section 5.2
to find optimal solutions to the robust network design problem. We utilize the appropriate
solution procedures for the separation problem in the context of independent and correlated
capacities as discussed in the previous section. Apart from the trivial performance indices
i.e. time to optimality and the number of nodes explored in the branch and bound tree, we
also contrast various algorithmic approaches with respect to the distance from optimality.
Since we have employed a row generation approach one such measure can be the incumbent
gap (zgap) which we define as the percentage difference between the objective value of the
best solution found by the algorithm and the optimal objective value. However as observed
particularly during the computational analysis in the case of independent arc capacities is
that while in majority of cases, the best solution found by CPLEX is indeed the optimal
solution, CPLEX is not able to prove optimality in the prescribed time limit. Thus in the

CHAPTER 5. NETWORK DESIGN WITH UNCERTAIN ARC CAPACITIES 90

case of the independent arc capacities we observe the root relaxation gap (rgap) defined as
the percentage difference in the optimal objective value of R-FCNF and objective value at
the root node of the branch and bound tree after all the requisite conic quadratic constraints
have been added (i.e. if the present incumbent solution cannot be separated).

In Tables 5.3 and 5.4 we report the results of the computational experiments for inde-
pendent and correlated capacities respectively. The performance draws a comparison for
varying number of nodes in the graph(n), arcs (a), values for Ω, and the ratio of the demand
to the maximum flow possible in the network with the required value of Ω (β). For each
combination, five random networks are generated with mean arc capacities from uniform

[0, 100] and σi from uniform
[
0,
ui
Ω

]
. The demand d = β · ϕ, where ϕ = maximum flow

possible through the network for the given value of Ω. So that network is not completely
dense, we set the probability of having an arc i→ j (i, j ∈ N, i < j) between any two nodes

as
100√
n

, while ensuring the connectedness of the network.

5.6.1 Independent Arc Capacities

In Table 5.3 we compare the root relaxation gap (rgap) of the conic quadratic relaxation
as discussed, the numbers of cuts generated (cuts), the number of nodes explored (nodes),
the CPU time in seconds (time) and the number of instances solved to optimality (#) with

several cut generation options. The value of the rgap is computed as
(fr − f ∗)

f ∗
, where fr

denotes the objective value at the root node and f ∗ denotes the optimal objective. If none
of the algorithms solve a given instance to optimality within the given time limit of 1800
secs, then f ∗ is the objective value of the best found solution across all algorithms. The
columns under heading CPLEX show the performance of CPLEX with conic cuts added to
the formulation. The other columns show the performance when linearized tangent cuts, and
extended pack cuts are added respectively. The cuts are generated throughout the branch
and bound tree using the respective algorithms for linearization and pack separation and
extension as proposed in Chapter 2.

The observations in Table 5.3 establish the computational effectiveness of the extended
pack inequalities in the context of robust network design problem. In addition to this ex-
pected behavior, one can observe that while the outer approximations native to CPLEX are
faster on average, the root gaps corresponding to the linearizations described in Section 5.2
are relatively smaller. This can be attributed to the fact that these linearizations utilize
problem information as opposed to the generic outer approximation schema of CPLEX.

CHAPTER 5. NETWORK DESIGN WITH UNCERTAIN ARC CAPACITIES 91

T
ab

le
5.

3:
C

o
m

p
a
ri

so
n

b
et

w
ee

n
eff

ec
ti

ve
n

es
s

of
ad

d
in

g
su

p
p

or
ti

n
g

h
y
p

er
p

la
n

es
v
s

ex
te

n
d

ed
p

a
ck

in
eq

u
al

it
ie

s

C
on

ic
C

u
ts

C
p
le

x
O

u
te

r
A

p
p
ro

x
im

at
io

n
S
u
p
p

or
ti

n
g

H
y
p

er
p
la

n
e

A
p
p
ro

x
im

at
io

n
E

x
te

n
d
ed

P
ac

k
s

n
o
d
es

ar
cs

β
Ω

rg
ap

cu
ts

n
o
d
es

ti
m

e
#

rg
ap

cu
ts

n
o
d
es

ti
m

e
#

rg
ap

cu
ts

n
o
d
es

ti
m

e
#

rg
ap

cu
ts

n
o
d
es

ti
m

e
#

10
18

0.
3

1
6
6
.2

2
3

1
2
3

1
5

6
6
.2

2
3

8
2

1
5

6
0
.4

2
87

2
4

7
6

5
0

7
0

4
5

3
6
8
.4

8
7

3
9
4

1
5

0
68

.4
8

7
2
2
6

3
5

6
4
.9

89
2
1

7
1

5
1
2
.0

3
11

1
6

5

5
6
0
.3

5
4

3
4
9

1
5

6
0
.3

5
4

1
6
3

2
5

5
3
.3

6
10

6
1
9

8
0

5
1
.3

3
9

0
3

5

0.
5

1
5
4
.3

5
5

2
6
4

1
5

4
8
.9

5
5

1
5
8

0
5

4
6
.3

9
77

2
0

6
2

5
2
0
.4

9
9

1
5

5

3
5
9
.6

8
6

4
0
8

3
5

5
9
.6

8
6

1
6
1

4
5

5
1
.4

9
66

1
9

6
0

5
0
.1

9
11

0
6

5

5
4
4

8
1
8
1
7

8
5

4
4

8
1
1
8
7

2
5

3
8
.9

9
12

5
3
1

9
4

5
2
.3

1
10

1
7

5

0.
7

1
4
2
.2

1
6

3
8
6

1
5

4
0
.9

3
6

2
7
8

2
5

3
8
.8

5
82

1
8

6
8

5
3
.0

2
11

1
4

5

3
3
8
.9

8
3

3
9
4

1
5

4
1
.3

8
3

2
0
6

0
5

3
2
.5

8
13

4
2
7

1
0
1

5
9
.5

8
9

3
3

5

5
5
6
.8

6
11

1
2
5
1

6
5

5
3
.0

7
11

8
7
6

5
5

5
2
.2

7
11

3
2
3

8
8

5
0
.8

3
12

1
4

5

20
54

0.
3

1
7
0
.7

8
21

2
8
1
4
6

6
2
8

4
6
8
.6

9
34

1
6
4
2
4

1
6

5
6
0
.8

6
83

6
8
1

3
9
8

5
7
.9

8
10

2
6

8
5

3
6
8
.5

27
1
9
6
2
0

5
9
1

5
6
8
.5

29
3
5
7
0

5
5

6
1
.8

7
56

2
6
1

2
8
5

5
1
.5

2
46

2
1
2

5

5
6
7
.3

1
23

1
9
9
5
0

7
7
3

3
6
7
.1

7
28

3
2
3
6

6
5

5
1
.6

3
46

9
4
2

2
3
7

5
7
.1

8
60

3
1
2

5

0.
5

1
5
6
.4

5
16

1
7
8
7
6

6
3
9

4
5
2
.0

1
32

2
2
2
4
2

2
6

5
4
4
.2

5
81

5
9
7

3
6
8

5
9
.2

3
16

4
1
3

3
6

5

3
6
1
.1

4
26

2
9
2
8
7

8
8
7

3
5
6
.9

3
53

5
1
3
3
6

5
4

5
5
3
.0

7
76

3
9
3

3
1
5

5
1
1
.0

5
14

1
1
7

2
0

5

5
5
9
.5

4
22

2
1
3
7
1

7
6
0

4
5
6
.0

3
40

2
5
2
4
1

2
5

5
5
0
.4

9
11

24
1
2
0

4
9
0

5
1
3
.2

6
29

8
3
0

2
8

5

0.
7

1
5
1
.7

9
21

3
8
1
5
2

7
6
9

3
4
7
.4

9
43

4
9
4
0
4

4
9

5
4
1
.6

7
80

1
1
2
2

4
1
6

5
8
.6

7
15

0
1
3

2
7

5

3
5
1
.3

9
24

3
3
3
8
6

7
6
1

4
4
6
.6

6
36

3
2
1
2
4

2
2

5
4
5
.1

1
67

3
1
0
2

3
2
6

5
7
.6

2
12

5
1
2

2
6

5

5
5
1
.3

22
5
3
6
4
0

7
6
2

3
4
4
.6

3
46

4
7
5
9
8

4
0

5
3
8
.1

8
57

9
9
3

3
0
0

5
9
.3

2
80

6
1
0

5

40
15

3

0.
3

1
6
4
.7

3
18

4
6
8
7
7

1
4
5
0

2
5
8
.6

3
12

2
2
9
7
8
9
3

6
2
4

4
4
1
.9

9
25

58
1
2
7

1
7
2
9

1
1
4
.5

81
9

4
6

6
6

5

3
6
6
.5

7
17

4
6
2
2
6

1
4
4
0

2
6
0
.2

7
16

2
4
5
7
9
9
7

9
3
6

3
4
8
.2

7
19

38
1
1
9

1
3
2
3

2
1
4
.7

5
12

30
6
9

9
7

5

5
6
8
.2

8
16

4
9
4
3
2

1
4
7
3

1
5
9
.6

8
13

8
5
8
6
8
7
8

1
1
1
8

2
5
2
.3

8
23

91
1
2
4

1
6
2
9

1
2
1
.6

5
73

7
4
7

5
3

5

0.
5

1
5
8
.6

8
18

8
7
0
7
1

1
8
0
0

1
4
8
.1

14
2

8
9
8
2
1
5

1
2
2
2

4
3
7
.7

8
25

26
1
3
8

1
6
0
2

2
2
0
.4

9
14

58
8
9

1
3
1

5

3
6
2
.2

7
17

8
2
8
6
9

1
8
0
0

1
5
4
.5

1
17

9
1
0
0
8
1
4
9

1
6
0
3

3
4
4
.7

1
26

08
1
4
3

1
7
4
0

1
2
7
.9

1
14

85
1
6
9

1
7
7

5

5
6
1
.2

4
16

5
9
5
7
0

1
8
0
0

0
5
1
.2

6
17

8
9
0
6
3
9
0

1
5
8
1

2
4
1
.8

7
28

45
1
8
9

1
9
4
6

1
2
4
.3

8
21

55
2
4
7

4
2
4

4

0.
7

1
5
2
.6

3
16

6
4
7
6
1

1
8
0
0

2
4
2
.1

7
14

8
8
0
6
3
7
6

1
1
8
4

4
3
6
.1

9
23

78
1
2
9

1
6
3
9

1
2
7
.1

2
23

57
2
2
7

4
2
8

4

3
5
7
.7

5
16

6
9
7
2
0

1
8
0
0

1
4
2
.6

5
12

1
9
9
8
0
7
5

1
1
2
5

3
3
5
.6

4
21

69
1
2
1

1
3
9
8

2
2
6
.4

4
23

04
2
0
4

4
3
6

4

5
5
5
.7

15
8
3
0
6
2

1
8
0
0

0
4
5
.0

7
15

2
7
7
2
6
1
7

1
0
2
3

3
3
5
.3

1
22

81
1
7
5

1
5
1
5

3
2
4
.9

22
01

2
5
4

4
3
2

4

A
v
e
ra

g
e

5
8
.4

1
3
1
7
1
9

8
0
6

5
3
.8

3
2
5
8
7
8
2

3
9
6

4
6
.6

9
8
4

6
7
0

1
2
.1

4
5
4

9
1

D
e
v
ia

ti
o
n

8
.1

5
8
.9

7
8
.7

8
8
.9

4

CHAPTER 5. NETWORK DESIGN WITH UNCERTAIN ARC CAPACITIES 92

5.6.2 Correlated Arc Capacities

In Table 5.4 we compare the incumbent gap (zgap) of the algorithms, the numbers of cuts
generated (cuts), the number of nodes explored (nodes), the CPU time in seconds (time)
and the number of instances solved to optimality (#) with several cut generation options.

The value of the zgap is computed as
(f ∗i − f ∗)

f ∗
, where f ∗i denotes the objective value

the best solution found and f ∗ denotes the optimal objective. For an algorithm which
solves the problem to optimality f ∗i = f ∗. If no algorithms solves a given instance to
optimality within the given time limit of 3600 secs, then f ∗ is the objective value of the
best found solution across all algorithms. The columns under heading CPLEX show the
performance of CPLEX with conic cuts added to the formulation. The other columns show
the performance when cplex linearizations, extended polymatroid cuts, and aggregated cover
cuts are added respectively. The cuts are generated throughout the branch and bound tree
using the respective algorithms for linearization and cut generation as discussed in Section
5.4.2.

Table 5.4 distinctly establishes the effectiveness of the linearization obtained via extended
polymatroid inequalities. Again, the linearization in this context utilize the problem struc-
ture and hence are particularly efficient vis-à-vis CPLEX outer approximation. The compu-
tational performance is further improved by strengthening the linearization via aggregated
cover inequalities.

CHAPTER 5. NETWORK DESIGN WITH UNCERTAIN ARC CAPACITIES 93

T
ab

le
5.

4:
C

om
p

ar
is

on
o
f

co
m

p
u

ta
ti

on
al

eff
ec

ti
ve

n
es

s:
C

p
le

x
v
s.

ex
te

n
d

ed
p

ol
y
m

at
ro

id
in

eq
u

a
li

ti
es

w
it

h
ag

gr
eg

at
ed

co
ve

rs

C
P

L
E

X
C

P
L

E
X

O
u
te

r
A

p
p
ro

x
im

at
io

n
E

x
te

n
d
ed

P
ol

y
m

at
ro

id
s

E
x
te

n
d
ed

P
ol

y
m

at
ro

id
s

w
it

h
A

gg
re

ga
te

d
C

ov
er

s

n
o
d
es

ar
cs

β
Ω

zg
ap

cu
ts

n
o
d
es

ti
m

e
#

zg
ap

cu
ts

n
o
d
es

ti
m

e
#

zg
ap

cu
ts

n
o
d
es

ti
m

e
#

zg
ap

cu
ts

co
ve

rs
n
o
d
es

ti
m

e
#

10
21

0.
3

1
0

6
4
7
4

2
.2

5
0

6
2
3
2

0
.0

9
5

0
18

6
7

0
.1

5
0

16
9

3
3

0
.0

8
5

3
0

6
6
7
5

3
.4

4
5

0
5

2
8
0

0
.1

5
0

16
7
1

0
.0

5
5

0
14

10
2
7

0
.0

7
5

5
0

4
6
1
6

1
.7

3
5

0
4

2
0
2

0
.0

6
5

0
33

8
9

0
.0

7
5

0
20

9
3
7

0
.0

8
5

0.
5

1
0

7
4
6
8

2
.5

6
5

0
7

3
1
4

0
.1

1
5

0
43

1
0
4

0
.1

1
5

0
39

17
5
8

0
.1

2
5

3
0

7
1
3
1
4

5
.4

5
5

0
7

4
3
0

0
.1

1
5

0
30

1
1
9

0
.2

6
5

0
30

16
6
2

0
.1

2
5

5
0

8
9
0
1

1
0
.5

4
5

0
8

4
2
7

0
.1

7
5

0
54

1
7
4

0
.1

6
5

0
39

21
7
0

0
.1

7
5

0.
7

1
0

7
1
5
2
3

7
.5

6
5

0
7

7
2
1

0
.1

9
5

0
44

1
9
0

0
.2

2
5

0
56

25
8
4

0
.2

5

3
0

11
2
6
7
0

2
0
.4

2
5

0
11

8
5
5

0
.3

3
5

0
53

2
0
4

0
.3

7
5

0
52

26
9
8

0
.2

3
5

5
0

12
5
6
1
4

9
7
.7

8
5

0
12

2
1
2
5

0
.7

6
5

0
98

3
5
9

0
.3

5
0

10
1

42
1
4
1

0
.1

8
5

20
54

0.
3

1
2
4
.0

2
29

2
5
4
2
9

1
3
2
7
.8

6
4

0
11

5
6
7
1

3
.4

8
5

0
27

9
1
8
3
4

1
.2

9
5

0
20

8
14

1
2
4
8

0
.7

8
5

3
0

16
7
6
9
0

2
3
8
.6

5
5

0
16

3
8
3
7

2
.1

5
5

0
16

4
7
9
2

0
.7

1
5

0
15

4
12

1
2
5
6

0
.6

2
5

5
0

10
4
2
8
3

8
1
.5

4
5

0
10

2
7
8
4

1
.1

7
5

0
11

8
3
9
5

0
.5

2
5

0
90

62
1
5
5

0
.4

1
5

0.
5

1
9
.8

9
51

5
9
0
3
1

2
1
7
6
.3

9
2

0
29

4
1
5
2
8

3
3
.7

1
5

0
42

3
4
7
5
8

3
.2

2
5

0
46

6
20

0
1
1
3
2

2
.5

2
5

3
4
.1

2
41

3
6
5
2
3

1
7
1
2
.4

4
0

31
1
4
0
6
7

8
.4

3
5

0
41

8
1
7
9
3

1
.6

7
5

0
34

4
16

7
5
3
1

1
.5

5

5
6
.6

84
3
4
8
1
2

1
5
8
3
.4

8
3

1
1
.1

8
50

1
2
9
3
6
2

7
2
7
.2

6
4

0
25

8
1
0
7
4

0
.9

8
5

0
19

0
12

0
3
1
0

0
.7

6
5

0.
7

1
1
3
.2

9
25

3
8
1
0
3

1
2
5
4
.5

1
4

0
33

4
6
4
8
1

3
2
.4

9
5

0
71

9
8
2
3
7

1
0
.8

3
5

0
39

7
19

7
1
2
7
0

2
.6

4
5

3
9
.6

7
66

1
0
2
1
5
9

3
6
0
0
.0

1
0

0
44

2
8
1
7
6

1
9
.6

5
0

35
2

2
1
9
2

2
.0

8
5

0
23

8
13

4
6
4
7

1
.2

5

5
1
4
.8

9
48

4
7
8
9
2

1
6
9
8
.6

6
4

0
38

2
4
9
6
3

2
4
.2

6
5

0
34

6
2
6
5
8

1
.8

7
5

0
39

3
22

4
8
2
8

2
.3

9
5

30
10

1

0.
3

1
1
8
.3

6
46

3
2
3
3
7

2
8
5
4
.4

9
2

0
68

5
6
2
8
4

1
7
1
.3

8
5

0
23

1
2
3
0
4

1
.7

1
5

0
38

7
22

2
6
7
2

2
.9

2
5

3
2
3
.1

3
54

2
8
5
3
8

2
5
8
6
.1

9
2

0
10

8
1
3
7
5
8
4

8
4
4
.7

7
4

0
50

7
5
6
2
0

5
.1

9
5

0
39

7
24

6
8
1
4

3
.2

1
5

5
2
1
.1

6
10

0
3
3
9
5
1

2
7
3
5
.2

4
2

0
87

7
7
5
2
9

3
8
5
.8

5
0

30
5

2
5
8
2

2
.2

1
5

0
19

1
13

9
4
6
0

1
.4

8
5

0.
5

1
1
8
.8

2
90

1
0
9
8
3
3

3
6
0
0
.0

1
0

3
.9

9
10

6
5
4
1
5
7
5

2
2
1
9
.5

3
0

12
44

2
4
3
1
4

2
4
.1

9
5

0
93

7
56

6
2
5
9
6

9
.4

7
5

3
1
6
.6

7
21

6
5
7
3
4

2
8
5
0
.6

5
2

8
.0

9
83

3
3
0
3
1
1

1
6
1
2
.2

4
4

0
12

97
1
4
4
2
4

1
5
.9

5
0

11
55

72
1

2
9
9
9

1
4
.6

7
5

5
1
2
.3

40
1
3
3
8
6
1

3
6
0
0
.0

1
0

0
98

2
6
2
5
8
3

1
1
2
3
.5

9
5

0
96

3
5
1
8
6

5
.4

7
5

0
86

6
47

9
1
2
4
2

6
.3

3
5

0.
7

1
3
0
.6

5
67

8
3
0
5
6

3
6
0
0
.0

1
0

9
.1

8
10

8
6
4
4
0
9
0

2
8
9
2
.8

7
2

0
17

90
5
1
0
7
6

6
3
.1

1
5

0
16

86
96

2
4
7
5
9

2
8
.8

5

3
1
0
.7

8
63

9
0
9
6
0

3
6
0
0
.0

1
0

2
2
.4

1
63

5
4
0
9
9
3

1
8
1
1
.7

8
3

0
19

77
4
9
0
7
3

8
1
.8

5
5

0
21

68
11

18
3
4
1
1

2
7

5

5
1
3
.4

6
83

7
6
9
1
4

3
6
0
0
.0

1
0

6
.0

9
91

3
1
4
0
3
9

9
8
4
.8

2
4

0
11

75
1
3
1
2
4

1
5
.7

5
0

13
79

63
0

2
0
2
2

1
1
.3

1
5

A
v
e
ra

g
e

1
6

3
7

3
7
9
7
6

1
5
8
7

8
4

9
.6

4
2

1
1
8
7
9
4

4
7
8

1
2
4

0
4
8
0

7
1
4
1

9
1
3
5

0
4
4
5

2
4
5

9
2
5

4
1
3
5

D
e
v
ia

ti
o
n

6
.9

7
6
.5

0
0

94

Chapter 6

Conclusion

In the last four chapters, we proposed methodologies and strategies to solve binary conic-
quadratic programs in a branch-and-cut framework and provided an application in form
of robust network design. In this chapter, we conclude the dissertation by highlighting
the important aspects of the work done and by describing some open problems and future
research areas.

In Chapter 2, we studied the supermodular covering constraint set associated with the
non-increasing set function. These type of constraint sets frequently arise in probabilistic
threshold satisfaction problems. The classical supermodular formulation of such problems
into 0-1 programming appears to be computationally ineffective due to its weak linear pro-
gramming relaxation. In order to address this difficulty we derived valid inequalities for
the supermodular covering set in context and investigated their separation, extensions and
lifting. To strengthen the derived pack inequalities we proposed an extension algorithm
that exploits the special structure of the particular supermodular function. We computed
the sequence independent bounds on the lifting coefficients for the facets of the underlying
polyhedral set. Furthermore, we presented a computational study on using the polyhedral
results derived for solving 0-1 optimization problems over conic quadratic constraints with
a branch-and-cut algorithm.

A major assumption throughout Chapter 2 was monotonicity of the underlying set func-
tion. In Chapter 3 we studied a generalization of the monotone submodular knapsack poly-
tope by relaxing the monotonicity assumptions. We saw that the polyhedral analysis of the
0−1 linear knapsack can be extended via extended polymatroids to the submodular knapsack
polytope. In particular, we generalized the cover and pack inequalities, lifting approaches
and presented easily computable extensions and sequence independent bounds on the lifting
coefficients for the general submodular knapsack. We presented both a theoretical discussion
as well as a computational analysis for the effectiveness of the inequalities on submodular
quadratic and general 0− 1 quadratic knapsack sets.

During our computational analysis in Chapter 3 We observed that the submodular cover

CHAPTER 6. CONCLUSION 95

inequalities obtained via aggregation of extended polymatroid inequalities proved to be ef-
fective in strengthening the root relaxation for the problem instances even with a simple
aggregation heuristic. More work needs to be done to formalize the discussion on aggre-
gation of extended polymatroid inequalities. It is expected that utilizing good aggregation
heuristics can further strengthen the relaxations and improve the solution times.

In Chapter 4 we changed our perspective from studying the combinatorial structures of
0 − 1 conic-quadratic sets to understanding the geometry of the general 0 − 1 quadratic
sets. We provided convexification techniques for 0 − 1 non-convex quadratic sets. We de-
rived strengthening procedures for these reformulations and a theoretical insight for the
containment of these convex quadratic sets. We also derived a new linearization procedure
to strengthen the convex reformulation. These linearizations are a modified version of the
McCormick linearizations with half the number of constraints.

In Chapter 5 we studied an application of the methodologies developed in this disserta-
tion. We looked at the problem of designing network configurations that are robust with
respect to the uncertainty of arc capacities. We formulated the problem using probabilistic
guarantees and provided a sufficient deterministic formulation as a 0 − 1 conic quadratic
constrained optimization problem. We considered a row generation approach and formu-
lated the separation problem as the robust minimum cut problem. We derived solution
methodologies and reformulations in order to solve the separation problem fast especially in
the case of correlations, which renders the separation problem computationally prohibitive.
In addition, we derived solution approaches for the master problem in the aforementioned
contexts while paying particular attention to the combinatorial structure of the problem. An
extensive computational analysis established the effectiveness of utilizing these approaches
vis-à-vis CPLEX.

The importance of solving combinatorial optimization problems fast is far evident. Prob-
abilistic counterparts of these problems relax the assumptions about the deterministic nature
of the parameters. The need to develop solution procedures and algorithms to solve these
problems efficiently in today’s context is imperative and has far ranging applications in many
fields such as healthcare, computational biology, transport engineering, information theory,
etc. In this dissertation we have developed solution methodologies that revolve around a
central theme of addressing these problems.

Fast solutions procedures to the aforementioned questions will find their applications in
plethora of real life problems entailing flow networks i.e. transportation networks (shortest
path under uncertainty, maximum traffic flow under uncertainty), communication networks
(optimizing data transfer over variable bandwidths), pipe line flows, etc. In addition, further
interest lies in formulating probabilistic versions of combinatorial problems such as matching
in bipartite graphs and assignment problems within this framework.

A related, but interesting problem is when some of the variables are allowed to be contin-
uous. For example, an immediate extension to the network design problems with parametric

CHAPTER 6. CONCLUSION 96

uncertainties can be seen as flow problems in these networks. Within the framework of
network configurations with parametric uncertainties, we can pose the following questions:

1. What is the maximum flow that can be sent through this network configuration?

2. How to optimally route a given flow across this network from the source node to the
sink node with a given confidence level.

Fast solutions procedures to the aforementioned questions will find their applications in
plethora of real life problems entailing flow networks i.e. transportation networks (shortest
path under uncertainty, maximum traffic flow under uncertainty), communication networks
(optimizing data transfer over variable bandwidths), pipe line flows, etc. In addition, further
interest lies in formulating probabilistic versions of combinatorial problems such as matching
in bipartite graphs and assignment problems within this framework. It is important to
observe that unlike in the case of linear knapsack problem [6] where it is trivial to characterize
the coefficients of continuous variables in the linear knapsack problem, in the conic-quadratic
case, the convex hull of feasible solutions is no longer a polyhedron, and one requires nonlinear
inequalities to describe the convex hull of feasible solutions, with the continuous variables
playing a nontrivial part.

97

Bibliography

[1] K. Aardal, Y. Pochet, and L. A. Wolsey. “Capacitated facility location: Valid in-
equalities and facets”. In: Mathematics of Operations Research 20 (1995), pp. 562–
582.

[2] K. Abhishek, S. Leyffer, and J. T. Linderoth. “FilMINT: An Outer-Approximation-
Based Solver for Nonlinear Mixed Integer Programs”. In: INFORMS Journal on Com-
puting 22 (Fall 2010), pp. 555–567.

[3] S. Ahmed and A. Atamtürk. “Maximizing a class of submodular utility functions”.
In: Mathematical Programming 128 (2011), pp. 149–169.

[4] K. Andersen and A. N. Jensen. “Intersection cuts for mixed integer conic quadratic
sets”. In: Integer Programming and Combinatorial Optimization. Springer, 2013, pp. 37–
48.

[5] A. Atamtürk. “Cover and pack inequalities for (mixed) integer programming”. In:
Annals of Operations Research 139 (2005), pp. 21–38.

[6] A. Atamtürk. “On the facets of mixed–integer knapsack polyhedron”. In: Mathemat-
ical Programming 98 (2003), pp. 145–175.

[7] A. Atamtürk. “Sequence Independent Lifting for Mixed-Integer Programming”. In:
Operations Research 52 (2004), pp. 487–490.

[8] A. Atamtürk and A. Bhardwaj. Supermodular Covering Knapsack Polytope. Research
Report BCOL.14.02. University of California Berkeley, Sept. 2014.

[9] A. Atamtürk and V. Narayanan. “Conic Mixed-Integer Rounding Cuts”. In: Mathe-
matical Programming 122 (2010), pp. 1–20.

[10] A. Atamtürk and V. Narayanan. “Lifting for Conic Mixed-Integer Programming”. In:
Mathematical Programming 126 (2011), pp. 351–363.

[11] A. Atamtürk and V. Narayanan. “Polymatroids and mean-risk minimization in dis-
crete optimization”. In: Operations Research Letters 36.5 (2008), pp. 618–622.

[12] A. Atamtürk and V. Narayanan. “The Submodular Knapsack Polytope”. In: Discrete
Optimization 6 (2009), pp. 333–344.

BIBLIOGRAPHY 98

[13] A. Atamtürk and M. Zhang. “Two-Stage Robust Network Flow and Design under
Demand Uncertainty”. In: Operations Research 55 (2007), pp. 662–673.

[14] E. Balas. “Disjunctive Programming”. In: Annals of Discrete Mathematics 5 (1979),
pp. 3–51.

[15] E. Balas. “Facets of the Knapsack Polytope”. In: Mathematical Programming 8 (1975),
pp. 146–164.

[16] E. Balas, S. Ceria, and G. Cornuéjols. “A lift-and-project cutting plane algorithm for
mixed 0-1 programs”. In: Mathematical Programming 58 (1993), pp. 295–324.

[17] E. Balas and E. Zemel. “Facets of the knapsack polytope from minimal covers”. In:
SIAM Journal of Applied Mathematics 34 (1978), pp. 119–148.

[18] E. Balas and E. Zemel. “Lifting and complementing yields all facets of positive
zero–one programming polytopes”. In: Proceedings of the International Conference
on Mathematical Programming. Ed. by R. W. Cottle et al. 1984, pp. 13–24.

[19] P. Belotti et al. “A conic representation of the convex hull of disjunctive sets and
conic cuts for integer second order cone optimization”. In: Optimization Online URL
http://www. optimization-online. org/DB HTML/2012/06/3494. html (2012).

[20] S. J. Benson and Y. Ye. DSDP5: Software For Semidefinite Programming. Tech. rep.
ANL/MCS-P1289-0905. Submitted to ACM Transactions on Mathematical Software.
Argonne, IL: Mathematics and Computer Science Division, Argonne National Labo-
ratory, Sept. 2005. url: http://www.mcs.anl.gov/~benson/dsdp.

[21] A. Ben-Tal and A. Nemirovski. “On polyhedral approximations of the second-order
cone”. In: Mathematics of Operations Research 26 (2001), pp. 193–205.

[22] A. Ben-Tal and A. Nemirovski. “Robust optimization–methodology and applica-
tions”. In: Mathematical Programming 92 (2002), pp. 453–480.

[23] A. Ben-Tal and A. Nemirovski. “Robust solutions of linear programming problems
contaminated with uncertain data”. In: Mathematical Programming 88 (2000), pp. 411–
424.

[24] D. Bertsimas and I. Popescu. “Optimal Inequalities in Probability Theory: A Convex
Optimization Approach”. In: SIAM Journal on Optimization 15 (2005), pp. 78–804.

[25] D. Bertsimas and M. Sim. “Robust discrete optimization and network flows”. In:
Mathematical Programming 98 (2003), pp. 49–71.

[26] D. Bertsimas and C. Teo. “From Valid Inequalities to Heuristics: A Unified View
of Primal-Dual Approximation Algorithms in Covering Problems”. In: Operations
Research 46 (July/August 1998), pp. 503–514.

[27] B. Borchers. “CSDP, a C library for semidefinite programing”. In: Optimization Meth-
ods and Software 11 (1999), pp. 613–623.

http://www.mcs.anl.gov/~benson/dsdp

BIBLIOGRAPHY 99

[28] K. M. Bretthauer and B. Shetty. “The nonlinear knapsack problem - algorithms and
applications”. In: European Journal of Operational Research 138 (2002), pp. 459–472.

[29] T. Carnes and D. Shmoys. “Primal-Dual Schema for Capacitated Covering Prob-
lems”. In: Integer Programming and Combinatorial Optimization. Ed. by A. Lodi, A.
Panconesi, and G. Rinaldi. Vol. 5035. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2008, pp. 288–302.

[30] M. T. Çezik and G. Iyengar. “Cuts for mixed 0-1 conic programming”. In: Mathe-
matical Programming 104 (2005), pp. 179–202.

[31] A. Charnes and W. W. Cooper. “Deterministic Equivalents for Optimizing and Sat-
isficing under Chance Constraints”. In: Operations Research 11 (1963), pp. 18–39.

[32] A. M. Costa. “A survey on benders decomposition applied to fixed-charge network
design problems”. In: Computers and Operations Research 32 (June 2005), pp. 1429–
1450.

[33] J. Csirik et al. “Heuristics for the 0-1 Min-Knapsack Problem”. In: Acta Cybernetica
10 (1991), pp. 15–20.

[34] S. Drewes and S. Ulbrich. “Subgradient Based Outer Approximation for Mixed In-
teger Second Order Cone Programming”. In: Mixed-Integer Nonlinear Optimization:
Algorithmic Advances and Applications. IMA Volume Series. Springer, 2010.

[35] M. Duran and I. Grossmann. “An outer-approximation algorithm for a class of mixed-
integer nonlinear programs”. In: Mathematical Programming 36 (1986), pp. 307–339.

[36] J. Edmonds. “Submodular functions, matroids and certain polyhedra”. In: Combina-
torial structres and their applications. Ed. by R. Guy. Vol. 11. New York, NY: Gordon
and Breach, 1971, pp. 69–87.

[37] L. El Ghaoui, M. Oks, and F. Oustry. “Worst-Case Value-at-Risk and Robust Port-
folio Optimization: A Conic Programming Approach”. In: Operations Research 51
(2003), pp. 543–556.

[38] L. E. Escudero, A. Gaŕın, and Gloria Péres. “An O(n log n) procedure for identifying
facets of the knapsack polytope”. In: Operations Research Letters 31 (2003), pp. 211–
218.

[39] R. Fletcher and S. Leyffer. “Solving mixed integer nonlinear programs by outer ap-
proximation”. In: Mathematical Programming 66 (1994), pp. 327–349.

[40] R. E. Gomory. “Some Polyhedra Related to Combinatorial Problems”. In: Linear
Algebra and Its Applications 2 (1969), pp. 451–558.

[41] Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. “Lifted Flow Cover Inequalities
for Mixed 0-1 Integer Programs”. In: Mathematical Programming 85 (1999), pp. 439–
467.

BIBLIOGRAPHY 100

[42] Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. “Lifted Knapsack Cover Inequal-
ities for 0-1 Integer Programs: Complexity”. In: INFORMS Journal on Computing 11
(1999), pp. 117–123.

[43] Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. “Lifted Knapsack Cover Inequal-
ities for 0-1 Integer Programs: Computation”. In: INFORMS Journal on Computing
10 (1998), pp. 427–437.

[44] Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. “Sequence Independent Lifting
in Mixed Integer Programming”. In: Journal of Combinatorial Optimization 4 (2000),
pp. 109–129.

[45] P. L. Hammer, E. L. Johnson, and U. N. Peled. “Facets of Regular 0-1 Polytopes”.
In: Mathematical Programming 8 (1975), pp. 179–206.

[46] C. Helmberg, F. Rendl, and R. Weismantel. “A Semidefinite Programming Approach
to the Quadratic Knapsack Problem”. In: Journal of Combinatorial Optimization 4
(2000), pp. 197–215.

[47] H. Hijazi, P. Bonami, and A. Ouorou. “Robust delay-constrained routing in telecom-
munications”. In: Annals of Operations Research 206 (2013), pp. 163–181.

[48] D. S. Hochbaum. “A nonlinear Knapsack problem”. In: Operations Research Letters
17 (1995), pp. 103–110.

[49] S. Iwata. “Submodular function minimization”. In: Mathematical Programming 112
(2008), pp. 45–64.

[50] R. Jeroslow. “There Cannot be any Algorithm for Integer Programming with Quadratic
Constraints”. In: Operations Research 21 (1973), pp. 221–224.

[51] E. L. Johnson and M. W. Padberg. “A Note on Knapsack Problem with Special
Ordered Sets”. In: Operations Research Letters 1 (1981), pp. 18–22.

[52] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[53] J. L. Kennington and C. D. Nicholson. “The Uncapacitated Time-Space Fixed-Charge
Network Flow Problem: An Empirical Investigation of Procedures for Arc Capacity
Assignment”. In: INFORMS Journal on Computing 22 (Apr. 2010), pp. 326–337.

[54] A. F. Al-Khayyal and J. E. Falk. “Jointly Constrained Biconvex Programming”. In:
Mathematics of Operations Research 8 (1983), pp. 273–286.

[55] F. Kılınç-Karzan. “On minimal valid inequalities for mixed integer conic programs”.
In: arXiv preprint arXiv:1408.6922 (2014).

[56] F. Kılınç-Karzan and S. Yıldız. “Two-term disjunctions on the second-order cone”.
In: Mathematical Programming (2015), pp. 1–29.

[57] M. Kojima and L. Tuncel. “Cones of matrices and successive convex relaxations of
nonconvex sets”. In: SIAM Journal on Optimization 10 (2000), pp. 750–778.

BIBLIOGRAPHY 101

[58] A. H. Land and A. G. Doig. “An Automatic Method for Solving Discrete Program-
ming Problems”. In: Econometrica 28 (1960), pp. 497–520.

[59] J. B. Lasserre. “An explicit exact SDP relaxation for nonlinear 0-1 programs”. In:
Lecture Notes in Computer Science. Ed. by K. Aardal and A. M. H. Gerards. Vol. 2081.
Springer Berlin / Heidelberg, 2001, pp. 293–303.

[60] J. Lee et al. “Maximizing nonmonotone submodular functions under matroid or knap-
sack constraints”. In: SIAM Journal on Discrete Mathematics 23 (2010), pp. 2053–
2078.

[61] Q. Louveaux and R. Weismantel. “Polyhedral properties for the intersection of two
knapsacks”. In: Mathematical Programming 113 (2008), pp. 15–37.

[62] Q. Louveaux and L. A. Wolsey. “Lifting, superadditivity, mixed integer rounding,
and single node flow sets revisited”. In: Annals of Operations Research 153 (2007),
pp. 47–77.

[63] H. Mak, Y. Rong, and Z. M. Shen. “Infrastructure Planning for Electric Vehicles with
Battery Swapping”. In: Management Science 59 (2013), pp. 1557–1575.

[64] H. Marchand and L. A. Wolsey. “The 0-1 Knapsack Problem with a Single Continuous
Variable”. In: Mathematical Programming 85 (1999), pp. 15–33.

[65] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implemen-
tations. New York: John Wiley & Sons, Inc, 1990.

[66] G. P. McCormick. “Computability of global solutions to factorable nonconvex pro-
grams: Part I : Convex underestimating problems”. In: Mathematical Programming
10 (1976), pp. 147–175.

[67] S. Modaresi, M. R. Kılınç, and J. P. Vielma. “Split cuts and extended formulations
for mixed integer conic quadratic programming”. In: Operations Research Letters 43.1
(2015), pp. 10–15.

[68] T. L. Morin and R. E. Marsten. “An Algorithm for Nonlinear Knapsack Problems”.
In: Management Science 22 (1976), pp. 1147–1158.

[69] G. L. Nemhauser and P. H. Vance. “Lifted Cover Facets of the 0-1 Knapsack Polytope
with GUB Constraints”. In: Operations Research Letters 16 (1994), pp. 255–263.

[70] G. L. Nemhauser and L. A. Wolsey. “Best algorithms for approximating the maximum
of a submodular function”. In: Mathematics of Operations Research 3 (1978), pp. 177–
188.

[71] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. New
York: John Wiley and Sons, 1988.

[72] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. “An analysis of approximations for
maximizing submodular set functions-I”. In: Mathematical Programming 14 (1978),
pp. 265–294.

BIBLIOGRAPHY 102

[73] M. Padberg. “The boolean quadric polytope: Some characteristics, facets and rela-
tives”. In: Mathematical Programming 45 (1989), pp. 139–172.

[74] M. W. Padberg. “A note on 0–1 programming”. In: Operations Research 23 (1979),
pp. 833–837.

[75] M. W. Padberg. “On the facial structure of set packing polyhedra”. In: Mathematical
Programming 5 (1973), pp. 199–215.

[76] M. Ç. Pinar. “Mixed-integer second-order cone programming for lower hedging of
American contingent claims in incomplete markets”. In: Optimization Letters 7 (2013),
pp. 63–78.

[77] J.–P. P. Richard, I. R. de Farias, and G. L. Nemhauser. “Lifted Inequalities for 0–
1 Mixed Integer Programming : Basic Theory and Algorithms”. In: Mathematical
Programming 1-3 (2003), pp. 89–113.

[78] J.–P. P. Richard, I. R. de Farias, and G. L. Nemhauser. “Lifted Inequalities for 0–1
Mixed Integer Programming : Superlinear lifting”. In: Mathematical Programming 1-3
(2003), pp. 115–143.

[79] T. Santoso et al. “A stochastic programming approach for supply chain network
design under uncertainty”. In: European Journal of Operational Research 167 (2005),
pp. 96–115.

[80] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Berlin: Springer
Verlag, 2003.

[81] A. Schrijver. Theory of Linear and Integer Programming. Chichester: John Wiley and
Sons, 1987.

[82] H. D. Sherali and W. P. Adams. “Hierarchy of Relaxations Between the Continuous
and Convex Hull Representations for Zero-One Programming Problems”. In: SIAM
Journal on Discrete Mathematics 3 (1990), pp. 411–430.

[83] H. D. Sherali and Y. G. Lee. “Sequential and Simultaneous Liftings of Minimal
Cover Inequalities for Generalized Upper Bound Constrained Knapsack Polytopes”.
In: SIAM Journal on Discrete Mathematics 8 (1995), pp. 133–153.

[84] H. D. Sherali and C. Shetti. Optimization with disjunctive constraints. Vol. 181. Lec-
tures on Econ. Math. Systems. Berlin, Heidelberg, New York: Springer Verlag, 1980.

[85] H. D. Sherali and C. H. Tunçbilek. “A hierarchy of relaxations between continuous and
convex hull representations for zero-one programming problems”. In: SIAM Journal
on Discrete Mathematics 3 (1990), pp. 411–430.

[86] H. D. Sherali and C. H. Tunçbilek. “A reformulation-convexification approach for solv-
ing nonconvex quadratic programming problems”. In: Journal of Global Optimization
7 (1995), pp. 1–31.

[87] R. Stubbs and S. Mehrotra. “A branch-and-cut methods for 0-1 mixed convex pro-
gramming”. In: Mathematical Programming 86 (1999), pp. 515–532.

BIBLIOGRAPHY 103

[88] R. Stubbs and S. Mehrotra. “Generating Convex Polynomial Inequalities for Mixed
0-1 Programs”. In: Journal of Global Optimization 24 (2002), pp. 311–332.

[89] J. Sturm. “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones”. In: Optimization Methods and Software 11 (1999), pp. 625–653.

[90] M. Sviridenko. “A note on maximizing a submodular set function subject to a knap-
sack constraint”. In: Operations Research Letters 32 (2004), pp. 41–43.

[91] M. Tawarmalani and N. V. Sahinidis. “Global optimization of mixed-integer nonlinear
programs: A theoretical and computational study”. In: Mathematical Programming
99 (2004), pp. 563–591.

[92] K.C. Toh, M. J. Todd, and R. H. Tütüncü. “SDPT3 – a Matlab software package
for semidefinite programming”. In: Optimization Methods and Software 11/12 (1999),
pp. 545–581.

[93] J. P. Vielma, S. Ahmed, and G. L. Nemhauser. A Lifted Linear Programming Branch-
and-Bound Algorithm for Mixed Integer Conic Quadratic Programs. Tech. rep. 2008,
pp. 438–450.

[94] R. Weismantel. “On the 0/1 knapsack polytope”. In: Mathematical Programming 77
(1997), pp. 49–68.

[95] L. A. Wolsey. “Faces for Linear Inequality in 0-1 Variables”. In: Mathematical Pro-
gramming 8 (1975), pp. 165–178.

[96] L. A. Wolsey. “Facets and Strong Valid Inequalities for Integer Programs”. In: Oper-
ations Research 24 (1976), pp. 367–372.

[97] L. A. Wolsey. Integer Programming. New York: John Wiley and Sons, 1998.

[98] L. A. Wolsey. “Valid Inequalities and Superadditivity for 0/1 Integer Programs”. In:
Mathematics of Operations Research 2 (1977), pp. 66–77.

[99] M. Yamashita, K. Fujisawa, and M. Kojima. “Implementation and evaluation of SDPA
6.0 (SemiDefinite Programming Algorithm 6.0)”. In: Optimization Methods and Soft-
ware 18 (2003), pp. 491–505.

[100] E. Zemel. “Easily computable facets of the knapsack polytope”. In: Mathematics of
Operations Research 14 (1989), pp. 760–764.

[101] E. Zemel. “Lifting the Facets of Zero-One Polytopes”. In: Mathematical Programming
15 (1978), pp. 268–277.

	Contents
	List of Figures
	List of Tables
	Introduction
	Notation
	An Overview of Mixed-Integer Programming
	Lifting for Linear Mixed-Integer Programming
	Submodular Functions and Related Polyhedra
	Applications of Binary Conic Quadratic Programs
	Solution Approaches for Binary Conic Quadratic Programs
	Final Remarks

	Supermodular Covering Knapsack Polytope
	Introduction
	Relevant Literature

	Polyhedral Analysis
	Pack Inequalities
	Extended Pack Inequalities
	Lifted Pack Inequalities

	Separation of Pack Inequalities
	Computational Experiments

	General Submodular Knapsacks
	Introduction
	Linear 0-1 Knapsack Set
	Cover Inequalities
	Pack Inequalities
	Generalizing the Linear 0-1 Knapsack

	General Submodular Knapsack Polytope
	Submodular Functions and Extended Polymatroids
	Polyhedral Analysis of Kf
	Valid Inequalities for Kf
	Submodular Cover Inequalities
	Submodular Pack Inequalities
	Lifted Submodular Cover Inequalities
	Strengthening the Valid Inequalities via Extensions
	Sequence Independent Bounds on Lifting Coefficients

	Lifting via Extended Polymatroids
	Separating Submodular Cover Inequalities
	Computational Analysis
	Submodular Quadratic Set Functions
	General Quadratic Set Functions

	Convex Envelopes of Binary Quadratic Sets
	Introduction
	The Sums of Squares (SOS) Reformulation
	Strengthening the SOS Relaxation
	A Convexification Approach via Eigendecomposition
	Strengthening SOS Relaxation via Linearization

	Network Design with Uncertain Arc Capacities
	Introduction
	Network Design with Uncertain Capacities

	Problem Formulation
	Linearization of the Constraints
	McCormick Linearizations
	Supporting Hyperplane Relaxation

	Strengthening the Formulation
	Independent Arc Capacities
	Correlated Arc Capacities

	Separation Problem
	Independent Arc Capacities
	Correlated Arc Capacities

	Computations
	Independent Arc Capacities
	Correlated Arc Capacities

	Conclusion
	Bibliography

