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Abstract

Search is a ubiquitous behavior for a variety of species. Con-
verging evidence from several domains suggests that there may
be common principles that apply to search processes regard-
less of the species, or contexts, in which they are observed.
Theories of cognitive or memory search have been motivated
by findings in the animal foraging literature, and have recently
been the subject of increased attention (see Hills et al., 2015;
Hills, Jones, & Todd, 2012, for example). This approach has
been quite successful in terms of applying the principles of
spatial search to cognitive search, but here we add additional
justification by grounding cognitive search in spatial measures.
We asked subjects to perform a semantic fluency task, recall-
ing items from the category of cities in California, so we could
use physical, geographic coordinates to characterize cognitive
search. Our findings support the notion that cognitive search is
similar to spatial search.
Keywords: Spatial Cognition; Spatial Search; Cognitive
Search; Memory; Memory Search; Categorical Recall; Col-
laborative Recall; Collaborative Dynamics

Introduction
A common metaphor for remembering is “a stroll down mem-
ory lane.” This suggests that the cognitive act of remembering
is like a traversal through some landscape, where the land-
scape is made of memories, knowledge, or information.

The nature of this landscape, of how information is orga-
nized and searched, is a fundamental question in the cogni-
tive, psychological, and philosophical sciences. Implied by
the “memory as landscape” metaphor is the idea that memory
structure is semantic in nature, such that recalling the concept
birthday cake may make you think of a semantically related
concept such as birthday candle. Indeed, semantically related
items have long been shown to prime one another (Meyer &
Schvaneveldt, 1971). By this metaphor, then, as we stroll to
the location in memory space that codes for birthday cakes,
we are already close by, and might pop in on, the location
for candles. There are, however, different accounts of what
characterizes a “location” in memory space. Many of these
accounts are from the domain of word learning (e.g. Osgood,
1952). These include representations of semantic meaning as
networks of connected nodes (e.g. Collins & Loftus, 1975),
as feature lists (e.g., Smith, Shoben, & Rips, 1974), and as
high-dimensional spaces learned through, for example, sta-
tistical co-occurrences of words, such as in LSA and BEA-
GLE (see Deerwester, Dumais, Furnas, Landauer, & Harsh-
man, 1990; Jones & Mewhort, 2007).

While lexical accounts of semantics may be intuitively ap-
pealing with respect to concepts such as birthday cakes and
candles, a relatively small amount of research has investi-
gated the organization of geographic and spatial information

in cognitive space (but see Montello & Freundschuh, 1995).
That is, spatial knowledge is often acquired through means
such as experience (navigation and locomotion) and visual-
izations (maps and other images), which are less easily fit
into existing linguistic accounts of semantic memory. Still,
Louwerse and Zwaan (2009) showed that language encodes
quite a bit of geographic and spatial information, suggesting
that spatial knowledge may not be qualitatively different from
other semantic knowledge.

Spatial and semantic information is only useful for an
agent, of course, when it can be retrieved and used. Spatial
search has long been a topic of investigation in fields such
as ecology, where animal foraging behaviors are examined
(Pyke, 1984; Charnov, 1976), but more recently it has been
noted that investigations of search problems in diverse do-
mains are increasingly converging on similar solutions (e.g.
Hills et al., 2012). Although a review of the posited search
strategies is beyond the scope of this paper, we refer the
reader Hills et al. (2015) for a review of search in a number
of domains. The point we wish to make here is that research
on cognitive search is increasingly being motivated by spa-
tial search. The focus of the present paper, then, is to explore
the “memory as landscape” metaphor as it relates to spatial
search, and add to the conversation on whether the dynamics
of cognitive information foraging are similar to the dynamics
of spatial geographic foraging.

Other work relating physical space with cognitive pro-
cesses has found that similarity and time are often understood
in terms of space and spatial metaphors (Winter & Matlock,
2013; Boroditsky, 2000). In visual search, Kosslyn, Ball,
and Reiser (1978) found that distances between sequentially
foveated objects was related to scanning time, even when the
material between the objects was manipulated. In another
study, participants were asked to spatially organize a set of
items which were produced previously, by other participants,
in a categorical recall task. The spatial distances were found
to correlate with the temporal distances observed in the pre-
ceding recall task (Montez, Thompson, & Kello, in press).

Similar to Montez and colleagues’ study, here we seek to
construct a spatial representation of recall behaviors. Using
an extended version of the semantic fluency task (Bousfield
& Sedgewick, 1944), subjects are asked to spend twenty min-
utes recalling locations in their home state of California. This
task gives us coordinates for objectively calculating distance
and associating spatial locations with cognitive processes. We
also show that this task can be used to explore more complex
cognitive search processes, such as interactive, collaborative
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search.
Specifically, we explore three main questions as they relate

to the category of locations in California. The questions, and
their associated hypotheses, are as follows:

Q1 : Are items retrieved in an order consistent with their
geographic coordinates? H1 : Yes, and if so, randomizing
the order of recall events in a dataset will cause the recall
trajectory to span a significantly larger distance.

Q2 : Do temporal dynamics reflect geographic distances?
H2 : Yes, and if so, there will be a correlation between the
temporal and spatial distances for pairs of consecutive recall
items.

Q3 : Is the spatial coordination of a dyad related to that
dyad’s task success? H3 : Yes, and if so, there will be a cor-
relation between the quality of a dyad’s interaction and the
dyad’s task performance. Since a precise quantification of co-
ordination dynamics, both in search and in general, is beyond
the scope of this paper, we adjust our hypothesis to touch on
one small part of coordination that may reflect coordination
dynamics: The distances, over time, between partners’ recall
items. Thus, our adjusted H3b will be that distances between
dyads’ partners will be correlated with dyads’ task successes.

Below we describe the experiment we used to address our
research questions. Results significantly support H1 and H2,
but are inconclusive (although show interesting patterns) with
respect to H3b. We conclude by discussing how these results
contribute to the “memory as landscape” metaphor and the
cognitive search literature.

Methods
Participants were recruited from a subject pool of University
of California, Merced undergraduate students who partici-
pated for course credit (5 male, 26 female; mean age = 19.77
years, SD = 1.56 years). All participants reported having
lived in California for the majority of their lives (mean time of
residency in California = 19.16 years, SD = 2.41 years), and
reported being native or proficient English speakers. Twenty
subjects were randomly assigned to collaborating dyads, for
a total of ten dyads, and eleven subjects worked individually.
None of the dyads reported knowing each other before the ex-
periment, so the dyads were given five minutes to introduce
themselves to each other before the task began. The brief
familiarization period was intended to enhance comfort and
performance on the task 1. Subjects were comfortably seated
across the table from each other in a small experiment room,
and wore Shure microphone headsets. Speech was collected
using an M-Audio MobilePre recording interface and Audac-
ity software.

Procedure
Dyads completed two sets of recall tasks, each of which lasted
for twenty minutes (adapted from Rhodes & Turvey, 2007).

1Previous work, from ourselves and others, has shown that more
familiar groups tend to perform better on memory tasks (Barnier,
Sutton, Harris, & Wilson, 2008; Szary & Dale, 2014).

The recall tasks included recalling from the category of ani-
mals, or the category of cities and towns in California. The
order of the recall task categories was counterbalanced across
dyads. Before receiving information about the category, sub-
jects were given the following instructions: “In a moment,
I’ll give you the name of a category for the first session. Your
goal will be to work together to think of as many items from
that category as you can. When you think of an item, just
say it out loud. You can be as specific or as general as you
wish. For example, if the category were Food you could say
‘Fruit’, and you could also say ‘Orange’ or ‘Mandarin Or-
ange’. But keep in mind that your goal is to recall as many
different items as possible. If you are unsure if an item does
or does not belong to the category, just say it anyhow, don’t
spend time worrying about whether something counts or not,”
(adapted from Rhodes & Turvey, 2007). In order to minimize
task constraints and make the task feel slightly more natural,
we indicated to participants that extraneous conversation was
allowed during the task, but that they should stay focused on
the category, and keep attempting to recall additional items
throughout the twenty minutes. After taking any questions,
the category was assigned and the experimenter left the room
for the duration of the task. Between recall rounds, subjects
were given a 2-3 minute break. At the start of the second
round, they were again reminded to keep trying to recall new
items for the duration of the task.

Data Analysis

For the purposes of the present paper, we discuss only results
from the category of cities and towns in California.
Audio Transcription The speech recordings were loaded
into Praat audio analysis software for annotation. Subjects
were recorded onto unique channels, so their utterances could
be considered individually. Onsets of recalled item utterances
were marked, excluding any extraneous conversation. That is,
“Oh, we can’t forget ‘Merced’,” would be marked at the on-
set of the recalled item ‘Merced’. All submitted items were
transcribed, but consecutive repeats were removed. Incor-
rect items (“Reno”, which is in Nevada, not California), ge-
ographic landmarks (“Monterey Bay” bay, “Sierra Nevadas”
mountains), and non-specific areas (”Bay Area”, which refers
to several locations around the San Francisco Bay) were re-
moved. Pronunciation errors (“Rancho Cucamongo” instead
of the correct “Rancho Cucamonga”) and common abbrevi-
ations (“L.A.” instead of the official “Los Angeles”) were
corrected. Districts, neighborhoods, planned communities
and census-designated areas with names recognized by the
U.S. Geological Survey (e.g. “Hollywood”, “Downieville”;
http://geonames.usgs.gov, 2014) were retained.

After transcription, location names were matched with
latitude and longitude coordinates in decimal degrees
using databases retrieved from GeoNames and Wiki-
media’s GeoHack tool (http://www.geonames.org, 2014;
https://wmflabs.org, 2015).
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Table 1: Datasets used in the analysis. Notations, given
in parentheses, indicate condition with I (independent) or C
(collaborative), with a subscript 1 or 2 to indicate the number
of participants included in each level of analysis (individual
or group, respectively). See text for details.

Condition: Levels of Analysis:
Individual Group

Independent Solo (I1) Nominal (I2)
Collaborative Extraction (C1) Dyad (C2)

Scoring We use a two-by-two scheme where we consider
two participation conditions (independent or collaborative)
on two levels of analysis (individual or group). See Table 1
for a depiction of this scheme, and a description of the nota-
tions (I1, I2, C1, and C2) used herein. We refer to individuals
participating alone as simply solos, or I1. Datasets from mul-
tiple individuals who participated independently were later
combined and analyzed at the group level, which is an ap-
proximation of a nominal comparison2, noted as I2. For par-
ticipants in the collaborative condition, we can extract from
the group level each individual’s datasets, which we refer to
as extractions, or C1. Finally, group level datasets from in-
dividuals who were performing the task collaboratively are
dyads, noted as C2.

For group level datasets (I2 and C2), the instantaneous on-
set times for each participant’s recalled items and their cor-
responding location coordinates are merged into one dataset.
For each dataset, scores are computed as the unique num-
ber of locations recalled (that is, repeats are excluded). Inter-
retrieval intervals (IRIs) are measured as the amount of time
(in milliseconds) between consecutive recall events. Ge-
ographic distances (GDs) are measured as the number of
miles between consecutive recalled locations. GDs are cal-
culated using the Haversine formula, which gives the great-
circle distance between two points on an sphere (Sinnott,
1984). Finally, the distance between partners in the group-
level datasets (inter-partner distance, IPD) is calculated using
the Haversine formula, where points are each partner’s most
recently recalled locations over time.

Results
Scores
Outliers were defined as data points falling outside +/− 1
standard deviation from the mean of each condition and re-
moved. Mean remaining scores are shown in Figure 1.
Dyads outperformed solos, recalling 86.7 (N = 7, SE =
3.25) and 65.7 (N = 9, SE = 5.10) locations, respectively,
t(14) = 3.25, p < 0.001. Unsurprisingly, nominal pairs re-

2These nominal pairings, which included all possible (unique)
combinations of individual participants, allow us to (roughly) ad-
dress whether any observed group-level differences are truly related
to the interaction between two participants, or simply because there
are two participants instead of one.

Extracted Solo Dyad Nominal
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Figure 1: Mean number of locations recalled for each condi-
tion and level of analysis. Error bars show +/− SE for the
remaining data.

called 110.8 (N = 38, SE = 2.27), which is significantly
more than dyads, t(43) = 4.40, p < 0.0005, and is consis-
tent with the literature on collaborative inhibition (Basden,
Basden, Bryner, & III, 1997). Extracted datasets were sig-
nificantly worse than the next best (solo), recalling only 47.9
(N = 13, SE = 2.58), t(20) =−3.39, p < 0.005.

Recall Dynamics
Inter-Retrieval Intervals The distribution of IRIs was fit
to several different candidate models using the multi-model
inference method and Akaike’s Information Criterion, as de-
scribed in Rhodes (2013). Candidate models included nor-
mal, exponential, lognormal, Pareto, and gamma distribu-
tions. The best fitting model for 1/11 solos was the lognormal
distribution, and for 10/11 it was the Pareto distribution. For
dyads, 6/10 were best fit by the lognormal distribution, and
4/10 were best fit by the Pareto distribution. For extracted
datasets, 12/20 were best fit by the lognormal distribution,
1/20 was best fit by the exponential distribution, and 7/10
were best fit by the Pareto distribution. For nominal datasets,
49/55 were best fit by the lognormal distribution, 3/55 were
best fit by the exponential distribution, and 3/55 were best
fit by the gamma distribution. The finding that most IRIs
(and, in fact all actual datasets, including I1 and C2) were
fit by either Pareto or lognormal distributions is consistent
with the IRI distributions exhibited in other categorical recall
tasks (e.g., Rhodes, 2013; Szary, Dale, Kello, & Rhodes, in
preparation)3.

Geographic Distances Figure 2 illustrates the series of re-
called items as travel trajectories on a map of California for
each of the ten collaborating dyads. Across consecutive re-
call events in each condition, we tested for correlations be-

3Best fitting distributions are noted here simply to relate our find-
ings to those using the more familiar category of animals, but we will
not go any further into the analysis or discussion of these distribu-
tions. For further information on these distributions and ideas about
their relevance, see Rhodes, 2013; Szary et al., in preparation).
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Figure 2: Each panel illustrates the recall trajectory of a collaborating dyad transposed on a map of California. For each dyad,
one participant’s recall events and paths are shown in blue, and the other in red. The overall score for each dyad is shown in the
top right of each panel in parentheses. Maps were generated using https://www.mapbox.com, 2015.

tween GD and the log of IRIs4. The correlation was sub-
tle but significantly positive for dyads, r(1106) = .16, solos,
r(955) = .26, and extracted datasets, r(1119) = .28, (all with
p < 0.0001). For nominal datasets there was no significant
relationship between GD and IRI. Figure 3 plots GD against
IRI for each condition and level of analysis.

The sequence of locations recalled by dyads and solos was
shuffled (within each dataset), and new GDs were calculated.
As illustrated in Figure 4, the mean of all GDs for each of the
two conditions was significantly higher when sequences were
in a random order compared to their original order. For dyads,
mean GD in the original order was 135.12 (SE = 4.03), and
in the shuffled order was 174.79 (SE = 4.00), t(2214) =
6.99, p < 0.0001. For solos, mean GD for the original or-
der was 11.27 (SE = 4.07), while in the shuffled order it was
169.35 (SE = 4.30), t(1912) = 9.82, p < 0.0001.

Inter-Partner Distances For group level datasets we com-
puted IPD as described above. Although nominal pairs (I2)
did not actually work together, IPDs were computed using the
simulated pairings of individuals’ time series. Thus, I2 IPDs
do not actually measure any kind of interaction or collabora-
tion dynamics. Instead, these IPDs might reflect differences
in the composition of dyads with different hometowns and ar-
eas of expertise. For C2, further research will need to tease
apart whether different IPDs reflect this type of composition
difference, or whether they capture collaboration dynamics.

Mean IPDs did not differ significantly by condition (for
dyads, mean IPD = 189.63, SE = 12.38; for nominal pairs,

4To accommodate different scales of magnitude in the timeseries,
IRIs were logged to show the effect, as in (Montez et al., in press).
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Figure 3: Each panel shows a scatter plot of geographic dis-
tance, in miles, plotted against the log of IRI times (in log
seconds) for each pair of consecutive recall events in each of
the four conditions. Rho, in the top left corner of each panel,
shows Pearson’s linear correlation coefficient and its signifi-
cance, p.
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Figure 4: Mean geographic distance (GD) in miles for shuf-
fled and original datasets in the dyad and solo conditions. Er-
ror bars show +/− SE.
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Figure 5: Data points represent average IPDs between part-
ners for each dyad (blue) and nominal pair (red) across
the entire task. Lines show quadratic fits to dyads (red;
y = −0.006x2 + 2.6x − 150) and nominal sets (blue; y =
−0.003x2 +0.95x+22).

mean IPD = 204.25, SE = 5.45). Figure 5 shows scores for
each data set as a function of mean IPDs. Quadratic fits sug-
gest a nonlinear relationship, where a certain IPD may be a
somewhat “optimal” point for enhancing dyadic search. In-
terestingly, the optimal IPD may be smaller for collaborating
dyads as compared to the simulated nominal groups. The ef-
fects are admittedly negligible, here, but we present them as
a precursor to our computational modeling work on this same
topic (in preparation).

General Discussion
Here, we discuss results only from the category of cities and
towns in California. Future work will compare collaborative
performance dynamics in the different (spatial versus seman-
tic) task spaces, but here we simply note that the same gen-
eral patterns are exhibited in the timeseries and score from
the condition where participants recalled animals.

In the spatial domain, our results showed that simulated
nominal pairs recalled significantly more items, on average,
than interacting dyads, even though dyads recalled signifi-
cantly more than individuals (or extracted dyad members; see
Figure 1). This is unsurprising, as it is consistent with the
existing literature on collaborative inhibition (Basden et al.,
1997). However, we were more interested in investigating
the dynamics of recall. Our next results showed that most
inter-retrieval intervals were either power-law or lognormally
distributed, which relates our categorical recall task using lo-
cations in California to the results of other recall tasks using
animals (Rhodes, 2013; Szary et al., in preparation). Next, we
correlated the sequence of inter-retrieval intervals to the se-
quence of inter-retrieval geographic distances and found sub-
tle but reliably positive correlations. That is, cities that are
closer together tended to be recalled closely in time, while
cities farther from each other tended to be recalled with larger
delays. This correlation held for all datasets except nomi-
nal pairs, in which two non-related datasets are merged into
one (see Figure 3). It is interesting, although not altogether
surprising, that the relationship between spatial and temporal
dynamics is broken in this kind of artificial dyad. To further
investigate the apparent spatial clustering in the sequence of
recall events, we shuffled the order of recalled items within
each dyad and nominal dataset. As further support of spatial
clustering, shuffled datasets (in both conditions) had reliably
larger average geographic distances (see Figure 4).

Finally, we used inter-partner distances (IPDs) as a coarse
measure of collaboration. Overall, the mean distances were
smaller for interacting dyads as compared to simulated nom-
inal pairs, but this difference did not reach significance. This
suggests that interacting dyads did not, on average, stay any
closer to one another (in terms of their recall spaces) than
would be predicted for noninteracting individuals foraging
the same space, although we suspect that a more rigorous
analysis with more data points might produce interesting re-
sults. As an example, quadratic fits suggest the possibility
that a median IPD is related to better recall performance as
compared to very small or very large IPDs. Median IPDs
might reflect situations in which partners forage more-or-less
in together (globally), but maintain a slight distance (locally)
so as not to overlap with one another. This type of strategy has
implications for research on coordination and alignment as
well as optimal foraging theories, but further work is needed
to explore it (and other) collaborative foraging strategies. As
noted above, it is still unclear whether our IPD measure really
taps into interaction dynamics, or whether it reflects some-
thing more basic, such as differences in group composition.

Conclusion

Overall, our results provide clear support for our H1 and H2:
Items seem to be recorded in an order consistent with their
geographic coordinates, and the temporal dynamics of their
retrieval is reflected in geographic distances. Although H3
could not be directly tested, H3b was tested and gave mixed
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results: distances between partners during collaborative for-
aging are not linearly correlated with score, as hypothesized,
but there may be an interesting nonlinear relationship for fur-
ther research to explore.

These results add justification for the growing notion, pop-
ular in both intuitive and scientific accounts, that remember-
ing can be likened to and investigated as a spatial search pro-
cess. Rather than making any claims about the structure or
nature of memory itself, we suggest that these results support
the notion that search can be investigated as a general cogni-
tive phenomenon, independent of the domain in which it is
performed.
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