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COMPUTATIONAL ASPECTS OF A NON-CUBIC EQUATION OF STATE
FOR PHASE-EQUILIBRIUM CALCULATIONS.
EFFECT OF DENSITY-DEPENDENT MIXING RULES

Robert J. Tobliss? Dimitrios Dimitrelis and John M. Prausnitz}

Materials and Molecular Research Division, Lawrence Berkeley Laboratory, and
Department of Chemical Engineering, University of California. Berkeley, CA 94720, U.S.A.

ABSTRACT

An efficient procedure is presented for solving a non-cubic
equation of state for density. In phase-equilibrium calculations,
the costly computing step is not the density calculation but the
calculation of the equation-of-state constants for the mixture.
Mlustrative calculations are given for high-pressure phase equili-
bria for hvdrogen/ethane and methane/water. These calculations
show the superioritv of non-cubic equations with density-
dependent mixing rules.

SCOPE

Semi-theoretical equations of state provide molecular-
thermodvnamic models for computer-aided design of separation
processes. However. cubic equations of state such as the
Redlich-Kwong or the Peng-Robinson equation are not able to
represent high-pressure phase equilibria of complex mixtures,
e.g. hvdrogen/solvent  (Chokappa et al.. 1985) or
water/hyvdrocarbon mixtures (Peng and Robinson, 1980) over
wide ranges of pressure. temperature and composition. In recent
vears. non-cubic equations with density-dependent mixing rules
have been proposed to correlate highly asymmetric phase
behavior (See for example. Mathias and Copeman. 1983:
Ludecke and Prausnitz. 1985; Mollerup. 1985 and Panagioto-
poulos and Reid. 1986).

We address two questions concerning the use of non-cubic
equations in phase-equilibrium calculations. The first relates to
calculation of density from a pressure-explicit equation of state
at a specified pressure. temperature and composition. A cubic
equation can be solved analyvtically (Poling et al.. 1981). A
non-cubic equation must be solved iteratively (Mathias et al..
1984). During phase-equilibrium calculations combinations of
pressure. temperature and composition may arise for which
there is no valid density root according 10 the equation of state
used. To discern what a density-finding procedure can and can-
not do to identify thermodvnamically unstable or inconsistent
conditions. we examine how pressure varies with density at con-
stant temperature and composition.

The second question concerns the computing time required
to solve a non-cubic equation iteratively for density versus the
time required to solve a cubic equation analvucally. As shown
by Mathias and Benson (1983). iterative calculations do not
significantly increase overall computing time for solving the
phase-equilibrium problem. We studyv the effect of increasingly
complex mixing rules for the equation-of-state - parameters on
the computing-time requirements for finding density and for cal-
culating fugacity coefficients in a multicomponent system. We
consider the following cases: van der Waals-]1 mixing rules for
both the reference and the perturbation term of an equation of
state: density-dependent mixing rules for the reference system
and van der Waals-1 mixing rules for the perturbation term; and
finally, density-dependent mixing rules for both reference and
perturbation terms,_

CONCLUSIONS AND SIGNIFICANCE

We present an efficient procedure to solve a pressure-
explicit non-cubic equation of state for density. Our density-
finding procedure converges reliably for difficult cases (e.g., roots

t Currently at Amoco Chemicals. Company, P.O. Box 400, Naperville, IL.

60566, US.A.
¥ Author to whom correspondence should be addressed.

in the pseudo-critical region); further, it handles the easier cases
efficiently. needing no more than 5-7 iterations for convergence.
In addition to solving for the roots of the equation of state. our
procedure identifies inconsistent (“wrong-root”) specifications.

We show that the most time-consuming step in phase-
equilibrium calculations is the calculation of equation-of-state
constants for the mixture (i.e., the mixing rules) and not the
density calculation. This is particularly true for multicomponent
mixtures as encountered in industrial applications. Rising com-
plexity of the mixing rules increases significantly the computing
time required to perform phase-equilibrium calculations.

We demonstrate the advantages of non-cubic equations
with density-dependent mixing rules by presenting examples for
high-pressure phase equilibria. Results are given for binarv
vapor-liquid equilibria of hvdrogen/ethane and methane/water
over a wide range of pressure, temperature and composition.
Equations of state with densitv-dependent mixing rules correlate
phase behavior for such highly asymmetric mixtures significantiv
better than equations with classical mixing rules.

INTRODUCTION

For computer-aided design of separation processes. ther-
modynamic properties are often needed over a wide range of
conditions. Therefore. equations of state (EOS) are extensively
used in phase-equilibrium calculations.

When 1two phases o and 8 are in equilibrium.
Te=T7° (N
pe=p° o]
XFOHP.T X =xFoP(P.TX%)  i=12..am (3
where T is temperature. P is pressure. x is mole fractions. v, is
mole fraction of component i and m is number of components.

The fugacity coefficient ¢; of component i at pressure P.
temperature 7 and composition x is calculated from a
pressure-explicit EOS according 10

T AP
> T.x)= ‘ e 3
I, (P-T) = [l (T2 hr s ~oRTIdp (3
P P
+(pRT—l)-InpRT

where R is the universal gas constant, N’ is total number of
moles and n; is number of moles of component i. To evaluate
the fugacity coefficient, it is necessary to know the molar density
p corresponding to pressure P, temperature 7 and composition
x for the phase of interest. [t can be calculated from a
pressure-explicit EOS.

When solving an EOS for density, it is convenient to think
of the P(p,T.x) hypersurface as a family of P(p) curves. For a
given set of specified conditions (P*,T° x*), a specific P(p) curve
is determined by (T*.x*); the corresponding density is found by
solving the implicit equation

P(@)=P(p.T=T° x=x*)=F* (5}

where superscipt s denotes specified. Solution of egn. (5) con-
stitutes the first step m evaluation of thermodynamic properties
from an EOS when (P,T ,x) are specified. We refer to a compu-
tational procedure that performs this task as a-density-finding
procedure. o



In recent years, non-<cubic EOQOS with density-dependent
mixing rules have been proposed to correlate highly asymmetric
phase behavior. For a cubic EOS, P(p)=P° can be rearranged
into a third-degree polynomial and solved analytically. For a
non-cubic EOS, we require an iterative density-finding pro-
cedure. In addition to solving a non-linear equation for a
specific root. a density-finding procedure should participate in
identifying inconsistent specifications. We say ~participate”
because a density-finding procedure by itself,” which only has
access t0 P(p) information. cannot always identify conditions
where there is no thermodynamically stable phase or where the
only stable phase is not the phase of interest.

DENSITY-FINDING PROCEDURE

Figure 1 schematically illustrates the task of a density-
finding procedure. Specifying the temperature 7° and composi-
tion x*, the EOS parameters for the mixture (i.e., the mixing
rules) are calculated and the pressure-explicit EOS is reduced to
an expression for P(p). The density-finding procedure has to
solve this expression for the density p corresponding to the
specified pressure P* and phase of interest. If there is more
than one real root of P(p)=P* in the valid range of density. the
smallest root corresponds to a vapor phase, and the largest to a
liquid phase. If there is only one real root, it may correspond to
a vapor, liquid. or supercritical-fluid phase. Therefore the
density-finding procedure must return the density p, a
classification of the P(p) curve and a classification of the den-
sity.

Prase of interest —o | p where P(p, T5.4%) 0 P°

Oensity-Finding Procedure

Specified Pressure, PY |——e Clossitication of Plp)

and p

Expression for P(p)

€05 paremeters

Speciired Temperatwe, T% —od Equation of State:
Exphicit
Soecitied Composition, 2% ——ef Esoression for Plp.T,1)

Fig. 1. Purpose and operation of a density-finding procedure.

To illustrate some of the possible locations for equilibrium
roots for a multicomponent svsiem. we present predicted vapor-
liquid equilibria for the methane/propane system at 300K using
the Carnahan-Starling/van der Waals (CSW) equation (Dimi-
trelis and Prausnitz. 1986). Figure 2(a) shows the equilibrium
envelope on a pressure-composition diagram with the critical
point. the pseudo-critical point! and the equilibrium pressures
for three indicated compositions. The P(p) curves for these
compositions are shown in Figure 2(b) with the corresponding
points indicated. The curves behave similarly in the limits of
low and high density. All of the curves display ideal-gas
behavior in the limit of p=0 (1.e.. P=0 and dP/dp=RT), and
P(p) and dP/dp have large. positive values in the limit of
closed-packed density. However, the curves have different
features between these extremes.

The curve with methane mole fraction of 0.3 has a local-

maximum and a local minimum; it has one or three real roots
depending on the specified pressure P°. Densities less than that
for the maximum in P(p) correspond to a vapor phase, and den-
sities greater than that for the minimum correspond to a liquid
phase.

The other curves are monotonic; they have only one real
root for any P*. Both liquid and vapor roots can lie on such
curves. It is also apparent that vapor roots can lie on either side
of the inflection in P(p) and on either side of the pseudo-critical
density.

Figure 3(a) presents schematically the basic types of P(p)
curves discussed above; the corresponding dP/dp curves are
indicated in Figure 3(b). (Curve C is similar to curve B with the

' For a given composition E';' there is a temperature T that yields a P(p) curve =

containing a point where dP/dped’P/dp =0 which is cailed the pseudo-
criticat point. This is not the critical point for the mixture. !

. 2

exception of not exhibiting a point of inflection; this is typical
for temperatures above the Boyle2 temperature.)

The only input required by our density-finding procedure,
other than the specified conditions, is the density p;,, where
P(p) goes to infinity (pj,, is an EQS-specific parameter). Our
density-finding procedure first establishes upper and lower
bounds on a range of density that includes all physically mean-
ingful roots. The lower bound p; is set to zero. The upper
bound p,; is established by stepping carefully from 0.4p,
toward pj;,, until a suitable value for p,; is found, such that

[-"—”-] >0 and Ploy)> P* 6)
dp Joepa

Then it performs two iterative calculations that classify P(p) and
determine whether the desired root exists. If it exists. the
desired root has been isolated, and a third calculation solves
P(p)=P*. Our three-stage procedure is reliable because each
iterative calculation operates in a bounded range of density that
has one and only one zero for the function to be solved. It per-
forms efficiently over the entire range of specified conditions by
taking advantage of the mathematical nature of P(p) and by
using iterative techniques based on quadratic approximations
over bounded regions.

Our density-finding procedure assumes that P(p=0)=0 and
(dP/dp),.0c=RT: an EOS that violates these ideal-gas limits is
inappropriate for modelling vapor phases. Further. it assumes
that dP/dp has at most one minimum and no maximum in the
bounded range. That is, dP/dp increases monotonically from
RT to (dP/dp),.,,. or it decreases 10 a minimum before
increasing 1o (dP/dp),.,,. Most EOS vield P(p) curves that
conform to these restrictions. but some EOS of an empirical
nature (e.g., the Benedict-Webb-Rubin EOS (Benedict et al..
1940)) display more complicated behavior, especially at low
temperatures. Densitv-finding procedures for these EOS (Milis
et al., 1980) must take special precaution to insure reliability
that make them inefficient for general applications. Finally. it is
assumed that a subroutine is avatlable to evaluate P(p) and
dP(dp.
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Fig. 2. Predicted vapor-liquid equilibria for methane/propane at 300K using the
Carmahan-Starling/van der Waals equation (kcu, ¢, = 0).

{(a) P~x diagram; (b) P -p diagram]

We now describe schematically the computationa! algo-
rithm for solving an EOS for density. In a preliminary calcula-
tion, our density-finding procedure first evaluates dP/dp at
#=0.0001p;,, to approximate (d*P/dp¥),.o. If (d*P/dp?),.0> 0.
there is no minimum in dP/dp (type-C curve); thus, the desired
root has been isolated in a range where P(p) is monotonic, and
the procedure branches to the third stage which finds the root.
If (dzP/dpz),_o<0. there is a minimum in dP/dp (lype-A or
type-B curve), and the procedure enters the first stage which
finds p;,. the density for the .inflection in P(p) (minimum in
dP /dp). ’ '

2 For a given composition ‘x*, there is & temperature T such that

(d*P/dp’),.q=0. This is called the Boyle temperature.
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The sign of (dP/dp),.,,, indicates whether P(p) contains
no or two extrema in the bounded range. If (dP/dp),., >0,
P(p) contains an inflection but no extrema (type-B curve); thus.
the desired root has been isolated in a range where P(p) is
monotonic. and the procedure branches to the third stage which
finds the root. If (dP/dp),.,<0. P(p) contains a maximum
and a2 minimum (type-A curve). In addition to distinguishing
between type-A and type-B curves. finding p;, isolates the zeros
of dP /dp for tvpe-A curves. The low-density zéro (maximum in
P{(p)) is located between p;, and p;,c and the high-density zero
(minimum in P(p)) is located between p;,r and p,. Depending
on the phase ‘of interest, the procedure resets the appropriate
bound before éntering the second stage which finds p,,,. the den-
sity for the extremum in P(p) (zero of dP /dp).

{o) (d)
e dP/dp = 0
¢ adp¥gs?+ 0
. 0dP/dp = aPYdp?= 0
P(p) A -:%
pS2

/

/

RT
//
/- o-- o e —
pS!
P P

Fig. 3. The three basic types of P(p) curves and the corresponding dP/dp curves.

After finding p,. Plp,y) is compared with P* to deter-
mine whether there is a root for the phase of interest. If
P{pe} < P* for a vapor phase (as when P*=P*2 in Figure 3(a) )
or P{p.y)> P* for a liquid phase. there is no root for the phase
of interest at the specified conditions (the only root is the wrong
root). and the procedure terminates. If the desired root exists,
the appropriate bound is reset 10 p,,, before entering the third
stage.

The purpose of the first three calculations (the preliminary
calculation and the first two stages) is to classify the P(p) curve
and to establish bounds for the third stage which finds p,.,, the
desired root of P(p)=P*. Regardless of the type of curve, upon
entering the third stage. the desired root is isolated in a range
b < Pdes < Pup Where P(p) is monotonically increasing. To find
ndes 1N the bounded range. we use an iterative technique based
on a quadratic approximation of P(p). Even in the vicinity of
double roots. 1t gives high-order convergence. Convergence is
tvpically achieved in a 101al of 5-7 iterations.

Our density-finding procedure can characterize a P(p)
curve according to its features and classifyv the roots for a type-A
curve: but it cannot identify other tvpes of inconsistent
specifications.  Various authors (most notably Poling et al.,
1981. and Mathias et al.. 1984) have proposed heuristics to
identify roots violaung material-stability criteria and mechani-
cally stable roots not corresponding 1o the phase of interest
("wrong roots’). However, heuristics mav be inappropriate
within a density-finding routine: they can exclude valid roots in

the near-critical region (Topliss. 1985), an important region in’

phase-equilibrium calculations for some separation processes
such as supercritical-fluid extraction. Such heuristics may be
useful in higher level procedures 10 decide whether or not
ngorous stability analvsis is warranted. If a root is found that
violates the heunistics, then the routine that calculates the fuga-
city coefficients could also calculate their composition deriva-
tives, and the rigorous criteria for material stability could be
evaluated (Michelsen, 1982a, and Topliss, 1985). Our density-
finding procedure excludes only wrong roots on type-A curves
and roots violating the mechanical-stability criterion, i.e. roots
where dP /dp is negative.

One common misconception has been that the iterative
density-finding procedure consumes the majority of the time
necded to calculate .the thermodynamic properties required for
solving the phase-equilibrium probiem {egns. (1)43)]. However,
as shown in the next section, the time for the density calculation
1s only a small fraction of the total time required for calculation

of thermodynamic properties.

COMPUTING-TIME STUDIES

Figure 4 shows CPU times for phase-equlibrium calcula-
tions for the Carnahan-Starling/van der Waals equation of state
(CSW EOS) (Dimitrelis and Prausnitz, 1986) as a function of
the number of components in the mixture? We present incre-
mental CPU times for calculating first the EOS parameters at
specified temperature T° and composition x*; for solving the
equation P(p)=P*; for calculating subsequently the fugacity
coefficients: and finally, for calculating analytically the deriva-
tives of the fugacity coefficients with respect to pressure and
composition (Topliss, 1985). The CPU times are normalized by
the time required to calculate the EOS parameters for the CSW
EOS and to solve for density for a binary mixture. The CPU
times are obtained by performing a particular calculation many
times to obtain a reliable average.

Computing time for calculating the EOS parameters dom-
inates the overall CPU-time requirements, particularly for mul-
ticomponent mixtures. The overall cost of solving an EOS for
density is not sensitive to the number of P(p) evaluations when
the number is small. (In these examples the density-finding pro-
cedure needs 7 iterations to converge.) Increasing the number of
P(p) evaluations by one for an eight-component mixture results
in only a 5% increase in the overall CPU time required to solve
for density. Consequently. for mixtures with a large number of
components. reliability of the densityv-finding procedure is more
important than efficiency?

32
L CPU time tor
— of the fugocity 4CHENT @it 1€4DECT 10 DrESture OO COMPOSITOn
|~ Fugacity ot soeced ong ang
28t T colculated density D g

~ - Density of soecifred pressure. 1emperoture ond Composition

g 2 ~Equation-of - s10te parometers {i.e.. mining rules)

= 121

=

2

o

o

o°

& 8

]

3

o

z

ai-
o]

2 a 8 16
Number of Components

Fig. 4. CPU time for phase-equilibrium calculations as a function of the number
of components for the Carnahan-Siarling/van der Waals equation.

The incremental cost for caiculating the fugacity
coefficients is about 10% regardiess of the number of com-
ponents. The incremental cost of analvtically calculating the m
pressure derivatives and the m xm matrix of the composition
derivatives is never more than twice the overall cost of calcutat-
ing the fugacity coeflicients (Michelsen, 1982b. and Michelsen
and Mollerup, 1986). By comparison. calculating the composi-
tion derivatives by finite-difference approximations requires m
evaluations of the fugacity coefficients and solution of a set of
m -1 linear equations. These derivatives are needed for
matenal-stability analysis (Michelsen, 1982a) and for calcula-
tions in the near-critical region (Michelsen, 1980).

Having identified computation of the EOS parameters as
the most tim¢-consuming step in phase-equilibrium calculations,
we study next the effect of increasingly complex mixing rules on

3 To avoid y nested
der Waals covolume parameter b by

- - [b,”"*b,"" ]3- g?x,b, OJHEIx,b,”-‘Iz;x. b'
2

ions, we express the mixing rule for van

ba Txx, y}

red gel

(7

¢ This is not valid for an EOS where calculation of the EOS parameters cannot
be separated {rom the density ‘dependence; ¢.g., for an EOS with local-
composition mixing rufes (Whiting. 1982, and Topliss et al., 1982). Such
EQS are more expensive t0 use and the overall cost is more sensitive to the
aumber of P(p) evaluations required to solve for deasity.




the overall computing time required to calculate fugacity
coefficients. To facilitate comparison, we use throughout the
- same molecular-thermodynamic model: an EOS with a hard-
sphere reference system and a van der Waals perturbation term.

We consider four cases: the Carnahan-Starling/van der
Waals equation (CSW EOS) with van der Waals-1 mixing rules
for both the reference and the perturbation terms (Dimitrelis
and Prausnitz, 1986); the Boublik-Mansoori/van der Waals
equation (BMW EOS) (Dimitrelis and Prausnitz, 1986), with
density-dependent mixing rules for the refefence term> and van
der Waals-l1 mixing rules for the perturbation term: the
Boublik-Mansoori/van der Waals equation with second-virial
correction (BMW/SV EOS) (Dimitrelis and Prausnitz, 1987)
with density-dependent mixing rules for both reference and per-
turbation terms: and finally, the Boublik-Mansoori/van der
Waals equation with second-virial correction and cubic mixing
rule for attractive-force parameter a (BMW/SV+x3 EOS) (Dimi-
trelis and Prausnitz, 1987) with density-dependent mixing rules
for both reference and perturbation terms.
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Figure 5 shows normalized CPU times for calculating the
fugacity coefficient as a function of the number of components.
(Note the logarithmic scale on the vertical axis.) The CPU times
are normalized as in Figure 4. To simplify comparison. we use
for all EOS the same temperature dependence for van der Waals
covolume parameter b

RT(,: bi‘m + hl“) TI%I

b 8)
! P, 1+ b8 T,l_,
and for attractive-force parameter g
g o RTe) @+ a1} ©

3 2 2
P, 1+ (l,‘ ,Tr.:

Subscript ¢ refers to the critical point and reduced temperature
T,=T/T,.

The BMW EOS consumes slightly more CPU time than
the CSW EOS. The computer implementation of these EQS
contains the same number and type of summations involving
component mole fractions. They require three summations,
linear in mole fraction, for the calculation of van der Waals
covolume parameter b {right-hand side of eqn. (7)] in the refer-
ence term and one summation, quadratic in mole fraction, for
the calculation of attractive-force parameter a [eqn (11)]. The
reference term of the BMW EOS has a slightly more compli-
cated algebraic form than that of the CSW EOS (Dimitrelis and
Prausnitz, 1986).

Because of two additional quadratic-mole-fraction summa-
tions. the BMW/SV EOS consumes about three times more CPU

3 Ely (1986) shows that the Boublik-Mansoori hard-sphere-mixture equation
can be written as an EOS with density-dependent mixing rules reducing in the
limit of low density to the Carnahan-Siarling equation with van der Waals-1
mixing rules.

.- 4

time than the BMW EQOS. The additional summations are
required for the calculation of the second virial coefficient (Tso-
nopoulos, 1974, 1979).

The BMW/SV+x3 EOS consumes up to one order of mag-
nitude more CPU time than the BMW with second-virial correc-
tion EOS. We can see the influence of nested mole-fraction
summations on the overall CPU time. The only difference
between these two equations is that the former uses a cubic mix-
ing rule for attractive-force parameter a

m m m

a=2 % T XXXl ' (10)

ieljalkel
while the latter uses the clagsical quadratic mixing rule

a= E Z_Yinaij ' (1 l)

i=lj=l

This computing-time study shows that most of the CPU
time is spent in calculating mixing-rule summations. The CPU
time spent for the density-root iteration is minor: therefore, the
complexity of the pure-fluid EOS (cubic or non-cubic) has only a
relatively small effect upon total computational time.

HIGH-PRESSURE PHASE EQUILIBRIA

To illustrate the advantages of a non-cubic EOS with
densitv-dependent mixing rules. we present high-pressure
vapor-liquid equilibria (VLE) for two binary mixtures.

Figure 6 shows calculated and experimental (Heintz and
Streett, 1982) VLE for the system hvdrogen/ethane at 161.15
and 280.15K. For this mixture of molecules differing
significantly in size, The BMW/SV EOS correlates the phase
behavior better than the CSW EOS.
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Fig. 6. Calculated and experimental vapor-liquid equilibria for hvdrogen/ethane.

The CSW EOS uses classical mixing rules {egn. (11)] with
one binary interaction parameter k,; to correct for small devia-
tions from the geometric-mean combining rule for the
attractive-force parameter

a;; =(a;a;)" (1-k;) (12)

Purecomponent parameters are fitted to vapor-pressure, liquid-

density and supercritical-density data. Binary VLE data (K-
factors) are used to fix binary interaction parameter ;. The
numerical procedure is described elsewhere (Topliss. 1985).
Table 1 gives values for the pure-component parameters.
(Except for hydrogen. parameters b’ and b'® are set to zero.)
Binary parameter Ay, c o, is 0.1.

The BMW/SV EOS uses separate mixing rules for the low-
and high-density regions. At high densities, the classical qua-
dratic mixing rule [egn. (11)] with binary interaction parameter

k, [eqn. (12)] is used. At low densities, the EOS reduces to the

Ui N



virial equation truncated after the second-virial-coefficient term.
For the mixture. we use an empirical correlation for the mixture
second virial cross coefficient (Tsonopoulos, 1974, 1979). For
intermediate densities. a continuous function is used to interpo-
late between the two density limits (Prausntiz. 1985, and Cotter-
man and Prausnitz, 1986). Table 2 gives values for the pure-
component parameters. Binary parameter ky,c.n, is 0.08.
Binary interaction parameter k% for the second-virial-coefficient
correlation (Tsonopoulos, 1979) is obtained independently from
cross-second-virial-coefficient data: for this system it is 0.17.

TABLE |
Pure-component parameters for the CSW EOS [eqns. (8) and (9))

alOl alll al!l b(ot
Hydrogen 0.42955 0.26812 0.33333 6
Methanc 0.49539 0.16199 0.33333 0.17841
Ethane 0.52738 0.12970 0.33333 0.17749
Water 0.50554 0.04939 0.33333 0.14279

6 The temperature-dependence of van der Waals covolume parameter b for
hydrogen is given by
RT. i, 0.20433+0.04533 T,

P, 1+03333377,

bu: =

The BMW/SV EOS represents better than the CSW EOS the
observed phase behavior for the low-density (high-temperature)
vapor phase as well as for the high-density (low-temperature)
liquid phase. This improvement follows from the flexibility of
the density-dependent mixing rules to adjust independently the
EOS parameters at low and high densities.

For most binarv mixtures, eqn. (11) is sufficient to represent
phase behavior using a single adjustable parameter &; [eqn.
(12)]. However. for some highly asymmetric mixtures, it is
advantageous to introduce a second adjustable parameter into
the high-density mixing rule by using a cubic mixing rule for
attracuve-force parameter a {eqn. (10)]. The combining rule for
a binary mixture is
(a;a;)* (1-k;,) (13

ajij = a +

o

3
for anyv permutauion of indices iij. A similar equation holds for
a,, and the second binary adjustable parameter k; ;. The two
binary parameters k;; and &, ; adjust the attractive-force param-
eter @ in separate concentration regions. When component § is
infinetely dilute in component j. only parameter k; ; applies: at
the opposite limit. when component j is infinetely dilute in
component 7. only parameter k,, applies. At intermediate con-
centrations. both parameters are required. When k; j=k,; the
cubic mixing rule for attractive-force parameter a [eqn. (10)]
reduces to the classical quadratic mixing rule (eqn. 11)].

TABLE 2
Purecomponent parameters for the BMW/SV EOS [eqns. (8) and (9))

a:“l anh alll blm
Hydrogen 0.42884 0.27149 0.33333 7
Methane 0.49191 0.16562 0.33333 0.17737
Ethane 0.52713 0.13233 0.33333 0.17750
Water 0.50482 0.05838 0.33333 0.14320

7 The temperature dependence of van der Waals covolume parameter b for
hydrogen is given by

RT, ;. 0.20446+0.04590 Ty,

Pin,  14033333T,

bu_, -

Figure 7 shows calculated and experimental (Sultanov et al.,
1971, 1972, Oids et al., 1942, and Culberson and McKetta,
1951) VLE for the highly asymmetric binary mixture of
methane/water at 310.95 and 510.95K. The BMW/SV+x3 EOS
correlates the phase behavior significantly better than the CSW

- EOS. Tables | and 2 give pure<component parameters.

The BMW/SV +x3 EOS uses two adjustable binary parame-
ters to represent both water-rich and methane-rich concentration
regions. To obtain good representation, the binary parameter

.- 5
for the water-rich end is temperature dependent, i.e.
kcw,1,0=0.28-189/T (T in K). The binary parameter
ky.o.cu, for the methane-rich phase is 0.38. Binary interaction
parameter k% for the second-virialcoefficient correlation (Tso-
nopoulos, 1979) is obtained independently from second-virial-
cross-coefficient data: it is 0.29.

Ecperimental Caiculoted
@0 Sultonow erof. (1971,1972) - Boublik-Mansoars/ von der Waals with
u Olds efal. {1942) second-virial correction ond Cu0iC mming
rule tor artroctive~force parameter
a Culberson ond Mcierta (195¢) —— — Coraahan-Starling /von der Waals
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Fig. 7. Calculated and experimental vapor-liquid equilibria for methane/water.

For a fair comparison. we use the same number of binary
adjustable parameters for the CSW EOS. Binary interaction
parameter k;; [eqn. (12)] is allowed to depend on temperature.
Further. with much reluctance, we introduce a second binarv
interaction parameter {;; into the mixing rule for van der Waals
covolume parameter b {eqn. (7)]

biB+b)3
b= 22\ \,[

i=ljaj
From VLE-data regression we obtain kcy,n.0=0.94-106/T
and Iy 44,0 =0.46: the latter is physically absurd.

3
] (1-1;) (14)

The densitv-dependent mixing rule provides flexibility
independently 1o adjust the attractive-force parameter at the two
dilute ends of the concentration region. This flexibility pro-
duces superior representation of phase behavior. While the clas-
sical mixing rules give a fairly good representation. they do so
with binary interaction parameters that are physically unreason-
able.
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Fig. 8. Calculated and expen al Hennv's cc for methane in water.

A stringent test for an EOS lies in its ability to represent
limiting phase behavior correctly. Towards that end, we present
in Figure 8 calculated and experimental (Crovetto et al.. 1982)
Henrv's constants for methane in water as a function of tem-
perature. We use the binary parameters obtained from VLE



data. given above.

Both EOS capture the essential features of the Henry's
constant-versus-temperature plot. The use of temperature-
dependent binary parameters is essential for achieving such
good representation (Hu et al.. 1984). The BMW/SV+x” EOS
represents better the region near the maximum while the CSW
EOS is better in the high-temperature region.

For the programs described here, computer software is available upon request to
Jobn M. Prausnitz.
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NOMENCLATURE
a attractive-force parameter
h van der Waals covolume parameter
k binary interaction parameter
! binary interaction parameter
m number of components
AN total number of moles
n number of moles
P pressure
R universal gas constant
T temperature
\ mole fraction
X mole fractions

Greek letters

a phase «

3 phase 8

“ molar density

o fugacitv coefhicient

Subscripts

¢ critical

des desired

ext extremum

/ component i

7] ' interaction between components i and j

Ik interaction between components i. j and A

1.y interaction of component ¢ (solute) with
component j (solvent) when / is at infinitc
dilution

mf inflection

th lower bound

ftm limiting

r reduced

ub upper bound

Superscripts

B second virial coefficient

s specified

(0) Oth coeffictent etc. [see eqns. (8) and (9)]
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