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COMPUTATIONAL ASPECfS OF A NON-CUBIC EQUATION OF STATE 
FOR PHASE-EQUILIBRIUM CALCULATIONS. 

EFFECT OF DENSITY-DEPENDENT MIXING RULES 

Robert J. Toplisst Dimitrios Dimitrelis and John M. Prausnitzt 

Materials and Molecular Research Division, Lawrence Berkeley Laboratory, and 
Department of Chemical Engineering. University of California. Berkeley, CA 94720, U.S.A. 

ABSTRACT 

An efficient procedure is presented for solving a non-cubic 
equation of state for density. In phase-equilibrium calculations, 
the costly computing step is not the density calculation but the 
calculation of the equation-of-state constants for the mixture. 
Illustrative calculations are given for high-pressure phase equili
bria for hydrogen/ethane and methane/water. These calculations 
show the superiority of non-cubic equations with density
dependent mixing rules. 

SCOPE 

Semi-theoretical equations of state provide molecular
thermodynamic models for computer-aided design of separation 
processes. However. cubic equations of state such as the 
Redlich-Kwong or the Peng-Robinson equation are not able to 
represent high-pressure phase equilibria of complex mixtures. 
e.g. hydrogen/solvent (Chokappa et al.. 1985) or 
water/hydrocarbon mixtures (Peng and Robinson, 1980) over 
wide ranges of pressure. temperature and composition. In recent 
years. non-cubic equations with density-dependent mixing rules 
ha,·e been proposed to correlate highly asymmetric phase 
behavior (See for example. Mathias and Copeman. 1983: 
Ludecke and Prausnitz. 1985: Mollerup. 1985: and Panagioto
poulos and Reid. 1986). 

We address two questions concerning the use of non-cubic 
equations in phase-equilibrium calculations. The first relates to 
calculation of density from a pressure-explicit equation of state 
at a specified pressure. temperature and composition. A cubic 
equation can be soh·ed analytically (Poling et al.. 1981 ). A 
non-cuhic equation must be solved iterative!' (Mathias et al.. 
19R4). During phase-equilibrium calculations combinations of 
pressure. temperature and composition may arise for which 
there is no valid density root according to the equation of state 
used. To discern what a density-finding procedure can and can
not do to identify thermodynamically unstable or inconsistent 
conditions. we examine how pressure varies with density at con
stant temperature and composition. 

The second question concerns the computing time required 
to sohe a non-cuhic equation iterative!,· for density versus the 
time required to solve a cubic equation anal,1ically. As shown 
hy Mathias and Benson ( !985). iterati,·c calculations do not 
significantly increase o,·erall computing time for solving the 
phase-equilibrium problem. We study the effect of increasingly 
complex mixing rules for the equation-of-state· parameters on 
the computing-time requirements for finding density and for cal
culating fugacity coefficients in a multicomponent system. We 
consider the following cases: van der Waals-! mixing rules for 
both the reference and the perturbation term of an equation of 
state: density-dependent mixing rules for the reference system 
and van der Waals- I mixing rules for the perturbation term; and 
finally. density-dependent mixing rules for both reference and 
perturbation terms~ 

CONCLUSIONS AND SIGNIFICANCE 

We present an efficient procedure to solve a pressure
explicit non-cubic equation of state for density. Our density
fmding procedure converges reliably for difficult cases (e.g., roots 
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in the pseudo-critical region); further, it handles the easier cases 
efficiently. needing no more than 5-7 iterations for convergence. 
In addition to solving for the roots of the equation of state. our 
procedure identifies inconsistent ("wrong-root") specifications. 

We show that the most time-consuming step in phase
equilibrium calculations is the calculation of equation-of-state 
constants for the mixture (i.e., the mixing rules) and not the 
density calculation. This is particularly true for multicomponent 
mixtures as encountered in industrial applications. Rising com
plexity of the mixing rules increases significantly the computing 
time required to perform phase-equilibrium calculations. 

We demonstrate the advantages of non-cubic equations 
with density-dependent mixing rules by presenting examples for 
high-pressure phase equilibria. Results are given for binary 
vapor-liquid equilibria of hydrogen/ethane and methane/water 
over a wide range of pressure, temperature and composition. 
Equations of state with density-dependent mixing rules correlate 
phase behavior for such highly asymmetric mixtures significant!~ 
better than equations with classical mixing rules. 

INTRODUCTION 

For computer-aided design of separation processes. ther
modynamic properties are often needed over a wide range of 
conditions. Therefore. equations of state (EOS) arc extensi,·ely 
used in phase-equilibrium calculations. 

When two phases ,,. and J3 are in equilibrium. 

P = Td I I l 

P" = pd 

X1°</>j(P.T.~a)=x!<t>f(P.T.~8 ) i=l.1 ..... m (.<) 

where T is temperature. P is pressure. x is mole fractions. x, is 
mole fraction of component i and m is number of components. 

The fugacity coefficient </>; of component i at pressure P. 
temperature T and composition x is calculated from a 
pressure-explicit EOS according to -

• . fp I ~~P) Inc/>,(/ .T .. \) = 1-,-[(-.-)pTn -pRT]}dp (4) 
-

0 
fJ·RT dn, · · ... 

p p 
+(---1)-ln--

pRT pRT 

where R is the universal gas constant. N is total number of 
moles and 11; is number of moles of component i. To evaluate 
the fugacity coefficient, it is necessary to know the molar density 
p corresponding to pressure P, temperature T and composition 
x for the phase of interest. It can be calculated from a 
pressure-explicit EOS. 

When selving an EOS for density, it is convenient to think 
of the P(p,T-::!) hypersurface as a family of P(p) curves. For a 
given set of specified conditions (P' ,T' ~{').a specific P(p) curve 
is determined by (T' -::!'); the corresponding density is found by 
solving the implicit equation 

P(p): P(p.T= T' .~ =~') = P' (5) 

where superscipt s denotes specified. Solution of eqn. (5) con
stitutes the first step ·in evaluation of thermodynamic properties· 
from an EOS: when (j .T ~r:) are specified. We refer to a compu
tational procedure that performs this task as a densit~·-fi·riding 
procedure. 



In recent years, non-cubic EOS with density-dependent 
mixing rules have been proposed to correlate highly asymmetric 
phase behavior. For a cubic EOS. P(p)=P' can be rearranged 
into a third-degree polynomial and solved analytically. For a 
non-cubic EOS, we require an iterative density-finding pro
cedure. In addition to salving a non-linear equation for a 
specific root. a density-finding procedure should panicipate in 
identifying inconsistent specifications. We say 'panicipate' 
because a density-finding procedure by itself.· which only has 
access to P(p) information. cannot always identify conditions 
where there is no thermodynamically stable phase or where the 
only stable phase is not the phase of interest. 

DENSI1Y-FINDING PROCEDURE 

Figure I schematically illustrates the task of a density
finding procedure. Specifying the temperature T' and composi
tion x•, the EOS parameters for the mixture (i.e., the mixing 
rules)are calculated and the pressure-explicit EOS is reduced to 
an expression for P(p). The density-finding procedure has to 
solve this expression for the density p corresponding to the 
specified pressure P' and phase of interest. If there is more 
than one real root of P(p)=P' in the valid range of density. the 
smallest root corresponds to a vapor phase. and the largest to a 
liquid phase. If there is only one real root, it may correspond to 
a vapor, liquid. or supercritical-fluid phase. Therefore the 
density-finding procedure must return the density p, a 
classification of the P(p) curve and a classification of the den
sity. 

Pho'le of tnterett 

Clonificotion of Plpl 
and p 

Fig. I. Purpose and OP<'ration of a density-finding procedure. 

To illustrate some of the possible locations for equilibrium 
roots for a multicomponent system. we present predicted vapor
liquid equilibria for the methane/propane system at 300 K using 
the Carnahan-Starling!,·an der Waals (CSW) equation (Dimi
trelis and Prausnitz. 1986). Figure 2(a) shows the equilibrium 
envelope on a pressure-composition diagram with the critical 
point. the pseudo-critical point 1 and the equilibrium pressures 
for three indicated compositions. The P(p) curves for these 
compositions arc shown in Figure .2(b) with the corresponding 
points indicated. The curves behave similarly in the limits of 
low and high density. All of the curves display ideal-gas 
behavior in the limit .of p=O (i.e .. P=O and dP/dp=RT), and 
P(r,) and dP !d r have large. positive values in the limit of 
closed-packed density. However. the curves have different 
features between these extremes. 

The curve with methane mole fraction of 0.3 has a local· 
maximum and a local minimum; it has one or three real roots 
depending on the specified pressure P'. Densities less than that 
for the maximum in P(p) correspond to a vapor phase, and den
sities greater than that for the minimum correspond to a liquid 
phase. 

The other curves are monotonic; they have only one real 
root for any P'. Both liquid and vapor roots can lie on such 
curves. It is also apparent that vapor roots can lie on either side 
of the inflection in P(p) and on either side of the pseudo-critical 
density. 

Figure J(a) preSents schematically the basic types of P(p) 
curves discussed above; the corresponding dP !d p curves are 
indicated in Figure J(h). (Curve Cis similar to curve B with the 

1 For a given cOri\PQSition x', th~re is a tem!l<'rature T' that yields a P(p) curve · · 
eont.aining a point whm dP/dp•d'P/dp'•O which is called tbe pscudo-
criucal point. This is not tbe critical point for tbe mixture. · 
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exception of not exhibiting a point of inflection; this is typical 
for temperatures above the Boyle2 temperature.) 

The only input required by our density-finding procedure, 
other than the specified conditions, is the density Plim where 
P(p) goes to infinity (Piim is an EOS-speeific parameter). Our 
density-finding procedure first establishes upper and lower 
bounds on a range of density that includes all physically mean
ingful roots. The lower bound Ptb is set to zero. The upper 
bound Pub is established by stepping carefully from 0.4Ptim 
toward Ptim until a suitable value for Pub is found, such that 

[ d
dP] > 0 and P(Pwbl> P' (6) 

p ...... 

Then it performs two iterative calculations that classify P(p) and 
determine whether the desired root exists. If it exists. the 
desired root has been isolated, and a third calculation solves 
P(p)=P'. Our three-stage procedure is reliable because each 
iterative calculation operates in a bounded range of density that 
has one and only one zero for the function to be solved. It per
forms efficiently over the entire range of specified conditions by 
taking advantage of the mathematical nature of P(p) and by 
using iterative techniques based on quadratic approximations 
over bounded regions. 

Our density-finding procedure assumes that P(p=0)=0 and 
(dP /d p),.o=RT: an EOS that violates these ideal-gas limits is 
inappropriate for modelling vapor phases. Funher. it assumes 
that dP !d p has at most one minimum and no maximum in the 
bounded range. That is, dP /d p increases monotonically from 
RT to (dP !d p),.,.,... or it decreases to a minimum before 
increasing to (dP /d p),.,,,. Most EOS yield P(p) curves that 
conform to these restrictions. but some EOS of an empirical 
nature (e.g., the Benedict-Webb-Rubin EOS (Benedict et al.. 
1940)) display more complicated behavior, especially at low 
temperatures. Density-finding procedures for these EOS (~1ills 
et al.. 1980) must take special precaution to insure reliability 
that make them inefficient for general applications. Finally. it is 
assumed that a subroutine is available to evaluate P(p) and 
dP!dp. 

120'r---r---r---r---r---
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Fig. 2. Predicted vapor-liquid equilibria for methane/propane at 300 K using the 
Camahan-Swlingtvan der Waals equation (kw,, ,11 , • 0). 

[(a) P-x diagram; (b) P-p diagram) 

We now describe schematically the computational algo
rithm for solving an EOS for density. In a preliminary calcula
tion, our density-finding procedure . first evaluates dP /d p at 
p=0.0001Ptim to approximate (d 2P /d p2),.0• If (d 2P /d P\.o > 0. 
there is no minimum in dP /d p (type-C curve); thus, the desired 
root has been isolated in a range where P(p) is monotonic, and 
the procedure branches to the third stage which finds the root. 
If (d 2P /d p2),.0 < 0, there is a minimum in dP !d p (type-A or 
type-8 curve), and the procedure enters the first stage which 
finds Pin/· the density for the inflection in P(p) (minimum in 
dP/dp). 

l For • &,ivcn composition . X1
• there is a temperature r such lhat' 

(d'Pid•'l.-o•O. This is called-the Boyle teml'<'rature. 

( .. 

• • 



The sign of (dP /d p),.,,., indicates whether P(p) contains 
no or two extrema in the bounded range. If (dP !d p),.,,.,> 0, 
P(p) contains an inflection but no extrema (type-B curve); thus. 
the desired root has been isolated in a range where P(p) is 
monotonic. and the procedure branches to the third stage which 
finds the root. If (dP/dp),.,,.,<O. P(p) contains a maximum 
and a minimum (type-A curve). In addition to distinguishing 
between type-A and type-B curves. finding Pinf isolates the zeros 
of dP /d p for type-A curves. The low-density ·:zero (maximum in 
P(p)) is located between Ptb and Pinf and tHe high-density zero 
(minimum in P(p)) is located between Pinf and Pub· Depending 
on the phase ,of interest. the procedure resets the appropriate 
bound before entering the second stage which finds Pm. the den
sity for the extremum in P(p) (zero of dP /d p). 

P(p) 

p 

(b) 

e dP/dp • 0 

• dP
2
td/ • 0 

0 dP/dp • dP2tdl• 0 

p 

Fig. 3. The thr« basic ty~ of P(p) curv<s and the conesponding dP 1 d p curv<s. 

After finding p~_.,. P<Pw) is compared with P' to deter
mine whether there is a root for the phase of interest. If 
P(P~.w I< P' for a vapor phase (as when P' =P' 2 in Figure 3(a) ) 
or P(p._.,) > P' for a liquid phase. there is no root for the phase 
of interest at the specified conditions (the only root is the wrong 
root). and the procedure terminates. If the desired root exists. 
the appropriate bound is reset to Pext before entering the third 
stage. 

The purpose of the first three calculations (the preliminary 
calculation and the first two stages) is to classify the P(p) curve 
and to establish bounds for the third stage which finds Pdn• the 
desired root of P(p)=P'. Regardless of the type of curve. upon 
entering the third stage. the desired root is isolated in a range 
Ptb <Pd-. <Pub where P(p) is monotonically increasing. To find 
Pd., in the bounded range. we use an iterative technique based 
on a quadratic approximation of P(p). Even in the vicinity of 
double roots. it gives high-order convergence. Convergence is 
typically achieved in a total of 5-7 iterations. 

Our density-finding procedure can characterize a P(p) 
cur,·c according to its features and classify the roots for a type-A 
curve: but it cannot identify other types of inconsistent 
specifications. Various authors (most notably Poling et al.. 
1981. and Mathias et al.. 1984) ha\'e proposed heuristics to 
identify roots violating material-stability criteria and mechani
cal!,- stable roots not corresponding to the phase of interest 
("wrong roots'). However. heuristics may be inappropriate 
withm a density-finding routine: they can exclude valid roots in 
the near-critical region (Topliss. 1985). an imponant region in 
phase-equilibrium calculations for some separation processes 
such as supercritical-fluid extraction. Such heuristics may be 
useful in higher level procedures to decide whether or not 
rigorous stability analysis is warranted. If a root is found that 
violates the heuristics. then the routine that calculates the fuga
city coefficients could also calculate their composition deriva
tives. and the rigorous criteria for material stability could be 
evaluated (Michelsen, 1982a, and Topliss, 1985). Our density
finding procedure excludes only wrong roots on type-A curves 
and roots violating the mechanical-stability criterion. i.e. roots 
where dP !d pis negative. 

One common misconception has been that the iterative 
density-finding procedure consumes the majority of the time 
needed to calculate the thermodynamic propenies required for 
solving the phase-equilibrium problem (eqns. (I )-{3)). However, 
as shown in the next section, the time for the density calculation 
is only a small fraction of the total time required for calculation 

3 
of thermodynamic propenies. 

COMPUTING-TIME STUDIES 

Figure 4 shows CPU times for phase-equlibrium calcula
tions for the Carnahan-Starlinglvan der Waals equation of state 
(CSW EOS) (Dimitrelis and Prausnitz. 1986) as a function of 
the number of components in the mixture~ We present incre
mental CPU times for calculating first the EOS parameters at 
specified temperature T' and composition x'; for solving the 
equation P(p)=P'; for calculating subsequently the fugacity 
coefficients: and finally, for calculating analytically the deriva
tives of the fugacity coefficients with respect to pressure and 
composition (Topliss, 1985). The CPU times are normalized bv 
the time required to calculate the EOS parameters for the CS\V 
EOS and to solve for density for a binary mixture. The CPU 
times are obtained by performing a panicular calculation many 
times to obtain a reliable average. 

Computing time for calculating the EOS parameters dom
inates the overall CPU-time requirements, panicularly for mul
ticomponent mixtures. The overall cost of solving an EOS for 
density is not sensitive to the number of P(p) evaluations when 
the number is small. (In these examples the density-finding pro
cedure needs 7 iterations to converge.) Increasing the number of 
P(p) evaluations by one for an eight-component mixture results 
in only a 5% increase in the overall CPU time required to soh·e 
for density. Consequently. for mixtures with a large number of 
components. reliability of the density-finding procedure is more 
imponant than efficiency~ 
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Fig. 4. CPU time for pha..,-<:quilibrium calculation> as a function of the number 
of component> for the Camahan-Starlinglvan der Waal> equation. 

The incremental cost for calculating the fugacit\' 
coefficients is about 10% regardless of the number of com
ponents. The incremental cost of analytically calculating the 111 

pressure derivati\'es and the m x m matrix of the composition 
deri\'atives is never more than twice the overall cost of calculat
ing the fugacity coefficients (Michelsen, 1982b. and Michelsen 
and Mollerup, 1986). By comparison. calculating the composi
tion derivatives by finite-difference approximations requires 111 

evaluations of the fugacity coefficients and solution of a set of 
m -l linear equations. These derivatives are needed for 
material-stability analysis (Michelsen, 1982a) and for calcula
tions in the near-critical region (Michelsen, 1980). 

Having identified computation of the EOS parameters as 
the most timc:-consuming step in phase-equilibrium calculations. 
we study next the effect of increasingly complex mixing rules on 

1 To avoid unnecessary n<sted summations, we express the mixing rule for van 
dcr Waals covolume parameter b by 

• ~ [b'" b''' 1·' !x,b,+3!x.b,'''!x.b,''·' 
b-~~x.x, _,_+_,_ • ,., ,., ,., 

... ,.. 2 4 
(7) 

• This is not valid for an EOS where calculation of tbe EOS parameters cannot 
be ..,parated from the density dependence; e.g_, for an EOS with local
composition mixing rut<s (Whiting. 1982. and Toptiss et al.. 1982). Such 
EOS arc more expensive to usc and the overall cost is more sensitive to the 
number of P(p) evaluations required to solve for density. 



the overall computing time required to calculate fugacity 
coefficients. To facilitate comparison. we use throughout the 
same molecular-thermodynamic model: an EOS with a hard
sphere reference system and a van der Waals penurbation tenn. 

We consider four cases: the Camahan-Starlinglvan der 
Waals equation (CSW EOS) with van der Waals-1 mixing rules 
for both the reference and the penurbation tenns (Dimitrelis 
and Prausnitz. 1986); the Boublik-Mansoori/van der Waals 
equation (BMW EOS) (Dimitrelis and ·Prausnitz. 1986), with 
density-dependent mixing rules for the reference tenn5 and van 
der Waals-1 mixing rules for the penurbation tenn; the 
Boublik-Mansoori/van der Waals equation with second-virial 
correction (BMW/SV EOS) (Dimitrelis and Prausnitz. 1987) 
with density-dependent mixing rules for both reference and per
turbation tenns: and finally, the Boublik-Mansoori/van der 
Waals equation with second-virial correction and cubic mixing 
rule for attractive-force parameter a (BMW/SV +x3 EOS) (Dimi
trelis and Prausnitz. 1987) with density-dependent mixing rules 
for both reference and penurbation tenns. 
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Fig. S. CPU limt for fugacily<etfficitnl calculalion as a fune1ion of lht num~r 

of components for equations "Aith increasingly complcJ. mixing rules. 

Figure 5 shows normalized CPU times for calculating the 
fugacity coefficient as a function of the number of components. 
(:\ote the logarithmic scale on the vertical axis.) The CPU times 
arc normalized as in Figure 4. To simplify comparison. we usc 
for all EOS the same temperature dependence for van dcr Waals 
CO\'olume parameter b 

RT, I b/01 + b/ 11 T/, 
b, = --· --'----.;..---=-.:.:.. 

Pc., 1 + bP1 T/, 

and for attracti\'e-forcc parameter a 

(RTu )~ a/01 + a/ 11 T,l, 
a, ; -p;;-- I + a/11 T/, 

(8) 

(9) 

Subscript c refers to the critical point and reduced temperature 
T, =TIT,. 

The BMW EOS consumes slightly more CPU time than 
the CSW EOS. The computer implementation of these EOS 
contains the same number and type of summations involving 
component mole fractions. They require three summations, 
linear in mole fraction. for the calculation of van der Waals 
covolume parameter h (right-hand side of eqn. (7)) in the refer
ence term and one summation. quadratic in mole fraction, for 
the calculation of attractive-force parameter a ( eqn (II)). The 
reference tenn of the BMW EOS has a slightly more compli
cated algebraic fonn than that of the CSW EOS (Dimitrelis and 
Prausnitz, 1986). 

Because of two additional quadratic-mole-fraction summa
tions. the BMW/SV EOS consumes about three times more CPU 

1 Ely (1986) sho~ that lht Boublik-Mansoori hard ... ph~rr-mixturr equation 
can ~ wrilltn as an EOS with dtnsity-<lt~ndtnl mixing rul~ reducing in lh< 
limit of low d<nsity to th< Carnahan-Starlin& equation with van der WaaJ .. I 
mixing ruks. 
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time than the BMW EOS. The additional summations are 
required for the calculation of the second virial coefficient (Tso
nopoulos, 1974, 1979). 

The BMW/SV+x3 EOS consumes up to one order of mag
nitude more CPU time than the BMW with second-vi rial correc
tion EOS. We can see the influence of nested mole-fraction 
summations on the overall CPU time. The only difference 
between these two equations is that the former uses a cubic mix
ing rule for attractive-force parameter a 

m m m 

a = ~ ~ ~X;XjXkaijk 
i·lj·lk·l 

(10) 

while the latter uses the cla~S'ical quadratic mixing rule 
m m 

a = ~ ~x;x1a;1 
i•lj•t 

(II) 

This computing-time study shows that most of the CPU 
time is spent in calculating mixing-rule summations. The CPU 
time spent for the density-root iteration is minor: therefore. the 
complexity of the pure-fluid EOS (cubic or non-cubic) has only a 
relatively small effect upon total computational time. 

HIGH-PRESSURE PHASE EQUILIBRIA 

To illustrate the advantages of a non-cubic EOS with 
density-dependent mixing rules. we present high-pressure 
vapor-liquid equilibria (VLE) for two binary mixtures. 

Figure 6 shows calculated and experimental (Heintz and 
Streett. 1982) VLE for the system hydrogen/ethane at 161.15 
and 280.15 K. For this mixture of molecules differing 
significantly in size, The BMW/SV EOS correlates the phase 
behavior better than the CSW EOS. 
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Fig. 6. Calculated and <x~rimental vapor-liquid <quilibria for hydrog<nl<thane. 

The CSW EOS uses classical mixing rules (eqn. (II)] with 
one binal'}' interaction parameter k,1 to correct for small devia
tions from the geometric-mean combining rule for the 
attractive-force parameter 

a,1 =(a;a1)"'(1-k,1> (12) 

Pure-component parameters are fitted to vapor-pressure. liquid
density and supercritical-density data. Binary VLE data (K
factors) are used to fix binary interaction parameter k,1. The 
numerical procedure is described elsewhere (Topliss. 1985). 
Table I gives values for the pure-component parameters. 
(Except for hydrogen. parameters bill and b<2l are set to zero.) 
Binary parameter kH,tC,H, is 0.1. 

The BMW/SV EOS uses separate mixing rules for the low
and high-density regions. At high densities. the classical qua
dratic mixing rule (eqn. (I I)] with binary interaction parameter 
k,1 (eqn. ( 12)] is used. At low densities, the EOS reduces to the 
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virial equation truncated after the second-virial-coefficient term. 
For the mixture. we use an empirical correlation for the mixture 
second virial cross coefficient (Tsonopoulos, 1974. 1979). For 
intermediate densities. a continuous function is used to interpo
late between the two density limits (Prausntiz. 1985. and Cotter
man and Prausnitz. 1986). Table 2 gives values for the pure
component parameters. Binary parameter k8,1c,t~. is 0.08. 
Binarv interaction parameter k 8 for the second-virial-coefficient 
correl~tion (Tsonopoulos. 1979) is obtained independently from 
cross-second-virial-coefficient data: for this system it is 0.17. 

TABLE I 

Purc<omponcnt parameters for the CSW EOS (cqns. (8) and (9)J 

GIOI am QC!I b'"' 

Hydrogen 0.42955 0.26812 0.33333 6 

Methane 0.49539 0.16199 0.33333 0.17841 
Ethane 0.52138 0.12970 0.33333 0.17749 
Water 0.50554 0.04939 0.33333 0.14279 

6 The tem~aturc-<!cpendencc of van der Waals covolumc parameter b for 
hydrogen is given by 

RT. .II. 0.20433 + 0.04533 T,',. b,.---· . 
· P .. u, I + 0.33333 T.'u, 

The BMW/SV EOS represents better than the CSW EOS the 
observed phase behavior for the low-density (high-temperature) 
vapor phase as well as for the high-density (low-temperature) 
liquid phase. This improvement follows from the flexibility of 
the density-dependent mixing rules to adjust independently the 
EOS parameters at low and high densities. 

For most binary mixtures. eqn. (II) is sufficient to represent 
phase behavior using a single adjustable parameter k;i [eqn. 
( 12)]. However. for some highly asymmetric mixtures. it is 
advantageous to introduce a second adjustable parameter into 
the high-density mixing rule by using a cubic mixing rule for 
attracti,·e-force parameter a (eqn. (I 0)]. The combining rule for 
a binary mixture is 

( 13) 

for am· permutation of indices iij. A similar equation holds for 
a,11 a;d the second binary adjustable parameter k;J· The two 
binary parameters l..f; and k, J adjust the attractive-force param
eter a in separate concentration regions. When component i is 
infinetcly dilute in componen1 j. only parameter k; J applies: at 
the opposite limit. when component j is infinetely dilute in 
component i. only parameter 1.:

1
_, applies. At intermediate con

centrations. both parameters are required. When k;J =k
1

,; the 
cubic mixing rule for attractive-force parameter a (eqn. (I 0)] 
rt·duccs to tht• classical quadratic mixing rule (eqn. II)]. 

TABLE 2 

Pure<omponcnt param01ers for the BMWISV EOS (cqns. (8} and (9}] 

a'"' a'" a•:• bUll 

Hydrogen 0.42884 0.27149 0.33333 
Methane 0.49191 0.16562 0.33333 '0.11737 
Ethane 0.52713 0.13233 0.33333 0.11750 
Water 0.50482 0.05838 0.33333 0.14320 

The temperature dependence of van dcr Waals covolumc parameter b for 
hydrogen is given by 

RT, "· 0.20446+0.04590T,',, 
b,,---· .. 

· P, ,, I+ 0.33333 T;,H, 

Figure 7 shows calculated and experimental (Sultanov et al., 
1971, 1972. Olds et al., 1942, and Culberson and McKetta, 
1951) VLE for the highly asymmetric binary mixture of 
methane/water at 310.95 and 510.95K. The BMW/SV+x3 EOS 
correlates the phase behavior significantly better than the CSW 
EOS. Tables I and 2 give pure<omponent parameters. 

The BMW/SV+X3 EOS uses two adjustable binary parame
ters to represent both water·rich and methane-rich concentration 
regions. To obtain good representation. the binary parameter 

5 
for the water-rich end is temperature dependent, i.e. 
kcH,JI,o=0.18-l89/T (T in K). The binary parameter 
k11 •0 CH for the methane-rich phase is 0.38. Binary interaction 
paia~et~r k 8 for the second-virial-coefficient correlation (Tso
nopoulos, 1979) is obtained independently from second-virial
cross-coefficient data; it is 0.29. 
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Fig. 7. Calculated and cxperimenul '"apor-liquid equilibria for methane/water. 

For a fair comparison. we use the same number of binary 
adjustable parameters for the CSW EOS. Binary interaction 
parameter k;i (eqn. ( 12)) is allowed to depend on temperature. 
Further. with much reluctance. we introduce a second binary 
interaction parameter l;i into the mixing rule for van der Waals 
covolume parameter b [eqn. (7)] 

m m [bll3+b·l/3]
3 

b=~ ~X;Xj I , 
1 (1-/;j) 

i•lj•l -
(14) 

From VLE-data regression we obtain kc11 ,JH,o =0.94-106/T 
and lc11,JH,o =0.46: the latter is physically absurd. 

The density-dependent mixing rule provides flexibility 
independently to adjust the attractive-force parameter at the two 
dilute ends of the concentration region. This flexibility pro
duces superior representation of phase behavior. While the clas
sical mixing rules give a fairly good representation. they do so 
with binary interaction parameters that are physically unreason
able. 
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Fig. 8. Calculated and experimental Hen11·'s consunts for methane in water. 

A stringent test for an EOS lies in its ability to represent 
limiting phase behavior correctly. Towards that end. we present 
in Figure 8 calculated and experimental (Crovetto et al.. 198.:?) 
Henry's constants for methane in water as a function of tem
perature. We use the binary parameters obtained from VLE 



data. given above. 
Both EOS capture the essential features of the Henry's 

constant-versus-temperature plot. The use of temperature
dependent binary parameters is essential for achievin~ such 
good representation (Hu et al.. 1984). The BMW/SV +x EOS 
represents better the region near the maximum while the CSW 
EOS is better in the high-temperature region. 

For the programs described here, computer software is available upon request to 
Jobn M. Prausnitz. 
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NOI\tENCLA TURE 

a attractive-force parameter 
I> van der Waals covolume parameter 
k binary interaction parameter 
I binary interaction parameter 
111 number of components 
:\" total number of moles 
n number of moles 
P pressure 
R universal gas constant 
T temperature 
x mole fraction 
x mole fractions 

Greek letters 

,, phase .-r 

J phase fJ 
,, molar density 
o fugacity coefficient 

Subscripts 

,- critical 
""·' desired 
n"l extremum 

component i 
11 interaction between components i and j 
iJ~ interaction between components i. j and k 
1./ interaction of component i (solute) with 

component j (solvent) when i is at infinite 
dilution 

utF inflection 
lh lower bound 
!tnl limiting 

reduced 
uh upper bound 

Superscripts 

B 

(0) 

second virial coefficient 
specified 
Oth coefficient etc. [see eqns. (8) and (9)) 
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