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Abstract

Modeling Contact and Spatial Heterogeneity in the Transmission of SARS-CoV-2 and
Chagas Disease

by

Ethan Roubenoff

Doctor of Philosophy in Demography

University of California, Berkeley

Professor Ayesha Mahmud, Chair

The study of infectious disease is more than how pathogens transmit between hosts
and cause illness and death. Infectious diseases are social, political, environmental, and
infrastructural phenomena that humans have limited but equal power to eradicate or to
exacerbate. Using modern disease modeling methods, researchers have the ability to test our
assumptions about disease dynamics and to explore ways in which our behavior may help or
hurt, and to imagine a better world with effective interventions. In this dissertation I focus
on three applications of such models to two diseases: an evaluation of vaccine distribution
and long-term seasonality of SARS-CoV-2, the pathogen causing the COVID-19 pandemic,
and Chagas Disease, a parasitic infection in Brazil that despite its relative infrequency,
has the potential to cause debilitating and fatal complications. In all studies, I focus on
the heterogeneous risk of transmission and infection present in the population with an eye
towards disease-averting interventions.

In Chapter 1, I find that distributing vaccines for COVID-19 in decreasing priority by
age is a more effective strategy to limit deaths than prioritizing by high-contact employment
status, consistent with the CDC’s recommendations in early 2021. In the second chapter, I
continue the analysis of SARS-CoV-2 using an Agent-Based Network Simulation, finding that
recurrent outbreaks of the disease are likely to persist but, depending on the epidemiology
of the pathogen, may be mitigated by annual booster doses distributed at certain times of
year. Finally, I conclude in Chapter 3 by finding that cases of Acute Chagas Disease may be
expected to increase over the ensuing decade, driven by an increasing population in affected
areas and changing climate.
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Introduction

Social inequalities including gender and racial discrimination, information and opportunity
inequality, and financial and economic disparities are widely known to have detrimental
effects on individuals’ health outcomes, livelihood, and mortality (Berkman and Syme 1979;
Braveman and Gottlieb 2014; Galea et al. 2011; House, Kessler, and Herzog 1990; Link and
Phelan 1995; Cassel 1976; Krieger 2001; McMichael 1999; Rose 1985, among others). Social
epidemiology, the branch of public health that focuses on the social causes of mortality and
morbiditiy, has grown substantially since since the early 1990s. Early theories such as Cassel’s
(1976) Host Resistance were the first to posit that over decades, the social environment
would stress and weaken a body’s ability to fight disease (see also Segerstrom and Miller
2004 for a review of the immunological effects of stress). Early social epidemiology focused
largely on the effect of poverty on heart disease and obesity—among so-called ‘lifestyle’
factors—such that the opportunities presented to poor and minority people were inherently
more unhealthy (Krieger 2001; McMichael 1999). Link and Phelan (1995) were among the
first to fully crystallize the concept of social conditions as fundamental causes of disease,
summarizing from a litany of research that socioeconomic status itself was a cause of health
disparities, rather the reverse pathway. Writing just over a decade after the emergence of
HIV—the most significant public health event of the 20th century—Link and Phelan opened
the door for inquiry in explicit and structural discriminatory mechanisms behind infectious
disease. In the decades since, scholars have shown that health inequalities among mothers
affect children even before birth and persist over generations (Currie 2011).

Research in socio-demographic inequality in public health and infectious disease ulti-
mately aims to identify the necessary starting point for instituting restorative change. My
dissertation research focuses on infectious diseases in heterogeneous populations, emphasiz-
ing inequality in risk of infection along social and spatial divides. Identifying the causes and
effects of health inequality is an important step towards effectively implementing a disease-
averting intervention—which is realistically constrained by supply, distribution, or other
barrier to access—to result in the most benefit, like priority allocation of early COVID-
19 vaccines. To that end, my research uses statistical and mathematical modeling as a
means to study population inequality and produce actionable recommendations by focusing
and expanding on risk factor heterogeneity. Simple compartmental mathematical models
for infectious disease—despite maintaining accurate disease etiology—may fail to capture
important dynamics within a heterogeneous population or increase estimate bias and un-
certainty. However, overly complex models run the risk of being too multidimensional for
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easy interpretation. The projects outlined in this dissertation aim to balance complexity and
simplicity.

I focus primarily on disease inequality driven by contact and spatial heterogeneity. Simple
disease-transmitting models assume that risk of contracting an infectious disease is equally
distributed throughout a population (Blackwood and Childs 2018). This homogeneity as-
sumption may hold with certain simple diseases in small populations; however, population
heterogeneity can have substantial effects on disease risk, with important nuances for disease
modeling, prevention and intervention, and social equity1. Within the context of the ongoing
COVID-19 pandemic, I focus on how inequality in contact frequency and network size itself
can drive outbreak dynamics (Berkman and Krishna, Aditi 2014; Chang et al. 2021; Feehan
and Mahmud 2021). Some high contact individuals’ behavior is voluntary, such as social
gatherings or vacations; however, involuntary, potentially COVID-transmitting contact such
as that required by service-sector employment has been shown to mirror racial employment
inequality (Wrigley-Field et al. 2020; Selden and Berdahl 2020; Baker, Peckham, and Seixas
2020). As well, I focus on spatial inequality in Chagas disease, a rare parasitic infection that
primarily affects one region in northeastern Brazil. Chagas disease is most frequently caused
by contact with Triatomine insects, and people who live within the geographic distribution
of Triatomines are at risk. Chagas is known to be a disease of poverty (Choi et al. 2020; Dias
1987; Medone et al. 2015; Sosa-Estani and Segura 2015); residential preventative measures
include removal of rotting wood and use of insecticides, which can be cost-prohibitive for
households to implement. Therefore, the true risk of contracting Chagas is an intersection
between spatial location and social conditions.

In Chapter 1, which has appeared in publication in Epidemics as Roubenoff, Feehan,
and Mahmud 2023, I conduct simulations to determine optimal vaccination prioritization for
COVID-19 by age and employment status. Throughout the COVID-19 pandemic, there has
been substantial discussion of the inherent increase in risk of infection that in-person workers
face as a result of their employment obligations. As many essential workers are people of color
and low-income, economically-mandated potential exposure is one driver of the increasingly
observed disparity in COVID-19 infection and mortality among vulnerable groups. We utilize
data from the Berkeley Interpersonal Contact Survey (BICS; Feehan and Mahmud 2021) to
parameterize a SIR-type compartmental model that highlights heterogeneity in face-to-face
contact frequency among adults working in-person jobs—such as essential workers, healthcare
workers, and retail employees—and children, adults not working in person, and seniors. We
unambiguously find that in the first wave of vaccination—before the circulation of highly
infectious variants that easily evade vaccine-derived immunity—prioritizing seniors limits the
most deaths, but prioritizing high risk adults spares the most infections. When considering
booster doses in the face of increasingly more transmissible and virulent variants, like the
Omicron wave of late 2021 and early 2022, the optimal strategy is highly sensitive to initial
vaccine efficacy.

1See the following studies, among many others, for examples: Bansal, Grenfell, and Meyers 2007; Funk,
Salathé, and Jansen 2010; Pitzer et al. 2009; Berkman and Syme 1979; Braveman and Gottlieb 2014; House,
Kessler, and Herzog 1990; Link and Phelan 1995; Weiss and McMichael 2004; Phelan, Link, and Tehranifar
2010; Shevitz et al. 1996
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Next, in Chapter 2, I continue the analysis of SARS-CoV-2 and COVID-19 into the en-
suing decade, with an Agent-Based Network simulation of SARS-CoV-2 outbreaks assuming
waning immunity over time. Agent-Based Models differ from compartmental models, like
the ones used in Chapter 1, by simulating a population of individuals with explicit rules
governing behavior rather than differential equations describing flows between partitions of
the population. While the literature on ABMs in infectious disease modeling is smaller and
more recent than compartmental models, the increased flexibility—especially when including
network dynamics, stochasticity, and heterogeneity—allows for a more flexible way of repre-
senting infectious disease transfer. In this model, we draw on BICS data to simulate random
draws of networks using the Configuration model (Albert-László Barabási 2021) alongside
household and school contacts. As well, we include vaccine distribution and booster doses
with a flexible distribution schedule, isolation of clinically infectious cases, and demogra-
phy (fertility and non-COVID mortality). Our model is a free-standing application written
in C++ and is made publicly available for download, and can be extended to a variety of
disease modeling applications. We find that booster doses, when distributed annually at
certain times of the year, have the power to reduce or eliminate a large wintertime outbreak
depending on the epidemiology of the pathogen. In the absence of transmission seasonality,
distributing vaccines in the first half of the year can eliminate a large outbreak; in addition
when seasonality is included, vaccines distributed in early fall—like vaccines for influenza—
can reduce the winter-time outbreak.

Finally, in Chapter 3, I look at Chagas disease, a rare parasitic infection in rural Brazil.
Substantial progress has been made in non-pharmaceutical interventions to limit the number
of infections in the last 30 years, but Chagas continues to affect many people in northeastern
Brazil. When treated in the acute phase of infection, Chagas disease has a high recovery
rate; without treatment, life-threatening complications including cardiomypoathy and mega-
colon can occur in a substantial portion of people. Acute infection is generally nonspecific;
symptoms include fever and eyelid edema that can be easily missed. Known as a ‘disease of
poverty,’ most cases of Chagas disease—both acute and chronic—occur in relatively impov-
erished areas among people who are disenfranchised from the health care system. Overall,
we find that an increasing population in areas of Chagas endemicity may result an increase
in new cases over the years to come, mediated by the changing bioclimate.

For this project, I use a Knorr-Held-type spatio-temporal statistical model adapted to suit
the requirements of a rare disease like Acute Chagas Disease. Geostatistical models of this
sort are justified when the location of observations in two-dimensional space may be related
to the outcome of interest (Haining 2004; Wachter 2005; Cressie and Wikle 2011; Anselin,
Luc and Bera, A 1998), such as the distribution of disease vectors. Spatial non-independence
can be summarized by Tobler’s first law of geography (Tobler, 1970): “Everything is related,
but close things are more related than far things.” In many geostatistical applications—
especially for use with disease surveillance data—space is used as a means of recovering a
latent or unobserved process related to risk of contracting disease. Traditional statistical
modeling techniques, especially when used within a regression framework, often assume
that data are ‘independently and identically distributed’ (iid). The iid assumption holds
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that each observation is not conditional on other observations and that the data generating
process for all observations is the same. For many geostatistical questions that seek to
investigate if location is a predictor of an outcome, this assumption may not hold both
from a mechanistic and statistical point of view. Statistically, this implies that our data
are not iid, and in fact assuming independence may be problematic both statistically and
inferrentially. Should the data-generating process have a strong spatial pattern, using an
aspatial model that assumes an independent error process—say, like in OLS regression—
may chalk all spatial variation up to statistical error, when the reality may be a mixture
of spatially-structured heterogeneity and aspatial random variation. Using a model that
cannot detect spatially-structured hetergeneity will overestimate the variance of the model,
increasing the type-2 (false negative) error rate and decreasing the statistcal power of the
analysis. In the worst case, using an aspatial regression model for a spatial process will likely
fail to capture our process of interest and have poor predictive accuracy. While using the
proper spatial specification is ultimately a question of getting the error process right, the
consequences can be extreme for any causal conclusions of an improperly-specified model.

Together, these three studies each approach intervention to fight disease and inequality in
disease risk. In Chapter 1, I find that age and employment drive differential risk for COVID-
19, and how to distribute vaccines in a way to minimize deaths given that differential risk. In
Chapter 2, I continue to analyze SARS-CoV-2, finding that risk of infection is not uniform
throughout the year due to waning immunity and seasonal transmission forcing. Both of
these studies show that the distribution of vaccines has a significant effect on the number of
infections and deaths due to SARS-CoV-2, and that strategies for prioritization and timing
should be done in a way that minimizes the consequences of the disease. Finally, in Chapter
3, I turn to Chagas Disease in Brazil, finding that despite progress towards elimination
new diagnoses are likely to increase over the ensuing decade. However, this is not necessarily
even throughout the country, driven by population growth and potentially climate. Although
interventions have considerably reduced the frequency of Chagas infection since the 1970s
and 80s, I find that under the present level of interventions Chagas disease can be expected
to persist, and more elaborate interventions may be necessary for elimination in the future.
This dissertation contributes to our understanding of risk and control strategies SARS-CoV-
2 and Chagas Disease in the future. Both diseases are highly complex in etiology and
epidemiology; however, both present opportunities for control and intervention as explored
in this dissertation.
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Chapter 1

Evaluating primary and booster
vaccination prioritization strategies for
COVID-19 by age and high-contact
employment status using data from
contact surveys

Abstract

The debate around vaccine prioritization for COVID-19 has revolved around bal-
ancing the benefits from: (1) the direct protection conferred by the vaccine amongst
those at highest risk of severe disease outcomes, and (2) the indirect protection through
vaccinating those that are at highest risk of being infected and of transmitting the virus.
While adults aged 65+ are at highest risk for severe disease and death from COVID-
19, essential service and other in-person workers with greater rates of contact may be
at higher risk of acquiring and transmitting SARS-CoV-2. Unfortunately, there have
been relatively little data available to understand heterogeneity in contact rates and
risk across these demographic groups. Here, we retrospectively analyze and evaluate
vaccination prioritization strategies by age and worker status. We use a mathematical
model of SARS-CoV-2 transmission and uniquely detailed contact data collected as part
of the Berkeley Interpersonal Contact Survey to evaluate five vaccination prioritization
strategies: (1) prioritizing only adults over age 65, (2) prioritizing only high-contact
workers, (3) splitting prioritization between adults 65+ and high-contact workers, (4)
tiered prioritization of adults over age 65 followed by high-contact workers, and (5)
tiered prioritization of high-contact workers followed by adults. We find that for the
primary two-dose vaccination schedule, assuming 70% uptake, a tiered roll-out that
first prioritizes adults 65+ averts the most deaths (31% fewer deaths compared to a
no-vaccination scenario) while a tiered roll-out that prioritizes high contact workers
averts the most number of clinical infections (14% fewer clinical infections compared to
a no-vaccination scenario). We also consider prioritization strategies for booster doses
during a subsequent outbreak of a hypothetical new SARS-CoV-2 variant. We find
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that a tiered roll-out that prioritizes adults 65+ for booster doses consistently averts
the most deaths, and it may also avert the most number of clinical cases depending on
the epidemiology of the SARS-CoV-2 variant and the vaccine efficacy.

COVID-191 vaccines have been shown to be highly effective at preventing severe illness
and death (Baden et al. 2021; Polack et al. 2020). Following the introduction of vaccina-
tion in the U.S. in December 2020, infection rates decreased dramatically through the first
quarter of 2021 as increasing shares of the population were protected via vaccine-derived
immunity (Gupta et al. 2021). Due to a limited vaccine supply initially, there has been a
complicated debate around the trade offs of vaccine prioritization strategies for adults over
age 65, healthcare workers, other essential frontline workers, and the general public (Schaf-
fer DeRoo, Pudalov, and Fu 2020; Persad, Peek, and Emanuel 2020; Persad et al. 2021;
Giubilini, Savulescu, and Wilkinson 2021).

Control interventions for infectious diseases can have different public health objectives:
while the highest priority is often to limit total deaths, secondary priorities can include
limiting total infections or reducing the number of infected persons at a given time to below
a critical care capacity threshold (Bubar et al. 2021; Buckner, Chowell, and Springborn
2021). Prioritization of vaccination towards a specific group has the direct benefit of reducing
infections and deaths in that group. However, for vaccines that prevent transmission, there
is also an indirect benefit of limiting secondary infections. Modeling studies that evaluate
the total effect of vaccination—the sum of the direct and indirect effects on incidence and
deaths—find that benefits of vaccination may extend beyond those conferred to recipients of
vaccination themselves (Bubar et al. 2021; Buckner, Chowell, and Springborn 2021).

The risk of severe disease, hospitalization, and death from COVID-19 increases sharply
with age (Levin et al. 2020; O’Driscoll et al. 2021), indicating that vaccinating adults 65+
may be most effective at reducing total hospitalizations and deaths due to COVID-19. On
the other hand, in-person workers with higher rates of person-to-person contacts are at an
increased risk of being infected with and transmitting SARS-CoV-2.

Thus, vaccine prioritization strategies need to balance: (1) the direct protection conferred
by the vaccine amongst those at highest risk of severe disease outcomes, and (2) the ben-
efits of indirect protection and potentially achieving herd immunity more quickly through
vaccinating those that are at highest risk of being infected and of transmitting the virus.
The indirect benefits of preventing COVID-19 by prioritizing high-contact workers could
outweigh the direct benefit of vaccinating adults 65+, depending on the public health objec-
tive, the prevalence of non-pharmaceutical interventions, and the epidemiology of the virus
(Buckner, Chowell, and Springborn 2021).

Vaccinating high-contact workers also has important implications for social and eco-
nomic equity. Historically-disadvantaged groups, especially Blacks and Hispanics, are over-
represented in essential and front-line occupations and have younger age-distributions com-
pared to Whites (Nelson et al. 2022). Prioritizing high-contact workers, therefore, delivers
proportionally more doses to racial and ethnic groups that have also been hardest hit by

1Chapter 1 has been adapted for publication in Epidemics as Roubenoff, Feehan, and Mahmud 2023.
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the pandemic (Andrasfay and Goldman 2021; Wrigley-Field et al. 2020; Wrigley-Field et al.
2021) compared to a purely age-based prioritization.

In the US, distribution of the primary vaccine doses prioritized a combination of adults
65+ and essential workers in progressive phases, beginning with those living in long-term
care settings and healthcare workers. Eligibility was first opened to adults 65+ and to cer-
tain occupational groups before opening to the general public (Dooling 2021). The debate
on prioritization is, however, still relevant in many other parts of the world, as well as in the
US for future booster doses. It is also important to retrospectively evaluate prioritization
strategies to inform response to future pandemics. Mathematical models that account for
both the direct and indirect effects of vaccination can help guide policy decisions on prioriti-
zation. However, there is little data on contact rates by worker status and age available for
the U.S., making these models hard to parameterize. The relatively few contact surveys con-
ducted during 2020-2021 indicated that total contacts had substantially reduced compared to
pre-pandemic measures (Liu et al. 2021a, Feehan and Mahmud 2021). However, previously
available data has reported contact rates disaggregated by age, but not by both age and
occupational status. In a survey of workers in the US, Kiti et al. 2021 found median number
of reported contacts was low (around two) and that household structure—rather than age
or race—was responsible for the variation in contacts between respondents. However, the
study was limited to only three US companies, where many workers reported being able to
work remotely offsite. A nationally representative study, covering a more diverse range of
occupations, reported that most contacts during this period did happen at work, and that
nonwhite and workers in essential occupations had amongst the highest total contact rates
(Nelson et al. 2022). Here, we retrospectively analyze and evaluate vaccination prioritization
strategies by age and worker status using detailed contact data from surveys to parameterize
a mathematical transmission model for SARS-CoV-2.

We compare total effects of prioritizing adults 65+ for vaccination versus prioritizing
workers who potentially have a higher risk of contracting COVID-19 due to their in-person
work status (Baker, Peckham, and Seixas 2020; Hawkins 2020; Selden and Berdahl 2020).
The model accounts for contact patterns between age and occupation groups using contact
survey data collected as part of the Berkeley Interpersonal Contact Survey (BICS; Feehan
and Mahmud 2021), which has been collecting detailed information about a respondent’s
daily behavior and their disease-relevant interpersonal contact since March 2020.

We find that prioritizing adults 65+ for primary vaccination averts 25% more deaths
than prioritizing high contact workers and 11% more than a split strategy. However, the
most clinical infections are averted by strategies that prioritize high contact workers first.

We extend the model to consider the prioritization of booster doses during a hypothetical
future outbreak of a new SARS-CoV-2 variant that is able to partially evade vaccine-derived
immunity from primary vaccination. When considering booster doses, the reduction in deaths
is greatest when prioritizing adults 65+, but all three strategies have similar effects on clinical
infections. These results highlight the impact of various vaccination prioritization strategies
and can help guide policies during future outbreaks.
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1.1 Methods

1.1.1 Data

The BICS survey, collected in several waves beginning in March 2020, is an online survey
aimed at capturing the frequency and nature of respondents’ physical and conversational
contacts over a 24-hour period. Respondents (egos) in the BICS survey are asked about
members of their household and their total number of non-household contacts, as well as
detailed information on up to 3 of their previous day’s contacts (alters). Here we use data
from wave 4 of the BICS survey, collected between November 30th and December 8th, 2020,
where 2, 993 respondents provided detailed information on 10, 001 contacts and were asked
additional questions on their work status and work contacts. Respondents who reported
being employed were asked to indicate the number of close contacts they had while performing
duties for their job.

Respondents are divided into 3 categories: low contact (LC) adults (age 18-64) not re-
porting having any close work contacts, high contact (HC) adults (age 18-64) reporting
having work contacts, and adults 65+. Although heterogeneity in contact rates and mor-
tality may exist within groups, these age groups were chosen to maintain sufficient sample
size especially in the oldest age group. 34% of respondents aged 18-64 reported having in-
terpersonal contacts at work and are labeled as high contact (HC). Children (under age 18)
were not included in the survey, although adult respondents could report their contact with
children. The procedure for estimating contacts for the 0-18 age group is described below.
Alters are divided into children aged 0-18, adults 18-64, and adults 65+ and weighted by
the number of total close contacts reported by each ego (see Feehan and Mahmud 2021 for
more detail on the weighting procedure). Working-age alters aged 18-64 are categorized as
being work contacts if the reported relationship was a coworker or client or if the reported
contact happened at work or a store. This consisted of 22% of reported contacts for adults
aged 18-64. For some working-age alters we were unable to determine work status from the
survey data. This was due to missing data for non-household alters on the purpose of the
reported contact and for all reported household contacts (since their work status was not
collected). For the alters whose in-person work status is indeterminable from the survey data
provided, alters are randomly re-labeled as having in-person work such that the proportion
of high contact alters matched the surveyed ego proportion. We also perform a sensitivity
test to understand the impact of this random reallocation.

The survey responses are used to construct an age and work-status structured contact
matrix between children, low-contact adults (18-64), high-contact adults (18-64), and adults
65+ (Figure 1.1 and supplementary sections A.1.1-A.1.2) using standard methods described
in more detail by Feehan and Mahmud 2021 and Jarvis et al. 2020. Briefly, the raw contact
matrix M has entries mij corresponding to the average number of daily contacts between
respondents (ego) in group i with their reported contacts in group j, adjusted for survey
weights. Total contacts in a population must be reciprocal, but may not be in the survey data
due to sampling and differences in survey reporting. We impose reciprocity using previously
described methods (Feehan and Mahmud 2021). To adjust for reciprocity, population data
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for each group is taken from the American Community Survey (ACS) 2019 5-year estimates
(US Census Bureau 2019). Adults aged 18-64 in the ACS are categorized as working in-person
(34%) and not working in-person (66%) using the survey proportions since equivalent data on
in-person work status is unavailable from the ACS. As children are not included in the BICS
survey, contacts between children are derived from the POLYMOD survey as described in the
supplementary materials section A.1.3. The reciprocal contact matrix, C, is the reciprocity-
enforced average daily contact matrix. We note that respondents in our survey in the 65+
and Adult LC categories have comparable rates of contact to the survey of remote workers
conducted by Kiti et al. 2021.

Figure 1.1: (A) Age and work-status structured contact matrix showing daily average number of
reported contacts, after adjusting for reciprocity in total contacts and survey weights. (B) Total
number of daily contacts for each group, calculated as the sum of each row of the matrix in panel
A (total contacts across all groups that they have contact with). For both figures, “Adult LC” and
“Adult HC” correspond to adults without and with in-person work contacts (Low Contact and High
Contact, respectively). Within-group contacts for children (0-18) are derived from the POLYMOD
survey (Mossong et al. 2008).

1.1.2 SARS-CoV-2 transmission model

To model SARS-CoV-2 transmission dynamics and COVID-19 incidence and mortality, we
use a deterministic, continuous time compartmental model (outlined in the supplementary
section A.1.4, similar to Bubar et al. 2021 and Buckner, Chowell, and Springborn 2021).
The model allows for heterogenous mixing between age and in-person employment status
groups as specified by the contact matrix derived from the BICS survey data. Suscepti-
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bles2 (compartments S and Sx, described below) who are exposed to SARS-CoV-2 enter an
exposed (latent) phase (E). Depending on their age group, exposed individuals proceed to
have clinical (symptomatic) infection (Ic) with probability [0.35, 0.4, 0.75] for children, adults
18-64, and adults 65+ respectively; remaining cases experience subclinical (asymptomatic)
infection (Isc; adapted from Davies et al. 2020). We allow for subclinical transmission, at a
reduced probability (50%; Davies et al. 2020) relative to clinical infections. Probability of
death after clinical infection (µ) varies according to age; subclinical mortality is assumed to
be zero. Fatal cases proceed to compartment D and non-fatal cases recover to compartment
R.

We model a two-dose primary vaccination schedule, distributed 25 days apart, to match
the two-dose Pfizer and Moderna vaccines that account for the majority of the vaccina-
tion doses delivered in the United States (CDC 2020). Susceptibles awaiting the vaccine
in compartment S proceed to compartment Va after the first dose and then to Vb after
the second dose; individuals who have contracted SARS-CoV-2 are ineligible for the vac-
cine. We incorporate ‘leaky’ vaccine efficacy and vaccine hesitancy using methods similar
to Bubar et al. 2021 and assume an 80% reduction in infections after the first dosage and
90% after the second, consistent with efficacy estimates during the initial roll-out of the
vaccines. Leaky vaccines are incorporated by proportionally reducing the force of infection
by the corresponding vaccine efficacy for all vaccinated individuals after one or two vaccine
doses. In our implementation, vaccination reduces the probability of becoming infected, but
does not reduce the probability of a vaccinated yet infectious individual of transmitting the
disease (Tenforde 2021; Thompson 2021). Breakthrough infections occurring among those
who have received either the first or second dose proceed to the exposed compartment and
then on to the infected compartments (with the same probabilities as unvaccinated exposed
individuals). Vaccine hesitancy is incorporated by imposing a 70% uptake of the primary vac-
cination doses, derived from the National Immunization Survey’s May 2021 primary uptake
for seniors (National Center for Immunization and Respiratory Diseases (NCIRD) 2022b;
National Center for Immunization and Respiratory Diseases (NCIRD) 2022a). At the start
of the simulation, 70% of susceptibles are in the S compartment and awaiting vaccination;
the remaining 30% of susceptibles who refuse or are otherwise ineligible for the vaccine are
placed in the compartment Sx, and are otherwise identical to individuals in the S compart-
ment. At its peak, nearly 5 million Americans were being vaccinated per day (CDC 2020);
however, as initially vaccine rollout was slower, we assume an average 2 million vaccinations
per day distributed equally between first and second shots. First doses are distributed until
the S compartment is depleted, either through vaccination or infection. Over the course of
the simulation, vaccine uptake is less than the 70% of the target population as those who
have become infected while susceptible and awaiting vaccination are ineligible for vaccina-
tion. After distribution of vaccines to the priority group, vaccines (including surplus doses
intended for members of the priority group who became infected and subsequently ineligi-
ble) are distributed to any remaining adults 65+, adults 18-64, and children proportional

2All model compartments are indexed by group i. Here, we drop group-specific subscript i, indicating
the count of individuals in each compartment in group i, for readability.
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to the remaining susceptible population size in each group. Those who have recovered from
infection are not eligible for vaccination in our simulations.

The next generation matrix (NGM; Bansal, Grenfell, and Meyers 2007; Diekmann,
Heesterbeek, and Roberts 2010; Bubar et al. 2021) for the model is:

NGMij =
uiCij
γ

[
ρj + (1− ρj)α

]
(1.1)

Where γ is the recovery rate, ρj is the probability that an exposed individual in group j
is clinically infectious, α is the relative infectiousness of clinical versus sub-clinical cases, ui is
the age-dependent susceptibility to infection after contact with an infectious individual, and
Cij is the entry in contact matrix C corresponding to the average number of daily contacts
a respondent in group i has with an individual in group j. The dominant eigenvalue of the
NGM is the basic reproduction number R, and when the population is fully susceptible this
is equal to the basic reproduction number, R0. We scaled the values of ui to calibrate to a
specific value of R0 by optimizing a scaling factor for ui such that the largest eigenvalue of
the NGM matches an assumed R0 value (Davies et al. 2020; Bubar et al. 2021).

The starting population for the simulations is the United States population on January
1st, 2021, with approximately 73.4 million children, 200.5 million adults 18-64, and 50.8
million adults 65+ (US Census Bureau 2019). Working-age adults were split into working
in person and not working in person (including unemployed) using the survey proportions
of 34% and 66%, respectively, as derived from BICS data. On January 1st, there were
20, 166, 028 confirmed cases, 352, 390 deaths, and 11, 426, 602 known active cases. The start-
ing conditions for deaths, subclinical cases, recovered cases, and exposed individuals are
detailed in section A.1.

1.1.3 Model parameters

Estimates for ui and ρi are taken from literature (Davies et al. 2020; Bubar et al. 2021).
To account for uncertainty in other model parameters, we performed 1000 simulations with
transmission and mortality parameters drawn from their assumed distributions (described
below) using latin hypercube sampling. R0 was assumed to be distributed normally with
mean 2.5 and standard deviation 0.54 (following Feehan and Mahmud 2021). Child, adult
18-64, and adult 65+ mortality were drawn from uniform distributions [0.003%, 0.005%],
[0.20%, 0.26%], [6.9%, 10.4%], respectively (bounds for uniform distribution are the 95%
confidence intervals from Levin et al. 2020 for age groups 0-34, 45-54, and 75-84). Average
latent period is assumed to be distributed uniformly between 2 and 4 days and average
duration of infectiousness is assumed to be distributed uniformly between 4 and 6 days, such
that median draws follow values assumed by the literature (see supplemental table A.1.6
for sources on all parameters). Additional parameters are outlined in table A.1.6. For all
simulations, we estimated the percent reduction in total clinical infections and total deaths
from January 1, 2021 until December 31st, 2021 compared to a no-vaccination scenario for
five vaccine prioritization strategies: (1) prioritizing only adults over age 65, (2) prioritizing

11



only adults 18-64 with in-person work contacts, (3) splitting priority vaccines evenly between
adults 65+ and adults working in person, (4) a ‘tiered’ strategy that prioritizes adults 65+
before high contact workers, and (5) a ‘tiered’ strategy that prioritizes high contact workers
before adults 65+ (further details are provided in the supplementary material A.1.7). The
‘tiered’ strategies are intended to replicate the CDC’s decision to progressively distribute the
vaccine in a series of decreasing priorities. In our simulations, tiered roll-outs differ from the
single priority strategies by allowing a second-priority group to have access to the vaccine
before general distribution (when doses are distributed proportionally to eligible group size).
For example, for the single priority 65+ strategy, after all of those eligible in the oldest age
group have been vaccinated, remaining vaccines are distributed to other groups proportional
to remaining eligible group size; however, during the tiered 65+ strategy, after eligible adults
65+ have been vaccinated doses are distributed to eligible HC adults before being distributed
to other groups. For clarity, we present the simulation results using the median draw for
each parameter for discussion of effect sizes (R0 = 2.5, µ = [0.00004, 0.0023, 0.08], latent
period = 3 days, and infectious period = 5 days), but show the full range of simulation
results across the 1000 parameter combinations.

1.1.4 Booster dose model for a subsequent outbreak of a SARS-
CoV-2 variant

We also extend the model (outlined in supplementary material section A.1.8) to consider a
subsequent outbreak caused by a new, more transmissible SARS-CoV-2 variant, such as the
Omicron variant, where vaccines may be less effective (Collie et al. 2022; Hogan et al. 2021;
UK Health Security Agency 2021; Thompson 2022). In this situation, distribution of a third
“booster” dose is necessary to increase protection against clinical infection, hospitalization,
and death. To maintain consistency across results, the starting population size is the same as
in the previous simulation (the US population on January 1st 2021). In the booster simula-
tion, we take the January 1st 2022 estimate of 34%, 78%, and 95% of children, adults 18-64,
and adults 65+ as having received a primary course of vaccination (2 doses, represented
by compartment Vb; National Center for Immunization and Respiratory Diseases (NCIRD)
2022a; National Center for Immunization and Respiratory Diseases (NCIRD) 2022b). Re-
maining susceptibles are assumed to refuse the vaccine and are placed in compartment Sx.
We assume that 70% of individuals in Vb who have received the two-dose primary course of
vaccination will receive booster doses; hesitancy or ineligibility for booster doses is incor-
porated by moving 30% of these individuals in Vb to Vbx, indicating that they decline the
booster dose. One million booster doses are distributed daily among individuals in Vb until
that compartment reaches zero individuals either through infection or vaccination. In this
booster model, no individuals will be present in compartment S (awaiting first dose) or Va
(awaiting awaiting second dose). We consider the same five strategies as before for priority
distribution of booster doses. Since the vaccine’s effectiveness in reducing transmission is
unknown for primary and boosted individuals for new variants, we conduct 1000 simulations
with randomly drawn values for vaccine efficacy from an assumed distribution; we also draw
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1000 values of R0 from an assumed distribution. The vaccine efficacy is randomly drawn
from distributions derived from the CDC’s estimates of vaccine efficacy against the Omicron
variant (Thompson 2022). In these simulations, primary (2-dose) vaccine efficacy is drawn
from a uniform distribution between 32% and 43%; vaccine efficacy of the booster dose is
drawn from a uniform distribution between 79% and 84%. (Thompson 2022). Breakthrough
infections among individuals who have received 2 or 3 doses of the vaccine proceed through
the Exposed and Infectious compartments. A meta-analysis of the Omicron variant’s R0

estimates shows considerable variation from 5.5 to 24, with a median of 10 (IQR: 7.25,
11.88; Liu and Rocklöv 2022). To account for a wide range of transmissibility of potential
new variants, we draw R0 uniformly between 2 and 12. All other parameters are held at
their median values as above. Similar to the primary simulation, we present results from a
simulation with the median draw of all parameters.

1.2 Results

1.2.1 Prioritization strategies for primary vaccine doses

For a given combination of simulation parameters, we identify the vaccine prioritization
strategies that results in the fewest number of deaths due to COVID-19 and the fewest
number of clinical infections. In the simulation with median parameter values, tiered 65+
roll out reduces deaths by 31.32% (723,866 deaths averted) compared to a no-vaccination
scenario. This strategy saves 25.13% (532,567) more lives than prioritizing high contact
workers, and 11.49% (206,087) more lives than splitting prioritization between workers and
adults 65+. We note that this strategy is only marginally more effective at reducing deaths
(0.34%) than prioritizing only adults 65+ before general distribution, indicating that any
distribution strategy that gives initial priority to older adults will limit the most deaths.
For a tiered 65+ roll out, there is also a modest reduction in clinical infections— 13% fewer
(10.9 million infections averted) compared to no vaccination. However, we find that the most
effective strategy for limiting clinical infections is through a tiered roll-out that first prioritizes
high contact workers. This strategy reduces infections by 13.9% compared to no vaccination
(11.5 million clinical infections averted), although we note that the reduction in clinical
infections is similar among all prioritization schemes. Overall, we find that strategies that
prioritize high contact workers, even when split with adults 65+, do limit clinical infections
but fail to confer the lifesaving benefit of strategies prioritizing adults over age 65.

Figure 1.2a shows the percent reduction in deaths and clinical infections relative to no
vaccination, across a range of values for the mortality and transmission parameters. Our
results are consistent across a wide range of parameter combinations. In 100% of the sim-
ulations, the tiered 65+ roll-out was the most effective strategy for limiting deaths due to
COVID-19. All prioritization strategies performed remarkably similarly for reducing the
most number of clinical infections. In 62.5% of simulations the tiered HC roll-out was the
most effective at limiting clinical infections; in the remaining 37.5% of simulations, the most
effective strategy appears to be the tiered 65+ roll-out. Through sensitivity analysis, we
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show below that these differences are driven by variations in R0.
Figures 1.2b and 1.2c show the trajectories of cumulative clinical infections and deaths

averted compared to null for the five prioritization strategies assuming median parameter
values. For each vaccine strategy, we define deaths or clinical infections averted as the
difference between deaths or clinical infections in the null scenario versus the vaccination
scenario.

These results indicate a marked departure from no vaccination between mid January and
February. Vaccines reach their peak lifesaving power very quickly within the first month
and the relative benefit increases through February. This demonstrates that the timing
of vaccines is critical: prioritizing seniors limits the most deaths because they are able to
develop vaccine-derived immunity before the peak of the outbreak. Further, tiered roll
out strategies show an extended benefit over their single-prioritization counterparts through
February and March after distribution of vaccines to the first priority group. Trajectories for
each demographic group are shown in the model appendix. Interestingly, when deaths are
broken down by age and worker status, the tiered 65+ strategy averts the most deaths only
in the adults 65+ group. For all other groups (children 0-18 and adults 18-64), the tiered
HC strategy averts the most deaths. However, since deaths are relatively much higher in the
adults 65+ group, the tiered 65+ strategy averts the most deaths in the population overall
(see Supp Fig A.4).

We conduct additional analyses to test the sensitivity of our results to the choice of
simulation parameters. For each simulation, we separately vary R0 between 1 and 5, µ65+

between 1% and 10%, and the proportion of priority vaccinations split between high contact
workers and adults 65+ between 0 and 1. All other parameters are kept the same as the
baseline. We see that for all values of R0, the deaths are lowest by prioritizing adults 65+
for vaccination (figure 1.3). However, the strategy for averting the most clinical infections
is sensitive to R0, and a cross-over in the most effective strategy to limit clinical infections
occurs around R0 = 2.6. When R0 is less than 2.6, prioritizing high contact workers results
in the fewest clinical infections. With higher values of R0, prioritizing adults 65+ leads to
the fewest clinical infections. With larger values of R0, the peak of the outbreak happens
earlier in simulation time, resulting in more cases before most vaccines are distributed. Since
high-contact individuals in a population will be infected earlier in an outbreak (Mossong et
al. 2008) and, therefore, removed from the eligible pool of vaccine recipients, the strate-
gies prioritizing high-contact workers are no longer the most effective for reducing clinical
infections for high values of R0. A strategy prioritizing high-contact workers is, therefore,
less effective in reducing clinical infections (compared to a low transmission scenario) since
susceptibles in that group will be depleted faster and fewer doses will be distributed to them
overall. In a higher transmission setting, the most effective strategy for reducing clinical
infections becomes the strategy that targets those most at risk of having a clinical infection:
in our model, seniors are almost twice as likely to develop clinical symptoms than adults
aged 18-64 (69% vs. 36%). Instead, for high values of R0 prioritizing adults 65+ is most
effective both for reducing deaths as well as clinical infections. However, these results are
likely dependent on the timing of vaccine introduction and the practicalities of reaching a

14



large enough population for vaccination before the peak of the outbreak.
As expected, the reduction in the number of deaths is highly sensitive to µ (supplemental

figure A.7); however, the most effective strategy consistently remains prioritizing adults 65+
for vaccination due to the strong age gradient in mortality. Figure 1.4 shows the effect on
total deaths and clinical infections as the proportion of vaccinations given to adults 65+ is
varied under the split vaccination scenario. Deaths are always minimized when giving 100%
of priority vaccines to adults 65+, and total infections are minimized when priority is given to
high contact workers. However, we do find a minimum number of clinical infections occurring
when 55% of vaccinations are given to seniors. This non-linearity in clinical infections is a
result of the fact that the burden of clinical infections by subgroup is jointly determined by
the age-dependent susceptibility to infection (higher amongst HC workers) and probability
of symptomatic illness (highest amongst adults 65+).

1.2.2 Prioritization of Booster Doses during a subsequent outbreak

In the simulation conducted with the median parameter draws, prioritization has a smaller
effect on relative outcomes for booster doses than the primary doses. A tiered 65+ roll
out for boosters not only continues to save the most lives, but in a departure from the
primary simulation, also reduces clinical infections the most—although like the primary
simulation, the reduction in infections is nearly equal between the three strategies. With
median parameter values (R0: 7; primary vaccine efficacy: 37.5%; booster vaccine efficacy:
81.5%), a tiered 65+ roll-out reduces deaths by 14.23% (393,562) compared to no booster
doses. This strategy reduces deaths by 11.5% more than prioritizing only HC workers and
7% more than a tiered HC roll out. Tiered 65+ roll-out reduces infections by 5.8% (6.5
million infections averted); however, all three strategies reduce infections by nearly the same
amount (within 1%). We note that in this subsequent outbreak, the population of eligible
HC workers awaiting vaccination is considerably smaller than the primary outbreak; while
the eligible 65+ population between the two scenarios is similar (33 million adults 65+ are
awaiting primary vaccination in the primary outbreak compared to 31 million for booster
doses), the population of eligible high contact workers decreases from about 45 million to
about 35 million. This is driven by lower uptake rates of primary vaccination among those
below age 65 compared to adults 65+. These results are replicated across the 1000 sets of
simulated parameters, shown in figure 1.5. Across all 1000 simulations the median percentage
reduction in deaths compared to no boosters is greatest during a tiered 65+ roll out. Clinical
infections are reduced the most during a tiered 65+ roll out in 49.1% of simulated parameters;
in the other 50.9% of simulations, tiered HC roll out was most effective. Similarly to the
primary scenario, this variation in the number of clinical infections averted is driven by R0.

When R0 is low, HC or Tiered HC prioritization can limit the most clinical infections
(figure 1.6). For both deaths and clinical infections the difference between all distribution
strategies is smaller when R0 is higher (figure 1.6).
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1.3 Discussion
While previous modeling studies have evaluated COVID-19 vaccine distribution strategies
Matrajt et al. 2021, Foy et al. 2021; see (Saadi et al. 2021 for a review for 43 such studies),
very few had considered heterogeneity in contact rates by both age and worker status. We
show, using uniquely detailed contact data, that even when we account for high rates of
contact among a sub-group, prioritizing vaccination of the oldest age group averts the most
deaths from COVID-19. However, we also find that prioritizing high-transmission groups
can limit the spread of disease.

We find that the most effective strategy, given our model parameters, for reducing deaths
due to COVID-19 via vaccination was a tiered roll out that first prioritized adults over age
65 followed by high contact workers, with remaining doses split among low contact adults
18-64 and children (Tiered 65+ strategy). However, the most clinical infections are averted
through a tiered roll out that prioritized high contact workers followed by adults over age
65 before general distribution (Tiered HC strategy).

The most effective strategy for distribution of booster doses in our model to limit deaths
is similar to the primary scenario—it is most effective to prioritize seniors for reducing
mortality—and this strategy may also reduce the number of clinical infections the most de-
pending on the transmissibility of the novel variant strain. Without an inflow of susceptibles
from births or waning immunity in our model, this difference for booster dose prioritization
strategies is driven almost entirely by the lower uptake rate for primary and booster doses
by 18-64 year olds compare to adults 65+. However, we note that all three distribution
strategies for booster doses result in nearly equal reductions in clinical infections.

These simulations were designed to test the total effect of vaccination—both the direct
benefits of vaccination on the prioritized group and the indirect effects of reducing community
spread through social contact patterns—using empirical estimates of contact rates across
groups. When distributing initial doses, the indirect effects of vaccinating high-risk workers
or splitting vaccines between workers and seniors did not confer a greater reduction in deaths
than the direct effects of prioritizing all seniors but did reduce the spread of COVID-19
overall.

While limiting deaths is often the primary public health objective, other priorities can
include limiting total infections or reducing the number of infected persons at a given time.
A healthcare system that is stressed beyond the critical care capacity of ER/ICU admissions
may see both increased COVID-19 case fatality and excess secondary deaths (Phua et al.
2020, Miura et al. 2021, and Wood et al. 2020. Prioritizing high contact workers with in-
person employment may alleviate strain on the healthcare system and reduce the number of
people living with chronic COVID-19 symptoms. In a real-world setting, there is undoubtedly
a benefit to prioritizing some essential workers in healthcare or eldercare settings who have
more exposure to high-mortality populations; substantial heterogeneity exists even within
our surveyed high risk workers. Results of our ‘split’ analysis show that when some vaccines
for adults 65+ are diverted to high risk workers, fewer deaths are averted, but the total
number of clinical infections drops sharply. The most lives are saved when adults 65+ are
prioritized, which is consistent with early CDC guidance that prioritized the elderly and a
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limited number of healthcare workers first.
Public health objectives and the most effective strategy may also depend on the timing of

vaccine distribution (Han et al. 2021). For example,Mylius et al. 2008 find that for pandemic
influenza, prioritizing the oldest age group is most effective at limiting deaths, but only if
distribution begins near the peak of the outbreak; otherwise, prioritizing young adults and
schoolchildren for early doses is most effective. Substantial differences in the age-specific
contact, mortality, and vaccine uptake indicate that the most beneficial early-target groups
for vaccination are considerably different between COVID-19 and influenza (Fitzpatrick and
Galvani 2021). Understanding how the effectiveness of strategies may change over the course
of the COVID-19 pandemic is a key direction of future research.

Our results also highlight the significant impact of imperfect vaccines and imperfect
vaccine uptake on clinical infections and deaths. We show that the potential disease-averting
power of vaccines is lost due to delays in vaccine availability for the general population, as
many susceptibles awaiting the vaccine are infected before they are able to be vaccinated
(figure A.8). High-contact groups are more likely to be infected earlier in the outbreak,
thereby reducing the size of the population eligible for vaccination. This, in combination with
low vaccine uptake, reduces the effectiveness of vaccination strategies in high transmission
scenarios. This is especially true for the high contact group, who are more likely to be
infected earlier on in the outbreak before vaccination is fully rolled out.

Our study has several limitations. First, although our population is faceted by age and
employment, the model does not consider other non-pharmaceutical interventions, such as
the use of face masks, that can reduce transmission during interpersonal contact. Brief
contact between high-risk workers and customers that are masked and distanced may be
ultimately insignificant compared to adults lacking such contacts but who are engaging
in risky behavior during personal time. Quantifying overall risk along other dimensions of
contact, such as whether the contact took place indoors out outdoors, the duration of contact,
whether a mask was worn, etc., is an important direction for future research. Second, we
are limited — by the survey sample size — to using only coarse age and contact status
categories in our contact matrix. By including all respondents and their contacts over age
65 in our oldest age group and using the average infection fatality ratio, our analysis may
mask important heterogeneity by age in mortality (Levin et al. 2020). Further, our analysis
utilizes POLYMOD data, which were collected in the United Kingdom before the onset of the
COVID-19 pandemic, for inferring contact patterns for the youngest age group. POLYMOD
respondents are not necessarily representative of contact patterns in the United States during
our period of interest. Given the relatively low rates of clinical infections and deaths in the
youngest age group, any bias in the analyses is likely to be small.

Third, for simplicity and due to lack of data for parameterization, our model does not
include waning of immunity from natural infection or from vaccination, although this presents
a substantial challenge to the control of COVID-19. Additionally, our implementation of
‘leaky’ vaccines does not account for reduced symptom severity or reduced probability of
transmitting COVID-19. The natural history and epidemiology of future variants may change
the landscape of mortality, virulence, and interaction with vaccines. While our analysis is
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limited in scope to the conditions from the first quarter of 2021, extending this model to the
future will need to consider how waning and partial immunity may affect the most effective
vaccination strategies for reducing deaths or clinical infections.

Finally, this analysis considers prioritization only by age and worker status and does not
include heterogeneity within or between groups. Structural barriers in health care, including
financial cost, health complications, and discrimination within the healthcare system—if
related to essential worker status—may mean that essential workers face increased health
risks in addition to increased contact network size.

There are also likely to be benefits to prioritizing people for vaccination along other
socio-demographic axes of risk that are not considered here—especially race, ethnicity, and
geographic location—by identifying social inequality itself as a driver of outbreaks (Wrigley-
Field et al. 2021; Link and Phelan 1995). The BICS survey population reflects the com-
position of the essential workforce in the United States — Blacks and Hispanics comprise
of a larger share of the high-contact population (11.12% and 22.49% respectively) relative
to their shares in 65+ population (9.12% and 5.04% respectively). Nonetheless, given the
strong age gradient in mortality due to COVID-19, the tiered 65+ prioritization strategy
averts the most deaths among respondents of all ethnicities (see supplement A.1.10), assum-
ing that transmission and mortality are equal by ethnicity and gender within our defined
demographic groups (children, HC adults, LC adults, adults 65+). Unfortunately, due to
limitations in the sample size we are unable to construct a contact matrix that is disag-
gregated by age, employment, and race or ethnicity, and thus unable to fully account for
heterogeneities across these groups. Although the results of our simulations indicate that
relying on indirect effects of prioritizing high-contact workers for vaccination does not ulti-
mately save more lives, high-contact workers may be at increased risk of death compared to
other adults because of socio-demographic disadvantage within with the healthcare system
not captured within our model. Our analysis supports prioritization of vaccination for the
highest risk members of society—which we identify through advanced age, but may instead
be a complex combination of socio-demographic disadvantage. This is an important direction
for future research.

Overall our results highlight the impact of two dimensions of risk — contact behavior
and age-dependent susceptibility and risk of severe disease— on the effect of vaccination
strategies. This work also shows the utility of combining mathematical models with detailed
contact data by socio-demographic groups, particularly for understanding sensitivity of the
effectiveness of different prioritization strategies to the epidemiology of the circulating virus
strain. As novel strains are likely to continue to emerge (Brüssow 2022), these data and
models can be especially useful for tailoring prioritization strategies for subsequent outbreaks.

Replication Code

All analyses was conducted using R software (version R version 4.0.2). Replication code is
publicly available at https://github.com/eroubenoff/BICS_employment_replication_
code (Roubenoff, Feehan, and Mahmud 2022a).
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Data availability

We have deposited our data in the Harvard Dataverse, https://doi.org/10.7910/DVN/
K8YPVZ (Roubenoff, Feehan, and Mahmud 2022b).
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Figure 1.2: (A) For primary vaccination, percent reduction in clinical infections and deaths when
compared to no vaccination for randomly drawn transmission parameters. The median percent
reduction in deaths was highest in a tiered strategy that prioritizing seniors and lowest when only
prioritizing contact risk workers; clinical infections are reduced the most by a tiered system that
prioritizes workers first, although all strategies produce similar results. (B) and (C): For baseline
parameters, trajectories of daily cumulative clinical infections (B) and deaths (C) averted relative
to a no vaccination scenario, calculated as the cumulative difference between each strategy and
null through each date. For each vaccine strategy, we define deaths or clinical infections averted
as the difference between deaths or clinical infections in the null scenario versus the vaccination
scenario. When prioritizing seniors the reduction in deaths begins nearly immediately, whereas the
indirect benefit from prioritizing HC workers begins later and is lower in magnitude. The opposite
is observed for clinical infections.
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Figure 1.3: Results of the sensitivity analysis of R0 (varied linearly between 1 and 5 in 0.1 incre-
ments) and the resultant count of total deaths (A) and clinical infections (B). Across all values, a
strategy that prioritizes adults 65+ either directly or in a tiered roll out limits the most deaths.
At low values of R0 (<2.5) the reduction in clinical infections is greatest in a ‘Tiered HC’ roll out;
however, the most effective strategy with high R0 is through a Tiered 65+ strategy.

Figure 1.4: The proportion of vaccines split between seniors and HC workers is varied from 0% to
100% and shown with counts of (A) total infections, (B) clinical infections, (C) total vaccinated, and
(D) total deaths. Extremes (corresponding to the HC Prior and 65+ Prior strategies) are shown.
When priority vaccines are given more to adults 65+, deaths are minimized but total infections are
maximized, indicating that while this strategy limits deaths it fails to limit transmission effectively.
Additionally, more susceptibles are eligible for vaccination under this strategy. However, the mini-
mum number of clinical infections is minimized when 59% of vaccines are distributed to 65+. This
effect is mediated by increased susceptibility to infection and increased probability of symptomatic
infection among seniors, and the increased priority group size among HC workers.
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Figure 1.5: For distribution of booster doses: (A) percent reduction in clinical infections and deaths
when compared to no vaccination for randomly drawn transmission parameters. (B) and (C):
For baseline parameters, counts of clinical infections (B) and deaths (C) averted relative to a no
vaccination scenario. For each vaccine strategy, we define deaths or clinical infections averted as the
difference between deaths or clinical infections in the null scenario versus the vaccination scenario.
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Figure 1.6: Relationship of stochastically drawn parameters in assessing the effect of booster dose
prioritization.
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Chapter 2

How will COVID-19 persist in the
future? Simulating future dynamics of
COVID-19 using an agent-based network
model

Abstract

Despite the United States Center for Disease Control (CDC)’s May 2023 expiration
of the declared public health emergency pertaining to the COVID-19 pandemic (Silk
2023), approximately 3 years after the first cases of SARS-CoV-2 appeared in the United
Sates, thousands of new cases persist daily. Many questions persist about the future
dynamics of SARS-CoV-2’s in the United States, including: will COVID continue to
circulate as a seasonal disease like influenza, and will annual vaccinations be required
to prevent outbreaks? In response, we present an Agent Based Networked Simulation
of COVID-19 transmission to evaluate recurrent future outbreaks of the disease, ac-
counting for contact heterogeneity and waning vaccine-derived and natural immunity.
Our model is parameterized with data collected as part of the Berkeley Interpersonal
Contact Survey (BICS; Feehan and Mahmud 2021) and is used to simulate time series
of confirmed cases of and deaths due to SARS-CoV-2, paying special attention to sea-
sonal forces and waning immunity (Kronfeld-Schor et al. 2021; Liu et al. 2021b; Nichols
et al. 2021). From the BICS ABM model we simulate SARS-CoV-2 dynamics over the
10-year period beginning in 2021 with waning immunity and inclusion of annual booster
doses under a variety of transmission scenarios. We find that SARS-CoV-2 outbreaks
are likely to occur frequently, and that distribution of booster doses during certain
times of the year—notably in the late winter/early spring—may reduce the severity of
a wintertime outbreak depending on the seasonal epidemiology of the pathogen.
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2.1 Introduction
Three years after the first cases of SARS-CoV-2—the pathogen responsible for the COVID-
19 pandemic—appeared in the United States, many control measures put in place during the
early phase of the pandemic have been eliminated (Silk 2023) in favor of a desire to return to
‘business as usual’. This includes mask mandates, shelter-in-place and work from home ordi-
nances, physical distancing guidelines, and recommendations to isolate symptomatic cases.
While vaccines for COVID-19 were a source of optimism through early 2021, it became
clear over the subsequent months that waning natural and vaccine-derived immunity and
the pathogen’s immunity-evading mutations rendered the vaccines less effective at ending
the pandemic than initially hoped (Levin et al. 2021,Centers for Disease Control and Pre-
vention 2021). Additionally, uptake of booster doses has lagged far behind targets (National
Center for Immunization and Respiratory Diseases (NCIRD) 2022a; National Center for Im-
munization and Respiratory Diseases (NCIRD) 2022b). Over time, ‘pandemic fatigue’ has
set in as compliance with disease-preventing behavioral mandates, especially mask usage
and contact limitation, has slipped and such ordinances have been lifted (Reicher and Drury
2021). The current phase of the pandemic is substantially different from the initial phase,
characterized by a highly transmissible but less severe form of the illness owing in part to
many factors acting in different directions, including: highly transmissible but less severe
later variants (Davies et al. 2021; Strasser et al. 2022; Yang et al. 2022), higher levels of
partial or full immunity from vaccine or prior infection (Clarke 2022), higher levels of social
contacts approaching pre-pandemic levels, low or absent rates of mask usage and physical
distancing (Crane et al. 2021), and better treatments reducing the probability of death or
severe illness after infection (National Institutes of Health 2022). While better treatments,
milder variants, and prior immunity has resulted in a far lower case fatality ratio than the
early days of the pandemic, avoiding the illness is still a persistent challenge for those who
remain at elevated risk of severe illness and death due to COVID-19, including the elderly
and people with chronic health conditions.

Understanding the various drivers of future SARS-CoV-2 outbreaks can help to plan
for future interventional strategies, including vaccine distribution, school or work closure,
and other non-pharmaceutical interventions. Infectious disease models can help to plan for
these future outbreak scenarios by helping understand how SARS-CoV-2 will exist in our
medium to long-term future. Here, we consider the effect of recurrent outbreaks, annual
distribution of booster doses, and seasonal change in transmission of SARS-CoV-2. It is
presently unknown if SARS-CoV-2 will demonstrate a strong seasonal pattern; however, it is
hypothesized to follow the seasonal patterns of influzena and other coronaviruses (Kronfeld-
Schor et al. 2021).

To answer these questions, we use a stochastic Agent-Based Network Model paramater-
ized with contact data from the Berkeley Interpersonal Contact Survey (BICS; Feehan and
Mahmud 2021). Using BICS data allows us to consider how contact heterogeneity, household
structure, and other network dynamics play into the periodicity and size of future outbreaks.
Our model also includes seasonal forcing of transmission parameters, waning immunity from
vaccines and prior infection, and variable-rate case importation to capture interaction with
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counter-seasonal populations (i.e., travel between the hemispheres experiencing opposite sea-
sons).

Agent-Based Models are alternative to compartmental models and allow for more flex-
ible and dynamic transmission dynamics, including network structure (Ajelli et al. 2010;
Bansal et al. 2010). Roubenoff, Feehan, and Mahmud 2023, included in the first chapter of
this dissertation, utilized a compartmental model for analyzing SARS-CoV-2 transmission.
While these types of models are heavily utilized for analyzing disease transmission, one par-
ticular limitation of these models with contact data is their requirement for relatively few
and well-defined categorizations. ABMs are more flexible and contrast with compartmental
models by keeping track of the disease status for each individual in the simulation, rather
than the tally of individuals in a particular compartment. In place of differential equations
describing flows between compartments, ABMs use highly explicit (either deterministic or
stochastic) rules governing interaction (Bonabeau 2002; Bruch and Atwell 2015; Baker et al.
2013; He, Ionides, and King 2010). Interactions are governed by some aspect of the simulated
population contained within an objective function, such that interactions between nodes of
certain values are more likely that others. As a group, ABMs are free of many of the analytic
requirements of compartmental models—especially the need for of explicit transition proper-
ties between states, only an objective function for optimization—earning them the descriptor
‘plug and play’ (He, Ionides, and King 2010). Importantly for our purposes, ABMs allow for
flexibility in how the population mixes, allowing for contact inequality between simulated
agents through either a spatial or network component. Network models are a particular type
of agent-based model that assume an explicit network structure for disease-transmitting con-
tacts. In network models, instead of a homogenous or even matrix-structured contact pattern
employed by compartmental models, disease transmission is simulated as occurring over a
graph representing network connections (Bansal, Grenfell, and Meyers 2007; Danon et al.
2011; Keeling and Eames 2005).

A plethora of agent-based and network simulations of the COVID-19 pandemic have been
published and tools released. The flexible yet highly specific ways that ABMs can be used to
model social interactions is ideal for testing network and behavioral interventions for COVID-
19. These models include a wide set of techniques, including models that explicitly account
for how individuals navigate geographic space (Cuevas 2020) and social networks (Hunter
and Kelleher 2021). Agent-based models have used to estimate parameters for the COVID-19
outbreak in France (Hoertel et al. 2020), Ireland (Hunter and Kelleher 2021), and Colombia
(Gomez et al. 2021). Models can utilize existing contact data, such as Moghadas et al. 2021
and Sah et al. 2021, who use data from the POLYMOD survey (Mossong et al. 2008) as
inputs to an ABM to evaluate willingness to vaccinate. Holmdahl et al. 2020 test a series of
behavioral interventions in nursing homes using a two-cohort ABM (patients and caregivers),
finding that testing frequency and isolation are the most effective ways to limit the spread of
disease. We draw on a number of general ABMs developed for COVID-19, including Covasim
(Kerr et al. 2021), an aspatial model that combines Erdos-Reyni Poisson random networks
with SynthPops networks that are generated from empirical contact data, and OpenABM
(Hinch et al. 2021), that simulates social network interaction through stochastic network
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simulation at the household, occupational, and random connectivity additively.
Although it remains to be seen, research has suggested that SARS-CoV-2 may exhibit

seasonality similarly to influenza and other coronaviruses, which exhibit higher incidence in
the colder months (Nichols et al. 2021). Indeed, in the United States, the highest number
of cases were observed in winters 2020-2021 and 2021-2022. The periodicity and severity
of future SARS-CoV-2 outbreaks is currently unknown, largely since the rate of mutations
and long-term vaccine-derived and natural immunity is unknown, but many mechansims are
theorized (Kronfeld-Schor et al. 2021). Seasonal forcing of respiratory diseases involves a
consideration of multiple temporal factors relevant to modeling the transmission of SARS-
CoV-2 including seasonal changes in host behavior and immune function (Altizer et al.
2006; Grassly and Fraser 2006). Although modeling studies suggest that climate may me-
diate the timing and peak incidence of SARS-CoV-2 outbreaks, susceptible supply driven
by population immunity is the primary driver of such dynamics (Baker et al. 2020). Many
childhood diseases, namely measles, exhibit seasonal cycles driven by the birth rate and in-
creased contact between non-immune children during the school year (Metcalf et al. 2009).
In some situations, it can be assumed that the pathogen is circulating at a very low level lo-
cally in between outbreaks; in others, like influenza, seasonal human-animal interactions and
case importation between populations in opposite hemispheres experiencing counter-cyclical
temperature-forced outbreaks may drive timing (Lofgren et al. 2007; Lowen and Steel 2014).

We use a stochastic agent-based network simulation of SARS-CoV-2 transmission param-
eterized with data from the Berkeley Interpersonal Contact Survey (Feehan and Mahmud
2021) and include seasonality, annual vaccination, waning immunity, and demography. To
our knowledge, this represents the first agent-based model for examining COVID-19 endemic
outbreak cycles and seasonality. We find that outbreaks are likely to occur regularly and that
annually-distributed booster doses can be an effective tool to eliminate regular outbreaks.
Depending on seasonal epidemiology of the pathogen, booster doses are most effective when
distributed at certain times of year; in the absence of seasonality, booster doses are most ef-
fective when distributed in the first half of the year, but in a seasonally-forced transmission
scenario distributing vaccines in early fall is more successful at eliminating major annual
outbreaks.

2.2 Methods

2.2.1 Data

Like Roubenoff, Feehan, and Mahmud 2023 (included in Chapter 1 of this dissertation),
we also utilize here contact survey data collected by Feehan and Mahmud 2021 as part
of the ongoing Berkeley Interdisciplinary Contact Survey (BICS), which captures disease-
transmitting behavior during the COVID-19 pandemic. The BICS survey, collected in several
waves beginning in March 2020, is an online survey aimed at capturing the frequency and
nature of respondents’ face-to-face contact over a 24-hour period. Respondents to the BICS
survey are recruited through a quota sample using an online survey panel provider, Lucid.
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Respondents are asked to report the total number of close, face-to-face contacts they had
over the previous 24 hours, and to elaborate on three such contacts in detail. Respondents
are also asked to report information regarding their demographic information, household
structure, and other questions regarding their behavior. In this chapter, we utilize responses
from Wave 6 (n = 5418, 12 May - 25 May 2021) of the BICS national (U.S.) survey to
capture post vaccination contact patterns.

2.2.2 Model: BICS ABM

Using Hunter, Mac Namee, and Kelleher 2017’s taxonomy for categorizing Agent Based
Models, the simulation model used here is disease-specific to COVID-19 and society-specific
to the behaviours captured from respondents in the BICS sample frame. Behavior is modeled
on networks and is without transportation and without environment. The BICS ABM simu-
lation population is constructed of individuals (also referred to as agents, nodes, or vertices)
within households. We simulate interaction and disease spread among a population of 1000
households (approx. 3200 individuals) representative of the U.S. according to the procedure
described below and in the model supplement. Each agent in the simulation directly corre-
sponds to a respondent in the BICS or POLYMOD surveys sampled with survey weights to
match the distribution of age and sex of the US population, and the agents’ demographic
and behavioral data is derived from the corresponding survey respondent. The simulation
includes three types of social contacts: household contacts with household members, school
contacts for children below the age of 18, and non-household ‘random’ contacts. As employ-
ment data are not available for this wave of the survey, ‘random’ contacts are designed to
include employment contacts for adults. Household contacts and school contacts are drawn
randomly at the start of the simulation according to the procedure described below and are
maintained throughout the simulation; random draws of graphs representing random non-
household contacts are taken during each daytime time step. In this way, the total network
is dynamic as it changes throughout the course of the simulation.

The graph of household contacts is drawn according to the procedure described in the
model supplement, which is similar to the SynthPops procedure utilized in COVASIM (Kerr
et al. 2021; Mistry et al. 2021). Briefly, a supplied number of households are created with the
following two-step procedure. First, BICS survey respondents are repeatedly sampled with
replacement and adjustment for survey weights to be heads of household. Heads of house-
hold are chosen to match the age- and sex-distribution of adults in the United States using
2021 American Community Survey estimates (US Census Bureau 2022). Then, households
are filled by sampling BICS respondents (again, with replacement and adjustment for sur-
vey weights) who match the household head’s reported household members’ age and gender,
until each household is the proper size. Respondents under the age of 18 were not ascer-
tained in the BICS survey; instead, they are sampled uniformly from the POLYMOD UK
survey (Mossong et al. 2008). Throughout the simulation, each node’s behavior is derived
from the corresponding BICS survey respondent’s responses; nodes derived from POLYMOD
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respondents are derived from the corresponding fields in the POLYMOD survey1.
The model progresses in hourly steps through simulation time. During morning and

evening hours (6pm-8am), agents have contact with all members of their household. During
daytime hours, random connections occur between members of the simulation population
governed by the degree (number of non-household contacts) supplied by each survey respon-
dent. A daily contact network is drawn using the Network Configuration Model, described
below. Each such contact is designated to begin at a random time during the day chosen
uniformly between 8am and 6pm. Each contact has a randomly chosen duration sampled
according to the following probabilities: respondents to wave 6 of the BICS survey indicated
that 17.1% of contacts were less than one minute, 45.2% were between 1 minute and 15
minutes, 18.7% were less than one hour, and 18.9% were more than 1 hour. Here, we choose
to use the marginal distribution rather than individual-level responses due to computational
limitations. During the duration of each contact, respondents are disconnected from other
members of their household and reconnected after the conclusion of the random contact.
If a node is clinically infectious, they may enter isolation for the duration of symptoms; if
asymptomatic, they continue to mix as before. Isolation is incorporated by a parameter
representing the multiplicative reduction in random daily contacts: for example, an isolation
parameter of 0.1 means that a node normally with 10 daily non-household contacts with
would have 1 such contact while in isolation.

Random contacts are drawn using the Network Configuration Model, which generates
a random graph of contacts that preserves each node’s degree—here, the number of daily
non-household contacts. The network configuration model creates random networks using
only a provided degree distribution as an input. The configuration model works through a
two-step procedure (Albert-László Barabási 2021):

1. First, assign a degree to each node in the network such that the distribution of degrees
matches the desired distribution. For each node, assign a number of ‘stubs’ or half-
edges equal to the degree of that node.

2. Second, randomly and uniformly join stubs to create edges until there are no stubs
remaining in the network.

Without alteration, the model may produce self-edges (a node connected to itself), or multi-
edges (multiple edges connecting a pair of nodes). Sampling ‘simple’ graphs that lack self- or
multi-edges is a computationally intensive procedure and non-uniform in its graph-generating
process. In our application, we continue to sample graphs uniformly and remove self-edges,
but maintain multi-edges. Realizations of this type are likely to have total degree less than
would be implied by the supplied degree distribution.

1Some fields collected as part of the BICS survey are not available in the POLYMOD data and are
imputed. For the present application, only mask/NPI usage is unavailable, and is taken to be the False.
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Figure 2.1: Illustration of network structures used during simulation. (A): household contact net-
work representing evening and morning contacts, and (B): daytime contact network, consisting of
school contacts and randomly drawn contacts. While school contacts are maintained throughout
the simulation (with the exception of summertime school closures), random contacts are re-drawn
hourly.

2.2.3 Transmission of SARS-CoV-2

All agents begin susceptible and vaccine roll-out begins at the beginning of simulation time.
At a given time T0 a supplied number of index cases are chosen randomly to be exposed
to SARS-CoV-2. In addition, a vector representing the number of cases imported daily
is provided as input to the simulation—in the present application, one case weekly is im-
ported to ensure that SARS-CoV-2 is constantly circulating at a low level. At exposure,
each agent is assigned a randomly drawn number of hours spent as exposed and infectious;
they then proceed to either symptomatic or asymptomatic infection with a supplied prob-
ability. Baseline probability of transmission—before considering vaccine efficacy, contact
duration, non-pharmaceutical interventions, and asymptomatic reduction in transmisison
probability—from an infected node to a susceptible node occurs with probability β(t), where
t is the simulation’s tth day in the year. The value of β(t) thus represents the probabiltiy of
transmission during an hour-long contact between one clinically symptomatic node and one
susceptible, unvaccinated node without mask usage.

Various factors multiplicatively reduce the probability of transmission. First, transmis-
sion is reduced proportional to the duration of contact in fractions of an hour; a 15-minute
contact is 1/4-th as likely to result in transmission as an hour-long contact. As well, trans-
mission from an asymptomatic node to a susceptible node occurs at a reduced probability α
relative to symptomatic nodes. The susceptible node’s vaccination status reduces the proba-
bility of transmission by the corresponding vaccine efficacy; the infectious node’s vaccination
status is not assumed to affect transmission probability. As detailed further below, we al-
low for reinfection after a set amount of time; previous infection offers protection for the
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recovered node as a reduction in the transmission probability. Finally, the model includes
a single Non-Pharmaceutical Intervention (NPI), designed to capture the combined disease-
blocking effectiveness of masks, physical distancing, and other preventative measures. If
BICS respondents corresponding to both nodes in a random contact report any mask usage,
the probability of transmission is proportionally reduced by a supplied effectiveness. If NPI
effectiveness is set to 0, the simulation is effectively in the absence of NPI usage. We as-
sume that NPIs are not used among household contacts. At the conclusion of the infectious
period, asymptomatic nodes all recover; symptomatic nodes die with a supplied age-based
probability.

Unlike compartmental models that often hinge on parameter R0—the basic reproduction
ratio, representing the average number of secondary cases caused by an index case in a fully
susceptible population, estimated as the product of the transmission probability, contact rate,
and duration of infectiousness—no such closed form solution for R0 in an ABM necessarily
exists. Although the ABM’s ability to model contact and transmission through separate
processes and objective functions allows for for increased flexibility, including time-variable
and stochastic transmission probability, heterogeneous contact rates and network structure,
variable duration of contact, isolation of infectious cases, and uneven NPI and vaccination
usage, the parameters that govern the overall transmission dynamics are not well-defined in
closed form. Instead, the R0 must be estimated from the the contact rate or incidence curve
generated by the simulation itself (Hunter, Namee, and Kelleher 2018; Venkatramanan et al.
2018; Hunter and Kelleher 2021; Hoertel et al. 2020). We estimate R0 by observing the
hourly contact rates ĉh in the initial 7 days of the simulation, using the expression:

ĉh =
∑
e∈Eh

(Duratione ·NPIe) (2.1)

which estimates the average hourly number of edges weighted by the duration and effective-
ness of non-pharmaceutical interventions, if used during each contact. Then, the average
contact rate c̄ is taken to be the average of the hourly contact rates ĉh. Finally, R0 is taken
to be:

R0 = β̄ · d̄ · c̄
N

· [ρ+ (1− ρ)α] (2.2)

where parameter β̄ is the average transmission probability over the course of the simulation
period, d̄ is the average duration of infectiousness, N is the size of the population, and the
expression ρ + (1 − ρ)α represents the reduction in infectiousness among subclinical cases.
Since R0 is not necessarily known until the conclusion of the simulation, we instead determine
the overall transmission rate by varying the transmission probably β, then estimating R0

post-facto.

2.2.4 Vaccine effectiveness, waned immunity, and reinfection

An important feature of the model is waning natural and vaccine-derived immunity. Vaccina-
tion occurs uniformly in the population assuming that all eligible members of the population
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Figure 2.2: Schematic for disease states in the Agent-Based Model used in the present simulation,
including disease status (top) and vaccination status (bottom). Disease states include susceptible
(S), exposed/pre-infectious (E), clinically infectious (Ic), subclinically infectious (Isc), recovered (R),
recovered with waned immunity (RW), and deceased (D). Vaccination states include unvaccinated
(V0), first and second primary doses (V1, V2), waned immunity (VW), and boosted (VBoost).

are equally able to access the vaccine (differing from the prioritization procedure taken in
Chapter 1), at a baseline 70% uptake rate. A set number of vaccine doses are available daily,
and are distributed at 8am each day according to optional priority rules. Nodes are eligible
for a second dose of the vaccine after 25 days. After a supplied amount of time, immunity
wanes, and nodes are eligible for booster doses; booster doses are made available at a set date
every year and are distributed with the same rate and priority schedule as primary doses.
Only nodes with waned immunity are eligible for booster doses. All vaccination statuses
(1st dose, 2nd dose, waned, and booster) have fixed proportional reductions in transmission
probability.

As well, we include reinfection in the model with a similar procedure. Nodes that have
recovered from infection remain completely protected from infection for a fixed amount of
time; after this, nodes are assigned disease status ‘Recovered-Waned’ indicating that they
may be re-infected, yet have some protection against future infection. Waned immunity is
assumed to be the same for clinical and subclinical infections, and the protection offered
does not depend on the number of previous infections.

At present, the duration of immunity after infection and vaccination is not known, but
is estimated to be approximately 6 months of near-complete immunity followed by a steady
decrease over time (Centers for Disease Control and Prevention 2021). This is implemented
in our model with a pair of parameters: first, the duration of complete immunity, governing
the time after infection or vaccination that an individual experiences the full effect of vaccine-
derived or natural immunity; second, the wanted immunity effectiveness. For simplicity, these
parameters are held to be the same for both vaccine-derived and post-infectious immunity.
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2.2.5 Incorporation of Seasonality

Seasonal environmental changes are known to affect infectious disease transmission in pre-
dictable, annually-recurrent cycles. Although seasonality is well documented in many infec-
tious diseases, the underlying mechanisms are frequently poorly understood or difficult to
tease out from other compounding effects (Fisman 2012). For respiratory infections transmit-
ted between humans via the airborne pathway such as SARS-CoV-2 and influenza, seasonal
effects can be grouped in three broad areas: environmentally-driven changes in host be-
havior, such as summertime school closings or increased wintertime indoor gatherings; the
pathogen’s ability to survive outside of the human host adapted to certain climatic condi-
tions, in turn affecting fitness for transmission; and seasonal changes in the host’s immune
response, possibly due to changes in temperature or sunlight exposure (Altizer et al. 2006;
Grassly and Fraser 2006; Dowell 2001; Kronfeld-Schor et al. 2021; Buonomo, Chitnis, and
d’Onofrio 2018; Held and Paul 2012). Additionally, seasonal migration—especially tempo-
rary domestic migration with an annual cyclical pattern—may fundamentally change the
landscape of interactions and population at risk (Buckee, Tatem, and Metcalf 2017).

Incorporating seasonality into a compartmental model is typically done by adding sinu-
soidal temporal forcing to the transmission parameter β as β(t) = β0(1+β1cos(2πt)), through
a binary indicator in the case of seasonal school closings as β(t) = β0(1+β1term(t)), or other
time-dependent functional form (Grassly and Fraser 2006; Keeling, Rohani, and Grenfell
2001). Here, the basic reproductive number R0 represents the average number of secondary
cases from a single index case introduced at a random time of the year, and is defined as
R̂0 = D

∫
β(t)dt where D is the average duration of infection. Forcing functions can be eas-

ily extended to include age-structured contact (Bolker and Grenfell 1993), and time-series
methods allow for modeling of outbreak dynamics without fitting a functional form to the
transmission parameter (Metcalf et al. 2009; Finkenstädt and Grenfell 2000). Extending
beyond compartmental models, seasonality can be incorporated into modeling of incidence
data; Held and Paul (2012) demonstrate how seasonal incidence can be decomposed into an
endemic and epidemic component with independent temporal structure.

The long-term seasonal patterns and drivers of COVID-19 are still unknown and not
necessarily possible to disentangle from control efforts, especially noting non-pharmaceutical
interventions like shelter-in-place ordinances and mask usage. Weaver et al. 2022 note in a
review that COVID-19 may be more stable and more transmissible in cooler environments,
consistent with influenza2, although both stability in high humidity and low humidity have
been observed (Morris et al. 2021; Marr et al. 2019; Matson et al. 2020; Dabisch et al.
2021). SARS-CoV-2’s preference for colder, drier conditions is consistent with climatic effects
observed with influenza (Lofgren et al. 2007; Lowen and Steel 2014; Shaman and Kohn 2009).
Another review article by Mecenas et al. 2020 finds a similar conclusion. While climate may
affect SARS-CoV-2’s transmissibility directly, the indirect effect of climate’s effect on human
behaviors has been demonstrated to be a much stronger effect (Susswein, Rest, and Bansal

2See Weaver et al’s review of the following studies, among others: Chin et al. 2020; Liu et al. 2020; Ma
et al. 2021; Matson et al. 2020; Morris et al. 2021; Nottmeyer and Sera 2021; Raiteux et al. 2021; Riddell
et al. 2020; Sera et al. 2021; Smith et al. 2021; Wu et al. 2020
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2023; Damette, Mathonnat, and Goutte 2021; Weaver et al. 2022). Indeed, research on
contact patterns that relate to COVID-19 have are known to be a substantial driver of
outbreak dynamics (Feehan and Mahmud 2021).

While many applications of ABMs to infectious disease focus on investigating the interaction-
level, network, or transportation aspects of infectious disease, few have focused directly on
seasonality. Arduin et al. 2017 incorporate seasonal forcing of pneumococcal infections linked
to influenza infection using a fixed multiplication of the transmission probability during the
flu season, similar to the school-term forcing of the transmission probability used in com-
partmental models by Keeling, Rohani, and Grenfell 2001. Similarly, Williams et al. 2022
incorporate seasonal forcing to an ABM used to study influenza by adding a multiplicative ef-
fect to the transmission parameter related to the temporal distance of each time period from
the winter solstice, which is ‘intended to account for factors that may influence transmissibil-
ity across a range of seasons due to variability in factors such as temperature, humidity, and
changes in contact rates.’ In an application of ABMs to COVID-19, Krivorotko et al. 2022
use an time-series model to decompose incidence counts into a time series effect, a seasonal
effect, and a noise component; the seasonal effect and the time-series effects are specified to
have a temporally autocorrelative function. ABMs have also been used to study seasonality
in non-human diseases (Dawson et al. 2018; Oraby et al. 2014).

We incorporate seasonality in two ways: in the transmission probability β(t) and in
the number of nonhousehold contacts. We allow for seasonal forcing of the transmission
probability to capture how the transmissibility of the pathogen may change with weather,
modeled as:

β(t) = β0(1 + β1 ∗ cos(2π/365 ∗ t)) (2.3)

where β0 represents the average transmission probability and β1 represents the amplitude
of seasonal forcing (Liu et al. 2021b; Grassly and Fraser 2006). Second, we include school
contacts between children under 18, which are derived from the POLYMOD survey (Mossong
et al. 2008). School contacts are drawn once at the start of the simulation and maintained
through simulation time. Schoolchildren are taken to have school contacts during the same
business hours as random contacts between September 1st and June 1st annually; children
who are clinically infectious with SARS-CoV-2 are kept home from school until they recover.

2.2.6 Incorporation of Demography

Optional in the model is the inclusion of basic demographic vital rates in the form of age-
specific fertility and mortality data. At baseline, we draw from the CDC’s 2021 estimates
(Martin, Hamilton, and Osterman 2022; Xu et al. 2022) summarized to the age categories
used in the model (0-18, 18-25, then in 10 year increments through age 85). The rates used
at baseline are shown in figure B.2. These rates are used to randomly introduce new sus-
ceptibles into the population and randomly remove members of the population, representing
deaths due to non-SARS-CoV-2 causes. Each birth represents a new, fully susceptible and
unvaccinated child in the population in the household of the birthing parent; they are as-
sumed to have the number of non-household and school contacts equal to the population
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average. Demography is incorporated into the model once monthly as a Bernoulli random
draw for each member of the population with rate equal to the supplied rate, divided by 12
(for males, fertility rate is 0).

2.2.7 Simulation Procedure and Parameters

We identify a set of baseline transmission parameters in line with those used by Roubenoff,
Feehan, and Mahmud 2023, adapted to fit the parametric needs of our Agent Based Model.
For all simulations, the number of households is fixed at 1, 000, producing approximately
3, 200 individuals at the start of the simulation. Simulations are run for 10 years and are
seeded with 5 index cases at time t = 0, intended to mimic the wintertime outbreak of early
January 2021. During the course of the simulation, one case is imported weekly to ensure
that all SARS-CoV-2 is constantly circulating at a low level. To account for a wide range
of transmission scenarios, we consider three levels of transmissibility: low, with β0 = 0.01
(implying R0 ≈ 1.3); moderate, with β0 = 0.025 (R0 ≈ 3.4); and high, with β0 = 0.05
(R0 ≈ 6.5). Baseline simulations are without seasonal forcing of transmission or contact
but with school contacts included during school-year weekdays (Monday-Friday, 9am-3pm).
Seasonal forcing of both transmission and contact parameters is introduced with low (10%),
moderate (25%), or extreme (50%) seasonal amplitude as described above. To introduce
stochasticity into the model, each infected case in the simulation contains a randomly drawn
duration of latent period of between 48 and 96 hours after transmission; this is followed
by a randomly drawn infectious period of between 72 and 120 hours. These distributions
are held constant across all simulations. We assume that each case has a 20% chance of
being subclinical—fewer than used by Roubenoff, Feehan, and Mahmud 2023 (derived from
Johansson et al. 2021), but in line with recent meta-review estimates by Buitrago-Garcia
et al. 2022. That same analysis identified seven studies comparing the secondary attack rate
of asymptomatic cases and symptomatic cases with an average ratio of 32%. At baseline
we assume that symptomatic cases have all of their normal random contacts and do not
isolate, for a ‘business as usual’ scenario; we test the effect of isolation in sensitivity analysis.
However, children are assumed to always be kept at home when ill. NPI effectiveness is set
to zero, equivalent to the absence of NPIs or masks, but is varied during sensitivity analysis.

Vaccine effectiveness is taken to be 80% after one, dose, 90% after two doses, and 80% af-
ter three doses, consistent with estimates published in 2021 and 2022 (Tenforde 2021,Thomp-
son 2021; Thompson 2022) and values used by Roubenoff, Feehan, and Mahmud 2023. Un-
clear at the present moment is the duration of immunity after infection and vaccination and
the effectiveness of waned immunity; a 2021 CDC brief (updated 2022) estimates 6 months
of nearly complete immunity that diminishes over time (Centers for Disease Control and
Prevention 2021). We take 6 months to be the baseline assumption but vary this duration in
monthly increments from 6 months to two years in a sensitivity test. We assume a pessimistic
25% efficacy of waned natural- and vaccine-derived immunity.

All main simulations are run for 10 years in replicates of 10, and we report a number of
summary values for all simulations. These include the total number of clinical and subclinical
cases, deaths due to SARS-CoV-2, and the timing and size of all outbreaks after year 5.
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All estimates are standardized to the population size to account for populations that vary
randomly in size. Outbreaks are found using the Python library scipy’s find_peaks function
on the daily sequence of clinical cases, for a minimum incidence threshold of 5% of the
population infected over a 30-day window.

2.3 Results
To elucidate future outbreaks of SARS-CoV-2, we simulate outbreaks at various levels of
transmissibility, and test the distribution of annual booster doses in the absence of and
presence of seasonality. We find that the optimal date of booster dose distribution for
reducing the number of clinical infections is different for the simulations with and without
seasonality; in the absence of seasonality booster doses in the first half of the year are most
effective at eliminating a large annual outbreak, but with seasonality booster doses are most
effective when distributed in early fall.

Infectiousness of COVID-19 and the duration of immunity after infection and vaccination
have a strong effect on the dynamics of outbreaks. In a moderate transmission scenario,
where the base probability of transmission for an hour-long contact the absence of NPIs or
vaccination β0 = 0.025 (corresponding to an R0 of approximately 3.2), an average of 6.16
clinical infections occur per capita over a 10-year period. Over this period, an average of
33.6 outbreaks occur, each infecting an average of 17.7% of the population. However, when
β0 is raised to 0.05 (corresponding R0 ≈ 6.5), outbreaks are fewer (an average of 16.0 over
the 10-year period) but more severe, with an average outbreak size of 59.63% and about 9.75
infections per capita—nearly one per person per year. These simulations are summarized
in figure 2.3 and trajectories are shown in figure 2.4. We observe this dynamic throughout
many simulations: when SARS-CoV-2 is more transmissible or less mitigated, outbreaks are
fewer but more severe. Mortality in the high-transmission scenario is higher, proportional
to the number of clinical infections—2.63% on average compared to 1.67% in the moderate
transmission scenario and 1.1% in the low-transmission scenario. These simulations suggest
that the public health planning and response for future variants may differ based on their
epidemiology. More transmissible variants are likely to have fewer, larger outbreaks that
may overwhelm the healthcare system capacity, but show few cases outside of the season;
less transmissible variants may require a year-round response, but with less severe outbreaks.

Distributing annual booster shots consistently lowers the rates of SARS-CoV-2 for all
simulations, but may independently induce a seasonal pattern in outbreaks. The ability
of booster doses to successfully limit SARS-CoV-2 outbreaks is dependent on the timing
of their distribution and whether or not seasonal forcing of transmission is included in the
model. In the absence of seasonal forcing of transmission and contact (figures 2.5 and
2.6), distributing booster doses earlier in the year is most effective at reducing the size of
outbreaks: assuming a 75% update of vaccinations distributed annually between January and
May, about 1.68−2.35 clinical infections occur per capita (average outbreak size ranging from
4.25% to 6.13% of the population); when distributed after July 1st, this rises to 4.34− 4.76
clinical infections per capita (average outbreak size ranging from 13.21% to 15.61%). In a
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Figure 2.3: Summary of SARS-CoV-2 clinical infections, deaths, number of outbreaks, and average
outbreak size for different values of β0, the average baseline transmission probability, in the absence
of seasonal forcing, isolation, or vaccine distribution. Simulations are run for 10 years in replicates
of 10. Approximate corresponding values of R0 are: β0 = 0.01, R0 ≈ 1.3; β0 = 0.025, R0 ≈ 3.4;
β0 = 0.05, R0 ≈ 6.5.
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Figure 2.4: 5-year trajectory of SARS-CoV-2 clinical infections for different values of β0, the average
baseline transmission probability, averaged across 10 simulations each. When β0 is high, there
are generally 1-2 large outbreaks per year; when lower, outbreaks are smaller and more frequent.
Approximate corresponding values of R0 are: β0 = 0.01, R0 ≈ 1.3; β0 = 0.025, R0 ≈ 3.4; β0 = 0.05,
R0 ≈ 6.5.
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high-vaccine uptake scenario (90% uptake, shown in the model supplement), the overall rates
of SARS-CoV-2 are lower only when vaccines are distributed in the first half of the year; when
vaccines distributed in the latter half of the year, the total cases and severity of outbreaks
is comparable to the regular-uptake scenario. Outbreaks are observed to generally occur
around 6 months—which is also the duration of full immunity after vaccination—after the
date that booster doses are made available, with the strongest seasonal patterns observed
with June-September distribution inducing a strong wintertime and October - December
inducing an early spring outbreak. Indeed, as observed in figure 2.6, the peak out the
outbreak appears to be ‘shifted’ approximately 6 months after the date of booster dose
distribution, the duration of of full immunity after vaccination. This phenomenon—whereby
January-May boosters nearly eliminate annual outbreaks in the steady state but later-year
boosters fail to do so, albeit shift the outbreak timing—is likely driven by the initial outbreak
(set to occur in January of 2021 to capture the large winter outbreak in the United States),
which establishes the clock for a sufficient number of individuals with waned immunity to
appear for an outbreak to occur predictably after. These simulations indicate that, in the
absence of seasonality, the timing of booster dose distribution may have the power to govern
the timing of the primary annual outbreak.

We also tested the distribution of vaccines in the presence of seasonal forcing of the
transmission parameters (β1 = 0.5), shown in figure 2.7 and 2.8. Unlike when distributing
booster doses in the absence of seasonal forcing, in which the timing of booster dose distri-
bution shifts the timing of the main outbreak, in these simulations with seasonal forcing a
substantial wintertime outbreak occurs at nearly the same time every year. However, the
size of this outbreak, as well as the presence of secondary outbreaks throughout the year,
depends on the timing of booster doses. When boosters are distributed in the first half of the
year—January 1st through May 1st—a moderate-sized fall outbreak occurs. When boosters
are distributed by July 1st, this fall outbreak nearly doubles in size; a September 1st dis-
tribution day results in a less predictable situation, with multiple (2-3) smaller outbreaks
throughout the year. However, distributing doses too late (November 1st) results in a large
summertime outbreak, despite the relatively lowered transmission rate during the summer
months. These dynamics are similar when seasonal forcing is present in the transmission
parameters and the contact rate, shown in the supplementary material. Overall, simulations
where vaccines are distributed between January and June resulted in 2.76− 3.36 infections
per capita—1-1.5 fewer than when vaccines are distributed in the highest months of July
or December (4.82, 5.19 respectively). However, distributing booster doses in September or
October results in fewer infections, comparable with simulations when vaccines distributed
earlier in the year, and smaller outbreaks (8.69% − 9.59% of the population infected on
average per outbreak).

As a sensitivity test, we varied the duration of immunity after infection and vaccination,
and find that this parameter has a substantial effect on the timing and size of outbreaks.
As this parameter governs the rate and which susceptibles are effectively re-introduced into
the population, our results are onsistent with Baker, Peckham, and Seixas 2020. Recurrent
outbreaks of SARS-CoV-2 are driven by the seasonality included in the model but also by
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Figure 2.5: Summary of simulations by day of booster dose distribution, varied as the first of each
month, in the absence of seasonal forcing of the transmission parameter β. Simulations are run for
10 years in replicates of 10.
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Figure 2.6: 5-year trajectory of simulations by day of booster dose distribution, in the absence of
seasonal forcing, for selected distribution days: Jan 1st (day 1), May 1st (day 121), July 1st (day
182), Sept 1st (day 244), and Nov 1st (day 305), averaged across 10 replications. When doses
are distributed earlier in the year—Jan 1st-May 1st—the major outbreaks are largely averted, but
persist when doses are distributed too late in the year.
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Figure 2.7: Summary of simulations by day of booster dose distribution, varied as the first of each
month, in the presence of seasonal forcing of the transmission parameter β. Simulations are run for
10 years in replicates of 10.
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Figure 2.8: 5-year trajectory of simulations by day of booster dose distribution, for selected distri-
bution days: Jan 1st (day 1), May 1st (day 121), July 1st (day 182), Sept 1st (day 244), and Nov
1st (day 305), in the presence of seasonal forcing of the transmission parameter β, averaged across
10 replications.

the effect of waning natural and vaccine-derived immunity, such that even models without
seasonal forcing and booster dose distribution may exhibit predictable outbreaks (figure
2.9). Rather than these outbreaks occurring at specific times throughout the year, they
occur a certain amount of time after the previous outbreak—generally equal to the duration
of complete immunity. At 6 month immunity, generally two outbreaks occur per year,
spaced slightly more than 6 months apart, with periodic secondary outbreaks between; at
one year of full immunity, large outbreaks occur slightly more than one year apart, without
secondary outbreaks. These simulations indicate that preparations for outbreaks should
include evaluation of the previous major outbreak.

We also explored the possibility of isolation as a means to control SARS-CoV-2, despite
it being unlikely to be used as a general control strategy in the future. Isolation remains an
effective way to limit the spread of SARS-CoV-2 in the steady state, however only the higher
degrees of isolation— reducing non-household contacts among clinically infectious individuals
to less than 50% of their normal amounts as compared to a ‘business as usual’ scenario— has
a substantial effect on transmission dynamics (figure 2.10). At 50% isolation, an average of
2.72 clinical infections occur per capita, down from 4.84 when clinically infectious nodes have
75% of their normal random contacts and 6.22 in the complete absence of isolation. With
50% isolation, the outbreak size drops dramatically to 6.05% of the population infected
during an average of 40.8 outbreaks, down from from 18.7% of population infected in an
average of 32.2 outbreaks in the absence of isolation. More extreme isolation reduces the
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Figure 2.9: Trajectory of SARS-CoV-2 clinical infections with varied duration of complete immunity
after infection and vaccination, illustrating how outbreak timing can be affected by immunity. Top:
full immunity lasting for 180 days (6 months) and 270 days (9 months); bottom: full immunity
lasting for 360 days (12 months) and 540 days (18 months). Averaged across 10 replications.

44



severity of outbreaks even further: at 25% of normal contacts, clinical infections average one
per capita; with perfect isolation, clinical infections are less than 0.5 per capita.

2.4 Discussion
Across all simulations, we observed frequent and predictable SARS-CoV-2 outbreaks over a
10-year period, even with the annual distribution of booster doses as the primary disease-
averting intervention. Depending on the epidemiology of the pathogen—namely, should
SARS-CoV-2 exhibit seasonality in transmission probability and contact—outbreaks may
occur at predictable times of the year, and distribution of booster doses may be able to
mitigate the worst of seasonal outbreaks. Our results are consistent with Baker et al. 2020,
who find that outbreak cycles are primarily determined by the levels of susceptibility in the
population, although seasonality is an important moderator in outbreak dynamics. Different
vaccination campaigns may be needed in areas that exhibit stronger transmission seasonality.
We find that distributing booster doses in the first half of the year—January through May—
may be an effective strategy at limiting recurrent outbreaks depending on the seasonality
exhibited by the pathogen. We find that in simulations without seasonal forcing, distributing
booster doses in the first half of the year is most effective at limiting outbreaks; however,
with the inclusion of seasonal forcing of transmission and contact, distributing booster doses
in September or October may limit the average outbreak size the most. In these simulations,
distributing booster doses in the late fall ‘shifts’ the outbreak to the summer, when trans-
missibility is lower. Since influenza vaccines are distributed in the fall, including booster
doses for SARS-CoV-2 at the same time may be easiest in implementation, but less success-
ful than Springtime distribution in limiting outbreaks should SARS-CoV-2 fail to exhibit
transmission seasonality.

In addition to illustrating how vaccination interventions can avert the burden of illness
and death due to SARS-CoV-2, our simulations further understanding of how to prepare
for future SARS-CoV-2 outbreaks. Although distributing booster doses in early fall—like
annual vaccinations for influenza—avoids a large wintertime outbreak in a seasonally forced
environment, multiple smaller outbreaks may occur throughout the year. This may be
preferable to avoid exceeding the treatment capacity of the health system. However, this
strategy may not be effective in a less seasonally-variable climate, where booster dose timing
merely shifts the main outbreak to later in the year after immunity wanes. Overall, we
generally observe variance in mortality proportional to the number of clinical infections
that occur in the simulations, indicating both that the most effective strategies for limiting
clinical infections also limit deaths. Although we focus on the number of infections as the
primary outcome, reducing the number of deaths due to SARS-CoV-2 may be possible with
the interventional strategies outlined here.

While agent-based models have been used in a variety of applications for COVID-19, ours
represents one of the first to examine long-term dynamics using real population contact data.
Our results hint at a rather bleak outlook for the future of SARS-CoV-2: that outbreaks
are extremely likely to continue given that natural and vaccine-derived immunity wanes
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Figure 2.10: Summary of SARS-CoV-2 clinical infections, deaths, number of outbreaks, and average
outbreak size for different levels of isolation, in the absence of seasonal forcing or vaccine distribution.
Isolation multiplier is a factor used to scale a clinically infectious node’s random, non-household
contacts; 1.0 indicates business as usual and 0 indicates perfect isolation.
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over time. However, annual booster doses—especially when timed properly—and isolation
of infectious cases may be effective control strategies. The investigation above tells us that
outbreaks can be expected to occur more frequently than annually, and the epidemiology
of the pathogen—namely, the base transmission probability and the duration of immunity
after infection and vaccination— determines the frequency and severity of outbreaks more
than vaccination timing and within a reasonable range of effectiveness. As our approach to
SARS-CoV-2 shifts from eradication to management, the strategies presented here show how
we can time the distribution of doses to minimize strain on the healthcare system and limit
chronic complications from SARS-CoV-2 infections.

Our model has a number of shortcomings that limit its generalizability. First, we are
limited by computing resources to a population of 1000 households (approximately 3, 200
individuals). During development, we found that using too few households resulted in sim-
ulations that were highly unstable; with a larger population, simulation results were more
consistent between runs but took much longer to complete. As a result, we chose the num-
ber of households to balance numerical stability while maintaining a reasonable run time of
approximately 4 minutes per simulation. Larger populations may exhibit different dynamics
as the spread of infection may take longer; as such, it is not known presently if this cho-
sen population size is representative of a larger population or is limited in generalizability
to smaller communities. As well, like in Chapter 1, we borrow contact patterns for the
youngest age group from the POLYMOD UK survey (Mossong et al. 2008), which may not
be representative of that age group in the US during the COVID-19 pandemic. However,
since our application here is in consideration of the long-term patterns of SARS-CoV-2,’ we
believe that these contacts represent a return to ‘business as usual’ for school children.

A key feature of our model is in the random network generation, that produces daily draws
of random contacts according to the network configuration model parameterized with degree
and duration from the BICS survey. Like any random network generation, the network
structure of contacts produced by this model may affect transmission dynamics. Future
work should draw inspiration from the COVASIM agent based model (Kerr et al. 2021),
which allows for comparison of outbreak dynamics between simulations with Poisson random
networks, Hybrid networks, or SynthPops networks depending on the needs of the simulation
and data available. As well, we do not include any assortative mixing as emphasized by the
model used by Roubenoff, Feehan, and Mahmud 2023 or serial (repeat) contacts, instead
choosing a network generation function that maintains the degree of each node. Employment
contacts, like school contacts for children under the age of 18, provide a consistent set of
individuals having contact most days; inclusion of these such contacts may affect outbreak
in unpredictable ways. Future development of the model should include associativity by age
and employment status; however, doing so was outside of the scope of the present analysis.

Implementation Overview
The BICS ABM model is implemented in the C++ language and with use of the iGraph-C
library (Csárdi and Nepusz, T. 2006; Csárdi et al. 2023), and a Python 3.8 API. The core
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C++ implementation was chosen over other languages, like Python or R, to maximize speed.
Full implementation details are given in the supplementary material. Each simulation of
1000 households for 10 years completes in approximately 4 minutes on an Apple MacBook
Air M1, and the entire suite of simulations completes in approximately 8 hours. Replication
code is publicly available at https://github.com/eroubenoff/BICS_ABM.
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Chapter 3

Bayesian Spatiotemporal Projection of
Chagas Disease Incidence in Brazil

Abstract

Chagas Disease is a parasitic infection caused by the T. Cruzi parasite endemic to
Central and South America and transmitted through contact with Triatomine insects,
commonly known as “kissing bugs.” Although the symptoms of Acute Chagas Disease
(ACD) are nonspecific, untreated chronic infection can lead to heart disease, enlarged
esophagus and colon, and stroke. Chagas disease has become increasingly rare owing
to a series of public health interventions, including insect eradication campaigns in
Brazil through the 1980’s that considerably reduced the number of new acute cases.
However, hundreds of new acute cases still are diagnosed annually, primarily in the
states of Pará, Amapá, and Acre. Moreover, the population in areas of high Chagas
endemicity are changing: many areas are growing and becoming increasingly urban,
whereas others are decreasing in population. We estimate the Incidence Rate (IR) for
Acute Chagas disease over the period 2001-2019 in Brazil at the municipal level and
investigate the variation of these rates with climatic factors. These estimates are used to
project forward incidence of Acute Chagas Disease over the following decade 2020-2029.
Modeling ACD presents numerous methodological challenges since incidence is rare,
with extreme overdispersion of zero-case counts, and vectors exhibit a highly spatially-
and temporally-clustered pattern. We use a spatially- and temporally-autoregressive
small-area smoothing models to estimate the true latent risk in developing Acute Chagas
Disease. The Bayesian model presented here involves spatio-temporal smoothing via a
Zero-Inflated (Lambert 1992), Knorr-Held (2000)-Type spatio-temporal model with a
BYM2 (Morris, 2019) spatial convolution to predict smoothed incidence rates of Chagas
disease. As well, we include estimates of Brazil’s growing population and projected
bioclimate to evaluate how climate and population change may affect ACD rates. We
estimate that cases will continue to increase in the absence of control efforts, primarily
driven by a growing peri-urban population in regions of Chagas endemicity.
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3.1 Introduction
Chagas disease is a vector-borne parasitic infection in humans caused by the T. Cruzi par-
asite, and is transmitted to humans primarily through contact with infected Triatomine
insects commonly known as “kissing bugs” (WHO Expert Committee on the Control of Cha-
gas Disease 2002; Pérez-Molina and Molina 2018; Canals et al. 2017). Transmission of T.
Cruzi to humans can occur following bites from infected kissing bugs or contact with their
feces; human-human transmission can occur via blood transfusion and congenitally from
mothers to children via the vertical pathway. Over 80% of transmission occurs from human-
vector contact, with congenital transmission responsible for nearly all other new infections;
screening of blood donation has nearly eliminated all transmission from transfusions (World
Health Organization 2015). Acute symptoms of Chagas disease include fever, inflammation
of the infection site, eyelid edema, and swollen lymph nodes and tonsils. Acute symptoms
resolve spontaneously over 4-8 weeks and treatment during the acute phase with antipar-
asitic medication is highly effective at curing infection (Bern et al. 2007). However, since
acute symptoms are generally nonspecific and the burden of infection affects many commu-
nities lacking affordable access to high-quality healthcare, many acute cases go undiagnosed
and untreated. Untreated chronic Chagas infection can cause cardiomypoathy, megacolon,
stroke, and megaesophagus in 30-40% of patients in the 10-30 years following acute infection
(Pérez-Molina and Molina 2018; Sosa-Estani and Segura 2015). Although Chagas is fairly
rare—acute infection incidence is on the order of a few hundred infections annually in Brazil
for a population of around 200 million—it is this possibility of chronic complications, espe-
cially cardiomyopathy, that makes early identification and control of Chagas an important
public health concern.

Chagas disease is also known as a disease of poverty affecting mostly poor and indigenous
rural communities in South America (Fernández, Gaspe, and Gürtler 2019; Sosa-Estani
and Segura 2015; Dias 1987; Tarleton et al. 2007). Many people are at increased risk of
infection due to the use of certain residential construction materials hospitable to Triatomine
infestation, especially untreated wood. People working certain jobs that entail contact with
Triatomine habitats—including forestry or agriculture—may be at increased risk of exposure
during employment. A number of non-pharmaceutical interventions can alleviate much of
the probability of contact, including insecticide usage, bed netting, and removal of certain
residential construction materials known to be Triatomine habitats. Intervention campaigns
through the 1980’s focused directly on the class dynamics of Chagas risk by implementing
control efforts across the sociodemographic ladder (Dias 1987), yet many persisting Chagas
hotspots occur in poor and rural parts of Brazil. Controlling the incidence of Chagas remains
an important issue of equity.

Since then, Public health efforts to eliminate new Chagas infections and pharmaceutical
developments to treat latent chronic infections and complications have been successful at
reducing the burden of Chagas disease in Brazil (World Health Organization 2015; Sosa-
Estani and Segura 2015). The two primary methods of transmission—human-vector contact,
either through bites or contact with vector feces, and the vertical pathway from mothers to
infants—have have required vastly different interventions, both with success. Early studies
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dating to the late 1940s found that continuous use of residential insecticides was highly
effective at eliminating transmission, indicating that residential contact with Triatomines
may have been responsible for the majority of transmission risk (Dias 1987). Eradication
programs by Brazil’s SUCAM (Superintendencia de Campanhas de Saude Publica) in the
1980s involved identifying areas of risk by sampling insects in homes and generating maps
of high risk locations. All homes within more than 700 high-risk municipalities, regardless
of known infestation, were sprayed with insecticide every 3-6 months until under 5% of
homes were found to be infested with any insects and no Triatomines were found in any
homes. Overall, more than 5 million homes were sprayed with insecticide, resulting in a
73% reduction in the number of infested homes by 1986 (ibid.) and the total elimination
of transmission by T. infestans—previously the vector responsible for most transmission—
resulting in a 94% reduction in new acute cases (Gurgel-Gonçalves et al. 2012).

Congenitally-transmitted Chagas disease via the vertical pathway is less frequent than
transmission via contact with Triatomines (World Health Organization 2015). Screening for
Chagas Disease among potential mothers living in high-risk areas and initiating treatment in
advance of pregnancy is ideal for reducing the probability of successful vertical transmission,
although commencing treatment after pregnancy appears to be well tolerated by both the
mother and the fetus (Cevallos and Hernández 2014). While it is not currently possible to
entirely eliminate vertical transmission, treatment of infants with suspected Chagas infection
within the first year of life is very successful at eliminating the disease from children (Carlier
et al. 2011; Moya, Basso, and Moretti 2005). Transmission may occur at any time during
pregnancy, but is theorized to be more likely to occur during the second and third trimesters
(ibid). Most congenital transmission occurs from mothers who are in the chronic phase of
disease, however vertical transmission has been documented from mothers who are acutely
infected at conception or become infected during the course of pregnancy. It has been
proposed that the level of parasitemia of the mother may affect the probability of vertical
transmission and the severity of infection at birth (Carlier et al. 2011).

Antiparasitic medications benzniazole and nifurtimox have proven efficacy against Chagas
disease, and the former is usually recommended for treatment (Bern et al. 2007). If treated
in the acute phase, complete parasitological cure can occur in 60-85% of vector-transmitted
infections and more than 90% of congenital infections when treatment is administered within
the first year of life (Altcheh et al. 2011; Carlier et al. 2011; Cevallos and Hernández 2014;
Moya, Basso, and Moretti 2005). If Chagas disease is left untreated until the chronic phase,
treatment is less effective— only 60% of participants achieved negative serology within 3-4
years. Even if not resulting in a complete cure, treatment may slow the development of
Chagas cardiomyopathy and other potentially lethal complications, and treatment is recom-
mended for all patients presenting with positive serology (ibid.).

Despite progress towards elimination, there are still an estimated 1-4.6 million people
currently infected with chronic Chagas disease and approximately 6,000 deaths per year
(Simões et al. 2018). Pérez-Molina and Molina 2018 estimate that in 2010, over 70 million
people were at risk of contracting Chagas disease across 21 countries in Latin America, and
38,593 new infections were reported that year. This count of acute infections down consider-
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ably from 55,585 in 2005 and from more than 700,000 between 1980-1985. Most individuals
living with Chagas disease are located in three countries—Argentina, Brazil, and Mexico—
and the most new infections were reported in Bolivia (World Health Organization 2015).
While preventative interventions have brought the new infection rate down considerably in
Brazil, the rate of decrease has not necessarily been equal across the country. The WHO
estimates that as of 2015, the incidence of new Chagas infections in Brazil via human-vector
contact was 0.084 per 100,000 population and via congential transmission 0.020 per 100 live
births (ibid.). Our analysis aides in identifying areas where future interventions can further
alleviate risk of the disease.

The distribution of triatomines is a highly spatial process within endemic areas, and as a
result risk of contracting Chagas disease is a complex interaction of local vector population,
local human population, and interaction between the two. Despite the elimination of T.
infestans, previously the vector responsible for the most new cases of Chagas Disease, 62
known species of Triatomines in Brazil are responsible for transmission; some, including
Panstrongylus geniculatus and P. megistus, are widespread over the country, whereas others
are more localized spatially (Gurgel-Gonçalves et al. 2012). Certain biomes, including the
Cerrado tropical savannah in the central region and Caatinga shrub forest in the northeast,
have a higher diversity of species. Not all species of Triatomines are equally likely to transmit
Chagas disease to humans; for example, while the most epidemiologically relevant species
may be P. megistus, which is common in domiciles and a frequent carrier of T. cruzi, the
behavior and habitat of T. sordida is more likely to result in contact from agricultural
activities but unlikely to result in residential contact. Gurgel-Gonçalves et al. 2012 remark
that nearly all areas of Brazil have some risk of Chagas disease, but certain regions, especially
the Cerrado and Caatinga, present more risk.

Climate change presents an ambiguous threat to incidence of Chagas disease. Tamayo
et al. 2018 find that Triatomine vectors of Chagas disease may exhibit increased fecundity
and egg viability in warmer temperatures. T. Cruzi as well may exhibit increased viability
at warmer temperatures, suggesting that incidence of Chagas disease will likely increase
with climate change. Medone et al. 2015 find that the changing climate will likely create
more geographic areas that are suitable habitats for Chagas vectors correlates with the
force of infection of acute Chagas disease in Argentina and Venezuela. They find that
warmer temperatures are unfavorable to vectors; although current Chagas hotspots may see
decreases with increased temperatures, the overall geographic distribution of vectors may
shift as previously too-cold areas warm.

Since Chagas disease is primarily found in rural areas in Brazil, multi-decadal trends in
the urban and rural population may be a mediator in the future trajectory and control of
Chagas disease (Delazeri, Da Cunha, and Oliveira 2022; Perz 2000; Randell and VanWey
2014). Brazil has become increasingly urbanized since the 1960s; internal migrants from
rural, Chagas-endemic areas have resulted in identification of both acute and chronic cases
of Chagas disease in places where Chagas is not historically found (Coura and Borges-Pereira
2010; Martins-Melo et al. 2014; Moncayo and Silveira 2009). Like all urban areas in Brazil,
larger municipalities in Chagas-endemic areas have been increasing in size faster than the
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nearby rural areas, many of which have even seen population declines. The identification
and control strategies of the 1980s that targeted known areas of Chagas endemicity may
not be as effective for identifying latently infected internal migrants who have moved to
the larger cities ourside of endemic strategies. As well, declines in the rural population are
fundamentally changing the spatial distribution of new cases of Chagas disease. Although
the rural population is declining overall, declines are not uniform across all areas of Chagas
endemicity, and projections of future cases must include population change as well.

To identify areas of persisting and future Chagas endemicity, we borrow Bayesian disease
mapping methods for modeling higher-incident spatially-clustered diseases, such as cancer
(Best, Richardson, and Thomson 2005; Napier et al. 2019; Riebler et al. 2016; Wakefield
2007; Wikle, Berliner, and Cressie, Noel 1998; Knorr-Held 2000; Knorr-Held and Best 2001)
and adapt these methods to suit the highly rare nature of Chagas disease. Since the rates
of ACD are low—on the order of hundreds of cases annually for a population of over 200
million—and present in a highly clustered pattern in certain regions of Brazil, a specialized
modeling approach is needed to highlight the spatio-temporal structure of Chagas disease.
We use a Knorr-Held (2000) spatio-temporal model adapted with a rare count, zero-inflated
model (Lambert 1992; Lee et al. 2016; Rathbun and Fei 2006; Ver Hoef and Jansen 2007)
and include climate covariates and population growth to analyze how patterns of Chagas
disease might play out for the ensuing decade. We find that with an increasing population
and climate trends, it is likely that cases of Chagas will continue to increase in the absence
of additional intervention, potentially as high as doubling in incidence.

3.2 Methods

3.2.1 Data

Counts of Acute Chagas Disease (ACD), aggregated by municipality 1 of residence and year
between 2001 and 2019, are collected by the Ministry of Health’s Departamento de Infor-
mática do Sistema Único de Saúde (DATASUS; Department of Informatics of the Unified
Health System) and retrieved from the agency’s TABNET database (Ministério da Saúde,
Brasil 2023). We chose to use municipalities—the finest level of geographic aggregation
available—in order to analyze spatial variability that may be lost at larger levels of geo-
graphic aggregation, like state or region. Over the period 2001-2019, 5568 cases of Acute
Chagas Disease were reported among residents of 826 municipalities, with the highest counts
in the northern states2 of Pará and Amapá. The municipality-specific total counts of Acute
Chagas Disease reports are displayed in figure 3.1. Official population estimates at the mu-
nicipality level are taken from Brazil Instituto Brasileiro de Geografia e Estatística (IBGE)’s
annual population estimates for 2001-2006, 2008-2009, and 2011-2019 and the 2010 census

1Município is translated to English as municipality, but are functionally closer to US Counties by popu-
lation size, geographic size, and governance.

2Brazil has 27 Federative Units (unidades federativas, abbreviated as UFs), consisting of 26 states and
one federal district (Brasília). Here, we refer to all 27 UFs as states.
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Figure 3.1: Counts of Chagas disease between 2001 and 2019 at the municipality level. Of the 5568
municipalities in Brazil, 4472 municipalities reported no cases of ACD during this period.

counts (Instituto Brasileiro de Geografia e Estatística 2023). No data are present for 2007;
population for this year is taken as the linear interpolation between 2006 and 2008. Climate
data are retrieved from the European Union’s Copernicus Climate Change Service (C3S) Cli-
mate Data Store (CDS) Global Bioclimatic Indicators from 1950-2100 Derived from Climate
Projections (Wouters et al. 2021), which contains a suite of 19 bioclimatic variables averaged
annually. These variables are the same as those in the WorldClim (Fick and Hijmans 2017)
dataset3, and are listed in supplementary table C.2; a selection are displayed in figures 3.2
and 3.3. Broadly, we see in figure 3.2 that most reports of ACD occur in areas that are
warmer (annual mean temp > 25◦C) and wetter (annual precipitation above 2000 mm),
although many cases do occur in drier climates. In Pará and Amapá, the UFs where most
cases of ACD occur, there is a slight trend towards warmer and wetter weather, although
substantial year-to-year variations present (figure 3.3). Projections are performed using the
GFDL-ESM2M (NOAA, USA) algorithm.

3.2.2 Conditionally AutoRegressive (CAR) statistical models for
disease incidence data

Many classes of geospatial models for areal data (polygons, like municipíos) exist, a few of
which are discussed here. Distributional models used in Bayesian modeling can be divided
into two groups: Conditionally AutoRegressive (CAR) models, that describe probability
for observations as conditional on their neighbors, and Simultaneous AutoRegressive (SAR)

3http://www.worldclim.org/
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Figure 3.2: Counts of Acute Chagas Disease (ACD) by mean annual temperature and total precipi-
tation, two of the 19 bioclimatic variables used in the analysis, displayed over the period 2001-2019.
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Figure 3.3: Mean annual temperature and total precipitation, two of the 19 bioclimatic variables
used in the analysis, displayed over the period 2001-2030 for the two states with the highest incidence
of ACD, Pará (PA) and Amapá (AP).
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models, that use a matrix of adjacency weights to adjust for spatial dependence. At a high
level, these two models differ in the scale of spatial dependence: the CAR model involves local
smoothing, where the SAR model involves global smoothing. Here, we use a CAR model
in our application to rates of Chagas disease, which is a highly local process found only in
certain relatively isolated regions of Brazil and where global correlative structure is likely
to over-smooth small-area variation. More commentary is provided in the supplementary
material. As well, CAR models have a computational advantage over SAR models: they do
not require matrix inversion, which can be computationally expensive or impossible when
modeling thousands of small-area samples4.

The simplest implementation of the CAR model is the Intrinsically AutoRegressive (IAR
or ICAR) model, also called the BYM model after authors Besag, York, and Mollie (1991).
For a general Gaussian spatial process ϕ, the CAR model is conditionally specified for
each geographical unit as a normal distribution with expectation equal to the average of its
neighbors and variance τ :

ϕi|ϕj∼i ∼ N

(
1

ni

∑
j∼i

ϕj,
τ 2

ni

)
(3.1)

Where ϕi is an observation at the ith spatial unit, ϕj∼i indicates the set of observations
among the neighbors j of i, and ni is the number of neighbors of i. Throughout, we refer to
equation 3.1 as the CAR and IAR models interchangably. The IAR distribution can also be
extended to Poisson, Binomial, and Logistic distributions as well (Besag, York, and Mollie,
1991; Haining, 2004).

To utilize the CAR distribution in a disease modeling context, Banerjee, Carlin, and
Gelfand (2015) recommend using a pair of random effects for the standardized incidence
rates of disease:

Yi|ψi
iid∼, τPoisson(Popieψi) (3.2)

ψi = x′
iβ + θi + ϕi (3.3)

where x and β are vectors of spatially-varying covariates, θi captures heterogeneity with
an iid normal prior N(0, 1/τh) and ϕi captures spatial clustering with prior CAR(τc) as
in equation 3.1. Here, parameters τh and τc represent precision. Dividing extra-Poisson
variability into ‘heterogeneity’ and ‘clustering’ poses a problem: should τh and τc be too large,
the model will be unable to identify the two random effects. Indeed, priors on variance must
be carefully chosen in order to allow for identifiability of θ and ϕ, which poses an existential
question as to the utility of these models in the first place. Instead, other specifications
including Leroux, Lei, and Breslow 2000 and the very closely related BYM2 model (Riebler
et al. 2016) as implemented by Morris et al. 2019, which introduce a convolution of the
spatial and aspatial error terms which allows for identifiability. The BYM2 model is a similar

4Related to the SAR models is the field of Spatial Econometrics (see Anselin 2003 for an overview).
Spatial Econometrics uses the SAR model in a maximum likelihood regression framework. Many related
specifications form the suite of Spatial Econometric models, each with their own implication about spatial
correlative structure and dependence (Golgher and Voss 2016)
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Poisson-GLM framework to the original BYM model, but replacing the pair of random effects
with a convolved error term:

ϕ+ θ =
(
(
√
ρ/s)ϕ∗ + (

√
1− ρ)θ∗

)
σ (3.4)

where ρ ∈ [0, 1] represents the proportion of variance that comes from the spatial clustering
random effect and how much comes from the heterogeneity random effect; ϕ∗ is the ICAR
distribution; θ∗ ∼ N(0, n) where n is the number of connected subgraphs (in our application
n = 1), s is the scaling factor such that V ar(ϕ) ≈ 1 (Riebler et al. 2016); and σ > 0 is the
overall standard deviation for the combined error terms (Morris et al. 20195). The BYM2
model improves upon the original form by allowing for independent definitions of the two
prior distributions without involving ρ in the sampling process as is done for the proper CAR
model. In doing so, this model involves the identification of only a single set of random effects
rather than a pair of independent random effects, which improves identification by separating
the dependency structure. Further, this avoids the need for informative priors in the BYM
model as emphasized by Banerjee, Carlin, and Gelfand 2015. As well, in this context ρ
has an informative interpretation, although it still does not map onto other indicators like
Moran’s I. Morris et al. report that Stan’s Hamiltonian Monte Carlo (HMC) and No U-Turn
Sampler (NUTS) provide faster and more precise inference with the BYM2 model than other
samplers like WINBUGS and JAGS. The related Leroux (2000) model, which is similar to
the BYM2 model but specifies the neighborhood matrix differently, has been shown through
simulation to be superior to the original BYM model, and is employed by many in disease
mapping studies (Lee, 2011).

Extending the BYM model to include temporal effects

We follow the Knorr-Held (Knorr-Held 2000) framework for Bayesian spatio-temporal mod-
eling. The Knorr-Held model adds time structure in a way that mirrors the BYM model
(3.3) by adding temporally autoregressive effects α, temporal random effects γ, and a spatio-
temporal interaction term δ:

Yi|ψi
iid∼ Poisson(Eie

ψi)

ψi = µ+ γt + αt + θi + ϕi + δit (3.5)

Where µ is the overall intercept, γ is an unstructured temporal component distributed
N(0, σγ), α is a structured temporal component that can be specified as an AR(1) or AR(2)
process, and δ is a spatio-temporal interaction term. ϕ and θ are as described above. Effec-
tively, the Knorr-Held model decomposes the overall pattern into a global temporal trend,

5In their 2019 paper, Morris et al use a logit-normal prior for ρ, which has mass around either extreme,
indicating that the value of ρ should be close to 0 or 1 and is less likely to be in the middle. However, in a
2018 case study predating the publication, the same authors use a Beta(1/2, 1/2) prior, which has a similar
U-shape.
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a global spatial trend, and an interaction term between the two, in a procedure similar to
ANOVA. Prior choice of δ is not straightforward, and requires careful thought about the
relationship of space and time in the model. Knorr-Held (2000) lays out four types of pri-
ors, depending on the hypothesized interaction of the spatial and temporal dimensions: (I)
where all interaction terms are a priori independent; (II) where interactions are autoregres-
sive in time but independent in space; (III) where interactions are autoregressive in space
but independent in time; and (IV) where interactions are totally dependent in both space
and time. Further description of these interaction types is given in appendix section C.4.
Knorr-Held’s (2000) evaluation includes specification of the same disease model with each of
the four interaction types, and evaluation of the resultant model by DIC.

Zero-Inflated Poisson models for rare counts

Since Chagas disease is very rare, most entries in our matrix of counts by municipality and
year are zero. While a low-rate Poisson may be able to capture this overdispersion of zeros, a
more appropriate specification involves the zero-inflated Poisson model (ZIP; Lambert 1992).
The zero-inflated Poisson is a mixture model that includes a Bernoulli process generating
zeros and a Poisson process that generates counts (but may also generate some zeros). In
this way, the zero counts in the data are effectively split into ‘structural’ zeros, which are
generated from the presence or absence of the process of interest, and ‘sampling’ zeros, which
are true random zero-counts in the presence of the Poisson process. Lambert (1992) note
that in simulation, Poisson-only models are sufficient for a dataset that contains at most 68%
zeros and 3.4% counts greater than 9, and that the ZIP model may be justified on datasets
with higher rates of zeros. In our application to Chagas disease, over 99% of municipality-
years have a zero count; nonzero entries have an average of 1.65 (95% CI: 1-7) infections.
The ZIP distribution is parameterized by Bernoulli probability π and Poisson rate λ:

P (yi|π, λ) =

{
π + (1− π) · Poisson(0|λ) if yi = 0

(1− π) · Poisson(yn|λ) if yi > 0
(3.6)

The ZIP distribution is appropriate in a GLM framework, where parameters π and λ are
specific to each observation yi and are estimated with logit and log link functions, respec-
tively. When writing the probability statement, we can also take advantage of the fact that
Poisson(0|λ) = λ0e−λ/0! simplifies to e−λ, clarifying the condition where y = 0:

P (yi = 0) = πi + (1− πi)e
−λi (3.7)

P (yi = k) = (1− πi)e
−λiλki /k! (3.8)

In turn, the central moments of the ZIP distribution are mean (1− π)λ and variance λ(1−
π)(1 + πλ) (Lambert, 1992).

The ZIP distribution then prompts an additional modeling decision. When used in a
GLM framework, covariates can be added to both the Poisson process and the Bernoulli
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process. Prior studies have done both: Agarwal, Gelfand, and Citron-Pousty 2002 include a
spatially-autocorrelated Poisson process, Rathbun and Fei 2006 include a spatially-dependent
Bernoulli process, and Ver Hoef and Jansen 2007 include spatial (and temporal) autocor-
relation in both parts. For our application to Chagas disease, it is not clear if the spatial
process should be included in either the Bernoulli or Poisson process, or in both parts. Is
the probability of any appearance of Chagas disease spatially correlated? Undoubtedly, as
the primary determinant in risk of Chagas disease is the highly localized distribution of T.
Cruzi. However, conditional on the presence of T. Cruzi, it is less clear a priori if the risk
of contracting Chagas also a spatially dependent process.

3.2.3 Model: Estimating rates of ACD with zero-inflation and spa-
tial and temporal autoregression

Here, we integrate the components discussed above into a single Bayesian model that allows
for spatial and temporal autoregression as well as overdispersion of zeros. Specifically, we use
a ZIP likelihood within a spatio-temporal decomposition framework like the one proposed
by Knorr-Held (2000). As well, we innovate by introducing the BYM2-type convolution of
the unstructured error and spatially-structured heterogeneity to improve identification on
the model posed by Knorr-Held (2000). We encountered convergence issues when including
the spatial convolution in the Poisson proccess; as a result; this process is defined in the
Bernoulli parameters only. In the Poisson process, we include a grand mean, temporally
AR(1) time trend, and a spatial fixed effect with a Knorr-Held Type 1 interaction. We chose
the probabilistic programming language and software suite Stan to estimate the yearly inci-
dence risk of Chagas disease across all municipalities in Brazil between 2000 and 2019. The
model is evaluated in Stan 2.20 using the cmdstanr (Stan Development Team 2023) inter-
face for the R programming language, version 4.20. Stan was chosen for its speed relative to
other probabilistic programming languages, like GeoBUGS (Lunn, Arnold, and Spiegelhalter
2004) or JAGS (Plummer 2003), especially for its ability to evaluate vectorized probability
statements. Although Stan lacks the built-in support for spatial models present in BUGS,
the computational gains from vectorization and adaptive sampling allow for quick evaluation
and convergence of complicated posteriors, with full implementation details elaborated in the
supplementary material. To sample Bayesian posteriors, by default Stan uses the No U-Turn
Sampler (NUTS), a variant of Hamiltonian Monte Carlo, in contrast to Gibbs sampling used
by BUGS and JAGS.

We run two formulations of the model: first, a non-covariate smoothing model used
purely to recover latent rates of Chagas disease unadjusted for other causal factors besides
population at risk; and second, a model that includes climatological covariates. The two
models differ only in the inclusion of the set of covariates.

Beginning with ZIP-distributed likelihood:

Yti|πti, λti ∼ ZIP (πti, Popti · λti) (3.9)

60



Where indices t and i refer to year t between 2000 and 2018 and municipality i between 1 and
5561, the number of municipalities in Brazil. Assuming a logit link for Bernoulli parameter
π and Poisson parameter λ, we take the follow GLM equations for π and λ:

logit−1(πti) = µπ + απ,t + βπxt,i +
(
(
√
ρπ/s)ϕπ,i + (

√
1− ρπ)θπ,i

)
σπ + δπ,ti (3.10)

log−1(λti) = µλ + αλ,t + βλxt,i + θλ,iσλ + δλ,ti (3.11)

Where µ indicates the global mean with uninformative, U(−20, 20) prior; α is an AR(1)
structured time effect; ϕ is a structured spatial process with an IAR(1) prior; θ is an un-
structured spatial error with an independent N(0, 1) prior; ρ indicates the proportion of
variance that comes from the spatially structured process, with prior Beta(1/2, 1/2) (Mitzi
Morris 2018); σ is the variance of the convolved spatial term; and δ is a spatio-temporal
interaction with a normal prior at mean 0. Finally, β.xt,i indicates a set of coefficients and
covariates, which are absent in the main smoothing model but include a set of environmental
covariates in the climate model. For simplicity, the effect of these covariates is assumed to be
constant throughout space and time. We follow Knorr-Held’s recommendation to drop the
unstructured temporal component γ to improve identification of the model and the param-
eters in equation 3.10 are otherwise same as described in equation 3.5. Finally, we specify
uninformative Gamma-distributed hyperpriors for variance as recommended by Knorr-Held
2000:

σ, σα, σu, σδ ∼ Gamma(2, 1) (3.12)

The quantities of interest include the expected number of acute Chagas Disease cases in
year t in municipality i, which is given by:

E[Yt,i] = (1− πt,i)λt,i · Popt,i (3.13)

And the incidence rate:
IRt,i =

E[Yt,i]

Popt,i
= (1− πt,i)λt,i (3.14)

Altogether, this model was evaluated in Stan using the CmdStanR interface for the R-
language. Four chains were in parallel run for 2000 warmup iterations and 1000 posterior
draws, and evaluated in approximately 12 hours on an Apple MacbookAir M1. The corre-
sponding Stan code is included in the supplementary material.

Climate Model

To investigate the relationship of climate with Chagas incidence, we include covariates to
the model related to temperature, precipitation, and vegetation. Determining covariates
relevant to the incidence of Chagas disease is not straightforward as the climate processes
that affect Triatomines and the T. Cruzi parasite may not necessarily be the same as those
governing transmission to humans. Further, interventional strategies limiting transmission
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have shown an overall decrease in incidence of Chagas disease, which may confound identi-
fication of climatic factors influencing transmission. Nonetheless, we have chosen to include
the following covariates in our model.

In laboratory settings, it was found that Triatomines incubated at warmer temperatures
(30C vs. 28C and 26C) mature faster and had higher levels of T. Cruzi parasites in stool,
although insect mortality did increase slightly (Tamayo et al. 2018). Further, Triatomines
may be able to adapt to changes in temperature in complex ways (Clavijo-Baquet et al. 2021).
Ecological modeling of Chagas Disease in North America indicates that as temperatures rise,
the distribution of Triatomines may shift towards the north and northeastern part of the
region (Garza et al. 2014).

To avoid multi-collinearity among our climatological factors, like Medone et al. 2015 we
use Principal Component Analysis (PCA) on the 19 WorldClim Bioclimatic Indicators (Fick
and Hijmans 2017), which we retrieved from the Copernicus Climate Change Service (C3S)
Climate Data Store (CDS) dataset, “Global Bioclimatic Indicators from 1950-2100 Derived
from Climate Projections” (Wouters et al. 2021). PCA is a dimensionality-reducing proce-
dure that decomposes the matrix of covariates by municipality-year into an ordered set of
orthogonal vectors, or principal components. Each principal component represents a ‘trend’
or pattern in the data with the first component representing the most dominant pattern
by proportion of variance explained, and each subsequent component representing less of
the variance. Each observation can then be described as a linear combination of principal
components and coefficients. PCA can be used for Principal Component Regression; rather
than using the covariates directly, each observation’s location in principal component-space is
used as a covariate. Since all principal components are orthogonal, this avoids any potential
multi-collinearity in the data.

We find that the first six principal components explained 95% of the variation in the
data. Values for these principal components are displayed in supplementary table C.3 and the
variance explained in supplementary figure C.3. The largest principal component, responsible
for just over 50% of the variance in the dataset, is related to warmer, drier weather year-
round. In turn, the second principal component (17% of total variance) is related to cooler
temperatures with more seasonal fluctuation but less precipitation year-round. Third and
subsequent principal components are less clear in their interpretation and are responsible for
decreasing amounts of variance in the dataset.

Projection of future incidence

The resulting quantities estimated from the main smoothing model and the covariate model
are used to estimate the incidence of Chagas disease over the 10 year period from 2020 to
2030 using projected population counts and projected climate variables. To project this
data, we calculate the average annual exponential growth rate over the period 2001-2019 for
each municipality as:

ri = exp

(
logPopi(2019)− logPopi(2001)

18

)
− 1 (3.15)
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(a) (b)

Figure 3.4: (A): Average annual percentage change in population for all municipalities in Brazil
between 2001 and 2019. (B): Average annual growth rate, percent, for all municipalities in Brazil
between 2001 and 2019. The overall growth rate for Brazil, indicated in red, is 1.04%, higher than
the average municipality growth rate of 0.6%.

Growth rates at the municipality level are displayed in figure 3.4. The overall growth rate
of Brazil is 1.04% per year between 2001 and 2019, and the average municipality grew by
0.6%. The 2019 population for each municipality is projected forward each year for 10 years
as:

Popi(t ∈ [2020 : 2030]) = Popi(2019)(1 + ri)
t−2019 (3.16)

This projected population is used as an input to the model to predict future incidence
of Chagas disease. We report two sets of projected rates of Chagas disease: one from
the main smoothing model and one from the covariate model. In the covariate model,
each municipality-year’s location in prinicipal component space for the predicted bioclimatic
variables is used as an additional input. The incidence in municipality i at future year t⋆ is
estimated as:

E[Yt⋆,i] = (1− πt⋆,i)λt⋆,i · Popt⋆,i (3.17)

logit−1(πt⋆,i) = µ̂π + απ,t⋆ + β̂πxt⋆,i +
(
(
√
ρ̂π/s)ϕ̂π,i + (

√
1− ρ̂π)θ̂π,i

)
σ̂π + δπ,t⋆,i (3.18)

log−1(λt⋆,i) = µ̂λ + αλ,t⋆ + β̂λxt⋆,i + θ̂λ,iσ̂λ + δλ,t⋆,i (3.19)

Where all quantities are the median value of those estimated in the main model except
time-trend quantity α. for both απ and αλ, which is taken as an AR(1) random walk given
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the distribution of estimated time trend terms:

α.,2020 ∼ N(α̂.,2019, σ̂.,α) (3.20)
α.,2021 ∼ N(α.,2020, σ̂.,α) (3.21)

... (3.22)
α.,t⋆ ∼ N(α.,t⋆−1, σ̂.,α) (3.23)

We conduct 1000 simulated random draws of future incidence and report the predicted rates
of Chagas disease.

3.3 Results

3.3.1 Results of Main Smoothing Model

The overall incidence rate of Acute Chagas Disease in Brazil between 2001 and 2019 is
estimated to be 0.121 per 100k person-years of life (PYL), although substantial heterogeneity
in risk exists between and within regions. Figure 3.5 shows the municipality level 18-year
incidence rate of acute Chagas Disease. Estimated incidence of Chagas disease is highly
spatially variable with a strong regional trend, with two major areas of vulnerability: first,
the northern Amazon states of Amapá (AP) and Pará (PA), which have the highest smoothed
incidence rates in the country at 1.80 and 1.69 per 100k PYL—almost an order of magnitude
higher than the national average—as well as Acre (AC; 0.317 per 100kPYL) and Amazonas
(AM; 0.188 per 100kPYL). These states are highly rural and have a smaller population than
the coastal states, but contain the majority of Acute Chagas Disease risk. The second main
region of transmission includes the northeastern, Caatinga states of Rio Grande do Norte
(RN; 0.334 per 100kPYL), Sergipe (SE; 0.247 per 100kPYL), Piauí (PI; 0.197 per 100kPYL)
and Pernambuco (PE; 0.316 per 100kPYL). We do not observe increase transmission rates
in the Cerrado, which includes the state of Goiânia and Mato Grosso do Sul, as reported
by Gurgel-Gonçalves et al. 2012 besides a slight elevation in Tocantins. The states with the
lowest estimated rates of Chagas Disease are the federal district of Brasilia and Sao Paulo.

Within the Amazon states of Pará and Amapá, which have the highest overall rates of
new Acute Chagas Disease diagnoses, 31 of 160 municipalities had 18-year incidence rates
higher than 1 per 100k PYL; the highest rates of ACD were found in Breves (population
93,000) and Limoeiro do Ajuru (25,000), with 15.9 and 15.8 cases per 100k PYL respectively.
Six more municipalities had rates above 10 per 100kPYL: Curralinho, Abaetetuba, Bagre,
Muaná, Anajás, and São Sebastião Da Boa Vista. However, the most cases were predicted
to be found in Belém, the capital and largest city in Pará, at 386 over the 18 year period for
a population of approximately 1.4 million.

A zero-inflated models represent the observed data as being a mixture of two processes:
here, the probability of never being exposed to Chagas disease represented through the
Bernoulli process, and the incidence rate given exposure represented through the Poisson
process. Lambert 1992 refers to the over-dispersion of zeros generated through these pro-
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Figure 3.5: Overall log incidence rate at the municipality level over 2001-2019. Red indicates
higher rates of ACD and green indicates lower rates of ACD. Incidence rate is calculated as
log
∑

t

(
(1− π̂m,t)λ̂m,t/Popm,t

)
.
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cesses as these as ‘structural’ and ‘non-structural’/‘sampling’ zeros, respectively. Although
we found a very strong spatial process governing the rate of ‘structural’ zeros—probability
of never being exposed to Chagas disease (shown in figure 3.6)—we did not find a strong
spatial process in the rate given exposure. Since Chagas disease is transmitted to humans
given contact with disease-transmitting vectors with a particular habitat, we interpret this
to mean that Chagas-carrying Triatomines are more likely to live in certain locales, the rate
of contact and transmission within those locales is more spatially constant.

Overall, the Northern and Amazon states were found of have a high probability of expo-
sure to Chagas Disease and the coastal and southern states were less likely to have exposure.
The total spatial term for π is shown in figure 3.6. Parameter ρ, indicating the proportion
of spatial variance derived from the ICAR term, evaluated to 0.985, indicating that the
spatially-clustered process was responsible for most of the Chagas incidence and the ran-
dom process θ contributed very little to the overall distribution, indicating further that the
location of Triatomines may be driving the location of cases.

Where the probability of exposure to Chagas disease shows a strong spatial pattern,
the rate of Chagas—after normalization for population—does not show nearly the degree
of spatial autocorrelation as the Bernoulli process. The spatial structure for the Poisson
process λ that estimates the rate of disease is shown in supplementary figure C.1. In-
stead, even though the Poisson process parameter λ is normalized to municipal population,
the Poisson process instead appears to be highlighing population locations rather than a
spatially-autocorrelated process. However, Moran’s I test for spatial autocorrelation did find
that the spatial heterogeneity term θ was statistically significantly spatially autocorrelated,
albeit weakly (E[I0] = −0.0001; Ia = 0.12; p(I0 < Ia) < 2e− 16). Future evaluations of this
model will need to carefully consider how to incorporate autocorrelation into the Poisson
process while maintaining model identification.

The overall time trend parameters απ and αλ, which are specified as AR(1) processes,
both show a difference from 0 on the linear scale, indicating that there is a global temporal
component in both the Bernoulli and Poisson processes (figure C.2A). However, after adding
in mean terms µ and applying the logit and log transforms as shown in figure C.2B, the
overall time trend tells a different story: the Bernoulli probability π, indicating probability
of non-exposure to acute Chagas Disease, decreases from 55% in 2000 to a maximum of
23.6% by 2006 only to increase to nearly 100% for the remainder of the study period. This
indicates that over the course of the study period, country-wide exposure to Chagas disease
increased before decreasing to nearly 0 after 2007, at which point the distriubtion of Chagas
cases ceased to be a country-wide phenomenon and instead became more spatially localized.
The Poisson rate is stable around 2e-5 per capita over the course of the study period.

Overall, the model converged well and showed good mixing between the chains for the
main parameters π and λ. The Root Mean Squared Error (RMSE) of the model, evaluated
as:

RMSE =

√
1

|T | · |M |
∑

t∈T,i∈M

(ŷt,i − yt,i)2

is 0.175. Convergence is evaluated using statistic R̂, which evaluates the agreement of
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Figure 3.6: Estimated spatial process π governing the probability of an individual never being
exposed to Chagas Disease over the study period. This process is an inverse-logit transformation of
a linear combination of Conditionally AutoRegressive (CAR) term ϕπ capturing risk that is spatially
clustered, possibly due to Triatomine habitat or contact rates.
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between-chain estimates, and Effective Sample Size (ESS), which evaluates the number of
samples correcting for autocorrelation. Supplementary table C.1 shows the distribution of
R̂ and ESS for all parameters π, λ, ϕ, θ, α, and δ.

3.3.2 Results of Climate Model

The climate model includes the specification as the main model above with the inclusion
of each municipality-year’s location in principal component space among the 19 WorldClim
Bioclimatic variables. We include the first six principal component dimensions as covariates
β in both the Bernoulli process governing overdispersion of zeros and the Poisson process
governing rate of Chagas disease. The RMSE of the climate model is 0.183, which is slightly
higher than that of the main model, indicating that controlling for climate produces a worse
fit and may reduce the accuracy of the model, possibly due to overfitting. Posterior densities
of β are included in supplementary figure C.4. In the Poisson process, posterior estimates of
coefficients for the first three principal components were found to be statistically significantly
different from zero, whereas in the Bernoulli process, only the second principal component
was found to be significantly different from zero. The values of parameters in the climate
model are similar to the values in the main model (shown in figure C.5), except for ϕπ, the
spatial clustering term in the Bernoulli process.

To better analyze these climatic factors, we transformed these estimated coefficients
from principal component space back to the scale of the original variables before applying
the inverse-link function and intercept terms to show the values visualized in figure 3.7.
These values are calculated as g−1(µ + β̂⋆), where g is the link function log for the Poisson
process λ and logit for the Bernoulli process π, and β̂⋆ represents the estimated coefficients
transformed from principal component space to the original coefficients. Ultimately, βπ
coefficients represent a one-unit change in each variable on the probability of non-exposure
to Chagas disease, and βλ represents the effect of a one-unit change in each variable on the
predicted rate of Chagas disease, per million person years, conditional on exposure. Overall,
we see that these variables do not affect the rate of Chagas disease, only the probability
of non-exposure. Non-exposure to Chagas disease is more likely in climates that are highly
seasonal, and less likely in wetter wetter climates.

3.3.3 Projected Rates 2020-2030

We used the main smoothing and climate covariate models to estimate counts of Chagas
disease over the decade 2020-2030. As elaborated above, the projection procedure utilizes the
estimated intercept and spatial parameters, and using randomly-drawn temporal structure.
The main model estimates a median of 4461 cases of Acute Chagas Disease over the decade
2020 (IQR: 1,653 - 13,859), almost double the number of cases in the previous decade (2,612).
Predicted incidence is similar when including the bioclimate covariates, estimating a median
of 4461 cases (IQR: 1619 - 13,270). Figure 3.8 shows the median annual predicted counts
of Chagas disease across Brazil and interquartile range between 2020 and 2030. A map of
projected incidence and a comparison of observed and projected rates are shown in figure
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Figure 3.7: Coefficients for 19 WorldClim Bioclimatic Variables used in the climate model estimated
for both the Poisson process (λ, left), governing the incidence rate of ACD given exposure, and the
Bernoulli process (π, right), governing the probability of never being exposed to ACD. Lighter colors
on the left figure indicate that a higher value of the coefficient corresponds to a higher rate of ACD in
the population where exposure is present, and on the right figure indicate that probability of never
being exposed is higher. Coefficients are estimated in principal component space and transformed
to the natural scale, and applied the corresponding log−1 link function for the Poisson process and
logit−1 for the Bernoulli process.
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3.9 and for selected municipalities in figure 3.10 and 3.11. Most of ‘hot spots’ for new cases
are predicted to be in the same locations as 2001-2019, including Abaetetuba, Belém, and
Breves in Pará, and Macapá in Amapá. However, the largest increases are projected to be
in smaller, rural municipalities with high growth rates in the states of Amazonas—especially
municipalities Apuí and Tefé—and Piauí. The climate covariate model implies slightly lower
rates than the main model, implying that projected bioclimatic conditions may result in fewer
infections, although the overall difference is likely small. The trend observed in figure 3.8
shows a highly variable trajectory year to year—much more than the main model predicts—
indicating that annual climate fluctuations may have substantial effects on predicted rates.
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Figure 3.8: Observed counts across Brazil, 2001-2019, summary of 1000 projected counts, 2020-2030,
from the main smoothing model (top) and climate covariate model (bottom). Median simulated
counts are shown in black and interquartile range, representing 50% of simulations, is shown in grey.
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Figure 3.9: Projected incidence and percent increase compared to the previous decade.
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Figure 3.10: Observed and Projected rates, main model
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Figure 3.11: Observed and Projected rates, climate model
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3.4 Discussion
Despite progress towards elimination, Chagas disease remains a significant threat to public
health, and additional intervention will be needed to further reduce rates of new ACD cases
in Brazil. The results of our modeling imply that rates of ACD will increase consistently
over the ensuing decade—potentially as much as doubling compared to the previous decade—
driven primarily by an increasing population in high-risk areas. Climate change may result
in the exacerbation of this trend. However, this appears to be at odds with the country-wide
decrease in ACD rates as a result of Triatomine eradication campaigns since the 1980’s.
While these campaigns have been enormously successful, risk of ACD is likely to persist
without additional intervention. As a result, our work here serves as a call to continue the
campaigns Nonetheless, we predict that risk for ACD will persist, and further intervention
will be necessary to continue the decrease observed in previous decades.

This model has a number of limitations, some of which may be addressable in future
modeling studies. First, our data include official reports of Acute Chagas Disease as sub-
mitted to SINAN. We were unable to find literature estimates of under-reporting rates of
ACD not submitted to SINAN. It is possible that there are many annual cases not captured
in the dataset, implying that our estimates are not only incomplete, but subject to a ‘sur-
vivorship paradox’ where the locations of highest epidemiological interest are not captured
in the dataset. Since the treatment success rate is high for acutely diagnosed cases of Chagas
disease, it may be reasonable to estimate the number of ‘missed’ acute cases from backwards-
projection of chronic cases. However, due to the substantial lag time (at least 10-30 years)
between exposure and chronic symptoms, this was not possible with the data available from
SINAN. However, should this topic be revisited in the following decades, a back-projection
approach may be useful for retrospectively estimating the underreporting rate.

Our model uses Knorr-Held Type I spatio-temporal interactions δ, which are the least
sophisticated of the structures outlined by Knorr-Held (2000). This strategy essentially
estimates uncorrelated space-time fixed effects, which we found to be ideal for precise internal
estimation; however, since these fixed effects lack a temporally autoregressive definition, it
is not possible to use these fixed effects to project the model to predict future incidence
without introducing meaningless statistical noise. In our prediction we simply dropped
the interaction term from the model; in effect, only the un-interacted spatial and simulated
random walk temporal terms were used for future projection. We believe that using the basic
Type I interactions allowed for better estimation of the independent spatial and temporal
components as we found that the Type IV term is only weakly identified in our model; so
this decision was not without benefit. Choice of a spatio-temporal interaction that includes
a temporally autoregressive term, such as Type II or Type IV (see supplementary material
for more elaboration), would allow for projection in the form of a random walk through
interaction space-time. For example, should a Type IV prior be used that assumes total
spatial and temporal dependence in the interaction, future space-time interaction terms can
be simulated as a random draw from a Multivariate Normal distribution with a variance-
covariance matrix derived from the previously-estimated interaction terms, similar to the
simulation procedure for spatially autocorrelated data (Banerjee, Carlin, and Gelfand 2015).
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Special care will likely be needed to assure propriety of the Type IV distribution, which is
outside of the scope of the present study.

Our population projection would benefit from a more precise estimation methodology
than the crude exponential growth model used here. Future analysis should consider munic-
ipality, year, and age-specific rates of fertility, mortality, and migration—especially internal
migration—to inform population projections. We were unable to obtain these quantities
at the level of spatial and temporal granularity required. We believe that in the short
term—namely, the single decade between 2020 and 2030—this crude methodology allows for
understanding how heterogeneity in growth rates may relate to future incidence of Acute
Chagas Disease. Nonetheless, it is not suitable for long-term projections. Model-based es-
timates that utilize the readily-available state-level rates to determine small-area estimates,
possibly similar to the Lee-Carter (1992) procedure or the one used by Alexander, Zagheni,
and Barbieri 2017, may allow for more precise estimation of future municipality-level popu-
lation. As well, an extension of the model to predict age-specific rates of Chagas disese may
aide researchers in planning for interventions.

Finally, we make the critical assumption in both models that population and climate
change are the sole drivers of future incidence. Other factors, such as housing construction
materials, poverty, habitat destruction, and residential or industrial development encroach-
ing on Triatomine habitats may increase affect rates of Chagas disease even in the absence
of population or climate change. Further, the inherent assumption of linearity in our model
assumes that as climate and population change, predicted incidence of Chagas disease will
respond. This may not be the case: while climate may partially determine the geographic
distribution of Triatomines, which may in turn affect incidence, it is likely that the rela-
tionship of climate with Triatomine populations is too complex to be captured by a linear
model of the sort used here. Since there are many species of Triatomines, each with different
habitats, behaviors, and virulence, the ultimate effect of climate on Chagas incidence is un-
doubtedly complex and nonlinear. Further, our climate model has a slightly higher error than
the main model despite the inclusion of additional covariates, indicating that the model may
be suffering from overfitting. As well, many exogenous factors could affect the distribution
of Triatomines under future climate conditions, including interventional strategies to limit
Triatomine habitats like the residential insecticidal campaigns of the 1980s, development
of urbanization and infrastructure, and climate adaptations, environmental destruction and
conservation practices that may affect Triatomine habitats. Should future climate conditions
create new habitats for Triatomines, it is not clear at present if the insects are mobile enough
to find these habitats, or if accidental importation by humans—such as improper handling
of lumber—may catalyze a shift in Triatomine distribution.

Replication Code
Replication code is publicly available at https://github.com/eroubenoff/chagas_modeling.
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Appendix A

Supplementary Material for Chapter 1

A.1 Epidemiological Model

A.1.1 Contact Matrix

Table A.1: Baseline Contact Matrix C used in simulations

Child Adult LC Adult HC 65+

Child 1.637 0.816 1.197 0.062
Adult LC 0.455 1.918 1.283 0.311
Adult HC 1.285 2.472 4.550 0.495

65+ 0.093 0.834 0.689 0.908

A.1.2 Alternate Specification of the Contact Matrix

Two alternate specifications of the contact matrix are used for sensitivity tests. First, un-
like in the primary simulation where high/low contact status was randomly assigned (in
equal proportions to adult respondents surveyed) to alters whose contact status was in-
determinable, a matrix is derived without the above described process for unknown alter
redistribution. As a number of reported alters are of unknown risk status (no occupation
or purpose), in the baseline matrix we assume that the distribution of alters’ contact status
at the aggregate level is equal to egos’ contact status. Instead of randomly re-labeling un-
known adult alters such that the reported alters have the same survey-weighted proportion
of high/low contact status as egos, in this alternate specification we label all unknown alters
as having Low Contact status. This represents a conservative estimate for alter contact
patterns. Second, we derive the contact matrix otherwise as normal, but with an alternate
specification for the POLYMOD matrix P used to derive child-child contacts. This departs
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from the baseline simulation, where we use POLYMOD contacts with school contacts re-
moved to represent school closures at the time of writing. For this alternate specification,
we derive the matrix that includes these POLYMOD contacts.

The primary simulation is run with these two alternate contact matrix specifications
contact matrix (shown in figure A.1). All other parameters are as baseline. Both total
deaths and clinical infections are consistently higher with the two alternate specifications
compared to baseline. In neither set of simulations did the the most effective strategies
change.

Table A.2: Contact Matrix without random unknown alter reallocation

Child Adult LC Adult HC 65+

Child 1.637 0.858 1.207 0.062
Adult LC 0.478 2.009 1.260 0.319
Adult HC 1.296 2.427 4.332 0.486

65+ 0.093 0.855 0.677 0.922

Table A.3: Contact Matrix derived without POLYMOD school contacts removed

Child Adult LC Adult HC 65+

Child 3.271 0.847 1.193 0.060
Adult LC 0.472 1.930 1.277 0.304
Adult HC 1.281 2.459 4.491 0.524

65+ 0.090 0.814 0.730 0.874
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Figure A.1: Deaths and infections for the 5 intervention strategies compared to null for alternate
contact matrix specifications, without random unknown alter reallocation and without POLYMOD
school contacts removed.

A.1.3 Derivation of contacts for the youngest age group

Since the youngest age group (below 18 years of age) were not included in the survey, we use
data from the POLYMOD survey (Mossong et al. 2008) in the United Kingdom. First, BICS
respondents are re-grouped without employment disaggregation into three age categories—
0 − 18,14 − 65, and 65+—and used to derive reciprocal weighted average contact matrix
B. Then, data from the POLYMOD survey are grouped into the same three age categories
and likewise used to create reciprocal weighted average contact matrix P . As in Feehan and
Mahmud 2021, we calculate the ratio of dominant eigenvalues (ρ) of B and P . The entry
for the youngest age group in C is then taken as the entry for the youngest age group in P
scaled by this ratio:

C<18,<18 =
ρ(B)

ρ(P )
· P<18,<18 (A.1)
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A.1.4 Primary (2-dose) vaccination model

λ = u
∑
j

Cj
Icj + αIscj

Nj

(A.2)

dSx
dt

= −λSx (A.3)

dS

dt
= −λS − V Ra(t) (A.4)

dVa
dt

= −λ(1− V Ea)V a+ V Ra(t)− V Rb(t) (A.5)

dVb
dt

= −λ(1− V Eb)V b+ V Rb(t) (A.6)

dE

dt
= −σE + λ

[
S + Sx + (1− V Ea)Va + (1− V Eb)Vb

]
(A.7)

dIc
dt

= −γIc + ρσE (A.8)

dIsc
dt

= −γIsc + (1− ρ)σE (A.9)

dR

dt
= (1− µ)γIc + γIsc (A.10)

dD

dt
= µγIc (A.11)

Figure A.2: Primary vaccination model. (Caption continued on following page)

A.1.5 Derivation of the Starting Population

The starting population is derived from the Johns Hopkins COVID-19 dashboard data repos-
itory (JHU; Dong, Du, and Gardner 2020) and American Community Survey 2019 estimates
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Figure A.2: (Continued from previous page) Compartments S, Sx, E, Ic, Isc, R, D, Va, Vb corre-
spond to susceptible and waiting to be vaccinated, susceptible but not waiting to be vaccinated,
exposed, clinically infectious, subclinically infectious, recovered, deceased, vaccinated 1st dose, and
vaccinated 2nd dose, respectfully. Parameter u is the group-specific probability of infection upon
contact with an infected person; Cij is the number of contacts a person in group i has with a person
in group j; α is the relative infectiousness of subclinical cases; V Ea,b are reduction in infection after
1 and 2 doses of the vaccine; ρi is probability of symptomatic illness after exposure and first and
second shots; µ, σ, γ are the mortality, rate of progressing from E to I, and recovery rate. V Rai,bi(t)
are the time-specific vaccination rates for 1st and 2nd vaccines. NB: Group index i is dropped to
reduce visual clutter.

(ACS; US Census Bureau 2019) using parameters from the baseline simulation listed in table
A.8. The JHU data contain the state level counts of confirmed COVID-19 cases and deaths;
in addition, 45 of 51 states (including DC) list counts of active cases. To obtain the initial
size of the clinically infectious compartment, we scaled the national count of total confirmed
cases by the proportion of cases currently active for states with active cases listed. For these
45 states with listed active cases, on 1 January 2021 there were 14, 405, 003 total confirmed
cases, of which 40.5% (5, 829, 986) were currently active. This proportion is used to scale the
total confirmed cases (20, 278, 813) to yield the total initial size of the clinically infectious
compartment: 8, 207, 366.

The BICS wave 4 survey indicated that, adjusted for survey weights, 34% of adults were
working in person (HR) and 66% were not (LR; including unemployed). These survey data
were used to scale the ACS age-disaggregated data to yield the total group sizes N:

Child LC Adult HC Adult 65+
73,429,392 132,319,841 68,164,766 50,783,796

Table A.4: Group sizes N derived from the ACS

We assume that the total count of Active cases is distributed proportionally to group size
(N) and the age-dependent probability of infection (u, table A.8) to produce infectious and
symptomatic compartment Ic(0):

Ici(0) = Active · ui ·Ni∑
j uj ·Nj

(A.12)

Individuals in the exposed (pre-infectious) compartment are taken to be proportional
Ic. The constant of proportionality is taken as the ratio of average time spent in the E
compartment to average time spent in the Ic compartment. This assumes that the size of
the outbreak is stationary at the start of the simulation.

Ei(0) = Ici(0) ∗
latentPeriod

infectiousPeriod
(A.13)
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Remaining members of the population are all assumed to be susceptible. Susceptibles
are then divided into S and Sx, indicating if they are awaiting or declining the vaccine. We
assume that all groups will have 70% uptake. For baseline parameters of µ and ρ, the initial
population state is:

Table A.5: Primary Simulation Starting Population

Child Adult LC Adult HC 65+

N 73, 553, 240 132, 073, 398 68, 037, 811 49, 238, 581
S 50, 346, 846 88, 093, 322 45, 381, 408 33, 018, 446
Sx 21, 577, 220 37, 754, 281 19, 449, 175 14, 150, 763
E 610, 941 2, 334, 673 1, 202, 710 776, 015
Ic 1, 018, 235 3, 891, 122 2, 004, 517 1, 293, 358
Isc 0 0 0 0
R 0 0 0 0
D 0 0 0 0
Va 0 0 0 0
Vb 0 0 0 0
Vbx 0 0 0 0
Vboost 0 0 0 0

In the booster simulation, we utilize uptake data derived from the CDC to initialize a pro-
portion of the susceptible population in compartment Vb, indicating that they have received
a primary course of vaccination. Individuals who decline the primary vaccine remain in com-
partment Sx until infected. We assume that 70% of individuals who have received a primary
course of vaccination will receive boosters; the remaining 30% are placed in compartment
Vbx, indicating that they decline the vaccine.

Finally, we conducted a series of simulations assuming high uptake of the primary vaccine
among both low and high contact adults to match older adult uptake (95%). These sim-
ulations closely mirrored those for the main booster simulations—prioritizing older adults,
either solely or in a tiered roll-out limited the most deaths, and the number of infections
limited was nearly equal across all strategies.
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Table A.6: Booster Simulation Starting Population

Child Adult LC Adult HC 65+

N 73, 553, 240 132, 073, 398 68, 037, 811 49, 238, 581
S 0 0 0 0
Sx 47, 462, 186 27, 092, 608 13, 956, 798 2, 394, 698
E 615, 314 2, 351, 386 1, 211, 320 781, 570
Ic 1, 025, 523 3, 918, 976 2, 018, 866 1, 302, 616
Isc 0 0 0 0
R 0 0 0 0
D 0 0 0 0
Va 0 0 0 0
Vb 17, 115, 152 69, 097, 300 35, 595, 579 31, 331, 788
Vbx 7, 335, 065 29, 613, 129 15, 255, 248 13, 427, 909
Vboost 0 0 0 0

Table A.7: Booster Simulation Starting Population with High Primary Uptake

Child Adult LC Adult HC 65+

N 73, 553, 240 132, 073, 398 68, 037, 811 49, 238, 581
S 0 0 0 0
Sx 47, 462, 186 6, 388, 806 3, 291, 203 2, 394, 698
E 615, 314 2, 351, 386 1, 211, 320 781, 570
Ic 1, 025, 523 3, 918, 976 2, 018, 866 1, 302, 616
Isc 0 0 0 0
R 0 0 0 0
D 0 0 0 0
Va 0 0 0 0
Vb 17, 115, 152 83, 589, 962 43, 061, 495 31, 331, 788
Vbx 7, 335, 065 35, 824, 269 18, 454, 927 13, 427, 909
Vboost 0 0 0 0
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A.1.6 Model Parameters

Parameter Description Value Source

Cij Contact rate between indi-
viduals in group i and j

Estimated Berkeley Interper-
sonal Contact Survey
(BICS)

α Relative Infectiousness of
clinical versus sub-clinical
cases

0.5 Assumption, in line
with the range pre-
sented in McEvoy et
al. 2020

1/σ Mean latent period 3 days Davies et al. 2020;
Bubar et al. 2021

1/γ Mean infectiousness period 6 days Davies et al. 2020;
Bubar et al. 2021

ρ Probability of having clini-
cal symptoms per age group

[0.26, 0.36, 0.69] Davies et al. 2020 Ex-
tended Data Fig. 7

u Relative susceptibility to in-
fection per age group

[0.39, 0.83, 0.74] Davies et al. 2020Ex-
tended Data Fig. 7;
Bubar et al. 2021

µ Mortality per group [0.004%, 0.023%,
8%]

Levin et al. 2020

R0 Basic Reproduction Ratio 2.5 Feehan and Mahmud
2021

V Ea, V Eb Primary model: Vaccine ef-
fectiveness after first dose
and second dose

0.80, 0.90 Tenforde 2021;
Thompson 2021

V Eb,
V Eboost

Booster model: Vaccine ef-
fectiveness after second dose
and booster dose

0.37, 0.81 Thompson 2022

vt Time between first and sec-
ond primary doses

25 days Assumed

Table A.8: Description of parameters for baseline model. Groups specified are for children,
all adults, and seniors, respectively.

The force of infection λi for a susceptible individual in group i is:

λi = ui
∑
j

Cij
Icj + αIscj

Nj

(A.14)

where ui is the age-dependent susceptibility to infection after contact with an infectious
individual, Cij is the entry in contact matrix C corresponding to the average number of
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daily contacts a respondent in group i has with an individual in group j; Icj and and Iscj are
the number of clinically infectious and subclinically infectious individuals in group j, α is the
relative infectiousness of clinical versus subclinical infections, and Nj is the total population
size (Davies et al. 2020; Bubar et al. 2021).

Strategy Description
No Vax Null scenario; no vaccine distribution
65+ Prior Initial prioritization for seniors over age 65; remaining

vaccines distributed proportionally to eligible group size
HC Prior Initial prioritization for high contact workers; remaining

vaccines distributed proportionally to eligible group size
Split Prior Priority vaccine dose are split evenly between seniors over

age 65 and high contact workers; remaining vaccines dis-
tributed proportionally to eligible group size

Tiered 65+ First priority vaccines are given to seniors over age 65
and second to high contact workers; remaining doses are
distributed to children and low contact adults propor-
tional to eligible group size

Tiered HC First priority vaccines are given to to high contact work-
ers and second to seniors over age 65; remaining doses
are distributed to children and low contact adults pro-
portional to eligible group size

Table A.9: Summary of the 5 vaccination prioritization scenarios for analysis

A.1.7 Vaccine distribution

We took a general value of 2 million vaccine doses distributed daily in all primary simulations.
There are six strategies tested for a set of parameters:

• No Vax: No vaccination (no priority or general doses distributed)

• 65+ Prior: Prioritizing only seniors before general distribution

• HC Prior: Prioritizing only adults 18-64 with in-person contacts before general distri-
bution

• Split Prior: Splitting priority vaccines evenly (i.e., 500,000 each) between seniors and
working adults before general distribution

• Tiered 65+: ‘Tiered’ rollout that prioritizes, in order, seniors before working adults
before general distribution

• Tiered HC: ‘Tiered’ rollout that prioritizes, in order, working adults before seniors
before general distribution
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Here, ‘general distribution’ refers to distributing vaccine doses proportionally to remain-
ing group size. For all strategies besides the no vaccination baseline, general distribution
occurs after all priority doses have been distributed. The tiered strategies are intended to
replicate the CDC’s guidance, which opened up priority eligibility to the elderly, high risk
people, and essential workers in progressive tiers before opening up eligibility to all. In the
primary 2-dose vaccination model, the 2 million eligible doses are split evenly between first
and second doses, meaning that 1 million susceptible can receive the first dose daily and 1
million people in Va can receive the second dose daily.
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A.1.8 Booster (3rd dose) vaccination Model

λi = ui
∑
j

Cij
Icj + αIscj

Nj

(A.15)

dSx
dt

= −λSx (A.16)

dVbx
dt

= −λ(1− V Eb)V bx (A.17)

dVb
dt

= −λ(1− V Eb)V b−V Rboost(t) (A.18)

dVboost
dt

= −λ(1− V Eboost)Vboost + V Rboost(t) (A.19)

dE

dt
= −σE + λ

[
Sx + (1− V EV b)(Vb + Vbx) + (1− V Eboost)Vboost

]
(A.20)

dIc

dt
= −γIc + ρσE (A.21)

dIsc

dt
= −γIsc+ (1− ρ)σE (A.22)

dR

dt
= (1− µ)γIc + γIsc (A.23)

dD

dt
= µγIc (A.24)

Figure A.3: Booster vaccination model. (Caption continued on following page)
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Figure A.3: (Continued from previous page) The model is extended to accommodate the prioriti-
zation of additional booster doses for people who have already received two doses of the vaccine
(compartment Vb). Additions to the model are indicated in red; compartments S and Va are re-
moved as no shots are allocated to unvaccinated individuals. Susceptible compartments Sx, Vbx,
Vb, and Vboost indicate resepectfully to individuals who have received no doses of the vaccine but
will not receive boosters, those who have received two doses but will not get booster doses, those
waiting for booster doses, and those who have received booster doses. V Rboosti is the rate at which
booster doses are given to people in V bi. V Eb,boost indicate the efficacy of the vaccine at reducing
transmission. NB: Group index i is dropped to reduce visual clutter.

A.1.9 Booster Model Sensitivity Analysis

We find that the most effective prioritization strategy for reducing deaths is highly sensi-
tive to model parameters (figure 1.6), suggesting that the epidemiology of any subsequent
variants will determine the most effective vaccination strategy for booster doses. Holding all
other parameters at the baseline median value, we varied the efficacy of the primary course
of vaccination from 0 to 50%, efficacy of the booster doses between 50% and 100%, and
R0 between 2 and 12. All other parameters are held at baseline values. We find that the
reduction in deaths is nearly always higher under senior prioritization than under high risk
adult prioritization. Efficacy of the primary and booster doses plays a substantial role in
shaping the outbreak; 100% effective booster doses reduce deaths by nearly 50% under 65+
prioritization, whereas a 50% effective booster only reduces deaths by 10%. As R0 increases
from 2 to 12, we observe a similar cross-over in clinical infections as the primary scenario: at
values of R0 below 3.6, Tiered HC and HC Prioritization limits the most clinical infections;
above this value, 65+ and Tiered 65+ Prioritization limit the most clinical infections. Ad-
ditionally, higher values of R0 generally correspond to less effective interventions, since the
outbreak peak is higher by the time of widespread booster uptake.

Investigation of clinical infections averted during High Contact adult booster prioritiza-
tion (figure 1.5B) reveals an interesting dynamic where counts of averted infections relative
to the no booster scenario appear to stall after mid-January. Further investigation of group-
level incidence rates (supplemental figure A.9) reveals that when this group is prioritized in
part or in full, after mid January counts of infections among HC adults are actually lower in
the null scenario—where no booster doses are distributed—than simulations that included
booster distribution. We observe that the HC adult curve is ‘flattened,’ where the peak
of the curve is lowered but infections continue to occur for longer. Ultimately only about
500,000 fewer clinical infections occur during HC Prioritization (of about 23 million in the
null scenario), indicating that this strategy is much less effective at high values of R0.

Uptake of the primary vaccine is considerably lower for adults between ages 18 and 65
and than for seniors; as a result, proportionally fewer working-age adults are eligible for
a booster dose than seniors. As a sensitivity test, we ran an additional 1000 simulations
assuming that HC and LC adult primary vaccine uptake rate matches the 65+ adult uptake
rate of 95%; booster uptake remains at 70% of the eligible primary-vaccinated population.
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1000 simulations are conducted with randomly drawn R0 and vaccine efficacy parameters
identical to the above simulation. We find a similar overall story: prioritizing seniors first,
either solely or in a tiered roll-out, limits the most deaths, and the reductions in clinical
infections is nearly equal between all five strategies. With baseline parameters, tiered 65+
roll-out reduces deaths by 26% compared to no booster doses and tiered HC roll-out reducing
clinical infections by 12%.
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A.1.10 Gender and Ethnicity

Table A.10 shows the gender and ethnicity of respondents in each category (Adult LC, Adult
HC, 65+). High Contact adults are almost 20 percentage points less likely to be female than
Low Contact adults. The ethnic breakdown of High Contact adults is similar to that of Low
Contact adults. Adults aged 65+ are more about 10 percentage points more likely to be
white and 15 percentage points less likely to be Hispanic.

Assuming that contact rates, probability of transmission, and mortality are equal by
gender and ethnicity, prioritizing the oldest age group for vaccination averts the most deaths
in all demographic categories. Even though Hispanics make up 20% of the adult population
but only 5% of the 65+ population, prioritizing the oldest age group still averts nearly 20,000
more Hispanic deaths (about 20%) compared to HC prioritization. Since mortality among
the oldest age group is about 350 times higher than for adults ages 18-64, the direct benefit
of preventing deaths among this age group through vaccination remains the most effective
strategy for vaccine distribution.

In aggregate, Tiered HC vaccine rollout limits the most clinical infections, and this re-
mains true for Blacks and Asians. HC prioritization (without tiered roll-out) averts the most
deaths among Hispanics. However, Tiered 65+ roll-out averts the most infections among
Women and Whites, whose age distributions skew slightly older than the other groups. Like
in the primary analysis, we note that differences in clinical infections between strategies is
small.

Table A.10: Survey-weighted estimates of Gender and Ethnicity of BICS respondents, by
category.

Category Female White Black Asian Hispanic

Adult LC 57.68% 73.75% 13.56% 6.04% 20.56%
Adult HC 38.45% 76.38% 11.12% 4.91% 22.49%

65+ 52.49% 85.27% 9.12% 3.29% 5.04%
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Figure A.4: Deaths by category used in transmission model for selected prioritization strategies
(chosen to reduce visual clutter), per 100k in each category.

112



Figure A.5: Deaths per 100k by gender and ethnicity, assuming equal transmission and mortality
parameters between groups, for selected prioritization strategies (chosen to reduce visual clutter).
Ethnicities are mutually exclusive.
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A.2 Additional Figures

Figure A.6: Cumulative clinical infections and deaths during the baseline simulation for all demo-
graphic groups (A-D: Seniors, HC Workers, LC Workers, Children) and prioritization strategies per
100,000 individuals in each group. The largest reduction in infections occur from the direct effects
of vaccinating HR workers and seniors, but indirect benefits are observed when seniors or workers
receive non-priority access. Mortality reductions are greatest when a seniors or HC workers are
directly given priority access.
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Figure A.7: Results of the sensitivity analysis of 65+ mortality µ65+ (varied between 0.01 and
0.1) and the effect on total deaths (A) and clinical infections (B). X-axis indicates total mortality
standardized for group size.
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Figure A.8: New clinical infections daily by group and prioritization strategy for the primary (2-
dose) vaccine distribution model with baseline parameters, with No Vaccine scenario shown as
comparison. (A) 65+ Prioritization; (B) Tiered 65+ Prioritization; (C) High Contact Prioritization;
(D) Tiered High Contact Prioritization; (E) Split prioritization.
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Figure A.9: New clinical infections daily by group and prioritization strategy for the booster vaccine
distribution model with baseline parameters, with No Vaccine scenario as comparison. (A) 65+
Prioritization; (B) Tiered 65+ Prioritization; (C) High Contact Prioritization; (D) Tiered High
Contact Prioritization; (E) Split prioritization. In scenarios where high contact workers receive
priority vaccines, either directly, tiered, or split (panels C-D), incidence among that group is lower
after the peak of the outbreak during the No Booster scenario than the booster scenario.

117



Figure A.10: Results from stochastically drawn parameter for high-uptake booster scenario
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Appendix B

Supplementary Material for Chapter 2

B.1 Model Supplement
The model described here is a stochastic Agent-Based Network Simulation for COVID-19
transmission that utilizes data collected as part of the Berkeley Interpersonal Contact Survey
to simulation population structure and contact networks. The core algorithm is written in
C++, compiled using Apple Clang++17, and utilizes CMake 3.16 and utilizes the igraph
10.4 library (Csárdi and Nepusz, T. 2006; Csárdi et al. 2023), and includes a Python 3.8
user API. The BICS ABM C++ library is compiled to a dynamic library for linkage to the
Python API and can be used with an external C++ program.

The BICS ABM C++ library hinges on two input data structures and their Python
equivalents: Params, a C-struct that contains the input parameters, documented in table
B.1; and an array of the simulation population. The input population requires a strict
format: each row is an individual and each column represents individual-level data passed
to the simulation, flattened to one dimensional array of floats in column-major (Fortran-
style) order. Currently, 8 fields are required for each simulated node: the node’s household
id; age, represented as a categorical index 0-8; gender, where 0 corresponds to male and 1
corresponds to female; number of non-household contacts; number of school contacts, which
is taken to be zero for adults; number of times left home (unused presently, but maintained
for legacy purposes); vaccine priority (see B.1.1); and a boolean indicating if the node uses
NPIs or not. Parameters must be supplied indicating the dimensionality of the dataset. The
simulation returns a trajectory, a C-struct containing an hourly time-series of all disease
states.

The Python API contains a class BICS_ABM, which is a wrapper around all of the above
utilizing the ctypes library for cross-language functionality. Parameters can be passed to
the model through the Python API identically as to the C++ library and we recommend
interacting with the simulation through the Python API. The class constructor for BICS_ABM
takes any of the arguments to Params, runs the simulation, and saves as fields the components
of the resultant trajectory as a numpy.ndarray; as such, the trajectory of clinical cases can
be accessed as BICS_ABM.Cc. The population can be accessed through BICS_ABM._pop.
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Parameter Name Description Default Value

N_HH Number of simulation households 1000
WAVE (Python only) BICS survey wave used to

derive simulation population
6

GAMMA_MIN,MAX Bounds for uniformly-sampled duration of
latent period

2,4

SIGMA_MIN,MAX Bounds for uniformly-sampled duration of
infectious period

4,6

BETA_VEC Array of length 365 indicating the daily
baseline probability of infection

[0.025, ... 0.025]

BETA0, BETA1 (Python only) Average and amplitude of
sinusoidal seasonal forcing of the baseline
transmission probability; transformed into
BETA_VEC

0.025, 0

CONTACT_MULT_VEC Array of length 365 indicating daily multi-
plier for number of random contacts

[1, ... ,1]

C1 (Python only) Amplitude of sinusoidal sea-
sonal forcing of contact multiplier; trans-
formed into CONTACT_MULT_VEC

0

SCHOOL_CONTACTS Whether to include school contacts for chil-
dren during weekdays during the school
year

True

MU_VEC Vector of length 9 indicating the age-
specific SARS-CoV-2 mortality for each of
the 9 age categories

See main text

INDEX_CASES Number of index cases 5
IMPORT_CASES_VEC Array of length 365 indicating the number

of imported cases each day of the year; only
begins after T0

One Weekly

SEED Random seed None
N_VAX_DAILY Number of vaccines distributed daily 100
VE1,2,BOOST Efficacy of vaccines after first, second, and

booster doses
0.8, 0.9, 0.8

VEW Efficacy of waned immunity for both vac-
cines and infectious-derived immunity

0.5

ISOLATION_MULTIPLIER Scaling factor for random contacts by clin-
ically infectious nodes; 0 is full isolation
and 1 is business as usual

0.5

T_REINFECTION Duration (in hours) of full vaccine and
infectious-derived immunity before waning

24*180

T0 Date of appearance of index cases 0
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ALPHA Relative infectiousness of subclinical cases 0.32
RHO Proportion of subclinical cases 0.20
MAX_DAYS Duration of simulation, in days 10 * 365
BOOSTER_DAY Day of year that booster doses are made

available
244

FERTILITY_VEC Array of length 9 indicating the age-
category specific fertility rate for females,
adjusted for age group bin width

See main text

Mortality_VEC Array of length 9 indicating the age-
category specific mortality rate, adjusted
for age group bin width

See main text

Table B.1: Parameters used in the ABM model

B.1.1 Model Pseudocode

Psuedocode for the model is given below:

1. In Python API: Establish the following parameters governing the population struc-
ture: number of households nhh, survey wave, and vaccine priority. Establish all other
transmission parameters and store them in an object params.

2. Generate nhh households from the corresponding survey wave using the procedure
described below. Assign each household a unique household identifier.

(a) First, the distribution of adult ages and sex is derived from ACS data, and a set
of N_HH households are sampled from this distribution.

(b) A ‘head’ of household is randomly chosen from the BICS survey data. A respon-
dent is eligible to be head of household hi if they are the corresponding age and
sex for the sampled household head. Eligible household heads are chosen with
replacement and with probability adjusted for survey weights.

(c) Finally, households are filled by sampling (with replacement and adjustment for
survey weights) from the set of BICS respondents who mach each of hi’s reported
household members’ age, gender, and household size. Children under 18 are not
ascertained in the survey; children are instead sampled from the POLYMOD
survey. The max size of a household is 6 as as respondents were only asked to
report 6 of their household members.

3. Assign vaccine priority to all nodes in the network based off of the rules provided as
input, as elaborated in section B.1.1.

4. Create and pass the params and population object to the C++ core algorithm.
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5. In C++ core: Determine the household contact network assuming that all nodes have
contact with all members of their household. Randomly draw a school contact network
for children under the age of 18.

6. Repeat the following procedure representing one ‘day’ of simulation time, where each
day contains 24 ‘hours’ of simulation time, until either no nodes are exposed or infec-
tious OR the simulation has occurred for a supplied maximum number of days.

(a) If hour == 0 (midnight) and an index case is supplied to appear on the current
simulation day, transition one node at random into ‘Exposed’ status.

(b) Each hour between midnight and 8am: assume that all nodes have contact with all
members of their household. Execute transmission and decrement procedures
for all nodes.

(c) 8am: Distribute vaccine doses to n_vax nodes awaiting any dose of the vaccine.

(d) 8am: generate a random graph of daily contacts using the procedure outlined in
section B.1.1; assign a random duration and start time for all contacts.

(e) Each hour between 8am and 6pm: connect all random contacts; disconnect
each node having a random contact from their household nodes; transmit; and
decrement. Reconnect nodes after termination of random contact.

(f) Each hour between 6pm and midnight: transmit within households assuming that
all nodes have contact with all members of their household. Execute transmit
and decrement procedures.

7. At the conclusion of the simulation, return trajectories of each disease and vaccination
status.

Update Handlers

The C++ program contains a centralized method for handling and dispatching changes
to nodes, edges, and the graph itself. Classes exist for five types of changes can be ex-
ecuted: UpdateGraphAttribute, CreateEdge, DeleteEdge, UpdateEdgeAttribute, and
UpdateVertexAttribute. Vertices cannot be created or destroyed using the update handler.
All updates are stored in wrapper class UpdateList, which contains an overloaded method
UpdateList.add_update() to add an update of each type. Updates are then dispatched
with the method UpdateList.add_updates_to_graph(igraph_t*), which takes a reference
to the graph object as an argument to perform the updates.

The centralized update handlers were developed to streamline the attribute interface.
Although the igraph API contains methods for updating individual node or edge attributes,
it is more computationally efficient to pull all of the attributes, make all changes, then push
them back to the graph. Since the igraph API involves many dynamically-allocated objects,
this meant keeping track of many pointers, being sure to free all used vectors of attributes.
With a project of this size, adding a centralized way of dispatching updates helped with
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debugging many issues with memory management, at the cost of a slight function overhead.
As well, the object-oriented interface allows for saving of all, say, household edges in a single
object to be connected and disconnected as needed.

Decrement procedure

The decrement procedure is among the most important function in the C++ core for track-
ing the progression of nodes through simulation time. Each ‘event’ that can occur to a node
(infection, development of clinical or subclinical infectiousness, recovery, waning immunity,
becoming vaccinated, etc) is accompanied by a duration of the event. The decrement pro-
cedure decrements the time remaining at each status, and for some events (for example,
recovery from infectiousness) will automatically trigger a status change; for other events
(like eligibility for vaccination), eligible nodes are placed in a queue for the next event to
occur.

Random contacts

Random contacts are drawn for the daytime hours, 8am-6pm, using the network configuration
model (as described in the main text; Albert-László Barabási 2021). First, the number
of daily-nonhousehold contacts is supplied for each simulation node; this number is first
multiplied by the isolation multiplier if the node is clinically infectious and contact multiplier
if included in the model, then taken to be a random draw from a Poisson distribution with
rate parameter equal to the product of all three terms. This is done to allow for minor
stochasticity in the model. Each node is assigned a number of stubs equal to this Poisson
random draw; if the total number of stubs subs to an odd number, one stub is randomly
deleted until the sum is an even number. Should this sum be zero stubs then the procedure
aborts. The configuration model is drawn using the igraph_degree_sequence_game from
the igraph library; the graph is then simplified to remove self-edges but not multi-edges.

Non-Pharmaceutical Interventions

We include a single generic Non-Pharmaceutical Intervention (NPI) intended to capture the
combined transmission-preventing power of mask usage, gloves, and physical distancing. In
wave 6, about 60% BICS respondents reported the usage of any of these possible NPIs in any
of their reported contacts; any simulation nodes representing these respondents are given an
NPI status of True. During the daytime simulation procedure, if two non-household nodes
are connected who both have an NPI status of True, then their transmission probability is
lowered by a supplied parameter representing the strength of these NPIs (see below).

Vaccine Distribution

Nodes in the population are assigned a discrete priority level for vaccination before the sim-
ulation begins. A set number of vaccines are distributed daily among nodes with the highest
priority level until no nodes in that priority level remain; remaining doses are distributed
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Figure B.1: Albert-László Barabási 2021’s diagram representing realizations of the Network Config-
uration Model showing multiple ways of connecting the four nodes in panel (a) with corresponding
degree k. (b): no self- or multi-edges; (c): allowing self-edges but not multi-edges; (d): allowing
multi-edges, but not self-edges. Our application would allow for configuration (d) but not (c).
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among nodes with the next highest priority level, repeating until the day’s number of vac-
cines are exhausted. A priority level of −1 indicates that the node declines or is ineligible
for vaccination. Nodes are eligible to receive the second dose of the vaccine 25 days after
they received first dose. After a period of time, vaccine efficacy is assumed to wane; at this
point, nodes are eligible to receive an additional booster dose.
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Demographic Rates

Fertility and all-cause mortality are incorporated in the simulation according to published
age-specific rates, aggregated for each age group in the simulation:

Figure B.2: Baseline demographic vital rates used in the simulation.
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B.1.2 Supplementary Figures

Booster Dose Distribution Day, High Uptake

Figure B.3: Summary of simulations by day of booster dose distribution, varied as the first of each
month, in the absence of seasonal forcing of the transmission parameter β, with 90% vaccine uptake.
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Figure B.4: Trajectory of simulations by day of booster dose distribution, without seasonal forcing,
for selected distribution days: Jan 1st (day 1), May 1st (day 121), July 1st (day 182), Sept 1st (day
244), and Nov 1st (day 305), with 90% uptake.

128



Seasonality in contact rates

Figure B.5: Summary of simulations at selected levels of c1, the amplitude of seasonal forcing of
the contact parameter.
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Figure B.6: Trajectories at selected levels of c1, the amplitude of seasonal forcing of the contact
parameter.
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Isolation of infectious cases

Figure B.7: Outbreak seasonality at selected levels of isolation
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Figure B.8: Summary of simulations at selected levels of β0 with 90% isolation of clinically infectious
cases (corresponding to an isolation multiplier of 10%).
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Appendix C

Supplementary Material for Chapter 3

C.1 Adjacency Matrices for Geostatistical Models
For the analysis of Chagas disease, we focus on methods for areal or polygon data, which
refer to a region of space which contains a subset of the observations of interest. Polygonal
data is a common format for administratively-collected spatial data, often representing a
governmentally-defined area—such as a state or province equivalent, city or municipality,
or even more specific form such as census tract or block. Areal data exist in contrast
to point-referenced data, which instead link each observation with longitude and latitude
coordinates. Whereas areal data can be generated from point data using a simple point-
in-polygon operation, the reverse process is not possible as the specific coordinates are lost
when points are tallied within polygons.

Critical in any spatial statistcal work is the concept of the neighborhood matrix: a
mathematical representation of geographic adjacency. For example, this 3x3 grid could be
representing by binary neighborhood matrix W:

1 2 3

4 5 6

7 8 9

W =



0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0


A symmetric binary matrix like this is most common for representing adjaceny, but can

easily be extended to include reciprocal distance weights, higher-order neighbors, or measures
of connectivity that are not strict adjacency (for example, consider transit networks or other
transportational features that mean the travel time between two locations is not linear
with distance). While estimates will change between different matrices W, the following
distributional properties remain the same.
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In the general case of eq. 3.1 with a non-binary neighborhood matrix W , the equivalent,
generalized model can be parameterized:

ϕi|ϕj ̸=i ∼ N

(
1

wi+

∑
j

wijϕj,
τ 2

wi+

)
(C.1)

where wi+ =
∑

j wij, or the sum of matrix W row i.

C.2 Commentary on the BYM- type model
In their 1991 paper, BYM use the IAR distribution (eq. 3.1) to fit a log-linear Poisson GLM
of the form:

logµi = logEi + xiβ + ϕi

where µi is the rate of disease occurrence in unit i, E is expected count unit i, x and β are
explanatory variables and regression coefficients, and error term ϕi has the prior distribution
of eq. 3.1. This model, which utilizes internal standardization, was called by Banerjee,
Carlin, and Gelfand “cheating (or at least ‘Empirical Bayes’)” since the Ei are not fixed but
rather itself part of the data, posing a ‘null hypothesis’ about if there were to be absent a
spatial pattern (BCG, p.151)1. As well, BCG and Leroux et al (2000) note that this model
may have poor performance as using the CAR prior alone as an error term may over-smooth
aspatial variation, which may be mechanistically important to the model.

The IAR distribution is conditionally specified for each geographic unit and is improper,
meaning that it does not integrate to produce a valid probability distribution, instead only
able to show the proportional density between spatial units. This is problematic for stochas-
tic generation and maximum likelihood estimation, but is valid for Bayesian inference as
posterior density need only be proportional to the prior density (Besag, York, and Mollie
1991). However, it is possible and mathematically convenient to consider equation 3.1 in its
joint, albeit improper, form. Besag (1974) showed that fully conditional distributions of this
type can utilize Brook’s Lemma (1964) to recover the full conditional form, as a multivariate
normal distribution with mean 0 and variance-covariance matrix related to the adjacency
matrix. Banerjee, Carlin, and Gelfand demonstrate this concisely, determining the joint
distribution of ϕ from a fully specified set of conditionals:

p(ϕ1, ..., ϕn) ∝ exp

{
− 1

2τ 2

∑
j∼i

(ϕi − ϕj)
2

}
(C.2)

which is also known as the pairwise-differences formula (Banerjee, Carlin, and Gelfand 2015,
p.81, eqn. 4.16). Equation C.2 can be utilized to provide convenient estimation in Bayesian

1This is forgiveable as BYM—who were working in digital image restoration—were the first to demonstrate
how this technique could be used in other fields, which has become a foundational technique in Bayesian
Disease Mapping.
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MCMC, using software such as Stan as pairs of adjacent units can be efficiently stored in
program memory, and the proportional density can be quickly computed without the need
for matrix inversion. Since Stan estimates the proportional log-density of ϕ up to a constant,
Morris et al. 2019 demonstrate that equation C.2 can be quickly evaluated as:

phi ~ sigma * -0.5 * dot_self(phi[node1] - phi[node2]);
sum(phi) ~ normal(0, 0.001 * N);

where sigma is the precision rather than the variance, where node1 and node2 are vectors
of adjacent pairs, dot_self takes the dot product of the vector with itself, and the second
line indicates that phi is subject to a soft sum-to-0 constraint. Due to this computational
efficiency and problematic assumptions needed to make this distribution properly integrate,
BCG recommend that the IAR model be used only in the case of a Bayesian prior, and may
be frequently the optimal choice for geostatistical inference (BCG, ch. 4 and BCG, ch. 6,
p.155)

The expression in C.2 is an improper probability distribution since the joint probability
density is only proportional to the derived expression. This is because the variance-covariance
matrix implied is singular, meaning the inverse does not have a unique solution and as a
result the distribution does not necessarily sum to one, as required for valid probability dis-
tributions. For a non-mathematical explaination, consider that each observation is entirely
dependent on its neighbors, which allows us to estimate the total distribution only on rela-
tive terms without a ‘ground truth’ or some external source centering the distribution. To
demonstrate this impropriety, BCG (p.81) derive equation 3.1 by beginning with adjacency
matrix W , which has wij = 1 if i and j are neighbors and 0 otherwise; matrix B where
bij = wij/wi+, or a row-standardized version of matrix W ; and D, a diagonal matrix where
dii is equal to the number of neighbors of i and 0 otherwise. Then, equation 3.1 can be
written in the conditional form as ϕi|ϕj∼i N(

∑
j bijyj, τ

2
i ) since B is the row-standardized

version of W . This would imply that ϕ ∼ MVN(0, [τ(D − W )]−1). Temporarily disre-
garding τ , calculating the covariance matrix Σ−1 of this distribution involves the calculation
(D − W )1 = 0, which is singular; effectively, too many variables without a constraint to
preserve propriety (BCG, p.81). It is possible to make this distribution proper with an addi-
tional parameter, often denoted ρ (α in Morris et al. 2019), by defining the inverse covariance
matrix Σ−1 = D − ρW , so long as ρ is chosen to find a singular solution. BCG list the
bounds under which ρ will provide a non-singular solution, which is related to the eigenvalues
of matrices D and W . Then, the full conditional distribution becomes:

ϕi|ϕj∼i ∼ N

(
ρ
1

ni

∑
j∼i

ϕj,
τ 2

ni

)
(C.3)

BCG write that ρ is sometimes reported as being the degree of spatial autocorrelation, but it
is clear from equation C.3 that the resultant expression rather expresses some proportion of
the spatial gaussian process (p.82). As well, ρ does not map clearly onto any other measures
of spatial autocorrelation, like Moran’s I or Geary’s C, and thus its interpretation outside of
the model is limited.
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Further, the authors remark that the proper CAR model may be attractive in cases where
the spatial pattern is weak, and the improper CAR model may over-smooth heterogeneity.
However, in simulation, the proper CAR model has been shown to nearly always converge
on values of ρ close to 1, as when ρ is less than 1 there presents an identification challenge
between the spatial random effects and the non-spatial random effect. BCG remark (p.155)
that it appears that the data always want ρ to be close to 1. In conclusion, BCG recommend
that the improper IAR model be only used as a Bayesian prior, or in the frequentist case,
use of a SAR or other proper probability distribution.

As noted above, two issues present with using the IAR model alone as a prior for a spa-
tially autocorrelated error term. First, the IAR model is known to show poor performance
when spatial autocorrelation is not very strong, otherwise it will oversmooth random varia-
tion in the data. This issue is rectified with a proper CAR model, but as noted above, BCG
do not recommend usage of the proper CAR prior. Second, the IAR variance parameter τ
has an ambiguous function, and sources differ as to its interpretation. While Leroux (2000)
states that this parameter represents both autocorrelation and over-dispersion simultane-
ously, but Banerjee, Carlin, and Gelfand write that this parameter should not be taken as
representing spatial autocorrelation in any mechanistic way.

Ideally, we would have included the BYM2-type spatial convolution term in both the
Bernoulli and Poisson processes, however in model development we were unable to reach
convergence with the model specified as such: the convolved spatial error for the Poisson
parameter λ failed to be identified. Recall that this term is specified in both the Bernoulli and
Poisson parameters as

(
(
√
ρ/s)ϕ+ (

√
1− ρ)θ

)
σ, where ϕ is the IAR model, θ is N(0, 1),

ρ represents the proportion of variance having a spatial pattern rather than unstructured
error, and σ is the overall variance. The convolved spatial process in the Bernoulli part
showed excellent convergence and mixing with posterior estimates of ρπ ≈ 0.75. As a result,
both the spatially clustering term ϕ and the spatial heterogeneity term θ contributed to
posterior estimates of π and the likelihood of the model. However, in the Poisson part,
median posterior estimates of ρλ ≈ 0 such that the convolved error term ≈ θσ. As a result,
the sampler could not identify values for ϕλ, functionally searching the entire parameter
space for ϕλ without any effect on the likelihood of the model. Ultimately, this caused slow
evaluation and divergences, but did not affect the resultant values of other parameters.

C.3 Zero-Inflated Models and their efficient estimation
in Stan

To assess the appropriateness of the ZIP distribution for our data, we conducted a naive
maximum likelihood estimate of the Poisson parameter λ and the Zero-Inflated Poisson pa-
rameters π, λ without any adjustment for spatial structure, annual deviations, or covariates.
Likelihood functions for both the Poisson-only specification and ZIP specification were op-
timized over the municipality-year counts of Chagas incidence using R’s multivariate optim
routine. The maximum likelihood estimate of Poisson-only parameter λ was 0.1053 with

136



log-likelihood ℓℓ = 57773.01, and the estimate of ZIP parameters were π = 0.9849 and
λ = 6.9885 with ℓℓ = 19330.45. To test the relative fit of both models, we conduct Wilk’s
test for likelihood ratios, which assumes that the ratio of two likelihoods is asymptotically
distributed as χ2(df = dfH1 − dfH0). Taking the Poisson-only specification as the null hy-
pothesis and the ZIP specification as the alternative, the probability of observing these data
generated by the Poisson-only specification instead of the ZIP specification is p ≈ 0. Hence,
we can comfortably reject the Poisson-specification in favor of the ZIP specification.

Using ZIP models may provide an additional computational advantage over a regular
Poisson specification. We found that a model of the type laid out in the previous sections,
which models the count of Chagas disease as a Poisson-distributed GLM with terms for fixed
effects for spatial and aspatially-clustered errors, showed slow evaluation and poor estimation.
While the sheer dimensionality of the model—approximately estimating 6 parameters for
5000 municipalities across 19 years—was undoubtedly responsible for part of the problem,
we hypothesized that the complicated posterior geometry caused by the overdispersion of
0s in the dataset was partially to blame. To test this hypothesis, we ran two test cases
each with a single UF over the first two years of the study period. We chose Pará (PA),
which has the highest number of Chagas cases at 5259 over the 19 year study period in 143
municipalities, and Roraima (RR), with the second lowest number of cases at 10 cases in
15 municipalities2. In Stan, the test models were run for 500 warmup iterations and 500
sampling iterations. For PA, the model completed evaluation in 2508 seconds for an average
parameter effective sample size (ESS) of 2234.738 (SD = 1413). However, despite RR having
one tenth the number of municipalities of PA, the model for RR took more than twice as
long to evaluate—5994.4 seconds— for an average parameter ESS of 1416.437 (SD = 451.5).
Both models showed convergence (R̂ ≤ 1.01) for more than 99% of parameter estimates.
When this test was replicated using the ZIP model with an autoregressive component in
the Bernoulli part only, the PA model evaluated in 46.2 seconds with an average parameter
effective sample size of 470.96, and the RR model evaluated in 57 seconds with an average
ESS of 25.39.

Naive implementation of Spatio-Temporal statistical models involves many pairwise com-
parisons, which can be prohibitively computationally expensive for MCMC estimation. For
example, our spatio-temporal adjacency structure may contain not only neighboring obser-
vations between all 5000 municipalities in Brazil, but the temporally-correlated neighbors as
well. Assuming that an average municipality has 4 spatial neighbors and 4 temporal neigh-
bors, this will result in inverting a neighborhood matrix of over 1.6 billion elements which
is not reasonably evaluated with standard computing resources, let alone for thousands of
MCMC iterations. We have taken many steps towards quick and efficient estimation in lieu
of this challenge, which is a major contribution of this research in addition to the primary
substantive estimation of Acute Chagas Disease incidence.

When sampling a ZIP GLM in Bayesian software such as Stan, we will have to write a
custom log-probability mass function (LPMF, in Stan terms) to cover zero-inflation. First,

2Only the Federal District, DF, had fewer cases, at 4 over the 19 year period, but was not chosen since
that UF contains only one municpality.
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we assume that Bernoulli parameter π is estimated on a logit scale and Poisson parameter λ is
estimated on a log scale, as is common for GLMs. Second, we must evaluate the probability
density on the log scale. The following is an unoptimized ZIP estimation, adapted from
Stan’s documentation for Zero-Inflated Poisson models3:
for (t in 1:T){

for (n in 1:N) {
if (y[t,n] == 0) {

target += log_sum_exp(bernoulli_logit_lpmf(1 | pi[t,n]),
bernoulli_logit_lpmf(0 | pi[t,n])

+ poisson_log_lpmf(y[t,n] | pi[t,n]));
} else {

+= bernoulli_logit_lpmf(0 | pi[t,n])
+ poisson_log_lpmf(y[t,n] | pi[t,b]);

}
}

}

where target is the log-probability of the model and log_sum_exp(a,b) = log(exp(a) +
(exp(b)). Clearly, this is a highly inefficient way to evaluate the model since the log-
probability statement is conditioned on the data y which is known and constant through
the course of the simulation. In computational efficiency terms, each evaluation of the likeli-
hood will complete in O(T ·N) time, meaning that the time to evaluate the log-probability
statement is proportional to the number of municipalities times the number of years. For our
application to Chagas Disease in Brazil, which contains observations of approximately 5000
municipalities over 19 years, this becomes extraordinarily slow, evaluating 1000 warmup and
sampling iterations on the scale of 12-24 hours.

To optimize this Stan modeling statement, the Stan documentation recommends parti-
tioning the data into zero and non-zero elements and evaluating them separately, but does not
elaborate on how to do so in a GLM framework, which we have developed for our application.
Doing so will allow for separate, efficient vectorized evaluation of the Bernoulli and Poisson
GLM statements. Indeed, as explained elsewhere, vectorization is one of the primary ben-
efits of using Stan over other Bayesian MCMC software suites, since vectorized probability
statements evaluate much faster and with less overhead than doubly-looped functions. First,
consider a matrix of counts Y with dimensions T (number of years) and N (number of mu-
nicipalities). From Y , we will derive two matrices zero_idx and nonzero_idx with the same
dimensions, containing the indices of zero and nonzero observations, and supported by vectors
zero_max and nonzero_max with dimension T , where each element contains the annual num-
ber of zero and nonzero entries. In this way, for matrix row t ∈ T columns [1 : zero_max[t]]
contains the index of municipalities with zero entries, and [zero_max[t]+ 1 : N ] are unini-
tialized. Beginning with matrix of counts Y :

Y =


0 1 0 3 2
1 0 0 0 1
2 0 2 0 1
0 0 0 0 0
2 1 3 1 2


3https://mc-stan.org/docs/stan-users-guide/zero-inflated.html
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that yields derived zero and non-zero matrices:

zero_idx =


1 3 / / /
2 3 4 / /
2 4 / / /
1 2 3 4 5
/ / / / /

 nonzero_idx =


2 4 5 / /
1 5 / / /
1 3 5 / /
/ / / / /
1 2 3 4 5


with max vectors:

zero_max =
[
2 3 2 5 0

]
nonzero_max =

[
3 2 3 0 5

]
In Stan, zero-counts in year t can be be easily indexed from Y as Y[t, zero_idx[t,

1:zero_max[t]]] and nonzeros as Y[t, nonzero_idx[t, 1:nonzero_max[t]]]. Essen-
tially, these sparse matrices are an efficient way to store ragged arrays, which are not sup-
ported natively in a C-based language like Stan. The R code for generating these matrices
and vectors from matrix Y in:

n_T = nrow(Y)
N = ncol(Y)
zero_max = array(rep(0,n_T))
nonzero_max = array(rep(0,n_T))
zero_idx = matrix(0, nrow = n_T, ncol = N)
nonzero_idx = matrix(0, nrow = n_T, ncol = N)

for (t in 1:n_T) {
for (n in 1:N){

if (Y[t,n] == 0) {
zero_max[t] = zero_max[t] + 1
zero_idx[t, zero_max[t]] = n

}
else {

nonzero_max[t] = nonzero_max[t] + 1
nonzero_idx[t, nonzero_max[t]] = n

}
}

}

Then, we can turn to writing a log probability mass function describing equations 3.7
and 3.8 that takes advantage of this vectorization. First, recall that π is on the logit scale
and λ is on the log scale, and we wish to evaluate the probability on the log scale. Assuming
that π and λ have been transformed using their corresponding inverse-link functions, this
yields likelihood:

log(P (yi = 0)) = log
(
πi + (1− πi)e

λi
)

(C.4)
log(P (yi = k)) = log

(
(1− πi)e

λiλki /k!
)

(C.5)

Equation C.4 is problematic in that it does not simplify to built-in Stan probability state-
ments, but can be written in a way that is efficiently vectorized4. Luckily, equation C.5

4In theory, an additional optimization of the Zero-likelihood involves use of the log-sum-exp trick, which

139



simply evaluates to two independent expressions of Bernoulli probability and Poisson prob-
ability on the log scale, respectively. This means they can be evaluated in Stan as:
vector[N] pi_inv_logit;
vector[N] lambda_exp;

for (t in 1:T) {
pi_inv_logit = inv_logit(pi[t]);
lambda_exp = exp(lambda[t]);

// Zeros
target += sum(log(

pi_inv_logit[zero_idx[t, 1:zero_max[t]]] +
(1-pi_inv_logit[zero_idx[t, 1:zero_max[t]]]) .*
exp(-lambda_exp[zero_idx[t, 1:zero_max[t]]])

));

// Nonzeros
target += bernoulli_lpmf(

rep_array(0, nonzero_max[t]) |
pi_inv_logit[nonzero_idx[t,1:nonzero_max[t]]]

) + poisson_lpmf(
y[t, nonzero_idx[t, 1:nonzero_max[t]]] |
lambda_exp[nonzero_idx[t, 1:nonzero_max[t]]]

);
}

In a test case, this vectorized model evaluated 100 warmup iterations and 100 sampling
iterations in 1099 seconds, more than 10 times faster than the non-vectorized example.

C.4 Knorr-Held Spatio-Temporal Models
The other priors outlined in Knorr-Held (2000) are, respectively:

• Type I interaction, where all interaction terms are a priori independent:

P (δ|σδ) ∝ exp

(
−σδ

2

∑
i∈I,t∈T

(δit)
2

)
(C.6)

which is suitable if the space-time interaction does not have any structure.

• Type II interaction, where each spatial unit follows a 1st order random walk indepen-
dent of its neighbors:

P (δ|σδ) ∝ exp

−σδ
2

∑
i∈I,t∈[2:T ]

(δit − δi,t−1)
2

 (C.7)

which is suitable if temporal trends differ between spatial units and the temporal trends
do not have any structure in space.

provides computationally efficient evaluation of log(a+b) = log(exp(a) + exp(b)), but this remains un-
explored at present.
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• Type III interaction, where interaction effects follow and intrinsic autoregression such
as the type laid out in equation 3.1, but are indepdent at each time:

P (δ|σδ) ∝ exp

(
−σδ

2

∑
j∼i,t∈T

(δit − δjt)
2

)
(C.8)

which is suitable if the spatial trends differ between time points, but the temporal
trends do not have any structure in space.

• Type IV interaction, perhaps the most methodologically and conceptually interesting,
where effects are totally dependent over space and time:

P (δ|σδ) ∝ exp

−σδ
2

∑
j∼i,t∈[2:T ]

(δit − δjt − δi,t−1 + δj,t−1)
2

 (C.9)

Which defines a space-time Markov random field and is suitable if temporal trends
are different from location to location but are more likely to be similar in adjacent
locations. This prior can be written in Stan as:

real knorr_held_type4_lpdf(vector delta_t, vector delta_tm1, int N, int[] node1, int[] node2) {
return -0.5 * dot_self(delta_t[node1] - delta_t[node2] - delta_tm1[node1] + delta_tm1[node2]) +

normal_lpdf(sum(delta_t) | 0, 0.001*N) ;
}

where delta_t is the value of δ at time t, delta_tm1 is the value of δ at time t − 1,
node1 and node2 indicate adjacent pairs of nodes, and the normal_lpdf statement
indicates a soft sum-to-0 constraints for δt, as done for the ICAR prior above.

At face value, interaction Type IV would be the most useful for our purposes, however in
model development we found that this model both was under-identified and over-smoothed
random variation in the data. Instead, we opt for Type I priors, which are both simpler
to estimate and more easily identified. Theoretically, type IV interactions are comparing
not only the first degree neighbors—each observation with its spatial neighbors and previous
observation—but also the 2nd order neighbors—the spatial neighbors of temporal neighbors,
or equivalently, the temporal neighbors of spatial neighbors (Knorr-Held 2000). Essentially,
this prior is an extension of the pairwise-differences CAR prior (eq C.2) to the temporal
dimension. Where the pairwise CAR prior focuses on the differences between adjacent units,
the Knorr-Held Type IV prior includes the differences between adjacent units in the current
time period and the prior time period. Knorr-Held remark that such a model may be
useful for modeling the spatio-temporal spread of both infectious diseases and non-infectious
diseases where the underlying risk has a spatio-temporal pattern, as is appropriate for our
application to Chagas disease. For the first time point t = 1, the ‘previous’ time period
t = 0 is unavailable, so for this case only the ‘previous’ time period is instead taken to be a
0 vector, at which point the model simplifies to the ICAR prior. If the full model is specified
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as in equation 3.5, it is likely that identifiability will be poor without highly informative
priors, as was the case for the BYM model above. For the present application to Chagas
disease, it may be possible to disregard the time trends α and γ, since most locations begin
and remain absent Chagas disease throughout the duration of study.

C.5 Stan model code, edited slightly for clarity
functions {

real icar_normal_lpdf(vector phi, int N, array[] int node1, array[] int node2) {
// Soft sum-to-zero constraint
return -0.5 * dot_self(phi[node1] - phi[node2]) + normal_lpdf(sum(phi) | 0, 0.001*N);

}
}
data {

// Number of municipalities
int<lower=0> N;
// Number of years
int<lower=0> T;
// Number of adjacent edges
int<lower=0> N_edges;
// node1[i] adjacent to node2[i]
array[N_edges] int<lower=1, upper=N> node1;
// and node1[i] < node2[i]
array[N_edges] int<lower=1, upper=N> node2;
// count outcomes
array[T,N] int y;
// Population exposure
array[T,N] int E;
// Scaling factor-- scales variance of spatial effects
real<lower=0> scaling_factor;
// indices of zero counts
array[T,N] int zero_idx;
// Max number of zero counts
array[T] int zero_max;
// indices of nonzero counts
array[T,N] int nonzero_idx;
// max number of nonzero counts
array[T] int nonzero_max;

}
transformed data {

// Logged population
array[T] vector[N] log_E;

for (t in 1:T) {
log_E[t] = to_vector(log(E[t,1:N]));

}
}
parameters {

// Bernoulli part: Knorr-Held model
// Intercept
real mu_pi;
real mu_lambda;

// Structured temporal trend
vector[T] alpha_pi;
vector[T] alpha_lambda;
real<lower=1e-10, upper=10> sigma_alpha_pi;
real<lower=1e-10, upper=10> sigma_alpha_lambda;

// Structured spatial pattern
vector[N] phi_pi;
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// vector[N] phi_lambda;

// Unstructured spatial pattern
vector[N] theta_pi;
vector[N] theta_lambda;

// Proportion of spatial/aspatial error
real<lower=0, upper=1> rho_pi;
// real<lower=0, upper=1> rho_lambda;
real<lower=1e-10, upper=10> sigma_convolved_pi;
real<lower=1e-10, upper=10> sigma_convolved_lambda;

// Knorr-Held Type I spatio-temporal interaction
array[T] vector[N] delta_pi;
array[T] vector[N] delta_lambda;
real<lower=1e-10, upper=10> sigma_delta_lambda;
real<lower=1e-10, upper=10> sigma_delta_pi;

}
transformed parameters{

array[T] vector[N] pi; // Bernoulli GLM term
array[T] vector[N] lambda; // Poisson GLM term

for (t in 1:T) {
pi[t] = inv_logit(mu_pi +

alpha_pi[t] +
sigma_convolved_pi * (

sqrt(rho_pi/scaling_factor) * phi_pi + sqrt(1-rho_pi)*theta_pi
) +
sigma_delta_pi * delta_pi[t]);

lambda[t] = exp(log_E[t] + mu_lambda +
alpha_lambda[t] +
sigma_convolved_lambda * (

// sqrt(rho_lambda/scaling_factor) *
// phi_lambda
theta_lambda
// sqrt(1-rho_lambda)*theta_lambda

) +
sigma_delta_lambda * delta_lambda[t]);

}
}
model {

// Intercepts
mu_pi ~ normal(-10, 10);
mu_lambda ~ normal(-5, 10);

// Structured temporal trend
alpha_pi[1] ~ normal(0, sigma_alpha_pi);
alpha_pi[2:T] ~ normal(alpha_pi[1:(T-1)], sigma_alpha_pi);
sigma_alpha_pi ~ gamma(2, 1);

alpha_lambda[1] ~ normal(0, sigma_alpha_lambda);
alpha_lambda[2:T] ~ normal(alpha_lambda[1:(T-1)], sigma_alpha_lambda);
sigma_alpha_lambda ~ gamma(2, 1);

// Structured spatial patten
phi_pi ~ icar_normal(N, node1, node2);
// phi_lambda ~ icar_normal(N, node1, node2);

// Unstructured spatial error
theta_pi ~ std_normal();
theta_lambda ~ std_normal();

// Prior on Rho
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rho_pi ~ beta(.5, .5);
// rho_lambda ~ beta(.5, .5);

// Convolved variance
sigma_convolved_pi ~ gamma(2,1);
sigma_convolved_lambda ~ gamma(2,1);

for (t in 1:T){
// Interaction
delta_pi[t] ~ std_normal();
delta_lambda[t] ~ std_normal();

}
sigma_delta_pi ~ gamma(2, 1);
sigma_delta_lambda ~ gamma(2, 1);

// Likelihood
for (t in 1:T) {

// Vectorized ZIP
// Zeros
if (zero_max[t] > 0) {

target += log(
pi[t, zero_idx[t, 1:zero_max[t]]] +

(1 - pi[t, zero_idx[t, 1:zero_max[t]]]) .*
exp(-lambda[t, zero_idx[t, 1:zero_max[t]]])

);
}

// Nonzeros
if (nonzero_max[t] > 0) {

target += bernoulli_lpmf(
rep_array(0, nonzero_max[t]) |
pi[t, nonzero_idx[t,1:nonzero_max[t]]]

);
target += poisson_lpmf(

y[t, nonzero_idx[t, 1:nonzero_max[t]]] |
lambda[t, nonzero_idx[t, 1:nonzero_max[t]]]

);
}

}
}

C.5.1 Main Model Additional Figures

C.5.2 Climate Model Additional Figures
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Table C.1: MCMC convergence diagnostics for main smoothing model selected parameters

Parameter R̂ 5th Quantile R̂ 95th Quantile ESS 5th Quantile ESS 95th Quantile

π 1.00 1.01 941.00 3, 708.96
λ 1.00 1.00 6, 116.68 10, 733.15
ϕπ 1.00 1.00 993.54 3, 845.31
θπ 1.00 1.00 8, 329.99 12, 173.52
θλ 1.00 1.00 4, 293.10 11, 373.93
απ 1.00 1.01 430.58 635.58
αλ 1.00 1.01 364.32 537.66
δπ 1.03 1.03 316.20 316.20
δλ 1.00 1.00 734.21 734.21

Figure C.1: Spatial process in the Poisson term, without temporal effects. A: overall rate of Chagas,
calculated as Popi×λi, where λi = exp(µλ+θi∗σi); B: per-capita rate of Chagas λ, net of population;
C: spatial heterogeneity term θλ, with N(0, 1) prior.
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Variable name Description
BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3 Isothermality (BIO2/BIO7) (×100)
BIO4 Temperature Seasonality (standard deviation ×100)
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month
BIO7 Temperature Annual Range (BIO5-BIO6)
BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO10 Mean Temperature of Warmest Quarter
BIO11 Mean Temperature of Coldest Quarter
BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
BIO19 Precipitation of Coldest Quarter

Table C.2: WorldClim suite of Bioclimatic variables downloaded from the Copernicus Cli-
mate Change Service’s Global Bioclimatic Indicators from 1950-2100 Derived from Climate
Projections dataset.
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Variable PC1 PC2 PC3 PC4 PC5 PC6

Annual Mean Temperature 0.316 -0.083 0.019 -0.066 0.065 -0.143
Mean Diurnal Range -0.010 0.286 -0.494 -0.137 0.409 0.018
Isothermality 0.171 0.082 -0.133 0.408 0.662 0.139
Temperature Seasonality -0.271 0.104 -0.074 -0.294 -0.159 -0.127
Max Temperature of Warmest Month 0.261 0 -0.186 -0.370 0.010 -0.216
Min Temperature of Coldest Month 0.302 -0.155 0.130 -0.032 -0.016 -0.147
Temperature Annual Range -0.114 0.224 -0.417 -0.412 0.036 -0.054
Mean Temperature of Wettest Quarter 0.295 -0.038 0.003 0.061 0.056 -0.457
Mean Temperature of Driest Quarter 0.296 -0.113 0.073 -0.172 0.082 0.067
Mean Temperature of Warmest Quarter 0.292 -0.075 -0.005 -0.260 -0.030 -0.217
Mean Temperature of Coldest Quarter 0.315 -0.099 0.030 0.012 0.077 -0.061
Annual Precipitation -0.175 -0.424 -0.170 -0.015 0.122 -0.128
Precipitation of Wettest Month -0.051 -0.411 -0.370 0.127 -0.172 0.027
Precipitation of Driest Month -0.223 -0.173 0.257 -0.220 0.316 -0.062
Precipitation Seasonality 0.222 0.099 -0.310 0.125 -0.268 0.222
Precipitation of Wettest Quarter -0.052 -0.428 -0.359 0.149 -0.092 -0.054
Precipitation of Driest Quarter -0.257 -0.156 0.177 -0.214 0.308 -0.143
Precipitation of Warmest Quarter -0.251 -0.050 -0.109 0.297 0.049 -0.540
Precipitation of Coldest Quarter 0.041 -0.438 -0.013 -0.282 0.159 0.472

Standard Deviation 3.084 1.809 1.515 1.323 0.882 0.716

Table C.3: Principal Components 1-6 of the 19 WorldClim Bioclimatic Variables for median
municpality-years in Brazil, 2000-2019.
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Figure C.2: Global AR(1) time trend for Bernoulli and Poisson processes, on the (A) crude scale and
(B) transformed scale, where the transformed scale is logit−1(µλ+απ) for the Bernoulli probability
and exp(µλ+αλ) for the Poisson process. While the Poisson process always stays near 0, indicating
that the rate of Chagas conditional on its presence in an area is stable over time, the global temporal
trend of the Bernoulli parameter indicating probability of non-exposure drops initially, recovering
to 100% by 2008. This implies that over the period of study, Chagas disease became much less
global and more local in presentation.
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Figure C.3: Screeplot of variance and cumulative variance explained by the first n principal com-
ponents, with 95% of cumulative variance indicated by the dotted line.
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Figure C.4: Plot of Climate Covariates, specified for both the Bernoulli process (π) and Poisson
process (λ) as each municipality-year’s location in principal component space of the 19 WorldClim
Bioclimatic Variables.
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Figure C.5: Differences in parameter estimates between the main smoothing model and the climate
covariate model.
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