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ABSTRACT OF THE DISSERTATION

Copula-based Econometric Models of Intertemporal and Cross-sectional

Dependence

by

Juwon Seo

Doctor of Philosophy in Economics

University of California, San Diego, 2015

Professor Brendan K. Beare, Chair

The modeling of nonlinear and non-Gaussian dependence structures is of

great interest to many researchers. Particularly, copula-based models have recently

attracted a fair amount of attention due to their applicability and flexibility. This

dissertation studies copula-based econometric models of intertemporal and cross-

sectional dependence: the first and the third chapters analyze some general depen-

dence types characterized by copulas, time irreversibility and stochastic monotonic-

ity respectively. The second chapter focuses on the development of new copula-

based models for stationary multivariate time series.

The first chapter concerns a dependence property called time irreversibility.

When we say a model is time irreversible, it means we may expect a plot of the

series to exhibit different patterns when time runs forward and backward. We fre-

quently observe time irreversibility in the asymmetric fluctuation of stock market

data, unemployment rates, price series or business cycles. In the chapter we show

that time reversibility is equivalent to the exchangeability of a copula function, and

xii



suggest a nonparametric test for time irreversibility. The distinguishing feature of

our test is that it can detect any arbitrary form of irreversibility. We also show how

time irreversible behavior may be described using a function called the circulation

density, and propose a nonparametric estimator of this function.

While my first project mainly concerned the first order stationary Markov

chains of univariate time series, we turn our attention to higher dimensional cases

in the second chapter. We show how to construct flexible models for multivariate

time series using a graphical representation of joint distributions called vine cop-

ulas. Building on existing studies of copula-based univariate Markov models, our

extension is made in two directions: (1) we consider multivariate time series, and

(2) we allow Markov chains of any finite order. We propose a vine structure called

the M-vine that is particularly well suited to model stationary Markov chains, and

convenient to capture some interesting intertemporal and contemporary dependen-

cies. An empirical application to the exchange rates of Korean won (KRW) and the

Taiwanese dollar (TWD) is provided.

In the last chapter, we study stochastic monotonicity, a dependence prop-

erty that can be reframed in terms of the concavity of cross-sections of a copula

function. Stochastic monotonicity is a distributional property which says that two

variables tend to be positively associated, and it has been of great interest in many

areas of economics such as experimental design, information economics, and labor

economics. In this chapter, we discuss how to improve the power of the tests by

using a modified bootstrap technique to choose a critical value that delivers a lim-

iting rejection rate equal to nominal size over a wide region of the null hypothesis.

To show the validity of this approach we draw on recent results on the directional

differentiability of the least concave majorant operator, and on bootstrap inference

when smoothness conditions sufficient to apply the functional delta method for the

bootstrap are not satisfied.
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Chapter 1

Time Irreversible Copula-based

Markov Models

Abstract. Economic and financial time series frequently exhibit time ir-

reversible dynamics. For instance, there is considerable evidence of asymmetric

fluctuations in many macroeconomic and financial variables, and certain game the-

oretic models of price determination predict asymmetric cycles in price series. In

this paper we make two primary contributions to the econometric literature on time

reversibility. First, we propose a new test of time reversibility, applicable to sta-

tionary Markov chains. Compared to existing tests, our test has the advantage of

being consistent against arbitrary violations of reversibility. Second, we explain

how a circulation density function may be used to characterize the nature of time

irreversibility when it is present. We propose a copula-based estimator of the cir-

culation density, and verify that it is well behaved asymptotically under suitable

regularity conditions. We illustrate the use of our time reversibility test and circu-

lation density estimator by applying them to five years of Canadian gasoline price

markup data.

1



2

1.1 Introduction

A central concern of time series econometrics is modeling the dynamic be-

havior of random processes over time. Dynamic behavior may be classified as either

time reversible or time irreversible. Loosely speaking, we say that a process is time

reversible if its probabilistic structure is unaffected by reversing the direction of

time. For instance, if a process is characterized by frequent small decreases and oc-

casional large increases, then if we were to reverse the direction of time we would

instead obtain a process characterized by frequent small increases and occasional

large decreases. Such a process may therefore be described as time irreversible.

Questions about time reversibility arise naturally in the study of the business

cycle. Rothman (1991) refers to the so-called Mitchell-Keynes business cycle hy-

pothesis, which posits that economic expansions are more gradual than economic

contractions. In the General Theory, Keynes (1936, p. 314) wrote that “the sub-

stitution of a downward for an upward tendency often takes place suddenly and

violently, whereas there is, as a rule, no such sharp turning point when an upward is

substituted for a downward tendency” This quotation appears also in Neftçi (1984)

and DeLong and Summers (1986). In these two papers an attempt was made to

test empirically for the presence of asymmetry in the business cycle. Neftçi (1984)

argued for the importance of asymmetric fluctuations, finding evidence of time irre-

versibility in the US unemployment rate. DeLong and Summers (1986) concurred

with Neftçi’s assessment of irreversible dynamics in US unemployment, but found

no evidence of time irreversibility in US gross national product or industrial pro-

duction, or in any of these three variables in five other OECD nations. However,

in the 1990’s and beyond, more sophisticated econometric techniques were used to

identify time irreversible behavior in a wide range of macroeconomic and finan-

cial variables; see e.g. Rothman (1991), Ramsey and Rothman (1996), Hinich and

Rothman (1998), Chen et al. (2000), Chen and Kuan (2002), Darolles et al. (2004),

Racine and Maasoumi (2007), and Psaradakis (2008).
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Time irreversible behavior may also arise naturally in models of oligopolis-

tic price setting. Edgeworth price cycles are said to occur when competing firms

engage in extended periods of sequential price undercutting, interspersed with occa-

sional short periods of “relenting”, during which one firm raises its price significant-

ly and the others follow. This behavior leads to time irreversible price series exhibit-

ing gradual declines and sudden sharp increases, a pattern sometimes referred to as

“rockets and feathers” (see e.g. Tappata, 2009). Maskin and Tirole (1988) provided

dynamic game-theoretic foundations for the existence of Edgeworth price cycles in

Bertrand duopolies. Subsequent extensions were provided by Eckert (2003), who

examined the case of asymmetrically sized firms, and Noel (2008), who considered

markets with more than two firms, among other scenarios. Empirical researchers

(see e.g. Eckert, 2002; Noel, 2007; Wang, 2009; Lewis and Noel, 2011) have found

that many retail gasoline markets exhibit prominent Edgeworth price cycles over

time. This behavior is not confined to gasoline markets: Peltzman (2000) examined

price data for 242 different goods, finding evidence of asymmetric price movements

in more than two thirds of them. Edgeworth price cycles have also been reproduced

in an experimental setting (Cason et al., 2005).

In this paper we consider the property of time reversibility in the context of

copula-based Markov models. This class of models was introduced to the econo-

metric literature by Chen and Fan (2006); subsequent contributions to the subject

include Fentaw and Naik-Nimbalkar (2008), Gagliardini and Gouriéroux (2008),

Bouyé and Salmon (2009), Chen, Koenker and Xiao (2009), Chen, Wu and Yi

(2009), Ibragimov (2009), Beare (2010, 2012), and the recent book by Cherubini

et al. (2011). The time series of interest is assumed to be a stationary real valued

Markov chain. Model specification involves the selection of a distribution function

F to characterize the invariant, or stationary, distribution of the chain, and a copula

function C to characterize dynamic dependence. There are two key advantages to

this approach. First, complex forms of nonlinear dynamic dependence may easily

be introduced with an appropriate choice of C, without any possibility of violating
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the stationarity condition. Second, there is the possibility of combining a paramet-

ric copula C with a nonparametric choice of F , limiting the effect of the curse of

dimensionality while maintaining a degree of flexibility not achievable with fully

parametric models.

For the class of copula-based Markov models, time reversibility is equiva-

lent to a property of C called exchangeability. In Section 1.2 we discuss this equiv-

alence, and explain how a technique proposed by Khoudraji (1995) may be used to

construct parametric families of nonexchangeable copula functions. Our main con-

tributions are provided in Sections 1.3 and 1.4. In Section 1.3 we propose a new test

of time reversibility for stationary real valued Markov chains. The key advantage

of our test is that it is consistent against any violation of time reversibility; existing

procedures are typically only able to detect specific forms of time irreversibility. We

derive the asymptotic behavior of our test statistic, and explain how asymptotically

valid critical values may be obtained using the local bootstrap of Paparoditis and

Politis (2002). Finite sample numerical evidence illustrates the primary strength

and weakness of our test relative to existing tests. In Section 1.4, building on novel

work by McCausland (2007) in the context of finite state Markov chains, we pro-

pose to characterize the structure of time irreversibility in a stationary Markov chain

using a circulation density function. The circulation density function decomposes

the total circulation of the chain – the difference between the unconditional proba-

bilities of an increase or decrease – into contributions associated with each quantile

of the invariant distribution. This provides us with information about whether the

process tends to be more likely to increase or decrease at different quantiles. It turns

out that, under mild regularity conditions, the circulation density function is deter-

mined by the partial derivatives of C along the main diagonal of the unit square. We

propose a nonparametric estimator of the circulation density function and establish

consistency and asymptotic normality. Some encouraging finite sample results are

provided.

We illustrate the use of our time reversibility test and circulation density
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estimator in Section 1.5, with an application to five years of weekly Canadian gaso-

line price markup data. Our results appear to confirm the presence of Edgeworth

price cycles in these data. Moreover, our estimated circulation density is sugges-

tive of price undercutting sequences being more prevalent when we are in the lower

half of the invariant distribution. This finding is consistent with earlier work by

McCausland (2007) using these data.

We offer some concluding thoughts in Section 1.6. The Appendix contains

some technical conditions used to demonstrate the validity of the local bootstrap,

and proofs of the results given throughout the main body of the paper, along with

some supplementary lemmas.

1.2 Nonexchangeable copulas and time irreversibili-

ty

Let X = {Xt : t ∈ Z} be a stationary real valued Markov chain with

invariant cdf F : R → [0, 1]. Darsow et al. (1992) suggested that copula functions

may provide a convenient and powerful way to model the dynamic properties of X .

If F is continuous, then Sklar’s theorem ensures the existence of a unique copula

function C : [0, 1]2 → [0, 1] characterizing the relationship between Xt and Xt+1,

for any t ∈ Z. Letting H : R2 → [0, 1] denote the joint cdf of Xt and Xt+1, we have

P (Xt ≤ x,Xt+1 ≤ y) = H(x, y) = C (F (x), F (y)) for all x, y ∈ R and all t ∈ Z.

Taken together, C and F jointly determine all finite dimensional distributions of X , with

dynamic dependence at lags greater than one determined by the Markov property. Fur-

ther details on copula functions, Sklar’s theorem and related concepts may be found in the

monograph of Nelsen (2006).

The following result provides three equivalent formulations of time reversibil-

ity for stationary Markov chains. It is well understood and we do not provide a

proof.
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Proposition 1.2.1. Suppose X is a stationary real valued Markov chain with con-

tinuous invariant distribution. The following statements are equivalent.

(a) For any consecutive integers t1 < · · · < tn, we have (Xt1 , . . . , Xtn)
d
=

(Xtn , . . . , Xt1).

(b) H(x, y) = H(y, x) for all x, y ∈ R.

(c) C(u, v) = C(v, u) for all u, v ∈ [0, 1].

Property (a) is the standard definition of time reversibility for stationary

time series. Under the Markov property, time reversibility is equivalent to property

(b), sometimes known as the detailed balance condition (McCausland, 2007, p.

308). When F is continuous, the copula C is uniquely defined, and so (b) and (c)

are equivalent. Time reversibility of X is therefore a property of C, the copula

characterizing serial dependence. If X is not time reversible, we say that it is time

irreversible.

A joint cdf H satisfying property (b) in Proposition 1.2.1 or a copula C

satisfying property (c) in Proposition 1.2.1 is said to be exchangeable.1 Nelsen

(2007) studied some aspects of nonexchangeable copulas. He proposed to measure

the nonexchangeability of a copula C using the following quantity:

δ(C) = 3 sup
u,v
|C(u, v)− C(v, u)| . (1.1)

Theorem 2.2 of Nelsen (2007) establishes that 0 ≤ δ(C) ≤ 1 for all copulas C,

with the lower and upper bounds attainable.2 Evidently we have δ(C) = 0 if and

only if C is exchangeable. Larger values of δ(C) signify more substantial nonex-

changeability of C – or, in our context, time irreversibility of X . In Section 1.3

1An alternative characterization of exchangeability involving canonical U-statistic representa-
tions of multivariate distributions and copulas was provided by de la Peña et al. (2006, Theorem
5.5).

2A copula C achieves the upper bound δ(C) = 1 if and only if either C(1/3, 2/3) = 1/3 and
C(2/3, 1/3) = 0, or C(1/3, 2/3) = 0 and C(2/3, 1/3) = 1/3. See Nelsen (2007, Theorem 3.1).
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we will use Nelsen’s measure of nonexchangeability as the basis for constructing a

statistical test of time reversibility.

There are various ways to construct parametric families of nonexchangeable

copulas. Khoudraji (1995) proposed a particularly convenient method by which this

may be achieved; see also Genest et al. (1998) and Liebscher (2008). If C is an

exchangeable copula and α, β ∈ [0, 1], then the following transformation of C is a

copula:

C̃(u, v) = u1−αv1−βC(uα, vβ). (1.2)

We may use (1.2) to generate a family of nonexchangeable copulas using an ex-

changeable copula. For instance, one well-known family of exchangeable copu-

las is the Gumbel family; see e.g. Nelsen (2006, Table 4.1, line 4). This is an

Archimedean family having generator u 7→ (− lnu)γ , with parameter γ ∈ [1,∞).

All Archimedean copulas are exchangeable by construction, and therefore generate

time reversible Markov chains. If we apply transform (1.2) to the Gumbel copula,

we obtain the family of so-called asymmetric3 Gumbel copulas:

C̃Gmbl(u, v) = u1−αv1−β exp
(
− ((−α lnu)γ + (−β ln v)γ)1/γ

)
. (1.3)

The asymmetric Gumbel copula has parameters (α, β, γ) ∈ [0, 1]× [0, 1]× [1,∞),

and is nonexchangeable if α, β > 0, α 6= β, and γ > 1. With some tedious but

routine calculations involving l’Hôpital’s rule, we may verify that the asymmetric

Gumbel copula has lower tail dependence coefficient λL = 0 and upper tail depen-

dence coefficient λU = α + β − (αγ + βγ)1/γ . See Nelsen (2006, pp. 214–217)

for further discussion of tail dependence. When γ → ∞, the asymmetric Gumbel

copula reduces to the well-known Marshall-Olkin copula (Nelsen, 2006, p. 53) with

parameters (α, β) and upper tail dependence coefficient λU = min{α, β}.
3Asymmetry here refers to nonexchangeability. It is important not to confuse nonexchangeabil-

ity with other forms of asymmetry. The ordinary Gumbel copula is asymmetric in the sense of
having different upper and lower tail dependence coefficients, but symmetric in the sense of being
exchangeable. Nelsen (2006, pp. 36–38) discusses different forms of bivariate symmetry.
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Figure 1.1: Scatterplots and Markov sample paths generated by the asymmetric
Gumbel copula
We set α = 1, β = 0.5 and take the invariant distribution to be uniform on (0, 1). γ
is equal to 2 in the top row, 5 in the center row, and 10 in the bottom row.

In Figure 1.1 we display several scatterplots and Markov sample paths gen-

erated using the asymmetric Gumbel copula. The scatterplots on the left were con-

structed by drawing from the asymmetric Gumbel copula with α = 1, β = 0.5,

and γ = 2, 5, 10. Nonexchangeability is mildly apparent when γ = 2, and much

more obviously apparent when γ = 5, 10. The nonexchangeability measure given

in (1.1) was numerically calculated to be 0.077 when γ = 2, 0.1716 when γ = 5,

and 0.2087 when γ = 10. The Markov sample paths on the right side of Figure

1.1 were generated using the copulas in the corresponding scatterplots to the left.
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The invariant distribution of each chain was chosen to be uniform on (0, 1). Ca-

sual inspection reveals that decreases in these sample paths tend to be smaller and

more frequent than increases. Again, this is much more obvious for larger values of

γ. The tendency to exhibit many small decreases and occasional large increases is

manifested in, for instance, Edgeworth price cycles. We shall return to the subject

of Edgeworth price cycles in our empirical application in Section 1.5. For more de-

tails on how to simulate Markov chains using a given copula function and invariant

distribution, and on how to empirically estimate models of this kind, we refer the

reader to Chen and Fan (2006).

1.3 Testing for time irreversibility

Following the empirical macroeconomic literature on business cycle asym-

metry in the 1980s and early 1990s (see e.g. Neftçi, 1984; DeLong and Summers,

1986; Rothman, 1991), a number of authors have proposed statistical tests of time

reversibility. Ramsey and Rothman (1996) proposed a test of time reversibility

based on symmetric bicovariances, while Chen et al. (2000) proposed a test based

on the characteristic function of the differenced process. Chen (2003) proposed a

more general class of time reversibility tests subsuming both of the aforementioned

tests. Hinich and Rothman (1998) proposed a frequency-domain test involving the

bispectrum. Paparoditis and Politis (2002) and Psaradakis (2008) suggested us-

ing resampling techniques to test whether the differenced process has median ze-

ro. Darolles et al. (2004) proposed a test based on nonlinear canonical correlation

analysis. Racine and Maasoumi (2007) proposed an entropy-based test that targets

asymmetry in the distribution of the differenced process. Sharifdoost et al. (2009)

proposed a test applicable to finite state Markov chains.

In this section we propose a new test of time reversibility. A key advantage

of our test is that it is consistent against arbitrary forms of time irreversibility. Most

of the tests just mentioned are only consistent against specific forms of time irre-
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versibility. The test of Sharifdoost et al. (2009) does not appear to be subject to this

critique, but its applicability is limited by the assumption of a finite state space. In

Section 2.3.1 we explain how our test statistic is constructed, and discuss its asymp-

totic behavior under time reversibility and time irreversibility. In Section 2.3.2 we

explain how the local bootstrap of Paparoditis and Politis (2002) can be used to

obtain suitable critical values for our test statistic. In Section 2.3.3 we report nu-

merical evidence pertaining to the finite sample performance of our test, using the

test of Paparoditis and Politis (2002) as a point of comparison.

1.3.1 Test statistic and limiting distribution

As in the previous section, let X = {Xt : t ∈ Z} be a stationary real valued

Markov chain with continuous invariant distribution F , joint cdf H for (Xt, Xt+1),

and corresponding copula function C. Let θ ∈ [0, 1/3] be given by

θ = sup
x,y
|H(x, y)−H(y, x)| .

Since F is continuous, we must have θ = 1
3
δ(C), where δ(C) is the measure of

nonexchangability proposed by Nelsen (2007) and given in (1.1) above. Recalling

Proposition 1.2.1(b), we know that X is time reversible if and only if θ = 0.

We therefore propose to test the null hypothesis of time reversibility using a test

statistic formed from an empirical analogue to θ. Suppose we observe the T random

variables X1, . . . , XT . A natural empirical analogue to θ is

θT = sup
x,y
|HT (x, y)−HT (y, x)| ,

where HT is the empirical distribution function

HT (x, y) =
1

T − 1

T−1∑

t=1

1(Xt ≤ x,Xt+1 ≤ y).
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θT is the statistic we will use to test the null hypothesis that X is time

reversible.4 We shall obtain the asymptotic behavior of θT under the following

conditions on X .

Assumption 1.3.1. The following statements are true.

(a) X is a stationary real valued Markov chain.

(b) F is continuous.

(c) The α-mixing coefficients of X satisfy αT = O(T−η) for some η > 1.

Parts (a,b) of Assumption 1.3.1 are basic to our analysis. The mixing con-

dition introduced in part (c) is mild for practical purposes. Chen and Fan (2006),

Chen, Wu and Yi (2009) and Beare (2010, 2012) identify conditions on C, satisfied

for a wide range of copula functions used in applications, that imply a geometric

rate of α-mixing. On the other hand, Example 4.1 of Beare (2012) identifies a fam-

ily of copula functions that generate α-mixing at a rate no faster than T−1, so part

(c) is not automatically satisfied.

Under Assumption 1.3.1 we are able to establish the following result con-

cerning the asymptotic behavior of θT under the null and alternative hypotheses.

The proof, which may be found in the Appendix, is a straightforward application

of results due to Rio (2000) delivering functional central limit theory for weakly

dependent processes.

Theorem 1.3.1. Under Assumption 1.3.1, the following statements are true.

(a) If X is time reversible, then T 1/2θT →d supx,y |B(x, y)−B(y, x)| as

T → ∞, where B is a centered Gaussian process on R2 with covariance

kernel

cov
(
B(x, y),B(x′, y′)

)
=
∑

t∈Z
cov

(
1(X0 ≤ x,X1 ≤ y), 1(Xt ≤ x′, Xt+1 ≤ y′)

)
.

4In related work, Genest et al. (2012) proposed using a statistic very similar to θT to test for
copula exchangeability in an iid bivariate context.
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If X is time irreversible, then for any c ∈ R we have T 1/2θT > c with

probability approaching one as T →∞.

Theorem 1.3.1(a) gives us the limiting distribution of T 1/2θT in terms of

the process B under the null hypothesis that X is time reversible. A test of time

reversibility may be formed by rejecting the null when T 1/2θT exceeds the relevant

quantile of that limiting distribution. Theorem 1.3.1(b) tells us that, for any fixed

critical value c, the probability of T 1/2θT exceeding c approaches one when the null

hypothesis of time reversibility is false. This means that tests based on T 1/2θT will

be consistent against any violation of time reversibility.

The covariance structure of the limiting process B depends on H , which is

unknown. Therefore, critical values for our test must be estimated in some fash-

ion. In the following subsection we explain how the local bootstrap procedure of

Paparoditis and Politis (2002) may be used to obtain asymptotically valid critical

values. We close this subsection with some additional remarks on our test, and on

its relation to existing tests of time reversibility.

Remark 1.3.1. Theorem 1.3.1(b) indicates that our test is consistent against any

violation of time reversibility. As mentioned at the beginning of this section, most

existing tests of time reversibility do not share this property. In particular, the tests

of Chen et al. (2000), Paparoditis and Politis (2002), Racine and Maasoumi (2007)

and Psaradakis (2008) cannot detect any violation of time reversibility for which

the univariate distribution of Xt+1 − Xt is symmetric about zero. Symmetry of

this distribution is a necessary but not sufficient condition for time reversibility.

Consider the probability distribution that distributes mass uniformly over the shaded

region of the unit square depicted in Figure 1.2. It is easy to see that this distribution

has uniform marginals and is asymmetric about the main diagonal of the unit square,

implying that it may be represented by a nonexchangeable copula function. Further

inspection reveals that, if the joint distribution of (Xt, Xt+1) is uniform over the

shaded region, then the distribution of Xt+1 −Xt is symmetric about zero. To see

this, note that the sets {(x, y) : y ≤ x+a} and {(x, y) : y ≥ x−a} have equal mass



13

(b)

 

 

 

1

 1 

1 

3/4 

  3/4 1/2 

1/2 

1/4 

0 1/4 0

2/3

1/3

2/3

1

 1/3 1 

Figure 1.2: Magic square 1
A pair of random variables distributed uniformly over the shaded region is nonex-
changeable, but the distribution of their difference is symmetric about zero.

for all a ≥ 0. It follows that this form of time irreversibility cannot be detected by

the tests just cited, but is consistently identified by the test proposed here.

Remark 1.3.2. Darolles et al. (2004) propose an elegant test for time reversibility

based on nonlinear canonical correlation analysis; see e.g. Lancaster (1958). Their

procedure works by testing whether a given pair of canonical directions are equal

to one another. A drawback of this approach in the context of copula-based Markov

models is that the representation of a joint distribution in terms of canonical cor-

relations and canonical directions is valid only when the distribution exhibits finite

mean square contingency. As noted by Beare (2010), when C is absolutely contin-

uous, H has finite mean square contingency if and only if C has square integrable

density. Theorem 3.3 of Beare (2010) states that this condition rules out the pres-

ence of tail dependence in C. Tail dependence is a common property of parametric

copula functions used in applications. Thus the test of Darolles et al. (2004) is not

always ideally suited to the class of models under consideration. The test proposed

here does not suffer from this drawback, as H is not required to have finite mean

square contingency.

Remark 1.3.3. It is straightforward to modify our test of time reversibility so that
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it applies to higher-order Markov processes. If X is an mth-order Markov chain

with m ≥ 2, then we simply take H and HT to be the distribution function and em-

pirical distribution function of (Xt, . . . , Xt+m), and set θ = sup |HT (x0, . . . , xm)−
HT (xm, . . . , x0)|. Theorem 1.3.1 then continues to apply, with the limiting distribu-

tion in part (a) replaced by sup |B(x0, . . . , xm)−B(xm, . . . , x0)|, where B is now

a centered Gaussian process on Rm+1 with cov (B(x0, . . . , xm),B(x′0, . . . , x
′
m))

given by

∑

t∈Z
cov (1(X0 ≤ x0, . . . , Xm ≤ xm), 1(Xt ≤ x′0, . . . , Xt+m ≤ x′m)) .

1.3.2 Local bootstrap critical values

A difficulty in implementing the test just described is that the law of the

process B, and therefore the null limiting distribution of T 1/2θT given in Theo-

rem 1.3.1(a), is unknown. We may nevertheless approximate these laws using a

bootstrap procedure. Here we propose to apply the local bootstrap of Paparoditis

and Politis (2002), a resampling scheme designed specifically for Markovian time

series.5 Further discussion of the local bootstrap may be found in Paparoditis and

Politis (1998, 2001).

The local bootstrap may be applied in the following way. We wish to draw a

bootstrap sample X∗1 , . . . , X
∗
T based on the observed sample X1, . . . , XT . (Strictly

speaking we should write X∗1,T , . . . , X
∗
T,T for the bootstrap sample, as each boot-

strap observation depends on the full sample X1, . . . , XT , but we will ignore this

notational detail outside of the Appendix.) Suppose for the moment that we have

already drawn X∗1 , . . . , X
∗
t for some t ∈ {1, . . . , T − 1}. For the (t+ 1)th bootstrap

observation we set X∗t+1 = XJ+1, where J is a discrete random variable drawn

5An alternative possibility would be to use the tapered block multiplier bootstrap of Bucher and
Ruppert (2012). This resampling scheme is a time series extension of the multiplier bootstrap used
by Scaillet (2005) to test for positive quadrant dependence, and by Rémillard and Scaillet (2009) to
test for the equality of copulas. However, the tapered block multiplier bootstrap is not intended to
exploit the Markovian structure of X , so we focus here on the local bootstrap.
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from the probability mass function

P (J = j) =
Wb(X

∗
t −Xj)∑T−1

i=1 Wb(X∗t −Xi)
, j = 1, . . . , T − 1.

Here, b = bT is a bandwidth parameter, W is a kernel function, and Wb(·) =

b−1W (·/b). Our initial bootstrap observationX∗1 is drawn at random from the entire

sampleX1, . . . , XT , with equal probability assigned to each observation. Recursive

application of the procedure just described yields the bootstrap sampleX∗1 , . . . , X
∗
T .

Paparoditis and Politis (2002, pp. 314–316) provide some guidelines for the data-

based selection of b, which we shall not repeat here.

The idea behind the local bootstrap is that the probability of drawing a par-

ticular observation from our sample will be relatively greater if the preceding obser-

vation is relatively closer to the most recently drawn bootstrap observation. Given

X∗t , the kernel weights governing the behavior of the random variable J direct us

to an observation XJ that is likely to be relatively close to X∗t , and then we select

XJ+1 as our next bootstrap draw X∗t+1. This has the effect of implicitly estimat-

ing the transition probabilities governing X , while restricting the state space of

the bootstrap sample to the values taken by the observed sample. For large sample

sizes, the transition probabilities governing the bootstrap draws will mimic those

governing the underlying process X . Radulović (2002) provides a helpful discus-

sion of bootstrap techniques for Markov chains and other dependent processes, with

many additional references.

We wish to use the local bootstrap to approximate the law of the limiting

process B. This may be done as follows. Let H∗T denote the bootstrap analogue to

HT computed from our bootstrap sample:

H∗T (x, y) =
1

T − 1

T−1∑

t=1

1(X∗t ≤ x,X∗t+1 ≤ y).

Let E∗T denote the expectation operator conditional on the observed sam-
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ple X1, . . . , XT ; this is the “bootstrap expectation”. Our bootstrap version of the

process B is given by

B∗T (x, y) = T 1/2 (H∗T (x, y)− E∗TH∗T (x, y)) .

In practice, E∗TH
∗
T (x, y) is computed as the average value of H∗T (x, y) over a large

number of bootstrap samples. This is a little more involved than in the case of the

iid bootstrap, where we would simply have E∗TH
∗
T (x, y) = HT (x, y).

We will demonstrate shortly that the bootstrap distribution (i.e., the distribu-

tion conditional on the observed sample) of B∗T approximates the distribution of B

when T is large. Theorem 1.3.1(a) states that the limiting distribution of T 1/2θT is

the distribution of supx,y |B(x, y)−B(y, x)|. Since this distribution is unknown, to

obtain a test with approximate size α, we set our critical value c equal to the (1−α)-

quantile of the bootstrap distribution of supx,y |B∗T (x, y)−B∗T (y, x)|. This quantile

is calculated in practice by generating a large number of bootstrap processes B∗T ,

calculating supx,y |B∗T (x, y) −B∗T (y, x)| for each of them, and then selecting the

appropriate order statistic.

Let L ∗
T (B∗T ) denote the distribution of B∗T , as an element of `∞(R2), con-

ditional on X1, . . . , XT . Here, `∞(R2) denotes the space of bounded real valued

functions on R2, equipped with the uniform metric. L ∗
T (B∗T ) can be thought of as

the “bootstrap distribution” or “bootstrap law” of B∗T . The following result demon-

strates that, under regularity conditions imposed by Paparoditis and Politis (2002),

L ∗
T (B∗T ) approximates the distribution of B when T is large. Note that this result

potentially extends the applicability of the local bootstrap to a much wider range of

inferential problems than the time reversibility test considered here. The symbol 

denotes weak convergence in some metric space; see e.g. van der Vaart and Wellner

(1996, Def. 1.3.3).

Lemma 1.3.1. Under Assumption 1.7.1, as T → ∞ we have L ∗
T (B∗T )  B in

`∞(R2), with probability one.
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Assumption 1.7.1 may be found in the Appendix, and consists of technical

conditions used by Paparoditis and Politis (2002) to establish desirable properties

of the local bootstrap procedure. These conditions are not intended to be neces-

sary, and indeed Paparoditis and Politis (2002, Remark 3.2) discuss one direction

in which they may be relaxed. Our proof of Lemma 1.3.1, also found in the Ap-

pendix, applies Theorem 4.2 of Paparoditis and Politis (2002) to obtain a.s. finite

dimensional (fidi) convergence of B∗T to B, and Theorem 2.2 of Andrews and

Pollard (1994) to establish a.s. stochastic equicontinuity of the sequence of boot-

strap processes. Let L ∗
T (supx,y |B∗T (x, y) −B∗T (y, x)|) denote the distribution of

supx,y |B∗T (x, y)−B∗T (y, x)| conditional onX1, . . . , XT ; i.e., its bootstrap distribu-

tion. We proposed earlier to approximate the limiting distribution of T 1/2θT , given

in Theorem 1.3.1(a), by L ∗
T (supx,y |B∗T (x, y) −B∗T (y, x)|). The following result

justifies this approach.

Theorem 1.3.2. Under Assumption 1.7.1, for any c ∈ R we have

P

(
sup
x,y
|B∗T (x, y)−B∗T (y, x)| > c

∣∣∣∣X1, . . . , XT

)
→ P

(
sup
x,y
|B(x, y)−B(y, x)| > c

)

as T →∞, with probability one.

Theorem 1.3.2 indicates that, given a critical value c, we may use the local

bootstrap to consistently estimate the pointwise asymptotic size of our test. Con-

versely, we may use the local bootstrap to obtain a critical value c for our test that

delivers a given pointwise asymptotic size. The proof of Theorem 1.3.2, found in

the Appendix, is a straightforward application of Lemma 1.3.1 and the continuous

mapping theorem.

1.3.3 Finite sample performance

Here we report some numerical evidence pertaining to the finite sample per-

formance of our proposed test of time reversibility. We consider two families of

bivariate distributions H , each indexed by a single parameter. The first choice of H
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is the asymmetric Gumbel copula given in (2.1). We fix α = 1, β = 0.5, and let γ

vary over the interval [1,∞). When γ = 1, the asymmetric Gumbel copula reduces

to the product copula, and so X is time reversible. X is time irreversible when

γ > 1, becoming more irreversible as γ increases.

We calculated the rejection rate of our time reversibility test for a range of

values of γ, with sample size T = 150. For the purpose of comparison, we also

calculated rejection rates for three other tests of time reversibility. The first test,

proposed by Paparoditis and Politis (2002), is based on the statistic

RPP
T =

1

T − 1

T−1∑

t=1

1 (Xt+1 > Xt)−
1

2
,

the fraction of differenced observations that are positive, minus one half. The sec-

ond test, proposed by Ramsey and Rothman (1996), is based on the statistic

RRR
T =

1

T − 1

T−1∑

t=1

X2
t+1Xt −

1

T − 1

T−1∑

t=1

Xt+1X
2
t ,

the difference of sample bicovariances. The third test, proposed by Chen et al.

(2000), is based on the statistic

RCCK
T =

1

T − 1

T−1∑

t=1

Xt+1 −Xt

1 + (Xt+1 −Xt)
2 .

As discussed by Chen et al.,RCCK
T provides an estimate of

∫∞
0
E sin(ω(X1−

X0))g(ω)dω, where the weighting function g is taken to be the exponential density

with unit decay rate. An earlier study of the finite sample properties of the RRR
T and

RCCK
T statistics was reported by Belaire-Franch and Contreras (2004).

For all four statistics θT , RPP
T , RRR

T and RCCK
T , we constructed critical values

with nominal size 0.05 using the local bootstrap. The local bootstrap was imple-

mented using a Gaussian kernel for W , and smoothing parameter b determined

using the data dependent selection rule described by Paparoditis and Politis (2002,
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p. 315), with plug-in parameters extracted from an auxiliary first-order autoregres-

sion. We employed 400 bootstrap replications. Note that, since our critical values

for RRR
T and RCCK

T are determined using the local bootstrap rather than a standard

normal approximation, we have dropped the scaling factors used by Ramsey and

Rothman (1996) and Chen et al. (2000) to endow their statistics with unit asymp-

totic variance. This saves us the additional inconvenience of long-run variance

estimation.

Our numerical calculations using the asymmetric Gumbel6 copula are dis-

played in Figure 1.3(a). The horizontal axis tracks the value of 1− 1/γ, so we have

X time reversible at the left endpoint of the axis, and increasingly irreversible as

we move rightward. All four tests exhibit good size control. As γ → ∞, the re-

jection rates for all tests rise to approximately one. At intermediate values of γ, the

test of Paparoditis and Politis generally has the highest power, followed by the test

of Ramsey and Rothman, then the test of Chen et al., and finally our own test with

the lowest power.

In Remark 1.3.1 we noted that several existing tests of time reversibility

are unable to detect forms of irreversibility for which Xt+1 − Xt is distributed

symmetrically about zero. Our second choice of H exploits this fact. We take H to

be a convex combination of two copula functions. The first of these is the product

copula. The second distributes mass uniformly over the shaded area in Figure 1.2.

We assign weight 1−λ to the first copula and λ to the second, with λ ∈ [0, 1]. Thus

X is time reversible when λ = 0 and time irreversible when λ > 0, becoming more

irreversible as λ increases. For reasons that will be made clear in Section 1.4.1, we

refer to this mixture copula as a zero total circulation copula.

Our numerical calculations using the zero total circulation copula are dis-

played in Figure 1.3(b). The horizontal axis tracks the value of λ, so we have X

time reversible at the left endpoint of the axis, and increasingly irreversible as we

move rightward. All four tests exhibit good size control. As λ increases, the behav-
6Results qualitatively similar to those presented in Figure 1.3(a) were obtained using the Clayton

and Frank copulas in place of the Gumbel copula.
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(a) Asymmetric Gumbel copula
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(b) Zero total circulation copula

Proposed test

Paparoditis and 
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Figure 1.3: Power of the tests
Rejection rates of our time reversibility test, and the tests of Paparoditis and Politis
(2002), Ramsey and Rothman (1996) and Chen et al. (2000). Panel (a) displays
results for the asymmetric Gumbel copula with α = 1, β = 0.5, and γ ∈ [1,∞).
Panel (b) displays results for a convex combination of the product copula and the
copula displayed in Figure 1.2; the weight on the latter is λ ∈ [0, 1]. We set T =
150 and employed 400 bootstrap replications and 1000 experimental replications.
Nominal size is 0.05.

ior of our test is very different to that of the other three tests. The rejection rate of

our test rises quickly to one, while the rejection rates of the other tests fall to zero.

Panels (a) and (b) of Figure 1.3 serve to illustrate both the strength and

weakness of our approach to testing time reversibility. The key advantage of our test

is that, unlike existing tests, it consistently rejects in the presence of any violation of

time reversibility. This versatility comes at a price: tests that target specific forms of

time irreversibility are likely to be more powerful than our test when irreversibility

is indeed of that form. Though we are not aware of any economic models that

generate time irreversible dynamics with symmetrically distributed differences, the

dynamic behavior of observed time series frequently depart from the predictions of

theoretical models. Used as part of a battery of tests, a test that is consistent against

arbitrary violations of reversibility provides a safeguard against irreversibility of

unexpected form. For instance, in the empirical application reported in Section 1.5,

the tests of Ramsey and Rothman, and Chen et al. fail to reject the null of time
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reversibility, while our own test provides strong evidence of irreversibility. The test

of Paparoditis and Politis also identifies irreversibility in this case, but lacks power

when applied to irreversible processes with zero median differences.

1.4 Characterizing time irreversibility

In this section we consider a characterization of time irreversibility that may

be useful for applications. Building on work by McCausland (2007), we define the

circulation density for a stationary real valued Markov chain. The circulation densi-

ty quantifies the net probability upflow at each quantile of the invariant distribution.

Visual inspection of the circulation density, a real valued function on the unit in-

terval, provides a convenient way to assess the nature of time irreversibility in a

Markov chain.

The circulation density is defined and explained in Section 1.4.1. In Section

1.4.2 we propose a simple copula-based estimator of the circulation density, and

investigate its asymptotic and finite sample behavior.

1.4.1 Circulatory analysis of stationary Markov chains

McCausland (2007) introduced the notion of circulation for stationary Markov

chains with finite state space. Circulation is intended to measure the direction and

intensity of the flow of probability through each state. If a Markov chain is time

reversible, then we must necessarily have zero circulation through each state. If

it is time irreversible, then the circulation through each state provides information

about the nature of that irreversibility. In this section we propose a definition of

circulation that is similar in spirit to the definition given by McCausland, but which

applies in a natural way when the invariant distribution of X may not be discrete.

We demonstrate a connection between the circulation of X and the copula function

C characterizing its dynamic dependence. At the end of the section we explain how

our treatment of circulation builds on McCausland’s contribution.
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To describe the circulatory behavior of X , we introduce a number of func-

tions from R to [0, 1] which we refer to as flows. The two fundamental flows,

denoted F↑ and F↓, are defined and referred to as follows.

F↑(x) = P (Xt−1 ≤ x|Xt = x) probability upflow to x

F↓(x) = P (Xt+1 ≤ x|Xt = x) probability downflow from x.

Two additional flows, F ↑ and F ↓, are uniquely determined by the two fundamental

flows:

F ↑(x) = P (Xt+1 > x|Xt = x) probability upflow from x

F ↓(x) = P (Xt−1 > x|Xt = x) probability downflow to x.

By the law of total probability, our four flows satisfy the identities

F↑(x) + F ↓(x) = 1, F ↑(x) + F↓(x) = 1. (1.4)

The terms upflow and downflow are evocative of the circulation, or current, of a

body of water. Figure 1.4 displays our four flows as arrows pointing toward, or

away from, x. Suppose we know that Xt = x. The two arrows pointing toward

x represent the probabilities that Xt−1 was less than, or greater than, x. The two

arrows pointing away from x represent the probabilities that Xt+1 will be less than,

or greater than, x.

Strictly speaking, conditional probabilities like P (Xt+1 ≤ x|Xt = x) are

not uniquely defined when F is continuous at x, because we are conditioning on

a set of measure zero. Rather, P (Xt+1 ≤ x|Xt = x) should be viewed as an

equivalence class of functions of x, where any two members of the class must be

equal to one another outside a set of F -measure zero. Likewise, the flows F↑(x),

F ↑(x), F ↓(x) and F↓(x) should be viewed as being uniquely defined up to a

set of F -measure zero. For further discussion of technical issues associated with

conditional probabilities of this kind, we refer the reader to Chang and Pollard
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Figure 1.4: Probability upflows and downflows
The circulation density at u = F (x) is equal to the sum of the upward flows minus
the sum of the downward flows, divided by two.

(1997).

It may be helpful to introduce some additional terminology to describe cer-

tain combinations of our four flows F↑, F ↑, F ↓ and F↓:

F↑(x) + F ↑(x) probability upflow through x

F ↓(x) + F↓(x) probability downflow through x

F↑(x)−F↓(x) net probability upflow to x

F ↑(x)−F ↓(x) net probability upflow from x

F↑(x) + F ↑(x)−F ↓(x)−F↓(x) net probability upflow through x.

A consequence of the identities in (1.4) is that the net probability upflow to x is

equal to the net probability upflow from x, which is equal to half the net probability

upflow through x. If X is time reversible, then the flows F↑, F ↑, F ↓ and F↓

satisfy two additional identities:

F↑(x) = F↓(x), F ↑(x) = F ↓(x).

Thus, when X is time reversible, the net probability upflows to, from, and through

x are all equal to zero.

Given u ∈ (0, 1), let Q(u) = inf{y : F (y) ≥ u}, the u-quantile of the
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invariant distribution F . We define the circulation density of X to be the function

ψ : (0, 1)→ [−1, 1] given by

ψ(u) =
1

2

(
F↑(Q(u)) + F ↑(Q(u))−F ↓(Q(u))−F↓(Q(u))

)
, u ∈ (0, 1).

That is, ψ(u) is one half of the net probability upflow throughQ(u). The circulation

density tells us whether, at a given quantile of the invariant distribution, observation-

s tend to be in the middle of an upward or downward string of three observations. If

the density is positive, an observation at that quantile is relatively likely to be part

of an increasing string, whereas if the density is negative, the observation is more

likely to be part of a decreasing string.

As noted earlier, our flows F↑, F ↑, F ↓ and F↓ are uniquely defined only

up to a set of F -measure zero. Consequently, our circulation density ψ(u) may not

be uniquely defined for all u ∈ (0, 1). Rather, ψ(u) is uniquely defined up to a set

A ⊂ (0, 1), where A = {u : Q(u) ∈ B} for some set B ⊂ R of zero F -measure.

Since the F -measure of B is precisely the Lebesgue measure of A, we find that

ψ(u) is uniquely defined up to a set of u having zero Lebesgue measure. When the

invariant distribution of X is discrete, so that F is a step function, we find that A

is empty for any B of zero F -measure, and so ψ(u) is in fact uniquely defined for

all u ∈ (0, 1).

Theorem 1.4.1 demonstrates that, under additional smoothness condition-

s, our circulation density ψ may be expressed in terms of the copula function C

describing the dynamic dependence structure of X . More specifically, ψ is the

difference between the first partial derivatives of C along the main diagonal of the

unit square. The proof of Theorem 1.4.1 may be found in the Appendix.

Theorem 1.4.1. Let X be a stationary real valued Markov chain with continuous

invariant distribution F , and copula C admitting continuous partial derivatives
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Figure 1.5: Circulation densities for the asymmetric Gumbel copula
Circulation densities for the asymmetric Gumbel copula with α = 1, β = 0.5, and

γ = 2, 5, 10.

∂1C and ∂2C everywhere on (0, 1)2. Then the circulation density ψ of X satisfies

ψ(u) = ∂2C(u, u)− ∂1C(u, u)

for Lebesgue-a.e. u ∈ (0, 1).

In Figure 1.5 we use the expression for ψ(u) given in Theorem 1.4.1 to

graph the circulation density functions corresponding to the asymmetric Gumbel

copula given in (2.1), with α = 1, β = 0.5, and γ = 2, 5, 10. These are the

same parameter configurations used to generate the scatterplots and Markov sample

paths in Figure 1.1. In each case we see that ψ(u) is negative for all u ∈ (0, 1),

indicating a net probability downflow at all quantiles. We also see that ψ(u) is

monotone decreasing in each case, rising to zero as u ↓ 0. This is consistent with

the pattern of dependence evident in Figure 1.1, where we see many small decreases

and occasional large increases – at least when γ = 5, 10 – with the likelihood of an

increase rising as we approach the bottom of the state space. Note that if we were

to exchange the values of α and β, the effect would be to multiply each circulation

density by −1.
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The circulation density tells us whether, at a particular quantile of the invari-

ant distribution, our Markov chain tends to be increasing or decreasing. Integrating

the circulation density over the unit interval gives us a single index of circulation,

Ψ =
∫ 1

0
ψ(u)du. We refer to Ψ as the total circulation of X . The following result

shows that, defined in this way, the total circulation has a convenient interpretation.

The proof may be found in the Appendix.

Theorem 1.4.2. Let X be a stationary real valued Markov chain. Then Ψ, the total

circulation of X , satisfies Ψ = P (Xt−1 ≤ Xt)− P (Xt+1 ≤ Xt).

Theorem 1.4.2 reveals that the total circulation measures the overall tenden-

cy of X to increase more frequently than it decreases, or vice-versa. If increases

and decreases are equally likely, the total circulation is zero. The circulation density

serves to decompose the total circulation into contributions from different quantiles

of the invariant distribution. In this sense, it plays a similar role to the spectral

density of a covariance stationary process, which decomposes the variance into

contributions from cycles of different frequency.

A stationary Markov chain with zero total circulation is not necessarily time

reversible. For instance, the copula used to construct the power curves in Figure

1.3(b) generates a time irreversible stationary Markov chain with zero total circula-

tion. In fact, even when a stationary Markov chain has zero circulation density at all

quantiles, time reversibility does not necessarily hold. In Figure 1.6 we provide an

example of a copula function that generates a time irreversible Markov chain having

zero circulation density at all quantiles. This copula function should be understood

to distribute mass uniformly over the shaded region. Clearly the shaded region is

not symmetric about the 45◦-line, implying that the associated Markov chain X

is time irreversible. The probability upflow to u is equal to the length of the solid

part of the line extending between (0, u) and (u, u), while the probability downflow

from u is equal to the length of the solid part of the line extending between (u, 0)

and (u, u). Careful inspection of Figure 1.6 reveals that these two quantities are
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Figure 1.6: Magic square 2
If (Xt, Xt+1) is distributed uniformly over the shaded region, then X is time irre-
versible, yet has zero circulation density at all quantiles. The probability upflow to
u is equal to the length of the solid part of the line extending between (0, u) and
(u, u), while the probability downflow from u is equal to the length of the solid part
of the line extending between (u, 0) and (u, u).

equal to one another, and continue to be equal for any choice of u ∈ (0, 1). Thus

we find that the circulation density of X is zero at all quantiles.

Our discussion of circulation in this section has built on prior work by Mc-

Causland (2007) for Markov chains with discrete state space. Suppose our station-

ary real valued Markov chain X takes only the values x1, . . . , xn ∈ R. McCausland

defined the circulation through xi to be the quantity

1

2
(P (Xt = xi and Xt+1 > xi)− P (Xt−1 > xi and Xt = xi)) .

With some elementary manipulations, we may rewrite this expression as

1

4
P (Xt = xi)

(
F↑(xi) + F ↑(xi)−F ↓(xi)−F↓(xi)

)
.

Thus, McCausland’s circulation through xi is one quarter of the net probability

upflow through xi, multiplied by the probability assigned by the invariant distri-

bution to xi. By comparison, as defined here, the circulation density at quantiles
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corresponding to xi is half the net probability upflow through xi, which differs

from McCausland’s circulation through xi by a factor of 1
2
P (Xt = xi). Dropping

the factor P (Xt = xi) makes sense here because we wish to allow the invariant

distribution to be continuous, while dropping the factor of one half appears natu-

ral in view of Theorem 1.4.1 and Theorem 1.4.2. The notion of total circulation

was also introduced by McCausland, who defined it as half the difference between

P (Xt−1 ≤ Xt) and P (Xt+1 ≤ Xt), and showed that this quantity is equal to the

sum of state-specific circulations. Theorem 1.4.2 makes it clear that our own def-

inition of total circulation differs from McCausland’s definition by a factor of one

half.

1.4.2 Estimation of the circulation density

The circulation density function provides a convenient way to quickly as-

sess the nature of time irreversibility in a Markov chain. In this section we consider

estimating the circulation density from data. We propose an estimator based on a

kernel smoothed version of the empirical copula function, establish its pointwise

asymptotic behavior, and assess the finite sample performance of associated infer-

ential procedures using Monte Carlo simulation.

Estimator and asymptotic properties

Theorem 1.4.1 established that, under mild regularity conditions, the circu-

lation density of X is given by the difference between the partial derivatives of C

along the diagonal of the unit square. A natural estimator for the circulation den-

sity may therefore be extracted from the partial derivatives of a smooth estimate of

C. Let k be a kernel function, let h be a bandwidth parameter, and, for x ∈ R,

let kh(x) = h−1k(x/h) and Kh(x) =
∫ x
−∞ kh(y)dy. Given an observed sample
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X1, . . . , XT , we may construct smooth estimates of H , F , Q and C as follows:

ĤT (x, y) =
1

T − 1

T−1∑

t=1

Kh (x−Xt)Kh (y −Xt+1)

F̂T (x) =
1

T

T∑

t=1

Kh (x−Xt)

Q̂T (u) = inf{y ∈ R : F̂T (y) ≥ u}

ĈT (u, v) = ĤT

(
Q̂T (u), Q̂T (v)

)
.

A simple nonparametric estimator of ψ is then given by7

ψ̂T (u) = ∂2ĈT (u, u)− ∂1ĈT (u, u).

Of course, ψ̂T is not the only possible estimator of ψ. Rémillard and Scaillet (2009)

proposed very simple estimators of ∂1C and ∂2C that could be used to form a

uniformly consistent estimator of ψ. But our estimator ψ̂T appears reasonable when

we expect that C and F are smooth. We will establish the pointwise asymptotic

properties of ψ̂T under the following technical conditions.

Assumption 1.4.1. The following statements are true.

(a) X is a stationary real valued Markov chain.

(b) F is four times continuously differentiable, and C admits continuous mixed

partial derivatives to the fourth order.

(c) The α-mixing coefficients of X satisfy αT = O(T−η) for some η > 2.

(d) The kernel k integrates to one, is even, has compact support, and is four

times continuously differentiable.

7Our approach to estimating the partial derivatives of C is taken from Fermanian and Scaillet
(2003). Rémillard and Scaillet (2009) proposed an alternative estimator formed by differencing the
empirical copula function that may also be applicable in the present context.
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(e) The bandwidth h = hT satisfies Th3 → ∞ and Th4 → c for some c ∈
[0,∞).

Parts (a,b,c) of Assumption 1.4.1 may be compared to the corresponding

parts of Assumption 1.3.1. Note that (b) ensures that H admits continuous mixed

partial derivatives to the fourth order. The compact support condition imposed on k

in Assumption 1.4.1(d) is mathematically convenient, but may perhaps be replaced

by a condition on the rate at which the tails of k decay to zero. Assumption 1.4.1(e)

provides the admissible rates of decay for the bandwidth h. It seems likely that the

condition Th4 → c ∈ [0,∞) could be weakened to Th5 → 0, but we do not pursue

this extension here, as it leads to complications in the proof of Lemma 1.7.3 in the

Appendix.

Theorem 1.4.3 establishes the asymptotic normality of ψ̂T (u), giving the

asymptotic variance σ2(u) in terms of k, C, Q, and the invariant pdf f = F ′. A

consistent estimator of σ2(u) is provided. In the statement of Theorem 1.4.3, and

in its proof, we define ψ(u) = ∂2C(u, u)− ∂1C(u, u) to avoid ambiguity about the

values taken by ψ on sets of Lebesgue measure zero.

Theorem 1.4.3. Suppose X satisfies Assumption 1.4.1. Then, for any u ∈ (0, 1)

such that f(Q(u)) > 0, we have

(Th)1/2
(
ψ̂T (u)− ψ(u)

)
→d N

(
0, σ2(u)

)
,

where

σ2(u) =

∫
k(z)2dz
f (Q(u))

· (∂1C(u, u) (1− ∂1C(u, u)) + ∂2C(u, u) (1− ∂2C(u, u))) .

The limiting variance σ2(u) may be consistently estimated by

σ̂2
T (u) =

∫
k(z)2dz

f̂T

(
Q̂T (u)

) ·
(
∂1ĈT (u, u)

(
1− ∂1ĈT (u, u)

)
+ ∂2ĈT (u, u)

(
1− ∂2ĈT (u, u)

))
,
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where f̂T = F̂ ′T .

Nonnegativity of the limiting variance σ2(u) appearing in Theorem 1.4.3

follows from the fact that 0 ≤ ∂iC ≤ 1 for i = 1, 2; see e.g. Nelsen (2006, The-

orem 2.2.7). We may rule out the possibility that σ2(u) = 0 if we assume that

0 < ∂iC(u, u) < 1 for i = 1, 2. If σ2(u) > 0, Theorem 1.4.3 can be used to

construct pointwise asymptotic confidence bands for ψ(u). Alternatively, the local

bootstrap of Paparoditis and Politis (2002) or the robust t-statistic based method of

Ibragimov and Müller (2010) can be used to construct confidence bands. We inves-

tigate the performance of these approaches in the finite sample simulations reported

in Section 1.4.2.

Our proof of Theorem 1.4.3, which may be found in the Appendix, adapts

methods employed by Fermanian and Scaillet (2003). Those authors seek to find

the joint asymptotic behavior of a single mixed partial derivative of ĈT evaluated

at multiple points in the unit square. Here, our concern is with the joint asymptotic

behavior of the two first partial derivatives of ĈT evaluated at a single point on

the main diagonal of the unit square. The application of a result due to Robinson

(1983), used also by Fermanian and Scaillet (2003), is central to our argument.

Finite sample performance

Here we report some limited numerical evidence concerning the finite sam-

ple performance of confidence bands for the circulation density. Our first set of

results pertains to confidence bands formed using the local bootstrap. We consider

two sample sizes, T = 75 and T = 150, and four copula functions C: the product,

Gumbel, Clayton and Frank copulas, with parameters for the latter three copulas

chosen to make Kendall’s rank correlation coefficient equal to 0.5. The associat-

ed (lower,upper) tail dependence coefficients are, respectively, (0, 0), (0, 2− 21/2),

(2−1/2, 0) and (0, 0). The invariant distribution F was taken to be standard normal

in all cases. For each choice of T and C we computed the circulation density es-

timator ψ̂T (u) at the quantiles u = 0.1, 0.3, 0.5, 0.7, 0.9. Pointwise nominal 80%,
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90% and 95% confidence bands for each circulation density estimate were comput-

ed using the local bootstrap with 400 bootstrap replications. For each quantile, we

calculated the coverage rate of each confidence band over 1000 randomly generated

samples.

Implementation of the circulation density estimator and local bootstrap re-

quires us to choose kernel functions k and W and bandwidth parameters h and b.

Both kernels were taken to be Gaussian. For the local bootstrap bandwidth parame-

ter b we used the data dependent selection rule described by Paparoditis and Politis

(2002, p. 315), with plug-in parameters extracted from an auxiliary first-order au-

toregression. For the bandwidth parameter h used to construct the circulation den-

sity estimator, we set h = 0.5T−1/4, in compliance with Assumption 1.4.1(e). This

ad hoc choice of h appears to work well for sample sizes of practical relevance.

The results of our experiment are provided in Table 1.1. For all sample sizes

T , copulas C, and quantiles u, the coverage probabilities of our pointwise confi-

dence bands were close to the nominal rates. This suggests that, for the processes

under consideration, the local bootstrap does a very good job at approximating the

sampling uncertainty associated with our circulation density estimator.

Though confidence bands constructed using the local bootstrap appear to

perform well in finite samples, they can be slow to compute. Indeed, we would

have liked to include results for larger sample sizes in Table 1.1, but found this

impractical from a computational perspective. In situations where a faster and sim-

pler approach to constructing confidence bands is desirable, the robust t-statistic

based method of Ibragimov and Müller (2010) may provide an attractive alternative

to the local bootstrap. To construct confidence bands using the Ibragimov-Müller

method, we first divide our data into q blocks of roughly equal size. We then for-

m q estimates of ψ(u) by applying our circulation density estimator to each block

of observations separately. An approximate (1 − α)% confidence band for ψ(u)

is given by µq ± tq−1(1 − α/2)q−1/2sq, where µq and sq are the sample average

and sample standard deviation of the q estimates of ψ(u), and tq−1(1− α/2) is the
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Table 1.1: Pointwise coverage rates of confidence bands for the circulation density
Pointwise coverage rates of confidence bands for the circulation density constructed
using the local bootstrap. Parameters for the Gumbel, Clayton and Frank copulas
were chosen to induce a rank correlation of 0.5. We employed 400 bootstrap repli-
cations and 1000 experimental replications.

Sample Nominal Coverage at quantile
Copula size coverage 0.1 0.3 0.5 0.7 0.9
Product 75 0.95 0.971 0.943 0.953 0.952 0.966

0.90 0.936 0.888 0.906 0.902 0.917
0.80 0.813 0.782 0.809 0.786 0.799

150 0.95 0.964 0.951 0.941 0.948 0.962
0.90 0.908 0.899 0.886 0.893 0.916
0.80 0.802 0.808 0.773 0.789 0.797

Gumbel 75 0.95 0.961 0.969 0.970 0.965 0.935
0.90 0.925 0.920 0.922 0.913 0.878
0.80 0.809 0.805 0.805 0.830 0.751

150 0.95 0.956 0.952 0.957 0.954 0.968
0.90 0.904 0.906 0.917 0.901 0.902
0.80 0.788 0.793 0.808 0.809 0.789

Clayton 75 0.95 0.943 0.971 0.965 0.968 0.961
0.90 0.873 0.925 0.910 0.920 0.925
0.80 0.739 0.827 0.807 0.834 0.817

150 0.95 0.966 0.948 0.957 0.957 0.966
0.90 0.924 0.898 0.899 0.905 0.911
0.80 0.792 0.791 0.798 0.797 0.801

Frank 75 0.95 0.964 0.973 0.964 0.971 0.961
0.90 0.916 0.929 0.911 0.937 0.901
0.80 0.794 0.842 0.808 0.815 0.782

150 0.95 0.962 0.952 0.971 0.963 0.962
0.90 0.911 0.897 0.914 0.923 0.903
0.80 0.797 0.794 0.819 0.809 0.794

(1− α/2)-quantile of the t-distribution with q − 1 degrees of freedom.

Numerical results on the finite sample performance of confidence bands

constructed using the method of Ibragimov and Müller are provided in Table 1.2.

The processes considered are the same as in Table 1.1, but we consider larger sam-

ple sizes: T = 150 and T = 500. We formed confidence bands using q = 5 equally

sized blocks of observations. Compared to the local bootstrap, the pointwise cover-
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age rates of the Ibragimov-Müller confidence bands tended to deviate a little more

from the nominal coverage rates, even at larger sample sizes. Nevertheless, the

coverage errors are relatively small, and may be acceptable for practical purpos-

es. In view of the ease with which the Ibragimov-Müller bands may be coded and

computed, they should be viewed as a convenient alternative to the local bootstrap

bands.

We have not reported coverage rates for confidence bands obtained using the

first order asymptotic approximation given in Theorem 1.4.3.8 Confidence bands

constructed in this way tended to be excessively conservative for all copulas con-

sidered, even with a sample size as large as T = 5000. We recommend that the

local bootstrap or Ibragimov-Müller method be used to form confidence bands in

practice.

1.5 Empirical illustration

In this section we illustrate the use of our time reversibility test and circu-

lation density estimator by applying them to a time series of weekly gasoline price

markups in Windsor, Ontario from August 20, 1989 to September 25, 1994. These

markups, displayed in Figure 1.7(a), were calculated by dividing the average re-

tail price across a sample of gasoline stations in Windsor by the wholesale price

of large scale purchases of unbranded gasoline at the terminal in Toronto, Ontario.

The same data were used by Eckert (2002), who studied the asymmetry of price

responses to cost increases and decreases, and by McCausland (2007), who divided

the markups into six bins and used Bayesian techniques to estimate the circulation

through each bin.

Gasoline price dynamics have attracted considerable attention during the

last decade due to the presence of Edgeworth cycles in a substantial proportion of

markets. Edgeworth cycles involve extended periods of gradual price reduction,

8These results are available on request.
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Table 1.2: Coverage rates and mean square errors for the circulation density esti-
mator
Coverage rates and mean square errors for our circulation density estimator, with
confidence bands constructed using the Ibragimov-Müller method. Parameters for
the Gumbel, Clayton and Frank copulas were chosen to induce a rank correlation
of 0.5. We employed q = 5 blocks of equal length, and 1000 experimental replica-
tions.

Sample Nominal Coverage at quantile
Copula size coverage 0.1 0.3 0.5 0.7 0.9
Product 150 0.95 0.984 0.936 0.929 0.941 0.987

0.90 0.942 0.863 0.859 0.880 0.946
0.80 0.790 0.753 0.757 0.760 0.802

500 0.95 0.956 0.948 0.927 0.941 0.954
0.90 0.886 0.883 0.855 0.877 0.872
0.80 0.760 0.768 0.745 0.776 0.749

Gumbel 150 0.95 0.975 0.957 0.945 0.945 0.989
0.90 0.918 0.907 0.882 0.886 0.944
0.80 0.777 0.779 0.782 0.773 0.806

500 0.95 0.941 0.934 0.919 0.948 0.943
0.90 0.865 0.870 0.867 0.902 0.879
0.80 0.724 0.759 0.757 0.797 0.749

Clayton 150 0.95 0.987 0.958 0.954 0.970 0.982
0.90 0.958 0.902 0.893 0.908 0.920
0.80 0.838 0.781 0.778 0.780 0.787

500 0.95 0.970 0.944 0.948 0.949 0.937
0.90 0.918 0.889 0.890 0.887 0.870
0.80 0.805 0.776 0.801 0.770 0.752

Frank 150 0.95 0.977 0.962 0.963 0.957 0.980
0.90 0.921 0.906 0.911 0.899 0.911
0.80 0.769 0.775 0.800 0.782 0.781

500 0.95 0.934 0.925 0.940 0.929 0.943
0.90 0.876 0.873 0.889 0.874 0.895
0.80 0.747 0.776 0.772 0.760 0.780

followed by shorter periods of rapid price increase. Game theoretic foundations

for Edgeworth cycles were provided by Maskin and Tirole (1988), who showed

that Edgeworth price cycles emerge naturally as a Markov perfect equilibrium in

a dynamic model of Bertrand competition between two firms. Extensions of this

result have been provided by Eckert (2003) and Noel (2008). Other key papers on
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Figure 1.7: Empirical example: gasoline price markups
Panel (a) displays the average weekly gasoline price markups in Windsor, Ontario
from 8/20/1989 to 9/25/1994. Panel (b) displays the circulation density estimated
using these data, with pointwise 95% confidence bands constructed using the local
bootstrap.

Edgeworth cycles in gasoline markets include Noel (2007), Wang (2009) and Lewis

and Noel (2011); further references may be found in Noel (2011).

On casual inspection, the time series of price markups in Figure 1.7(a) seem-

s to contain a large number of long decreasing strings of observations, consistent

with the presence of Edgeworth cycles. Applying our test of time reversibility to

this series yields a p-value of 0.00, indicating overwhelming rejection of reversibili-

ty. The test of Paparoditis and Politis (2002) also yields a p-value of 0.00, while the

tests of Ramsey and Rothman (1996) and Chen et al. (2000) yield p-values of 0.16

and 0.47 respectively. In Figure 1.7(b) we display our estimated circulation den-

sity for the price markup time series, including 95% pointwise confidence bands

obtained using the local bootstrap. The circulation density estimate is negative ev-

erywhere above the 0.05 quantile, and the 95% confidence bands mostly exclude

zero at quantiles 0.1 and higher. This pattern is consistent with the presence of

Edgeworth cycles, under which downward price movements are more likely than

upward price movements unless the markup is very low. Further, the circulation
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density appears to dip substantially in the lower half of the state space, achieving its

minimum value near the 0.35 quantile of the invariant distribution. In the language

of Section 1.4.1, we say that there is a significant net probability downflow through

this region. This suggests that sequences of price undercutting may be most likely

to occur when the markup is near the 0.35 quantile.

Our estimated circulation density is broadly consistent with the pattern of

circulation estimated by McCausland (2007) using the same data. After dividing the

markups into six bins, McCausland estimated the circulation through each interior

bin. (The circulation through the first and last bins is necessarily zero.) Table 4

of McCausland (2007) reveals that, while the estimated circulation through each

bin is negative, the estimated circulation through the third bin is at least six times

as large as the estimated circulation through any of the other bins. This third bin

corresponds to markups between 1.1 and 1.2; the corresponding empirical quantiles

are 0.22 and 0.56. Our circulation density estimate exhibits a similar pattern, but

provides us with a more precise idea of where the tendency for downward price

movement is strongest, and avoids the loss of information inherent to methods that

classify observations into discrete bins.

It is apparent from Figure 1.7(a) that our price markup series is somewhat

more volatile in the first half of the sample than it is in the second half. This may

be due in part to the Iraqi invasion of Kuwait in August 1990, which created a spike

in the price of crude oil lasting for the better part of a year (Hamilton, 2009, pp.

220–223). Our price markup series dips below unity during this period. Dropping

observations prior to August 1991 changes the shape of our estimated circulation

density at quantiles below 0.2: instead of rising to 0.02 as we move left toward the

0.05 quantile, the estimated circulation density falls to -0.44. At quantiles above

0.2, the shape of the estimated circulation density is mostly unaffected by excluding

the earlier part of the sample.
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1.6 Conclusion

In this paper we have made two primary contributions to the literature on

time reversibility. First, we proposed a new test of time reversibility, applicable to

stationary Markov chains. Compared to existing tests, our test has the advantage

of being consistent against arbitrary violations of reversibility. Second, building on

work by McCausland (2007), we proposed a new way to characterize the nature

of time irreversibility when it is present. Our circulation density estimator was

shown to be well behaved asymptotically under suitable regularity conditions, and

numerical evidence suggests that associated inferential methods perform well in

finite samples.

Our work here may be extended in several directions. On the technical side,

it may be interesting to consider the problem of bandwidth selection for our cir-

culation density estimator in more detail. The bandwidth decay rates permitted

under Assumption 1.4.1(e) imply zero asymptotic bias. Therefore, Theorem 1.4.3

provides no guidance about how one might choose h to optimize the asymptotic

mean square error of our circulation density estimator. Presumably, such optimiza-

tion would entail a bandwidth decay rate of T−1/5. Relaxation of the condition

Th4 → c ∈ [0,∞) in Assumption 1.4.1(e), so that the asymptotic bias given in

Theorem 1.4.3 is potentially nonzero, may be required in order to deal rigorously

with the problem of bandwidth selection. Extending Theorem 1.4.3 in this way in-

volves a number of technical difficulties and goes beyond the scope of the present

paper.

On the more practical end, a priority for future work is to systematically ap-

ply our time reversibility test and circulation density estimator to a range of macroe-

conomic time series. Business cycle asymmetry is by now fairly well established

for many variables of interest, but the study of circulation densities may perhap-

s yield new insights into the nature of this asymmetry. It may also be of interest

to investigate whether the asymmetric Gumbel copula, or other nonexchangeable
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copula families, may be used to improve the empirical modeling and forecasting

of macroeconomic and financial variables exhibiting asymmetric cyclical behavior.

We leave these matters to future research.

1.7 Mathematical appendix

1.7.1 Technical conditions for local bootstrap validity

To formally establish the applicability of the local bootstrap to our testing

procedure, we build on some of the results in Paparoditis and Politis (2002). Those

authors obtain their results under a number of technical conditions. We shall employ

the same conditions here.

Assumption 1.7.1. The following statements are true.

(a) X is an aperiodic, stationary, geometrically ergodic, real valued Markov

chain.

(b) The invariant distribution F (·) and one-step transition distributions F (·|x),

x ∈ R, satisfy the following conditions.

(i) F (·) and F (·|x), x ∈ R, are absolutely continuous, with bounded

densities f(·) and f(·|x), x ∈ R.

(ii) There exists L ∈ (0,∞) such that, for all x1, x2 ∈ R and y ∈ R̄,

|F (y|x2)f(x2)− F (y|x1)f(x1)| ≤ L|x2 − x1|.

(iii) There exists L′ ∈ (0,∞) such that, for all x, y1, y2 ∈ R,

|f(y2|x)− f(y1|x)| ≤ L′|y2 − y1|.

(c) There exists a compact set S ⊂ R such that P (X0 ∈ S) = 1 and f(·|x) > 0

for all x ∈ S.
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(d) The kernel W is a bounded, Lipschitz continuous, even pdf on R satisfying

W (x) > 0 for all x ∈ R, and
∫
|x|W (x)dx <∞.

(e) The bandwidth b = bT satisfies b � T−δ for some δ ∈ (0, 1/2). That is,

there exist a1, a2 ∈ (0,∞) such that a1 ≤ bT δ ≤ a2 for all sufficiently large

T .

1.7.2 Proofs

The following preliminary result is used in our proofs of Theorem 1.3.1 and

Lemma 1.3.1.

Lemma 1.7.1. Suppose Assumption 1.3.1 holds. Then as T →∞we have T 1/2(HT−
H) B in `∞(R2). This continues to be true if X is not a Markov chain.

Proof of Lemma 1.7.1. HT is the empirical distribution function of a sample of size

T−1 drawn from the bivariate process {(Xt, Xt+1) : t ∈ Z}. This bivariate process

inherits the stationarity and α-mixing rate of the univariate process X . Therefore,

since H is continuous when F is continuous, results due to Rio (2000, ch. 7) imply

that T 1/2(HT −H) B.

Proof of Theorem 1.3.1. If X is time reversible, then H(x, y) = H(y, x) for all

x, y ∈ R, and so

T 1/2θT = sup
x,y

∣∣T 1/2(HT (x, y)−H(x, y))− T 1/2(HT (y, x)−H(y, x))
∣∣ .

Since T 1/2(HT − H)  B by Lemma 1.7.1, part (a) now follows from an ap-

plication of the continuous mapping theorem. If X is time irreversible, then we

may choose x, y ∈ R such that H(x, y) 6= H(y, x). Since HT (x, y) −HT (y, x) =

H(x, y)−H(y, x) +Op(T
−1/2) by Lemma 1.7.1, we find that

T 1/2θT ≥ T 1/2|HT (x, y)−HT (y, x)| = T 1/2|H(x, y)−H(y, x)|+Op(1).
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Divergence of T 1/2|H(x, y)−H(y, x)| to infinity establishes part (b).

Proof of Lemma 1.3.1. Let BT =
√
T (HT −H) and recall that B∗T =

√
T (H∗T −

E∗H∗T ). Let L ∗(B∗T ) denote the law of B∗T conditional on X . Noting that

L ∗
T (B∗T ) = L ∗(B∗T ) a.s., we see that it suffices for us to show that L ∗(B∗T ) B

a.s. We will do this by verifying a.s. fidi convergence and a stochastic equicontinu-

ity condition; see e.g. Theorem 10.2 of Pollard (1990).

First, Theorem 4.2 of Paparoditis and Politis (2002) will be used to show

a.s. fidi convergence. Fix s pairs (x1, y1), . . . , (xs, ys) ∈ R2. Let g : R2 → {0, 1}s

be given by

g(v, w) = (1(v ≤ x1, w ≤ y1), . . . , 1(v ≤ xs, w ≤ ys)) .

We may now write

(BT (x1, y1), . . . ,BT (xs, ys)) =

√
T

T − 1

T−1∑

t=1

(g(Xt, Xt+1)− Eg(Xt, Xt+1)) (1.5)

and

(B∗T (x1, y1), . . . ,B∗T (xs, ys)) =

√
T

T − 1

T−1∑

t=1

(
g(X∗t , X

∗
t+1)− E∗g(X∗t , X

∗
t+1)
)
.

(1.6)

The assumptions of Theorem 4.2 of Paparoditis and Politis (2002) are satisfied9

under Assumption 1.7.1. Applying this result in combination with (1.5) and (1.6)

we obtain

dKS (L ∗ (B∗T (x1, y1), . . . ,B∗T (xs, ys)) ,L (BT (x1, y1), . . . ,BT (xs, ys)))→ 0

a.s., where dKS is the Kolmogorov-Smirnov metric on the space of probability dis-

9In fact, Paparoditis and Politis (2002) require g to be continuous, which is not the case here.
However, inspection of their proofs of Theorems 4.1 and 4.2 reveals that it suffices for g to be
continuous on a subset of R2 of full H-measure. Continuity of H ensures that this condition is
satisfied here.
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tributions on Rs. In view of Lemma 1.7.1, it follows that

L ∗ (B∗T (x1, y1), . . . ,B∗T (xs, ys)) (B(x1, y1), . . . ,B(xs, ys))

a.s. This proves a.s. fidi convergence of L ∗(B∗T ) to B.

It remains to verify stochastic equicontinuity. To this end we shall apply

Theorem 2.2 of Andrews and Pollard (1994). In this paragraph it will be helpful

to explicitly recognize that the bootstrap draws are properly viewed as a triangular

array, so we shall write X∗1,T , . . . , X
∗
T,T for the bootstrap sample constructed from

X1, . . . , XT . Also, we condition on X throughout, and omit a.s. qualifiers. Now,

for any x, y ∈ R we may write

B∗T (x, y) =

√
T

T − 1

T−1∑

t=1

(
f(Y ∗t,T−1)− E∗f(Y ∗t,T−1)

)
, (1.7)

where f (not to be confused with the pdf of X0) is the indicator of (−∞, x] ×
(−∞, y], and Y ∗t,T−1 = (X∗t,T , X

∗
t+1,T ). Let F be the collection of all such f as

(x, y) varies over R2. Comparing Theorem 2.2 of Andrews and Pollard (1994)

with (1.7), we see that B∗T satisfies stochastic equicontinuity if, for some even in-

teger Q ≥ 2 and some γ > 0, we have (i)
∑∞

j=1 j
Q−2α

γ/(Q+γ)
j < ∞, and (ii)

∫ 1

0
x−γ/(2+γ)N(x,F)1/Qdx < ∞. Here, the αj’s are α-mixing coefficients corre-

sponding to the array {Y ∗t,T : t ≤ T, T = 1, 2, . . .}, while N(x,F) is a bracketing

number for F ; see Andrews and Pollard (1994, p. 120) for details. Theorem 3.4 of

Paparoditis and Politis (2002) implies that the ρ-mixing coefficients for the array

{Y ∗t,T : t ≤ T, T = 1, 2, . . .} decay at a geometric rate. It follows from the well-

known inequality between ρ- and α-mixing coefficients (see e.g. Proposition 3.11

in Bradley, 2007) that the α-mixing coefficients must also decay at a geometric rate,

and so condition (i) holds for any permissibleQ and γ. Further, it is known (see e.g.

Examples 2.5.4 and 2.5.7 in van der Vaart and Wellner, 1996) thatN(x,F) increas-

es at a polynomial rate as x ↓ 0, so we may choose Q and γ such that condition (ii)
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is satisfied. Theorem 2.2 of Andrews and Pollard (1994) therefore yields stochastic

equicontinuity of B∗T .

We have established that, conditional on X , B∗T satisfies fidi convergence

and stochastic equicontinuity with probability one. The weak convergence to be

proved now follows from Theorem 10.2 of Pollard (1990) or Corollary 2.3 of An-

drews and Pollard (1994).

Proof of Theorem 1.3.2. We know from Lemma 1.3.1 that L ∗
T (B∗T )  B a.s. An

application of the continuous mapping theorem yields

L ∗
T

(
sup
x,y
|B∗T (x, y)−B∗T (y, x)|

)
→d sup

x,y
|B(x, y)−B(y, x)|

a.s. The statement to be proved follows from the continuity of this limiting distri-

bution.

Proof of Theorem 1.4.1. Since F and ∂2C are continuous, we may define a regular

family of conditional cdfs for Xt given Xt+1 by writing P (Xt ≤ x|Xt+1 = y) =

∂2C(F (x), F (y)) for all x ∈ R and F -a.e. y ∈ R. Continuity of F ensures that

F (Q(u)) = u for all u ∈ (0, 1), so we have F↑(Q(u)) = ∂2C(u, u) for a.e. u ∈
(0, 1). Similarly, F↓(Q(u)) = ∂1C(u, u) for a.e. u ∈ (0, 1). Our desired result

follows by noting that the identities in (1.4) allow us to write ψ(u) = F↑(Q(u))−
F↓(Q(u)) for a.e. u ∈ (0, 1).

Proof of Theorem 1.4.2. In view of (1.4) and the definitions of F↑ and F↓, we have

∫
ψ(u)du =

∫
P (Xt−1 ≤ Q(u)|Xt = Q(u))du−

∫
P (Xt+1 ≤ Q(u)|Xt = Q(u))du

=

∫
P (Xt−1 ≤ x|Xt = x)dF (x)−

∫
P (Xt+1 ≤ x|Xt = x)dF (x).

The law of iterated expectations allows us to write

∫
P (Xt−1 ≤ x|Xt = x)dF (x) =

∫
P (Xt−1 ≤ Xt|Xt = x)dF (x) = P (Xt−1 ≤ Xt).
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Similarly, we have
∫
P (Xt+1 ≤ x|Xt = x)dF (x) = P (Xt+1 ≤ Xt).

To prove Theorem 1.4.3, the following two preliminary results will be use-

ful.

Lemma 1.7.2. Suppose Assumption 1.4.1 holds. Then for any x ∈ R, as T → ∞
the random vector

(Th)1/2 ·




∂1ĤT (x, x)− ∂1H(x, x)

∂2ĤT (x, x)− ∂2H(x, x)

f̂T (x)− f(x)




converges in distribution to the trivariate normal distribution with zero mean and

covariance matrix

Σ =

∫
k(z)2dz·f(x)·




∂1C(u, u) ∂1C(u, u)∂2C(u, u) ∂1C(u, u)

∂1C(u, u)∂2C(u, u) ∂2C(u, u) ∂2C(u, u)

∂1C(u, u) ∂2C(u, u) 1


 ,

where u = F (x).

Proof of Lemma 1.7.2. Our proof of this result bears some resemblance to the proof

of Theorem 7 of Fermanian and Scaillet (2003). Like those authors, we establish

our result by applying Lemma 7.1 of Robinson (1983). In view of the Cramér-Wold

theorem it suffices for us to show that, for any λ = (λ1, λ2, λ3)> ∈ R3,

(Th)1/2

(
2∑

i=1

λi(∂iĤT (x, x)− ∂iH(x, x)) + λ3(f̂T (x)− f(x))

)
→d N(0, λ>Σλ).

Using integration by parts and a change of variables, we may show that

Ef̂T (x) =

∫
kh(x− y)f(y)dy =

∫
f(x− hr)k(r)dr.

Applying a Taylor expansion to f and exploiting the fact that k is even, we obtain
Ef̂T (x) = f(x) + O(h2). Similar arguments yield E∂iĤT (x, x) = ∂iH(x, x) +
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O(h2) for i = 1, 2. Since Th5 → 0, the bias in our estimators is asymptotically
negligible, and now we need only show that

(Th)1/2

(
2∑

i=1

λi(∂iĤT (x, x)− E∂iĤT (x, x)) + λ3(f̂T (x)− Ef̂T (x))

)
→d N(0, λ>Σλ).

(1.8)

We now apply Lemma 7.1 of Robinson (1983). For t = 0, . . . , T let

V1tT = λ1h (kh(x−Xt+1)Kh(x−Xt+2)− Ekh(x−Xt+1)Kh(x−Xt+2)) ,

V2tT = λ2h (Kh(x−Xt)kh(x−Xt+1)− EKh(x−Xt)kh(x−Xt+1)) ,

V3tT = λ3h (kh(x−Xt+1)− Ekh(x−Xt+1)) .

The term on the left-hand side of (1.8) is equal to

(Th)1/2

(
1

T − 1

T−2∑

t=0

h−1V1tT +
1

T − 1

T−1∑

t=1

h−1V2tT +
1

T

T−1∑

t=0

h−1V3tT

)
.

Boundedness of k ensures that the random variables VitT are bounded uniformly in

i, t and T , so we may rewrite this quantity as ST + O(T−1/2h−1/2) = ST + o(1),

where ST = T−1/2
∑T

t=1

∑3
i=1 h

−1/2VitT . If applicable, Lemma 7.1 of Robinson

(1983) establishes the asymptotic normality of ST ; we now verify its assumptions,

which are labeled A3.1 and A7.1–A7.4. A3.1 is implied by our condition10 on the

α-mixing rate of X . A7.1 holds with q = 2 due to the stationarity of X . A7.2

holds since Th→∞.

A7.3 is satisfied if we can identify constants σij , i, j = 1, 2, 3, such that

h−1EVitTVjtT → λiλjσij . Let κ2 =
∫
k(x)2dx. Arguments given in the proof of

Theorem 7 in Fermanian and Scaillet (2003, pp. 49–51) establish that for i = 1, 2

we may take σii = κ2∂iH(x, x), σ33 = κ2f(x) and σi3 = σ3i = κ2∂iH(x, x). It

remains for us to identify σ12 = σ21. Fermanian and Scaillet (2003, pp. 48–49)

10In fact, Lemmas 1.7.2 and 1.7.3 and Theorem 1.4.3 remain true if our Assumption 1.4.1(c) is
replaced with A3.1 of Robinson (1983), which requires that

∑∞
j=T αj = o(T−1).
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establish that Ekh(x − Xt+1)Kh(x − Xt+2) = O(1) and EKh(x − Xt)kh(x −
Xt+1) = O(1), so we have

h−1EV1tTV2tT = λ1λ2hE
(
Kh(x−Xt)kh(x−Xt+1)2Kh(x−Xt+2)

)
+O(h).

(1.9)

Since X is a Markov chain, the joint cdf of Xt and Xt+2 conditional on Xt+1 is of

the form

P (Xt ≤ w,Xt+2 ≤ z|Xt+1 = y) = ∂2C(F (w), F (y))∂1C(F (y), F (z));

see e.g. Darsow et al. (1992). We may therefore write

E (Kh(x−Xt)Kh(x−Xt+2)|Xt+1 = y) (1.10)

=

(∫
Kh(x− w)∂2C(F (dw), F (y))

)(∫
Kh(x− z)∂1C(F (y), F (dz))

)
.

Integration by parts and a change of variables yield

∫
Kh(x− w)∂2C(F (dw), F (y)) =

∫
∂2C(F (x− hr), F (y))k(r)dr.

Applying a Taylor expansion to ∂2C(F (·), F (y)) and exploiting the symmetry of k,

we find that this last term is equal to ∂2C(F (x), F (y)) + O(h2), with the order of

the remainder term holding uniformly in y over any set on which f(y) is bounded

away from zero. We may show in similar fashion that

∫
Kh(x− z)∂1C(F (y), F (dz)) = ∂1C(F (y), F (x)) +O(h2),

with the order of the remainder term again holding uniformly in y over any set on
which f(y) is bounded away from zero. Returning to (1.10), we now have

E (Kh(x−Xt)Kh(x−Xt+2)|Xt+1 = y) = ∂2C(F (x), F (y))∂1C(F (y), F (x)) +RT (y),

where the remainder termRT (y) satisfies supf(y)>ε |RT (y)| = O(h2) for any ε > 0.
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Applying the law of iterated expectations and making another change of variables,
we obtain

E
(
Kh(x−Xt)kh(x−Xt+1)2Kh(x−Xt+2)

)

=

∫
∂2C(F (x), F (y))∂1C(F (y), F (x))kh(x− y)2f(y)dy +

∫
RT (y)kh(x− y)2f(y)dy

= h−1
∫
∂2C(F (x), F (x− hr))∂1C(F (x− hr), F (x))k(r)2f(x− hr)dr +O(h).

Here, to obtain the order of the approximation error, we note that

∫
RT (y)kh(x− y)2f(y)dy = h−1

∫
RT (x− hr)f(x− hr)k(r)2dr,

which is O(h) since k has compact support, f and k are bounded, and RT is uni-

formly O(h2) in a neighborhood of x. Next, taking a Taylor expansion and once

again exploiting the symmetry of k, we find that

E
(
Kh(x−Xt)kh(x−Xt+1)2Kh(x−Xt+2)

)

= h−1∂1C(F (x), F (x))∂2C(F (x), F (x))f(x)

∫
k(r)2dr +O(h),

and so (1.9) allows us to set σ12 = σ21 = κ2∂1C(F (x), F (x))∂2C(F (x), F (x))f(x).

Thus A7.3 of Robinson (1983) is satisfied.

To verify A7.4 we will demonstrate that EVitTVj,t+s,T = O(h2) for i, j =

1, 2, 3 and s ≥ 1. Boundedness of Kh allows us to write

|EVitTVj,t+s,T | ≤ ah2Ekh(x−Xt+1)kh(x−Xt+s+1) +O(h2)

for some a < ∞. Let Hs denote the joint cdf of Xt+1 and Xt+s+1. Integration by

parts and a change of variables yield

h2Ekh(x−Xt+1)kh(x−Xt+s+1) = h2

∫∫
kh(x− y)kh(x− z)Hs(dy, dz)

=

∫∫
k′(v)k′(w)Hs(x− hv, x− hw)dvdw.(1.11)
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Using the Markov property of X and smoothness of H , one may show without

difficulty that Hs is twice continuously differentiable in a neighborhood of (x, x).

Therefore, since
∫
k′ = 0, we may use a Taylor expansion to show that the right-

hand side of (1.11) is O(h2). We conclude that EVitTVj,t+s,T = O(h2), and so A7.4

is satisfied. Lemma 7.1 of Robinson (1983) thus implies that (1.8) holds, with Σ

having (i, j)th element σij . This completes the proof.

Lemma 1.7.3. Suppose Assumption 1.4.1 holds. Then for any x ∈ R, as T → ∞
we have

(i) (Th)1/2
(
∂1ĤT (x̂T , x̂T )− ∂1ĤT (x, x)

)
→p 0,

(ii) (Th)1/2
(
∂2ĤT (x̂T , x̂T )− ∂2ĤT (x, x)

)
→p 0, and

(iii) (Th)1/2
(
f̂T (x̂T )− f̂T (x)

)
→p 0,

where x̂T = Q̂T (u) and u = F (x).

Proof of Lemma 1.7.3. We begin by establishing that x̂T = x + Op(T
−1/2). Fol-

lowing the argument of Fermanian and Scaillet (2003, pp. 44–45), we find that

sup
y∈R

∣∣∣∣T 1/2(F̂T (y)− F (y))− G (y)− T 1/2

∫
(F (y − hr)− F (y)) k(r)dr

∣∣∣∣ = op(1),

(1.12)
for some centered Gaussian process G on R with a.s. continuous sample paths.
Applying a second-order Taylor expansion to F and exploiting the fact that k is
even, we obtain

sup
y∈R

∣∣∣∣T 1/2

∫
(F (y − hr)− F (y)) k(r)dr − 1

2
T 1/2h2f ′(y)

∫
r2k(r)dr

∣∣∣∣ = Op(T
1/2h3). (1.13)

Under Assumption 1.4.1(e), Th4 → c ∈ [0,∞). Consequently, from (1.12) and

(1.13) we have

T 1/2(F̂T − F ) G +
1

2
c1/2f ′

∫
r2k(r)dr,
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and an application of the functional delta method using the inversion operator yields

x̂T = x+Op(T
−1/2), as claimed.

We now prove part (i) of Lemma 1.7.3. Using a third-order Taylor expan-

sion, we find that

∂1ĤT (x̂T , x̂T )− ∂1ĤT (x, x) =
3∑

j=1

1

j!
(x̂T − x)j

dj

dzj
∂1ĤT (z, z)|z=x +RT , (1.14)

where the remainder term RT is equal to

RT =
1

24
(x̂T − x)4 d4

dz4
∂1ĤT (z, z)|z=x̃T

for some x̃T between x̂T and x. Boundedness of k and its first four derivatives

ensures that

sup
x̃∈R

∣∣∣∣
d4

dz4
∂1ĤT (z, z)|z=x̃

∣∣∣∣ = O(h−5).

Therefore, since Th3 → ∞, we have RT = Op(T
−2h−5) = op(T

−1/2h−1/2). To

demonstrate that the right-hand side of (1.14) is op(T−1/2h−1/2), it now suffices for

us to show that
dj

dzj
∂1ĤT (z, z)|z=x = op(T

(j−1)/2h−1/2)

for j = 1, . . . , 3. This will be true if

1

T

T∑

t=1

k
(i)
h (x−Xt)K

(j−i)
h (x−Xt+1) = op(T

(j−1)/2h−1/2) (1.15)

for j = 1, . . . , 3 and i = 0, . . . , j, where parenthesized superscripts signify higher-
order differentiation. Using integration by parts and a change of variables, we find
that

Ek
(i)
h (x−Xt)K

(j−i)
h (x−Xt+1) =

∫∫
k(v)k(w)H(i+1,j−i)(x− hv, x− hw)dvdw = O(1).
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It follows that

1

T

T∑

t=1

k
(i)
h (x−Xt)K

(j−i)
h (x−Xt+1) = T (j−1)/2h−1/2ST +O(1), (1.16)

where, suppressing the dependence of ST and VtT on i and j in our notation11, we
define ST = T−1/2

∑T
t=1(T j/2h2j)−1/2VtT and

VtT = T−j/4hj+1/2
(
k
(i)
h (x−Xt)K

(j−i)
h (x−Xt+1)− Ek(i)h (x−Xt)K

(j−i)
h (x−Xt+1)

)
.

In view of (1.16) and the fact that T (j−1)/2h−1/2 → ∞, we may verify (1.15) by

showing that ST = op(1). We shall do this by verifying that ST and VtT satisfy

assumptions A3.1, A7.1-A7.4 of Lemma 7.1 of Robinson (1983), with σ2 = 0.

A3.1 holds under our assumption on the mixing rate of X . A7.1 holds with q = 1

due to the stationarity of X . A7.2 holds since Th3 →∞. A7.3 holds with σ2 = 0

if EV 2
tT = o(T j/2h2j). Using a change of variables, we may show that

Ek
(i)
h (x−Xt)

2K
(j−i)
h (x−Xt+1)2

= h−2j

∫∫
k(i)(v)2K(j−i)(w)2H(1,1)(x− hv, x− hw)dvdw = O(h−2j).

Therefore, we have

EV 2
tT ≤ 2T−j/2h2j+1Ek

(i)
h (x−Xt)

2K
(j−i)
h (x−Xt+1)2 = O(T−j/2h) = o(T j/2h2j),

(1.17)

where the first inequality follows from the fact that the variance of any random vari-

able is no greater than twice its expected square. Thus A7.3 holds. A7.4 holds if

(a) sup1≤t≤T |VtT | = O(1), (b) E|VtTVt+1,T | = o(T j/2h2j), and (c) E|VtTVt+s,T | =
O(T jh4j) for s ≥ 2. Boundedness of k(i) and K(j−i) may be used to show that

sup1≤t≤T |VtT | = O(T−j/4h−1/2) = O(1), yielding (a). Parts (b) and (c) follow

from (1.17) using the Cauchy-Schwarz inequality. We have now verified all as-

11As defined here, ST and VtT differ from ST and VitT as defined in the proof of Lemma 1.7.2,
but play the same role in the application of Lemma 7.1 of Robinson (1983).
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sumptions of Lemma 7.1 of Robinson (1983), which allows us to conclude that

ST = op(1). Thus, (1.15) holds for any j = 1, . . . , 3 and i = 0, . . . , j, and so the

right-hand side of (1.14) is op(T−1/2h−1/2). This proves part (i) of Lemma 1.7.3.

Parts (ii) and (iii) may be proved using the same approach.

Proof of Theorem 1.4.3. Lemma 1.7.2 and Lemma 1.7.3 jointly imply that

(Th)1/2 ·




∂1ĤT (x̂T , x̂T )− ∂1H(x, x)

∂2ĤT (x̂T , x̂T )− ∂2H(x, x)

f̂T (x̂T )− f(x)


→d N(0,Σ), (1.18)

where x = Q(u) and x̂T = Q̂T (u). Noting that

ψ̂T (u) =
∂2ĤT (x̂T , x̂T )− ∂1ĤT (x̂T , x̂T )

f̂T (x̂T )
and ψ(u) =

∂2H(x, x)− ∂1H(x, x)

f(x)
,

we can use the delta method to obtain (Th)1/2(ψ̂T (u) − ψ(u)) →d N(0, σ2(u)).

Let

a1 =
−1

f(x)
, a2 =

1

f(x)
, a3 =

∂1H(x, x)− ∂2H(x, x)

f(x)2
.

Then, applying the delta method, σ2(u) is given by

σ2(u) =
3∑

i=1

3∑

j=1

aiajΣij

=

∫
k(z)2dz
f(Q(u))

· (∂1C(u, u) (1− ∂1C(u, u)) + ∂2C(u, u) (1− ∂2C(u, u))) .

That σ̂2
T (u)→p σ

2(u) follows easily from (1.18).

Acknowledgements

Chapter 1 is published in Econometric Theory (2014). I thank Brendan K.

Beare for his permission to use the co-authored paper in my dissertation Chapter.



Chapter 2

Vine Copula Specifications for

Stationary Multivariate Markov

Chains

Abstract. Vine copulae provide a graphical framework in which multiple

bivariate copulae may be combined in a consistent fashion to yield a more complex

multivariate copula. In this paper we discuss the use of vine copulae to build flexible

semiparametric models for stationary multivariate higher-order Markov chains. We

propose a new vine structure, the M-vine, that is particularly well suited to this

purpose. Stationarity may be imposed by requiring the equality of certain copulae

in the M-vine, while the Markov property may be imposed by requiring certain

copulae to be independence copulae.
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2.1 Introduction

Copula functions or copulae1 have become a popular tool for modeling po-

tentially nonlinear stochastic relationships between two or more variables, particu-

larly in economics and finance. See, for instance, either of the textbooks by Cheru-

bini et al. (2004, 2012), or any of the three review articles by Patton (2009, 2012,

2013). In a time series context we may distinguish between the use of copulae to

model contemporaneous relationships between multiple time series, and the use of

copulae to model the dynamics of an individual time series. While the former ap-

proach is more common, the latter has become increasingly popular in recent years,

with applications including studies of air quality (Joe, 1997), blood pressure and

antidepressants (Lambert and Vandenhende, 2002), order durations (Savu and Ng,

2005), automobile claims (Frees and Wang, 2006), coffee prices (Abegaz and Naik-

Nimbalkar, 2008), higher education funding reforms (Dearden et al., 2008), nurs-

ing home utilization (Sun et al., 2008), earnings mobility (Bonhomme and Robin,

2009), foreign exchange (Bouyé and Salmon, 2009), stock prices (Domma et al.,

2009), electricity load (Smith et al., 2010), and gasoline prices (Beare and Seo,

2014).

Recent contributions by Yi and Liao (2010) and Rémillard et al. (2012)

bridge the gap between methods that use copulae to model contemporaneous depen-

dence between variables, and methods that use copulae to model univariate serial

dependence. In the more general approach of the latter set of authors, we specify

a parametric 2m-variate copula function to model the dependence between the 2m

random variables associated with consecutive realizations of a stationary m-variate

Markov chain. The m univariate marginal distributions of the chain are left unspec-

ified, and estimated nonparametrically. This generalizes the approach of Chen and

Fan (2006), who considered the univariate case m = 1. In the multivariate case

m ≥ 2, additional care is needed when selecting an appropriate 2m-variate copula,

1Refer to Nelsen (2006) for an introduction to copula functions and their properties.
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as some of the most common parametric families can be very restrictive. With a

multivariate Student copula, we require that all pairs of variables have the bivari-

ate Student copula with the same degrees of freedom, while with a multivariate

Archimedean copula, all pairs of variables must have the same bivariate copula. In

both cases we impose symmetric dependence between any pair of variables.2 These

may not be desirable restrictions to impose in applications; in particular, we typi-

cally have no reason to expect the bivariate copula characterizing serial dependence

in one time series to resemble the bivariate copula characterizing contemporane-

ous dependence between two time series. It may therefore be useful to investigate

the use of more flexible multivariate copulae to simultaneously capture serial and

contemporaneous dependence.

In this paper we explore the use of vine copulae in the multivariate frame-

work of Rémillard et al. (2012). Vine copulae provide a graphical framework in

which multiple bivariate copulae may be combined in a consistent fashion to yield

a more complex multivariate copula. They are also referred to as pair copula con-

structions. Vine copulae were first proposed by Bedford and Cooke (2001, 2002),

though some of the core ideas can be found in earlier work by Joe (1996, 1997).

Their use in stationary multivariate Markov models was suggested by Rémillard et

al. (2012, p. 34) as an area for future research. Smith et al. (2010) used vine copulae

to model the serial dependence in time inhomogeneous univariate Markov chains,

but we are the first to consider the stationary multivariate case. We consider not on-

ly first-order but also higher-order Markov chains, studied previously by Ibragimov

(2009) through the lens of copula theory.

Our primary contribution is the invention of a new vine structure which we

call the M-vine. We argue that the M-vine is particularly well suited for model-

ing stationary multivariate higher-order Markov chains. It is possible to specify

an M-vine copula for the entire mn-variate distribution of a sample of n consecu-

2Generalized multivariate Student and Archimedean copulae (Demarta and McNeil, 2005; Fis-
cher, 2011) may provide more flexibility. We do not consider these here, instead focusing on vine
copulae.
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tive realizations of an m-variate chain. Stationarity is easily imposed by requiring

the equality of certain bivariate copulae linked by the M-vine, while the Markov

property may be imposed by requiring certain bivariate copulae in the M-vine to be

independence copulae. We discuss the application of the semiparametric estimator

of Rémillard et al. (2012) to our M-vine model, and also a computationally faster

stepwise estimator studied recently by Hobæk Haff (2012, 2013).

The remainder of our paper is organized as follows. In Section 2.2 we pro-

vide a brief review of the essential features of vine copulae. Our main contributions

are in Section 2.3, where we study the use of different vine structures for stationary

multivariate Markov models, and propose our new M-vine structure. In Section 2.4

we discuss the estimation of M-vine models, and present an illustrative application

to exchange rate data. Section 2.5 closes with some remarks on possible directions

for future research.

2.2 Essentials of vine copulae

We commence with a very brief introduction to the essential features of vine

copulae, drawing mostly on the pioneering articles of Bedford and Cooke (2001,

2002) as well as discussions by Kurowicka and Cooke (2006) and Czado (2010).

The graphical structure underlying a vine copula is called a regular vine or R-vine,

and takes the form of a nested collection of trees. A tree is a connected acyclic

graph; that is, a collection N of q ≥ 2 elements called nodes, and a collection

E ⊂
(
N
2

)
of q − 1 unordered pairs of nodes called edges,3 with the edges chosen

such that there is a unique sequence of edges connecting any two nodes.

Definition 2.2.1. Given a totally ordered set N1 with q ≥ 2 elements, a regular

vine on N1 is a collection of q−1 trees V = (T1, . . . , Tq−1) satisfying the following

conditions.

(i) T1 has nodes N1 and a set of edges denoted E1.
3We use

(
N
2

)
to denote the collection of all subsets of N that contain exactly two elements.
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(ii) For k = 2, . . . , q − 1, Tk has nodes Nk = Ek−1 and a set of edges denoted

Ek.

(iii) Proximity condition: For k = 2, . . . , q−1, if u = {u1, u2} and v = {v1, v2}
are nodes of Tk connected by an edge, then u ∩ v is a singleton.

To each edge e in any of the trees of a regular vine, we assign three subsets

of the nodes of the first tree: Ue, the complete union of e; De, the conditioning set

of e; and {ae, be}, the conditioned set of e, which necessarily has two elements.

Definition 2.2.2. Let V = (T1, . . . , Tq−1) be a regular vine on N1. Given an edge
ek of Tk for some k, the complete union of ek is the set

Uek = {i ∈ N1 : i ∈ e1 ∈ e2 ∈ · · · ∈ ek−1 ∈ ek for some (e1, . . . , ek−1) ∈ E1 × · · ·Ek−1}

if k ≥ 2, or Uek = ek if k = 1. The conditioning set of ek, denoted Dek , is the

intersection of the complete unions of the edges of Tk−1 connected by ek if k ≥ 2,

or the empty set if k = 1. The conditioned set of ek, denoted {aek , bek}, is the

symmetric difference of the complete unions of the edges of Tk−1 connected by ek

if k ≥ 2, or simply ek if k = 1. The conditioned set of ek contains exactly two

elements of N1, while the conditioning set of ek contains exactly k − 1 elements of

N1 (Bedford and Cooke, 2002, Lemma 4.2). We always label the elements of the

conditioned set of ek such that aek � bek , where � is the total ordering on N1.4

It is often convenient to label the edges of a regular vine according to

their conditioned and conditioning sets. For instance, if N1 = {1, 2, 3, 4} and

{{1, 2}, {2, 3}} is an edge of T2, then this edge has conditioned set {1, 3} and con-

ditioning set {2}, and we may label it as 1,3|2. Similarly, if N1 = {1, 2, 3, 4} and

{2, 3} is an edge of T1, then this edge has conditioned set {2, 3} and empty condi-

tioning set, and we may label it as 2,3. Such a labelling is always unambiguous: no

two edges will have the same conditioned and conditioning sets.

4If N1 ⊂ R we take � to be the usual inequality relation ≤ on the real line.
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1,3

1,4

1 2 3 4
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2,3|1 3,4|1
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1 2 3 4
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1,4|2,3

(a) C-vine (b) D-vine

Figure 2.1: Regular vines on four elements.

On the left we display a C-vine on four elements. Node 1 is the root of the first tree: it

has degree 3, while other nodes have degree 1. On the right we display a D-vine on four

elements. Nodes 1 and 4 have degree 1, while nodes 2 and 3 have degree 2.

conditioned set of ek contains exactly two elements of N1, while the conditioning set of ek

contains exactly k− 1 elements of N1 (Bedford and Cooke, 2002, Lemma 4.2). We always

label the elements of the conditioned set of ek such that aek � bek , where � is the total

ordering on N1.4

It is often convenient to label the edges of a regular vine according to their conditioned

and conditioning sets. For instance, if N1 = {1, 2, 3, 4} and {{1, 2}, {2, 3}} is an edge

of T2, then this edge has conditioned set {1, 3} and conditioning set {2}, and we may

label it as 1,3|2. Similarly, if N1 = {1, 2, 3, 4} and {2, 3} is an edge of T1, then this

edge has conditioned set {2, 3} and empty conditioning set, and we may label it as 2,3.

Such a labelling is always unambiguous: no two edges will have the same conditioned and

conditioning sets.

In Figure 2.1 we display two examples of regular vines on four elements. First consider

the vine on the left. The first tree of this vine is given by the nodes N1 = {1, 2, 3, 4} and

the edges 1,2, 1,3 and 1,4. In the second tree, these three edges are connected by the

4If N1 ⊂ R we take � to be the usual inequality relation ≤ on the real line.

5

Figure 2.1: Regular vines on four elements
On the left we display a C-vine on four elements. Node 1 is the root of the first tree:
it has degree 3, while other nodes have degree 1. On the right we display a D-vine
on four elements. Nodes 1 and 4 have degree 1, while nodes 2 and 3 have degree 2.

In Figure 2.1, we display two examples of regular vines on four elements.

First consider the vine on the left. The first tree of this vine is given by the nodes

N1 = {1, 2, 3, 4} and the edges 1,2, 1,3 and 1,4. In the second tree, these three

edges are connected by the edges 2,3|1 and 2,4|1. In the third tree, these two edges

are connected by the edge 2,4|1,3. Next consider the vine on the right. The first tree

of this vine is given by the nodes N1 = {1, 2, 3, 4} and the edges 1,2, 2,3 and 3,4.

In the second tree, these three edges are connected by the edges 1,3|2 and 2,4|3.

In the third tree, these two edges are connected by the edge 1,4|2,3. Notice that in

both vines the proximity condition is satisfied at all times: only edges that share a

node may be connected by an edge of the following tree.

The two vines depicted in Figure 2.1 are representative members of two

important families of regular vines: the C-vines (C for canonical) and D-vines (D

for drawable). These families are defined as follows.

Definition 2.2.3. Let V = (T1, . . . , Tq−1) be a regular vine on N1. The degree of a

node of some tree Tk is the number of edges of Tk that connect to it. V is said to be

a C-vine if each tree Tk has a node of degree q − k. That node is called the root of

Tk. V is said to be a D-vine if each node of the first tree has degree no greater than
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two.

When q ≤ 3 all regular vines are C-vines and D-vines, and when q ≤ 4

all regular vines are C-vines or D-vines, but when q ≥ 5 regular vines arise that

belong to neither family (Joe, 2011). An important property of D-vines is that all

trees beyond the first are uniquely determined by the first tree, due to the need to

satisfy the proximity condition. This property will prove useful to us later.

The utility of regular vines derives from the fact that, when we assign a

univariate cumulative distribution function (cdf) to each node of the first tree, and

a bivariate copula to each edge of each tree, we obtain a unique q-dimensional

multivariate distribution. The pairing of the regular vine with the assignment of

univariate cdfs and bivariate copulae is called a vine copula specification.

Definition 2.2.4. (F ,V , C) is a vine copula specification on N1 if

(i) F = {Fi : i ∈ N1} is a set5 of absolutely continuous invertible univariate

cdfs.

(ii) V is a regular vine on N1.

(iii) C = {Cae,be|De : e ∈ ∪q−1
k=1Ek} is a set of absolutely continuous bivariate

copulae.

We will write fi for the probability density function (pdf) associated with

Fi ∈ F , and cae,be|De for the copula density associated with Cae,be|De ∈ C. The exis-

tence of these densities is assumed in our definition of a vine copula specification.

This is not necessary, but is convenient for our purposes.

The assignment of the cdfs in F to the nodes in N1 pins down the n uni-

variate margins of the multivariate distribution determined by our vine copula spec-

ification, while the assignment of copulae to edges determines certain conditional

copulae associated with the corresponding conditioned and conditioning sets. A

5Formally, F and C map the nodes and edges of V to cdfs and copulae. We follow convention
and refer to F and C as sets of cdfs and copulae that are assigned to the nodes and edges of V .
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multivariate distribution that is consistent with the specified marginal distributions

and conditional copulae is said to realize the copula vine specification.

Definition 2.2.5. The joint cdf F of q random variablesXi, i ∈ N1, is said to realize

the vine copula specification (F ,V , C) on N1 if

(i) For each i ∈ N1, Fi is the marginal cdf of Xi.

(ii) For each e ∈ ∪q−1
k=1Ek, Cae,be|De is the conditional copula of Xae and Xbe

given the random variables Xi, i ∈ De.

For a definition and discussion of conditional copulae, see Patton (2006).

Note that in condition (ii) of Definition 2.2.5, if De is empty, Cae,be|De is simply the

copula of Xae and Xbe . If De is nonempty, the conditional copula of Xae and Xbe

given Xi, i ∈ De, is required to be a member of C - an ordinary bivariate copula

- meaning that it cannot depend on the particular values taken by the conditioning

variables Xi, i ∈ De. This is an important restriction, and we will return to it

shortly.

The following result gives the precise form of the multivariate distribution

associated with a vine copula specification. It appears in slightly modified form as

Theorem 3 in Bedford and Cooke (2001), or Theorem 2.5 in Dißmann et al. (2013).

Theorem 2.2.1. Let (F ,V , C) be a vine copula specification on N1. There is a

unique joint cdf F that realizes (F ,V , C). F is absolutely continuous, with pdf f

given by

f =

(∏

i∈N1

fi

)(
q−1∏

k=1

∏

e∈Ek
cae,be|De

(
Fae|De , Fbe|De

)
)
.

The conditional cdfs Fae|De and Fbe|De are determined by (F ,V , C) in the following

recursive fashion. If e ∈ E1, so that De = ∅, then Fae|De = Fae and Fbe|De = Fbe .

If e ∈ Ek for some k ≥ 2, then

Fae|De
=
∂Cae′ ,be′ |De′

(Fae′ |De′
, Fbe′ |De′

)

∂Fbe′ |De′

and Fbe|De
=
∂Cae′′ ,be′′ |De′′

(Fae′′ |De′′
, Fbe′′ |De′′

)

∂Fae′′ |De′′

,

where e′ and e′′ are the edges of Tk−1 connected by e, with ae = ae′ and be = be′′ .
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The recursive method of constructing conditional cdfs given in Theorem

2.2.1 was proposed in an early contribution by Joe (1996). An important part of the

statement of Theorem 2.2.1 is that, given any vine copula specification (F ,V , C),

we can always find a joint cdf F that realizes (F ,V , C). This means that the cdfs and

copulae assigned to the nodes and edges of our regular vine can never be mutually

incompatible. The properties defining the structure of a regular vine rule out such

incompatibilities. Joe (1997, ch. 3) discusses the problem of determining whether a

given collection of marginal distributions is compatible in his treatment of Fréchet

classes.

While part (ii) of Definition 2.2.5 indicates that we may view the copulae

assigned to the edges of trees T2, . . . , Tq−1 as conditional copulae, part (iii) of Def-

inition 2.2.4 requires them to be ordinary bivariate copulae. In general we would

expect that, for e ∈ Ek with k ≥ 2, the conditional copula Cae,be|De(u, v|w) of

Xae and Xbe given Xi, i ∈ De, should depend not only on the quantiles u and

v associated with Xae and Xbe , but also on the vector of values w ∈ Rk−1 taken

by the conditioning variates. But because we require the members of C to be bi-

variate copulae, Cae,be|De can be a function only of the variables u and v, so that

Cae,be|De(u, v|w) = Cae,be|De(u, v). Torgovitsky (2012) refers to this condition as

copula invariance. Although in principle we could relax the copula invariance con-

dition by allowing the members of C to be arbitrary conditional copulae, in practice

this eliminates much of the appeal of the vine copula specification as a dimension

reduction device. Some authors use the expression simplified pair copula construc-

tion to emphasize the role of the copula invariance condition in a vine copula speci-

fication. Hobæk Haff et al. (2010) argue that a vine copula specification can deliver

a good approximation to multivariate distributions even when the copula invariance

condition is not satisfied, while Acar et al. (2012) provide a more skeptical per-

spective. Stöber et al. (2013) show that the members of C will automatically satisfy

copula invariance whenever (F ,V , C) is realized by a distribution with a multivari-

ate Gaussian, Student, or Clayton copula.



61

2.3 Vine copulae and stationary Markov chains

In this section we consider the use of vine copulae to model an Rm-valued

stationary Markov chain of order p. Since the finite dimensional distributions of

such a chain are uniquely determined by the m × (p + 1) dimensional joint distri-

bution of p+ 1 consecutive realizations, it is natural to consider vines on the m×n
array of nodes N1 = {1, . . . ,m}× {1, . . . , n}, with n = p+ 1. Care must be taken

when building a vine copula specification on this array in order to ensure that the

stationarity condition is satisfied. An alternative approach is to let n be the number

of time periods in a sample to which we wish to fit our vine copula specification,

with n > p + 1. In this case we need not only take care to ensure that stationarity

holds, but also that the Markov property is satisfied.

In Definition 2.2.1 we required that the nodes of a regular vine constitute

a totally ordered set. This was done to ensure that the labeling of nodes in the

conditioned set {ae, be} of some edge e can be made unambiguous by requiring

that ae � be. For the remainder of the paper, we adopt the convention that the nodes

of the m× n array N1 are endowed with the following total order: (i, s) � (j, t) if

and only if (s− 1)m+ i ≤ (t− 1)m+ j.

To provide motivation and build intuition, we begin in Section 2.3.1 by con-

sidering stationary bivariate first-order Markov chains, and proceed to stationary

bivariate second-order Markov chains in Section 2.3.2. In Section 2.3.3 we consid-

er the general case where m ≥ 1 and p ≥ 1. We propose a new regular vine, the

M-vine, and argue that it is particularly well suited for our purpose.

2.3.1 Bivariate first-order Markov chains

Let X1,X2, . . . be a stationary first-order Markov chain taking values in R2,

and for i ∈ {1, 2} and t ∈ N let Xit denote the ith element of Xt. The finite dimen-

sional distributions of our Markov chain are determined by the joint distribution of

(X11, X21, X12, X22), which we wish to model using a vine copula specification. To
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this end we define the node set N1 = {1, 2}2, which can be visualized as a 2 × 2

array of indices it, with i indicating the row and t indicating the column. In Figure

2.2, we display four trees on N1. We shall consider each of these trees in turn as

candidates for the first tree of a regular vine on N1.

11 12

21 22

11,21

21,22

11,12
11 12

21 22

12,2211,21

11,22

11 12

21 22

11,12

11,21
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Figure 3.1: Four trees on a 2× 2 array of nodes.

The trees in panels (a) and (c) are less suitable for modeling a stationary bivariate first-

order Markov chain because they do not include both of the edges 11,21 and 12,22. We

would like to assign the same copula to these two edges in order to ensure stationarity.

3.1 Bivariate first-order Markov chains

Let X1,X2, . . . be a stationary first-order Markov chain taking values in R2, and for i ∈
{1, 2} and t ∈ N let Xit denote the ith element of Xt. The finite dimensional distributions

of our Markov chain are determined by the joint distribution of (X11, X21, X12, X22), which

we wish to model using a vine copula specification. To this end we define the node set

N1 = {1, 2}2, which can be visualized as a 2× 2 array of indices it, with i indicating the

row and t indicating the column. In Figure 3.1 we display four trees on N1. We shall

consider each of these trees in turn as candidates for the first tree of a regular vine on N1.

First consider the tree displayed in Figure 3.1(a). Each node in this tree has degree of at

most two, so there exists a unique regular vine on N1 commencing with this tree, and it

is a D-vine. The edges in the second tree are 12,21|11 and 11,22|21, and the edge in the

third tree is 12,22|11,21. This vine is poorly suited to model the behavior of our Markov

chain. The reason is that we have assumed X1,X2, . . . to be stationary, which requires the

bivariate distributions of (X11, X21) and (X12, X22) to be identical. This will be the case

if and only if (i) F11 = F12 and F21 = F22, and (ii) C11,21 = C12,22. Condition (i) is easily

satisfied with a suitable choice of F in our vine copula specification, but condition (ii) is

problematic, because our vine does not include the edge 12,22. Satisfaction of (ii) when

we do not directly specify C11,21 and C12,22 typically entails a complicated restriction on

those copulae we do specify. This problem can easily be avoided with a more appropriate

10

Figure 2.2: Four trees on a 2× 2 array of nodes
The trees in panels (a) and (c) are less suitable for modeling a stationary bivariate
first-order Markov chain because they do not include both of the edges 11,21 and
12,22. We would like to assign the same copula to these two edges in order to
ensure stationarity.

First consider the tree displayed in Figure 2.2. Each node in this tree has

degree of at most two, so there exists a unique regular vine onN1 commencing with

this tree, and it is a D-vine. The edges in the second tree are 12,21|11 and 11,22|21,

and the edge in the third tree is 12,22|11,21. This vine is poorly suited to model the

behavior of our Markov chain. The reason is that we have assumed X1,X2, . . . to be

stationary, which requires the bivariate distributions of (X11, X21) and (X12, X22)

to be identical. This will be the case if and only if (i) F11 = F12 and F21 = F22,

and (ii) C11,21 = C12,22. Condition (i) is easily satisfied with a suitable choice of F
in our vine copula specification, but condition (ii) is problematic, because our vine

does not include the edge 12,22. Satisfaction of (ii) when we do not directly specify

C11,21 and C12,22 typically entails a complicated restriction on those copulae we do

specify. This problem can easily be avoided with a more appropriate choice of vine.

Next consider the tree in Figure 2.2. Like the tree in panel (a), this tree

defines a D-vine on N1, with edges 21,22|11 and 11,12|22 in the second tree, and

edge 21,12|11,22 in the third tree. Since the first tree includes both of the edges
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11,21 and 12,22, we can easily impose stationarity by assigning the same copula to

both edges, the same cdf to nodes 11 and 12, and the same cdf to nodes 21 and 22.

This makes the vine a good candidate for a stationary Markov model.

The tree in Figure 2.2 (c) is the first tree of a C-vine. It does not include

both of the edges 11,21 and 12,22 and is therefore poorly suited to our purpose.

The same is true for any C-vine on N1, regardless of which node is chosen to be the

root of the first tree.

The tree in Figure 2.2 (d) defines a D-vine on N1, with edges 21,12|11 and

11,22|12 in the second tree, and edge 21,22|11,12 in the third tree. Like the tree in

panel (b), it includes both of the edges 11,21 and 12,22, so stationarity is easily im-

posed. It also includes the edge 11,12, whereas the tree in panel (b) instead includes

11,22. It seems to us that the choice of edges in panel (d) is likely to be more useful

in applications. The copula assigned to 11,12 controls the serial dependence in X1t.

Interesting patterns of serial dependence may be generated using a suitable copu-

la; for instance, a nonexchangeable copula may be used to model Edgeworth price

cycles or other time irreversible dynamics, as in Beare and Seo (2014). We cannot

explicitly specify the univariate dynamics of either component of Xt if we com-

mence our vine with the tree in panel (b). Instead, they are implicitly determined

by the copulae assigned to other edges.

Another potential advantage of commencing our vine with the tree in panel

(d) is that the following tree will include the edge 21,12|11. The copula associated

with this edge controls the Granger-causal effect (Granger, 1969) of X2t upon X1t.

In particular, X2t will not Granger-cause X1t if and only if we assign the indepen-

dence copula to the edge 21,12|11. There does not seem to be a simple way to

directly impose or exclude Granger causality if our vine commences with the tree

in panel (b).

To illustrate the use of vine copula specifications based on the initial tree

in Figure 2.1 (d), we randomly generated two stationary bivariate Markov chains

of length 50 with particular dependence structures. These chains are displayed in
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Figure 2.3. The first chain, shown in panel (a), is a stationary vector autoregressive

process of order one, or VAR(1) process, with Gaussian innovations. It follows the

recursion Xt = µ+ΦXt−1 +εt, where εt ∼ iidN (0,Ω), and parameters are given

by

µ =


 3.5

−0.5


 , Φ =


 0.3 0.2

0.1 0.1


 , Ω =


 1 0.5

0.5 1


 .

For this process, the joint distribution of (X11, X21, X12, X22) is Gaussian. There-

fore, in the corresponding vine copula specification6 based on the initial tree in

Figure 2.2 (d), all cdfs in F and copulae in C are Gaussian. With some routine

calculations we determine their precise form: F11 and F12 are N (5, 1.66382) cdfs,

F21 and F22 areN (0, 1.23772) cdfs, and the correlation parameters determining the

copulae in C are given by

ρ11,21 = 0.7243, ρ11,12 = 0.4078, ρ12,22 = 0.7243,

ρ21,12|11 = 0.1123, ρ11,22|12 = −0.1406, ρ21,22|11,12 = −0.0144.

To obtain the Markov chain shown in panel (b) of Figure 2.3, we made a single

modification to the vine copula specification of (X11, X21, X12, X22) in panel (a):

we replaced the Gaussian copula assigned to edge 11,12, which controls the serial

dependence in X1t, with an asymmetric Gumbel copula of the form

C(u, v) = u1−αv1−β exp
(
− ((−α lnu)γ + (−β ln v)γ)1/γ

)
, (2.1)

with parameters α = 0.99, β = 0.5 and γ = 50. This family of copulae was used

by Beare and Seo (2014) to generate stationary univariate time irreversible Markov

chains characterized by frequent small decreases and less frequent large increases,

a feature typical of many price series. We see in panel (b) that the time path of X1t

does indeed exhibit this feature, as does the time path of X2t to a somewhat lesser

6Since the distribution of (X11, X21, X12, X22) is multivariate Gaussian, the result of Stöber et
al. (2013) mentioned at the end of Section 2.2 ensures that it can be reproduced using a vine copula.
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extent. X2t inherits the irreversible nature of X1t due to the dependence between

the two variables.
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(a) Gaussian copula
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(b) Asymmetric Gumbel copula
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Figure 3.2: Two stationary bivariate first-order Markov chains.

The bivariate chain in panel (a) is a stationary VAR(1) process with Gaussian innovations.

To obtain the bivariate chain in panel (b), we first determined the vine copula specification

for (X11, X21, X12, X22) in panel (a), with initial tree chosen as in Figure 3.1(d). Then we

modified the copula assigned to the edge 11,12, changing it from a Gaussian copula to an

asymmetric Gumbel copula. Parameter values are given in the main text.

determined by parts of the vine copula specification other than the copula assigned to edge

11,12 are identical in the two panels. In particular, the bivariate stationary distributions

of the two Markov chains are equal to one another. In effect, the vine copula specification

has allowed us to inject a strongly nonlinear form of serial dependence into a stationary

VAR(1) model without affecting its stationary distribution. Other forms of nonlinear

dependence could be introduced using different copula functions, or by modifying the

copulae assigned to other edges.

3.2 Bivariate second-order Markov chains

Suppose now that our stationary bivariate process X1,X2, . . . is second-order Markov

rather than first-order Markov. In this case the finite dimensional distributions of the

chain are determined by the joint distribution of (X11, X21, X12, X22, X13, X23), which we

can model using a vine copula specification on the set of nodes N1 = {1, 2} × {1, 2, 3}.

13

Figure 2.3: Two stationary bivariate first-order Markov chains
The bivariate chain in panel (a) is a stationary VAR(1) process with Gaussian in-
novations. To obtain the bivariate chain in panel (b), we first determined the vine
copula specification for (X11, X21, X12, X22) in panel (a), with initial tree chosen as
in Figure 2.2 (d). Then we modified the copula assigned to the edge 11,12, chang-
ing it from a Gaussian copula to an asymmetric Gumbel copula. Parameter values
are given in the main text.

Though the bivariate chains in panels (a) and (b) of Figure 2.3 exhibit dis-

tinct patterns of serial dependence, the differences are attributable to a single change

in our vine copula specification for the joint distribution of (X11, X21, X12, X22).

Aspects of this distribution determined by parts of the vine copula specification

other than the copula assigned to edge 11,12 are identical in the two panels. In

particular, the bivariate stationary distributions of the two Markov chains are equal

to one another. In effect, the vine copula specification has allowed us to injec-

t a strongly nonlinear form of serial dependence into a stationary VAR(1) model

without affecting its stationary distribution. Other forms of nonlinear dependence

could be introduced using different copula functions, or by modifying the copulae

assigned to other edges.
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2.3.2 Bivariate second-order Markov chains

Suppose now that our stationary bivariate process X1,X2, . . . is second-

order Markov rather than first-order Markov. In this case the finite dimensional

distributions of the chain are determined by the joint distribution of (X11, X21, X12,

X22, X13, X23), which we can model using a vine copula specification on the set

of nodes N1 = {1, 2} × {1, 2, 3}. We will focus attention on the regular vine V
displayed in Figure 2.4. The first two trees of V resemble an extension of those

obtained in the 2× 2 case when we commence with the initial tree shown in Figure

2.2 (d). The nodes in the second tree of V have degree no greater than two, so trees

three through five are uniquely determined by the proximity condition for a regular

vine. Clearly V is neither a C-vine nor D-vine. We shall refer to it as an M-vine,

because - with a bit of imagination - the first and second trees displayed in Figure

2.4 are roughly M-shaped. Another useful mnemonic may be M for Markov, though

not all vine structures suitable for Markov models are M-vines. A general definition

and discussion of M-vines on m× n arrays of nodes will be given in Section 2.3.3.
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Figure 3.3: M-vine on a 2× 3 array of nodes.

Each node in the second tree of the M-vine has degree of at most two, so the remaining

three trees are determined by the proximity condition. The third tree has edges 21,22|11,12,

11,13|12,22 and 22,23|12,13. The fourth tree has edges 21,13|11,12,22 and 11,23|12,22,13.

The fifth tree has the single edge 21,23|11,12,22,13.

We will focus attention on the regular vine V displayed in Figure 3.3. The first two

trees of V resemble an extension of those obtained in the 2× 2 case when we commence

with the initial tree shown in Figure 3.1(d). The nodes in the second tree of V have

degree no greater than two, so trees three through five are uniquely determined by the

proximity condition for a regular vine. Clearly V is neither a C-vine nor D-vine. We shall

refer to it as an M-vine, because - with a bit of imagination - the first and second trees

displayed in Figure 3.3 are roughly M-shaped. Another useful mnemonic may be M for

Markov, though not all vine structures suitable for Markov models are M-vines. A general

definition and discussion of M-vines on m×n arrays of nodes will be given in Section 3.3.

Though the structure of V may appear arbitrary, it is in fact the unique regular vine

on N1 satisfying three useful properties: (i) it includes the edge 11,21, so that we may

directly specify the contemporaneous relationship between X1t and X2t; (ii) it includes

the edge 11,12, so that we may directly specify the serial dependence between consecutive

realizations of X1t; and (iii) we can impose stationarity in a vine copula specification built

on V by requiring various edges of V to be assigned the same copula.7 To see why this is

7More precisely, condition (iii) means that if V includes an edge e with conditioned and conditioning
sets contained in the first two columns of N1, then it should also include another edge e′ whose conditioned
and conditioning sets are the same as those of e, but translated one column to the right.

14

Figure 2.4: M-vine on a 2× 3 array of nodes
Each node in the second tree of the M-vine has degree of at most two, so the remain-
ing three trees are determined by the proximity condition. The third tree has edges
21,22|11,12, 11,13|12,22 and 22,23|12,13. The fourth tree has edges 21,13|11,12,22
and 11,23|12,22,13. The fifth tree has the single edge 21,23|11,12,22,13.

Though the structure of V may appear arbitrary, it is in fact the unique reg-

ular vine on N1 satisfying three useful properties: (i) it includes the edge 11,21,

so that we may directly specify the contemporaneous relationship between X1t and
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X2t; (ii) it includes the edge 11,12, so that we may directly specify the serial depen-

dence between consecutive realizations of X1t; and (iii) we can impose stationarity

in a vine copula specification built on V by requiring various edges of V to be as-

signed the same copula.7 To see why this is true, we reason as follows. Let V ′ be

a regular vine on N1 satisfying properties (i) through (iii). Since the first tree of V ′

includes the edge 11,21, it must also include the edges 12,22 and 13,23, because

stationarity requires that the copulae associated with these three edges are equal.

Similarly, since the first tree of V ′ includes the edge 11,12, it must also include

the edge 12,13, because stationarity requires that the copulae associated with these

two edges are equal. This pins down all five edges in the first tree of V ′, and they

are precisely those in the first tree of V . In the second tree of V ′, we are forced to

include the edges 21,12|11 and 12,23|13 due to the proximity condition. But if we

include 21,12|11 then we must also include 22,13|12, because stationarity requires

that the copulae associated with these two edges are equal, and similarly if we in-

clude 12,23|13 then we must also include 11,22|12 for the same reason. This pins

down all four edges in the second tree of V ′, and they are precisely those in the

second tree of V . Each node in the second tree has degree of at most two, so the

proximity condition pins down the edges in all remaining trees of V ′ and V . Thus

V is the unique regular vine on N1 satisfying properties (i) through (iii).

2.3.3 Multivariate higher-order Markov chains

In the previous two subsections we explored the use of vine copulae in mod-

els of stationary bivariate first- and second-order Markov chains. We proceed now

to the general case where our stationary sequence X1,X2, . . . takes values in Rm

and is Markov of order p. Our main results are given here. We will be somewhat

more formal than in the previous two subsections, which were primarily motiva-

7More precisely, condition (iii) means that if V includes an edge e with conditioned and condi-
tioning sets contained in the first two columns of N1, then it should also include another edge e′

whose conditioned and conditioning sets are the same as those of e, but translated one column to the
right.
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tional in intent.

Throughout this subsection we consider vines on the m × n array of nodes

N1 = {1, . . . ,m} × {1, . . . , n} for some m,n ∈ N with n ≥ 2. Our first task is

to extend the M-vine structure introduced earlier in the 2 × 3 context to the more

general m × n context. To do this, we first need to introduce the notion of the

restriction of a regular vine to some subset of nodes Ñ1 ⊂ N1.

Definition 2.3.1. Let V be a regular vine on N1 with trees Tk = (Nk, Ek), k =

1, . . . ,mn−1, and let Ñ1 be a subset ofN1 with q̃ ≥ 2 elements. Let Ẽ1 = E1∩
(
Ñ1

2

)

and T̃1 = (Ñ1, Ẽ1), and if q̃ ≥ 3 then for k = 2, . . . , q̃ − 1 let Ñk = Ẽk−1,

Ẽk = Ek ∩
(
Ñk
2

)
and T̃k = (Ñk, Ẽk). We refer to Ṽ = (T̃1, . . . , T̃q̃−1) as the

restriction of V to Ñ1.

Intuitively, the restriction of V to a subset Ñ1 of N1 is what we are left with

after deleting all nodes in the first tree that do not belong to Ñ1, all edges in the

first tree that connect to one of the deleted nodes, and all edges in subsequent trees

whose complete union includes one of the deleted nodes. This may or may not be

a regular vine on Ñ1; indeed, each T̃k need not be a tree, and may have empty edge

and (for k ≥ 2) node sets.

With Definition 2.3.1 in hand, we proceed to our definition of an M-vine on

N1.

Definition 2.3.2. A regular vine V onN1 with trees Tk = (Nk, Ek), k = 1, . . . ,mn−
1, is said to be an M-vine if it satisfies the following two conditions.

(i) E1 =
{
{(i, s), (j, t)} ∈

(
N1

2

)
: (i = j − 1 and s = t) or (i = j = 1 and s = t− 1)

}
.

(ii) For each pair of adjacent columnsAt = ∪mi=1{(i, t), (i, t+1)}, t = 1, . . . , n−
1, the restriction of V to At is a D-vine.

A vine copula specification (F ,V , C) on N1 is said to be an M-vine copula specifi-

cation on N1 if V is an M-vine.
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Remark 2.3.1. It is clear from Definition 2.3.2 that if V is an M-vine on N1, then

for any collection of adjacent columns As,u = {(i, t) ∈ N1 : s ≤ t ≤ u}, 1 ≤ s <

u ≤ n, the restriction of V to As,u is also an M-vine.

Theorem 2.3.1. There exists a unique M-vine on N1.

In Figure 2.5 we display the first three trees of the M-vine on a 3 × 3 array

of nodes. We recommend that in a first attempt at reading the following proof of

Theorem 2.3.1, the reader mentally substitutes m = n = 3, and refers closely to

Figure 2.5 at all stages. It may also be useful to consult Figure 2.4 for the case

where m = 2 and n = 3.
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Figure 3.4: M-vine on a 3× 3 array of nodes.

We display the first three trees of the unique M-vine on a 3× 3 array of nodes. Since each

node in the third tree has degree of at most two, the remaining five trees in the M-vine

are uniquely determined by the proximity condition for a regular vine. Trees three through

eight collectively form a D-vine.

For k = 2, . . . ,m, the requirement that V1 is a D-vine determines 2m − k of the edges

in Tk. The requirement that V2 is a D-vine also determines 2m − k of the edges in Tk,

but m − k of these edges are shared with V1, so V1 and V2 jointly determine 3m − k of

the edges in Tk. If n ≥ 4 then each of the remaining D-vines V3 through Vn−1 determine

an additional m edges in Tk, so in total we have determined mn − k of the edges in Tk.

For V to be a regular vine, Tk must contain exactly mn − k edges, so we have uniquely

determined Tk. Moreover, Tk is connected as it is composed of n− 1 overlapping D-vine

trees (the kth trees of Vt and Vt+1 have m − k + 1 common nodes) and the edges in Tk

must satisfy the proximity condition since each belongs to at least one of the D-vines V1

through Vn−1.

17

Figure 2.5: M-vine on a 3× 3 array of nodes
We display the first three trees of the unique M-vine on a 3 × 3 array of nodes.
Since each node in the third tree has degree of at most two, the remaining five trees
in the M-vine are uniquely determined by the proximity condition for a regular vine.
Trees three through eight collectively form a D-vine.

Proof of Theorem 2.3.1. We assume that m ≥ 2 and n ≥ 3, since otherwise the

unique M-vine on N1 is simply the unique D-vine on N1 with edges E1 in the first

tree. For t = 1, . . . , n − 1, let Vt denote the restriction of V to At. We need to
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show that the trees T2, . . . , Tmn−1 are uniquely determined by the connectedness

and proximity conditions for a regular vine and the requirement that each Vt is a

D-vine.

For k = 2, . . . ,m, the requirement that V1 is a D-vine determines 2m − k
of the edges in Tk. The requirement that V2 is a D-vine also determines 2m − k

of the edges in Tk, but m − k of these edges are shared with V1, so V1 and V2

jointly determine 3m − k of the edges in Tk. If n ≥ 4 then each of the remaining

D-vines V3 through Vn−1 determine an additional m edges in Tk, so in total we

have determined mn − k of the edges in Tk. For V to be a regular vine, Tk must

contain exactly mn − k edges, so we have uniquely determined Tk. Moreover, Tk

is connected as it is composed of n − 1 overlapping D-vine trees (the kth trees of

Vt and Vt+1 have m − k + 1 common nodes) and the edges in Tk must satisfy the

proximity condition since each belongs to at least one of the D-vines V1 through

Vn−1.

The nodes in Tm have degree of at most two. To see this, note that all

but n − 2 of the nodes in Tm belong to exactly one of the D-vines Vt, while the

remaining n − 2 nodes belong to exactly two of the D-vines Vt. Since all nodes in

a D-vine have degree of at most two, the nodes in Tk belonging to a single Vt have

degree of at most two. Denote the n − 2 nodes shared by two of the D-vines by

at, t = 1, . . . , n − 2. The node at belongs to the mth trees of Vt and Vt+1. Viewed

as a node in the mth tree of Vt or of Vt+1, at includes the node (m, t + 1) in its

conditioned set, which is a node of degree one, and so at itself has degree one.8

Therefore, viewed as a node in Tm, at has degree two. We conclude that all nodes

in Tm have degree of at most two. Consequently, the proximity condition uniquely

determines all of the remaining trees Tm+1, . . . , Tmn−1, and in fact (Tm, . . . , Tmn−1)

is the unique D-vine with initial tree Tm.

We see from the proof of Theorem 2.3.1 that the practical construction of

8Here we apply the following easily demonstrated property of D-vines: if a node in tree k ≥ 2
of a D-vine has a node of degree one in its conditioned set, then the node itself has degree one.
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M-vines is straightforward. The first tree is given explicitly, the requirement that

the restriction of the M-vine to each pair of adjacent columns be a D-vine uniquely

determines trees 2 through m, and the remaining trees are uniquely determined by

the proximity condition. The structure of the first tree allows us to directly specify

the serial dependence between consecutive realizations ofX1t, but not between con-

secutive realizations of other elements of Xt, so in applications it may be important

to consider the ordering of the elements of Xt.

It is a simple matter to impose stationarity on the distribution realized by

an M-vine copula specification. We have seen this already in Section 2.3.2 in the

2 × 3 case, and in Section 2.3.1 in the 2 × 2 case; note that the vine with first tree

displayed in panel (d) of Figure 2.2 is in fact an M-vine. For the more generalm×n
case, it will be convenient to introduce two new concepts. The first is an obvious

extension of Definition 2.3.1.

Definition 2.3.3. Let (F ,V , C) be a vine copula specification on N1, and let Ñ1 be

a subset of N1 with q̃ ≥ 2 elements. The restriction of (F ,V , C) to Ñ1 is the triple

(F̃ , Ṽ , C̃), where F̃ consists of those members of F associated with members of

Ñ1, Ṽ is the restriction of V to Ñ1, and C̃ consists of those members of C associated

with edges in Ṽ .

The second new concept is translation invariance. We will say that a vine

copula specification is translation invariant if it assigns the same cdf to any two

nodes in the same row of N1, and if it assigns the same copula to any two edges

whose conditioned and conditioning sets differ only by translation across columns.

Definition 2.3.4. A vine copula specification (F ,V , C) on N1 is said to be transla-

tion invariant if it satisfies the following two conditions.

(i) Fi,t = Fi,t+1 for all i = 1, . . . ,m and all t = 1, . . . , n− 1.

(ii) For any e, e′ ∈ ∪mn−1
k=1 Ek such that De = De′ + (0, s) and {ae, be} =

{ae′ , be′}+ (0, s) for some s ≥ 1, we have Cae,be|De = Cae′ ,be′ |De′ .
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Remark 2.3.2. For an M-vine copula specification, translation invariance limits

the free assignment of copulae to the edges of V . To the mn − k edges in Tk,

k = 1, . . . ,mn − 1, we may freely assign min{m,mn − k} copulae, with no two

assignments going to edges whose conditioned and conditioning sets differ only by

translation across columns. The remaining copulae are determined by translation

invariance. For instance, in Figure 2.5 we see that when m = n = 3 we may freely

assign copulae to the edges 11,21, 21,31 and 11,12 in the first tree. Translation

invariance then requires that edges 12,22 and 13,23 are assigned the same copula

as edge 11,21, that edges 22,32 and 23,33 are assigned the same copula as edge

21,31, and that edge 12,13 is assigned the same copula as edge 11,12. Similarly, in

the second tree we may freely assign copulae to the edges 11,31|21, 12,21|11 and

11,22|12. Translation invariance then requires that edges 12,32|22 and 13,33|23 are

assigned the same copula as edge 11,31|21, that edge 22,13|12 is assigned the same

copula as edge 21,12|11, and that edge 12,23|13 is assigned the same copula as edge

11,22|12.

A translation invariant M-vine copula specification on N1 is realized by

the distribution of a stationary array of random variables. To be clear, we define

stationarity for an m× n array of random variables.

Definition 2.3.5. The m × n array of random variables (X1, . . . ,Xn) is said to

be stationary if, for any t = 1, . . . , n − 1, any u = t, . . . , n − 1, and any s =

1, . . . , n− u, the joint distributions of the m× (u− t+ 1) arrays (Xt, . . . ,Xu) and

(Xt+s, . . . ,Xu+s) are equal.

The following result demonstrates the equivalence of translation invariance

and stationarity for M-vine copula specifications.

Theorem 2.3.2. Suppose the joint distribution of the m× n array of random vari-

ables (X1, . . . ,Xn) realizes the M-vine copula specification (F ,V , C) on N1. Then

(X1, . . . ,Xn) is stationary if and only if (F ,V , C) is translation invariant.
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Proof of Theorem 2.3.2. It is clear that stationarity of (X1, . . . ,Xn) implies trans-

lation invariance of (F ,V , C). To show the reverse implication, consider the re-

strictions of (F ,V , C) to A1,n−1 and to A2,n, the first and last n− 1 columns of N1.

Recalling Remark 2.3.1, each of these restrictions forms an M-vine copula specifi-

cation on an m × (n − 1) array of nodes, with identical vine structure in view of

the uniqueness demonstrated in Theorem 2.3.1. Therefore, due to the translation

invariance of (F ,V , C), the two restrictions are identical other than a trivial differ-

ence in the labeling of columns, and so are realized by the same joint distribution.

Consequently, (X1, . . . ,Xn−1) and (X2, . . . ,Xn) have the same joint distribution,

and it follows easily that (X1, . . . ,Xn) is stationary.

Remark 2.3.3. Stationarity and translation invariance may not be equivalent for

vine structures other than the M-vine. Consider the D-vine on a 2 × 2 array of

nodes whose first tree is displayed in Figure 2.2 (a). This vine does not include any

two edges e, e′ satisfying the condition in part (ii) of Definition 2.3.4. Therefore,

any vine copula specification built on this vine will satisfy translation invariance

provided that F11 = F12 and F21 = F22. Clearly this is not enough to ensure

stationarity of the associated quadrivariate distribution.

We noted at the beginning of this section that, for a stationary Rm-valued

Markov chain X1,X2, . . . of order p, all finite dimensional distributions are unique-

ly determined by the joint distribution of (X1, . . . ,Xp+1). Any translation invariant

M-vine copula specification on an m× (p+ 1) array of nodes can be used to model

this distribution, which uniquely determines a transition law we can use to simulate

a stationary Markov chain of arbitrary length. Alternatively, if we seek to simulate

n consecutive realizations (X1, . . . ,Xn), where n ≥ p + 1, we can instead use an

M-vine copula specification to model the entire joint distribution of (X1, . . . ,Xn).

This facilitates simulation of the Markov chain using existing algorithms for sam-

pling from regular vine copula specifications; see e.g. Dißmann et al. (2013, Algo-

rithm 2.2). For such an approach to be valid, we need to impose conditions beyond

translation invariance on our M-vine so that (X1, . . . ,Xn) is not only stationary,
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but also Markov of order p.

Definition 2.3.6. The m × n array of random variables (X1, . . . ,Xn) is said to be

Markov of order p, or p-Markov if, for any t = p+1, . . . , n, the joint distribution of

Xt conditional on X1, . . . ,Xt−1 is equal to the joint distribution of Xt conditional

on Xt−p, . . . ,Xt−1.

We shall refer to the condition we impose on an M-vine copula specification

to ensure that our model has the desired Markov property as p-independence.

Definition 2.3.7. An M-vine copula specification (F ,V , C) on N1 is said to be p-

independent if it assigns independence copulae to all edges in V that do not belong

to the restriction of V to some collection of p+ 1 adjacent columns in N1.

Remark 2.3.4. Every M-vine copula specification on N1 is p-independent for p =

n−1. For p < n−1, the p-independence property forces us to assign independence

copulae to k(n−p−1) edges in tree Tmp+k for k = 1, . . . ,m−1, and to all edges in

trees Tmp+m, . . . , Tmn−1. These are precisely the edges whose conditioned elements

are separated by p or more adjacent columns ofN1, which are necessarily contained

in the corresponding conditioning set.

Remark 2.3.5. Let Ñ1 = {1, . . . ,m}×{1, . . . , p+1}. Any translation invariant M-

vine copula specification on Ñ1 is the restriction to Ñ1 of a unique translation invari-

ant p-independent M-vine copula specification on N1. Conversely, any translation

invariant p-independent M-vine copula specification on N1 is uniquely determined

by its restriction to Ñ1. Since that restriction is translation invariant, it is (recall Re-

mark 2.3.2) itself uniquely determined by them cdfs F1,1, . . . , Fm,1, and the assign-

ment of copulae to min{m,mp+m− k} edges in tree Tk, k = 1, . . . ,mp+m− 1,

with no two assignments going to edges whose conditioned and conditioning sets

differ only by translation across columns.

The following result identifies the link between p-independence and the

Markov property.
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Theorem 2.3.3. Suppose the joint distribution of the m× n array of random vari-

ables (X1, . . . ,Xn) realizes the M-vine copula specification (F ,V , C) on N1. Then

(X1, . . . ,Xn) is p-Markov if and only if (F ,V , C) is p-independent.

Proof of Theorem 2.3.3. If (F ,V , C) is not p-independent, then there is an edge

in V to which we do not assign the independence copula, and that has (recal-

l Remark 2.3.4) its conditioned elements (i, s) and (j, t) separated by p or more

adjacent columns of N1 in its conditioning set (so that t > s + p). But then

we do not have conditional independence of Xs and Xt given Xs+1, . . . ,Xt−1,

and so (X1, . . . ,Xn) cannot be p-Markov. Suppose instead that (F ,V , C) is p-

independent. For s = 1, . . . , n − 1 and t = s + 1, . . . , n, let Bs,t denote the col-

lection of edges in V that have one conditioned element in column t of N1, and the

other conditioned element in one of columns s through t − 1. In view of Theorem

2.2.1, for any t = p + 1, . . . , n, the conditional density of Xt given X1, . . . ,Xt−1

can be written as

fXt|X1,...,Xt−1 =
fX1,...,Xt

fX1,...,Xt−1

= fXt

∏

e∈B1,t

cae,be|De
(
Fae|De , Fbe|De

)
,

while the conditional density of Xt given Xt−p, . . . ,Xt−1 can be written as

fXt|Xt−p,...,Xt−1 =
fXt−p,...,Xt

fXt−p,...,Xt−1

= fXt

∏

e∈Bt−p,t
cae,be|De

(
Fae|De , Fbe|De

)
.

The ratio of these two conditional densities is therefore equal to the product of

all of the cae,be|De(Fae|De , Fbe|De) associated with edges that have one conditioned

element in column t of N1, and the other conditioned element in one of columns 1

through t−p−1. Any such edges cannot belong to the restriction of V to p adjacent

columns of N1, and so the associated copulae must be independence copulae owing

to the p-independence property of (F ,V , C). Since the independence copula has

density identically equal to one, we find that fXt|X1,...,Xt−1 = fXt|Xt−p,...,Xt−1 , which

demonstrates that (X1, . . . ,Xn) is p-Markov. We conclude that (F ,V , C) is p-
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independent if and only if (X1, . . . ,Xn) is p-Markov.

2.4 Estimation of an M-vine copula specification

In this section we briefly discuss and illustrate the application of existing

semiparametric estimation procedures to Markov models specified using M-vines.

Semiparametric estimation for stationary copula-based Markov models was intro-

duced by Chen and Fan (2006) for univariate time series, and extended by Rémillard

et al. (2012) to the multivariate case. Both papers draw on earlier work by Gen-

est et al. (1995) in the iid context. The semiparametric procedure for stationary

multivariate Markov chains leaves the specification of the m univariate marginal

distributions F1,1, . . . , Fm,1 nonparametric, and requires a parametric model for the

copula of the m × (p + 1) array9 of random variables (X1, . . . ,Xp+1). M-vines

provide a convenient and flexible way to obtain such a parametric model.

Let (F̃ , Ṽ , C̃θ) be a translation invariant M-vine copula specification for the

joint distribution of (X1, . . . ,Xp+1), with θ ∈ Rd a vector of parameters to be

estimated. The number of parameters d depends on the functional form of the

bivariate copulae in C̃θ. If each copula is determined by a single parameter, then

in view of the translation invariance condition (recall Remark 2.3.2) we will have

d = m
(
mp+ 1

2
(m− 1)

)
parameters to estimate in total. Let θ0 ∈ Rd denote the

unknown true parameter vector. We wish to estimate θ0 using the observed m× n
array (X1, . . . ,Xn), where n > p+ 1. Let (F ,V , Cθ) be the unique (recall Remark

2.3.5) translation invariant p-independent M-vine copula specification on N1 =

{1, . . . ,m}× {1, . . . , n} whose restriction to Ñ1 = {1, . . . ,m}× {1, . . . , p+ 1} is

(F̃ , Ṽ , C̃θ). In view of Theorem 2.2.1, we see that the log-likelihood of our sample

9Rémillard et al. (2012) in fact take p = 1, but it is clear that an obvious modification of their
procedure may be applied to higher-order Markov processes.
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is

`n(θ) =
m∑

i=1

n∑

t=1

ln fi,t(Xi,t) (2.2)

+

mp+m−1∑

k=1

∑

e∈Ek
ln cae,be|De(Fae|De(Xae|XDe ;θ), Fbe|De(Xbe|XDe ;θ);θ),

whereEk is the collection of edges of Tk, the kth tree of V , and XDe denotes the ran-

dom variables (Xi,t : (i, t) ∈ De). The parameter vector θ enters our log-likelihood

function through the copula densities cae,be|De , and also through the conditional cdfs

Fae|De and Fbe|De determined by the members of F and Cθ as described in Theo-

rem 2.2.1. Note that p-independence of (F ,V , Cθ) implies (recall Remark 2.3.4)

that all copulae assigned to the edges of trees Tmp+m, . . . , Tmn−1 are independence

copulae, so in (2.2) we sum only over k = 1, . . . ,mp+m− 1.

The log-likelihood given in (2.2) does not provide a feasible means to esti-

mate θ0 because we wish to be nonparametric in our treatment of the marginal cdfs

in F . Following Rémillard et al. (2012) we may commence by estimating these

cdfs using the empirical distributions of the m observed univariate time series:

F̂i,t(·) =
1

n+ 1

n∑

s=1

1(Xi,s ≤ ·), i = 1, . . . ,m, t = 1, . . . , n. (2.3)

We then estimate θ0 by maximizing the second stage log-likelihood

`∗n(θ) =

mp+m−1∑

k=1

∑

e∈Ek
ln cae,be|De(Ûae|De(θ), V̂be|De(θ);θ). (2.4)

Here, Ûae|De(θ) and V̂be|De(θ) are determined in the following recursive fashion. If

e ∈ E1, so that De = ∅, we set Ûae|De(θ) = F̂ae(Xae) and V̂be|De(θ) = F̂be(Xbe),

which do not depend on θ. If e ∈ Ek for some k ≥ 2 then we set

Ûae|De(θ) =
∂

∂v
Cae′ ,be′ |De′

(
Ûae′ |De′ (θ), v;θ

)∣∣∣∣
v=V̂be′ |De′

(θ)
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and

V̂be|De(θ) =
∂

∂u
Cae′′ ,be′′ |De′′

(
u, V̂be′′ |De′′ (θ);θ

)∣∣∣∣
u=Ûae′′ |De′′

(θ)

where e′ and e′′ are the edges of Tk−1 connected by e, with ae = ae′ and be =

be′′ . The value of θ at which `∗n(θ) is maximized provides our estimate θ̂n of θ0.

Rémillard et al. (2012) provide technical conditions under which n1/2(θ̂n−θ0) has

a limiting multivariate normal distribution centered at zero. As discussed by those

authors, the limiting covariance matrix takes a complicated form due to the non-

parametric estimation of marginal cdfs, but may be consistently estimated using a

parametric bootstrap technique. Implementation of the bootstrap using our M-vine

model may be achieved using the algorithm developed by Dißmann et al. (2013) for

sampling from general regular vines.

In practice the numerical maximization of `∗n(θ) can be computationally

challenging when d is moderately large. A less efficient but computationally much

simpler estimate of θ0 can be obtained using the method of stepwise semiparametric

(SSP) estimation, which was proposed by Aas et al. (2009) and studied in detail in

a recent pair of papers by Hobæk Haff (2012, 2013). To apply SSP estimation we

partition our parameter vector as θ = (θ1, . . . ,θm+mp−1) in such a way that the

copulae associated with edges of Tk depend only on the subvector of parameters

θk. We then proceed as follows. First, for each e ∈ E1, we set Ǔae|De = F̂ae(Xae)

and V̌be|De = F̂be(Xbe), with F̂ae and F̂be given by (2.3). Next, iterating over k =

1, . . . ,m+mp− 1, we obtain θ̌n,k as the value of θk that maximizes

`∗n,k(θk) =
∑

e∈Ek
ln cae,be|De(Ǔae|De , V̌be|De ;θk),

and then (if k < m+mp− 1) for each e ∈ Tk+1 compute

Ǔae|De =
∂

∂v
Cae′ ,be′ |De′

(
Ǔae′ |De′ , v; θ̌n,k

)∣∣∣∣
v=V̌be′ |De′
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and

V̌be|De =
∂

∂u
Cae′′ ,be′′ |De′′

(
u, V̌be′′ |De′′ ; θ̌n,k

)∣∣∣∣
u=Ǔae′′ |De′′

where e′ and e′′ are the edges of Tk connected by e, with ae = ae′ and be = be′′ .

After completing the iteration over k we are left with our SSP estimate θ̌n =

(θ̌n,1, . . . , θ̌n,m+mp−1) of θ0. This can be used as our final estimate of θ0, or else

used as a starting value in the numerical maximization of `∗n(θ) in (2.4).

As an empirical illustration of the methods just discussed we fit a bivariate

first-order Markov model to two exchange rate series: the Korean won (KRW) and

the Taiwanese dollar (TWD), both denominated in US dollars (USD). We confine

our analysis to the period spanning February 24, 2013, to October 20, 2013, con-

taining n = 239 daily observations in total. The two series are displayed in Figure

2.6. We used a one-sided Hodrick-Prescott filter (see e.g. Mehra, 2004) to purge

predictable trending behavior from the two series, and fit our vine copula model to

the filtered series, which may be interpreted as unanticipated shocks to the exchange

rates.
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Figure 4.1: Daily US dollar values of the Korean won (a) and Taiwanese dollar (b).

by assigning an asymmetric Clayton copula to this pair of variables.10 This copula is of

the form

C(u, v;α, β, γ) = u1−αv1−β (u−αγ + v−βγ − 1
)−1/γ

,

with parameters α, β ∈ [0, 1] and γ ∈ (0,∞). Panel (b) of Figure 4.2 reveals that the

pattern of serial dependence in the KRD/USD rate is approximately exchangeable, but

exhibits another form of asymmetry: the data cluster relatively tightly toward the top

right of the panel, but are more disperse toward the lower left. We could model this feature

of the data using a Gumbel copula, which can feature positive upper tail dependence but

has zero lower tail dependence. The Gumbel copula is given by equation (3.1) with

α = β = 1, and has parameter γ ∈ [0,∞); the upper tail dependence coefficient is

2 − 21/γ (see e.g. Nelsen, 2006, p. 215). In panel (c) we see that there is strong serial

dependence in the TWD/USD rate. The data in this panel are best fit using a Student

copula. We find that the likelihood-based fit of the Student copula to the data in panel

(c) is substantially better than the likelihood-based fit of the Gumbel copula (and also

of the Gaussian, Student, Frank and Clayton copulae) to the data in panel (b), and for

10The likelihood-based fit of the asymmetric Clayton copula to these data is slightly better than the
fit of the asymmetric Gumbel copula given in (3.1).

26

Figure 2.6: Daily US dollar values of the Korean won (a) and Taiwanese dollar (b)

As a guide to specifying the copulae in the first tree of our M-vine, in panels
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(a), (b) and (c) of Figure 2.7 we display scatter plots of pairs of empirical probability

integral transforms of the filtered exchange rate series and their lagged values. In

panel (a) we see that the contemporaneous relationship between our two series is

strikingly nonexchangeable: large positive shocks to the KRW/USD rate are rarely

accompanied by large negative shocks to the TWD/USD rate, while large negative

shocks to the KRW/USD rate more often coincide with large positive shocks to the

TWD/USD rate. We capture this asymmetry by assigning an asymmetric Clayton

copula to this pair of variables.10 This copula is of the form

C(u, v;α, β, γ) = u1−αv1−β (u−αγ + v−βγ − 1
)−1/γ

,

with parameters α, β ∈ [0, 1] and γ ∈ (0,∞). Panel (b) of Figure 2.7 reveals that

the pattern of serial dependence in the KRD/USD rate is approximately exchange-

able, but exhibits another form of asymmetry: the data cluster relatively tightly

toward the top right of the panel, but are more disperse toward the lower left. We

could model this feature of the data using a Gumbel copula, which can feature pos-

itive upper tail dependence but has zero lower tail dependence. The Gumbel copula

is given by equation (2.1) with α = β = 1, and has parameter γ ∈ [0,∞); the

upper tail dependence coefficient is 2 − 21/γ (see e.g. Nelsen, 2006, p. 215). In

panel (c) we see that there is strong serial dependence in the TWD/USD rate. The

data in this panel are best fit using a Student copula. We find that the likelihood-

based fit of the Student copula to the data in panel (c) is substantially better than the

likelihood-based fit of the Gumbel copula (and also of the Gaussian, Student, Frank

and Clayton copulae) to the data in panel (b), and for this reason elect to label the

filtered TWD/USD series as X1,t, the first variable in our M-vine. The filtered KR-

W/USD series is labeled X2,t. Since our M-vine does not include the edge 21,22,

the serial dependence in the KRW/USD rate is modeled implicitly by the assign-

ment of copulae to other edges of the vine, and not using the Gumbel copula. For

10The likelihood-based fit of the asymmetric Clayton copula to these data is slightly better than
the fit of the asymmetric Gumbel copula given in (2.1).
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the sake of simplicity we assign Gaussian copulae to the edges of trees 2 and 3.
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Figure 4.2: Bivariate dependencies in the filtered exchange rate series.

The scatter plots in panels (a), (b) and (c) display pairs of empirical probability integral

transforms of the filtered exchange rate series and their lagged values.

this reason elect to label the filtered TWD/USD series as X1,t, the first variable in our

M-vine. The filtered KRW/USD series is labeled X2,t. Since our M-vine does not include

the edge 21,22, the serial dependence in the KRW/USD rate is modeled implicitly by the

assignment of copulae to other edges of the vine, and not using the Gumbel copula. For

the sake of simplicity we assign Gaussian copulae to the edges of trees 2 and 3.

SSP estimates of the parameter values for our selected model, with bootstrap confidence

intervals, are given in Table 4.1. We fixed the parameter β in the asymmetric Clayton

copula assigned to edge 11,21 equal to the upper bound of one, because without this

restriction our estimate was extremely close to one, as were the estimates obtained using

all bootstrapped samples. The estimates of α and γ indicate significant asymmetric

dependence between contemporaneous realizations of the filtered exchange rate series, as

expected. The Student copula assigned to edge 11,12 has a large estimated correlation

parameter of 0.936 with a 95% confidence interval of (0.920, 0.955), and a small estimated

degrees of freedom parameter of 2.025 with a 95% confidence interval of (0.123, 3.067).

The estimated correlation parameters for the Gaussian copulae assigned to the edges of

tree 2 are small and insignificantly different from zero, while the estimated correlation

parameter for the Gaussian copula assigned to the sole edge of tree 3 is moderately small

but significantly negative.

27

Figure 2.7: Bivariate dependencies in the filtered exchange rate series
The scatter plots in panels (a), (b) and (c) display pairs of empirical probability
integral transforms of the filtered exchange rate series and their lagged values.

SSP estimates of the parameter values for our selected model, with boot-

strap confidence intervals, are given in Table 2.1. We fixed the parameter β in the

asymmetric Clayton copula assigned to edge 11,21 equal to the upper bound of one,

because without this restriction our estimate was extremely close to one, as were the

estimates obtained using all bootstrapped samples. The estimates of α and γ indi-

cate significant asymmetric dependence between contemporaneous realizations of

the filtered exchange rate series, as expected. The Student copula assigned to edge

11,12 has a large estimated correlation parameter of 0.936 with a 95% confidence

interval of (0.920, 0.955), and a small estimated degrees of freedom parameter of

2.025 with a 95% confidence interval of (0.123, 3.067). The estimated correlation

parameters for the Gaussian copulae assigned to the edges of tree 2 are small and

insignificantly different from zero, while the estimated correlation parameter for

the Gaussian copula assigned to the sole edge of tree 3 is moderately small but

significantly negative.

We can characterize the fit of our estimated M-vine specification using the

BIC, computed as −2`∗n(θ̌n) + d log n. The BIC value for our estimated model

is −580.01. If we had reversed the order of our variables, so that X1,t was the
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Table 2.1: Estimated M-vine copula specification for the filtered exchange rate se-
ries.
Our translation invariant M-vine copula specification for (X1, . . . ,Xn) is 1-
independent with copulae assigned to edges as shown in the table. Parameters were
estimated by SSP estimation, with the exception of β which was set equal to one.
Confidence intervals were constructed using the bootstrap.

Tree Edge Copula Parameter Estimate 95% Conf. Int.
1 11,21 Asym. Clayton α 0.441 (0.264, 0.528)

β 1.000 –
γ 6.616 (2.545, 10.077)

11,12 Student corr. 0.936 (0.920, 0.955)
d.f. 2.025 (0.123, 3.067)

2 21,12|11 Gaussian corr. -0.113 (−0.230, 0.000)
11,22|12 Gaussian corr. -0.034 (−0.166, 0.098)

3 21,22|11,12 Gaussian corr. -0.325 (−0.478,−0.115)

filtered KRW/USD series and X2,t was the filtered TWD/USD series, and assigned

a Gumbel copula to the edge 11,12, we would have obtained the inferior BIC value

-411.39. The improved fit of our selected model can be largely attributed to the

superior fit of the Student copula in panel (c) relative to the fit of the Gumbel copula

in panel (b); this accounts for more than 90% of the difference in overall BIC values.

2.5 Final remarks

In this paper we have explored the use of vine copulae to model station-

ary multivariate Markov chains. We proposed a new vine structure, the M-vine,

with which it is simple to impose stationarity and the Markov property upon the

induced probabilistic model for the observed data. Estimation of an M-vine copula

specification is straightforward using existing semiparametric techniques that are

nonparametric with respect to univariate marginal behaviour and parametric with

respect to dependence between variables.

There are many potential avenues for further research on vine copula mod-
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els for stationary Markov chains. One subject we have not addressed is the link

between the bivariate copulae assigned to the edges of an M-vine, and the mixing

and ergodic properties of the associated Markov chain. Results of this kind are

available for univariate first-order Markov chains (Chen and Fan, 2006; Gagliar-

dini and Gouriéroux, 2008; Chen, Wu and Yi, 2009; Beare, 2010, 2012; Longla

and Peligrad, 2012), as are some limited results for multivariate first-order Markov

chains (Rémillard et al., 2012), but their extension to vine models for multivariate

higher-order Markov chains remains an open problem. Another area for future re-

search is the development of automated selection algorithms for vine copula spec-

ifications. Recent advances in this direction have been made by Dißmann et al.

(2013), who considered the case where we observe repeated samples from a multi-

variate distribution for which we desire a vine copula specification. It may be useful

to adapt their methods to the stationary Markov case considered here.
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Chapter 3

Tests of Stochastic Monotonicity with

Improved Size and Power Properties

Abstract. We develop improved statistical procedures for testing the null hy-

pothesis of stochastic monotonicity. Stochastic monotonicity can be reformulated

in terms of the concavity of cross-sections of a copula function; our test statistic is

based on a empirical measure of departures from concavity. While existing tests of

stochastic monotonicity deliver a limiting rejection rate equal to the nominal signif-

icance level at one point and below the nominal significance level elsewhere in the

null, our test raises the limiting rejection rate to the nominal significance level over

a wide region of the null. This improves power against relevant local alternatives.

Implementation of our procedure is based on preliminary estimation of a contact

set, similar to procedures developed recently in other contexts. To show the validi-

ty of our approach we draw on recent results on the directional differentiability of

the least concave majorant operator, and on bootstrap inference when smoothness

conditions sufficient to apply the functional delta method for the bootstrap are not

satisfied. An application to intergenerational income mobility is provided.

84
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3.1 Introduction

In stochastic modeling, a variety of orderings can be used to compare the

‘magnitude’ of random variables, such as stochastic dominance, mean residual life

ordering, likelihood ratio ordering, positive dependence ordering, and so on. In this

paper, we focus on stochastic monotonicity, an ordering of random variables based

on conditional distributions. For two random variablesX and Y , with FY |X(·|x) de-

noting the cumulative distribution function of Y conditional on X = x, we say Y is

stochastically increasing in X (or equivalently, Y is positive regression dependent

on X) if and only if FY |X(y|x) is a nonincreasing function of x for all y. In what

follows, we denote by X and Y the supports of X and Y respectively, and define

the conditional distribution FY |X on Y × X . This paper studies statistical methods

to test stochastic monotonicity with the null hypothesis of Y being stochastically

increasing in X .

Stochastic monotonicity can be of interest in many applications. Suppose,

for example, we want to determine empirically whether a son’s social status is pos-

itively related to that of his parents. This is a question about intergenerational mo-

bility, one of the classic subjects in sociology and labor economics (Becker and

Tomes, 1979; Becker and Tomes, 1986; Mulligan, 1999; Han and Mulligan, 2001;

Restuccia and Urrutia, 2004). The conventional approach to the problem has been

to investigate the dependence between the son’s and parents’ status measured by

wage or social class and verify, for instance, that they have positive correlation or

positive quadrant dependence. On the other hand, stochastic monotonicity can pro-

vide more information on the aspect of intergenerational mobility because it also

identifies nonmonotone aspects of the relationship between the son’s and parent’s

income that would be undetectable with a test of positive correlation or positive

quadrant dependence. For instance, if a son of very wealthy parents has a higher

probability of earning a very low income than a son of moderately wealthy parents,

perhaps due to perverse incentives arising from the anticipation of inheritance, then
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this would violate stochastic monotonicity but may be consistent with positive cor-

relation or positive quadrant dependence.

Such questions about the monotonicity or nonmonotonicity of relationship-

s between variables also arise naturally in many other fields. In entry deterrence

games, evidence that a firm’s investment level is not increasing in market size can

be taken as evidence of strategic behavior with the intent to deter market entrants

(Ellison and Ellison, 2007). In signaling games, monotonicity also plays an impor-

tant role when we want to examine if firms invest more in advertising when their

product has better quality (Milgrom and Roberts, 1984), or if more talented work-

ers tend to have more education or work faster (Spence, 1973; Akerlof, 1976). In

adverse selection models, we may be interested to see if an individual with high

probability of loss buys more comprehensive insurance coverage (Wilson, 1977),

or in auction theory, we may wonder if a buyer’s bid increases when his reservation

price increases (Vickrey, 1961).

Stochastic monotonicity also appears as an assumption in various economic

models. In the argument of Lucas and Stokey (1989) or Hopenhayn and Prescott

(1992), stochastic monotonicity is one of the key conditions for certain Markovian

models to have a stationary distribution. This property is crucial in dynamic pro-

gramming to ensure a unique equilibrium solution and is thus assumed in many

economic models concerning Markov perfect equilibrium. For instance, Ericson

and Pakes (1995) postulate the transition function that describes a firm’s industry

dynamic is formed from a distribution which exhibits stochastic monotonicity. See

also Pakes (1986) and Olley and Pakes (1996) for a similar argument with appli-

cations in the patent market and telecommunications equipment industry. Balbus,

Reffett and Woźnyc (2012) also have assumed stochastic monotonicity to analyze

the equilibrium of infinite horizon stochastic overlapping generations models. In

the discussion of Small et al. (2014), stochastic monotonicity is introduced to re-

lax monotonicity restrictions for IV estimation, while Blundell et al. (2007) assume

stochastic monotonicity to weaken the exclusion restriction.
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Although stochastic monotonicity is an important concept across a range of

fields, not much attention has been paid to research on statistical tests of stochastic

monotonicity until recently. Lee, Linton and Whang (2009) were the first to pro-

pose a test for stochastic monotonicity, using a kernel smoothed U-statistic to assess

the monotonicity of the conditional distribution in the conditioning variable. In a

more recent contribution Delgado and Escanciano (2012) have suggested a test that

does not require smoothed estimation and is based on the distance between the em-

pirical copula and its least concave majorant in the explanatory variable coordinate.

The method in Delgado and Escanciano (2012) has advantages over Lee, Linton

and Whang (2009) in that the test is implementable under the minimal assumption

of continuity of the marginal distributions without requiring the selection of a k-

ernel function or bandwidth, and the statistic is invariant under strictly increasing

transformations of the data.

A limitation of the test of Delgado and Escanciano (2012) is that it is conser-

vative over much of the null, suggesting that power against relevant alternatives may

be limited. The null hypothesis of stochastic monotonicity is composite, meaning

that there are many possible conditional distribution functions that are consistent

with stochastic monotonicity. Delgado and Escanciano (2012) derive the asymp-

totic null distribution of their test statistic assuming the independence of X and Y .

This turns out to be the least favorable case (lfc) which means that the limit distri-

bution of their test statistic is largest (in the sense of stochastic dominance) at this

point in the null. Since Delgado and Escanciano (2012) compare their test statistic

to a critical value drawn from the limit distribution at the lfc, their test delivers a

limiting rejection rate equal to the nominal significance level at the lfc, but below

the nominal significance level at other points in the null.

In this paper we show how to improve the power of the test of Delgado and

Escanciano (2012) by using a modified bootstrap technique to raise the limiting re-

jection rate of the test to the nominal significance level over a wide region of the

null hypothesis, and not merely at the lfc. To show the validity of our approach we
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draw on recent results on the directional differentiability of the least concave majo-

rant operator (Beare and Moon, 2015; Beare and Shi, 2015) and on the application

of the functional delta method with directionally differentiable operators (Fang and

Santos, 2015).

The remainder of this paper is organized as follows. In Section 2, we pro-

pose our test statistics and explain how they are constructed. The partial least con-

cave majorant operator is introduced for the construction of the statistics. In Section

3, we provide a brief review of differentiability concepts and establish the asymp-

totic distributions of our statistics at each null point. In Section 4, a valid bootstrap

procedure based on the estimator of the directional derivative of partial least con-

cave majorant operator is proposed. Lastly, the finite sample performance of our

tests will be examined with an application to intergenerational income mobility in

Section 5 and Section 6.

3.2 Null hypothesis and test statistic

Let X and Y be continuous random variables, and let C(u, v) denote the

copula of Y and X . The null hypothesis of stochastic monotonicity can be refor-

mulated in terms of the shape of this copula function. Theorem 5.2.10 and Corol-

lary 5.2.11 in Nelsen (2006) state that Y is stochastically increasing in X if and

only if C(u, v) is concave in v for any u ∈ [0, 1]. We shall therefore write our null

hypothesis as

Θ0 = {C ∈ Θ : C(u, ·) is concave for each fixed u ∈ [0, 1]},

where Θ denotes the collection of bivariate copula functions on [0, 1]2 with contin-

uous partial derivatives. The alternative hypothesis is Θ1 = Θ \Θ0 .

It is clear that the partial concavity introduced in the preceding paragraph

is not as strong as the general notion of concavity of a bivariate function. While it
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Figure 3.1: Examples of vertical sections of copulas
The vertical section of any copula at u = u0 is a nondecreasing and 1-Lipschitz
function between the Fréchet-Hoeffding lower bound, max(u0 + v − 1, 0), and the
Fréchet-Hoeffding upper bound, min(u0, v), shown in Panel (a). Panel (b) displays
the vertical sections of the Gaussian copula (with the parameter, −0.8), Frank cop-
ula (−2), Gumbel copula (2), and Clayton copula (5) at u = 0.5 within the two
Fréchet-Hoeffding boundaries.

is well known that the only copula that is concave is the Fréchet-Hoeffding upper

bound C(u, v) = min(u, v), there are many copulas which have concave vertical

section (see Def 2.2.5 and Cor 2.2.6 in Nelsen, 2006) for a fixed u ∈ [0, 1]. Vertical

sections of copulas, in fact, can be any functions that are nondecreasing and 1-

Lipschitz, provided that they stay between the Fréchet-Hoeffding lower and upper

bounds. Thus, they can be concave, convex, or otherwise. In Figure 3.1, we display

(a) the Fréchet-Hoeffding lower and upper bounds and (b) some of the vertical

sections of parametric copulas broadly used. The conditions for those parametric

copulas to be in Θ0 are summarized in Table 3.1.1

Having clarified the null hypothesis, we shall now proceed to the construc-

1Following the conventional notation, Φ−1 is the quantile function of the standard normal distri-
bution and Nρ is the joint cumulative normal distribution function with mean zero and correlation
ρ. t−1ν denotes the inverse cumulative distribution of the univariate t-distribution with the degree of
freedom ν and tρ,ν is the multivariate t-distribution with the degree of freedom ν, the scale parameter
ρ and the location parameter zero.
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tion of our test statistics. Suppose we observe n independent and identically dis-

tributed copies of (X, Y ), denoted by (Xi, Yi), i = 1, . . . , n. Define the empirical

cdfs of X and Y , and the empirical copula of Y and X as

FX,n(x) =
1

n

n∑

i=1

1(Xi ≤ x), FY,n(y) =
1

n

n∑

i=1

1(Yi ≤ y) for (x, y) ∈ R2,

Cn(u, v) =
1

n

n∑

i=1

1{FY,n(Yi) ≤ u, FX,n(Xi) ≤ v} for (u, v) ∈ [0, 1]2.

Our test statistic is of the form2

Mp
n = n1/2

∥∥∥M̃Cn − Cn
∥∥∥
p

(3.1)

where ‖ · ‖p is the Lp-norm with respect to the Lebesgue measure on [0, 1]2 giv-

en p ∈ [1,∞], and M̃ is the partial least concave majorant (hereby, partial lcm)

operator applied to the second argument. In order to provide a formal definition

of M̃, we shall begin by reviewing the definition of the least convave majorant (l-

cm) operatorM, and also of the restricted lcm operatorM[a,b] in Beare and Moon

(2015). We denote by `∞ ([a, b]) the collection of uniformly bounded real valued

functions on [a, b] equipped with the uniform metric, and let `∞co ([a, b]) = {f ∈
`∞ ([a, b]) : f is concave}. The following Definition 3.2.1 is taken from Beare and

Moon (2015).

Definition 3.2.1. Given a closed interval [a, b] ⊆ [0, 1], the lcm over [a, b] is the

operator M[a,b] : `∞ ([0, 1]) → `∞ ([a, b]) that maps each f ∈ `∞ ([0, 1]) to the

function

M[a,b]f(u) = inf{g(u) : g ∈ `∞co ([a, b]) and f ≤ g on [a, b]}, u ∈ [a, b].

We writeM as shorthand forM[0,1], and refer toM as the lcm operator.

2This statistic has been studied in Delgado and Escanciano (2012) for p =∞.
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Table 3.1: Concavity and convexity of vertical sections of some copula families
This table summarizes the shape of the vertical sections of popular parametric cop-
ulas. The vertical sections of the Gaussian and Student t-copulas are concave when
the correlation parameter is nonnegative, and otherwise convex. Frank copulas
also have concave vertical sections with positive copula parameters, and convex
with negative parameters while the vertical sections of Clayton copulas are concave
when the copula parameter is positive, and convex when the parameter belongs to
the interval [−1, 0). The vertical sections of the Gumbel copulas are always con-
cave.

Copula family C(u, v) Vertical sections

Gaussian (ρ) Nρ(Φ
−1(u),Φ−1(v))

ρ ∈ [0, 1] : concave
ρ ∈ [−1, 0] : convex

Student (ρ, ν) tρ,ν(t
−1
ν (u), t−1

ν (v))
ρ ∈ [0, 1] : concave

ρ ∈ [−1, 0] : convex

Frank (θ) −1
θ

ln
(

1 + (e−θu−1)(e−θv−1)
e−θ−1

) θ > 0 : concave
θ < 0 : convex

Clayton(θ)
[
max

(
u−θ + v−θ − 1, 0

)]−1/θ θ > 0 : concave
θ ∈ [−1, 0) : convex

Gumbel (θ) exp
(
−
[
(− lnu)θ + (− ln v)θ

]1/θ)
θ ≥ 1 : concave

F-H Lower bound max(u+ v − 1, 0) - : convex
F-H Upper bound min(u, v) - : concave

Independence uv - : linear
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The lcm operator has been studied in Carolan (2002) and employed in many

other econometric and statistic applications. For instance, Durot (2003) applies

the lcm operator in the context of testing the monotonicity of regression curves.

Carolan and Tebbs (2005), Beare and Moon (2015), Beare and Schmidt (2015)

and Beare and Shi (2015) use test statistics formed by the lcm operator for testing

density ratio ordering. Here we introduce a new operator, the partial lcm operator

M̃, which is an extension of the lcm operator for the functions of higher dimension.

Intuitively, the partial lcm operator is the lcm operator for each u ∈ [0, 1] applied to

the function f(u, ·).

Definition 3.2.2. Given a closed interval [a, b] ⊆ [0, 1], the partial lcm over [0, 1]×
[a, b] is the operator M̃[a,b] : `∞ ([0, 1]2) → `∞ ([0, 1]× [a, b]) that maps each f ∈
`∞ ([0, 1]2) to the function

M̃[a,b]f(u, v) =M[a,b](f(u, ·))(v) (u, v) ∈ [0, 1]× [a, b]

We write M̃ as shorthand for M̃[0,1], and refer to M̃ as the partial lcm operator.

To establish the asymptotic results in the next section, we require the em-

pirical copula process n1/2(Cn − C) to admit a weak limit. Weak convergence of

the empirical copula process was first demonstrated by Deheuvels (1981a, 1981b)

under independence, and generalized to nonindependence by Gaenssler and Stute

(1987) and Fermanian, Radulović and Wegkamp (2004) in the Skorokhod space

D([0, 1]2) and `∞ ([0, 1]2) respectively. Later Segers (2012) established weak con-

vergence under a milder assumption that does not require smoothness of the copula

at the boundary of the unit square. For more detailed discussion see also Stute

(1984), van der Vaart and Wellner (1996, 2007) and Tsukahara (2005). Here we

adopt the following assumption taken from Segers (2012).

Assumption 3.2.1. (i) The random variables X and Y have continuous cumulative

distribution functions, and (ii) the copula of Y and X , C(u, v) admits continuous

partial derivatives on (0, 1)2.
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Assumption 3.2.1 (i) ensures the uniqueness of the copula of Y and X on

[0, 1]2. We additionally require Assumption 3.2.1 (ii), a smoothness condition, to

ensure weak convergence of the empirical copula process. In what follows, let 

denote weak convergence as in Definition 1.3.3 in van der Vaart and Wellner (1996),

and ∂iC(u, v) the partial derivative of C(u, v) with respect to the i-th argument for

i = 1, 2. Under Assumption 2.1, Theorem 3.2.1 follows by Segers (2012).

Theorem 3.2.1. Suppose Assumption 3.2.1 holds. Then as n→∞, we have

n1/2(Cn − C) GC in `∞
(
[0, 1]2

)
,

where GC is a tight Gaussian process on [0, 1]2 which can be written as

GC(u, v) = BC(u, v)− ∂1C(u, v)BC(u, 1)− ∂2C(u, v)BC(1, v),

with BC being a Brownian bridge on [0, 1]2 with covariance function

E(BC(u1, v1)BC(u2, v2)) = C(u1 ∧ u2, v1 ∧ v2)− C(u1, v1)C(u2, v2).

Theorem 2.1 may continue to hold in modified form if the independence

condition on (Xi, Yi)i∈Z is replaced with a general weak dependence condition.

As an extension of the independent case, Doukhan, Fermanian and Lang (2009)

demonstrate the weak convergence of the empirical copula process for stationary

η-dependent sequences (Dedecker et al., 2007). The assumption of η-dependence

can also be replaced with strong mixing, with mixing coefficients satisfying αn =

O(n−k) for some k > 1, using the functional central limit theorem in Rio (2000). In

this case Theorem 2.1 continues to hold with BC replaced by the Gaussian process

B∗C with covariance kernel E(B∗C(u1, v1)B∗C(u2, v2)) equal to

∑

i∈Z
cov(1{FX(X1) ≤ u1, FY (Y1) ≤ v1}, 1{FX(Xi) ≤ u2, FY (Yi) ≤ v2}).
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We close this section with some remarks on our statistics.

Remark 3.2.1. ‖M̃Cn−Cn‖p can be interpreted as an estimate of µpC := ‖M̃C −
C‖p, a measure of the extent to which C violates partial concavity. Since copulas

are invariant under strictly increasing transformations, (i.e., for any increasing func-

tions λ1 and λ2, the transformed variables (λ1(X), λ2(Y )) have the same copula as

(X, Y )), our measure µpC also possess a scale invariance property as it is purely de-

termined by the copula. Empirical copulas have the same type of scale invariance

property, and so inference about stochastic monotonicity based on the statistic Mp
n

is not affected by strictly increasing transformations of the variables.

Remark 3.2.2. µpC will differ depending on whether C is the copula ofX and Y , or

the copula of Y and X . This is as it should be, because stochastic monotonicity is

not a symmetric property in general, meaning that “Y is stochastically increasing in

X” does not necessarily imply “X is stochastically increasing in Y ”. If the copula

of X and Y is exchangeable, however, partial concavity of the copula of X and Y

implies partial concavity of the copula of Y and X , and in consequence, stochastic

monotonicity in one direction implies stochastic monotonicity in the other direction.

Remark 3.2.3. Given the data, the test statistic Mp
n can be easily computed in prac-

tice by evaluating Cn at grid points on {0, 1/n, 2/n, ..., 1} × {0, 1/n, 2/n, ..., 1}.
For instance, our L∞ statistic can be calculated as

M∞
n = n1/2 max

1≤i≤n
max
1≤j≤n

{
M̃Cn

(
i

n
,
j

n

)
− Cn

(
i

n
,
j − 1

n

)}
.

Computation of Cn is straightforward from (3.1), and the MATLAB command
convhull provides M̃Cn evaluated at each grid point. Likewise, when p = 1,
our L1 statistic can be calculated as

M1
n = n−2/3

∑

1≤i≤n−1

∑

1≤j≤n

[
1

2

{
M̃Cn

(
i

n
,
j

n

)
+ M̃Cn

(
i

n
,
j − 1

n

)}
− Cn

(
i

n
,
j − 1

n

)]
.

For p ∈ (1,∞), the exact computation of Mp
n is feasible but complicated, and

we recommend using Theorem 4.1 below to obtain a convenient and numerically
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accurate approximation to Mp
n.

Remark 3.2.4. An extension of our test procedure beyond the bivariate case is

straightforward to achieve by reformulating the null hypothesis as

H0 : FY,Z|X(y, z|x) is nonincreasing in x for each y∈ Y and z ∈ Z .

H0 is in this case equivalent to the concavity of cross sections of the copula of

(X, Y, Z) fixing the last two arguments3, and thus we need instead to estimate the

empirical copula of (X, Y, Z) with a modified partial lcm operator in which the lcm

operator is applied to the first argument with the last two arguments of the function

being fixed.

3.3 Asymptotic null distribution

In this section we establish the limit distribution of our test statistic Mp
n at

all points in the null hypothesis Θ0. We achieve this by establishing a differentia-

bility property of the operator M̃, and applying the functional delta method and the

continuous mapping theorem.

Let I be the identity operator on `∞([0, 1]2) and let D̃ ≡ M̃ − I. By

construction, M̃C = C (or D̃C = 0) whenever C is in Θ0 and accordingly, we can

rewrite our test statistic Mp
n in (3.1) as

Mp
n = n1/2

∥∥∥D̃Cn − D̃C
∥∥∥
p

when C ∈ Θ0.

Recall that Theorem 3.2.1 states the quantity n1/2(Cn−C) weakly converges to the

continuous random element GC . Then, as is widely studied in the literature, the law

3This may be seen by rewriting H0 as

H0 :

∫ t

0

FY,Z|X(F−1Y (u), F−1Z (v)|F−1X (t̄))dt̄ is concave in t, for each pair of (u, v) ∈ [0, 1]2,

and noting that C(t, u, v) =
∫ t
0
FY,Z|X(F−1Y (u), F−1Z (v)|F−1X (t̄))dt̄ is the copula of (X,Y, Z).
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of n1/2(D̃Cn − D̃C) can be obtained by invoking the functional delta method. The

key requirement for the functional delta method is generally known as Hadamard

differentiability, which has been weakened to Hadamard directional differentiability

(Shapiro, 1991; Fang and Santos, 2015). The following definitions of Hadamard

differentiability and Hadamard directional differentiability are taken from Fang and

Santos (2015). See also Shapiro (1990, 1991) and Bonnans and Shapiro (2000) for

more general definitions on topological vector spaces.

Definition 3.3.1. Let D and E be Banach spaces, and φ : Dφ ⊆ D→ E.

(i) The map φ is said to be Hadamard differentiable at θ ∈ Dφ tangentially to

a set D0 ⊆ D if there is a continuous linear map φ′θ : D0 → E such that

lim
n→∞

∥∥∥∥
φ(θ + tnhn)− φ(θ)

tn
− φ′θ(h)

∥∥∥∥
E

= 0

for all sequences {hn} ⊂ D and {tn} ⊂ R satisfying tn → 0 and hn → h ∈
D0 as n→∞, and θ + tnhn ∈ Dφ for all n.

(ii) The map φ is said to be Hadamard directionally differentiable at θ ∈ Dφ

tangentially to a set D0 ⊆ D if there is a continuous map φ′θ : D0 → E such

that

lim
n→∞

∥∥∥∥
φ(θ + tnhn)− φ(θ)

tn
− φ′θ(h)

∥∥∥∥
E

= 0

for all sequences {hn} ⊂ D and {tn} ⊂ R+ satisfying tn ↓ 0 and hn → h ∈
D0 as n→∞, and θ + tnhn ∈ Dφ for all n.

The main difference between Hadamard differentiability and Hadamard di-

rectional differentiability is that Hadamard directional differentiability does not re-

quire linearity of φ′θ while Hadamard differentiability does. Consequently, Hadamard

directional differentiability is weaker than Hadamard differentiability. Proposition

2.1 in Fang and Santos (2015) makes clear the connection between the two differen-

tiability concepts: Hadamard differentiability always implies Hadamard direction-

al differentiability, while Hadamard directional differentiability implies Hadamard
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differentiability only when the Hadamard directional derivative is linear. This dis-

tinction between the two differentiability concepts is critical for the issue being

discussed because our operator D̃ turns out to be Hadamard directionally differen-

tiable but not Hadamard differentiable. Our expression for the weak limit of Mp
n

will involve the Hadamard directional derivative of D̃, and consequently it becomes

critical for us to determine its explicit form.

In the following, let C([0, 1]2) be the space of continuous real valued func-

tions on [0, 1]2 equipped with the uniform norm. Our Lemma 3.3.1 establishes the

Hadamard directional differentiability of M̃ at C ∈ Θ0 tangentially to C ([0, 1]2).

We shall denote the directional derivative M̃′
C .

Lemma 3.3.1. If C ∈ Θ0 then M̃ is Hadamard directionally differentiable at C

tangentially to C ([0, 1]2). Given u ∈ [0, 1], v ∈ (0, 1) and h ∈ C([0, 1]2), if C(u, ·)
is affine in a neighborhood of v, then we have M̃′

Ch(u, v) =M[auC,v ,b
u
C,v ](h(u, ·))(v),

where

auC,v = sup{v′ ∈ (0, v] : C(u, ·) is not affine in a neighborhood of v′},

buC,v = inf{v′ ∈ [v, 1) : C(u, ·) is not affine in a neighborhood of v′},

and we define inf ∅ = 1 and sup∅ = 0. If C(u, ·) is not affine in a neighborhood

of v ∈ (0, 1), or if v ∈ {0, 1}, then M̃′
Ch(u, v) = h(u, v).

Since `∞([0, 1]2) is a metric space, the continuity of M̃′
C directly follows

from Proposition 3.1 in Shapiro (1990). On the other hand, we see that our direc-

tional derivative is not linear in general. For instance, let C(u, v) = uv, the inde-

pendence copula, and let h1(u, v) = uv2 and h2(u, v) = −uv2 for (u, v) ∈ [0, 1]2.

Then Lemma 3.1 implies that the directional derivatives are M̃′
Ch1(u, v) = uv,

M̃′
Ch2(u, v) = −uv2 while M̃′

C(h1 + h2)(u, v) = 0.4 Therefore we observe

4For any given u ∈ [0, 1], C(u, ·) is affine with auC,v = 0 and buC,v = 1. Therefore from Lemma
3.3.1 we obtain M̃′Ch1(u, v) =M[0,1](h1(u, ·))(v)=uv by applying the lcm operator on the convex
function h1(u, ·) for each fixed u ∈ [0, 1]. On the other hand, h2(u, v) = −uv2 is concave in v for
any fixed u ∈ [0, 1] and thus, M̃′Ch2 is the function h2 itself.
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M̃′
C(h1 + h2) 6= M̃′

Ch1 + M̃′
Ch2, and M̃′

Ch is not linear in h. In fact M̃′
Ch

is linear in h for C ∈ Θ0 (equivalently M̃ is Hadamard differentiable at C ∈ Θ0

in direction h), if and only if 5 C(u, ·) is strictly concave for all u ∈ [0, 1], which is

the case that the derivative is the identity map. We see, however, from the property

of copulas that C(u, ·) is always linear when u ∈ {0, 1}. Consequently M̃ cannot

be Hadamard differentiable at any properly defined copula in Θ0.

Building on Lemma 3.3.1, we now obtain the Hadamard directional differ-

entiability of D̃ at C ∈ Θ0 tangentially to C ([0, 1]2). We will denote the derivative

by D̃′C .

Lemma 3.3.2. If C ∈ Θ0 then D̃ is Hadamard directionally differentiable at C

tangentially to C ([0, 1]2) with derivative D̃′C = M̃′
C − I.

From the corresponding property of M̃′
C we deduce immediately that D̃′C is

continuous but not linear, and thus D̃ is Hadamard directionally differentiable but

not Hadamard differentiable at any C ∈ Θ0.

With an application of the functional delta method for directionally differen-

tiable operators (Shapiro, 1991, Theorem 2.1) and the continuous mapping theorem,

we finally establish the weak convergence of our test statistic Mp
n.

Theorem 3.3.1. Under Assumption 3.2.1, for p ∈ [1,∞] and C ∈ Θ0,

Mp
n = ‖n1/2(D̃Cn − D̃C)‖p  ‖D̃′CGC‖p

as n→∞.

Since the limiting process D̃′CGC in Theorem 3.3.1 depends on the copula

C, the limiting distribution of Mp
n is different at different points (copulas) in the

5If C(u, ·) is strictly concave for all u ∈ [0, 1], it is clear from Lemma 3.1 that M̃′C = I,
and so M̃′C is linear. On the other hand, if there is some u0 for which C(u0, ·) is affine over an
interval (a, b) ⊆ [0, 1], then M̃′C(h1 + h2) 6= M̃′Ch1 + M̃′Ch2 on {u0} × (a, b) with, for instance,
h1(u, v) = uv2 and h2(u, v) = −uv2. Thus M̃′C cannot be linear.
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null. Delgado and Escanciano (2012) particularly consider the independence cop-

ula, C(u, v) = uv among all the null points. It turns out that this is the lfc when

p = ∞ and the test in Delgado and Escanciano (2012) at the α-level of signifi-

cance is ensured to have a limiting rejection rate of no greater than α at all points

in the null. However, as shown in their simulation, the rejection rate of their test

falls below α in the limit at all points in the null other than the lfc, and in fact our

Remark 3.2 implies that the rejection rate actually reaches to zero whenever all in-

terior cross-sections of the copula are strictly concave. This is not desirable because

power will be poor against alternatives that are close to points in the null other than

the lfc. Since the null hypothesis for our problem is its own boundary, every point

in the null can be approximated by a sequence of local alternatives, and the problem

is particularly serious. Lee, Linton and Whang (2009) also consider a test in which

the critical value is chosen to control size at the lfc, and we expect this test suffers

from the same problem.

The bootstrap procedure we develop in the next section alleviates this prob-

lem by approximating the actual limiting distribution at each point of the null in

Theorem 3.3.1. By using data dependent critical values, we expect the rejection

rate at each point in the null to approach α as the sample size gets larger whenever

the limit distribution is nondegenerate. On the other hand, when the null is false,

we expect to have higher rejection rates than the test in Delgado and Escanciano

(2012) which uses critical values from the lfc.

Remark 3.3.1. WhenC is the independence copula, i.e.C(u, v) = uv, the Hadamard

directional derivative of M̃ at C is identical to M̃. Therefore, for a given h ∈
C([0, 1]2), D̃′Ch represents the difference between the function h and its partial lcm.

In addition, our test statistic Mp
n = n1/2‖M̃Cn − Cn‖p can be expressed in terms

of the directional derivative as n1/2‖D̃′CCn‖p.

Remark 3.3.2. Theorem 3.3.1 implies that we have a degenerate limit at those

copulas C ∈ Θ0 for which C(u, ·) is strictly concave for all u ∈ (0, 1). In this

case we have M̃′
CGC = GC on (u, v) ∈ (0, 1) × [0, 1] by Lemma 3.3.1. Although
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the vertical sections of the copula are linear when u ∈ {0, 1}, this does not change

the degeneracy of the limit distribution because GC in Theorem 3.2.1 is a tucked

Gaussian process on [0, 1]2.

3.4 Bootstrap procedure

The limiting distribution of our test statistic in Theorem 3.3.1 depends on

the random process GC and M̃′
C , which in turn is determined by the underlying

copula C. There are a variety of ways to construct a bootstrap approximation to the

law of GC , as we will discuss shortly. However, due to the lack of differentiability

of the partial least concave majorant operator M̃, a good bootstrap approximation

to the law of GC will not lead directly to a good bootstrap approximation to the law

of our test statistic. This is because the functional delta method for the bootstrap

fails to apply with nondifferentiable operators. The first part of this section will

address this problem, and the rest of the section will show how a valid bootstrap

approximation to the limiting distribution of our test statistic can be constructed.

We start out by assuming that there is a good bootstrap version of GC , G∗C,n,

in the sense that the conditional law of G∗C,n provides a valid approximation of

the weak limit of the empirical copula process. For instance, we may use pseudo

samples to construct the marginal empirical distributions

F ∗X,n(x) =
1

n

n∑

i=1

Wi1(Xi ≤ x), F ∗Y,n(y) =
1

n

n∑

i=1

Wi1(Yi ≤ y),

where the weights (W1, . . . ,Wn) are drawn from the multinomial distribution with

success probabilities 1/n, independent of the data. Then, G∗C,n = n1/2(C∗n − Cn)

suitably approximates GC with C∗n = 1
n

∑n
i=1Wi1(F ∗Y,n(Yi) ≤ u, F ∗X,n(Xi) ≤ v) in

large samples. This resampling method has been adopted in Fermanian et al. (2004)

to approximate the weak limit of the empirical copula process.

Alternative choices of resampling scheme are also available. The multiplier
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bootstrap of Scaillet (2005) and Remillard and Scaillet (2008) has been used to test

the equivalence of two copulas, and later adopted for goodness of fit tests of copula

based models (Kojadinovic and Yan, 2011; Kojadinovic et al., 2011). Bucher and

Dette (2010) suggest the direct multiplier bootstrap, which is more computation-

ally convenient than the ordinary multiplier bootstrap because it does not require

estimates of the partial derivatives of the copula function. The direct multiplier

bootstrap has been applied in many studies (e.g., in Genest (2012) for the test of ex-

changeability of copulas and in Bouzebda and Cherfi (2012) for the tests of radial

symmetry), but tends to be less accurate than the multiplier bootstrap as demon-

strated in the simulation results in Bucher and Dette (2010).

We clarify our assumption on G∗C,n as follows. Let BL1(`∞([0, 1]2)) denote

the class of all real valued functions on `∞([0, 1]2) that are bounded by one in

absolute value and are Lipschitz continuous with Lipschitz constant no greater than

one. Our Assumption 3.4.1 requires that the bounded Lipschitz distance between

the law of G∗C,n conditional on the data and the law of GC converges in probability

to zero on `∞([0, 1]2).

Assumption 3.4.1. As n→∞, G∗C,n satisfies

sup
f∈BL1(`∞([0,1]2))

∣∣E
(
f(G∗C,n)

∣∣ (X1, Y1), . . . , (Xn, Yn)
)
− Ef(GC)

∣∣ 0,

where GC is the weak limit of n1/2(Cn − C) in Theorem 3.2.1.

Even when the bootstrap process G∗C,n provides a valid approximation to

GC , however, it is not straightforward in our case to obtain a valid approximation

to ‖D̃′CGC‖p, the limiting distribution of our test statistic at C ∈ Θ0. Fang and

Santos (2015) warn that although the assumption of Hadamard differentiability can

be replaced with Hadamard directional differentiability for the application of the

functional delta method with some minor conditions, the linearity of Hadamard

derivatives plays a crucial role in establishing the consistency of bootstrap approxi-
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mations. This makes the application of standard bootstrap techniques in our frame-

work to be problematic and in fact, Theorem 3.1 and Remark 3.3 in Fang and Santos

(2015) suggest that we cannot simulate n1/2(D̃C∗n − D̃Cn) using the bootstrap ver-

sion of the empirical copula to approximate the process n1/2(D̃Cn − D̃C) in the

usual way.

Our approximation of D̃′CGC is instead achieved by estimating the operator

D̃′C applied to G∗C,n. A similar approach has been taken in Beare and Shi (2015) for

the test of likelihood ratio ordering, and our proposal in this section extends their

technical suggestion to the case when the partial lcm is involved in the test statistic.

We begin by introducing an operator S, a mapping from a bivariate function to a

quadravariate function which measures the difference between the function and the

convex combinations of two points on the function. Using this operator, we next

define the contact set Bf that identifies linear segments of the function f . Imple-

mentation of our alternative bootstrap procedure is based on preliminary estimation

of this contact set Bf , similar to procedures developed recently in other contexts

such as in Linton, Song and Whang (2010), Anderson, Linton and Whang (2012)

and Lee, Song and Whang (2014).

Definition 3.4.1 (Operator S). Let A = {(u, v, w1, w2) ∈ [0, 1]4 : w1 ≤ v ≤ w2

and u ∈ [0, 1]}. For f ∈ `∞([0, 1]2), we define the map S : `∞([0, 1]2) → `∞(A)

by

Sf(u, v, w1, w2) =
(w2 − v)f(u,w1) + (v − w1)f(u,w2)

w2 − w1

− f(u, v) (3.2)

when w1 < w2. When w1 = w2, Sf(u, v, w1, w2) = 0.

Definition 3.4.2 (Contact set). Given f ∈ `∞([0, 1]2), we call the set

Bf = {(u, v, w1, w2) ∈ A : Sf(u, v, w1, w2) = 0}
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the contact set, and for each fixed (u, v) ∈ [0, 1]2 we call the set

Bf (u, v) = {(w1, w2) ∈ [0, 1]2 : (u, v, w1, w2) ∈ Bf}

a cross section of Bf .

The first term in (3.2) expressed as a ratio corresponds to the function value

at (u, v) of the affine function that linearly interpolates two points f(u,w1) and

f(u,w2). We therefore find that for a fixed u ∈ [0, 1], f(u, ·) is concave (convex) on

an interval [a, b] ⊆ [0, 1] if and only if Sf(u, v, w1, w2) is nonpositive (nonnegative)

for all w1 ≤ v ≤ w2 in [a, b]. On the other hand, if Sf = 0 for all w1 ≤ v ≤ w2

in [a, b], it must be the case that f(u, ·) is affine on [a, b]. Accordingly, BC(u, v)

identifies the largest closed interval containing v over which C(u, ·) is affine in the

form of [auC,v, v] × [v, buC,v], using the notation in Lemma 3.3.1. When C is the

independence copula, for instance, BC(u, v) includes all the points in [0, v]× [v, 1]

and therefore we have BC = A. We also notice that BC(u, v) is nonempty as it

always contains the elements on the diagonal of unit square {(w1, w2) ∈ [0, 1]2 :

w1 = w2}.
Using Definitions 3.4.1 and 3.4.2, we can derive alternative expressions for

our test statistic Mp
n and the directional derivative of D̃ that are more practical and

useful for computational purposes. In Theorem 3.4.1, we provide a new expression

for Mp
n using the operator S and in Lemma 4.1, we rewrite D̃′C in terms of the

operator S and the contact set BC .

Theorem 3.4.1. The test statistic Mp
n = n1/2‖M̃Cn − Cn‖p can be written as

Mp
n = n1/2

∥∥∥∥∥ sup
(w1,w2)∈[0,v]×[v,1]

SCn(·, w1, w2)

∥∥∥∥∥
p

.

In particular, when p =∞ the test statistic is reduced to

M∞
n = n1/2 sup

(u,v,w1,w2)∈A
SCn(u, v, w1, w2)
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where A is the set defined in Definition 3.4.1.

Lemma 3.4.1. The Hadamard directional derivative of D̃ at C ∈ Θ0 in direction

h ∈ C([0, 1]2) can be written as

D̃′Ch(u, v) = (M̃′
C−I)h(u, v) = sup

(w1,w2)∈BC(u,v)

Sh(u, v, w1, w2), (u, v) ∈ [0, 1]2.

When C is the independence copula, C(u, v) = uv, BC(u, v) is the set

[0, v] × [v, 1] as pointed out earlier. Therefore, our findings in Theorem 3.4.1 and

Lemma 3.4.1 are consistent with Remark 3.3.1 in the previous section.

Lemma 3.4.1 implies that we may estimate the asymptotic distribution in

Theorem 3.3.1 by a consistent estimate of BC(u, v) along with G∗C,n that satisfies

Assumption 3.4.1. With suitably chosen κn, natural estimates of BC and BC(u, v)

might be,

BC,n = {(u, v, w1, w2) ∈ A : |SCn(u, v, w1, w2)| ≤ κn}

and

BC,n(u, v) = {(w1, w2) ∈ [0, 1]2 : (u, v, w1, w2) ∈ BC,n}, (u, v) ∈ [0, 1]2

using the empirical copula Cn as a nonparametric estimate of C. Employing these

estimates, we suggest to approximate the limiting distribution of Mp
n by the law of

M∗
n =

∥∥∥∥∥ sup
(w1,w2)∈BC,n(·)

SG∗C,n(·, w1, w2)

∥∥∥∥∥
p

.

The proposal is justified by Theorem 3.4.2 with some conditions on κn stated there-

in. Since consistency in the bounded Lipschitz metric on R implies convergence in

distribution, our test with approximate rejection rate α is implemented by setting

the critical value equal to the (1− α) quantile of the bootstrap distribution of M∗
n.6

6See Remark 3.1 in Fang and Santos (2015).
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Theorem 3.4.2. Let G∗C,n be a sequence that satisfies Assumption 3.4.1 and M∗
n

be the bootstrap statistics obtained by κn chosen to satisfy (i) κn → 0 and (ii)

n1/2κn →∞, as n→∞. Then we have

sup
f∈BL1(R)

∣∣∣E (f (M∗
n)| (X1, Y1), . . . , (Xn, Yn))− Ef

(
‖M̃′

CGC − GC‖p
)∣∣∣ 0

for C ∈ Θ0.

3.5 Simulation

In this section, we report some numerical evidence concerning the finite

sample performance of our tests. We have considered the following four data gen-

erating processes,

(N1) Yi = εi

(A1) Yi = −0.1Xi + εi

(A2) Yi = −0.1X2
i + εi

(A3) Yi = −0.1X5
i + εi

(A4) Yi = 0.2Xi − 0.2 exp(−250(Xi − 0.5)2) + εi

where Xi is drawn from the uniform distribution U [0, 1], and εi is generated

from N(0, 0.12) and independent of Xi in each Monte Carlo simulation. Model

(N1) corresponds to the independence copula, i.e., the lfc, and models (A1)-(A4)

are used to evaluate the performance of the tests under the alternative. The vertical

sections of copulas in models (A1)-(A3) are smooth convex functions on the unit

interval while the vertical sections of the copula in model (A4) have both concave

and convex segments.

Table 3.2 reports the rejection rates in 1000 Monte Carlo replications of each

model. The nominal level is set to 5%, and the tuning parameter κn for our tests are

chosen to deliver a 5% rejection rate at the lfc (N1). Along with the results of our

test, we also report the performance of the tests in Delgado and Escanciano (2012)



106

Table 3.2: Rejection frequencies of tests of stochastic monotonicity
The table shows the rejection frequencies of our tests using the L1, L2, and L∞

statistics, the test of Delgado and Escanciano (2012), and the test of Lee, Linton
and Whang (2009). The nominal level is set to 5%.

Model n L1 L2 L∞ DE stat LLW0.4 LLW0.5 LLW0.6

N1 100 0.055 0.048 0.049 0.046 0.030 0.034 0.035
200 0.054 0.053 0.053 0.052 0.031 0.031 0.034
300 0.062 0.053 0.044 0.042 0.032 0.036 0.039

A1 100 0.877 0.828 0.653 0.634 0.258 0.408 0.542
200 0.988 0.980 0.911 0.880 0.541 0.749 0.853
300 0.999 1.000 0.995 0.980 0.752 0.911 0.964

A2 100 0.874 0.806 0.620 0.599 0.314 0.469 0.587
200 0.990 0.981 0.938 0.906 0.617 0.805 0.892
300 1.000 1.000 0.995 0.981 0.827 0.938 0.972

A3 100 0.670 0.568 0.399 0.314 0.283 0.372 0.434
200 0.898 0.882 0.739 0.686 0.571 0.685 0.742
300 0.971 0.960 0.851 0.846 0.782 0.859 0.895

A4 100 0.003 0.030 0.154 0.032 0.013 0.012 0.013
300 0.004 0.178 0.539 0.382 0.025 0.012 0.009

1000 0.210 0.997 0.999 0.997 0.141 0.039 0.016
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and Lee, Linton and Whang (2009) for comparison. For Lee, Linton and Whang

(2009)’s test, we use the Epanechnikov kernel and bandwidth parameters h = 0.4,

0.5,and 0.6 following their choice.

We summarize the simulation results as follows. Firstly in models (A1)-

(A3), we clearly observe the power improvement with all of our tests with the L1,

L2, and L∞ statistics over the tests in Delgado and Escanciano (2012) and Lee,

Linton and Whang (2009). The data generating process in model (A4) seems to

require large sample size to satisfactorily detect the negation of the null hypothesis

using our tests with the L1, L2, and L∞ statistics and Delgado and Escanciano

(2012)’s test. Under this alternative, our test with the L∞ statistic outperforms

the tests with the L1 and L2 statistics, while with the same L∞ statistic our test

shows better performance than Delgado and Escanciano (2012)’s test. On the other

hand, the test by Lee, Linton and Whang (2009) obtains no higher rejection rates

as sample size gets larger. This can be also seen in the simulations of Delgado and

Escanciano (2012) even with the sample size as large as 500.

3.6 Application

In this section, we revisit the empirical example of intergenerational mobili-

ty discussed in the beginning of the paper. Our null hypothesis particularly concerns

the income mobility from parents to the next generation. In the previous studies,

Solon (1992, 1999, 2002) and Minicozzi (2003) have found positive correlation

between the son’s income and parental income. Lee, Linton and Whang (2009)

and Delgado and Escanciano (2012) made similar conclusion but in the stochastic

monotonicity sense.

We applied our test to the same data set used in Minicozzi (2003), Lee, Lin-

ton and Whang (2009) and Delgado and Escanciano (2012). The data is from the

Panel Study of Income Dynamics (PSID) where the variable X is the logarithm of

parental predicted income while Y is the logarithm of the son’s averaged full time
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Table 3.3: The results of our tests for intergenerational income mobility
The results of our tests with the L1, L2, and L∞-statistics for the application to
intergenerational income mobility.

test statistics 5% critical value 10% critical value p-values
L1-statistic 0.099 0.216 0.147 0.997
L2-statistic 0.103 0.282 0.189 1.000
L∞-statistic 0.403 0.922 0.645 0.993

real income at the age of 28 and 29. We have n = 616 observations after we drop

some of the samples with a censoring issue as is done in Lee, Linton and Whang

(2009). The data set is downloadable on the Journal of Applied Econometrics web-

site.

Table 3.3 summarizes the results of our test with the L1, L2, and L∞ statis-

tics. The bootstrap critical values and bootstrap p-values are obtained with 1000

bootstrap replications. All of the three tests fail to reject the null hypothesis at both

the 5% and 10% significance level, and hence we conclude that stochastic mono-

tonicity is observed. In fact, we observe that the bootstrap p-values of the statistics

are close to one, which suggests very strong evidence of stochastic monotonicity

between the son’s income and parental income. The conclusion is consistent with

those of Lee, Linton and Whang (2009) and Delgado and Escanciano (2012). How-

ever, we observe that the critical values for our test are smaller than those of Del-

gado and Escanciano (2012), for example, the critical value of their test is between

0.811 and 0.813 at the 10% significance level while ours is 0.645.

3.7 Conclusion

We have developed improved statistical procedures for testing the null hy-

pothesis of stochastic monotonicity. While existing tests of stochastic monotonicity

deliver a limiting rejection rate equal to the nominal significance level at one point

and below the nominal significance level elsewhere in the null, our test raises the
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limiting rejection rate to the nominal significance level over a wide region of the

null. This improves power against relevant local alternatives.

Although we have been concerned with testing the null of stochastic mono-

tonicity in this paper, the differential properties of the partial lcm operator we have

established may be useful for constructing new tests of other null hypotheses of

interest. Hypotheses expressed in terms of functional inequalities or monotonicity

constraints when the function has more than two dimensions may often be reframed

as tests of partial concavity.7 Our approach to estimating the directional derivative

of the partial lcm operator may be applicable for developing bootstrap tests of such

hypotheses with good size and power properties. We leave the investigation of this

subject to future research.

3.8 Appendix

Proof of Lemma 3.3.1. Our proof extends the arguments used by Beare and Moon

(2015) to establish Hadamard directional differentiability of the lcm on univariate

functions. Before developing the argument, we enumerate some useful properties

of the lcm operatorM, and the partial lcm operator M̃.

(i) M(f + g)=Mf + g for any f , g ∈ `∞ with g affine.

(ii) M is positive homogeneous of degree one, i.e., cMf=M(cf) for any

f ∈ `∞ and c ∈ R+.

(iii) M̃ is positive homogenious of degree one.

(iv) ‖M̃f − M̃g‖∞ ≤ ‖f − g‖∞ for any f , g ∈ `∞([0, 1]2).

The properties of the lcm operator M in (i) and (ii) are well known in the litera-

ture (see e.g. Durot and Tocquet (2003, Lemma 2.1) and Beare and Moon (2015))

7For instance, the null hypothesis of conditional stochastic dominance can be formulated in terms
of an inequality between two conditional distribution functions, or in terms of the partial concavity
of a related bivariate function. See Delgado and Escanciano (2013) for details.
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whereas the positive homogeneity of M̃ in (iii) can be simply inferred from the pos-

itive homogeneity ofM, and the last property (iv) follows from Marshall’s lemma

(Durot and Tocquet, 2003, Lemma 2.2).

As a starting point, we notice that for each n,

∥∥∥∥∥
M̃(C + tnhn)− M̃C

tn
− M̃′

Ch

∥∥∥∥∥
∞

≤
∥∥∥∥∥
M̃(C + tnh)− M̃C

tn
− M̃′

Ch

∥∥∥∥∥
∞

+

∥∥∥∥∥
M̃(C + tnhn)− M̃(C + tnh)

tn

∥∥∥∥∥
∞

where the second term is bounded by the ‖hn − h‖∞ that vanishes as n→∞. We

can apply (iii) and (iv) to obtain,

∥∥∥∥∥
M̃(C + tnhn)− M̃(C + tnh)

tn

∥∥∥∥∥
∞

=
∥∥∥M̃(t−1

n C + hn)− M̃(t−1
n C + h)

∥∥∥
∞

≤ ‖hn − h‖∞ .

As a consequence, we need only to prove that for any sequences tn ↓ 0 and h ∈
C[0, 1]2, t−1

n (M̃(C + tnh) − M̃C) → M̃′
Ch in which M̃C can be replaced by C

for C ∈ Θ0. Since C(u, ·) is concave for each u ∈ [0, 1], Minkowski’s hyperplane

theorem ensures that for any fixed (u, v) ∈ [0, 1]2 there exists an affine function

ξu,v ∈ C([0, 1]) such that ξu,v(·) ≥ C(u, ·) and ξu,v(v) = C(u, v). By introducing

ξu,v, we can rewrite

t−1
n (M̃(C + tnh)(u, v)− C(u, v)) = t−1

n (M̃(C + tnh)(u, v)− ξu,v(v))

= t−1
n (M(C(u, ·) + tnh(u, ·))(v)− ξu,v(v))

= t−1
n (M(C(u, ·) + tnh(u, ·)− ξu,v(·))(v))

= M
(
h(u, ·) + t−1

n (C(u, ·)− ξu,v(·)
)

(v)(3.3)

where the second equation follows from Definition 3.2.2, and the rest of the equa-

tions are by (i) and (ii). Observing that the sequence (3.3) is monotone, the uniform
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convergence is implied by the pointwise convergence by virtue of Dini’s theorem.

Thus we can finish the proof by showing the pointwise convergence of (3.3) toward

M̃[auC,v ,b
u
C,v ]h(u, v).

Let hn,u,v ≡ h(u, ·) + t−1
n (C(u, ·) − ξu,v(·)). Then Lemma 1 in Carolan

(2002) implies,

Mhn,u,v(v) = sup
v′∈[0,v]

sup
v′′∈[v,1]

(v′′ − v)hn,u,v(v
′) + (v − v′)hn,u,v(v′′)
v′′ − v′ when v′′ 6= v′

(3.4)

withMhn,u,v(v) = hn,u,v(v) = h(u, v) when v′′ = v′. By substituting the expres-

sion for hn,u,v and applying Lemma 1 in Carolan (2002), we can show that

(v′′ − v)hn,u,v(v
′) + (v − v′)hn,u,v(v′′)
v′′ − v′

≤ M̃h(u, v) + t−1
n

[
(v′′ − v)C(u, v′) + (v − v′)C(u, v′′)

v′′ − v′ − C(u, v)

]
.(3.5)

Now recall that C(u, ·) is concave and not affine in the left neighborhood

of auC,v nor the right-neighborhood of buC,v. Therefore for any fixed δ > 0, (3.5)

diverges to negative infinity whenever (v′, v′′) is not in [(auC,v−δ)∨0, v]×[v, (buC,v+

δ) ∧ 1]. In result, the supremums in (3.5) are not taken over the complement of

[(auC,v − δ) ∨ 0, v]× [v, (buC,v + δ) ∧ 1], and thus for n sufficiently large

Mhn,u,v(v) = sup
v′∈[(auC,v−δ)∨0,v]

sup
v′′∈[v,(buC,v+δ)∧1]

(v′′ − v)hn,u,v(v
′) + (v − v′)hn,u,v(v′′)
v′′ − v′

which is equivalent toM[auC,v−δ)∨0,(buC,v+δ)∧1]hn,u,v(v). The rest of the proof is the

same as Beare and Moon (2015). By letting δ ↓ 0 and using continuity of h, we

conclude the convergence,

Mhn,u,v(v)→ M̃[auC,v ,b
u
C,v ]h(u, v).

We refer to the proof in Beare and Moon (2015) for details.
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Proof of Theorem 3.4.1. For g ∈ `∞([0, 1]), Lemma 1 in Carolan (2002) implies

that the restricted lcm on [a, b] can be written as

M[a,b]g(u) = sup
(w1,w2)∈[a,u]×[u,b]

(w2 − u)g(w1) + (u− w1)g(w2)

w2 − w1

. (3.6)

By Definition 3.2.2 and (3.6), we may write

M̃h(u, v) =M(h(u, ·))(v) = sup
(w1,w2)∈[0,v]×[v,1]

(w2 − v)h(u,w1) + (v − w1)h(u,w2)

w2 − w1

from which we obtain

n1/2(M̃Cn − Cn)(u, v) = n1/2 sup
(w1,w2)∈[0,v]×[v,1]

SCn(u, v, w1, w2).

We therefore have

Mp
n = n1/2

∥∥∥∥∥ sup
(w1,w2)∈[0,v]×[v,1]

SCn(·, w1, w2)

∥∥∥∥∥
p

.

Proof of Lemma 3.3.2. The result follows from Definition 3.3.1, Lemma 3.3.1 and

the triangular inequality. We want to show,

lim
n→∞

∥∥∥∥∥
D̃(C + tnhn)− D̃C

tn
− (M̃′

C − I)(h)

∥∥∥∥∥
∞

= 0

for C ∈ Θ0 and h ∈ C ([0, 1]2). Since D̃ = M̃ − I,

∥∥∥∥∥
D̃(C + tnhn)− D̃C

tn
− (M̃′

C − I)(h)

∥∥∥∥∥
∞

=

∥∥∥∥∥
(M̃ − I)(C + tnhn)− (M̃ − I)(C)

tn
− (M̃′

C − I)(h)

∥∥∥∥∥
∞

≤
∥∥∥∥∥
M̃(C + tnhn)− M̃C

tn
− M̃′

Ch

∥∥∥∥∥
∞

+

∥∥∥∥
(C + tnhn)− C

tn
− h
∥∥∥∥
∞
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The proof is done because limit of the first term and second term both converge

to zero by the Hadamard directional differentiability of M̃ and the convergence of

hn → h.

Proof of Lemma 3.4.1. First, suppose that C(u, ·) is affine in a neighborhood of v.

In this case Lemma 3.3.1 implies that M̃′
Ch(u, v) = M[auC,v ,b

u
C,v ](h(u, ·))(v), or

equivalently

M̃′
Ch(u, v) = sup

(w1,w2)∈[auC,v ,v]×[v,buC,v ]

(w2 − v)h(u,w1) + (v − w1)h(u,w2)

w2 − w1

by (3.6). Since C(u, ·) is not affine outside the interval (auC,v, b
u
C,v), we notice that

B(u, v) = {(w1, w2) ∈ [auC,v, v]× [v, buC,v]}. Therefore

M̃′
Ch(u, v)−h(u, v) = sup

(w1,w2)∈B(u,v)

(w2 − v)h(u,w1) + (v − w1)h(u,w2)

w2 − w1

−h(u, v)

as we claimed. Next suppose that C(u, ·) is not affine in a neighborhood of v. We

find that this is the case when for all (w1, w2) ∈ BC(u, v) we have either w1 = v

or w2 = v, or both. In all these cases sup(w1,w2)∈BC(u,v) Sh(t, u, v, w) = 0, or

equivalently, M̃′
Ch(u, v) = h(u, v). The proof is done.

Lemma 3.8.1. Under Assumptions 3.2.1 and 3.4.2, we have P{BC ⊆ BC,n ⊆
Bδ
C} → 1 for any fixed δ > 0 as n→∞ where

Bδ
C =

{
(u, v, w1, w2) ∈ A : inf

b∈BC
dE(b, (u, v, w1, w2)) ≤ δ

}

is the δ-neighborhood of the contact set BC . Here, dE is the usual Euclidean dis-

tance on [0, 1]4.

Proof of Lemma 3.8.1. We prove the lemma by showing (1) P{BC ⊆ BC,n} → 1

and (2) P{BC,n ⊆ Bδ
C} → 1.

(1) First we observe that SC(u, v, w1, w2) = 0 on the contact set BC . Since
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S is linear, we may write

sup
(u,v,w1,w2)∈BC

|SCn(u, v, w1, w2)| = n−1/2 sup
(u,v,w1,w2)∈BC

∣∣∣S
(
n1/2(Cn − C)

)
((u, v, w1, w2))

∣∣∣ .

Under the Assumption 3.4.2, κ−1
n sup(u,v,w1,w2)∈BC |SCn(u, v, w1, w2)| → 0 in

probability. Hence we notice that P{sup(u,v,w1,w2)∈B |SCn(u, v, w1, w2)| > κn} →
0 and therefore P{BC ⊆ BC,n} → 1.

(2) Next we show P{BC,n ⊆ Bδ
C} → 1 by showing that for any fixed δ > 0,

BC,n and A \Bδ
C are eventually disjoint events. Since the contact set BC is defined

with the condition SC is equal to zero, |SC| > 0 outside the contact set BC . Ex-

ploiting the continuity of S, we have inf(u,v,w1,w2)∈A\BδC |SC(u, v, w1, w2)| > 0. We

also note that sup(u,v,w1,w2)∈BC,n |SC(u, v, w1, w2)| approaches to zero as n → ∞,

and therefore we have

P (sup(u,v,w1,w2)∈BC,n |SC(u, v, w1, w2)| < inf(u,v,w1,w2)∈A\BδC |SC(u, v, w1, w2)|)→
1. Thus it must be the case that BC,n and A \ Bδ

C are disjoint with probability ap-

proaching one.

Lemma 3.8.2. For any g ∈ `∞([0, 1]2), we have the following inequality

sup
(u,v,w1,w2)∈A

|Sg(u, v, w1, w2)| ≤ 2 sup
(u,v)∈[0,1]2

|g(u, v)| .

Proof of Lemma 3.8.2. From the definition of S in Definition 3.4.1, and the prop-

erty of supremum operator,

sup
(u,v,w1,w2)∈A

|Sg(u, v, w1, w2)|

= sup
(u,v,w1,w2)∈A

∣∣∣∣
(w2 − v)g(u,w1) + (v − w1)g(u,w2)

w2 − w1

− g(u, v)

∣∣∣∣

≤ sup
(u,v,w1,w2)∈A

∣∣∣∣
(w2 − v)g(u,w1) + (v − w1)g(u,w2)

w2 − w1

∣∣∣∣+ sup
(u,v)∈[0,1]2

|g(u, v)|

≤ 2 sup
(u,v)∈[0,1]2

|g(u, v)| .

The last inequality follows from that the ratio {(w2−v)g(u,w1)+(v−w1)g(u,w2)}
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/(w2 − w1) is a convex combination of the two points g(u,w1) and g(u,w2) so the

supremum is bounded by sup(u,v)∈[0,1]2 |g(u, v)|.

Proof of Theorem 3.4.2. For notational convenience let us define

J ′CGC = ‖M̃′
CGC − GC‖p.

Also for each n, let Ĵ ′n : `∞([0, 1]2)→ R be the operator

Ĵ ′nf =

∥∥∥∥∥ sup
(w1,w2)∈BC,n(·)

Sf(·, w1, w2)

∥∥∥∥∥
p

, f ∈ `∞([0, 1]2).

The proof is done by applying results from Fang and Santos (2015) in Theorem

3.3, Lemma A.6 and Remark 3.6. Here we verify their key conditions 1) uniform

Lipschitz continuity of Ĵ ′n in n and 2) the weak convergence Ĵ ′nh  J ′Ch as n →
∞ for every h in C ([0, 1]2).

(1) From the inequality, | ‖f1‖p − ‖f2‖p | ≤ ‖f1 − f2‖p, we have

∣∣∣Ĵ ′nf1 − Ĵ ′nf2

∣∣∣ ≤
∥∥∥∥∥ sup

(w1,w2)∈BC,n(·)
Sf1(·, w1, w2)− sup

(w1,w2)∈BC,n(·)
Sf2(·, w1, w2)

∥∥∥∥∥
p

for f1, f2 ∈ `∞([0, 1]2). Now exploiting Hölder’s inequality and the linearity of S,

∥∥∥∥∥ sup
(w1,w2)∈BC,n(·)

Sf1(·, w1, w2)− sup
(w1,w2)∈BC,n(·)

Sf2(·, w1, w2)

∥∥∥∥∥
p

≤ sup
(u,v,w1,w2)∈BC,n

|Sf1((u, v, w1, w2))− Sf2((u, v, w1, w2))|

≤ sup
(u,v,w1,w2)∈A

|Sf1((u, v, w1, w2))− Sf2((u, v, w1, w2))|

≤ sup
(u,v,w1,w2)∈A

|S(f1 − f2)(u, v, w1, w2)|

≤ 2 sup
(u,v)

|f1(u, v)− f2(u, v)| .

The last inequality follows from Lemma 3.8.2. So the uniform Lipschitz condition

holds.
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(2) By the uniform continuity of Sh, for any given ε > 0 there exists δ > 0

such that

∣∣∣∣∣ sup
(u,v,w1,w2)∈BδC

Sh(u, v, w1, w2)− sup
(u,v,w1,w2)∈BC

Sh(u, v, w1, w2)

∣∣∣∣∣ ≤ ε.

Applying Lemma 3.8.2 with this property, we have the inequalities

∣∣∣Ĵ ′nh− J ′Ch
∣∣∣ ≤

∥∥∥∥∥ sup
(v,w)∈BC,n(·)

Sh(·, v, w)− sup
(v,w)∈BC(·)

Sh(·, v, w)

∥∥∥∥∥
p

≤
∥∥∥∥∥ sup

(v,w)∈BδC(·)
Sh(·, v, w)− sup

(v,w)∈BC(·)
Sh(·, v, w)

∥∥∥∥∥
p

≤ ‖ε‖p ≤ ε

with probability tending to one as n → ∞. This establishes the weak convergence

result Ĵ ′nh J ′Ch for h in C ([0, 1]2) and we finish the proof.
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