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Abstract

Reinforcement Learning for Mean Field Games and Mean Field Control problems

by

Andrea Angiuli

In this manuscript, we develop reinforcement learning theory and algorithms for

differential games with large number of homogenous players, focusing on applications in

finance/economics.

Stochastic differential games are notorious for their tractability barrier in computing

Nash equilibria (social optima) in the competitive (resp. cooperative) framework. Our

work aims to overcome this limitation by merging mean field theory, reinforcement learning

and multi-scale stochastic approximation.

In recent years, the question of learning in MFG and MFC has garnered interest, both

as a way to compute solutions and as a way to model how large populations of learners

converge to an equilibrium. Of particular interest is the setting where the agents do not

know the model, which leads to the development of reinforcement learning (RL) methods.

After reviewing the literature on this topic, we introduce a new definition of asymptotic

mean field games and mean field control problems which naturally connects with the RL

framework. We unify these problems through a two-timescale approach and develop a

Q-learning based solving scheme in the case of finite spaces. Our first proposed algorithm

learns either the MFG or the MFC solution depending on the choice of parameters. To

illustrate this method, we apply it to an infinite horizon linear quadratic example. We

discuss convergence results based on stochastic approximation theory.

This approach is extended to the case of the interaction through the distribution of

the controls of the population and finite horizon. The second algorithm is tested on two

ix



examples from economic/finance: a mean field problem of accumulated consumption with

HARA utility function, and a trader’s optimal liquidation problem. The heterogeneity of

the chosen examples shows the flexibility of our approach.

We conclude by presenting our on-going work on solving problems in continuous

spaces. We present our Unified 3-scale Actor Critic algorithm based on three learning

rules. The first two refer to the optimal strategy (the actor) and the value function (the

critic). An additional learning rule is adopted to target the distribution of the population

at equilibrium. This method is tested on two examples of the infinite horizon case.
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Chapter 1

Introduction

Dynamic games with many players are pervasive in today’s highly connected world. In

many models the agents are indistinguishable since they have the same dynamics and

cost functions. Moreover, the interactions are often anonymous since each player is

influenced only by the empirical distribution of all the agents. However, such games

become intractable when the number of agents becomes very large. Mean field games

have been introduced independently by Lasry and Lions [55], and Huang, Malhamé

and Caines [52] to tackle such situations by passing to the limit and considering games

with an infinite number of players interacting through the population distribution. The

solution of the limiting problem represents an approximation of the N´ player game and

their connection is formalized by the “ master equation”, a partial differential equation

stated on the space of probability measures (see Cardaliaguet et al. [19] for further

details). Although the standard formulation of MFG focuses on finding Nash equilibria,

social optima arising in a cooperative setting have also been studied under the term of

mean field control by Bensoussan et al. [11] or control of McKean-Vlasov dynamics by

Lasry and Lions [55]. Equilibria or social optima in such games can be characterized in a

tractable way through forward-backward systems of partial differential equations (PDE)
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Introduction Chapter 1

or stochastic differential equations (SDE) [24, 55].

In this work, we propose algorithms to solve mean field problems using ideas from

Reinforcement Learning (RL). Reinforcement learning (RL) is a branch of machine

learning (ML) which studies the interactions of an agent within an environment in order

to maximize a reward signal. Applications of RL in economics and finance have recently

attracted a lot of interest, see e.g. [32]. However, since our problems involve mean-field

interactions, the population distribution requires a special treatment. In our setup, the

agent is feeding an action to the environment which produces the next state and a reward

(or cost). The environment also updates in an automatic way (without decision) the

distributions of states and controls (see the diagram in Figure 4.1). The environment can

be viewed as a “black box” or as a “simulator” depending on the problem, but, in any case,

it generates the new state if the dynamics is unknown and the reward if not computable

by the agent. It is also interesting to note that even in cases where the dynamics and

the reward structure are known but complicated, then our algorithms can be viewed as

a numerical method for computing the optimal strategy for the corresponding MFG or

MFC problems.

Since the introduction of MFG theory, several numerical methods have been proposed,

see e.g. [2, 56] and the references therein. In our paper [8], we detail two methods based

on the probabilistic approach and apply them to five benchmark problems. Both are based

on a Picard scheme; importantly, we combine each of them with a generic continuation

method that permits to extend the time horizon (or equivalently the coupling strength

between the two equations) for which the Picard iteration converges.

Recently, several methods to solve MFGs based on machine learning tools have been

proposed relying either on the probabilistic approach [36, 27, 38, 62] or the analytical

approach [3, 28, 69, 18, 59, 56]. They combine neural network approximations and

stochastic optimization techniques to solve McKean-Vlasov control problems, mean field

2
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FBSDE or mean field PDE systems; see Carmona and Laurière [22] for a recent survey

and applications to finance. These methods are based on the knowledge of the model,

but the question of learning solutions to MFG and MFC without full knowledge of the

model have also attracted a surge of interest.

As far as learning methods for mean field problems are concerned, most works focus

either on MFG or on MFC. Yang et al. [77] use a mean field approximation in the context

of multi-agent reinforcement learning (MARL) to reduce the computational cost. Yang et

al. [76] use inverse reinforcement learning to learn the dynamics of a mean field game

on a graph. To approximate stationary MFG solutions, Guo et al. [47] use fixed point

iterations on the distribution combined with Q-learning to learn the best response at

each iteration. Anahtarci et al. [5] combine this kind of learning scheme together with

an entropic regularization. Convergence of an actor-critic method for linear-quadratic

MFG has been studied in [37]. Model-free learning for finite horizon MFG has been

studied by Mishra et al. in [63] using a backward scheme. Fictitious play without or with

reinforcement learning has been studied respectively in [20, 49] and [34, 67, 75], or online

mirror descent [48, 65]. These iterative methods have been proved to converge under

a monotonicity condition which is weaker than the strict contraction property used to

ensure convergence of fixed point iterations. They can be extended to continuous space

problems using deep reinforcement learning as e.g. in [66]. A two timescale approach to

solve MFG with finite state and action spaces has been proposed in [61, 70].

To learn MFC optima, Mahajan and Subramanian [70] design a gradient based

algorithm. Model-free policy gradient method has been proved to converge for linear-

quadratic problems in [29, 72], whereas Q-learning for a “lifted” Markov decision process

on the space of distributions has been studied in [30, 44, 46]. Optimality conditions and

propagation of chaos type result for mean field Markov decision processes are studied by

Motte and Pham in [64].

3



Introduction Chapter 1

In [6], we proposed a unified two timescale Q-learning algorithm to solve both MFG

and MFC problems in an infinite horizon stationary regime. The key idea is to iteratively

update estimates of the distribution and the Q-function with different learning rates.

Suitably choosing these learning rates enables the algorithm to learn the solution of

the MFG or the one of the MFC. A slow updating of the distribution of the state

leads to the Nash equilibrium of the competitive MFG and the algorithm learns the

corresponding optimal strategy. A rapid updating of the distribution leads to learning

of the optimal control of the corresponding cooperative MFC. Moreover, in contrast

with other approaches, our algorithm does not require the environment to output the

population distribution which means that a single agent can learn the solution of mean

field problems.

In [7], we extended this algorithm in two directions: finite horizon setting, and

“extended” mean field problems which involve the distribution of controls as well. That

demonstrates the flexibility of our two timescale algorithm and broadens the range of

applications.

In the on-going work [9], we merge our solving paradigm with deep reinforcement

learning to solve mean field problems in continuous state and action spaces. The proposed

Unified 3-scale Mean Field Actor Critic algorithm (U3-MF-AC) inherits two learning

rules from the classical Actor Critic approach studied in [17]. They refer respectively to

the optimal strategy (the actor) and the value function (the critic). Additionally, the

distribution of the population at equilibrium is learned at a different schedule. The choice

of the three scales is crucial in defining the convergence of this method to the solution of

a MFG or MFC problem.

The rest of the dissertation is organized as follows. In Chapter 2, we introduce the

framework of classical Reinforcement Learning. The definition of a Markov Decision

Process (MDP) is recalled together with the Q´learning algorithm, one of the most

4
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popular model free approach to solve it. In Chapter 3, we propose a new definition of

infinite horizon mean field problems in discrete time and space: the Asymptotic MFG and

MFC problems. Comparison with classical (non-asymptotic) and stationary formulations

are also made. In Chapters 4 and 5, we discuss our results from [6] and [7]. We present

how we connected reinforcement learning and mean field problems through a multi-scale

stochastic viewpoint. We illustrate our algorithms on a general linear quadratic model

and two examples from economics: a mean field accumulation problem in Section 5.4

and an optimal execution problem for a mean field of traders in Section 5.5. In Chapter

6, we show our current direction of research through some preliminary results on deep

reinforcement learning for mean field games. We then conclude in Chapter 7.

5



Chapter 2

Reinforcement Learning

A Markov Decision Process (MDP) formalizes the sequential making decision problem of

an agent interacting with an environment. At each discrete time n, given a state space

X and an action space A, the agent observes the state of the environment Xn P X and

chooses an action An P A. Due to the agent’s action, the environment evolves to a state

Xn`1 P X and assigns a reward rn`1 “ rpXn, Anq. The goal of the agent is to find the

optimal strategy π which assigns to each state of the environment the optimal action in

order to maximize the aggregate discounted rewards.

RL aims to solve MDPs without assuming any (or partial) knowledge of the dynamics

of the environment and the reward structure. In orther to do that, RL algorithms are

based on trials and errors. A complete overview on the evolution of this field is given in

[71].

2.1 Learning the optimal action value function

The Q-learning method was introduced in [73] to solve a discrete time MDP with

finite state and action spaces. It is based on the evaluation of the optimal action-value

6



Reinforcement Learning Chapter 2

table, Q˚px, aq, which represents the maximum expected aggregate discounted rewards

when starting in state x and choosing the first action a, i.e.

Q˚px, aq “ max
π

Qπ
px, aq

“ max
π

E

«

rpX0, A0q `

8
ÿ

n“1

γnrpXn, πpXnqq

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

, (2.1)

where γ P p0, 1q is a discounting factor, and Xn`1 “ bpXn, πpXnqq. The maximum is

taken over strategies (or policies) π, which are functions of the state taking values in

the action space A. Intuitively, the Q˚ function quantifies the optimal reward-to-go

of an agent starting at x, using action a for the first step and then acting optimally

afterwards. In other words, the value of Q˚px, aq is the reward of using a when in state

x, plus the maximal reward possible after that, i.e. the reward induced by using the

optimal control. Since the state’s dynamics b (and sometimes the reward function r) are

unknown to the agent, the algorithm is characterized by the trade-off between exploration

of the environment and exploitation of the current available information. This is typically

accomplished by the implementation of an ε-greedy policy. The greedy action which

maximizes the immediate reward is chosen with probability 1´ ε and a random action

otherwise, i.e.

πεpxq “

$

’

&

’

%

a P UnifpAq, with probability ε,

a˚ “ arg maxaPAQ
˚px, aq, with probability 1´ ε.

(2.2)

Note that this is the randomized policy which will be used in the algorithm presented in

Chapter 4, but as the optimal strategies will turn out to be deterministic (as ε goes to

zero over learning episodes), in the following, we present the problems and the Q-learning

approach only using deterministic policies called controls and denoted by α instead of π

(see [64] for additional details on randomized policies).

7



Reinforcement Learning Chapter 2

The state value function with respect to a deterministic control function α is given by

V α
pxq “ E

«

8
ÿ

n“0

γnrpXn, αpXnqq

ˇ

ˇ

ˇ
X0 “ x

ff

.

One of the main advantages of computing the optimal action-value function instead of

the optimal state value function is that from the former, one can directly recover the

optimal control, given by arg maxaQ
˚px, aq. This is particularly important in order to

design model-free method.

Q-learning [73] is one of the most popular model-free methods in RL for discrete time,

discrete and finite state/action spaces. In order to introduce the algorithm, we review

some of the classical results relative to the value function V α and the corresponding action

value function Qα.

Lemma 1 Let α : X Ñ A be a deterministic policy. The state value function V α : X Ñ R

can be derived from the action state value function Qα : X ˆAÑ R as

V α
pxq “ Qα

px, αpxqq. (2.3)

Proof:

V α
pxq “ E

«

8
ÿ

n“0

γnrpXn, αpXnqq

ˇ

ˇ

ˇ
X0 “ x

ff

“ E

«

rpX0, A0q `

8
ÿ

n“1

γnrpXn, αpXnqq

ˇ

ˇ

ˇ
X0, A0 “ αpX0q

ff

“ Qpx, αpxqq

Lemma 2 (Bellman equation Qα) The action state value function Qα : X ˆ A Ñ R

satisfies the Bellman equation given by

Qα
px, aq “ rpx, aq ` γE

“

Qα
pX1, αpX1qq

ˇ

ˇX0 “ x,A0 “ a
‰

(2.4)

8
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Proof:

Qα
px, aq “ E

«

rpX0, A0q `

8
ÿ

n“1

γnrpXn, αpXnqq

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

(TP)
“ rpx, aq ` γE

«

E

«

8
ÿ

n“1

γn´1rpXn, αpXnqq

ˇ

ˇ

ˇ
X0 “ x,A0 “ a,X1

ff
ˇ

ˇ

ˇ

ˇ

ˇ

X0 “ x,A0 “ a

ff

(MP)
“ rpx, aq ` γE

«

E

«

8
ÿ

n“1

γn´1rpXn, αpXnqq

ˇ

ˇ

ˇ
X1

ff ˇ

ˇ

ˇ

ˇ

ˇ

X0 “ x,A0 “ a

ff

“ rpx, aq ` γE
”

V α
pX1q

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ı

(2.3)
“ rpx, aq ` γE

“

Qα
pX1, αpX1qq

ˇ

ˇX0 “ x,A0 “ a
‰

,

where TP and MP stands for tower and Markov property respectively.

Proposition 1 (Policy improvement) Let α1 : X Ñ A and α2 : X Ñ A be two determin-

istic policies such that

V α1pxq ď Qα1px, α2pxqq, @x P X . (2.5)

Then, the policy α2 must be as good or better than the policy α1, that is

V α1pxq ď V α2pxq, @x P X .

Proof:

9
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V α1pxq ďQα1px, α2pxqq

(2.4)
“rpx, α2pxqq ` γE

”

Qα1pX1, αpX1qq

ˇ

ˇ

ˇ
X0 “ x,A0 “ α2pxq

ı

(2.3)
“rpx, α2pxqq ` γE

“

V α1pX1q
ˇ

ˇX0 “ x,A0 “ α2pxq
‰

(2.5)

ďrpx, α2pxqq ` γE
“

Qα1pX1, α2pX1q
ˇ

ˇX0 “ x,A0 “ α2pxq
‰

(2.4)
“rpx, α2pxqq ` γE

“

rpX1, α2pX1qq ` γQ
α1pX2, α2pX2q

ˇ

ˇX0 “ x,A0 “ α2pxq
‰

...

ďE

«

k
ÿ

n“0

γnrpXn, α2pXnqq ` γ
k`1V α1pXk`1q

ˇ

ˇX0 “ x,A0 “ α2pxq

ff

By taking the limit k Ñ 8 follows

V α1pxq ď E

«

8
ÿ

n“0

γnrpXn, α2pXnqq

ˇ

ˇ

ˇ
X0 “ x

ff

“ V α2pxq

Corollary 1 The optimal value function V ˚ : X Ñ R can be derived by Q˚ : X ˆAÑ R

as

V ˚pxq “ max
a
Q˚px, aq, x P X . (2.6)

Proof: Let α be a deterministic policy and Qα its corresponding action value function.

The policy α1 derived by Qα as

α1pxq “ arg max
a

Qα
px, aq, @x P X

satisfies

Qα
px, α1pxqq “ max

a
Qα
px, aq ě V α

pxq, @x P X .

Then, it follows by the the policy improvement theorem that

V α1pxq ě V α
pxq, @x P X .
10
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The improvement step can be repeated only a finite number of times given that X and

A are finite, discrete spaces, i.e. DN ą 0 such that α˚pxq “ αNpxq “ arg maxaQ
αN px, aq

and

max
a
Q˚pxq “ Q˚px, α˚pxqq “ V ˚pxq, @x P X ,

where Q˚, V ˚ corresponds to the value functions with respect to α˚. Might α˚ be still

sub-optimal? No, according to the Optimality Theorem from Bellman and Dreyfus, [10].

Theorem 1 (Bellman equation Q˚) The optimal action value function Q˚ : X ˆAÑ R

satisfies the Bellman equation given by

Q˚px, aq “ rpx, aq ` γE
”

max
a1

Q˚pX1, a
1
q
ˇ

ˇX0 “ x,A0 “ a
ı

(2.7)

Proof:

Q˚px, aq “
(2.4)
“ rpx, aq ` γE

“

Q˚pX1, α
˚
pX1qq

ˇ

ˇX0 “ x,A0 “ a
‰

(2.3)
“ rpx, aq ` γE

“

V ˚pX1q
ˇ

ˇX0 “ x,A0 “ a
‰

(2.6)
“ rpx, aq ` γE

”

max
a1

Q˚pX1, a
1
q
ˇ

ˇX0 “ x,A0 “ a
ı

The function Q˚ is the unique solution of equation (2.7) which is of the type Q˚ “ GpQ˚q

for a function G : R|X |ˆ|A| Ñ R satisfying

}GpQq ´GpQ1q}8 ď γ}Q´Q1}8.

In particular, the sequence Qn`1 “ GpQnq for n ě 0 converges to Q˚ at exponential rate

( see [15], Chapter 10.3 for more details).

In the stochastic approximation version of equation (2.7), the conditional expectation

11
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is replaced by the evaluation at the random variable X. and it is weighted with a small

learning rate βn, i.e.

Qn`1px, aq “ Qnpx, aq ` βn1Xn,Anpx, aq
”

rpx, aq ` γmax
a1

QpXn`1, a
1
q ´Qnpx, aq

ı

(2.8)

Equation (2.8) represents the update rule of the Q-learning algorithm. Its convergence

can be analyzed by studying the limiting O.D.E.

9qptq “ Λptq pGpqptqq ´ qptqq (2.9)

where Λptq is a diagonal matrix with a probability vector along its diagonal. Under

suitable assumptions, the O.D.E. (2.9) and the corresponding sequence pQnqně0 converge

to Q˚. In particular, a requirement necessary for convergence is that each pair px, aq

has a positive probability to be visited, e.g. applying an ε´greedy policy. Algorithm 1

describes the practical implementation of Q-learning.

12
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Algorithm 1 Q-learning

Require: X “ tx0, . . . , x|X |´1u : finite state space,

A “ ta0, . . . , a|A|´1u : finite action space,

ε : parameter related to the ε´greedy policy,

pβnqně0: learning rates schedule,

tolQ : break rule tolerance.

1: Initialization: Q0px, aq “ 0 for all px, aq P X ˆA

2: for step n “ 1, 2, . . . do

3: Observe state Xn provided by the environment

4: Choose action An using the ε-greedy policy derived from QnpXn, ¨q

Observe reward rn`1 “ rpXn, Anq and next state Xn`1 provided by the envi-

ronment

5: Update Q:

Qn`1px, aq “ Qnpx, aq ` βn1x,apXn, Anqrrn`1 ` γmaxa1PAQnpXn`1, a
1q ´Qnpx, aqs

6: end for

7: if }Qn ´Qn´1}8 ă tolQ then

8: break

9: end if

10: return Q̃˚

In the next chapters, we will discuss the results presented in our works [6] and [7].

In particular, we will show how the Q-learning algorithm 1 can be redesigned as a

two-timescale stochastic approximation scheme able to solve mean field problems.

13



Chapter 3

Mean field Games and Mean Field

Control problems

Mean field games are the result of the application of mean field techniques from physics

into game theory. The mean field interaction is introduced to describe the behavior of a

large number N of indistinguishable players with symmetric interactions. The complexity

of the system would be intractable if we were to describe all the pairwise interactions. A

solution to this problem is given by describing the interactions of each player i with the

empirical distribution of the other players. As the number of players increases, the impact

of each of them on the empirical distribution decreases. By the principle of propagation

of chaos (law of large numbers) each player becomes asymptotically independent from

the others and its interaction is with its own distribution making the statistical structure

of the system simpler. Two types of mean field problems can be distinguished between

a mean field game and a mean field control depending on the goal the agents try to

achieve. The aim of a mean field game is to find an equivalent of a Nash equilibrium in a

non-cooperative N -player game when the number of players becomes large. On the other

hand, a mean field control problem analyzes the social optimum in a cooperative game

14
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within a large population. In this case, all the agents follow the same strategy provided

by a central planner. Since the seminal works [55], and [52, 51], the research in mean field

game theory attracted a huge interest. We refer to the extensive works [24], and [12] for

further details.

We start by presenting three formulations of MFG and MFC problems: non-asymptotic,

asymptotic, and stationary. All these problems are on an infinite horizon and for the

sake of consistency with the RL literature, we present them in a discrete time and space

framework. We will however resort to continuous time and space models in Chapter 4

in order to obtain simple benchmarks. Note that, as customary in the MFG literature,

without loss of generality, we minimize a cost instead of maximizing a reward.

Let X and A be finite sets corresponding to states and actions. We denote by ∆|X |

the simplex in dimension |X |, which we identify with the space of probability measures

on X . Let p : X ˆAˆ∆|X | Ñ ∆|X | be a transition kernel. We will sometimes view it as

a function:

p : X ˆ X ˆAˆ∆|X |
Ñ r0, 1s, px, x1, a, µq ÞÑ ppx1|x, a, µq,

which will be interpreted as the probability, at any given time step, to jump to state x1

when starting from state x and using action a and when the population distribution is µ.

Let f : X ˆAˆ∆|X | Ñ R be a running cost function. We interpret fpx, a, µq as the

one-step cost, at any given time step, incurred to a representative agent who is at state x

and uses action a while the population distribution is µ. For a random variable X, we

denote its law by LpXq. We will focus on feedback controls, i.e., functions of the state of

the agent and possibly of time.
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3.1 Non-asymptotic formulations

In the usual formulation for time-dependent MFG and MFC, the interactions between

the players are through the distribution of states at the current time. More precisely, in a

MFG, one typically looks for pα̂, µ̂q where α̂ : Nˆ X Ñ A and µ̂ “ pµ̂nqně0 P p∆
|X |qN is

a flow of probability distributions on X , such that the following two conditions hold:

1. Optimality of the best response map: α̂ is the minimizer of

α ÞÑ JMFG
pα; µ̂q “ E

«

`8
ÿ

n“0

γnfpXα,µ̂
n , αnpX

α,µ̂
n q, µ̂nq

ff

,

where αnp¨q :“ αpn, ¨q and the process Xα,µ̂ follows the dynamics given by:

Xα,µ̂
n`1 „ p

`

¨|Xα,µ̂
n , αnpX

α,µ̂
n q, µ̂n

˘

with initial distribution Xα,µ̂
0 „ µ0;

2. Fixed point condition: µ̂n “ LpX α̂,µ̂
n q for every n ě 0.

In a MFC problem, the goal is to find α˚ such that the following condition holds: α˚

is the minimizer of

α ÞÑ JMFC
pαq “ E

«

`8
ÿ

n“0

γnfpXα
n , αnpX

α
n q,LpXα

n qq

ff

,

where the process Xα follows the dynamics:

Xα
n`1 „ p p¨|Xα

n , αnpX
α
n q,LpXα

n qq

with initial distribution Xα
0 „ µ0. Note that p is the same transition probability function

as for the MFG above but we plug the law LpXα
n q of Xα

n instead of a given distribution

µ̂n. In other words, the MFC problem is of McKean-Vlasov (MKV) type.
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We will sometimes use the notation µ˚ “ µα
˚

for the optimal distribution in the

MFC. Note that the objective function in the MFC setting can be written in terms of the

objective function in the MFG as:

JMFC
pαq “ JMFG

pα;µαq,

where µαn “ LpXα
n q for all n ě 0. However, in general,

JMFC
pα˚q “ JMFG

pα˚;µ˚q ‰ JMFG
pα̂; µ̂q.

In these two problems, the equilibrium control α̂ or the optimal control α˚ usually

depend on time due to the dependence of p and f on the mean field flow, which evolves

with time.

Although these are the usual formulations of MFG and MFC problems, in order to

draw connections with reinforcement learning more directly, we turn our attention to

formulations in which the control is independent of time. That is naturally the case in

some applications, and, roughly speaking, it is also in the spirit of an individual player

trying to optimally join a crowd of players already in the long-time asymptotic equilibrium.

This will be made more precise in the following section.

3.2 Asymptotic formulations

We consider the following MFG problem: Find pα̂, µ̂q where α̂ : X Ñ A and µ̂ P ∆|X |,

such that the following two conditions hold:

1. α̂ is the minimizer of

α ÞÑ JAMFG
pα; µ̂q “ E

«

`8
ÿ

n“0

γnfpXα,µ̂
n , αpXα,µ̂

n q, µ̂q

ff

,

where the process Xα,µ̂ follows the transitions:

Xα,µ̂
n`1 „ p

`

¨|Xα,µ̂
n , αpXα,µ̂

n q, µ̂
˘

17
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with initial distribution Xα,µ̂
0 „ µ0;

2. µ̂ “ limnÑ`8 LpX α̂,µ̂
n q.

We stress that in this problem the control is a function of the state only and does

not depend on time, as p and f depend only on the limiting distribution but not on time.

Intuitively, this problem corresponds to the situation in which an infinitesimal player

wants to join a crowd of players who are already in the asymptotic regime (as time goes

to infinity). This stationary distribution is a Nash equilibrium if the new player joining

the crowd has no interest in deviating from this asymptotic behavior.

We also consider the following MFC problem: Find α˚ such that the following condition

holds: α˚ is the minimizer of

α ÞÑ JAMFC
pαq “ E

«

`8
ÿ

n“0

γnfpXα
n , αpX

α
n q, µ

α
q

ff

,

where the process Xα follows the transitions

Xα
n`1 „ p p¨|Xα

n , αpX
α
n q, µ

α
q

with initial distribution Xα
0 „ µ0, and with the notation µα “ limnÑ`8 LpXα

n q.

We will sometimes use the shorthand notation µ˚ “ µα
˚

for the optimal distribution

in the MFC setting. Here too, the control is independent of time, and p and f depend

only on the limiting distribution. Intuitively, this problem can be viewed as the one posed

to a central planner who wants to find the optimal stationary distribution such that the

cost for the society is minimal when a new agent joins the crowd.

Note that in this formulation again, the objective function in the MFC setting can be

written in terms of the objective function in the MFG as:

JAMFC
pαq “ JAMFG

pα;µαq,

with the notation µα “ limnÑ`8 LpXα
n q.
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Remark 1 Although the AMFG and AMFC problems in this section are defined using

an initial distribution µ0 for the state process, one expects that under suitable conditions,

ergodicity in particular, the optimal controls α̂ and α˚ are independent of this initial

distribution.

3.3 Stationary formulations

Another formulation with controls independent of time consists in looking at the

situation in which the new agent joining the crowd starts with a position drawn according

to the ergodic distribution of the equilibrium control or the optimal control. This type of

problems has been considered e.g. in [47], [70], and can be described as follows.

The stationary MFG problem is to find pα̂, µ̂q where α̂ : X Ñ A and µ̂ P ∆|X |, such

that the following two conditions hold:

1. α̂ is the minimizer of

α ÞÑ JSMFG
pα; µ̂q “ E

«

`8
ÿ

n“0

γnfpXα,µ̂
n , αpXα,µ̂

n q, µ̂q

ff

,

where the process Xα,µ̂ follows the SDE

Xα,µ̂
n`1 „ p

`

¨|Xα,µ̂
n , αpXα,µ̂

n q, µ̂
˘

,

and starts with distribution Xα,µ̂
0 „ µ̂;

2. The process X α̂,µ̂ admits µ̂ as invariant distribution (so µ̂ “ LpX α̂,µ̂
n q for all n ě 0).

The key difference with the Asymptotic MFG formulation is that here the process

starts with the invariant distribution µ̂. The control is a function of the state only and

does not depend of time, and p and f depend only on this stationary distribution.
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The stationary MFC problem is defined as follows: Find α˚ such that the following

condition holds: α˚ is the minimizer of

α ÞÑ JSMFC
pαq “ E

«

`8
ÿ

n“0

γnfpXα
n , αpX

α
n q, µ

α
q

ff

,

where the process Xα follows the MKV dynamics

Xα
n`1 „ p p¨|Xα

n , αpX
α
n q, µ

α
q ,

with initial distribution Xα
0 „ µα, and such that µα is the invariant distribution of Xα

(assuming it exists).

To conclude, let us mention that there is yet another formulation, in which the solution

is stationary but depends on the initial distribution, see [12, Chapter 7].

3.4 Connecting the three formulations

Denoting by α̂MFG, α̂AMFG, and α̂SMFG, the MFG equilibrium strategies respectively

in the non-asymptotic, asymptotic, and stationary formulations, we expect

$

’

&

’

%

α̂MFG
n pxq Ñ α̂AMFG

pxq, @x, as nÑ `8,

α̂AMFG
pxq “ α̂SMFG

pxq, @x.

(3.1)

Similarly denoting by α˚MFC , α˚AMFC , and α˚SMFC , the MFC optimal controls re-

spectively in the non-asymptotic, asymptotic, and stationary formulations, we expect

$

’

&

’

%

α˚MFC
n pxq Ñ α˚AMFC

pxq, @x, as nÑ `8,

α˚AMFC
pxq “ α˚SMFC

pxq, @x.

(3.2)

In fact, we have the following result.
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Theorem 2 Consider the set of admissible controls to be defined as the set of controls α

such that the process pXα
n qně0 is an irreducible and aperiodic Markov process on the finite

space X. If a solution for the asymptotic MFG (resp. MFC) exists, then it is equal to the

solution of the corresponding stationary MFG (resp. MFC) and vice versa.

Proof: Let us consider the pair pα̂AMFG, µ̂AMFGq solution of an asymptotic MFG.

The optimal control α̂AMFG is an optimizer over the set of admissible controls such that

the process pXα
n qně0 is an irreducible Markov process and admits a limiting distribution

which is then the unique invariant distribution using the control α̂AMFG. Note that the

control α̂AMFG doesn’t depend on the initial distribution µ0 and consequently µ̂AMFG

doesn’t either. Therefore, pα̂AMFG, µ̂AMFGq is the solution of the AMFG starting from

µ̂AMFG, which is the corresponding stationary MFG problem. Thus, we deduce the desired

relation α̂AMFG “ α̂SMFG. A similar argument for MFC problems applies and shows that

α˚AMFC “ α˚SMFC .

Remark 2 In terms of practical applications, the asymptotic formulation (AMFG and

AMFC) seems to be the most appropriate, and if one is interested in the optimal controls,

Theorem 2 shows that solving the asymptotic games also gives the solutions to the corre-

sponding stationary games. Additionally, (3.1) and (3.2) indicate that it also gives the

long time solutions to the corresponding time-dependent games. Developing Q-learning

algorithms for solving time-dependent finite horizon games is addressed in Chapter 5.

3.5 A Linear Quadratic Example

In this section, we provide explicit solutions for MFG, AMFG, SMFG, MFC, AMFC,

and SMFC, in the case of continuous time, continuous space Linear-Quadratic stochastic

differential games. We verify that (3.1) and (3.2), and therefore, Theorem 2, are satisfied

21



Mean field Games and Mean Field Control problems Chapter 3

in that case as well. In Section 4.3, discrete approximations of these games will also serve

as benchmarks for our algorithm described in Chapter 4.

Let pΩ,F ,F “ pFtqtě0,Pq be a filtered probability space, where the filtration supports a

1-dimensional Brownian motion W “ pWtqtě0 and an initial condition µ0 P L
2pΩ,F0,P;Rq.

We consider the following model, in which the mean-field interactions are through the

first moment. The running cost and the drift are defined as follows

fpx, α, µq “
1

2
α2
` c1 px´ c2mq

2
` c3 px´ c4q

2
` c5m

2, bpx, α, µq “ α, (3.3)

where m “
ş

R xµpxqdx. Here the parameters c2, c4 P R and c1, c3, c5 P R` are constant

such that c1 ` c3 ´ c1c2 ‰ 0. In this model the drift is simply the control, while the

running cost can be understood as follows: the first term is a quadratic cost for controlling

the diffusion, which penalizes high velocity, the second term incorporates mean field

interactions and encourages the agents to be close to c2m (if c2 “ 1, this has a mean-

reverting effect), the third term creates an incentive for each agent to be close to the target

position c4, and the fourth term penalizes the population when its mean m is far away

from zero. We thus obtain a complex combination of various effects, which can be balanced

depending on the choice of parameters. A control α is admissible if the infinitesimal

generator of the corresponding process has spectral gap implying exponentially ergodicity.

To conclude we assume constant volatility σ.

3.5.1 Solution for non-asymptotic MFG

We present the solution for the following MFG problem
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1. Fix m “ pmtqtě0 Ă R and solve the stochastic control problem:

min
α
Jmpαq

“ min
α

E
„
ż 8

0

e´βtfpXα
t , αt,mtqdt



“

“ min
α

E
„
ż `8

0

e´βt
ˆ

1

2
α2
t ` c1 pX

α
t ´ c2mtq

2
` c3 pX

α
t ´ c4q

2
` c5m

2
t

˙

dt



,

subject to

dXα
t “ αtdt` σdWt,

Xα
0 „ µ0.

2. Find the fixed point, m̂ “ pm̂tqtě0, such that E
“

Xα̂
t

‰

“ m̂t for all t ě 0.

This problem can be solved by two equivalent approaches: PDE and FBSDEs. Both

approaches start by solving the problem defined by a finite horizon T . Then, the solution

to the infinite horizon problem is obtained by taking the limit T goes to infinity. Let

Vm
T ,T pt, xq be the optimal value function for the finite horizon problem conditioned on

X0 “ x, i.e.

Vm
T ,T
pt, xq “ inf

α
Jm,x

pαq “ inf
α

E
„
ż T

t

e´βsfpXα
s , αs,m

T
s qds

ˇ

ˇ

ˇ
Xα

0 “ x



,

Vm
T ,T
pT, xq “ 0.

where mT “ tmT
t u0ďtďT Ă R. Let’s consider the following ansatz with its derivatives

Vm
T ,T
pt, xq “ ΓT2 ptqx

2
` ΓT1 ptqx` ΓT0 ptq,

BtV
mT ,T

pt, xq “ 9ΓT2 ptqx
2
` 9ΓT1 ptqx` 9ΓT0 ptq,

BxV
mT ,T

pt, xq “ 2ΓT2 ptqx` ΓT1 ptq,

BxxV
mT ,T

pt, xq “ 2ΓT2 ptq.

(3.4)

23



Mean field Games and Mean Field Control problems Chapter 3

Then, the HJB equation for the value function reads:

BtV
mT ,T

´ βVm
T ,T
` inf

α
tAXVm

T ,T
` fpx, α,mT

qu

“BtV
mT ,T

´ βVm
T ,T
` inf

α

"

αBxV
mT ,T

`
1

2
σ2
BxxV

mT ,T
`

1

2
α2
` c1px´ c2m

T
q
2

`c3px´ c4q
2
` c5pm

T
q
2
(

“BtV
mT ,T

´ βVm
T ,T
´ BxV

mT ,T 2
`

1

2
σ2
BxxV

mT ,T
`

1

2
BxV

mT ,T 2
` c1px´ c2m

T
q
2

` c3px´ c4q
2
` c5pm

T
q
2

“BtV
mT ,T

´ βVm
T ,T
´

1

2
BxV

mT ,T 2
`

1

2
σ2
BxxV

mT ,T
` c1px´ c2m

T
q
2
` c3px´ c4q

2

` c5pm
T
q
2
“ 0,

where in the third line we evaluated the infimum at α̂T “ ´Vm
T ,T

x . The following ODEs

system is obtained by replacing the ansatz and its derivatives in the HJB equation:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

9ΓT2 ´ 2pΓT2 q
2 ´ βΓT2 ` c1 ` c3 “ 0, ΓT2 pT q “ 0,

9ΓT1 “ p2ΓT2 ` βqΓ
T
1 ` 2c1c2m

T ` 2c3c4, ΓT1 pT q “ 0,

9ΓT0 “ βΓT0 `
1
2
pΓT1 q

2 ´ σ2ΓT2 ´ c3c4
2 ´ pc1c2

2 ` c5qpm
T q2, ΓT0 pT q “ 0,

9mT “ ´2ΓT2m
T ´ ΓT1 , mT p0q “ E rµ0s “ m0,

(3.5)

where the last equation is obtained by considering the expectation of Xα
t after replacing

α̂T “ ´BxV
mT ,T “ ´pΓT2 x` ΓT1 q. The first equation is a Riccati equation. In particular,

the solution ΓT2 converges to Γ̂2 “
´β`

?
β2`8pc1`c3q

4
as T goes to infinity. The second and

fourth ODEs are coupled and they can be written in matrix notation as

9
Ŕ

¨

˚

˝

mT

ΓT1

˛

‹

‚

“

»

—

–

´2ΓT2 ´1

2c1c2 2ΓT2 ` β

fi

ffi

fl

¨

˚

˝

mT

ΓT1

˛

‹

‚

`

¨

˚

˝

0

2c3c4

˛

‹

‚

,

¨

˚

˝

mT p0q

ΓT1 pT q

˛

‹

‚

“

¨

˚

˝

m0

0

˛

‹

‚

. (3.6)
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We start by solving the homogeneous equation, i.e.

9
Ŕ

¨

˚

˝

mT

ΓT1

˛

‹

‚

“ KT
t

¨

˚

˝

mT

ΓT1

˛

‹

‚

:“

»

—

–

´2ΓT2 ´1

2c1c2 2ΓT2 ` β

fi

ffi

fl

¨

˚

˝

mT

ΓT1

˛

‹

‚

,

¨

˚

˝

mT p0q

ΓT1 pT q

˛

‹

‚

“

¨

˚

˝

m0

0

˛

‹

‚

. (3.7)

We introduce the propagator P T , i.e.
¨

˚

˝

mT

ΓT1

˛

‹

‚

“ P T
t

¨

˚

˝

mT p0q

ΓT1 p0q

˛

‹

‚

. (3.8)

By deriving

¨

˚

˝

mT

ΓT1

˛

‹

‚

and expressing the initial conditions in terms of the inverse of P T

and

¨

˚

˝

mT

ΓT1

˛

‹

‚

, we obtain

9
Ŕ

¨

˚

˝

mT

ΓT1

˛

‹

‚

“ 9P T
t

¨

˚

˝

mT p0q

ΓT1 p0q

˛

‹

‚

“ 9P T
t pP

T
t q
´1

¨

˚

˝

mT

ΓT1

˛

‹

‚

. (3.9)

By comparing the last system with (3.7), we obtain
$

’

’

&

’

’

%

9P T
t “ KT

t P
T
t

P T
0 “ I2

(3.10)

where I2 is the identity matrix in dimension 2. The solution is given by P T
t “ e

şt
0 K

T
s ds :“

eL
T
t . In particular, the exponent is equal to

LTt “

ż t

0

KT
s ds “

»

—

–

´2
şt

0
ΓT2 psqds ´t

2c1c2t 2
şt

0
ΓT2 psqds` βt

fi

ffi

fl

“

»

—

–

gTt dt

bt aTt

fi

ffi

fl

. (3.11)

We evaluate the exponential P T ptq “ eL
T
t by using the Taylor’s expansion and diagonalizing

the matrix LTt . The eigenvalues/eigenvectors of LTt are given by

λT1z2,t :“
aTt ` g

T
t ˘

a

paTt ´ g
T
t q

2 ` 4btdt
2

, vT1,t :“

¨

˚

˝

dt

λT1,t ´ g
T
t

˛

‹

‚

, vT2,t :“

¨

˚

˝

dt

λT2,t ´ g
T
t

˛

‹

‚

.

(3.12)
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Pt is obtained by

P T
t “

¨

˚

˝

pTt p1, 1q pTt p1, 2q

pTt p2, 1q pTt p2, 2q

˛

‹

‚

“ eL
T
t “

8
ÿ

k“0

„

vT1,t vT2,t



¨

˚

˝

λT1,t 0

0 λT2,t

˛

‹

‚

k

k!

„

vT1,t vT2,t

´1

:“ STt

8
ÿ

k“0

DT
t
k

k!
pSTt q

´1

“ STt

¨

˚

˝

eλ
T
1,t 0

0 eλ
T
2,t

˛

‹

‚

pSTt q
´1

“
1

dtpλT2,t ´ λ
T
1,tq

ˆ

¨

˚

˝

dte
λT1,tpλT2,t ´ g

T
t q ` dte

λT2,tpgTt ´ λ
T
1,tq d2

t pe
λT2,t ´ eλ

T
1,tq

pλT1,t ´ g
T
t qpλ

T
2,t ´ g

T
t qpe

λT1,t ´ eλ
T
2,tq dte

λT2,tpλT2,t ´ g
T
t q ` dte

λT1,tpgTt ´ λ
T
1,tq

˛

‹

‚

.

(3.13)

In order to solve the non homogeneous case, we introduce an extra term

¨

˚

˝

hT1

hT2

˛

‹

‚

, i.e.

¨

˚

˝

mT

ΓT1

˛

‹

‚

“ P T
t

¨

˚

˝

hT1

hT2

˛

‹

‚

. (3.14)

By deriving

¨

˚

˝

mT

ΓT1

˛

‹

‚

, we obtain
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9
Ŕ

¨

˚

˝

mT

ΓT1

˛

‹

‚

“ 9P T
t

¨

˚

˝

hT1

hT2

˛

‹

‚

` P T
t

9
Ŕ

¨

˚

˝

hT1

hT2

˛

‹

‚

“ KT
t P

T
t

¨

˚

˝

hT1

hT2

˛

‹

‚

` P T
t

9
Ŕ

¨

˚

˝

hT1

hT2

˛

‹

‚

“KT
t

¨

˚

˝

mT
t

ΓT1

˛

‹

‚

` P T
t

9
Ŕ

¨

˚

˝

hT1

hT2

˛

‹

‚

. (3.15)

By comparing (3.6) with (3.15), we obtain

9
Ŕ

¨

˚

˝

hT1

hT2

˛

‹

‚

“ pP T
t q
´1

¨

˚

˝

0

2c4c4

˛

‹

‚

“
1

|P T
t |

¨

˚

˝

pTt p2, 2q ´pTt p1, 2q

´pTt p2, 1q pTt p1, 1q

˛

‹

‚

¨

˚

˝

0

2c3c4

˛

‹

‚

. (3.16)

By integration we obtain

hT1 ptq “ hT1 p0q ´ 2c3c4

ż t

0

pTs p1, 2q

|P T
s |

ds,

hT2 ptq “ hT2 p0q ` 2c3c4

ż t

0

pTs p1, 1q

|P T
s |

ds,

(3.17)

where hT1 p0q “ m0 and hT2 p0q “ ΓT1 p0q.

We use the terminal condition ΓT1 pT q “ 0 to obtain an evaluation of hT2 p0q “ ΓT1 p0q in

terms of P T
T and m0, i.e.

ΓT1 pT q “ pTT p2, 1qh
T
1 pT q ` p

T
T p2, 2qh

T
2 pT q “ 0,

ΓT1 pT q “ pTT p2, 1q

ˆ

m0 ´ 2c3c4

ż T

0

pTs p1, 2q

|P T
s |

ds

˙

` pTT p2, 2q

ˆ

ΓT1 p0q ` 2c3c4

ż T

0

pTs p1, 1q

|P T
s |

ds

˙

“ 0,

ΓT1 p0q “ ´
pTT p2, 1q

pTT p2, 2q

ˆ

m0 ´ 2c3c4

ż T

0

pTs p1, 2q

|P T
s |

ds

˙

´ 2c3c4

ż T

0

pTs p1, 1q

|P T
s |

ds.

(3.18)

In order to evaluate the limit of ΓT1 p0q as T goes to infinity, we analyze the different terms

separately. First, we evaluate the following limit:

lim
TÑ8

1

T

ż T

0

ΓT2 psqds “ lim
TÑ8

ΓT2 ps1q “ Γ̂2, s1 P r0, T s, (3.19)
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where we applied the mean value integral theorem and Γ̂2 “
´β`

?
β2`8pc1`c3q

4
is the limit

of the solution of the Riccati equation obtained previously, i.e. Γ̂2 “ limTÑ8 ΓT2 psq. We

recall that

λT2,T ´ λ
T
1,T “

b

paTT ´ g
T
T q

2 ` 4bTTdT “ T

d

ˆ

4

T

ż T

0

ΓT2 psqds` β

˙2

´ 8c1c2 ą 0

which goes to infinity as T goes to 8 when the term under square root is well defined.

We observe that

ĝt :“ lim
TÑ8

gTt “ lim
TÑ8

´2

ż t

0

ΓT2 psqds “ ´2Γ̂2t :“ gt,

bt “ 2c1c2t,

ât :“ lim
TÑ8

aTt “ lim
TÑ8

2

ż t

0

ΓT2 psqds` βt “ 2Γ̂2t` βt,

dt “ ´t,

λ̂1z2,t :“ lim
TÑ8

λT1z2,t “
ât ` ĝt ˘

a

pât ´ ĝtq2 ` 4btdt
2

“ t
β ˘

b

p4Γ̂2 ` βq2 ´ 8c1c2

2
:“ tλ1z2,

P̂t :“ lim
TÑ8

P T
t “

1

dtpλ̂2,t ´ λ̂1,tq

ˆ

¨

˚

˝

dte
λ̂1,tpλ̂2,t ´ ĝtq ` dte

λ̂2,tpĝt ´ λ̂1,tq d2
t pe

λ̂2,t ´ eλ̂1,tq

pλ̂1,t ´ ĝtqpλ̂2,t ´ ĝtqpe
λ̂1,t ´ eλ̂2,tq dte

λ̂2,tpλ̂2,t ´ ĝtq ` dte
λ̂1,tpĝt ´ λ̂1,tq

˛

‹

‚

.

(3.20)
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To evaluate Γ̂1p0q “ limTÑ8 ΓT1 p0q, we study the limit of the remaining terms:

lim
T ÞÑ8

´
pTT p2, 1q

pTT p2, 2q
“ lim

T ÞÑ8

pλT1,T ´ g
T
T qpλ

T
2,T ´ g

T
T qpe

λT2,T ´ eλ
T
1,T q

dT e
λT2,T pλT2,T ´ g

T
T q ` dT e

λT1,T pgTT ´ λ
T
1,T q

“ lim
T ÞÑ8

1
dT

pλT1,T´g
T
T qp1´e

λT
1,T

´λT
2,T q

`
dT

pλT2,T´g
T
T qp1´e

λT
2,T

´λT
1,T q

“ ´pλ1 ´ gq

“ ´pλ1 ` 2Γ̂2q,

lim
T ÞÑ8

ż T

0

pTs p1, 2q

|P T
s |

ds “ lim
T ÞÑ8

ż T

0

dspe
λT2,s ´ eλ

T
1,sq

pλT2,s ´ λ
T
1,sqpe

λT1,s`λ
T
2,sq

ds

“
1

λ2 ´ λ1

ˆ

1

λ2

´
1

λ1

˙

lim
T ÞÑ8

ż T

0

pTs p1, 1q

|P T
s |

ds “ lim
T ÞÑ8

ż T

0

1

eλ
T
1,s`λ

T
2,s

˜

eλ
T
1,s
λT2,s ´ g

T
s

λT2,s ´ λ
T
1,s

` eλ
T
2,s
gTs ´ λ

T
1,s

λT2,s ´ λ
T
1,s

¸

ds

“
λ2 ´ g

λ2pλ2 ´ λ1q
`

g ´ λ1

λ1pλ2 ´ λ1q
.

(3.21)

Finally, the value of Γ̂1p0q is given by

Γ̂1p0q “ ´pλ1 ´ gqm0 ´ 2
c3c4

λ2

. (3.22)

Given Γ̂1p0q, we evaluate the limit as T goes to 8 of (3.17), i.e.

h1ptq :“ lim
T ÞÑ8

hT1 ptq “ m0 ´ 2c3c4 lim
T ÞÑ8

ż t

0

pTs p1, 2q

|P T
s |

ds

“ m0 ` 2
c3c4

λ2 ´ λ1

ˆ

1

λ2

e´tλ2 ´
1

λ1

e´tλ1 `
1

λ1

´
1

λ2

˙

,

h2ptq :“ lim
T ÞÑ8

hT2 ptq “ lim
T ÞÑ8

ˆ

ΓT1 p0q ` 2c3c4

ż t

0

pTs p1, 1q

|P T
s |

ds

˙

“ Γ̂1p0q ` 2
c3c4

λ2 ´ λ1

ˆ

λ2 ´ g

λ2

p1´ e´tλ2q `
g ´ λ1

λ1

p1´ e´tλ1q

˙

.

(3.23)
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We can conclude that

m̂t “ lim
TÑ8

mT
t

“ p̂tp1, 1qh1ptq ` p̂tp1, 2qh2ptq

“

ˆ

m0 ` 2
c3c4

λ2 ´ λ1

ˆ

1

λ1

´
1

λ2

˙˙

etλ1 ` 2
c3c4

λ2 ´ λ1

ˆ

1

λ2

´
1

λ1

˙

,

Γ̂1ptq “ lim
TÑ8

ΓT1 ptq

“ p̂tp2, 1qh1ptq ` p̂tp2, 2qh2ptq

“ m0pg ´ λ1qe
tλ1 ` 2

c3c4

λ2 ´ λ1

ˆ

λ2 ´ g

λ2

´
λ1 ´ g

λ1

˙

.

(3.24)

Finally, the third ODE in (3.5) can be solved by plugging in the solution of the

previous ones and integrating. Since our interest is into the evolution of the mean and

the control function, we omit these calculations, but we recall that:

α̂t “ ´pΓ̂2x` Γ̂1ptqq, Γ̂2 “
´β `

a

β2 ` 8pc1 ` c3q

4
, (3.25)

and we observe that

lim
tÑ8

α̂t “ ´pΓ̂2x` Γ̂1q, Γ̂1 “ ´
4c1c2Γ̂2

λ2

“
c3c4Γ̂2

2pc1 ` c3 ´ c1c2q
. (3.26)

3.5.2 Solution for Asymptotic MFG

The asymptotic version of the problem presented above is given by:

1. Fix m P R and solve the stochastic control problem:

min
α
Jmpαq “ min

α
E
„
ż 8

0

e´βtfpXα
t , αt,mqdt



“ min
α

E
„
ż 8

0

e´βt
ˆ

1

2
α2
t ` c1 pX

α
t ´ c2mq

2
` c3 pX

α
t ´ c4q

2
` c5m

2

˙

dt



,

subject to: dXα
t “ αtdt` σdWt, Xα

0 „ µ0.

2. Find the fixed point, m̂, such that m̂ “ limtÑ`8 E
”

X α̂,m̂
t

ı

.

30



Mean field Games and Mean Field Control problems Chapter 3

Let V mpxq be the optimal value function given m P R and conditioned on X0 “ x, i.e.

V m
pxq “ inf

α
Jm,xpαq

“ inf
α

E
„
ż `8

0

e´βt
ˆ

1

2
α2
t ` c1 pX

α
t ´ c2mq

2
` c3 pX

α
t ´ c4q

2
` c5m

2

˙

ˇ

ˇ

ˇ
Xα

0 “ x



.

We consider the following ansatz with its derivatives with respect to x:

V m
pxq “ Γ2x

2
` Γ1x` Γ0,

9V m
pxq “ 2Γ2x` Γ1,

:V m
pxq “ 2Γ2.

Let’s consider the HJB equation

βV m
pxq ´ inf

α
tAXV m

pxq ` fpx, α,mqu

“βV m
pxq ´ inf

α

"

α 9V pxq `
1

2
σ2 :V m

pxq `
1

2
α2
` c1px´ c2mq

2
` c3px´ c4q

2
` c5m

2

*

“βV m
pxq ´

"

´p 9V m
q
2
pxq `

1

2
σ2 :V m

pxq `
1

2
p 9V m

q
2
pxq ` c1px´ c2mq

2
` c3px´ c4q

2

`c5m
2
(

“βV m
pxq `

1

2
p 9V m

q
2
pxq ´

1

2
σ2 :V m

pxq ´ c1px´ c2mq
2
´ c3px´ c4q

2
´ c5m

2
“ 0,

where in the third line we evaluated the infimum at α̂pxq “ ´ 9V mpxq. Replacing the

ansatz and its derivatives in the HJB equation, it follows that

`

βΓ2 ` 2Γ2
2 ´ c1 ´ c3

˘

x2
` pβΓ1 ` 2Γ2Γ1 ` 2c1c2m` 2c3c4qx

` βΓ0 `
1

2
Γ2

1 ´ σ
2Γ2 ´ pc1c2

2
` c5qm

2
´ c3c4

2
“ 0.

An easy computation gives the values

Γ2 “
´β `

a

β2 ` 8pc1 ` c3q

4
,

Γ1 “ ´
2c1c2m` 2c3c4

β ` 2Γ2

,

Γ0 “
c5m

2 ` c3c4
2 ` c1c2

2m2 ` σ2Γ2 ´
1
2
Γ2

1

β
.
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By plugging the control α̂pxq “ ´p2Γ2x` Γ1q into the dynamics of Xt and taking the

expected value, we obtain an ODE for mt

9mt “ ´p2Γ2mt ` Γ1q. (3.27)

The solution of (3.27) is used to derive m as follows

m “ lim
tÞÑ8

mt “ lim
tÞÑ8

´
Γ1

2Γ2

`

ˆ

m0 `
Γ1

Γ2

˙

e´2Γ2t “ ´
Γ1

2Γ2

“
2c1c2m` 2c3c4

2Γ2pβ ` 2Γ2q
,

m “
c3c4

Γ2pβ ` 2Γ2q ´ c1c2

(3.28)

To summarize, we derived that α̂pxq “ ´p2Γ2x ` Γ1q with Γ2 “ Γ̂2 and Γ1 “ Γ̂1

obtained in (3.26). In other words, we have checked that

lim
tÑ8

α̂MFG
t pxq “ α̂AMFG

pxq, @x,

that is the first part of (3.1) for this LQ MFG.

3.5.3 Solution for stationary MFG

The only difference with the derivation above in the case of asymptotic MFG is that

mt should be a constant which, from (3.27), should satisfy 2Γ2m` Γ1 “ 0. Therefore, m

takes the same value as in (3.28), and we deduce

α̂SMFG
pxq “ α̂AMFG

pxq, @x,

that is the second part of (3.1) for this LQ MFG.
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3.5.4 Solution for non-asymptotic MFC

We present the solution for the following non-asymptotic MFC problem

min
α
Jpαq “min

α
E
„
ż 8

0

e´βtfpXα
t , αt,E rXα

t sqdt



“min
α

E
„
ż `8

0

e´βt
ˆ

1

2
α2
t ` c1 pX

α
t ´ c2E rXα

t sq
2
` c3 pX

α
t ´ c4q

2

`c5E rXα
t s

2
˘

dt
‰

,

subject to:

dXα
t “ αtdt` σdWt, Xα

0 „ µ0.

Note that here the mean E rXα
t s of the population changes instantaneously when α

changes.

This problem can be solved by two equivalent approaches: PDE and FBSDEs. Both

approaches start by solving the problem defined by a finite horizon T . Then, the solution

to the infinite horizon problem is obtained by taking the limit for T goes to infinity.

Let V T pt, xq be the optimal value function for the finite horizon problem conditioned on

X0 “ x, i.e.

V T
pt, xq “ inf

α
Jm

α,x
pαq “ inf

α
E
„
ż T

t

e´βsfpXα
s , αs,m

α
s qds

ˇ

ˇ

ˇ
Xα

0 “ x



, V T
pT, xq “ 0.

Let’s consider the following ansatz with its derivatives

V T
pt, xq “ ΓT2 ptqx

2
` ΓT1 ptqx` ΓT0 ptq, V T

pT, xq “ 0,

BtV
T
pt, xq “ 9ΓT2 ptqx

2
` 9ΓT1 ptqx` 9ΓT0 ptq,

BxV
T
pt, xq “ 2ΓT2 ptqx` ΓT1 ptq,

BxxV
T
pt, xq “ 2ΓT2 ptq,

(3.29)

Starting by the MFC-HJB equation (4.12) given in [12], we extended it to the asymptotic
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case as follows

βV T
´ V T

t ´H pt, x,µ, αq ´

ż

R

δH

δµ

`

t, h,µ,´BxV
T
˘

pxqµtphqdh “ 0,

where mt “
ş

R yµtpdyq and α˚ “ ´BxV
T . We have:

H pt, x,µ, αq :“ inf
α

 

AXV T
` f pt, x, α,µq

(

“ inf
α

"

αBxV
T
`

1

2
σ2
BxxV

T
`

1

2
α2
` c1px´ c2mtq

2
` c3px´ c4q

2
` c5mt

2

*

“ ´
1

2
pBxV

T
q
2
`

1

2
σ2
BxxV

T
` c1px´ c2mtq

2
` c3px´ c4q

2
` c5mt

2,

δH pt, h,µ, αq

δµ
“

δ

δµ

`

c1ph´ c2mtq
2
` c5mt

2
˘

pxq

“
δ

δµ

˜

c1

ˆ

h´ c2

ż

R
yµtpdyq

˙2

` c5

ˆ
ż

R
yµtpdyq

˙2
¸

pxq

“ ´2c1c2x

ˆ

h´ c2

ż

R
yµtpdyqq

˙

` 2c5x

ż

R
yµtpdyq

“ ´2c1c2xph´ c2mtq ` 2c5xmt,

ż

R

δH

δµ

`

t, h,µ,´BxV
T
˘

pxqµtphqdh “ ´2c1c2xpmt ´ c2mtq ` 2c5xmt,

and finally

βV T
´ BtV

T
`

1

2
pB
T
x q

2
´

1

2
σ2
BxxV

T
´ c1px´ c2mtq

2
´ c3px´ c4q

2

´ c5mt
2
` 2c1c2xpmt ´ c2mtq ´ 2c5xmt “ 0.

The following system of ODEs is obtained by replacing the ansatz and its derivatives in

the MFC-HJB:
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

9ΓT2 ´ 2pΓT2 q
2 ´ βΓT2 ` c1 ` c3 “ 0, ΓT2 pT q “ 0,

9ΓT1 “ p2ΓT2 ` βqΓ
T
1 ` p2c1c2p2´ c2q ´ 2c5qm

T
t ` 2c3c4, ΓT1 pT q “ 0,

9ΓT0 “ βΓT0 `
1
2
pΓT1 q

2 ´ σ2ΓT2 ´ c3c4
2 ´ pc1c2

2 ` c5qpm
T
t q

2, ΓT0 pT q “ 0,

9mT
t “ ´2ΓT2m

T ´ ΓT1 , mT p0q “ E rXα
0 s “ m0,

(3.30)
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where the last equation is obtained by considering the expectation of Xα
t after replacing

α˚pxq “ ´BxV
T pxq “ ´pΓT2 x`ΓT1 q. The first equation is a Riccati equation. In particular,

the solution ΓT2 converges to Γ˚2 “
´β`

?
β2`8pc1`c3q

4
as T goes to infinity. The second and

fourth ODEs are coupled and they can be written in matrix notation as

9
Ŕ

¨

˚

˝

mT

ΓT1

˛

‹

‚

“

»

—

–

´2ΓT2 ´1

p2c1c2p2´ c2q ´ 2c5q 2ΓT2 ` β

fi

ffi

fl

¨

˚

˝

mT

ΓT1

˛

‹

‚

`

¨

˚

˝

0

2c3c4

˛

‹

‚

,

¨

˚

˝

mT p0q

ΓT1 pT q

˛

‹

‚

“

¨

˚

˝

m0

0

˛

‹

‚

.

(3.31)

By similar calculations to the non-asymptotic MFG case, the following solutions can

be obtained

m˚
t “ lim

TÑ8
mT
t “ p˚t p1, 1qh1ptq ` p

˚
t p1, 2qh2ptq

“

ˆ

m0 ` 2
c3c4

λ2 ´ λ1

ˆ

1

λ1

´
1

λ2

˙˙

etλ1 ` 2
c3c4

λ2 ´ λ1

ˆ

1

λ2

´
1

λ1

˙

,

Γ˚1ptq “ lim
TÑ8

ΓT1 ptq “ p˚t p2, 1qh1ptq ` p
˚
t p2, 2qh2ptq

“ m0pg ´ λ1qe
tλ1 ` 2

c3c4

λ2 ´ λ1

ˆ

λ2 ´ g

λ2

´
λ1 ´ g

λ1

˙

,

(3.32)

where

g :“ ´2Γ˚2 ,

b :“ 2pc1c2p2´ c2q ´ c5q,

a :“ 2Γ˚2 ` β,

d :“ ´1,

λ1z2 :“
a` g ˘

a

pa´ gq2 ` 4bd

2
“ t

β ˘
a

p4Γ˚2 ` βq
2 ´ 8pc1c2p2´ c2q ´ c5q

2
.

(3.33)

As in the MFG case, the third ODE in (3.30) can be solved by plugging in the solution

of the previous ones and integrating. Since our interest is into the evolution of the mean

and the control function, we omit the calculation for this ODE.
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3.5.5 Solution for Asymptotic MFC

The asymptotic version of the problem presented above is given by:

min
α
Jpαq “ inf

α
E
„
ż 8

0

e´βtfpXα
t , αt,m

α
qdt



“ inf
α

E
„
ż `8

0

e´βt
ˆ

1

2
α2
t ` c1 pX

α
t ´ c2m

α
q
2
` c3 pX

α
t ´ c4q

2
` c5pm

α
q
2

˙

dt



,

subject to: dXα
t “ αtdt` σdWt, Xα

0 „ µ0,

where mα “ limtÑ`8 E rXα
t s .

Let V pxq be the optimal value function conditioned on Xα
0 “ x, i.e.

V pxq “ inf
α
Jxpαq

“ inf
α

Ex
„
ż `8

0

e´βt
ˆ

1

2
α2
t ` c1 pX

α
t ´ c2m

α
q
2
` c3 pX

α
t ´ c4q

2
` c5pm

α
q
2

˙

dt



,

where Exr¨s “ Er¨|Xα
0 “ xs.

We consider the following ansatz with its derivative

V pxq “ Γ2x
2
` Γ1x` Γ0,

9V pxq “ 2Γ2x` Γ1,

:V pxq “ 2Γ2.

Starting by the MFC-HJB equation (4.12) given in [12], we extended it to the asymptotic

case as follows

βV pxq ´H px, µα, αq ´

ż

R

δH

δµ

´

h, µα,´ 9V phq
¯

pxqµαphqdh “ 0,
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where mα “
ş

R yµ
αpdyq. We have:

H px, µα, αq :“ inf
α

 

AXV pxq ` f px, α, µαq
(

“ inf
α

"

α 9V pxq `
1

2
σ2 :V pxq `

1

2
α2
` c1px´ c2m

α
q
2
` c3px´ c4q

2
` c5pm

α
q
2

*

“ ´
1

2
9V pxq2 `

1

2
σ2 :V pxq ` c1px´ c2m

α
q
2
` c3px´ c4q

2
` c5pm

α
q
2,

δH ph, µα, αq

δµ
“

δ

δµ

`

c1ph´ c2m
α
q
2
` c5pm

α
q
2
˘

pxq

“
δ

δµ

˜

c1

ˆ

h´ c2

ż

R
yµαpdyq

˙2

` c5

ˆ
ż

R
yµαpdyq

˙2
¸

pxq

“ ´2c1c2x

ˆ

h´ c2

ż

R
yµαpdyqq

˙

` 2c5x

ż

R
yµαpdyq

“ ´2c1c2xph´ c2m
α
q ` 2c5xm

α,

ż

R

δH

δµ

´

h, µα,´ 9V phq
¯

pxqµαphqdh “ ´2c1c2xpm
α
´ c2m

α
q ` 2c5xm

α,

and finally the HJB equation becomes:

βV pxq `
1

2
9V pxq2 ´

1

2
σ2 :V pxq ´ c1px´ c2m

α
q
2
´ c3px´ c4q

2

´ c5pm
α
q
2
` 2c1c2xpm

α
´ c2m

α
q ´ 2c5xm

α
“ 0.

A system of ODEs is obtained by replacing the ansatz and its derivatives in the MFC-HJB

and cancelling terms in x2, and x and constant:

`

βΓ2 ` 2Γ2
2 ´ c1 ´ c3

˘

x2
` pβΓ1 ` 2Γ2Γ1 ` 2c1c2m

α
p2´ c2q ` 2c3c4 ´ 2c5m

α
qx

` βΓ0 `
1

2
Γ2

1 ´ σ
2Γ2 ´ pc1c2

2
` c5qpm

α
q
2
´ c3c4

2
“ 0.

An easy computation gives the values

Γ2 “
´β `

a

β2 ` 8pc1 ` c3q

4
,

Γ1 “
2c5m

α ´ 2c1c2m
αp2´ c2q ´ 2c3c4

β ` 2Γ2

,

Γ0 “
c5pm

αq2 ` c3c4
2 ` c1c2

2pmαq2 ` σ2Γ2 ´
1
2
Γ2

1

β
.
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By plugging the control α˚pxq “ ´p2Γ2x` Γ1q into the dynamics of Xα
t and taking

the expected value, we obtain an ODE for mα
t

9mα
t “ ´p2Γ2m

α
t ` Γ1q. (3.34)

The solution of (3.34) is used to derive m as follows

mα
“ lim

tÞÑ8
mα
t “ lim

tÞÑ8

ˆ

´
Γ1

2Γ2

`

ˆ

m0 `
Γ1

Γ2

˙

e´2Γ2t

˙

“ ´
Γ1

2Γ2

“ ´
2c5m

α ´ 2c1c2m
αp2´ c2q ´ 2c3c4

2Γ2pβ ` 2Γ2q

mα
“

c3c4

Γ2pβ ` 2Γ2q ` c5 ´ c1c2p2´ c2q

(3.35)

We remark that the values of mα
t and Γ1ptq obtained in the non-asymptotic case converge

to mα and Γ1 respectively as t goes to 8. Therefore, we have obtained that

lim
tÑ8

α˚MFC
t pxq “ α˚AMFG

pxq, @x,

that is the first part of (3.2) for this LQ MFC problem.

3.5.6 Solution for stationary MFC

The only difference with the derivation above in the case of asymptotic MFC is that

mα
t should be a constant which, from (3.34), should satisfy 2Γ2m

α ` Γ1 “ 0. Therefore,

mα takes the same value as in (3.35), and we deduce

α˚SMFG
pxq “ α˚AMFG

pxq, @x,

that is the second part of (3.2) for this LQ MFC problem .
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Chapter 4

Unified Reinforcement Q-Learning

for Asymptotic Mean Field Game

and Control Problems

In this Chapter, we discuss the results presented in our paper [6]. We introduce a new

Reinforcement Learning (RL) algorithm to solve the infinite horizon asymptotic Mean

Field Game (MFG) and Mean Field Control (MFC) problems discussed in Chapter 3.

Our approach can be described as a unified two-timescale Mean Field Q-learning: The

same algorithm can learn either the MFG or the MFC solution by simply tuning the ratio

of two learning parameters.

The design of the algorithm is derived by the new definition of a MKV MDP: the

environment not only receives an action by the agent as in a classical MDP, but also

estimates a distribution of the state in order to take into account the mean field feature

of the problem. Extending the classical Q-learning algorithm to this framework requires

to draw a connection between MFG, MFC, Q-learning and Borkar’s two timescale ap-

proach [15, 16]. The stochastic approximation of the Q-function presented in Chapter
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2 is coupled with a stochastic estimation of the population distribution. While this

procedure is sufficient for the MFG case, the MFC framework requires the definition of a

new Q-function, that we called the MKV Q-function (see Definition 1), together with the

optimal new Bellman equation (see Theorem 4).

In Section 4.1.4, we recast the infinite horizon Asymptotic MFG and MFC problems

introduced in Section 3.5 as a two-timescale problem of Borkar’s type [15, 16] which

provides convergence results. The algorithm is in discrete time and space and it is

presented in Section 4.2. In Section 4.3, we show numerical results with comparison to

the benchmark case of discrete time and space approximations for continuous time and

space linear-quadratic problems for which we have explicit formulas derived in Section

3.5.

4.1 A unified view of learning for MFG and MFC

The definitions of MFG and MFC reveal that the two formulations are very similar

and both involve an optimization and a distribution. This leads to the idea of designing an

iterative procedure which would update the value function and the distribution. However,

in the MFG, the distribution is frozen during the optimization and then a fixed point

condition is enforced, whereas in the MFC problem the distribution is directly linked to

the control, which implies that it should change instantaneously when the control function

is modified. Hence, to compute the solutions using an iterative algorithm, the updates

should be done differently for each problem: intuitively, in a MFG, the value function

should be updated in an inner loop and the distribution in an outer loop, whereas it

should be the converse for MFC. More generally, we can update both functions in turn

but at different rates. Then, to compute the MFG solution, the distribution should be

updated at a lower rate than the value function. For MFC, it should be the converse. In
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the rest of this Chapter, we formalize these ideas.

4.1.1 Action-value function in the classical Q-learning setup

As introduced in Chapter 2, Q-learning [73] is one of the most popular methods in

RL. Instead of looking at the value function V as in a PDE approach for optimal control,

this method is based on the action-value function, also called Q-function, which takes as

inputs not only a state x but also an action a. Intuitively, in a standard (non mean-field)

MDP, this function quantifies the optimal cost-to-go of an agent starting at x, using

action a for the first step and then acting optimally afterwards. In other words, the value

of px, aq is the the cost of using a when in state x, plus the minimal cost possible after

that, i.e. the cost induced by using the optimal control; see e.g. [71, Chapter 3] for more

details. The definition of the optimal Q-function, denoted by Q˚, is similar to (2.1), up

to a change of sign since we consider a cost f and a minimization problem instead of a

reward r and a maximisation problem, namely,

Q˚px, aq “ min
α

E

«

8
ÿ

n“0

γnfpXn, αpXnqq

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

.

The equivalent of Theorem 1 is provided by the Bellman equation:

Q˚px, aq “ fpx, aq ` γ
ÿ

x1PX
ppx1|x, aqmin

a1
Q˚px1, a1q, px, aq P X ˆA.

Consequently, Corollary 1 is rewritten as:

V ˚pxq “ min
a
Q˚px, aq, x P X .

By adopting the optimal action-value function, one can directly recover the optimal

control, given by arg minaPAQ
˚px, aq. This allows to design model-free methods.
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4.1.2 Action-value function for Asymptotic MFG

In the context of Asymptotic MFG introduced in Section 3.2, we can view the

problem faced by an infinitesimal agent among the crowd as an MDP parameterized

by the population distribution. Hence, given a population distribution µ, standard RL

techniques can be applied to compute the Q-function of an infinitesimal agent against

this given µ.

Then, the optimal Q-function is defined, for a given µ, by

Q˚µpx, aq “ min
α

E

«

8
ÿ

n“0

γnfpXn, αpXnq, µq
ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

, (4.1)

where the cost function fpx, a, µq depends on the fixed µ as well as the transition

probabilities ppx1|x, a, µq. Since µ is fixed, as in the classical case, one obtains the the

Bellman equation:

Q˚µpx, aq “ fpx, a, µq ` γ
ÿ

x1PX
ppx1|x, a, µqmin

a1
Q˚µpx

1, a1q, px, aq P X ˆA. (4.2)

This function characterizes the optimal cost-to-go for an agent starting at state x,

using action a for the first step, and then acting optimally for the rest of the time

steps, while the population distribution is given by µ (for every time step). Note that

minaQ
˚
µpx, aq “ minα J

AMFGpα;µq in the notation of Section 3.2.

4.1.3 Action-value function for Asymptotic MFC

For MFC, it is not obvious how to use the same Q-function because, as noticed earlier,

the distribution appearing in the definition of MFC is directly linked to the control and not

fixed a priori. One possibility is to look at MFC as an MDP on the space of distributions

and then to introduce a Q-function which takes a distribution as an input [30, 44, 45, 64].

We take a different route and introduce a new modified Q- function as follows. For

an admissible control αpxq, we define the MKV- dynamics ppx1|x, a, µαq so that µα is the
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limiting distribution of the associated process pXα
n q. We define the control α̃ by

α̃px1q “

$

’

&

’

%

a if x1 “ x,

αpxq for x1 ‰ x.
(4.3)

Remark that α̃ depends on x and a which we omit for the sake of a lighter notation.

Definition 1 (New MKV Q-function) The MKV Q-function for the asymptotic MFC

problem discussed in Section 3.2 is given by

Qα
px, aq “ fpx, a, µα̃q ` E

«

8
ÿ

n“1

γnfpXn, αpXnq, µ
α
q

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

. (4.4)

Note that, compared with theQµ-function used for MFG, our MFC modifiedQ-function

involves the differences ∆µf :“ fpx, a, µ̃q ´ fpx, a, µq and ∆µp :“ pp¨|x, a, µ̃q ´ pp¨|x, a, µq

which play the role of derivatives with respect to the probability distribution in the

classical continuous time and space Mean Field Control problems.

In the following steps, we extend the classical results presented in Chapter 2 to the

new MKV Q-function (4.4). After introducing the new Bellman equation for the MKV

Q-function in Lemma 3, the policy improvement theorem is extended to the new MKV

MDP in Theorem 3. Lemma 4 (Corollary 2) verifies the connections among the (optimal)

MKV state value function and the corresponing (optimal) state-action value function.

Finally, the new Bellman equation for the optimal MKV Q-function is proved in Theorem

4.

Lemma 3 (Bellman eq’n for MKV Q function) The function Qα : X ˆ A Ñ R

satisfies the Bellman equation given by

Qα
px, aq “ fpx, a, µα̃q ` γE

”

Qα
pX1, αpX1qq

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ı

, (4.5)
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Proof:

Qα
px, aq

(TP)
“ fpx, a, µα̃q

` γE

«

E

«

8
ÿ

n“1

γn´1fpXn, αpXnq, µ
α
q

ˇ

ˇ

ˇ
X0 “ x,A0 “ αpxq, X1

ff

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

(MP)
“fpx, a, µα̃q ` γE

«

E

«

8
ÿ

n“1

γn´1fpXn, αpXnq, µ
α
q

ˇ

ˇ

ˇ
X1

ff

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

“fpx, a, µα̃q

` γE

«

fpX1, αpX1q, µ
α
q ` γE

«

8
ÿ

n“2

γn´2fpXn, αpXnq, µ
α
q

ˇ

ˇ

ˇ
X1

ff

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

“fpx, a, µα̃q ` γE
”

Qα
pX1, αpX1qq

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ı

,

where TP and MP stand for tower and Markov property respectively. The last step is

justified by observing that the population distribution µα̃ based on the modification of α

given the pair px, αpxqq is equal to µα itself.

Lemma 4 The state value function V α : X Ñ R is linked to the action-value function

Qα : X ˆAÑ R by

V α
pxq “ Qα

px, αpxqq. (4.6)

Proof:

V α
pxq “ fpx, αpxq, µαq ` E

«

8
ÿ

n“1

γnfpXn, αpXnq, µ
α
q

ˇ

ˇ

ˇ
X0 “ x,A0 “ αpxq

ff

“ fpx, αpxq, µα̃q ` E

«

8
ÿ

n“1

γnfpXn, αpXnq, µ
α
q

ˇ

ˇ

ˇ
X0 “ x,A0 “ αpxq

ff

(4.4)
“ Qα

px, αpxqq

where we used that the modification of α given the pair px, αpxqq is equal to α itself and

consequently µα “ µα̃.
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Theorem 3 (New Policy improvement for the MKV MDP) Let α̃ be a policy de-

rived by α

α̃psq “

$

’

’

&

’

’

%

αpsq, for s ‰ x,

a, for s “ x.

such that

Qα
px, α̃pxqq ă V α

pxq. (4.7)

Then,

V α̃
px1q ă V α

px1q @x1 P X . (4.8)

Proof: Step 1 Show that V αpxq ă V α̃pxq.

We observe that

V α
pxq ą Qα

px, α̃pxqq

(4.5)
“ fpx, α̃pxq, µα̃q ` γE

”

Qα
pX1, αpX1qq

ˇ

ˇ

ˇ
X0 “ x,A0 “ α̃pxq

ı

(4.6)
“ fpx, α̃pxq, µα̃q ` γE

”

V α
pX1q

ˇ

ˇ

ˇ
X0 “ x,A0 “ α̃pxq

ı

(4.7)

ě fpx, α̃pxq, µα̃q ` γE
”

Qα
pX1, α̃pX1qq

ˇ

ˇ

ˇ
X0 “ x,A0 “ α̃pxq

ı

(4.5)
“ fpx, α̃pxq, µα̃q ` γE

”

fpX1, α̃pX1q, µ
α̃
q ` γQα

pXt2 , αpXt2qq

ˇ

ˇ

ˇ
X0 “ x,A0 “ α̃pxq

ı

...

ě E

«

k
ÿ

n“0

γnfpXn, α̃pXnq, µ
α̃
q ` γk`1V α

pXk`1q

ˇ

ˇ

ˇ
X0 “ x

ff

Considering the limit as k Ñ 8, it follows that

V α
pxq ą E

«

8
ÿ

n“0

γnfpXn, α̃pXnq, µ
α̃
q

ˇ

ˇ

ˇ
X0 “ x

ff

“ V α̃
pxq

Step 2 Show that V αpx1q ą V α̃px1q @x1 P X ztxu.
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Let define τx “ mintn : Xn “ xu. Then

V α
px1q “ E

«

8
ÿ

n“0

γnfpXn, αpXnq, µ
α
q

ˇ

ˇ

ˇ
X0 “ x1

ff

“ E

«

τx´1
ÿ

n“0

γnfpXn, αpXnq, µ
α
q `

8
ÿ

n“τx

γnfpXn, αpXnq, µ
α
q

ˇ

ˇ

ˇ
X0 “ x1

ff

“ E

«

τx´1
ÿ

n“0

γnfpXn, αpXnq, µ
α
q

ˇ

ˇ

ˇ
X0 “ x1

ff

` E

«

8
ÿ

n“τx

γnfpXn, αpXnq, µ
α
q

ˇ

ˇ

ˇ
X0 “ x1

ff

:“ T1 ` T2

We start analyzing the first term observing that Xn ‰ x and αpXnq “ α̃pXnq for all

n ď τx ´ 1. Then,

T1 “ E

«

τx´1
ÿ

n“0

γnfpXn, α̃pXnq, µ
α̃
q

ˇ

ˇ

ˇ
X0 “ x1

ff

The analyses of the term T2 is based on the tower property (TP), the Markov property

(MP) and Step 1 (S1). It follows that

T2
(TP)
“ E

«

E

«

8
ÿ

n“τx

γnfpXn, αpXnq, µ
α
q

ˇ

ˇ

ˇ
X0 “ x1, X1, . . . , Xτx

ff

ˇ

ˇ

ˇ
X0 “ x1

ff

(MP)
“ E

«

γτxE

«

8
ÿ

n“τx

γn´τxfpXn, αpXnq, µ
α
q

ˇ

ˇ

ˇ
Xτx

ff

ˇ

ˇ

ˇ
X0 “ x1

ff

“ E
”

γτxV α
pXτxq

ˇ

ˇ

ˇ
X0 “ x1

ı

(S1)

ą E
”

γτxV α̃
pXτxq

ˇ

ˇ

ˇ
X0 “ x1

ı

Combining the analyses of T1 and T2, it follows that

V α
px1q “ T1 ` T2 ą

ą E

«

τx´1
ÿ

n“0

γnfpXn, α̃pXnq, µ
α̃
q

ˇ

ˇ

ˇ
X0 “ x1

ff

` E
”

γτxV α̃
pXτxq

ˇ

ˇ

ˇ
X0 “ x1

ı

“ E

«

τx´1
ÿ

n“0

γnfpXn, α̃pXnq, µ
α̃
q ` γτx

8
ÿ

n“τx

γn´τxfpXn, α̃pXnq, µ
α̃
q

ˇ

ˇ

ˇ
X0 “ x1

ff

“ E

«

8
ÿ

n“0

γnfpXn, α̃pXnq, µ
α̃
q

ˇ

ˇ

ˇ
X0 “ x1

ff

“ V α̃
px1q
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Corollary 2 Let V ˚ : X ÞÑ R be the optimal state value function defined as V ˚pxq “

minα V
αpxq. Then,

V ˚pxq “ min
a

min
α
Qα
px, aq, (4.9)

Remark 3 The optimal value function V ˚pxq “ minaQ
˚px, aq is equal to JAMFCpα˚q in

the notation of Section 3.2).

Proof: Let X “ tx1, . . . , xnu and A “ ta0, . . . , amu be the state and action spaces.

Step 1 Let α0 be an initial policy and define α1 as follows

α1
pxq “

$

’

’

&

’

’

%

arg minaQ
α0
px, aq, if x “ x1,

α0pxq, o.w.

Then,

Qα0

px1, α
1
px1qq ď V α0

px1q
(4.8)

ùñ V α1

pxq ď V α0

pxq, @x

Step 2 Consider α2 defined as follows

α2
pxq “

$

’

’

&

’

’

%

arg minaQ
α1
px, aq, if x “ x2,

α1pxq, o.w.

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

arg minaQ
α1
px, aq, if x “ x2,

arg minaQ
α0
px, aq, if x “ x1,

α0pxq, o.w.

Then,

Qα1

px2, α
2
px2qq ď V α1

px1q
(4.8)

ùñ V α2

pxq ď V α1

pxq ď V α0

pxq, @x
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Step n Consider αn defined as follows

αnpxq “

$

’

’

&

’

’

%

arg minaQ
αn´1

px, aq, if x “ xn,

αn´1pxq, o.w.

“ arg min
a
Qαk´1

px, aq, if x “ xk, for k “ 1, . . . , n,

Then,

Qαn´1

pxn, α
n
pxnqq ď V αn´1

pxnq
(4.8)

ùñ V αn
pxq ď V αn´1

pxq ď V α0

pxq, @x

Step N Since the state and action spaces are finite, the policy can be improved only a

finite number of times. In other words, DN ą 0 such that

αNpxq “ arg min
a
QαN

px, aq, @x P X

and

V αN
pxq “ QαN

px, αNpxqq “ min
a
QαN

px, aq, @x P X .

Can αN be still suboptimal? No, by extending Bellman and Dreyfus’s Optimality Theorem

(1962), [10].

Theorem 4 (New Bellman equation for the optimal MKV Q-function) The op-

timal Q˚px, aq “ minαQ
αpx, aq satisfies the Bellman equation

Q˚px, aq “ fpx, a, µ̃˚q ` γ
ÿ

x1PX
ppx1|x, a, µ̃˚qmin

a1
Q˚px1, a1q, px, aq P X ˆA, (4.10)

where the optimal control α˚ is given by α˚pxq “ arg minaQ
˚px, aq, the modification α̃˚pxq

is based on the pair px, aq and µ̃˚ :“ µα̃
˚

.
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Proof:

RHS “ fpx, a, µα̃q ` γE
”

min
a1

Q˚pX1, a
1
q

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ı

(4.9)
“ fpx, a, µα̃q ` γE

”

V ˚pX1q

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ı

(4.6)
“ fpx, a, µα̃q ` γE

”

Qα˚
pX1, α

˚
pX1qq

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ı

(4.5)
“ Qα˚

px, aq “ Q˚px, aq,

where the last step is due to what shown in the proof of equation (4.9), i.e. the same

policy α˚ optimizes V α and Qα.

4.1.4 Unification through a two timescale approach

The goal is now to design a learning procedure which can approximate, for either

MFG or MFC, not only Q but also the corresponding µ. For MFG, the usual fixed point

iterations are on the distribution and at each iteration, the best response against this

distribution (which can be deduced from the corresponding Q table) is computed. For

MFC, the iterations are on the control (here again, it can be deduced from the Q table)

and the distribution corresponding to this control is computed at each iteration. Instead

of completely freezing the distribution (resp. the control) in the first case (resp. the

second case), we can imagine that letting it evolve at a slow rate would still lead to the

same limit. In other words, the definitions of MFG and MFC seem to lie at the two

opposite sides of a spectrum.

Based on this viewpoint, we consider the following iterative procedure, where both

variables (Q and µ) are updated at each iteration but with different rates. Starting from

an initial guess pQ0, µ0q P R|X |ˆ|A| ˆ∆|X |, define iteratively for k “ 0, 1, . . . :

$

&

%

µk`1 “ µk ` ρ
µ
kPpQk, µkq,

Qk`1 “ Qk ` ρ
Q
k T pQk, µkq,

(4.11a)

(4.11b)
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where
$

’

’

&

’

’

%

PpQ, µqpxq “ pµPQ,µqpxq ´ µpxq, x P X ,

T pQ, µqpx, aq “ fpx, a, µq ` γ
ř

x1 ppx
1|x, a, µqmina1 Qpx

1, a1q ´Qpx, aq, px, aq P X ˆA,

and

PQ,µ
px, x1q “ ppx1|x, arg min

a
Qpx, aq, µq, pµPQ,µ

qpxq “
ÿ

x0

µpx0qP
Q,µ
px0, xq,

PQ,µ is the transition matrix when the population distribution is µ and the agent uses

the optimal control according to Q. The learning rates ρµk and ρQk are assumed to

satisfy usual Robbins-Monro type conditions, namely:
ř

k ρ
µ
k “

ř

k ρ
Q
k “ `8 and

ř

k |ρ
µ
k |

2 “
ř

k |ρ
Q
k |

2 ă `8.

If ρµk ă ρQk , the approximate Q-function evolves faster, while it is the converse if

ρµk ą ρQk . This suggests that these two regimes should converge to different limit points.

These ideas have been studied by Borkar [15, 16] in connection with reinforcement learning

methods under the name of two timescales approach. More precisely, from Borkar [16,

Chapter 6, Theorem 2], we expect to have the following two situations. We assume that

the operators T and P are Lipschitz continuous, which, as explained in Section 4.1.6, can

be obtained from the Lipschitz continuity of f and p in the model, as well as a slight

modification of P to regularize the minimizer.

• Two timescale approach for MFG.

If ρµk{ρ
Q
k Ñ 0 as k Ñ `8, the system (4.11a)–(4.11b) tracks the ODE system

$

’

&

’

%

9µt “ PpQt, µtq,

9Qt “
1

ε
T pQt, µtq,

where ρµk{ρ
Q
k is thought of being of order ε ! 1. We consider, for any fixed µ, the

ODE

9Qt “
1

ε
T pQt, µq,
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and we assume it has a globally asymptotically stable equilibrium Qµ. In particular,

T pQµ, µq “ 0, meaning by (4.2) that Qµ is the value function of an infinitesimal

agent facing the crowd distribution µ. We further assume that Qµ is Lipschitz

continuous with respect to µ. Convergence to Qµ can be obtained following standard

arguments for Q-learning (see, e.g., [16, Section 10.3]) and the Lipschitz continuity

of Qµ can be guaranteed through Lipschitz continuity of f, p and the minimizer

in (4.1). Then the first ODE becomes

9µt “ PpQµt , µtq.

Assuming it has a globally asymptotically stable equilibrium µ8, this distribution

satisfies

PpQµ8 , µ8q “ 0.

This condition implies that µ8 and the associated control function given by

α̂pxq “ arg minaQµ8px, aq form a Nash equilibrium. From [16, Chapter 6, Theorem

2], the system (4.11a)–(4.11b) with discrete time updates also converges to this

Nash equilibrium when ρµk{ρ
Q
k Ñ 0 as k Ñ `8.

• Two timescale approach for MFC.

If ρQk {ρ
µ
k Ñ 0 as k Ñ `8, the system (4.11a)–(4.11b) tracks the ODE system

$

’

&

’

%

9µt “
1

ε
PpQt, µtq,

9Qt “ T pQt, µtq,

where ρQk {ρ
µ
k is thought of being of order ε ! 1. We consider, for any fixed Q, the

ODE

9µt “
1

ε
PpQ, µtq,

and we assume it has a globally asymptotically stable equilibrium µQ. In particular,

PpQ, µQq “ 0, meaning that µQ is the asymptotic distribution of a population in
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which every agent uses the control αpxq “ arg minaQpx, aq. We further assume that

µQ is Lipschitz continuous with respect to Q. Then the second ODE becomes

9Qtpx, aq “ T pQtpx, aq, rµQtq,

where rµQt is defined by (4.3) at px, aq for αp¨q “ arg mina1 Qtp¨, a
1q. This is consistent

with the update of Q and what the algorithm proposed in Section 4.2 does. Assuming

this ODE has a globally asymptotically stable equilibrium Q8, this Q-table satisfies

T pQ8, rµQ8q “ 0.

This last condition means that Q8 “ Q˚ satisfies the MFC Bellman equation

(4.10), and that the control α˚pxq “ arg minaQ8px, aq is an MFC optimum for the

asymptotic formulation and the induced optimal distribution is µQ8 . From [16,

Chapter 6, Theorem 2], the system (4.11a)–(4.11b) with discrete time updates also

converges to this social optimum when ρQk {ρ
µ
k Ñ 0 as k Ñ `8.

4.1.5 Stochastic approximation

The above (deterministic) algorithm relies on the operators P, T which, in many

practical situations are not known, for instance because the agent does not know for

sure the dynamics or the reward function. In such situations, the agent can only rely on

random samples (more details are provided in the next section). The algorithm can be

modified to account for such stochastic approximations. Indeed, let us assume that, for

any Q, µ, x, a, the agent can know the value fpx, a, µq and can sample a realization of the

random variable

X 1
x,a,µ „ pp¨|x, a, µq.
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Then, she can compute the realization of the following random variables qTQ,µ,x,a and

qPQ,µ,x,a taking values respectively in R and ∆|X |:

qTQ,µ,x,a “ fpx, a, µq ` γmin
a1

QpX 1
x,a,µ, a

1
q ´Qpx, aq,

and

qPQ,µ,x,apx2q “ 1tX 1x,a,µ“x2u ´ µpx
2
q, @x2 P X .

Observe that

ErqTQ,µ,x,as “
ÿ

x1

ppx1|x, a, µq
”

fpx, a, µq ` γmin
a1

Qpx1, a1q ´Qpx, aq
ı

“ T pQ, µqpx, aq,

(4.14)

and

Er qPQ,µ,x,apx2qs “
ÿ

x1

ppx1|x, a, µq
`

1tx1“x2u ´ µpx
2
q
˘

“ ppx2|x, a, µq ´ µpx2q.

If the starting point x comes from a random variable X „ µ and if a is chosen to be

an optimal action at X according to a given table Q, i.e., a P arg minAQpX, ¨q, then we

obtain

Er qPQ,µ,X,arg minaQpX,aqpx
2
qs “

ÿ

x

µpxq
ÿ

x1

ppx1|x, arg min
a

Qpx, aq, µq
`

1tx1“x2u ´ µpx
2
q
˘

“
ÿ

x

µpxq

ˆ

ppx2|x, arg min
a

Qpx, aq, µq ´ µpx2q

˙

“ pµPQ,µ
qpx2q ´ µpx2q

“ PpQ, µqpx2q. (4.15)

We can thus replace the deterministic updates (4.11a)–(4.11b) by the following stochas-
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tic ones, starting from some initial Q0, µ0: for k “ 0, 1, . . . ,

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

µk`1pxq “ µkpxq ` ρ
µ
k
qPQk,µk,Xk,arg minaQpXk,aqpxq

“ µkpxq ` ρ
µ
kPpQk, µkqpxq `Pk

pxq, @x P X

Qk`1px, aq “ Qkpx, aq ` ρ
Q
k
qTQk,µk,x,a

“ Qk ` ρ
Q
k T pQk, µkqpx, aq `Tk

px, aq, @px, aq P X ˆA,

Xk „ µk,

(4.16a)

(4.16b)

where we introduced the notation:

Pk
pxq “ ρµk

´

qPQk,µk,Xk,arg minaQkpXk,aqpxq ´ PpQk, µkqpxq
¯

, @x,

and

Tk
px, aq “ ρQk

´

qTQk,µk,x,a ´ T pQk, µkqpx, aq
¯

, @px, aq,

with Xk sampled from µk. Note that Tk and Pk are martingales by the above remarks,

see (4.14)–(4.15). Hence under suitable conditions, we expect convergence to hold by

classical stochastic approximation results [16].

However, the procedure (4.16a)–(4.16b) is synchronous (it updates all the coefficients

of the Q-table and the distribution at each iteration k) and it requires having access to

a generative model, i.e., to a simulator which can provide samples of transitions drawn

according to pp¨|x, a, µkq for arbitrary state x. In the next section, we propose a procedure

which works even with a more restricted setting, which uses episodes: In each episode,

the learner is constrained to follow the trajectory sampled by the environment without

choosing arbitrarily its state.
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4.1.6 Lipschitz property of the 2 scale operators

Generic setting

We modify the original operators using the softmin operator on R|A| defined as:

soft-minpzq “

˜

e´zi
ř

j e
´zj

¸

i“1,...,|A|

P ∆|A|, z P R|A|.

Intuitively, it gives a probability distribution on the indices i “ 1, . . . , |A| which has

higher values on indices whose corresponding values are closer to be a minimum. In

particular, the elements of minti “ 1, . . . , |A| : zi “ arg minj zju have equal weight and

this weight is the largest among

ˆ

e´zi
ř

j e
´zj

˙

i“1,...,|A|
. We recall that the function soft-min is

Lipschitz continuous for the 2-norm. Denoting by Ls its Lipschitz constant, it means that

} soft-minpzq ´ soft-minpz1q}2 ď Ls}z ´ z
1
}2, z, z1 P R|A|.

Moreover, since |A| is finite, all the norms on R|A| are equivalent so there exists a positive

constant c2,8 such that

} soft-minpzq ´ soft-minpz1q}8 ď Lsc2,8}z ´ z
1
}8, z, z1 P R|A|.

To alleviate the notation, we will write Qpxq :“ pQpx, aqqaPA for any Q P R|X |ˆ|A|. We

also introduce a more general version p of the transition kernel p, which can take as an

input a probability over actions instead of a single action: for x, x1 P X , ν P ∆|A|, µ P ∆|X |,

ppx1|x, ν, µq “
ÿ

a

νpaqppx1|x, a, µq.

Intuitively, this is the probability for a agent at x to move to x1 when the population

distribution is µ and the agent picks a random action following the distribution ν.

We now consider the following iterative procedure, which is a slight modification

of (4.11a)–(4.11b). Here again, both variables (Q and µ) are updated at each iteration
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but with different rates. Starting from an initial guess pQ0, µ0q P R|X |ˆ|A| ˆ∆|X |, define

iteratively for k “ 0, 1, . . . :

$

&

%

µk`1 “ µk ` ρ
µ
kPpQk, µkq,

Qk`1 “ Qk ` ρ
Q
k T pQk, µkq,

(4.17a)

(4.17b)

where
$

’

’

&

’

’

%

T pQ, µqpx, aq “ fpx, a, µq ` γ
ř

x1 ppx
1|x, a, µqmina1 Qpx

1, a1q ´Qpx, aq, px, aq P X ˆA,

PpQ, µqpxq “ pµPQ,µ
qpxq ´ µpxq, x P X ,

with

PQ,µ
px, x1q “ ppx1|x, soft-minQpxq, µq, and pµPQ,µ

qpxq “
ÿ

x0

µpx0qP
Q,µ
px0, xq,

is the transition matrix when the population distribution is µ and the agent uses an

approximately optimal randomized control according to the soft-min of Q.

Lemma 5 Assume that f is Lipschitz continuous with respect to µ and that p is Lipschitz

continuous with respect to ν and µ. Then

• the operator T is Lipschitz continuous w.r.t. µ (with a Lipschitz constant possibly

depending on }Q}8q, and Lipschitz continuous in Q (uniformly in µ);

• the operator P is Lipschitz continuous in both variables.

If p is independent of µ, then both T and P are Lipschitz continuous.

Proof: Let us denote by Lp and Lf the Lipschitz constants of p and f respectively.

Let pQ, µq, pQ1, µ1q P R|X |ˆ|A| ˆ∆|X |. We first consider T . We have

}T pQ, µq ´ T pQ1, µq}8 ď γ
ÿ

x1

max
x,a

ppx1|x, a, µq
ˇ

ˇ

ˇ
min
a1

Qpx1, a1q ´min
a1

Q1px1, a1q
ˇ

ˇ

ˇ
` }Q´Q1}

8

ď pγ ` 1q }Q´Q1}
8
.
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Moreover,

}T pQ, µq ´ T pQ, µ1q}8 ď |fpx, a, µq ´ fpx, a, µ1q|

` γ
ÿ

x1

|ppx1|x, a, µq ´ ppx1|x, a, µ1q| |min
a1

Qpx1, a1q|

ď pLf ` γLp}Q}8q|X |}µ´ µ1}8,

where Lf and Lp are respectively the Lipschitz constants of f and p with respect to µ. If

p is independent of µ, we obtain

}T pQ, µq ´ T pQ, µ1q}8 ď Lf}µ´ µ
1
}8.

We then show that the operator P is Lipschitz continuous. We have

}PpQ, µq ´ PpQ, µ1q}8

ď }µPQ,µ
´ µ1PQ,µ1

}8 ` }µ´ µ
1
}8

ď

›

›

›

›

›

ÿ

x

´

pp¨|x, soft-minQpxq, µqµpxq ´ pp¨|x, soft-minQpxq, µ1qµ1pxq
¯

›

›

›

›

›

8

` }µ´ µ1}8.

For the first term, we note that, for every x P X ,

›

›

›

´

pp¨|x, soft-minQpxq, µqµpxq ´ pp¨|x, soft-minQpxq, µ1qµ1pxq
¯›

›

›

8

ď

›

›

›

´

pp¨|x, soft-minQpxq, µq ´ pp¨|x, soft-minQpxq, µ1q
¯

µpxq
›

›

›

8

`

›

›

›
pp¨|x, soft-minQpxq, µ1q

´

µpxq ´ µ1pxq
¯
›

›

›

8

ď pLp ` 1q }µ´ µ1}
8
,

where we used the fact that discrete probability measures are non-negative and bounded

by 1.

57



Unified Reinforcement Q-Learning for Asymptotic Mean Field Game and Control Problems
Chapter 4

Moreover, we have

}PpQ, µq ´ PpQ1, µq}8 ď }µpPQ,µ
´ PQ1,µ1

q}8

ď
ÿ

x

}pp¨|x, soft-minQpxq, µq ´ pp¨|x, soft-minQ1pxq, µq}8

ď
ÿ

x

Lp} soft-minQpxq ´ soft-minQ1pxq}8

ď |X |Lp Ls c2,8 }Q´Q
1
}8,

which concludes the proof.

Application to a discrete model for the LQ problem

Recall that the continuous linear-quadratic model we consider is defined by (3.3).

Here, we propose a finite space MDP which approximates the dynamics of a typical

agent in this continuous LQ model. We consider that the action space is given by

A “ ta0 “ ´1, a1 “ ´1 ` ∆., . . . , aNA “ 1 ´ ∆., aNA “ 1u and the state space by

X “ tx0 “ xc ´ 2, x1 “ xc ´ 2´∆., . . . , xNX´1 “ xc ` 2´∆., xNX “ xc ` 2u, where xc is

the center of the state space. The step size for the discretization of the spaces X and A

is given by ∆. “
?

∆t “ 10´1.

Consider the transition probability:

ppx, x1, a, µq “PpZx`a,∆t
P rx1 ´∆.{2, x

1
`∆.{2sq

“Φx`a,σ2∆tpx
1
`∆.{2q ´ Φx`a,σ2∆tpx

1
´∆.{2q,

where Z „ N px` a, σ2∆tq and Φx`a,σ2∆t is the cumulative distribution function of the

N px` a, σ2∆tq distribution. Moreover, consider that the one-step cost function is given

by fpx, a, µq∆t with

fpx, a, µq “
1

2
a2
`c1

˜

x´ c2

ÿ

ξPS

µpξq

¸2

`c3 px´ c4q
2
`c5

˜

ÿ

ξPS

µpξq

¸2

, bpx, a, µq “ a,

For simplicity, we write µ̄ “
ř

ξPS µpξq.
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Lemma 6 In this model, f is Lipschitz continuous with respect to µ and p is Lipschitz

continuous with respect to ν and µ

Proof:

We start with f . For the µ component, we have:

|fpx, a, µq ´ fpx, a, µ1q| ď c
ˇ

ˇ

ˇ
px´ c2µ̄q

2
´ px´ c2µ̄

1
q
2
ˇ

ˇ

ˇ
` c

ˇ

ˇ

ˇ
pµ̄q2 ´ pµ̄1q

2
ˇ

ˇ

ˇ

ď c pµ̄1 ´ µ̄q ¨ p2x` pµ̄1 ´ µ̄qq ` cpµ̄´ µ̄1qpµ̄` µ̄1q

ď cmax
xPS

}x}8 pµ̄
1
´ µ̄q

ď cmax
xPS

}x}8
ÿ

xPS

pµ1pxq ´ µpxqq

ď cmax
xPS

}x}8 |S| }µ
1
´ µ}8,

where c ą 0 is a constant depending only on the parameters of the model and whose

value may change from line to line.

Then we consider p. It is independent of µ in this model. For the action component,
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we have:

|ppx, x1, ν, µq ´ ppx, x1, ν 1, µq|

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a

νpaq
´

Φx`a,σ2∆tpx
1
`∆.{2q ´ Φx`a,σ2∆tpx

1
´∆.{2q

¯

´
ÿ

a1

ν 1pa1q
´

Φx`a1,σ2∆tpx
1
`∆.{2q ´ Φx`a1,σ2∆tpx

1
´∆.{2q

¯

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a

pνpaqΦx`a,σ2∆tpx
1
`∆.{2q ´ ν

1
paqΦx`a,σ2∆tpx

1
`∆.{2qq

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a

´

νpaqΦx`a,σ2∆tpx
1
´∆.{2q

¯

´ ν 1paqΦx`a,σ2∆tpx
1
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¯

ˇ

ˇ
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ˇ

ˇ
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σ
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ˇ
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ˇ

ˇ

ÿ

a

pνpaq ´ ν 1paqqe´
py´px`aqq2

2σ2∆t

ˇ

ˇ

ˇ

ˇ

ˇ

dy

`

ż x1´∆.{2

´8

1

σ
?

2π∆t

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a

pνpaq ´ ν 1paqqe´
py´px`aqq2

2σ2∆t

ˇ

ˇ

ˇ

ˇ

ˇ

dy

ď c}ν ´ ν 1}8,

where c is a constant depending only on the model (and in particular on the state space,

the action space and ∆t).

4.2 Reinforcement Learning Algorithm

As recalled in Chapter 2, RL studies the algorithms to solve a Markov decision process

(MDP) based on trials and errors. An MDP can be described through the interactions

of an agent with an environment. At each time n, the agent observes its current state

Xn P X and chooses an action An P A. Due to the agent’s action, the environment

provides the new state of the agent Xn`1 and incurs a cost fn`1. The goal of the agent

is to find an optimal strategy (or policy) π˚ which assigns to each state an action in
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order to minimize the aggregated discounted costs. The idea is then to design methods

which allow the agent to learn (an approximation of) π˚ by making repeated use of the

environment’s outputs but without knowing how the environment produces the new state

and the associated cost. A detailed overview of this field can be found in [71] (although

RL methods are often presented with reward maximization objectives, we consider cost

minimization problems for the sake of consistency with the MFG literature).

As presented in Section 4.1.1, the optimal strategy can be derived from the optimal

action-value function. However Q˚ is a priori unknown. In order to learn Q˚ by trials

and errors, an approximate version Q of the table Q˚ is constructed through an iterative

procedure. At each step, an action is taken, which leads to a cost and to a new state. On

the one hand, it is interesting to act efficiently in order to avoid high costs, and on the

other hand it is important to improve the quality of the table Q by trying actions and

states which have not been visited many times so far. This is the so-called exploitation–

exploration trade-off. The trade-off between exploration of the unknown environment and

exploitation of the currently available information can be taken care of by an ε-greedy

policy based on Q. The algorithm chooses the action that minimizes the immediate cost

with probability 1´ ε, and a random action otherwise, as in (2.2) with an arg min.

4.2.1 U2-MF-QL : Unified Two Timescales Mean Field Q-learning

In order to apply the RL paradigm to mean field problems, the first step consists in

defining the connection between these two frameworks. In a MFG (resp. a MFC) the

goal of a typical agent is to find the pair pα̂, µ̂q (resp. pα˚, µ˚q) where α̂ : X ÞÑ A (resp.

α˚ : X ÞÑ A) represents the equilibrium (resp. optimal) strategy which assigns at each

state the equilibrium (resp. optimal) action in order to minimize the aggregated discounted

costs and µ̂ (resp. µ˚) is the ergodic distribution of the population at equilibrium (resp.
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optimum). The traditional definition of an MDP based on the agent–environment pair

is augmented with the distribution of the population. In this new framework, the agent

corresponds to the representative player of the mean field problem.

We now define the type of environment to which the agent is assumed to have access. A

key difference with prior works on RL for mean field problems is that we do not assume that

agent can witness the evolution of the population’s distribution. Instead, the environment

estimates the distribution of the population by exploiting the symmetry property of the

problem. Indeed, when the system is at equilibrium the law of the representative player

matches the distribution of the population. As showed in the diagram of Figure 4.1, at

each time n, the agent observes its current state Xn P X and then chooses an action

An P A. An approximation of the distribution µn is computed by the environment based

on the observed states of the representative player. Provided with the choice of the action

and the estimate of the distribution, the environment generates the new state of the agent

Xn`1 and assigns a cost fn`1.

Environment

Agent

Cost

fn+1

State

Xn+1

Distribution
µn

Action

An

Cost

fn

State

Xn

Figure 4.1: MDP with Mean Field interactions: Interaction of the representative agent
with the environment. When the current state of the representative agent is Xn, given
an action An, the environment produces an estimate of the distribution µn, the new
state Xn`1 and incurs a cost fn`1 calculated by starting from the current state of the
environment Xn and using the transition controlled by An and parameterized by µn.

The algorithm is designed to solve infinite horizon problems through an online approach,
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i.e. interacting with the environment. The learning procedure is based on splitting

the infinite horizon in successive episodes in order to promote the exploration of the

environment. The first episode is initialized based on the initial distribution of the

representative player. Within a given episode, the agent updates her strategy at each

learning step aiming to optimize the expected aggregated cost based on the current

estimate of the distribution of the population µn. Changes in the representative player’s

strategy have an effect on the population requiring to update µn accordingly. After an

assigned number of steps T , the episode is terminated. A new episode is initialized based

on the current version of the environment represented by the estimate of the population

obtained at the last time point of the previous episode. One may think at the initialization

step as a change in the choice of the representative player who provides the data flow. As

the number of episodes increases, one expects the distribution of the representative player

to converge to the limiting distribution. Within a given learning step, the environment

computes an estimate of µn based on the current state of the agent Xn, provides the next

state Xn`1 and assigns the cost fn`1 given the triple pXn, An, µnq. In other words, the

environment consists of the dynamics of the agent and the cost structure. The case of our

interest corresponds to the one in which the dynamics of the agent and the cost structure

are unknown. In this way, introducing the RL paradigm is equivalent to define a data

driven approach to solve mean field models which may scale their applicability to real

world problems.

In contrast with standard Q-learning, since in the mean field framework the cost

function also depends on the distribution of the population, the goal here consists in

learning the optimal strategy along with the corresponding ergodic distribution of the

population, i.e. pα̂, µ̂q in the MFG setting and pα˚, µ˚q in the MFC setting. Based on

the intuition provided in Sections 4.1.4, 4.1.5 related to the two timescale approach,

we propose Algorithm 2. At each step, we update the Q-table at the observed state-
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action pair QpXn, Anq. With a different learning rate, the estimate of the distribution

is updated based on the operator δ : X ÞÑ ∆|X | which maps the next observed state

Xn`1 P X to the corresponding one-hot vector measure. To be specific, we identify

the simplex ∆|X | with the subset
!

rµpxiqsi“0,...,|X |´1 : µpxiq P r0, 1s and
ř

i µpxiq “ 1
)

of

R|X |. Then δ is the function which associates to each element of X “ tx0, . . . , x|X |´1u

the corresponding element of the canonical basis pe0, . . . , e|X |´1q of R|X |, i.e., for each

i “ 0, . . . , |X | ´ 1, δpxiq “ ei, which is an element of ∆|X | by the above identification.

In order to learn the limiting distribution of the population through successive learning

episodes, an estimate µni is computed for each step ni based on the sample Xk
ni

collected

from episodes k “ 1, 2, . . . . This approach attempts to minimize the correlation of the

sampled states. The update rule presented in algorithm 2 allocates more weight on the

most recent samples allowing to forget progressively the initial sample that were obtained

by a distribution far from the limiting one. At convergence, one may expect each µni to

be an estimate of the limiting distribution.

The algorithm returns both an approximation µkT of the distribution and an approxi-

mation Qk of the Q-function, from which an approximation of the optimal control can be

recovered as x ÞÑ arg minaPAQ
kpx, aq.
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Algorithm 2 Unified Two Timescales Mean Field Q-learning - Tabular version

Require: T : number of time steps in a learning episode,

X “ tx0, . . . , x|X |´1u : finite state space,

A “ ta0, . . . , a|A|´1u : finite action space,

µ0 : initial distribution of the representative player,

ε : parameter related to the ε´greedy policy,

tolµ, tolQ : break rule tolerances.

1: Initialization: episode k “ 0, Qkpx, aq “ 0 for all px, aq P X ˆA, µkn “
”

1
|X | , . . . ,

1
|X |

ı

for n “ 0, . . . , T

2: repeat

3: Episode k “ k ` 1

4: Initialization: Sample Xk
0 „ µk´1

T and set Qk ” Qk´1

5: for nÐ 0 to T ´ 1 do

6: Update µ:
µkn “ µk´1

n ` ρµkpδpX
k
nq ´ µ

k´1
n q (4.18)

where δpXk
nq “

”

1x0pX
k
nq, . . . ,1x|X̃ |´1

pXk
nq

ı

7: Choose action Akn using the ε-greedy policy derived from QkpXk
n, ¨q

Observe cost fn`1 “ fpXk
n, A

k
n, µ

k
nq and state Xk

n`1 provided by the environment

8: Update Q:

Qk
pXk

n, A
k
nq “

“ Qk
pXk

n, A
k
nq ` ρ

Q
k,n,Xk

n,A
k
n
rfn`1 ` γmin

a1PA
Qk
pXk

n`1, a
1
q ´Qk

pXk
n, A

k
nqs (4.19)

9: end for

10: until δpµk´1
T , µkT q ď tolµ and }Qk ´Qk´1}1,1 ă tolQ

11: return pµk, Qkq

The Unified Two Timescales Mean Field Q-learning (U2-MF-QL) algorithm represents
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a unified approach to solve mean field problems. On the one hand, by choosing the

learning rate for the distribution of the population slower than the one for the Q-table,

we obtain the solution to the MFG problem. Similarly to the scheme presented in Section

4.1.5, the iterations in Q perceive the quantity µ as quasi-static mimicking the freezing of

the flow of measures characteristic in the solving scheme of a MFG. In particular, the

update rule (4.19) of the algorithm represents a stochastic version of the Bellman equation

(4.2) for the optimal Q-function Q˚µ. On the other hand, by choosing the learning rate for

the mean-field term faster than the one for the Q-table, we obtain the solution to the

MFC problem. Indeed, this choice of the parameters guarantees that the distribution

changes instantaneously for each variation of the control function (Q-table) replicating

the structure of the MFC problem. Due to the choice ρQ ăă ρµ, the Q function and the

corresponding control function αpxq “ arg mina1 Qpx, a
1q behave as frozen. The update

rule (4.18) for the distribution is based on the pair px, aq visited at each time step implying

the learning of µα̃ as described in Section 4.1.3. The quantity µα̃ is passed as input to

the running cost defining the update rule (4.19) as a stochastic estimate of the Bellman

equation for the new optimal MKV Q-function given by equation (4.10).

4.2.2 Application to continuous problems

Although it is presented in a setting with finite state and action spaces, the application

of the algorithm U2-MF-QL can be extended to continuous problems. Such adaptation

requires truncation and discretization procedures to time, state and action spaces which

should be calibrated based on the specific problem.

In practice, the learning episode will correspond to a uniform discretization τ “

ttnunPt0,...,|τ |´1u of a time interval r0, T s with T large enough. The environment will

provide the new state and reward at these discrete times. We assume that T is large
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enough to reach the ergodic regime. The continuous state space will be represented as the

disjoint union of equally sized neighbors. Each of them will be identified by its centroid

and it will correspond to a row of the Q table. Likewise, actions will be provided to

the environment in a finite set A “ ta0, . . . , a|A|´1u Ă Rk, and the distribution µ will

be estimated on the set of centroids X “ tx0, . . . , x|X |´1u Ă Rk identifying µpxiq as the

probability of the neighbor centered in xi. Then Algorithm 2 is ran on those spaces.

We will use the benchmark linear-quadratic models given in continuous time and space

for which we have explicit formulas given in Section 3.5. In that case, we use an Euler

discretization. We do not address here the error of approximation since the purpose of

this comparison with a benchmark is mainly for illustration.

4.3 Numerical experiments

We present the results obtained by applying the U2-MF-QL algorithm to the mean

field problems discussed in Section 3.5. These results show how the algorithm successfully

learns the MFG solution or the MFC solution based on simply tuning the learning rates.

Moreover, this shows that the algorithm manages to solve problems defined on continuous

time and continuous state, action spaces even though it is conceived for discrete problems.

Such applications require to apply truncation and discretization procedures to time, state

and actions which should be calibrated on a problem base.

We consider the problem defined by the choice of parameters: c1 “ 0.25, c2 “ 1.5,

c3 “ 0.50, c4 “ 0.6, c5 “ 5, discount parameter β “ 1 and volatility σ “ 0.3. The

infinite time horizon is truncated at time T “ 20. The continuous time is discretized

using step ∆t “ 10´2. Recall that γ in the discrete time setting corresponds to e´β∆t in

the continuous time setting. The action space is given by A “ ta0 “ ´1, . . . , aNA “ 1u

and the state space by X “ tx0 “ ´2 ` xc, . . . , xNX “ 2 ` xcu, where xc is the center
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of the state space. The step size for the discretization of the spaces X and A is given

by ∆. “
?

∆t “ 10´1. The state space X and the action space A have been chosen

large enough to make sure that the state is within the boundary most of the time. In

practice, this would have to be calibrated in a model-free way through experiments.

In this example, for the numerical experiments, we used the knowledge of the model.

In particular, we choose xc “ 0.5 for both examples. Note that if the problem under

consideration is posed on finite spaces, this issue does not occur since the domain is fixed.

The exploitation-exploration trade off is tackled on each episode using an ε´greedy policy,

see (2.2). In particular, the value of ε is fixed to 0.15.

We present the following results for both the MFG and MFC benchmark examples:

1. learning rates analyses;

2. learning of the controls and the ergodic distribution;

3. empirical error analyses;

4. empirical analyses of the stopping criteria.

4.3.1 Learning rates analyses

It is important to observe that even if in the MFC case the choice of ρµk below does

not satisfy the classical Robbins-Monro summability condition recalled in Section 4.1.4,

the numerical convergence of the algorithm is obtained suggesting that these requirements

may be relaxed in this framework. Failing in satisfying these conditions generates a noisy

approximation of the distribution µ in the MFC problem. However, averaging over the

last 10k episodes allows to minimize such noise as showed in the Figures below. Based on

the theoretical results given in [35], we define the learning rates appearing in Algorithm 2
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as follows:

ρQk,n,x,a “
1

p1`#|px, a, k, nq|qω
Q , ρµk “

1

p1` kqωµ
, (4.20)

where #|px, a, k, nq| is the number of times that the algorithm visited state x and performed

action a until episode k and time tn. The exponent ωQ can take values in p1
2
, 1q. The value

of ωµ is chosen depending on the value of ωQ and the cooperative or non-cooperative

nature of the problem we want to solve. The algorithm is run over 80ˆ 103 episodes over

the interval r0, T s.

Figures 4.2, 4.3, 4.4, 4.5: comparison of the learning rates. The solution of the

MFG benchmark is reached based on the choice pωQ, ωµq “ p0.55, 0.85q, such that ρµ ă ρQ.

As pointed out in section 4.1.4, by satisfying this relation the Q-function evolves faster

than the estimation of the distribution mimicking the solving scheme of a MFG. On the

other hand, the solution of the MFC benchmark can be obtained by opting for the pair

of parameters pωQ, ωµq “ p0.65, 0.15q such that ρµ ą ρQ. In figures 4.2, 4.3, 4.4, 4.5, we

suppose that #|px, a, k, 1q| “ k. The x´axis refers to the episode. The y´axis represents

the rate evaluated at episode k.
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Figure 4.2: MFG: learning rates over the
first 500 episodes
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Figure 4.3: MFC: learning rates over the
first 500 episodes
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Figure 4.4: MFG: learning rates over
80ˆ 103 episodes
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Figure 4.5: MFC: learning rates over
80ˆ 103 episodes

Figures 4.6, 4.7, 4.8, 4.9: Empirical check of the two timescale conditions.

The U2-MF-QL algorithm is based on an asynchronous QL approach which makes use

of different learning rates for each Qpx, aq based on the number of visits to the relative

state-action pair. An empirical check of the two timescale conditions presented in section

4.1.4 is presented in the following plots. The number of visits to each state depends

on their proximity to the mean of the ergodic distribution. As a proof of concept, the

learning rates for two different states in the MFG and MFC frameworks are analyzed

after 80ˆ 103 learning epochs. The plots on the left are relative to the state on the left

bound of X , while the plots on the right are relative to the closest state to the theoretical

mean. Each plot shows the value of the learning rates ρµk and ρQk,n,x,a together with the

counter of visits to each pair px, aq. The two timescale conditions are satisfied in each

plot. The number of visits changes from order 102 for the state on the border of X to

order 107 for the closest state to the ergodic mean. The x´axis refers to the action. The

left y´axis represents the learning rate. The right y´axis represents the counter of visits

for each state-action pair.
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Figure 4.6: MFG: comparison learning rates
for state x “ ´1.50
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Figure 4.7: MFG: comparison learning rates
for state x “ 0.80
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Figure 4.8: MFC: comparison learning rates
for state x “ ´1.50
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Figure 4.9: MFC: comparison learning rates
for state x “ 0.10

4.3.2 Learning of the controls and the ergodic distribution

Figures 4.10, 4.11, 4.12, 4.13, 4.14, 4.15: controls, distributions and value

functions learned by the algorithm. The controls and the distribution learned by the

algorithm are compared with the theoretical solution obtained in Section 3.5. As presented

in Sections 4.1.4, 4.1.5, the control αpxq is obtained as the arg minaQpx, aq. Similarly, the

value function V pxq can be recovered as minaQpx, aq. The x´axis represents the state

variable x. In Figures 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, the left y´axis relates to the action

αpxq. The right y´axis refers to the probability mass µpxq. The red (resp. blue) line
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shows the theoretical control function for the MFG (resp. MFC) problem. The black dots

are the controls learned by the algorithm. Note that the peak of the distribution µ is not

located at the same point x for MFG and MFC. Note that the peak of the distribution µ

is not located at the same point x for MFG and MFC. In Figures 4.10, 4.12, the y´axis

corresponds to the value function V pxq. The continuous lines refer to the theoretical

solution. The black dots are the numerical approximation recovered by the Q-function.

We observe that the algorithm converges to different solutions based on the choice of the

pair pωQ, ωµq. On the left, the choice pωQ, ωµq “ p0.55, 0.85q produces the approximation

of the solution of the MFG. On the right, the set of parameters pωQ, ωµq “ p0.65, 0.15q

lets the algorithm learn the solution of the MFC problem. In Figures 4.10 , 4.11 the

learned controls and the learned ergodic distribution is averaged over 10 runs. In Figures

4.12 , 4.13 the learned controls and the learned distribution µT is averaged over 10 runs

and the last 104 episodes.
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Figure 4.10: MFG: results averaged over 10
runs
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Figure 4.11: MFC: results averaged over 10
runs
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Figure 4.12: MFG: results averaged over 10
runs and last 10k episodes
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Figure 4.13: MFC: results averaged over 10
runs and last 10k episodes

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
state x

0.5

1.0

1.5

2.0

2.5

3.0

3.5

V(
x)

=
m
in a
Q
(x
,a
)

MFG MFC U2-MF-QL

Figure 4.14: MFG: value function
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Figure 4.15: MFC: value function

4.3.3 Empirical error analyses

Figures 4.16, 4.17: MSE error on the control. A metric used to evaluate the

numerical results consists in the mean squared error (MSE) of the controls learned by

episode k with respect to the theoretical solution presented in Section 3.5. In particular,

this metric considers the states x P X where the ergodic distribution µ̂ is mostly concen-

trated. Let CMFG Ă X be centered in m̂ s.t. µ̂pCMFGq “ 0.99, then the mean squared
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error by episode k for run i and its average over all runs are defined as

MSEαpi, kq “
1

|CMFG|

|CMFG|´1
ÿ

j“0

pαi,kpxjq ´ α̂pxjqq
2, MSEαpkq “

1

#runs

#runs
ÿ

i“0

MSEαpi, kq.

The x´axis represents the number of episodes used for learning. The y´axis represents

the mean squared error averaged over 10 runs (solid line) and its standard deviation

(shaded region).
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Figure 4.16: MFG: squared root of MSEαpkq
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Figure 4.17: MFC: squared root of MSEαpkq

Figures 4.18, 4.19: MSE on the ergodic mean. A metric used to evaluate the

numerical results consists in the squared error of the ergodic mean learned by episode

k compared with its theoretical value obtained in Section 3.5 averaged over the total

numbers of runs, i.e.

MSEmpkq “
1

#runs

#runs
ÿ

i“0

pmi,k
T ´ m̂q2.

The x´axis represents the number of episodes used for learning. The y´axis represents

the error averaged over 10 runs (solid line) and its standard deviation (shaded region).

For the MFG, the error in the approximation of the ergodic mean reduces both in mean

and standard deviation by increasing the number of episodes. For the MFC case, an

oscillating behavior is observed. The choice of ωµ “ 0.15 in the learning rates defined in

4.20 allows to quicker adjustment of the mean by allocating more weights on the most
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recent sample. In this way, the algorithm mimics the nature of the MFC problem at the

expense of a slower and more oscillating convergence.
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Figure 4.18: MFG: mean sqared error on m̂
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Figure 4.19: MFC: mean sqared error on m̂

4.3.4 Empirical analyses of the stopping criteria

Figures 4.20, 4.22, 4.21, 4.23: stopping criteria. The goal of the the U2-MF-QL

is to obtain a good approximation of the optimal controls and the ergodic distribution. As

presented in algorithm 2, the stopping criteria is based on the analyses of the progresses in

learning the optimal Q function and the ergodic distibution. The total variation and the

1, 1-norm between the start and the end of each episode is evaluated for the distribution

and the Q-table respectively as follows

δpµk´1
T , µkT q “

ÿ

xiPX

∣∣µkT pxiq ´ µk´1
T pxiq

∣∣, }Qk
´Qk´1

}1,1 “
ÿ

i,j

∣∣Qk
i,j ´Q

k´1
i,j

∣∣.
The algorithm stops when the increments are not significant anymore based on a threshold

given as input. The value of the threshold depends on the user’s needs and it may be

calibrated by a trial and error approach. The remaining plots show how these quantities

decrease as the number of episodes increase. The x´axis represents the number of episodes

used for learning. The y´axis represents the value of the total variation.
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Figure 4.20: MFG: total variation on µ
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Figure 4.21: MFG: total variation on Q
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Figure 4.22: MFC: total variation on µ
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Figure 4.23: MFC: total variation on Q
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Chapter 5

Mean Field Reinforcement Learning

for Finite Horizon Problems, with

Applications to Economics

Mean field games with interactions through the controls, sometimes called “extended”,

occur when the dynamics or the cost function of a typical player explicitly depends on

the empirical measure of the controls of the other players, and not just on their respective

states. Such games were first introduced by Gomes et al. [39, 41] and their investigation

quickly garnered interest.

Interaction through the controls’ distribution is particularly relevant in economics

and finance, see e.g. [50, 40, 26, 31, 43, 21] and [23] for a recent survey. Some aspects

of the PDE approach and the probabilistic approach to such games have been treated

respectively in [13, 14, 54] and in [26]. As in many fields, linear-quadratic models are

particularly appealing due to their tractability, see e.g. [4, 42] for applications to energy

production.

In Chapter 4, we proposed a unified two timescale Q-learning algorithm to solve
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both MFG and MFC problems in an infinite horizon stationary regime. The key idea

is to iteratively update estimates of the distribution and the Q-function with different

learning rates. Suitably choosing these learning rates enables the algorithm to learn

the solution of the MFG or the one of the MFC. A slow updating of the distribution

of the state leads to the Nash equilibrium of the competitive MFG and the algorithm

learns the corresponding optimal strategy. A rapid updating of the distribution leads

to learning of the optimal control of the corresponding cooperative MFC. Moreover, in

contrast with other approaches, our algorithm does not require the environment to output

the population distribution which means that a single agent can learn the solution of

mean field problems.

In this Chapter, we present the new approach introduced in our paper [7] to extend this

algorithm in two directions: finite horizon setting, and “extended” mean field problems

which involve the distribution of controls as well. That demonstrates the flexibility of our

two timescale algorithm and broadens the range of applications.

The rest of the Chapter is organized as follows. In Section 5.1, we introduce the

framework of finite horizon mean field games and mean field control problems. In

Section 5.2, we present the main ideas behind the two timescale approach in this context.

Based on this perspective, we introduce in Section 5.3 a reinforcement learning algorithm

to solve MFC and MFG problems. We then illustrate this method on two examples: a

mean field accumulation problem in Section 5.4 and an optimal execution problem for a

mean field of traders in Section 5.5.

Notation. For a random variable X, LpXq denotes its law. d and k are two positive

integers corresponding respectively to the state and the action dimensions. Unless

otherwise specified, ν will be used to denote a state-action distribution, and its first and

second marginals will respectively be denoted by µ and θ.
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5.1 Finite horizon mean field problems

In this section, we introduce the framework of mean field games and mean field control

problems on a finite horizon in a discrete time and discrete space framework. For the link

with finite player games, see e.g. [24].

5.1.1 Mean field games

Let X and A be finite sets corresponding to spaces of states and actions respectively.

We denote by ∆|X | the simplex in dimension |X |, which we identify with the space of

probability measures on X . ∆|XˆA| is defined similarly on the product space X ˆA. The

state follows a random evolution in which Xn`1 is determined as a function of the current

state Xn, the action αn, the state-action population distribution νn at time n, and some

noise. We introduce the transition probability function:

ppx1|x, a, νq, px, x1, a, νq P X ˆ X ˆAˆ∆|XˆA|,

which gives the probability to jump to state x1 when being at state x and using action a

and when the state-action population distribution is ν. For simplicity, we consider the

homogeneous case where this function does not depend on time, which corresponds, in the

continuous formulation, to the case where both b and σ are time-independent. Restoring

this time-dependence if needed is a straightforward procedure.

Let f : X ˆ A ˆ ∆|XˆA| Ñ R be a running cost function. We interpret fpx, a, νq

as the one-step cost, at any given time step, incurred to a representative agent who is

at state x and uses action a while the state-action population distribution is ν. Let

g : X ˆ∆|X | Ñ R be the terminal cost function depending on the pair px, µq, where µ is

the first marginal distribution of ν corresponding to the state population distribution.

For the sake of simplicity and without loss of generality, we consider the case where the
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function f and g are time-independent.

An extended mean field game equilibrium is defined as a pair pα̂, ν̂q where α̂ :

t0, . . . , T u ˆ X Ñ A and ν̂ “ pν̂nqnPt0,...,T u P p∆
|XˆA|qT`1 is a flow of probability distribu-

tions on X ˆA, such that the following two conditions hold:

1. α̂ is the minimizer of

αÑ JMFG
pα, ν̂q “ E

«

T´1
ÿ

n“0

fpXα,ν̂
n , αnpX

α,ν̂
n q, ν̂nq ` gpX

α,ν̂
T , µ̂T q

ff

,

where αnp¨q :“ αpn, ¨q and µ̂T is the first marginal of ν̂T corresponding to the terminal

state distribution. The process Xα,ν̂ has a given initial distribution µ0 P ∆|X | and

follows the dynamics

PpXα,ν̂
n`1 “ x1|Xα,ν̂

n “ x, αn “ a, νn “ ν̂nq “ ppx1|x, a, ν̂nq.

2. ν̂n “ LpX α̂,ν̂
n , α̂nq for all n P t0, . . . , T ´ 1u.

5.1.2 Mean field control

In contrast with the MFG problem – which corresponds to a Nash equilibrium, the

mean field control (MFC) problem is an optimization problem. It can be interpreted as

the problem posed to a social planner trying to find the optimal behavior of a population

so as to minimize a social cost (i.e., a cost averaged over the whole population). It is an

optimal control problem for a McKean-Vlasov dynamics: Find α˚ which minimizes

αÑ JMFC
pαq “ E

«

T´1
ÿ

n“0

fpXα
n , αnpX

α
n q, ν

α
n qdt` gpX

α
T , µ

α
T q

ff

,

where ναn is a shorthand notation for LpXα
n , αnpX

α
n qq and µαT is its first marginal at

terminal time T . The process Xα has initial distribution µ0 and dynamics

PpXα
n`1 “ x1|Xα

n “ x, αn “ a, νn “ ναn q “ ppx1|x, a, ναn q.
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The dynamics of X involves the law of this process, hence the terminology McKean-

Vlasov dynamics [60]. To alleviate notation we will sometimes write ν˚ “ να
˚

for the law

of the optimally controlled process.

Remark 4 Although the two problems look similar, they in general have different solutions,

i.e., α̂ ‰ α˚ and ν̂ ‰ ν˚, even when the functions in the cost and the dynamics are the

same, see e.g. [25].

Remark 5 Although the mean field paradigm is the same, the special case where the

interactions are only through the state distribution (i.e., the first marginal of ν) has at-

tracted more interest in the literature than the present general setup. However interactions

through the distribution of controls appears in many applications, particularly in economics

and finance as already mentioned in the introduction. See next sections for some examples.

Remark 6 Although the reinforcement learning literature typically focuses on infinite

horizon discounted problems, we focus here on finite horizon problems. This will cause

some numerical difficulties but is crucial for many applications.

5.2 Two timescale approach

5.2.1 State-value function

In the MFG framework, given a state-action population distribution sequence ν “

pνnqnPt0,...,T u and a deterministic policy α “ pαnqnPt0,...,T u, the state-value function of an

infinitesimal player at a given time step n is

V α
n,νpxq “ E

«

T´1
ÿ

n1“n

fpXα,ν
n1 , αn1pX

α,ν
n1 q, νn1q ` gpX

α,ν
T , µT q

ˇ

ˇ

ˇ
Xα,ν
n “ x

ff

.

Note that the JMFG and the V functions are related by:

JMFG
ν pαq “ EX0„µ0rV

α
0,νpX0qs.
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In the MFC case, since the dynamics is of MKV type, the value function is the value

function of the social planner and it takes the distribution ν as input, see e.g. [57, 68, 30,

64, 44, 33]. However, when the population is already evolving according to the sequence of

distributions να generated by a control α, the cost-to-go of an infinitesimal agent starting

at position x at time n and using control α too is simply a function of its position and is

given by

V α
n pxq “ E

«

T´1
ÿ

n1“n

fpXα
n1 , αn1pX

α
n1q, ν

α
n1q ` gpX

α
T , µ

α
T q

ˇ

ˇ

ˇ
Xα
n “ x

ff

.

5.2.2 Action-value function

As explained in the previous chapters, the state value function is useful as far as the

value of the game or control problem is concerned. However, it does not provide any

information about the equilibrium or optimal control α̂ or α˚. For this reason, one can

introduce the state-action value function, also called Q-function, which takes as inputs

not only a state x but also an action a.

Before moving on to the mean-field setup, let us recall that the definition of the

optimal Q-function for a classical MDP in the finite horizon framework is given by:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Q˚T px, aq “ gpxq, px, aq P X ˆA,

Q˚npx, aq “ min
α

E

«

T´1
ÿ

n1“n

fpXn1 , αn1pXn1qq ` gpXT q

ˇ

ˇ

ˇ
Xn “ x,An “ a

ff

,

n ă T, px, aq P X ˆA.

Using dynamic programming, it can be shown that pQ˚nqn is the solution of the Bellman

equation:

$

’

’

&

’

’

%

Q˚T px, aq “ gpxq, px, aq P X ˆA,

Q˚npx, aq “ fpx, aq `
ÿ

x1PX
ppx1|x, aqmin

a1
Q˚n`1px

1, a1q, n ă T, px, aq P X ˆA.
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The corresponding optimal value function pV ˚n qn is given by:

V ˚n pxq “ min
a
Q˚npx, aq, n ď T, x P X .

As mentioned above, one of the main advantages of computing the action-value function

instead of the value function is that from the former, one can directly recover the optimal

control at time n, given by arg minaPAQ
˚
npx, aq. This is particularly important in order

to design model-free methods, as we will see in the next section.

The above approach can be adapted to solve MFG by noticing that, when the

population behavior is given, the problem posed to a single representative agent is a

standard MDP. It can thus be tackled using a Q-function which implicitly depends on

the population distribution: given ν “ pνtnqn“0,...,T

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Q˚T,νpx, aq “ gpx, µT q, px, aq P X ˆA,

Q˚n,νpx, aq “ fpx, a, νnq

`
ÿ

x1PX
ppx1|x, a, νnqmin

a1
Q˚n`1,νpx

1, a1q, n ă T, px, aq P X ˆA.

This function characterizes, at each time step n, the optimal cost-to-go for an agent

starting at time n at state x, using action a for the first step, and then acting optimally for

the rest of the time steps, while the population evolution is given by ν “ pνnqn. However,

to find the Nash equilibrium, it is not sufficient to compute the Q-function for an arbitrary

sequence of distributions ν: we want to find Q˚ν˚ where ν˚ is the population evolution

generated by the optimal control computed from Q˚ν˚ . In the sequel, we will directly aim

at the Q-function Q˚ν˚ via a two timescale approach.

In the MFC problem the population distribution is not fixed while each player optimizes

because all the agents cooperate to choose a distribution which is optimal from the point

of view of the whole society. As a consequence, the optimization problem can not be

recast as a standard MDP. However we will show below that it is still possible to compute
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the social optimum using a modified Q-function (not involving explicitly the population

distribution). This major difficulty is treated in detail in the context of infinite horizon in

Section 4.1.3.

5.2.3 Unification through a two timescale approach

A simple approach to compute the MFG solution is to iteratively update the state-

action value function, Q, and the population distribution, ν: Starting with an initial

guess νp0q, repeat for k “ 0, 1, . . . ,

1. Solve the backward equation for Qpk`1q “ Q˚
νpkq

, which characterizes the optimal

state-action value function of a typical player if the population behavior is given by

νpkq:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Q
pk`1q
T px, aq “ gpx, µ

pkq
T q, px, aq P X ˆA,

Qpk`1q
n px, aq “ fpx, a, νpkqn q

`
ÿ

x1PX
ppx1|x, a, νpkqn qmin

a1
Q
pk`1q
n`1 px

1, a1q, n ă T, px, aq P X ˆA.

(5.1)

2. Solve the forward equation for µpk`1q (resp. νpk`1q), which characterizes the evolution

of the population state distribution (resp. state-action distribution) if everyone

uses the optimal control α
pk`1q
n pxq “ arg minaQ

pk`1q
n px, aq coming from the above

Q-function (assuming this control is uniquely defined for simplicity):

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

µ
pk`1q
0 pxq “ µ0pxq, x P X ,

ν
pk`1q
0 px, aq “ µ0pxq1a“αpk`1q

n pxq
, px, aq P X ˆA,

µ
pk`1q
n`1 pxq “

ÿ

x1PX
µpk`1q
n px1qppx|x1, αpk`1q

n px1q, νpk`1q
n q, 0 ď n ă T, x P X ,

ν
pk`1q
n`1 px, aq “ µ

pk`1q
n`1 pxq1a“αpk`1q

n`1 pxq
, 0 ď n ă T, px, aq P X ˆA.

(5.2)
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Here the evolution of the joint state-action population distribution is simply the product

of the state distribution and a Dirac mass:

νpk`1q
n “ µpk`1q

n b δ
α
pk`1q
n

.

This is because we assumed that the optimal control is given by a deterministic function

from X to A. If we were using randomized control, the Dirac mass would need to be

replaced by the distribution of controls.

To alleviate notation, let us introduce the operators rT : p∆|XˆA|qT`1 Ñ pR|XˆA|qT`1

and rP : pR|XˆA|qT`1 Ñ p∆|XˆA|qT`1 such that: (5.1) and (5.2) rewrite

Qpk`1q
“ rT pνpkqq, νpk`1q

“ rPpQpk`1q
q.

If this iteration procedure converges, we have Qpk`1q Ñ Qp8q, νpk`1q Ñ νp8q as k Ñ `8

for some Qp8q, νp8q satisfying

Qp8q “ rT pνp8qq, νp8q “ rPpQp8qq,

which implies that νp8q is the state-action equilibrium distribution of the MFG solution,

and the associated equilibrium control is given by: α
p8q
n pxq “ arg minaQ

p8q
n px, aq for each

n.

However, this procedure fails to converge in many MFG by lack of strict contraction

property. To remedy this issue, a simple twist is to introduce some kind of damping.

Building on this idea, we introduce the following iterative procedure, where pρ
pkq
Q qkě0 and

pρ
pkq
ν qkě0 are two sequences of learning rates:

Qpk`1q
“ p1´ ρ

pkq
Q qQ

pkq
` ρ

pkq
Q

rT pνpkqq, νpk`1q
“ p1´ ρpkqν qν

pkq
` ρpkqν

rPpQpk`1q
q.

For the sake of brevity, let us introduce the operators T : pR|XˆA|qT`1 ˆ p∆|XˆA|qT`1 Ñ

pR|XˆA|qT`1 and P : pR|XˆA|qT`1 ˆ p∆|XˆA|qT`1 Ñ p∆|XˆA|qT`1

T pQ, νq “ rT pνq ´Q, PpQ, νq “ rPpQq ´ ν.
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Then the above iterations can be written as

Qpk`1q
“ Qpkq ` ρ

pkq
Q T pQpkq, νpkqq, νpk`1q

“ νpkq ` ρpkqν PpQpk`1q, νpkqq. (5.3)

If ρ
pkq
ν ă ρ

pkq
Q , the Q-function is updated at a faster rate, while it is the converse if

ρ
pkq
ν ą ρ

pkq
Q . We can thus intuitively guess that these two regimes should converge to

different limits. Similar ideas have been studied by Borkar [15, 16] in the so-called two

timescales approach. The key insight comes from rewriting the (discrete time) iterations

in continuous time as a pair of ODEs. From [16, Chapter 6, Theorem 2], we expect to

have the following two situations:

• If ρ
pkq
ν ă ρ

pkq
Q , the system (5.3) tracks the ODE system

$

’

&

’

%

9Qptq “
1

ε
T pQptq, νptqq,

9νptq “ PpQptq, νptqq,

where ρ
pkq
ν {ρ

pkq
Q is thought of being of order ε ! 1. Hence, for any fixed ν̃, the

solution of

9Qptq “
1

ε
T pQptq, ν̃q,

is expected to converge as εÑ 0 to a Qν̃ such that T pQν̃ , ν̃q “ 0. This condition can

be interpreted as the fact that Qν̃ “ pQν̃
nqn“0,...,T is the state-action value function

of an infinitesimal agent facing the crowd distribution sequence ν̃ “ pν̃nqn“0,...,T .

Then the second ODE becomes

9νptq “ PpQνptq , νptqq,

which is expected to converge as tÑ `8 to a νp8q satisfying

PpQνp8q , νp8qq “ 0.

This condition means that νp8q and the associated control given by α̂npxq “

arg minaQ
νp8q

n px, aq form a Nash equilibrium.

86



Mean Field Reinforcement Learning for Finite Horizon Problems, with Applications to Economics
Chapter 5

• If ρ
pkq
ν ą ρ

pkq
Q , the system (5.3) tracks the ODE system

$

’

&

’

%

9Qptq “ T pQptq, νptqq,

9νptq “
1

ε
PpQptq, νptqq,

where ρ
pkq
Q {ρ

pkq
ν is thought of being of order ε ! 1. Here, for any fixed Q̃, the solution

of

9νptq “
1

ε
PpQ̃, νptqq,

is expected to converge as ε Ñ 0 to a νQ̃ such that PpQ̃, νQ̃q “ 0, meaning that

νQ̃ “ pνQ̃n qn“0,...,T is the distribution evolution of a population in which every agent

uses control α̃npxq “ arg mina Q̃npx, aq at time n. In fact, the definitions of α̃n and

νQ̃ need to be modified to take into account the first action px, aq. The details of

this crucial step for handling MFC were discussed in Section 4.1.3 .

Then the first ODE becomes

9Qptq “
1

ε
T pQptq, νQptqq,

which is expected to converge as tÑ `8 to a Qp8q such that

T pQp8q, νQp8qq “ 0.

This condition (in the modified MFC setup) means that the control α̂npxq “

arg minaQ
p8q
n px, aq is a MFC optimum and the induced optimal distribution is

νQ
p8q

.

The above iterative procedure is purely deterministic and allows us to understand

the rationale behind the two timescale approach. However, in practice we rarely have

access to the operators T and P. Instead, we will consider that we only have access to

noisy versions and we use intuition from stochastic approximation to design an algorithm.
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Instead of assuming that we know the dynamics or the cost functions, we will simply

assume that the learning agent can interact with an environment from which she can

sample stochastic transitions as discussed in Section 4.2.1.

5.3 Reinforcement Learning Algorithm

In this Section we propose an extension of the Unified Two Timescales Mean Field

Q-learning (U2-MF-QL) algorithm discussed in Section 4.2.1 to tackle MFG and MFC

problems in the finite horizon framework. After introducing the algorithm, we will discuss

how to adapt the learning rates schedule to the new framework and how to apply the

algorithm to continuous problems.

5.3.1 U2-MF-QL-FH: an extension for the finite horizon frame-

work

The U2-MF-QL algorithm represents a unified approach to solve asymptotic Mean

Field Games and Mean Field Control problems based on the relationship between two

learning rates relative to the update rules of the Q table and the distribution of the

population µ respectively. Based on the intuition presented in Section 5.2, a choice of

learning rates pρQ, ρµq such that ρQ ą ρµ allows the algorithm to solve a MFG problem.

The estimation of Q is updated at a faster pace with respect to the distribution which

behaves as quasi-static mimicking the freezing of the flow of measures characteristic of the

solving scheme discussed in Section 5.1.1. On the other hand, learning rates satisfying

ρQ ă ρµ allow the algorithm to update instantaneously the control function (Q table)

at any change of the distribution reproducing the MFC framework. Under suitable

assumptions, one may expect the asymptotic problems to be characterized by controls
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that are independent of time. In this case, the learning goals reduce to a control function

valid for every time point and the asymptotic distribution of the states of the population.

The finite horizon framework presented in Sections 5.1.1 and 5.1.2 differs from the

asymptotic case discussed in Chapter 4 in several ways other than the restriction on the

finite time interval r0, T s. First, the mean field interaction is through the joint distribution

of states and actions of the population rather than the marginal distribution of the states.

Further, both the control rule and the mean field distribution are generally time dependent.

Due to these differences, the 2´dimensional matrix Q in U2-MF-QL is replaced by a

3´dimensional matrix Q :“ pQnp¨, ¨qqn“0,...,T “ pQp¨, ¨, nqqn“0,...,T in the finite horizon

version of the algorithm (U2-MF-QL-FH). The extra dimension is introduced to learn a

time dependent control function.

The Unified Two Timescales Mean Field Q-learning for Finite Horizon problems (U2-MF-

QL-FH) is designed to solve problems with finite state and action spaces in finite and

discrete time.
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Algorithm 3 Unified Two Timescales Mean Field Q-learning - Finite Horizon

Require: T : number of time steps,

X “ tx0, . . . , x|X |´1u, A “ ta0, . . . , a|A|´1u : finite state and action spaces,

µ0 : initial distribution of the representative player,

ε : factor related to the ε´greedy policy,

tolν , tolQ : break rule tolerances.

1: Initialization: episode k “ 0

Qk
np¨, ¨q :“ Qkp¨, ¨, nq “ 0 for all px, aq P X ˆA, for n “ 0, . . . , T ,

νkn “
1

|XˆA|J|XˆA| for n “ 0, . . . , T where Jdˆm is an dˆm unit matrix

2: repeat

3: k “ k ` 1

4: Observe Xk
0 „ µ0

5: for nÐ 0 to T ´ 1 do

6: Choose action Akn using the ε-greedy policy derived from Qk´1
n pXk

n, ¨q

7: Update ν:

νkn “ νk´1
n ` ρνkpδpX

k
n, A

k
nq ´ ν

k´1
n q

where δpXk
n, A

k
nq “

`

1x,apX
k
n, A

k
nq
˘

xPX ,aPA

Observe cost fn`1 “ fpXk
n, A

k
n, ν

k
nq and state Xk

n`1 provided by the environment

8: Update Qn:

Qk
npx, aq :“

$

’

’

&

’

’

%

Qk´1
n px, aq ` ρQnx,a,krB ´Qk´1

n px, aqs if pXk
n, A

k
nq “ px, aq

Qk´1
n px, aq o.w.

where

B :“

$

’

’

&

’

’

%

fn`1 ` γmina1PAQ
k´1
n`1pX

k
n`1, a

1q, if n ă T

fn`1, o.w.

9: end for

10: until ||νkn ´ νk´1
n ||1 ď tolν and }Qk

n ´Q
k´1
n }1,1 ă tolQ for all n “ 0, . . . , T
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The same algorithm can be applied to MFG and MFC problems where the the inter-

action with the population is through the marginal distribution of the states µ P PpX q

or the law of the controls θ P PpAq. In these cases the estimation of the flow of

marginal distributions is obtained through the vectors pµnqn“0,...,T (resp. pθnqn“0,...,T )

defined on the space X (resp. A). The initialization is given by µ0
n “

”

1
|X | , . . . ,

1
|X |

ı

´

resp. θ0
n “

”

1
|A| , . . . ,

1
|A|

ı¯

for n “ 0, . . . , T . The update rule at episode k is given

by µkn “ µk´1
n ` ρµkpδpXnq ´ µk´1

n q
`

resp. θkn “ θk´1
n ` ρθkpδpAnq ´ θ

k´1
n

˘

where δpXnq “

“

1x0pXnq, . . . ,1x|X |´1
pXnq

‰ `

resp. δpAnq “
“

1a0pAnq, . . . ,1a|A|´1
pAnq

‰˘

for n “ 0, . . . , T .

5.3.2 Learning rates

The algorithm 3 is based on two stochastic approximation rules for the distribution ν

and the 3´dim matrix Q. The design of the learning is discussed widely in the literature,

in a general context by [15] and [16], and with focus in reinforcement learning by [17]

and [35]. Based on experimental evidences, we define the learning rates appearing in

Algorithm 3 as follows:

ρQnx,a,k “
1

p1` T#|px, a, n, kq|qω
Q , ρνk “

1

p1` kqων
, (5.6)

where #|px, a, n, kq| is counting the number of visits of the pair px, aq at a given time step

n until episode k. Differently from the asymptotic version of the algorithm presented in

Section 4.3.1 for which each pair px, aq has a unique counter for all time points, in the

finite horizon formulation a distinct counter #|px, a, n, kq| is defined for each time point

n. This choice of learning rates allows to update each matrix Qn in an asynchronous way.

The exponent ωQ can take values in p1
2
, 1s. As presented in Section 5.2.3, the pair pωQ, ωνq

is chosen depending on the particular problem to solve. In a competitive framework

(MFG), these parameters have to be searched in the set of values for which the condition
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ρQ ą ρν is satisfied at each iteration. On the other hand, a good choice for the cooperative

case (MFC) should satisfy the condition ρQ ă ρν .

5.3.3 Application to continuous problems

Although it is presented in a setting with finite state and action spaces, the application

of the algorithm U2-MF-QL-FH can be extended to continuous problems. Such adaptation

requires truncation and discretization procedures to time, state and action spaces which

should be calibrated based on the specific problem.

In practice, a continuous time interval r0, T s would be replaced by a uniform dis-

cretization τ “ ttnunPt0,...,NT u. The environment would provide the new state and re-

ward at these discrete times. The continuous state would be projected on a finite set

X “ tx0, . . . , x|X |´1u Ă Rd. Likewise, actions will be provided to the environment in

a finite set A “ ta0, . . . , a|A|´1u Ă Rk, where the projected distribution ν would be

estimated. Then Algorithm 3 is ran on those spaces.

In the problems presented in Section 5.5, we will use the benchmark linear-quadratic

models given in continuous time and space for which we present explicit formulas. In that

case, we use an Euler discretization of the dynamics followed by a projection on X . We

do not address here the error of approximation since the purpose of this comparison with

a benchmark is mainly for illustration.

5.4 A mean field accumulation problem

5.4.1 Description of the problem

A further application of mean field theory to economics is given by the mean field

capital accumulation problem by Huang in [50]. In this paper, the author studies an
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extension of the the classical one-agent modeling of optimal stochastic growth to an

infinite population of symmetric agents. We introduce the model following the author’s

presentation.

At discrete time t P Z`, the wealth of the representative agent is represented by a process

Xα,θ
t characterized by the dynamics

Xα,θ
t`1 “ G

ˆ
ż

adθtpaq,Wt

˙

αt (5.7)

where α “ pαtq0ďtďT is the controlled variable denoting the agent’s investment for produc-

tion, G
`ş

adθtpaq,Wt

˘

is the production function, θ “ pθtq0ďtďT is the mean field term

represented by the law of the investment level of the population,
ş

adθtpaq is its mean, and

W “ pWtq0ďtďT is a random disturbance. At each time t, the control αt can only take

values in r0, Xα,θ
t s so that Supppθtq Ď r0, X

α,θ
t s, implying that borrowing is not allowed.

The wealth remaining after investment is all consumed, i.e. the consumption variable ct

is equal to ct “ Xα,θ
t ´ αt. The model is based on the following assumptions:

(A1) W is a random noise source with support DW . The initial state Xt0 is a positive

random variable independent of W with mean m0;

(A2) The function G : r0,8q ˆDW ÞÑ r0,8q is continuous. If w P DW is fixed, Gpz, wq

is a decreasing function of z;

(A3) EGp0,W q ă 8 and EGpz,W q ą 0 for each z P r0,8q.

The multiplicative factor G in the dynamics of the wealth process Xα,θ
t shows the direct

dependence of the wealth on both the individual investment and the population aggregated

investment. Further, assumption (A2) relates to the negative mean field impact explained

as the loss in production efficiency when the aggregated investment increases. An example
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for the function G is given by Gpz, wq “ βw
1`δzη

, where β, δ, η are non negative parameters.

Let W be a positive random noise with mean equal to 1. Then DW Ă r0,8q and (A2) -

(A3) are satisfied.

The goal of the agent is to optimize the expected aggregated discounted utility of

consumption given by

Jpα,θq “ E
T
ÿ

t“0

ρtvpctq “ E
T
ÿ

t“0

ρtvpXα,θ
t ´ αtq, (5.8)

where ρ P p0, 1s is the discount factor. In particular, the author of [50] analyses the case

of a Hyperbolic Absolute Risk Aversion (HARA) utility function defined as

vpctq “ vpXα,θ
t ´ αtq :“

1

γ
pXα,θ

t ´ αtq
γ, (5.9)

where γ P p0, 1q.

5.4.2 Solution of the MFG

In a competitive game setting, the resulting mean field game problem has solution given

by Theorem 3 of Section 3.2 and Theorem 6 of Section 4 in [50]. Let denote the functions

Φpzq, φpzq and Ψpzq as follows

Φpzq “ ρEGγ
pz,W q, φpzq “ Φpzq

1
γ´1 , Ψpzq “ EGpz,W q.

Let suppose that the mean field interaction is through pztqt“0,...,T the first moment of the

flow of measures θ “ pθtqt“0,...,T . The relative value function is defined as

V θpt, xq “ sup
α

E

«

T
ÿ

s“t

ρsvpXα,θ
s ´ αsq|X

α,θ
t “ x

ff

.
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The value function is equal to V θpt, xq “ 1
γ
Dγ´1
t xγ, where Dt can be obtained using the

recursive formula

Dt “
φpztqDt`1

1` φpztqDt`1

, DT “ 1.

The optimal control w.r.t. θ is given by

α̂tpxq “
x

1` φpztqDt`1

, t ď T ´ 1, α̂T “ 0.

The equivalent of the Nash equilibrium in the mean field limit is obtained by solving the

fixed point equation

pΛ0, . . . ,ΛT´1qpz0, . . . , zT´1q “ pz0, . . . , zT´1q,

where

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Λ0pz0, . . . , zT´1q :“ 1`φpzT´1q`¨¨¨`φpzT´1q...φpz1q

1`φpzT´1q`¨¨¨`φpzT´1q...φpz0q
m0,

Λkpz0, . . . , zT´1q :“

:“ 1`φpzT´1q`¨¨¨`φpzT´1q...φpzk`1q

1`φpzT´1q`¨¨¨`φpzT´1q...φpz0q
Ψpzk´1q . . .Ψpz0qm0, for 1 ď k ď T ´ 2,

ΛT´1pz0, . . . , zT´1q :“

:“ 1
1`φpzT´1q`¨¨¨`φpzT´1q...φpz0q

ΨpzT´2q . . .Ψpz0qm0, for k “ T ´ 1.

Example 5.4.1 A simple example is proposed in Section 3.3 of [50]. Let T be equal to 2

and pz0, z1q be given. The solution is defined by

D0 “
φpz1qφpz0q

1` φpz1q ` φpz1qφpz0q
, D1 “

φpz1q

1` φpz1q
, D2 “ 1,

with controls

α̂0pxq “
p1` φpz1qqx

1` φpz1q ` φpz1qφpz0q
, α̂1pxq “

x

1` φpz1q ` φpz1qφpz0q
, α̂2pxq “ 0.
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5.4.3 Solution of the MFC

We now turn our attention to the cooperative setting. For this problem, we are not

aware of any explicit solution for the social optimum. Instead, we employ the numerical

method proposed in [27] and use the result as a benchmark. We recall how this method

works in our context. The initial problem is to minimize over α:

Jpαq “ E
T
ÿ

t“0

ρtvpctq “ E
T
ÿ

t“0

ρtvpXα
t ´ αtq,

subject to: Xα
0 has a fixed distribution and

Xα
t`1 “ GpErαts,Wtqαt, t ą 0.

This problem is approximated by the following one. We fix an architecture of neural

network with input in R2 and output in R. Such neural networks are going to play the

role of the control function, in a Markovian feedback form. The inputs are the time and

space variables, and the output is the value of the control. Then the goal is to minimize

over parameters ω of neural networks with this architecture the following function:

rJNpωq “ E

«

1

N

N
ÿ

i“1

T
ÿ

t“0

ρtvpcitq

ff

“ E

«

1

N

N
ÿ

i“1

T
ÿ

t“0

ρtvpX i,ϕω
t ´ ϕωpt,X

i,ϕω
t qq

ff

,

subject to: X i,ϕω
0 , i “ 1, . . . , N are i.i.d. with fixed distribution and

X i,ϕω
t “ G

˜

1

N

N
ÿ

j“1

ϕωpt,X
j,ϕω
t q,W i

t

¸

ϕωpt,X
i,ϕω
t q, t ą 0, i “ 1, . . . , N.

Notice that the parameters ω are used to compute the X i,ϕω
t for every i and every t. The

mean of the control Erαts is replaced by an empirical average over N samples. For this

problem, an approximate minimizer is computed by running stochastic gradient descent

(SGD for short) or one of its variants. At iteration k, we have a candidate ωk for the

parameters of the neural network. We randomly pick initial positionsX0 :“ pX
i,ϕωk
0 qi“1,...,N

and noises W :“ pW i
t qt“1,...,T,i“1,...,N . Based on this, we simulate trajectories pX

i,ϕωk
t qt,i
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and compute the associated cost, namely the term inside the expectation in the definition

of rJNpωq:

Lpωk;X0,W q :“
1

N

N
ÿ

i“1

T
ÿ

t“0

ρtvpX
i,ϕωk
t ´ ϕωkpt,X

i,ϕωk
t qq.

Using backpropagation, the gradient ∇ωLpωk;X0,W q of this cost with respect to ω is

computed, and it is used to update the parameters. We thus obtain ωk`1 defined by:

ωk`1 “ ωk ´ ηk∇ωLpωk;X0,W q,

where ηk ą 0 is the learning rate used at iteration k. In our implementation for the

numerical results presented below, instead of the plain SGD algorithm we used Adam

optimizer [53].

5.4.4 Numerical results

In this section, numerical results of the application of the U2-MF-QL-FH algorithm

to the mean field capital accumulation problem are presented. The interaction with the

population is through the law of the controls. The algorithm 3 was adapted to this case

as discussed in Section 5.3.1.

The problem analyzed is a specific case of the Example 5.4.1. For more details we refer to

[50, Sections 6.3 and 7, Example 18].

The production function is defined as follows

Gpz,W q “ gpzqW, gpzq “
1

ρErW γs

C

1` pC ´ 1qz3
, (5.10)

where W has support DW “ t0.9, 1.3u with corresponding probabilities r0.75, 0.25s, C

is equal to 3, the discount factor ρ is equal to 0.95 and the parameter γ of the utility

function defined in equation (5.9) is equal to 0.2. The distribution of Xα,θ
0 is uniform in

r0, 1s.

This problem is characterized by discrete time and continuous state and action spaces. In

97



Mean Field Reinforcement Learning for Finite Horizon Problems, with Applications to Economics
Chapter 5

order to apply the U2-MF-QL-FH algorithm, these spaces are truncated and discretized

as discussed in Section 5.3.3. They have been chosen large enough to make sure that

the state is within the boundary most of the time. In practice, this would have to be

calibrated in a model-free way through experiments. In this example, for the numerical

experiments, we used the knowledge of the model.

The action space is given by A “ ta0 “ 0, . . . , a|A|´1 “ 4u and the state space by

X “ tx0 “ 0, . . . , x|X |´1 “ 4u. The step size for the discretization of the state and action

spaces is given by 0.05.

The algorithm 3 is adapted to this particular example. Since borrowing is not allowed,

the set of admissible action at state x is given by Apxq “ ta P A if a ď xu Ď A. The

exploitation-exploration trade off is tackled on each episode using an ε´greedy policy.

Supposed that the agent is in state x, the algorithm chooses a random action in Apxq

with probability ε and the action in Apxq which results optimal based on the current

estimation with probability 1´ ε. In our example, the value of epsilon is fixed to 0.15.

The following numerical results show how the U2-MF-QL-FH algorithm is able to learn

an approximation of the control function and the mean field term in the MFG and MFC

cases depending on the choice of the parameters pωQ, ωθq.

Learning of the controls

Figures 5.1, 5.2, 5.3, 5.4,5.5, 5.6: controls learned by the algorithm. The

controls learned by the U2-MF-QL-FH algorithm are compared with the benchmark

solutions. Each plot corresponds to a different time point t P t0, 1, 2u. The x´axis

represents the state variable x. The y´axis relates to the action αtpxq. The blue (resp.

green) markers show the benchmark control function for the MFG (resp. MFC) problem.
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The red markers are the controls learned by the algorithm. The plots show how the

algorithm converges to different solutions based on the choice of the pair pωQ, ωθq. On

the left, the choice pωQ, ωθq “ p0.55, 0.85q produces the approximation of the solution of

the MFG. On the right, the set of parameters pωQ, ωθq “ p0.7, 0.05q lets the algorithm

learn the solution of the MFC problem. The results presented in the Figures are averaged

over 10 runs.
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Figure 5.1: Learned Controls for MFG
at time 0.
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Figure 5.2: Learned Controls for MFC
at time 0.
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Figure 5.3: Learned Controls for MFG
at time 1.
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Figure 5.4: Learned Controls for MFC
at time 1.
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Figure 5.5: Learned Controls for MFG
at time 2.
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Figure 5.6: Learned Controls for MFC
at time 2.

Learning of the mean field

Figures 5.7, 5.8, 5.9, 5.10, 5.11, 5.12: E rαts learned by the algorithm. The

estimation of the first moment of the distribution of the controls evolves with respect the

number of learning episodes. The estimated quantity is compared with the benchmarks

presented in Sections 5.4.2 and 5.4.3. Each plot corresponds to a different time point

t P t0, 1, 2u. The x´axis represents the learning episode k. The y´axis relates to the

estimate of the first moment of the mean field E
“

αkt
‰

obtained by episode k. The blue

(resp. green) line shows the benchmark solution for the MFG (resp. MFC) problem. The

red dots are the estimates learned by the algorithm. On the left, the algorithm reaches

the solution of the MFG based on the parameters pωQ, ωθq “ p0.55, 0.85q. On the right,

the values pωQ, ωθq “ p0.7, 0.05q allows the algorithm to converge to the solution of the

MFC problem. The results presented in the Figures are averaged over 10 runs.
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Figure 5.7: Learned control’s mean for
MFG at time 0.
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Figure 5.8: Learned control’s mean for
MFC at time 0.
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Figure 5.9: Learned control’s mean for
MFG at time 1.
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Figure 5.10: Learned control’s mean
for MFC at time 1.
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Figure 5.11: Learned control’s mean
for MFG at time 2.
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Figure 5.12: Learned control’s mean
for MFC at time 2.

101



Mean Field Reinforcement Learning for Finite Horizon Problems, with Applications to Economics
Chapter 5

5.5 A mean field execution problem

We now consider the Price Impact Model as an example of application to finance

originally studied by Carmona and Lacker in [26], and presented in the book of Carmona

and Delarue [24, Vol I, Sections 1.3.2 and 4.7.1]. This model addresses the question of

optimal execution in the context of high frequency trading when a large group of traders

want to buy or sell shares before a given time horizon T (e.g., one day). The price of the

stock is influenced by the actions of the traders: if they buy, the price goes up, whereas if

they sell, the price goes down. This effect is stronger if a significant proportion of traders

buy or sell at the same time. Incorporating such a price impact naturally leads to a

problem with mean field interactions through the traders’ actions.

Approaching this problem as a mean field game, the inventory of the representative

trader is modeled by a stochastic process pXtq0ďtďT such that

dXt “ αtdt` σdWt, t P r0, T s,

where αt corresponds to the trading rate and W is a standard Brownian motion. The

noise term σdWt models a random stream of demand that a broker may receive from her

clients. The price of the asset pStq0ďtďT is influenced by the trading strategies of all the

traders through the mean of the law of the controls pθt “ Lpαtqq0ďtďT as follows:

dSt “ γ

ˆ
ż

R
adθtpaq

˙

dt` σ0dW
0
t , t P r0, T s,

where γ and σ0 are constants and the Brownian motion W 0 is independent from W . The

amount of cash held by the trader at time t is denoted by the process pKtq0ďtďT . The

dynamic of K is modeled by

dKt “ ´rαtSt ` cαpαtqsdt,

where the function α ÞÑ cαpαq is a non-negative convex function satisfying cαp0q “ 0,

representing the cost for trading at rate α. The wealth Vt of the trader at time t is defined
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as the sum of the cash held by the trader and the value of the inventory with respect to

the price St:

Vt “ Kt `XtSt.

Applying the self-financing condition of Black-Scholes’ theory, the changes over time of

the wealth V are given by the equation:

dVt “ dKt `XtdSt ` StdXt

“

”

´ cαpαtq ` γXt

ż

R
adθtpaq

ı

dt` σStdWt ` σ0XtdW
0
t .

(5.11)

We assume that the trader is subject to a running liquidation constraint modeled by a

function cX of the shares they hold, and to a terminal liquidation constraint at maturity

T represented by a scalar function g. Thus, the cost function is defined by:

Jpαq “ E
”

ż T

0

cXpXtqdt` gpXT q ´ VT

ı

,

where the terminal wealth VT is taken into account with a negative sign as the cost

function is to be minimized. From equation (5.11), it follows that

Jpαq “ E
”

ż T

0

fpt,Xt, θt, αtqdt` gpXT q

ı

,

where the running cost is defined by

fpt, x, θ, αq “ cαpαq ` cXpxq ´ γx

ż

R
adθpaq,

for 0 ď t ď T , x P Rd, θ P PpAq and α P A “ R. We assume that the functions cX and

g are quadratic and that the function cα is strongly convex in the sense that its second

derivative is bounded away from 0. See [26] for other technical assumptions. Such a

particular case is known as the Almgren-Chriss linear price impact model. Thus, the

control is chosen to minimize:

Jpαq “ E
„
ż T

0

ˆ

cα
2
αt

2
`
cX
2
X2
t ´ γXt

ż

R
adθtpaq

˙

dt`
cg
2
X2
T



,
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over α P A. To summarize, the running cost consists of three components. The first

term represents the cost for trading at rate α. The second term takes into consideration

the running liquidation constraint in order to penalize unwanted inventories. The third

term defines the actual price impact. Finally, the terminal cost represents the terminal

liquidation constraint.

5.5.1 The MFG trader problem

Referring to Section 5.1.1, the MFG problem is solved by first solving a standard

stochastic control problem where the flow of distribution of control is given and then,

solving a fixed point problem ensuring that this flow of distribution is identical to the

flow of distributions of the optimal control. We adopt here the FBSDE approach where

the backward variable represents the derivative of the value function. In other words, the

optimal control is obtained by minimizing the Hamiltonian

Hpx, α, θ, yq “

ˆ

cα
2
α2
`
cX
2
x2
´ γx

ż

R
adθpaq

˙

` αy, (5.12)

to obtain

α̂t “ ´
1

cα
Yt, (5.13)

where pX, Y q solves the FBSDE system obtained via the Pontryagin approach:

$

’

’

&

’

’

%

dXt “ ´
1

cα
Ytdt` σdWt, X0 „ µ0

dYt “ ´

ˆ

cXXt `
γ

cα
ErYts

˙

dt` ZtdWt, YT “ cgXT .

(5.14)

Solution of the MFG problem

The solution of the mean field game case is discussed in details in [24, Vol I, Sections

1.3.2 and 4.7.1]. In a nutshell, one takes expectation in (5.14) to obtain a system of

forward-backward ODEs for the mean of Xt denoted by x̄t and the mean of Yt denoted
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by ȳt. This system is solved using the ansatz ȳt “ η̄tx̄t ` χ̄t. The coefficient function η̄t

satisfies a Riccati equation which admits the solution:

η̄t “
´Cpepδ

`´δ´qpT´tq ´ 1q ´ cgpδ
`epδ

`´δ´qpT´tq ´ δ´q

pδ´epδ`´δ´qpT´tq ´ δ`q ´ cgBpepδ
`´δ´qpT´tq ´ 1q

,

for t P r0, T s, where B “ 1{cα, C “ cX , δ
˘ “ ´D˘

?
R, with D “ ´γ{p2cαq, R “ D2`BC

and x̄0 “ ErX0s. Additionally, we found χ̄t “ 0, and

x̄t “ x̄0e
´
şt
0
η̄s
cα
ds.

The FBSDE system (5.14) is solved by replacing ErYts with the explicit expression

for ȳt “ η̄tx̄t ` χ̄t, and using the ansatz Yt “ ηtXt ` χt. One finds the following explicit

formulas for the coefficient functions ηt and χt:

ηt “ ´cα
a

cX{cα
cα
a

cX{cα ´ cg ´ pcα
a

cX{cα ` cgqe
2
?
cX{cαpT´tq

cα
a

cX{cα ´ cg ` pcα
a

cX{cα ` cgqe
2
?
cX{cαpT´tq

,

χt “ pη̄t ´ ηtqx̄t.

Finally, the optimal control (5.13) is given by α̂t “ α̂pt,Xtq where

α̂pt, xq “ ´
1

cα
pηtx` pη̄t ´ ηtqx̄tq . (5.15)

5.5.2 The MFC trader problem

In the case of mean field control (i.e., control of McKean-Vlasov dynamics), following [1,

Theorem 3.2] and [58, Section 5.3.2], we find that the optimal control is given by

α˚t “ ´
1

cα
pYt ´ γErXtsq , (5.16)

which differs from the equilibrium control (5.13) from the MFG solution because the

optimality condition in the MFC case involves the derivative of the Hamiltonian (5.12)

with respect to the distribution of controls. More precisely, we have

0 “ BαHpXt, αt, θt, Ytq ` Ẽ
”

BθHpX̃t, α̃t, θ̃t, Ỹtqpαtq
ı

“ cααt ` Yt ´ γErXts.
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Then, the corresponding FBSDE system becomes

$

’

’

&

’

’

%

dXt “ ´
1

cα
pYt ´ γErXtsq dt` σdWt, X0 „ µ0

dYt “ ´

ˆ

cXXt `
γ

cα
ErYts ´

γ2

cα
ErXts

˙

dt` ZtdWt, YT “ cgXT .

(5.17)

As a consequence, the two FBSDE systems (5.14) and (5.17) respectively for MFG and

MFC differ.

Solution of the MFC problem

The approach to obtain the solution of the MFC problem is similar to what was

presented in Section 5.5.1 for the MFG, but taking into consideration the extra terms

due to the derivative of the Hamiltonian with respect to the distribution of controls.

First, taking expectation in (5.17), one obtains the following system of forward-

backward ODEs:
$

’

’

&

’

’

%

9̄xt “ ´
1

cα
pȳt ´ γx̄tq , x̄0 “ x0,

9̄yt “ ´

ˆ

cX x̄t `
γ

cα
ȳt ´

γ2

cα
x̄t

˙

, ȳT “ cgx̄T .

(5.18)

Using the ansatz ȳt “ φ̄tx̄t ` ψ̄t, we deduce that the coefficient functions φ̄t and ψ̄t must

satisfy
$

’

’

&

’

’

%

9̄φt ` 2
γ

cα
φ̄t ´

1

cα
φ̄2
t ` cX ´

γ2

cα
, φ̄T “ cg,

9̄ψt `
1

cα
pγ ´ φ̄tqψ̄t “ 0, ψ̄T “ 0.

(5.19)

From the second equation we get ψ̄t “ 0 for all t P r0, T s, and solving the Riccati equation

for φ̄t, we obtain:

φ̄t “ ´
1

R

pc2 `Rcgqc1e
pT´tqpc2´c1q ´ c2pc1 `Rcgq

pc2 `RcgqepT´tqpc2´c1q ´ pc1 `Rcgq
, (5.20)

where c1{2 “
´a˘

?
a2´4b

2
are the roots of c2 ` ac` b “ 0, with a “ 2γR, b “ Rpγ2R ´ cXq,

and R “ 1{cα.
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Using ȳt “ φ̄tx̄t in the first equation of (5.18), we obtain a first-order linear equation

for x̄t which admits the solution

x̄t “ x̄0e
´ 1
cα
p
şt
0 φ̄sds´γtq. (5.21)

The solution of the McKean-Vlasov FBSDE system (5.17) is obtained using the ansatz

Yt “ φtXt ` ψt. Observe that the drift terms in the equations for Yt in the systems (5.14)

and (5.17) have the same linear component ´cXXt. Due to this similarity, the slope

coefficient functions ηt and φt are identical;

ηt “ φt, for all t P r0, T s.

However, the function ψt “ pφ̄t ´ φtqx̄t differs from χt in the MFG case due to the new

formulations of φ̄t and x̄t given in (5.20) and (5.21). Finally, the optimal control (5.16) is

given by α˚t “ α˚pt,Xtq where

α˚pt, xq “ ´
1

cα

`

φtx` pφ̄t ´ φt ´ γqx̄t
˘

. (5.22)

5.5.3 Numerical results

In this section, numerical results of the application of the U2-MF-QL-FH algorithm to

the trader problem are discussed. As in the case of the mean field capital accumulation

problem, the interaction with the population is through the law of the controls. The

algorithm 3 is adapted to this case as discussed in Section 5.3.1.

We consider the problem defined by the choice of parameters: cα “ 1, cx “ 2, γ “ 1.75,

and cg “ 0.3. The time horizon is equal to T “ 1. The distribution of the inventory

process at initial time Xt0 is Gaussian with mean 0.5 and standard deviation 0.3. The

volatility of the process Xt is given by σ “ 0.5.

This problem is characterized by continuous time and continuous state and action spaces.
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In order to solve this problem using the U2-MF-QL-FH algorithm, truncation and

discretization techniques together with a projector operator are applied. The time interval

r0, T s is uniformly discretized as τ “ tt0, . . . , tNT “ T u with ∆t “ 1{16. The state and

action spaces are truncated and discretized as discussed in Section 5.3.3. The truncation

parameters are chosen large enough to make sure that the state is within the boundary

most of the time. This may induce a different truncation in the MFG and the MFC

version of each problem.

In the MFG (resp. MFC), the action space is given by A “ ta0 “ ´2.5, . . . , a|A|´1 “

1u (resp. A “ ta0 “ ´0.25, . . . , a|A|´1 “ 5u) and the state space by X “ tx0 “

´1.5, . . . , x|X |´1 “ 1.75u (resp. X “ tx0 “ ´0.75, . . . , x|X |´1 “ 4u). The step size for

the discretization of the spaces A, and X is given by ∆a “ ∆x “
?

∆t “ 1{4. The

exploitation-exploration trade off is tackled on each episode using an ε´greedy policy.

Suppose the agent is in state x, the algorithm picks the action that is optimal based on

the current estimates with probability 1´ ε and a random action in A with probability ε.

In particular, the value of ε is fixed to 0.1.

The following numerical results show how the U2-MF-QL-FH algorithm is able to learn

an approximation of the control function and the mean field term in the MFG and MFC

cases depending on the choice of the parameters pωQ, ωθq.

Learning of the controls

Figures 5.13, 5.14, 5.15, 5.17, 5.18: controls learned by the algorithm. The

controls learned by the U2-MF-QL-FH algorithm are compared with the theoretical

solutions. Each plot corresponds to a different time point t P t0, 0.5, 1u. The layout is the

same applied for the mean field capital accumulation problem in Section 5.4.4. On the left,

the choice pωQ, ωθq “ p0.55, 0.85q produces the approximation of the solution of the MFG.
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On the right, the values of the parameters pωQ, ωθq “ p0.65, 0.15q lets the algorithm to

approach the solution of the MFC problem. The accuracy of the approximation is better

at initial times and degrades towards the final horizon showing an higher complexity of

the tuning of the algorithm to this problem. The results presented in the Figures are

averaged over 10 runs.
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Figure 5.13: Learned Controls for MFG
at time 0.
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Figure 5.14: Learned Controls for MFC
at time 0.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
state x

−3

−2

−1

0

1

2

3

4

5

α(
t,
x)

MFG MFC RL

0.0

0.2

0.4

0.6

0.8

1.0

μ x

Figure 5.15: Learned Controls for MFG
at time 7{16.
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Figure 5.17: Learned Controls for MFG
at time 15{16.
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Figure 5.18: Learned Controls for MFC
at time 15{16.

Learning of the mean field

Figures 5.19, 5.20, 5.21, 5.22, 5.23, 5.24: Erθts learned by the algorithm.

The estimation of the first moment of the distribution of the controls evolves with respect

to the number of learning episodes. Each plot corresponds to a different time point

t P t0, 0.5, 1u. The layout is the same described in Section 5.4.4. On the left, the solution

of the MFG is obtained choosing pωQ, ωθq “ p0.55, 0.85q. On the right, the MFC solution

is approached by the set of parameters pωQ, ωθq “ p0.65, 0.15q. The results presented in

the Figures are averaged over 10 runs.
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Figure 5.19: Learned control’s mean
for MFG at time 0.
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Figure 5.20: Learned control’s mean
for MFC at time 0.
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Figure 5.21: Learned control’s mean
for MFG at time 7{16.
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Figure 5.22: Learned control’s mean
for MFC at time 7{16.
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Figure 5.23: Learned control’s mean
for MFG at time 15{16.
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Figure 5.24: Learned control’s mean
for MFC at time 15{16.
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Chapter 6

Deep Reinforcement Learning for

Mean Field Games and Mean Field

Control Problems with Continuous

Space

In the previous chapters, we discuss a Q-learning based solving scheme for mean field

problems in the case of finite spaces. We show how this method can be adapted to solve

some of the continuous problems arising from real world applications. However, this

extension requires a calibration of the algorithm tailored on the specific problem which

may not be trivial. In order to avoid this challenging step, we are working on an approach

which is designed specifically for problems defined on continuous spaces. Algorithms to

solve classical MDPs with continuous spaces have been extensively studied (we refer to

Chapter 7 of [74] for an exhaustive overview).

In our on-going work [9], we propose a Unified three-scale Mean Field Actor-Critic

(U3-MF-AC) algorithm able to solve mean field games and mean field control problems in
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the same fashion as our Q-learning method.

We start presenting the classical Actor-Critic (AC) approach following the presentation

given in [74]. We introduce our new AC based algorithm to tackle mean field problems.

We conclude by showing numerical results on the asymptotic linear quadratic problem

discussed in Section 3.5 and an infinite horizon variation of the capital accumulation

problem discussed in Section 5.4.

6.1 Actor-Critic

Actor critic algorithms are popular model free methods in RL to solve classical MDPs

in case of continuous spaces. This approach is characterized by two main parts: the actor,

corresponding to the policy followed by the agent, and the critic, represented by the value

function and acting as an evaluation of the actor. Even if the optimal policy is expected

to be deterministic, the critic is a randomized strategy in order to allow exploration

of the unknown environment. As more knowledge of the environment is collected and

the algorithm converges to the solution of the MDP, the variance of the policy vanishes

defining a deterministic policy.

In order to handle continuous spaces, the actor and the critic are approximated by

parametric functions (e.g. neural networks). Let πψ : SˆAˆΨ Ñ r0, 1s be a representation

of a randomized policy within the parameter space Ψ Ă RDΨ . Let V
πψ
θ : S ˆΘ Ñ R be

the corresponding evaluation of the value function within the parameter space Θ Ă RDΘ .

Diagram 6.1 shows how actor critic algorithms are able to solve an MDP without any

knowledge of the environment.
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Figure 6.1: Diagram inspired from [71]

At each learning episode k and step tn, the agent picks an action based on the strategy

πψ (the actor) and her state Xk
tn . Due to this action, the environment generates a cost

fktn and a new state Xk
tn`1

. The pair pfktn , X
k
tn`1
q acts as input of the Temporal Difference

(TD) error defined for a given choice of parameters θ P Θ as follows

δktnpθq “ fktn ` γV
πψpXk

tn`1
q ´ V

πψ
θ pXk

tnq,

where the first evaluation of the value function is considered independent of the parameter

θ explaining why the subscript is omitted. The TD error is derived from the Bellman

equation of the value function in the same fashion as the update rule for the Q function

discussed in Section 2.1. Learning of the value function is obtained by minimizing the

squared TD error through a stochastic gradient-descent step. The resulting update rule is

given by

θ
1

“ θ ´
1

2
ρVk,tn∇θ

`

δktnpθq
˘2
“ θ ` ρVk,tnδ

k
tnpθq∇θVθpX

k
tnq,

where ρVk,tn represents the learning weight at episode k and step tn.

The solution of the classical MDP is represented by the optimal policy π˚ for which
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the corresponding value function is minimal. Consequently, the update rule for the policy

parameters πψ is obtained by a stochastic gradient-descent step on the quantity V
πψ
θ , i.e.

ψ
1

“ ψ ` ρπk,tn∇ψV
πψ
θ pXk

tnq,

where ρπk,tn defines the learning weight.

Intuitively, one may expect that the knowledge of the model is required to evaluate the

gradient ∇ψV
πψ
θ pXk

tnq given that the transitional probabilities depend on πψ. However,

the Policy Gradient Theorem shows that this quantity is independent of the dynamics

of the model allowing to design model free approaches (see [74] for more details). The

resulting update rule for the classical actor critic algorithm is given by

ψ
1

“ ψ ` ρπtnδtnpθq∇ψ log πψpXtn , Atnq.

The actor-critic algorithm has been cast as a two-scale stochastic approximation

procedure by Borkar and Konda in [17]. The learning weights of the critic ρV are chosen

larger than the corresponding rates of the actor ρπ. Intuitively, this situation is equivalent

to having two nested loops. At each step of the outer loop (slower) corresponds a choice

of a policy and several steps of the inner loop (faster) in which the corresponding value

function is estimated. Once the estimation procedure is completed, its value is passed to

the outer loop and a new policy is chosen based on it. Due to the stochastic gradient

descent step, the new policy is such that the corresponding value function is not greater

in value. Theoretically, the procedure completes when the gradient reaches value zero. In

practice, the algorithm stops when the change of the value function is lower than a given

tolerance.
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6.2 U3-MF-AC: Unified Three Timescales Mean Field

Actor Critic

In order to solve asymptotic mean field problems, we propose algorithm 4, a new AC

based method which is derived as a three-scale stochastic approximation procedure. The

actor and the critic are approximated by two Neural Networks (NNs). The two learning

rules introduced above are combined with an extra update rule which allows the learning

of the distribution of the population. The current version is tailored to problems in which

the interaction is through the first moment of the limiting distribution.

In the same fashion of algorithm 2, an estimate of the first moment of the limiting

distribution of the population is computed through successive learning episodes. At

each step tn, an estimate mk
tn is updated based on a sample Xk

tn collected from episodes

k “ 1, 2, . . . . One may expect each mtn to converge to an approximation of the first

moment of the limiting distribution. The update rule is given by

mk
tn “ mk´1

tn ` ρmk pX
k
tn ´m

k
tnq,

where ρmk corresponds to the learning weight.

We show through our preliminary results how a different choice of the learning rates ρm

allows the algorithm to solve a MFG or a MFC problem representing a unified approach

to mean field problems in continuous spaces.
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Algorithm 4 U3-MF-AC: Unified Three-scale Mean Field Actor-Critic

Require: X “ R,A “ R : state and action spaces, tolV , tolπ, tolm: break rule tolerances,

τ “ tt0 “ 0, . . . , t|τ |´1 “ T u with ti ď ti`1 : time discretization where T ąą 0,

ρV , ρπ, pρmk qkě0 learning rates for the critic, actor and mean field term respectively.

1: Initialization: Create two NNs within the parameter sets Θ Ă RDΘ and Ψ Ă RDΨ :

Critic Vθk0 : X ÞÑ R, approximation of the value function given θk0 P Θ,

Actor πψk0 : X ÞÑ PpAq, approximation of the optimal policy given ψk0 P Ψ,

Mean field first moment mk
tn “ 0 for n “ 0, . . . , |τ | ´ 1 and episode k “ 0.

2: repeat

3: Update episode index k = k + 1; Observe Xk
t0

provided by the environment

4: for nÐ 0 to |τ | ´ 1 do

5: Sample action Aktn from πψknpX
k
tnq

6: Observe: cost fktn “ fpXk
tn , A

k
tn ,m

k
tnq, state Xk

tn`1
provided by the environment

7: Compute: TD error: δkn “ fktn ` γV
π
ψkn

θkn
pXk

tn`1
q ´ V

π
ψkn

θkn
pXk

tnq

8: Update Critic : θkn`1 “ θkn ` ρ
V δkn∇θV

π
ψkn

θkn
pXk

tnq

9: Update Actor : ψkn`1 “ ψkn ` ρ
πδkn∇ψ log πψknpX

k
tn , A

k
tnq

10: Update Mean Field : mk
tn “ mk´1

tn ` ρmk pX
k
tn ´m

k
tnq

11: end for

12: until
∣∣∣∇θV

π
ψkn

θkn
pXk

tnq

∣∣∣ ă tolV ,
∣∣∇ψ log πψknpX

k
tn , A

k
tnq

∣∣ ă tolπ and }mk´1
T ´mk

T }2 ă tolm

The extension of this procedure to problems depending on the full distribution is a

work in progress. An approach under investigation consists to choose a parameterization

for the distribution and calibrate it based on the data flow.
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6.3 Numerical experiments

In this section, we present some preliminary numerical results obtained by applying the

U3-MF-AC algorithm to two examples: the linear quadratic model discussed in Section 3.5

and an infinite horizon version of the capital accumulation problem presented in Section

5.4. In both cases, the actor is designed as a Gaussian exploration policy. In particular,

the state of the model is given as input to a feed-forward NN with an hidden layer of 64

nodes and Exponential Linear Unit (ELU) as activation function. The network returns

two outputs: one representing the mean of the Gaussian policy and the other which is

passed to a softmax operator. The resulting value corresponds to the standard deviation

of the policy. On the other hand, the value function is defined as a feed-forward NN with

an hidden layer of 128 nodes and ELU activation function. The learning rates for the

actor and critic are fixed to the values ρπ “ 5 ˆ 10´6 and ρV “ 10´5. The stochastic

gradient descent steps are executed using the Adam optimizer [53]. The learning rate

for the mean field term is defined as ρmk “
1

p1`kqω
where ω is chosen depending on the

problem.

6.3.1 A linear quadratic example

In Section 3.5, we presented the solution of a linear quadratic model in its asymptotic

MFG and MFC versions. In Section 4.3, we showed how the U2-MF-QL algorithm is able

to solve both problems depending on the choice of the learning rates. Since the example

is defined in continuous spaces, the algorithm requires a calibration based on truncation

and discretization techniques presented in Section 4.2.2. In general this procedure should

be performed based on a trial and error approach which may not be trivial.

In this section, we show the results obtained by applying the U3-MF-AC algorithm to

this example for the choice of parameters c1 “ 0.25, c2 “ 1.5, c3 “ 0.5, c4 “ 0.6, discount

118



Deep Reinforcement Learning for Mean Field Games and Mean Field Control Problems with
Continuous Space Chapter 6

parameter β “ 1 and volatility σ “ 0.3. The infinite horizon is truncated at time T “ 20.

The continuous time is discretized using step ∆t “ 10´2.

In Figures 6.2, 6.3, 6.4, 6.5, we show how the U3-MF-AC algorithm is able to learn the

optimal control function and the first moment of the limiting distribution in the MFG and

MFC frameworks fixing the parameter in the learning rates of the mean field term equals

to ωMFG “ 0.7 and ωMFC “ 0.05 respectively. Indeed, a slow update of this term mimics

the solving scheme of a MFG. On the other hand, a fast update allows the distribution to

evolve accordingly to the policy aligning the algorithm to the MFC framework. Differently

from the U2-MF-QL approach, this method does not require any calibration representing

a simplified and flexible approach to solve mean field problems with continuous spaces.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
state x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

α(
x)

Control function
MFG
MFC
RL

Figure 6.2: MFG: results after 15k learning
episodes
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Figure 6.3: MFC: results after 15k learning
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6.3.2 A mean field accumulation problem

In this section, we show the results obtained by applying the U3-MF-AC to an infinite

horizon version of the mean field accumulation problem from [50] discussed in Section 5.4.

The time horizon is equal to T “ 8. The remaining parameters are fixed as follows:

discount factor ρ “ 0.95, utility factor γ “ 0.2, constant C “ 2, and the noise W has

support DW “ t0.9, 1.3u and corresponding probabilities t0.75, 0.25u.

In Figures 6.6 and 6.7, we show how the algorithm is able to learn the control function

and the first moment of the learning distribution given the parameter of the limiting

rate for the mean field term equals to ω “ 0.85. We train it using 35 ˆ 103 episodes

of 100 steps. Differently from the previous example, this problem is not of the linear

quadratic family, the noise is multiplicative and the admissible control set is not static

but changes depending on the state of the model. These differences show the flexibility of

the algorithm to different kinds of problem.
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Figure 6.6: MFG: learning the controls
through 35k episodes
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These preliminary results encourage a deeper investigation of this procedure. In

particular, we are working on extensions able to deal with the full distribution of the

population and finite horizon problems together with a theoretical analyses of this method.
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Chapter 7

Conclusions

In this manuscript, we presented our contribution to the field of differential games by

proposing a data driven solving approach. Our method is derived by merging mean field

theory, reinforcement learning and multi scale stochastic approximation.

In order to achieve this goal, we propose in [6] a new definition of asymptotic mean

field games and mean field control problems which facilitates a connection with the

reinforcement learning framework. We unify the two problems through a two timescale

perspective and present a Q-learning based solving scheme. In order to obtain this method,

we introduce a new Bellman equation for a modified Q-function that is tailored to the

MFC framework. The algorithm is tested on an infinite horizon linear quadratic example.

This approach is extended in [7] to the case of interaction through the distribution of

controls and finite horizon. We have illustrated the second algorithm with two examples:

an optimal investment problem with HARA utility function, and an optimal liquidation

problem. Differently from the others, the first problem is not of the linear quadratic

family, presents multiplicative noise and is characterized by a dynamic admissible control

set. These core differences show the flexibility of our approach.

The main ingredients of these algorithms are the learning rates for the Q-matrix
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and for the distribution of the states (controls) of the population. Their relative decay

with respect to the number of episodes is the key quantity to stir the algorithm towards

learning the optimal controls for MFG or MFC problem. Roughly speaking, updating the

Q-matrix faster (resp. slower) than the distribution of states (controls) leads to the MFG

(resp. MFC) solution. Convergence follows by applying Borkar’s results as shown in [6] in

the case of infinite horizon problems. Choosing these rates in an optimal way remains the

main challenge in specific applications. In particular, we expect that allowing these rates

to depend on the time steps could lead to improved results. This aspect is left for future

investigations.

The algorithms presented here are the context of finite space via the Q-matrix even

though the proposed examples are originally in continuous space and then discretized.

Dealing directly with a continuous space is the topic of the ongoing work on deep

reinforcement learning for mean filed problems [9].

The area of reinforcement learning for mean field problems is extremely rich with a

huge potential for applications in various disciplines. It is in its infancy, and we hope that

the results and explanations presented here will be helpful to newcomers interested in

this direction of research.
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[65] J. Pérolat, S. Perrin, R. Elie, M. Laurière, G. Piliouras, M. Geist, K. Tuyls, and
O. Pietquin, Scaling up Mean Field Games with Online Mirror Descent, 2021.
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