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Abstract The distributions of transverse momentum and
longitudinal momentum fraction of charged particles in jets
are measured in Pb+Pb and pp collisions with the ATLAS
detector at the LHC. The distributions are measured as a
function of jet transverse momentum and rapidity. The anal-
ysis utilises an integrated luminosity of 0.14 nb−1 of Pb+Pb
data and 4.0 pb−1 of pp data collected in 2011 and 2013,
respectively, at the same centre-of-mass energy of 2.76 TeV
per colliding nucleon pair. The distributions measured in pp
collisions are used as a reference for those measured in Pb+Pb
collisions in order to evaluate the impact on the internal struc-
ture of jets from the jet energy loss of fast partons propagating
through the hot, dense medium created in heavy-ion colli-
sions. Modest but significant centrality-dependent modifica-
tions of fragmentation functions in Pb+Pb collisions with
respect to those in pp collisions are seen. No significant
dependence of modifications on jet pT and rapidity selec-
tions is observed except for the fragments with the highest
transverse momenta for which some reduction of yields is
observed for more forward jets.

1 Introduction

Heavy-ion collisions at ultra-relativistic energies produce a
medium of strongly interacting nuclear matter composed
of deconfined colour charges which is commonly called a
quark–gluon plasma (QGP) [1–4]. Hard-scattering processes
occurring in these collisions produce high transverse momen-
tum, pT, partons that propagate through the medium and
lose energy. This phenomenon is termed “jet quenching”.
More specifically, jet quenching is a process in which con-
stituents of the parton shower may be elastically or inelasti-
cally scattered by the constituents of the plasma, resulting in
the suppression of jet production and the modification of the
internal structure of jets [5–7]. Inclusive-jet suppression has

� e-mail: atlas.publications@cern.ch

been measured previously at the LHC in terms of the nuclear
modification factor [8–12]. A suppression of jet production
by about a factor of two in central heavy-ion collisions was
observed. The internal structure of jets was also measured
[13–16] and these measurements revealed modification of
the distributions of the jet fragments. The measurements of
the jet structure were supplemented by a measurement of
the correlation of the jet suppression with missing transverse
momentum [17], leading to a conclusion that the energy lost
by partons is transferred predominantly to soft particles being
radiated at large angles with respect to the direction of the
original parton.

This paper presents a new measurement of the internal
structure of jets by ATLAS in Pb+Pb and pp collisions, both
at the same centre-of-mass energy per colliding nucleon pair
of 2.76 TeV. The measurement utilised Pb+Pb data collected
during 2011 corresponding to an integrated luminosity of
0.14 nb−1 as well as data from pp collisions recorded during
2013 corresponding to 4.0 pb−1. In this paper the same quan-
tities that were introduced in Ref. [13] are used, namely the jet
fragmentation functions, D(z), and distributions of charged-
particle transverse momenta measured inside the jet, D(pT).
The D(z) distributions are defined as

D(z) ≡ 1

Njet

dNch

dz
, (1)

where Njet is the total number of jets, Nch is the number of
charged particles associated with a jet, and the longitudinal
momentum fraction z is defined as

z ≡ pT

pjet
T

cos �R = pT

pjet
T

cos
√

(�η)2 + (�φ)2. (2)

Here pjet
T is the transverse momentum of a jet measured with

respect to the beam direction, pT stands for the transverse
momentum of a charged particle, �η and �φ are the dis-
tance between the jet axis and the charged-particle direction
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in pseudorapidity and azimuth,1 respectively.2 The D(pT)

distributions are defined as

D(pT) ≡ 1

Njet

dNch(pT)

dpT
. (3)

The fragmentation distributions were measured for jets
reconstructed with the anti-kt algorithm [18] with the radius
parameter set to R = 0.4. The charged particles were
matched to a jet by requiring the distance between the jet
axis and the charged particle to be �R < 0.4. The frag-
mentation distributions were fully corrected to the particle
level.

In the first measurement of jet fragmentation by ATLAS
in heavy-ion collisions [13], the measurements were per-
formed for jets with the radius parameters R = 0.2, 0.3,

and 0.4. Jet fragments having a minimum pT of 2 GeV were
measured within an angular range �R = 0.4 from the jet
axis. The D(z) and D(pT) distributions were presented for
seven bins in collision centrality. Ratios of fragmentation
functions in the different centrality bins to the 60–80% bin
were presented and used to evaluate the modifications of the
jet fragmentation caused by the medium. Those ratios exhib-
ited an enhancement in fragment yield in central collisions for
z � 0.04, a reduction in fragment yield for 0.04 � z � 0.2,
and an enhancement in the fragment yield for z > 0.4. The
modifications were found to decrease monotonically with
decreasing collision centrality from 0–10 to 50–60%. A sim-
ilar set of modifications was observed in the D(pT) distribu-
tions over corresponding pT ranges.

This new analysis provides a measurement of the jet struc-
ture of R = 0.4 jets using the same observables, but it
decreases the minimum pT for charged particles to 1 GeV
and evaluates the fragmentation observables differentially in
jet pT and y. Furthermore, the new analysis uses the frag-
ment distributions measured in pp collisions as a reference
for the measurement of jet fragmentation in heavy-ion colli-
sions. Using this information about the jet structure, the flow
of the quenched jet energy and number of charged particles
was quantified as a function of the centrality.

The content of this paper is organised as follows: Sect. 2
describes the experimental set-up. Section 3 describes the
event selection and data sets. The jet and track reconstruction

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
along the beam pipe. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ)

are used in the transverse plane, φ being the azimuthal angle around the
beam pipe. The pseudorapidity is defined in terms of the polar angle θ

as η = − ln tan(θ/2). Rapidity is defined as y = 0.5 ln E+pz
E−pz

where E
and pz are the energy and the component of the momentum along the
beam direction.
2 The �R ≡ √

(�η)2 + (�φ)2 used here is a boost-invariant replace-
ment for the polar angle θ between the jet and charged particle.

and selection are introduced in Sect. 4. Section 5 discusses
the analysis procedure. The estimation of systematic uncer-
tainties is given is Sect. 6. Section 7 describes the results
of the measurement. Section 8 provides a discussion of the
results, and Sect. 9 summarises the analysis.

2 Experimental set-up

The measurements presented in this paper were performed
using the ATLAS calorimeter, inner detector, trigger, and
data acquisition systems [19]. The ATLAS calorimeter sys-
tem consists of a liquid argon (LAr) electromagnetic (EM)
calorimeter covering |η| < 3.2, a steel–scintillator sampling
hadronic calorimeter covering |η| < 1.7, a LAr hadronic
calorimeter covering 1.5 < |η| < 3.2, and a LAr forward
calorimeter (FCal) covering 3.2 < |η| < 4.9. The hadronic
calorimeter has three sampling layers, longitudinal in shower
depth, and has a �η × �φ granularity of 0.1 × π/32 for
|η| < 2.5 and 0.2 × 2π/32 for 2.5 < |η| < 4.9.3 The EM
calorimeters are longitudinally segmented in shower depth
into three compartments with an additional pre-sampler layer.
The EM calorimeter has a granularity that varies with layer
and pseudorapidity, but which is generally much finer than
that of the hadronic calorimeter. The middle sampling layer,
which typically has the largest energy deposit in EM showers,
has a granularity of 0.025 × 0.0245 over |η| < 2.5.

The inner detector [20] measures charged particles within
the pseudorapidity interval |η| < 2.5 using a combina-
tion of silicon pixel detectors, silicon microstrip detectors
(SCT), and a straw-tube transition radiation tracker (TRT),
all immersed in a 2 T axial magnetic field. All three detec-
tors are composed of a barrel and two symmetrically placed
end-cap sections. The pixel detector is composed of three
layers of sensors with nominal feature size 50 × 400 µm.
The microstrip detector’s barrel section contains four layers
of modules with 80 µm pitch sensors on both sides, while
the end-caps consist of nine layers of double-sided modules
with radial strips having a mean pitch of 80 µm. The two
sides of each layer in both the barrel and the end-caps have
a relative stereo angle of 40 mrad. The transition radiation
tracker contains up to 73 (160) layers of staggered straws
interleaved with fibres in the barrel (end-cap). Charged par-
ticles with pT � 0.5 GeV and |η| < 2.5 typically traverse
three layers of silicon pixel detectors, four layers of double-
sided microstrip sensors, and 36 straws if |η| < 2.0.

Minimum-bias Pb+Pb collisions were selected using mea-
surements from the zero-degree calorimeters (ZDCs) and the
minimum-bias trigger scintillator (MBTS) counters [19]. The
ZDCs are located symmetrically at a longitudinal distance

3 Except the third sampling layer, which has a segmentation of 0.2 ×
π/32 up to |η| = 1.7.
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of ±140 m from the detector centre and cover |η| > 8.3. In
Pb+Pb collisions, the ZDCs primarily measure “spectator”
neutrons, which originate from the incident nuclei and do
not interact hadronically. The MBTS detects charged par-
ticles over 2.1 < |η| < 3.9 using two counters placed
at a distance of ±3.6 m from the interaction point. Each
counter is divided into 16 modules with 8 different posi-
tions in η and φ. Each counter provides measurement of
both the pulse heights and arrival times of ionisation energy
deposits.

3 Event selection and data sets

The analysis utilised an integrated luminosity of 0.14 nb−1

of Pb+Pb data and 4.0 pb−1 of pp data collected in 2011 and
2013, respectively. The Pb+Pb events used in the analysis
were required to have a reconstructed primary vertex and a
time difference between hits from the two sides of the MBTS
detector of less than 3 ns. The primary vertices were recon-
structed from charged-particle tracks with pT > 0.5 GeV.
The tracks were reconstructed from hits in the inner detec-
tor using the standard track-reconstruction algorithm [21]
with settings optimised for the high hit density in heavy-ion
collisions [22]. The Pb+Pb events were selected for record-
ing by a combination of Level-1 minimum-bias and high
level trigger (HLT) jet triggers. The Level-1 trigger required a
total transverse energy measured in the calorimeter of greater
than 10 GeV. The HLT jet trigger ran the offline Pb+Pb jet-
reconstruction algorithm, described below, for R = 0.2 jets
except for the application of the final hadronic energy-scale
correction. The HLT selected events containing an R = 0.2
jet with transverse energy ET > 20 GeV in the |η| < 3.2
range. A total of 14.2 million events satisfied these event
selection criteria. The performance of the jet triggering is
summarised in Ref. [23].

The centrality of Pb+Pb collisions was characterised by
�EFCal

T , the total transverse energy measured in the FCal
[22]. The results in this paper were obtained using seven
centrality bins defined according to successive percentiles of
the �EFCal

T distribution ordered from the most central, high-
est �EFCal

T , to the most peripheral collisions: 0–10, 10–20,
20–30, 30–40, 40–50, 50–60, and 60–80%. The percentiles
were defined after correcting the �EFCal

T distribution for the
2% minimum-bias trigger inefficiency which only affects the
most peripheral collisions (80–100%), that were not included
in this analysis.

The pp events used in the analysis were selected using the
ATLAS jet trigger [24] with a requirement of a minimum
jet pT of 75 GeV. The pp events were required to contain
at least one primary vertex, reconstructed from at least two
tracks with pT > 0.5 GeV. Jets originating from all selected
events were included in the measurement.

The performance of the ATLAS detector and offline anal-
ysis in measuring jets and charged particles in pp collisions
was evaluated using a sample of 15 million Monte Carlo
(MC) events obtained from PYTHIA [25] hard-scattering
events (using PYTHIA version 6.425, with parameter values
set to the AUET2B tune [26], and CTEQ6L1 parton dis-
tribution functions [27]). The generator-level spectrum of
R = 0.4 jets covers the transverse momentum interval of
20 < pT < 500 GeV, which is sufficient to cover the jet pT

range in the data. The detector effects were fully simulated
[28] using GEANT4 [29]. The reconstruction performance
in Pb+Pb collisions was evaluated using a sample of 18 mil-
lion events obtained by overlaying simulated PYTHIA hard-
scattering events onto minimum-bias Pb+Pb events recorded
in 2011. In this overlay procedure, the simulated hits were
combined with the data from minimum-bias events to pro-
duce the final sample. The generator-level spectrum of jets
in the overlay sample covers the transverse momentum inter-
val of 35 < pT < 560 GeV. In all samples, the generator-
level charged particles are defined as all final-state charged
PYTHIA particles with lifetimes longer than 0.3 × 10−10 s
originating from the primary interaction or from the subse-
quent decay of particles with shorter lifetimes.4

4 Jet and track selection

Jets were reconstructed using the techniques described in
Ref. [8], which are briefly summarised here. The anti-kt R =
0.4 algorithm was first run in four-momentum recombination
mode on calorimeter cells grouped into �η×�φ = 0.1×0.1
calorimeter towers. The tower kinematics were obtained by
summing electromagnetic-scale energies [30] of massless
calorimeter cells within the tower boundaries. In the case
of the reconstruction of jets in Pb+Pb collisions, an underly-
ing event (UE) subtraction was performed in the following
way. An iterative procedure was used to estimate a layer-
dependent and pseudorapidity-dependent UE energy density
while excluding jets from that estimate. The UE energy was
corrected for the presence of the elliptic flow [31], which
was subtracted from each calorimeter cell within the tow-
ers included in the reconstructed jet. The final jet kinematics
were calculated via a four-momentum sum of all cell energy
deposits (assumed massless) contained within the jet. The
UE contribution was subtracted at the cell level. A correc-
tion was applied to the reconstructed jet to account for jets
not excluded or only partially excluded from the UE estimate.
Finally, the jet y- and ET-dependent hadronic energy-scale
calibration factor was applied in both the pp and Pb+Pb col-
lisions.

4 While generator-level charged particles are massive, the tracks recon-
structed in the inner detector are massless.

123



379 Page 4 of 29 Eur. Phys. J. C (2017) 77 :379

In the trigger the HLT reconstruction algorithms described
in Ref. [23] were used. The HLT jet trigger selection is fully
efficient at a pT of approximately 90 GeV. This, together
with the intention to provide the results in the jet pT selec-
tions that are the same as bins used in Ref. [10], limits the
results to jets with pT > 100 GeV. The jet reconstruction
performance is described in Ref. [8]. In order to evaluate
the rapidity dependence of the jet structure, jets were cate-
gorised in four rapidity intervals, namely |y| < 0.3, 0.3 <

|y| < 0.8, 1.2 < |y| < 2.1, and |y| < 2.1. The rapidity
interval of 0.8 < |y| < 1.2 was not considered in the anal-
ysis since the jet shape measurements are degraded in this
region due to the transition in the detector between the SCT
barrel and end-caps.

The tracks from pp collisions were required to have at
least one hit in the pixel detector and six hits in the silicon
microstrip detector. In order to reject secondary particles, the
transverse (d0) and longitudinal (z0 sin θ ) impact parameters
of the tracks measured with respect to the primary vertex
were required to be smaller than 1.5 mm (0.2 mm for d0 if
pT > 10 GeV).

In Pb+Pb collisions, the occupancies of the three track-
ing subsystems reached different levels. The pixel detector
occupancy was below 1% even in the most central collisions.
The corresponding number for the SCT detector was below
10%, while the occupancy in the TRT reached 90% [32]. To
account for the high occupancy in Pb+Pb events, the track
reconstruction was configured differently from that in pp col-
lisions. Tracks from Pb+Pb collisions were required to have
at least two hits in the pixel detector, including a hit in the first
pixel layer if the hit was expected from the track trajectory,
and seven hits in the silicon microstrip detector. In addition,
the d0 and z0 sin θ of the tracks measured with respect to
the primary vertex were required to satisfy |d0/σd0 | < 3 and
|z0 sin θ/σz | < 3, where σd0 and σz are uncertainties on d0

and z0 sin θ , respectively, obtained from the track-fit covari-
ance matrix. All tracks used in this analysis were required to
have pT > 1 GeV.

The efficiency for reconstructing charged particles within
jets was evaluated separately for pp and Pb+Pb collisions
using MC events, described in Sect. 3. The efficiency was
evaluated for charged particles that satisfy the selection
criteria described above and were matched to generator-
level (“truth”) jets with pT > 100 GeV in each of the
four jet rapidity intervals. In the case of Pb+Pb collisions,
the efficiency was evaluated separately for each centrality
bin.

The tracking efficiency correction 1/ε was evaluated as
a function of charged-particle pT and y. The tracking effi-
ciency ε was obtained as a ratio of tracks that have an asso-
ciated truth charged particle to all the truth charged parti-
cles. To guarantee smooth behaviour of the correction fac-
tors as a function of track pT, the tracking efficiency was

parameterised in the region of 1 < pT < 90 GeV using
a fourth-order polynomial in the logarithm of the track pT.
This functional form gives a good description of the onset
of the efficiency at low pT as well as the behaviour in the
intermediate-pT region. At the same time it is not suscepti-
ble to statistical fluctuations in these regions. However, in
the region of pT > 90 GeV the polynomial in the log-
arithm does not provide a good parameterisation of effi-
ciencies. The study of the high-pT behaviour in both the
pp and Pb+Pb simulations showed that the tracking effi-
ciency generally continues to follow the linear trend present
at pT < 90 GeV. Thus, the result of the fit using a poly-
nomial in the logarithm for tracks with pT > 90 GeV
was replaced by a linear function with the slope deter-
mined from the difference between the fitted efficiencies at
pT = 70 GeV and pT = 90 GeV. The value of the slope does
not exceed 0.001. The efficiency for reconstructing tracks
along with its parameterisation is shown in Fig. 1. The fake-
track contribution was evaluated by matching reconstructed
tracks to truth MC particles and found to be smaller than
2% for tracks satisfying the selection requirements defined
above.

5 Analysis procedure

The analysis procedure is described briefly as follows. First,
the measured distributions were corrected for the presence
of a UE contribution (in the case of Pb+Pb collisions only)
and for fake tracks. The corrected distributions were then
unfolded using a two-dimensional Bayesian unfolding to cor-
rect for finite jet energy resolution and smearing due to finite
track momentum resolution. The unfolded distributions were
then normalised by the respective number of jets, which was
obtained using one-dimensional Bayesian unfolding of jet pT

spectra. Details of each step in this procedure are discussed
in the next paragraphs.

The first step in the analysis was to obtain measured
two-dimensional uncorrected fragmentation functions,
Dmeas(z, pjet

T ), and the two-dimensional distribution of char-
ged-particle transverse momenta measured inside the jet,
Dmeas(pch

T , pjet
T ), which are defined using the following for-

mulae:

Dmeas(pch
T , pjet

T ) ≡ 1

ε(pch
T , y)

�Nch(pch
T , pjet

T )

�pch
T

, (4)

Dmeas(z, pjet
T ) ≡ 1

ε(pch
T , y)

�Nch(z, p
jet
T )

�z
. (5)

Here �Nch(pch
T ) and �Nch(z) represent the number of mea-

sured charged particles within �R = 0.4 of the jet axis
obtained from the anti-kt clustering in given bins of charged-
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Fig. 1 The tracking efficiency evaluated in simulation for particles
in jets with pjet

T > 100 GeV as a function of truth charged-particle

transverse momentum, pparticle
T , for jets with |y| < 0.3 (left) and

1.2 < |y| < 2.1 (right). Efficiency is shown for central and peripheral
Pb+Pb collisions as well as for pp collisions. The full line represents
the parameterisation (for more details see the body of the text)

particle transverse momentum, pch
T , and z respectively.5 The

variable ε is the MC-evaluated track reconstruction effi-
ciency. The superscript ‘meas’ in Eqs. (4) and (5) indicates
that the measured distributions were corrected only for the
tracking efficiency. The corrections for the UE and detector
effects were applied in the subsequent steps of the analysis
as discussed in the next paragraphs.

Charged particles from the UE constitute a background
that needs to be subtracted from the measured distributions.
This background depends on pch

T and ηch of the charged parti-
cle, and the centrality of the collision. The contribution of the
UE background was evaluated for each measured jet using a
grid of �R = 0.4 cones that spanned the full coverage of the
inner detector. The cones had a fixed distance between their
centres chosen such that the coverage of the inner detector
was maximised while the cones did not overlap each other.
To avoid biasing the UE estimate, cones associated with real
jets have to be removed. This was done by removing cones
having a charged particle with pch

T > 6 GeV or having a dis-
tance �R < 0.4 between its centre and the nearest jet with
pT > 90 GeV.

The resulting UE charged-particle yields, dnUE
ch /dpch

T or
dnUE

ch /dz, were evaluated over 1 < pch
T < 6 GeV as a func-

tion of charged-particle pch
T , pjet

T , and ηjet and averaged over
all cones according to:

dnUE
ch

dpch
T

= 1

Ncone

1

ε

�N cone
ch (pch

T , pjet
T , ηjet)

�pch
T

, (6)

5 The labels ‘ch’ and ‘jet’ are used here to better distinguish the quan-
tities connected with charged particles from quantities connected with
jets.

dnUE
ch

dz
= 1

Ncone

1

ε

�N cone
ch (z, pjet

T , ηjet)

�z

∣∣∣∣
z= pch

T

p
jet
T

cos �R

. (7)

Here Ncone represents the number of background cones asso-
ciated with a given jet with pjet

T andηjet,�N cone
ch is the number

of charged particles summed over all cones associated with
the jet in question, and �R represents the distance between
the centre of a cone and the direction of a given charged
particle. Not shown in Eqs. (6) and (7) are correction fac-
tors that were applied to each background cone to correct
for the difference in the average UE particle yield at a given
pch

T between the η position of the cone and ηjet and separate
correction factors to account for the difference in the elliptic
flow modulation at the φ position of the UE cone and φjet.
The former correction was based on a parameterisation of
the pch

T and centrality dependence of charged-particle yields
in minimum-bias collisions. The latter correction was based
on a parameterisation of the pch

T and centrality dependence
of elliptic flow coefficients, v2, measured by ATLAS [22].
Since the measurement was not performed with respect to
the reaction plane, the impact of the flow correction was at
the level of a few percent of the UE yields. By evaluating
the UE yields only from events containing jets included in
the analysis, the background automatically had the correct
distribution of centralities within a given centrality bin.

The UE yields need to be further corrected for the cor-
relation between the actual UE yield in the jet and a finite,
centrality-dependent jet energy resolution. Due to the steeply
falling pT distribution of jets, the smearing due to jet energy
resolution leads to a net migration of jets from lower pT to
higher pT values (hereafter referred to as “upfeeding”) such
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that a jet reconstructed with a given prec
T corresponds, on aver-

age, to a truth jet with lower transverse momentum, ptruth
T .

The upfeeding was observed in the MC simulation to induce
a difference between the determined UE yields, as described
above, and the actual UE contribution to reconstructed jets.
This difference was found to be centrality dependent, and it
also exhibited a weak pjet

T dependence. That difference was
found to result from intrinsic correlations between the UE
contribution to the yield of particles measured inside the jet
and the MC pjet

T shift, �pjet
T = prec

T − ptruth
T . In particular,

jets with positive (negative) �pjet
T were found to have an UE

contribution larger (smaller) than jets with �pjet
T ∼ 0. Due to

the net upfeeding in the falling jet spectrum, the selection of
jets above a given pjet

T threshold causes the UE contribution
to be larger than that estimated from the procedure described
above. The average fractional mismatch in the estimated UE
background was found to have a minor dependence on pch

T

and pjet
T and to vary with centrality by factors of 0–20%

with respect to the original UE estimates. To correct for this
effect, multiplicative correction factors, dependent on cen-
trality, yjet, pjet

T and pch
T (or z) were applied to the dnUE

ch /dpch
T

(or dnUE
ch /dz) distributions. These multiplicative factors were

estimated in MC samples as a ratio of UE distributions cal-
culated from tracks within the area of a jet which do not
have an associated truth particle and the UE distributions
estimated by the cone method. The measured distributions
were also corrected for the presence of fake tracks by sub-
tracting the fake-track contribution estimated in MC simula-
tions. The corrected UE distributions, dñUE+fake

ch /dpch
T and

dñUE+fake
ch /dz, were then subtracted from measured distribu-

tions as follows:

Dsub(pch
T , pjet

T ) = Dmeas(pch
T , pjet

T ) − dñUE+fake
ch

dpch
T

, (8)

Dsub(z, pjet
T ) = Dmeas(z, pjet

T ) − dñUE+fake
ch

dz
. (9)

While the correction for the UE can be large – in the most
central collisions the UE exceeds the signal by more than a
factor of ten – the correction for the presence of fake tracks
is small, typically below 2%.

The UE and fake-track-subtracted measured distributions,
Dsub(pch

T , pjet
T ) and Dsub(z, pjet

T ), need to be corrected for
resolution effects. There are two main resolution effects:
smearing due to finite jet energy resolution and smearing
due to finite track momentum resolution. The former involves
unfolding in pjet

T ; the latter involves unfolding in pch
T . Since

the tracks were measured in jets, a two-dimensional unfold-
ing needs to be used to correct for both of these resolu-
tion effects simultaneously. The two-dimensional Bayesian
unfolding algorithm [33] from the RooUnfold package [34]
was used for this purpose. Using the MC samples, four-

dimensional response matrices were created using the truth
and reconstructed pjet

T and the truth and reconstructed pch
T

for reconstructed charged particles satisfying the track selec-
tion criteria defined in Sect. 4. The response matrices were
created separately for pp and Pb+Pb data for each centrality
and rapidity range. The entries in the response matrix were
weighted by the tracking efficiency correction. Five iterations
in the Bayesian unfolding procedure were found sufficient to
deliver a stable result that does not change with increasing
numbers of iterations for all centrality bins except for the 0–
10% centrality bin where, eight iterations were used. Once
the two-dimensional distributions were unfolded, a projec-
tion to a given pjet

T interval was made, and the distribution
was normalised by the respective number of jets.

The fragmentation distributions were measured for all jets
reconstructed in the calorimeter, including those jets that
do not contain any charged particle with pch

T > 1 GeV.
The proper normalisation of the measured distributions by
the number of jets requires a separate unfolding of the
jet pT spectrum. This was performed by applying a one-
dimensional Bayesian unfolding, separately in each central-
ity and rapidity interval. One or two iterations were found
to be sufficient for unfolding jet spectra in various central-
ity and rapidity intervals. The unfolded jet pT spectra were
integrated over a given jet pT interval. The result of this inte-
gration represents the total number of jets spanning a given
pT interval and was used to normalise the unfolded frag-
mentation distributions, Dunfolded(pT) and Dunfolded(z), as
follows

D(pT) = 1

Njet
Dunfolded(pT), (10)

D(z) = 1

Njet
Dunfolded(z), (11)

where D(pT) and D(z) are the final, particle-level corrected
distributions that are presented in Sect. 7.

The performance of the reconstruction procedure was
tested in MC samples by comparing unfolded distributions to
truth distributions. Statistically independent MC samples for
the response and reconstructed distributions were used. The
ratio of unfolded to truth distributions was found to be con-
sistent with unity for all the bins used in the measurement.
An independent check of the subtraction of the UE contribu-
tion from measured distributions was performed by estimat-
ing the UE charged-particle pT spectra from the minimum-
bias data sample. After applying centrality reweighting, these
UE charged-particle pT spectra were found to be consistent
within statistical uncertainties with UE distributions obtained
by the cone method. The performance of the unfolding pro-
cedure was further tested in the data by a procedure in which
unfolded distributions were folded back using the response
matrix. These “refolded” distributions were then compared
to original raw distributions. Only differences at sub-percent
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level between the raw distributions and the refolded distribu-
tions were found.

6 Systematic uncertainties

The following sources of systematic uncertainty were identi-
fied for this measurement: the uncertainties in the jet energy
scale (JES) and jet energy resolution (JER), the track recon-
struction efficiency, and the unfolding. The systematic uncer-
tainties were evaluated separately for distributions and their
ratios for each rapidity and centrality selection.

The systematic uncertainty due to the JES has two con-
tributions: the pp JES uncertainty and the heavy-ion JES
uncertainty. The impact of the JES uncertainty on the mea-
sured distributions was determined by shifting the transverse
momentum of reconstructed jets as follows:

p′
T = pT · (1 ±U JES(pT, y)), (12)

where U JES(pT, y) is either the pp JES uncertainty [30] or
centrality-dependent heavy-ion JES uncertainty [35]. The
distributions with shifted pT were unfolded and compared
to the original distributions. The fractional difference was
used as an estimate of the systematic uncertainty. The size of
the JES uncertainty for D(pT) and D(z) distributions in pp
collisions is typically below 2% but can reach 4 and 6% at
high pT and z, respectively. In Pb+Pb collisions, the typical
size of this uncertainty is the same as in pp collisions, but
the maximal uncertainty can reach 15% at the largest pT or
z. The JES uncertainty partially cancels in ratios of Pb+Pb
and pp distributions where a typical JES uncertainty is below
1% and the maximal uncertainty is below 10% at high pT. To
account for systematic uncertainties due to any disagreement
between the JER in data and MC simulation, the unfolding
procedure was repeated with a modified response matrix. The
new matrix was generated by repeating the MC study with
the pT of reconstructed jets smeared by a relative uncertainty
estimated as a function of y and pT of the jet [30]. The size
of the JER uncertainty is usually at the level of 1% but grows
at high pT or z, where the maximum is ≈6%.

The systematic uncertainty due to track reconstruction was
estimated by performing the analysis with three different sets
of selection criteria imposed on tracks, called “loose”, “stan-
dard”, and “tight”. The standard selection criteria were used
as a default in this analysis. The differences in the result
obtained using loose and tight criteria with respect to the
result obtained using the standard criteria were used as the
estimate of the systematic uncertainty. The tight selection cri-
teria imposed more stringent requirements on the track qual-
ity, leading to a 15–20% reduction of the tracking efficiency
depending on the track pT, η, and centrality. The loose selec-
tion criteria imposed more relaxed requirements on track

quality leading to a 5–10% enhancement of tracking effi-
ciency. The differences in the selection criteria bring signifi-
cant differences both in the magnitude and the pTdependence
of the tracking efficiency. The track reconstruction uncer-
tainty is usually largest systematic uncertainty at low and
intermediate pT or z. This uncertainty is typically less than
4%. Also related to tracking are the uncertainty in the esti-
mate of fake tracks and the uncertainty due to the parame-
terisation of tracking efficiencies. Both of these uncertainties
are less than 2%.

The unfolding procedure is sensitive to the MC model
and the number of iterations used, Nit . Two variations were
implemented to account for this systematic uncertainty. First,
the Nit was varied by ±1. Second, the MC response matrix
was reweighted such that its projection onto the reconstructed
axis matches the data. The data were then unfolded using
the modified response matrix. The differences with respect
to the original unfolded data were taken as the systematic
uncertainty. The uncertainty due to unfolding was usually
negligible and typically does not exceed 1%. To determine
the total systematic uncertainty, the systematic uncertainties
from all different sources were added in quadrature.

7 Results

The measurements of the internal structure of jets were per-
formed differentially in jet pT and y and for two collision
systems, pp and Pb+Pb. In the case of Pb+Pb collisions, the
measurement was performed in seven bins of centrality, 0–
10, 10–20, 20–30, 30–40, 40–50, 50–60, and 60–80%.

The measured distributions were evaluated in four dif-
ferent rapidity intervals of the jet: |y| < 2.1, |y| < 0.3,
0.3 < |y| < 0.8, and 1.2 < |y| < 2.1. The rapidity inter-
val of 0.8 < |y| < 1.2 was not considered in the analysis
since the jet shape measurements are degraded in this region
due to the transition in the detector between the SCT bar-
rel and end-caps. This rapidity interval was also excluded
from the measurement in the full rapidity range, |y| < 2.1.
The distributions were also evaluated in four different jet pT

intervals: 100 < pjet
T < 398 GeV, 100 < pjet

T < 126 GeV,

126 < pjet
T < 158 GeV, and 158 < pjet

T < 398 GeV. These
intervals were chosen to correspond to intervals selected in
the measurement of the jet nuclear modification factor [10].
This should allow the size of the energy lost by a jet, as quan-
tified by the nuclear modification factor, to be connected to
the respective modification of the jet fragmentation.

The D(pT) and D(z) distributions corrected to the hadron
level by the unfolding procedure described in Sect. 5 are
shown in Figs. 2 and 3, respectively. Different panels show
distributions evaluated for different rapidity intervals for jets
with 100 < pT < 398 GeV. The shaded band represents the
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Fig. 2 Unfolded charged-particle transverse momentum distributions,
D(pT), measured in pp collisions and for seven centrality bins mea-
sured in Pb+Pb collisions. The four panels show D(pT) distributions

with different selections in jet rapidity for jets with pT in the interval
of 100–398 GeV. The error bars on the data points indicate statistical
uncertainties while the shaded bands indicate systematic uncertainties

total systematic uncertainty, while the error bars represent
statistical uncertainties. The distributions exhibit a difference
in shape between central heavy-ion collisions and peripheral
heavy-ion collisions or the pp reference. To quantify this dif-
ference, the ratios of D(pT) and D(z) distributions measured
in heavy-ion collisions to those measured in pp collisions
were calculated and termed RD(pT) and RD(z), respectively,
following the nomenclature introduced in Ref. [13],

RD(pT) = D(pT)|cent/D(pT)|pp,
RD(z) = D(z)|cent/D(z)|pp, (13)

where ‘cent’ represents one of the seven centrality bins.
The RD(pT) and RD(z) distributions are shown in Figs. 4,

5, 6 and 7. Figure 4 shows the RD(pT) distributions for four
selections in collision centrality, namely 0–10, 20–30, 30–
40 and 60–80%, and for four rapidity intervals of jets with
pjet

T in the interval of 100–398 GeV. These ratios show an
enhancement in fragment yield in central collisions for pch

T <

4 GeV, a reduction in fragment yields for 4 < pch
T < 25 GeV,

and an enhancement in the fragment yield for pch
T > 25 GeV.

The magnitude of these modifications decreases for more
peripheral collisions. A similar observation is also made for
the RD(z) distributions shown in Fig. 5. The characteristic
shape of these ratios was also seen in the previous study [13]
where the 60–80% bin was used as a reference. Figures 4
and 5 show that the difference in the modifications between
different rapidity selections is marginal for fragments with
pch

T < 25 GeV and z < 0.25, respectively. Only at high pch
T

or high z, a small difference is observed – the enhancement
is systematically lower for more forward jets than for jets
measured in the central rapidity region.

Figures 6 and 7 show the RD(pT) and RD(z) distributions,

respectively, both for four pjet
T intervals of jets with |y| < 2.1.

No significant differences can be observed among the four
pjet

T selections.
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Fig. 3 Unfolded distributions of longitudinal momentum fraction,
D(z), measured in pp collisions and for seven centrality bins mea-
sured in Pb+Pb collisions. The four panels show D(z) distributions

with different selections in jet rapidity for jets with pT in the interval
of 100–398 GeV. The error bars on the data points indicate statistical
uncertainties while the shaded bands indicate systematic uncertainties

8 Discussion

To quantify the trends seen in the ratios, the differences
between integrals of D(pT) distributions measured in heavy-
ion collisions and the integrals of D(pT) distributions mea-
sured in pp collisions, N ch, were evaluated,

N ch|cent ≡
∫ pT,max

pT,min

(D(pT)|cent − D(pT)|pp) dpT. (14)

Three ranges defined by values of pT,min and pT,max were
chosen to match the observations in RD(pT), namely 1–4, 4–
25, and 25–100 GeV. Thus three values of N ch were obtained
for each centrality bin which represent the number of parti-
cles carrying: (1) the excess seen in heavy-ion collisions for
particles with 1 < pT < 4 GeV, (2) a depletion seen for
particles with 4 < pT < 25 GeV, and (3) the enhancement
seen for particles with 25 < pT < 100 GeV. Further, the dif-

ferences between integrals of the first moment of the D(pT)

distributions, Pch
T , were also evaluated,

Pch
T |cent ≡

∫ pT,max

pT,min

(D(pT)|cent − D(pT)|pp) pT dpT. (15)

These differences represent the total transverse momentum
of particles carrying the excess or the depletion observed in
RD(pT) distributions.

The result of performing this calculation is shown in Fig. 8
where the differences between the two integrals are displayed
as a function of the number of participants, Npart, calculated
using the Glauber model analysis of the �EFCal

T [22,36,37].
A clear, almost logarithmic, increase of yields of particles
with low transverse momenta with increasing centrality is
seen. In contrast, the intermediate-pch

T region exhibits less
significant modifications with varying centrality. The yield
at high pch

T shows a mild increase with increasing central-

123



379 Page 10 of 29 Eur. Phys. J. C (2017) 77 :379

0.8

1

1.2

1.4

1.6

1.8

2

|y| < 2.1

Pb+Pb 60-80%

1 2 4 10 20 40 100

0.8

1

1.2

1.4

1.6

1.8

2
|y| < 2.1

Pb+Pb 30-40%

0.8

1

1.2

1.4

1.6

1.8

2
|y| < 2.1

Pb+Pb 20-30%

0.8

1

1.2

1.4

1.6

1.8

2

|y| < 2.1
Pb+Pb 0-10%

|y| < 0.3

PbPb 60-80%

1 2 4 10 20 40 100

|y| < 0.3
Pb+Pb 30-40%

|y| < 0.3
Pb+Pb 20-30%

-12011 Pb+Pb data, 0.14 nb
-1 data, 4.0 pbpp2013

|y| < 0.3
Pb+Pb 0-10%

0.3 < |y| < 0.8

Pb+Pb 60-80%

1 2 4 10 20 40 100

0.3 < |y| < 0.8
Pb+Pb 30-40%

0.3 < |y| < 0.8
Pb+Pb 20-30%

 = 2.76 TeVNNs
 = 0.4 jetsRtkanti-

0.3 < |y| < 0.8
Pb+Pb 0-10%

1.2 < |y| < 2.1

Pb+Pb 60-80%

1 2 4 10 20 40 100

1.2 < |y| < 2.1
Pb+Pb 30-40%

1.2 < |y| < 2.1
Pb+Pb 20-30%

1.2 < |y| < 2.1
Pb+Pb 0-10%ATLAS

) Tp(
D

R
) Tp(

D
R

) Tp(
D

R
) Tp(

D
R

 [GeV]
T

p  [GeV]
T

p  [GeV]
T

p  [GeV]
T

p

Fig. 4 The ratio RD(pT) of unfolded D(pT) distributions measured in
heavy-ion collisions to unfolded D(pT) distributions measured in pp
collisions. The RD(pT) distributions were evaluated in four different
centrality bins (rows) and four different selections in jet rapidity of jets

(columns) with 100 < pT < 398 GeV. The error bars on the data
points indicate statistical uncertainties while the shaded bands indicate
systematic uncertainties

ity, however with smaller significance. The changes in the
total transverse momentum follow the trends seen in RD(pT)

distributions. However, for the high-pT region, the signifi-
cance of the increase in yields is more pronounced in RD(pT)

distributions than in the Pch
T distribution.

The difference defined in Eq. (15) can also be evaluated
over the full range of charged-particle transverse momenta,

1 < pch
T < 100 GeV. It may be expected that such Pch

T

should be identical to zero since the same range of the pjet
T

was used in Pb+Pb and pp collisions. The result of this eval-
uation is presented in the second row of Table 1. Indeed, the
Pch

T evaluated over the full range of charged-particle trans-
verse momenta is consistent with zero within one standard
deviation of combined statistical and systematic uncertain-
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Fig. 5 The ratio RD(z) of unfolded D(z) distributions measured in
heavy-ion collisions to unfolded D(z) distributions measured in pp col-
lisions. The RD(z) distributions were evaluated in four different cen-
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points indicate statistical uncertainties while the shaded bands indicate
systematic uncertainties

ties. The small residual deviations from zero are likely due
to the difference in the shape of pjet

T spectra between pp and
Pb+Pb collisions [10], which leads to a difference in the mean
pjet

T between Pb+Pb and pp collisions.
The total difference in the yield of charged particles can

also be evaluated by integrating the D(pT) distributions over
the full range of charged-particle transverse momenta. In this
case, one does not expect to see the same yields of charged

particles in Pb+Pb and pp collisions since this quantity may
change as a result of the jet quenching. The resulting N ch is
summarised in the bottom row of Table 1.

The enhancement of fragment yields at low pT or z already
reported in previous analyses [13,15] is confirmed, and it is
consistent with a jet quenching interpretation in which the
energy lost by partons is transferred predominantly to soft
particles [17]. While the enhancement of soft fragments may
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Fig. 6 The ratio RD(pT) of unfolded D(pT) distributions measured
in heavy-ion collisions to unfolded D(pT) distributions measured in
pp collisions. The RD(pT) distributions were evaluated in four differ-
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tistical uncertainties while the shaded bands indicate systematic uncer-
tainties

be understood as a direct consequence of the parton energy
loss, the enhancement of fragment yields at high pT or z
is unexpected [38]. A discussion of this feature in terms of
different quenching of quark and gluon jets was recently pro-
vided in Ref. [39]. In order to further study this enhancement
the ratio of RD(z) distributions in a given rapidity interval to

RD(z) in |y| < 2.1 is evaluated and plotted in Fig. 9. At high
z (z � 0.4) the result shows a trend of enhancements in the
ratio of RD(z) measured in |y| < 0.3 to RD(z) in |y| < 2.1
and a trend of depletions in the ratio of RD(z) measured in
1.2 < |y| < 2.1 to RD(z) in |y| < 2.1.
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Fig. 7 The ratio RD(z) of unfolded D(z) distributions measured in
heavy-ion collisions to unfolded D(z) distributions measured in pp col-
lisions. The RD(z) distributions were evaluated in four different central-

ity bins (rows) and four different selections in jet pT of jets (columns)
with |y| < 2.1. The error bars on the data points indicate statistical
uncertainties while the shaded bands indicate systematic uncertainties

9 Summary

This paper presents a measurement of internal structure of
jets performed with the ATLAS detector at the LHC. The
distributions of charged-particle transverse momentum and
longitudinal momentum fraction are measured in jets recon-
structed using the anti-kt algorithm with R = 0.4. These
distributions are measured differentially in jet pT, jet rapid-

ity, and in Pb+Pb as well as pp collisions at a centre-of-mass
energy of 2.76 TeV per colliding nucleon pair. The Pb+Pb and
pp data correspond to integrated luminosities of 0.14 nb−1

and 4.0 pb−1, respectively. In the case of Pb+Pb collisions,
the measurements are performed in bins of collision central-
ity. The distributions measured in pp collisions are used as a
reference for the distributions measured in Pb+Pb collisions
to evaluate the impact of the jet energy loss on the internal
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Fig. 8 (Upper panels) The difference N ch between the total yield of
particles in a given pch

T interval (indicated in the legend) measured in
Pb+Pb collisions and the total yield of particles in the same pch

T interval
measured in pp collisions. (Lower panels) The difference Pch

T between
the total transverse momentum of particles in a given pch

T interval mea-

sured in Pb+Pb collisions and the total transverse momentum of particles
measured in pp collisions. The differences were evaluated as a function
of number of participating nucleons, Npart . The error bars on the data
points indicate statistical uncertainties while the shaded bands indicate
systematic uncertainties

Table 1 The difference between pp and Pb+Pb collisions in the total
momentum, Pch

T , and the total difference in the yield of charged par-
ticles between pp and Pb+Pb collisions, N ch, evaluated over the full

range of charged-particle transverse momenta, 1 < pch
T < 100 GeV,

and for different values of centrality

Centrality 0–10% 10–20% 20–30% 30–40% 40–50% 50–60% 60–80%

Pch
T (GeV) 0.9+0.9

−1.7 1.0+0.8
−1.3 −0.0+0.7

−1.1 −0.6+0.8
−0.8 −0.5+1.0

−1.2 −1.4+1.0
−1.2 −0.8+1.3

−1.4

N ch 0.7+0.1
−0.2 0.9+0.1

−0.1 0.7+0.1
−0.1 0.5+0.1

−0.2 0.4+0.1
−0.1 0.2+0.1

−0.2 0.0+0.1
−0.1

structure of jets. The measurements cover the jet pT range of
100–398 GeV and use charged particles with pT > 1 GeV.
The results are corrected to the hadron level.

The ratios of charged-particle transverse momentum dis-
tributions measured in Pb+Pb collisions to those measured
in pp exhibit an enhancement in fragment yield in central
collisions for 1 < pch

T < 4 GeV, a reduction in fragment
yields for 4 < pch

T < 25 GeV, and an enhancement in the
fragment yield for pch

T > 25 GeV. The magnitude of these
modifications decreases in more peripheral collisions. A sim-
ilar observation is also made for the distributions of longi-

tudinal momentum fraction measured with respect to the jet
axis.

The centrality dependence of the magnitude of modifi-
cations was further quantified by evaluating the differences
between integrals of charged-particle transverse momentum
distributions measured in Pb+Pb and pp collisions for these
three characteristic pch

T intervals. Further, the jet pT- and y-
dependence of the modifications in the internal structure of
jets was measured. In addition, no significant differences in
modifications of the jet structure are observed among differ-
ent pjet

T selections spanning the interval of 100–398 GeV. No
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Fig. 9 The ratio of RD(z) distributions in a given rapidity interval,
namely |y| < 0.3, 0.3 < |y| < 0.8, and 1.2 < |y| < 2.1, to RD(z)
in |y| < 2.1. The ratio of RD(z) was evaluated for three different col-

lision centralities. The error bars on the data points indicate statistical
uncertainties while the shaded bands indicate systematic uncertainties

significant evolution in modifications of the jet structure as
a function of rapidity are observed except for a difference at
high pch

T or high z, where a hint of reduction of the enhance-
ment for more forward jets is observed.

These new results improve our understanding of the in-
medium modifications of parton showers and help to con-
strain jet-quenching models.
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