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Abstract: Augmented Reality and Virtual Reality are rapidly gaining attention and are increasingly being deployed over
the network. These technologies have large industrial potential to become next big platform with a wide range
of applications. This experience will only be satisfying when the network infrastructure is able to support
these applications. Current networks however, are still having a hard time streaming high quality videos. The
advent of 5G Networks will improve the network performance,but it is unclear it will be sufficient to provide
new applications delivering augmented reality and virtualreality services. There are few surveys on the topic
of augmented reality systems, and their focus mostly stays on the actual displays and potential applications.
We survey the literature on AR/VR networking, and we focus here on the potential underlying network issues.

1 INTRODUCTION

With the continuous development of Augmented Re-
ality (AR) and Virtual Reality (VR) technologies, new
challenges have beed arisen in network area for sup-
porting these applications. Facebook and YouTube
have already deployed support for some immersive
videos, including 360 degree videos. These technolo-
gies are still in their infancy but many believe they
have huge potential to shape the next experience for
entertainment, education and commerce. Forecast-
ers suggest around 30 million devices will be sold by
2020 generating revenue of around $21 billion (New-
man, 2017).

Specialized head mounted display (HMD) devices
such as the Oculus Rift and HTC Vive hit the market
in 2016 and have been used mostly in gaming appli-
cations. A more mainstream experiences have come
from much cheaper wraparound containers for smart-
phones such as Google Cardboard and the Galaxy
Gear VR headset. While the very first commercial
deployments, such as Google Glass for augmented re-
ality, were not as successful as hoped, new products
on the market keep trying to deliver an enhanced ex-
perience to users (Cass and Choi, 2015).

This experience will only be satisfying when the
network infrastructure will be able to support these
applications. Current networks however, are still hav-
ing a hard time streaming high quality videos. The ad-
vent of 5G Networks will improve the network to bet-

ter provide for new applications delivering augmented
reality and virtual reality services. The 5G white pa-
per (Alliance, 2015) specifically mentions augmented
reality, 3D-video and pervasive video as use cases for
dense urban networks. Yet, it is unclear that without
architectural support in the network, such applications
will receive the required resource to be succesful with
consumers.

There are few surveys on the topic of augmented
reality systems (say, (Van Krevelen and Poelman,
2010)), and their focus mostly stays on the actual dis-
plays and potential applications. (Westphal, 2017)
listed some challenges for the network to support
AR/VR and proposed Information-Centric Network
as an architectural answer. We focus here on the po-
tential underlying network issues. We present some
of these issues in this survey.

We attempt to survey the literature to see how to
better deliver an immersive experience at the network
layer. There are different threads in this work. One
key issue to efficiently deliver a satisfying immersive
experience is to deliver what the user is viewing with
high quality. Namely, the viewport of the user should
be reliably provided in high resolution. However, de-
livering every possible view at high quality imposes a
prohibitive cost in bandwidth. One answer is toonly
deliver the views that are actually seen at high quality.

In Section 2, we consider what can be done topre-
dict the motion of the user’s view, so as to deliver only
the minimal amount of data that encompasses what



Figure 1: The head movement (web, 2018).

the user will be looking at in the immersive stream.
In Section 3, we look at thecompression and coding
schemes to reduce the bandwidth footprint of the ap-
plication.

In Section 4, we study how to deliver an applica-
tion stream that is viewport dependent. Section 5 con-
siders the potential caching strategies at the network
layer to enhance immersive applications. Section 6
lists some of the empirical results and the datasets that
can be used for testing new enhancements. Finally,
Section 7 offers some concluding remarks.

2 PREDICTION OF THE USER’S
FIELD OF VIEW

360 degree videos (Sometimes refers as omnidirec-
tional videos), also known as immersive videos or
spherical videos, are video recordings where a view
in every direction is recorded at the same time, shot
using an omnidirectional camera or a collection of
cameras. During playback on normal flat display the
viewer has control of the viewing direction like a
panorama. It can also be played on a displays or pro-
jectors arranged in a cylinder or some part of a sphere.

Every day, these videos are becoming more and
more ubiquitous due to the dramatic increase in the
popularity of the Internet services such as social net-
working, e-commerce websites, e-learning websites
etc. Determining the particular user’s characteristics
from its video stream is crucial to save bandwidth and
improve the QoE for the users.

As displayed in figure 1, 360 degree videos use the
position sensors to detect viewing information from
the HMD. This allows the user to continually up-
date a scene according to the head movement, rota-
tion, etc. Prefetching strategies should carefully bal-
ance two contrasting objectives, namely maximizing
quality and avoiding stalls in the played stream and

prefetch new content from different channels to pro-
vide a seamless switch.

Zhang Hui (Zhang and Chen, 2016) predicts user
service access information (such as occurrence time,
occurrence location, service type and service content)
in the next period by studying the user’s behavior.
They formulate a modified entropy weightedMarkov
modelto accurately predict the user’s service states
with an adaptive feedback based weight correction
method.

Andrew Kiruluta(Kiruluta et al., 1997) uses a
Kalman filtering modelto predict head movements.
The key idea is to recognize that head movement tra-
jectories can be assumed to be constrained on piece-
wise constant acceleration paths with an additional
noise component to account for any perturbation from
these paths. (Vintan et al., 2006) proposesneural pre-
diction techniquesto anticipate a person’s next move-
ment. They focus on neural predictors (multi-layer
perceptron with back-propagation learning) with and
without pre-training.

Mavlankar and Girod (Mavlankar and Girod,
2010) perform fixation prediction in videos using fea-
tures like thumbnails, motion vectors, and naviga-
tion trajectories. With the advanced machine learning
technologies, various supervised learning methods in-
cludingneural networksare adopted for better feature
extraction and prediction accuracy in fixation detec-
tion (Alshawi et al., 2016), (Chaabouni et al., 2016),
(Nguyen et al., 2013). Chaabount et al. (Chaabouni
et al., 2016) build a convolutional neural networkks
(CNN) architecture and use residual motion as the
features for predicting saliency in videos.

Alshawi et al. (Alshawi et al., 2016) observe
the correlation between the eye-fixation maps and the
spatial/temporal neighbors, which provides another
way to quantify viewer attention on videos. Nguyen
et al. (Nguyen et al., 2013) propose to adopt the
information of static saliency (in images) and then



take camera motions into considerations for dynamic
saliency (in videos) prediction. (Fan et al., 2017) ad-
dresses the problem of fixation prediction for 360 de-
gree video streaming to HMDs using two neural net-
works.

(Bao et al., 2016) are used for predicting head
movement in 360 degree video delivery. They col-
lect motion data for some subjects watching 360 de-
gree videos. From the collected data, they observe a
strong short-term auto-correlation in viewer motions,
which indicates that viewer motion can be well pre-
dicted based on motion history.

In (Liu et al., 2017), they employ a Field-of-View
(FoV) guided approach that fetches only the portions
of a scene the users will see. They also use big
data analytics to facilitate accurate head movement
prediction (HMP), a key prerequisite for FoV-guided
streaming. In addition, they propose enhancements
that allow 360 degree videos to be efficiently streamed
over multiple network paths such as WiFi and cellular.

3 VIDEO COMPRESSION AND
CODING

Adaptive streaming of 360 degree video content in
a virtual reality setting is a challenging task which
requires smart encoding and streaming techniques to
cope with today’s and future application and service
requirements. Video compression standards aim to
minimize the spatiotemporal redundancies by exploit-
ing the characteristics of human visual systems along
with source coding techniques from information the-
ory. Moreover, a client can periodically switch to
neighboring captured views as the video is played
back in time when watching 360 degree video. The
technical challenge is to design coding structure to
facilitate periodic view switching, while providing
some level of error resiliency, so that error propaga-
tion due to differentially coded frames can be mit-
igated. Hence, most of coding strategies would be
viewport-dependent for saving resource cost in trans-
mission the video stream.

Begole (Begole, 2016) calculates that human can
process 5.2Gbps of data based on the physical charac-
teristics of human perception. This amount is beyond
even 5G network support, and is calculated based
upon the ability to distinguish 200 dots per degree
within the typical human foveal field of view, with
at least 150 degrees horizontally and 120 degrees ver-
tically at a rate of 30 frames per second. However,
this number assumes a compression ratio and some
dedicated coding techniques.

To address this bandwidth scarcity problem, many

360 degree video streaming service providers have
been actively working to address the concerns in en-
coding and transmitting 360 degree videos. Much of
this effort has gone into encoding schemes that re-
duce the amount of information transmitted over the
network during streaming. For example, (Rondao-
Alface et al., 2017) proposed an end-to-end system
that could achieve real-time streaming of 360 content
at 16K resolution with very low latency over Wi-Fi or
LTE towards untethered, smartphone-based HMDs.
In (Yu et al., 2015), they put forward a framework
for evaluating the coding efficiency in the context of
viewing with a head-mounted display.

360 degree video requires increased video reso-
lution (4K and beyond) to support the wider field of
view (360 degree field of view vs regular 2D video
that typically covers around 60-90 degrees field of
view). Hence the bitrate requirements are also higher
necessitating the need for efficient compression tech-
niques for 360 degree video. The rest of this section
is the literatures focusing on the video encoding in the
system of multiview video streaming (IMVS) or 360
degree videos.

3.1 Encoding Overhead Optimization

(Graf et al., 2017) states that the state of the art video
codecs (AVC/H.264, HEVC/H.265, VP8, VP9) and
delivery formats (DASH/HLS) can be used to deploy
a basic adaptive streaming service of omnidirectional
video content. However, this is very inefficient as
the typical Field of View of many VR devices is lim-
ited, and a lot of content is delivered, decoded, and
rendered for nothing (e.g., what is happening outside
of the users’ FoV). Viewport adaptive streaming has
been introduced to overcome this limitation but re-
quires multiple versions of the same content for each
view. That is, it adopts a similar strategy as in adap-
tive media streaming (DASH/HLS) but the number of
versions of the same content significantly increases.
This impacts (cloud) storage and (content delivery)
network costs.

In (Cheung et al., 2011), they motivated the need
for an interactive multi-view video streaming system,
where an observer can periodically send feedback to
the server requesting the desired views out of the
many available ones. In response, the server will send
the corresponding pre-encoded video data to the ob-
server for decoding and display without interrupting
the forward video playback. Observing that one can
trade off expected transmission rate with a modest
increase in storage when designing the pre-encoded
frame structure, they formulated a combinatorial op-
timization problem, where the optimal structure con-



tains the best mixture of I-frames (for random access),
P-frames (for low transmission rate) and merge or M-
frames (for low storage), trading off transmission rate
with storage.

In (Liu et al., 2013), they proposed a new frame
type called unified distributed source coding (uDSC)
frame that can both facilitate view switching and halt
error propagation. They then optimized transmission
strategies for coding structures with uDSC frames for
wireless IMVS multicast and wired IMVS unicast
scenarios.

(Ozcinar et al., 2017a) targets both the provider’s
and client’s perspectives and introduces a new
content-aware encoding ladder estimation method for
tiled 360 degree VR video in adaptive streaming sys-
tems. The proposed method first categories a given
360 degree video using its features of encoding com-
plexity and estimates the visual distortion and re-
source cost of each bitrate level based on the proposed
distortion and resource cost models. An optimal en-
coding ladder is then formed using the proposed inte-
ger linear programming (ILP) algorithm by consider-
ing practical constraints.

Adaptivity to the current user viewport is a
promising approach but incurs significant encoding
overhead when encoding per user or set of viewports.
A more efficient way to achieve viewport adaptive
streaming, presented in (Skupin et al., 2016), is to fa-
cilitate motion-constrained HEVC tiles. Original con-
tent resolution within the user viewport is preserved
while content currently not presented to the user is
delivered in lower resolution. A lightweight aggre-
gation of varying resolution tiles into a single HEVC
bitstream can be carried out on-the-fly and allows us-
age of a single decoder instance on the end device.

(Zhang et al., 2018) studied a navigation-aware
adaptation logic optimization problem for interactive
free viewpoint video systems that is able to minimize
both the navigation distortion and the view-switching
delay. They provide an optimal solution based on a
dynamic programing (DP) algorithm with polynomial
time complexity, and an approximate algorithm with
effective performance to further reduce computational
complexity in practice. The algorithm properly takes
into account both video content characteristics and
user interactivity level, which is efficient to find the
proper tradeoff between view quality and number of
reference views in constrained resource networks.

(Corbillon et al., 2017b) investigated some theo-
retical models for the preparation of 360 degree video
for viewport adaptive streaming systems. They ex-
plored the interplay between the parameters that char-
acterize the video area in which the quality should be
better. They denote this special video area a Quality-

Emphasized Region (QER) and address a theoretical
model based on the fundamental trade-off between
spatial size of the QERs and the aggregate video bit-
rate.

In (Sreedhar et al., 2016), they put for-
ward a multi-resolution viewport adaptive projec-
tion schemes to measure the rate-distortion (RD)
performance between different projection schemes.
With the observation of their evaluations, the multi-
resolution projections of Equirectangle and Cubemap
outperform other projection schemes, significantly.

3.2 Resource Allocation

(De Abreu et al., 2015) proposed a novel adaptive
transmission solution that jointly selects the optimal
subsets of views streams and rate allocation per view
for a hierarchical transmission in IMVS applications.
They consider a system where the network is charac-
terized by clients with heterogeneous bandwidth ca-
pabilities, and they aim to minimize their expected
navigation distortion. To do so, clients are clustered
according to their bandwidth capabilities and the dif-
ferent camera views are distributed in layers to be
transmitted to the different groups of users in a pro-
gressive way. The clients with higher capabilities re-
ceive more layers (more views), hence benefiting of
a better navigation quality. They have formulated an
optimization problem to jointly determine the optimal
arrangement of views in layers along with the cod-
ing rate of the views, such that the expected render-
ing quality is maximized in the navigation window,
while the rate of each layer is constrained by network
and clients capabilities. To solve this problem, they
have proposed an optimal algorithm and a greedy al-
gorithm with a reduced complexity, both based on dy-
namic programming.

(Chakareski et al., 2015) studied the scenario of
multicasting to a collection of clients. To address the
issue of heterogeneity amongst clients, they designed
a scalable joint source and channel coding scheme
for which they formulated a view-popularity-driven
source-channel rate allocation and a view packing
optimization problem that aims at maximizing the
expected video quality over all clients, under trans-
mission rate constraints and the clients’ view selec-
tion preferences. Their system is superior to state-
of-the-art reference systems based on H.264/SVC
and the channel coding technique they designed, and
H.264 and network coding. Finally, they developed
a faster local-search-based method that still optimizes
the source and channel coding components of their
system jointly at lower complexity. It exhibits only
a marginal loss relative to an exhaustive-search opti-
mization.



(Rossi and Toni, 2017) proposed an optimal trans-
mission strategy for virtual reality applications that is
able to fulfill the bandwidth requirements, while opti-
mizing the end-user quality experienced in the naviga-
tion. In further detail, they consider a tile-based coded
content for adaptive streaming systems, and they pro-
pose a navigation-aware transmission strategy at the
client side (i.e., adaptation logic), which is able to op-
timize the rate at which each tile is downloaded.

In (Chen et al., 2017), the problem of resource
management is studied for a network of wireless vir-
tual reality users communicating over small cell net-
works (SCNs). In order to capture the VR users’ qual-
ity of service (QoS), a novel VR model, based on
multi-attribute utility theory, is proposed. This model
jointly accounts for VR metrics such as tracking ac-
curacy, processing delay, and transmission delay.

4 VIEWPORT-DEPENDENT
STREAMING

Virtual Reality devices are quickly becoming accessi-
ble to a large public. It is, therefore, expected that
the demand for 360 degree immersive videos will
grow consistently in the next years. In VR stream-
ing, the user is immersed in a virtual environment
and can dynamically and freely decide the preferred
viewing position, called viewport. Unfortunately, VR
streaming is often affected by low quality nowadays,
due to the high bandwidth requirements of 360 de-
gree videos. Viewport-dependent solutions have of-
ten been proposed for VR streaming, as they are able
to reduce the bandwidth required to stream the VR
video. Viewport-adaptive streaming has recently re-
ceived a growing attention from both academic and
industrial communities.

(Afzal et al., 2017) characterized 360 degree
videos from the point of view of network streaming,
and compared them to regular videos that have been
the popular media format until now. Their compari-
son shows that 360 degree videos have substantially
higher bit rates and a larger number of resolution for-
mats; however, they also find that the bit rates for the
360 videos have less variability than regular videos,
which can be highly beneficial for the network due
to the network provisioning for the peak rates. To
explain lower bit rate variability, they demonstrated
that the average motion for the 360 video is less than
that for a comparable regular video. They believe that
this is because the motion described in a 360 degree
video is that which is inherently in the scene, rather
than the rotation or panning of the camera in space.
This implies that the panning now occurs at the time

of user viewing the video. Thus, the new requirement
on the network is that it needs to be more responsive
to the user changing field of view. They believe these
aspects have deep implications on networked video
streaming systems for both capacity and latency re-
quirements.

A 360 multiview video streaming (IMVS) sys-
temdegree video is captured in every direction from
a unique point, so it is essentially a spherical video.
Since current video encoders operate on a 2D rect-
angular image, a key step of the encoding chain is
to project the spherical video onto a planar surface
(showed in figure 2). The four projections that are
most discussed for 360 degree video encoding are
rectangular, cube map, pyramid and rhombic dodeca-
hedron. From the images that are projected on these
projections, it is possible to generate a viewport for
any position and angle in the sphere without informa-
tion loss. However, some pixels are over-sampled, in
the case of rectangular mapping, resulting in degra-
dation of performance of video encoders. On the
contrary, the projection into a pyramid layout causes
under-sampling. This results in distortion and infor-
mation loss in some extracted viewports.

(a) Sphere (b) Plane

Figure 2: Tiles in 360 degree video.

(Nguyen et al., 2017a) analyzed and evaluated
the impacts of the response delay to tiling-based
viewport-adaptive streaming for 360 degree videos.
Preliminary results indicate that viewport-adaptive
streaming methods are effective under short response
delay only. Specifically, for viewport adaptive meth-
ods to outperform EQUAL when the frame rate
is 30fps, the buffer sizes in cases of the adapta-
tion intervals of 4, 32, and 64 frames should be
less than 1s, 0.5s, and 0.125s, respectively. When
the buffer size exceeds 2s, EQUAL, which is a
viewport-independent method, outperforms all con-
sidered viewport-adaptive methods.So, viewport
adaptive streaming seems to be ineffective when us-
ing existing HTTP Streaming solutions due to long
response delay.

He et al (He et al., 2018) looked at the joint adap-
tation of the field of view with the rate under varia-
tions of the network delay and the congestion. They
proposed an algorithm to adapt the size of the field of
view to be downloaded based upon the network and
buffering delay to retrieve and view the stream seg-



ment so that it encompasses with high likelihood the
user’s viewport at the time of rendering.

4.1 QoE-driven Solution

Quality of Experience (QoE) is a measure of the de-
light or annoyance of a customer’s experiences with
a service such as web browsing, phone call and TV
broadcast (wik, 2018). QoE is one of major factors
for optimization 360 degree video streaming service.
However, the users’ QoE is far from trivial with the
adaptive streaming strategies. In this paper, we list
some papers with QoE guided solution for 360 de-
gree video streaming transmission, and in particular,
we investigate some literatures for bandwidth saving
in section 4.2.

(Ghosh et al., 2017) proposed a novel adaptive
streaming scheme for 360 degree videos. The basic
idea is to fetch the unviewed portion of a video at the
lowest quality based on users’ head movement pre-
diction, and to adaptively decide the video playback
quality for the visible portion based on bandwidth
prediction. Instead of using a robust manner requires
overcome a series of challenges, they first define QoE
metrics for adaptive 360 degree video streaming, for-
mulating an optimization problem with a low com-
plexity solution. The algorithm strategically leverages
both future bandwidth and the distribution of users’
head positions to determine the quality level of each
tile. After that, they further provide theoretical proof
showing that their algorithm achieves optimality un-
der practical assumptions.

(Xie et al., 2017) leveraged a probabilistic ap-
proach to pre-fetch tiles so as to minimize viewport
prediction error, and design a QoE-driven viewport
adaptation system, 360ProbDASH. It treats user’s
head movement as probabilistic events, and constructs
a probabilistic model to depict the distribution of
viewport prediction error. A QoE-driven optimization
framework is proposed to minimize total expected
distortion of pre-fetched tiles. Besides, to smooth
border effects of mixed-rate tiles, the spatial quality
variance is also minimized. With the requirement of
short-term viewport prediction under a small buffer, it
applies a target buffer-based rate adaptation algorithm
to ensure continuous playback.

(TaghaviNasrabadi et al., 2017) argued that play-
back is prone to video freezes which are very destruc-
tive for the Quality of Experience. They propose us-
ing layered encoding for 360 degree video to improve
QoE by reducing the probability of video freezes and
the latency of response to the user head movements.
Moreover, this scheme reduces the storage require-
ments significantly and improves in-network cache

performance.
(Corbillon et al., 2017c) targets at the problem of

bandwidth waste: the Field of View (or viewport) is
only a fraction of what is downloaded, which is an
omnidirectional view of the scene. To prevent simu-
lator sickness and to provide good Quality of Experi-
ence, the vendors of HMDs recommend that the en-
abling multimedia systems react to head movements
as fast as the HMD refresh rate. Since the refresh rate
of state-of-the-art HMDs is 120 Hz, the whole sys-
tem should react in less than 10 ms. This delay con-
straint prevents the implementation of traditional de-
livery architectures where the client notifies a server
about changes and awaits for the reception of content
adjusted at the server. Instead, in the current Virtual
Reality video delivery systems, the server sends the
full 360 degree video stream, from which the HMD
extracts the viewport in real time, according to the
user head movements. Therefore, the majority of the
delivered video stream data are not used.

4.2 Bandwidth Saving

(Graf et al., 2017) described the usage of tiles
— as specified within modern video codecs such
HEVC/H.265 and VP9 — enabling bandwidth ef-
ficient adaptive streaming of omnidirectional video
over HTTP with various streaming strategies. There-
fore, the parameters and characteristics of a dataset
for omnidirectional video are proposed and exem-
plary instantiated to evaluate various aspects of such
an ecosystem, namely bitrate overhead, bandwidth re-
quirements, and quality aspects in terms of viewport
PSNR.

In (Hosseini and Swaminathan, 2016b) and (Hos-
seini and Swaminathan, 2016a), they proposed a dy-
namic view-aware adaptation technique to tackle the
huge bandwidth demands of 360 VR video streaming.
They spatially divide the videos into multiple tiles
while encoding and packaging, use MPEG-DASH
SRD to describe the spatial relationship of tiles in the
360 degree space, and prioritize the tiles in the Field
of View.

(Le Feuvre and Concolato, 2016) described how
spatial access can be performed in an adaptive HTTP
streaming context, using tiling of the source content,
MPEG-DASH and its SRD extensions. They describe
a configurable implementation of these technologies,
within the GPAC open-source player, allowing exper-
imentations of different adaptation policies for tiled
video content.

(Ozcinar et al., 2017b) introduced a novel end-
to-end streaming system from encoding to display-
ing, to transmit 8K resolution 360 degree video and



to provide an enhanced VR experience using Head
Mounted Displays (HMDs). The main contributions
of the proposed system are about tiling, integration of
the MPEGDynamic Adaptive Streaming over HTTP
(DASH) standard, and viewport-aware bitrate level
selection. Tiling and adaptive streaming enable the
proposed system to deliver very high-resolution 360
degree video at good visual quality. Further, the pro-
posed viewport-aware bitrate assignment selects an
optimum DASH representation for each tile in a view-
port aware manner.

Nguyen. et al (Nguyen et al., 2017b) also display
a very similar solution with tiling in order to save the
bandwidth, which tackles the aforementioned prob-
lems by proposing a novel adaptive tile-based stream-
ing method over HTTP/2. In order to solve the band-
width problem in streaming VR videos over HTTP/2,
a dynamic adaptation method is crucial. In this pa-
per, they propose a novel adaptive streaming method
based on tiled streaming. By using H.265 standard, a
video at the server is divided into spatial tiles, each
of which is subdivided into multiple temporal seg-
ments. In order to support adaptive streaming method
from client, each tile is also encoded into different
versions. The priority of tiles is defined based on the
user’s viewport. Then, the priority feature of HTTP/2
is used to request the server to push the tiles of higher
priority first.

In (Mangiante et al., 2017), they present a Field Of
View rendering solution at the edge of a mobile net-
work, designed to optimize the bandwidth and latency
required by VR 360 degree video streaming.

(Qian et al., 2016) also argues that fetching the
entire raw video frame wastes bandwidth. They con-
sider the problem of optimizing 360 degree video de-
livery over cellular networks. They first conducted a
measurement study on commercial 360 degree video
platforms, then proposed a cellular-friendly stream-
ing scheme that delivers only the 360 degree videos’
visible portion based on head movement prediction.

In (Petrangeli et al., 2017b), they presented a
novel framework for the efficient streaming of VR
videos over the Internet, which aims to reduce the
high bandwidth requirements and storage costs of cur-
rent VR streaming solutions. The video is spatially
divided in tiles using H.265, and only tiles belonging
to the user viewport are streamed at the highest qual-
ity.

To save bandwidth, (Petrangeli et al., 2017a) spa-
tially tiled the video using the H.265 standard and
streamed only tiles in view at the highest quality. The
video is also temporally segmented, so that each tem-
poral segment is composed of several spatial tiles. In
order to minimize quality transitions when the user

moves, an algorithm is developed to predict where
the user is likely going to watch in the near future.
Consequently, predicted tiles are also streamed at the
highest quality. Finally, the server push in HTTP/2
is used to deliver the tiled video. Only one request
is sent from the client; all the tiles of a segment are
automatically pushed from the server.

5 IN-NETWORK CACHING

Historically, the Internet has evolved in an ad-
hoc manner where incremental patches were added
to handle new requirements as they arose. This
means that the underlying network model has not
changed over the last decades, while the services us-
ing the Internet did so drastically. Information Cen-
tric Networking (ICN) is a network architecture that
evolves from the traditional host-oriented communi-
cation model to a content centric model, which can
be extremely beneficial in adaptive streaming (West-
phal (Editor) et al, 2016). Particularly, ICN relies
on location-independent naming schemes, in-network
pervasive caching, and content-based routing to al-
low an efficient distribution of content over the net-
work. Moreover, ICN nodes can seamlessly use all
the available network interfaces to retrieve content.
Content Centric Networking (CCN) and Named Data
Networking (NDN) are typical instantiations of the
ICN paradigm. (Zhang et al., 2017) proposed a VR
video conferencing system over named data networks
(NDN). (Westphal, 2017) made the case that ICN
could answer some of the issues of AR/VR network-
ing support. However, other caching solutions may
help as well.

Edge computing is expected to be an effective so-
lution to deliver 360 degree virtual reality videos over
networks. Cache is one of underlying resources for
enabling these applications. Mangiante et al. (Man-
giante et al., 2017) present a Field Of View rendering
solution at the edge of a mobile network, designed to
optimize the bandwidth and latency required by VR
360 degree video streaming. Jacob Chakareski et al.
(Chakareski, 2017) designed an optimization frame-
work that allows the base stations to select coopera-
tive caching/rendering/streaming strategies that max-
imize the aggregate reward they earn when serving
the users, given specific caching and computational
resources at each base station. Zhang Liyang et al. In
(Matsuzono et al., 2017), they propose a low latency,
low loss streaming mechanism, L4C2, convenient for
for high-quality real-time delay-sensitive streaming.
L4C2 is also built with in-network caching mecha-
nism.



In particular, (Yeo et al., 2017) argues that client’s
increasing computation power and advancement in
deep neural networks allow us to take advantage of
long-term redundancyfound in videos, which leads
to quality improvement at lower bandwidth cost for
Internet video delivery.

6 PUBLIC DATASETS

Recently, content and datasets for 360 degree video
have been made public so as to promote reproducible
research. Some researchers have built 360 degree
video testbeds for collecting traces from real view-
ers watching 360 degree videos using HMDs. The
collected datasets can be used in various 360 degree
video applications with viewers using HMDs.

As for researchers, they can: (i) analyze the
datasets for finding some key problems and get the
insights for the research work, (ii) apply the datasets
to validate and evaluate their systems and algorithms.
The followings are some collected datasets.

(Corbillon et al., 2017a) presented a dataset in-
cluding the head positions of 59 users recorded while
they are watching five 70 s-long 360 degree videos
using the Razer OSVR HDK2 HMD. They have pub-
lished the dataset on the website alongside the used
videos and the open-source software that they de-
veloped to collect the dataset. Finally they also in-
troduced examples of statistics that can be extracted
from the dataset to provide an overview of the users’
behaviour and the videos characteristics, focusing on
the viewport adaptive streaming scenario.

(Rai et al., 2017) presents a new dataset of 60 om-
nidirectional images with the associated head and eye
movement data recorded for 63 viewers. A subjective
experiment was conducted, in which they are asked to
explore the images for 25 seconds, as naturally as pos-
sible. In addition, an image/observer agnostic anal-
ysis of the results from this experiment is also per-
formed, which, in contrast to previous studies, con-
siders both head and eye tracking data. Furthermore,
they also provide guidelines and tools to the commu-
nity to evaluate and compare saliency maps in such
omnidirectional scenarios. They argue that the free
availability of this dataset to the research community
may help on the intensive research work that is being
done nowadays regarding immersive media technolo-
gies to provide the best possible QoE to the end users.

(Lo et al., 2017) presented the dataset collected
from ten YouTube 360 degree videos and 50 sub-
jects. Their dataset is unique, because both content
data, such as image saliency maps and motion maps,
and sensor data, such as positions and orientations,

are provided. Many 360 degree video streaming ap-
plications, both traditional ones (like R-D optimiza-
tion) and novel ones (like crowd-driven camera move-
ments) can benefit from their comprehensive dataset.
In addition, the dataset can be extended in several
ways, such as adding eye tracking data of the eyes
movement as hints for future head movement.

The dataset presented by CIVIT (civ, 2018) pro-
vides four or eight different fisheye views generated
from a Nokia OZO. This allows testing of multiple
algorithms like depth estimation or panoramas stitch-
ing.

In (Wu et al., 2017), they present a head tracking
dataset composed of 48 users (24 males and 24 fe-
males) watching 18 sphere videos from 5 categories.
For better exploring user behaviors, they record how
users watch the videos, how their heads move in each
session, what directions they focus, and what content
they can remember after each session.

7 CONCLUDING REMARKS

AR/VR and immersive video streaming push the
boundaries of the network capability. The upcom-
ing 5G roll-out will not alleviate all of the issues
and therefore these applications need both in-network
support as well as enhancements at the application
layer to be successfully deployed. As such, it is a
very active area of research. We attempted to depict
this research landscape in this document.

We have seen how user’s motion prediction could
assist with reducing the bandwidth; how coding and
compression schemes are being developed; how tiling
and FoV can be adapted to the network conditions;
how caching will assist with the deployment of such
applications; and what datasets are currently available
to researchers who would like to test new methods and
algorithms.

Future research directions should include methods
to improve performance in three directions:

• bandwidth consumption should be minimized by
further improving prediction of the user’s behav-
ior, improved compression schemes, sharing and
multicasting using efficient tiling, etc.

• delay responsiveness of the network should
be improved; 5G will significantly reduce the
network RTT, but reducing the segment length
(together with the associated coded schemes),
bringing the servers to the edge, providing
QoS for immersive application, improving the
hardware, etc, are all required.



• reducing the computational impact on the net-
work; in order to support transcoding, or process-
ing of the AR/VR uplink streams (for sensor and
position data and for image and pattern recogni-
tion), the computing at the edge will significantly
increase. Methods to minimize this impact, meth-
ods for better pattern recognition and for sharing
this processing among users, etc, still need to be
devised.
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