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The feasibility of composite right/left-handed (CRLH) metamaterial waveguides

based upon graphene plasmons is demonstrated via numerical simulation. Designs

are presented that operate in the terahertz frequency range along with their various

dimensions. Dispersion relations, radiative and free-carrier losses, and free-carrier

based tunability are characterized. Finally, the radiative characteristics are evalu-

ated, along with its feasibility for use as a leaky-wave antenna. While CRLH waveg-

uides are feasible in the terahertz range, their ultimate utility will require precise

nanofabrication, and excellent quality graphene to mitigate free-carrier losses.
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I. INTRODUCTION

Graphene shows considerable promise as an optical material in the terahertz and mid-

infrared frequency ranges as a result of the strong optical response associated with intraband

conduction of Dirac fermions. Two-dimensional plasmons in single and multi-layer graphene

structures have been extensively described theoretically and via numerical simulations.1�5

Furthermore, direct evidence of their existence has been shown in the THz and mid-IR using

near-�eld probe techniques,6�9 as well using infrared absorption spectroscopy in patterned

structures (micro- and nano-ribbons, discs, dipoles, etc.) to excite dipolar modes associated

with standing-wave plasmons.10�12 For sheet carrier concentrations of ∼ 1012 − 1013 cm−2

THz resonances can be achieved for structures with widths of several microns;10,11 if the sizes

are reduced to tens of nanometers, resonances in the 3�12µm range can be obtained.12�14

By leveraging these e�ects graphene has been demonstrated as a THz modulator,15�17 and

has been proposed for strong light-matter coupling3,12 as well as for resonant and leaky-wave

antennas.18�21

In this paper we explore the feasibility of graphene for composite right/left-handed

(CRLH) metamaterial waveguides in the terahertz and far-IR frequency range (1�15THz).

The CRLH metamaterial concept is most easily understood using transmission-line theory.

A conventional (right-handed) transmission-line has a series inductance (LR) and a shunt

capacitance (CR); by loading the line with distributed series capacitance (CL) and shunt in-

ductance (LL), the line becomes highly dispersive and exhibits backward wave (left-handed)

propagation.22�24 The dispersion relation of the angular frequency ω vs. the propagation

constant β is shown for a typical CRLH line in Fig. 1. A stopband is evident at β=0, where

the band edge frequencies are given by the shunt resonance ωsh = (LLCR)
− 1

2 and series

resonance ωse = (LRCL)
− 1

2 . If the line is properly designed, these resonance frequencies

can be made equal so that the stopband closes; this is known as the balanced condition.

A balanced CRLH line is particularly useful for traveling wave devices since all modes ex-

hibit non-zero group velocity, and the characteristic impedance of the line is independent

of frequency. One- and two-dimensional metamaterials have been widely explored in the

microwave frequency range, and have been used to demonstrate a variety of guided-wave

devices (e.g., multi-band and enhanced bandwidth components, power combiners/splitters,

compact resonators, phase shifters, and phased array feed lines), as well as radiating devices
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FIG. 1. CRLH dispersion relationship which exhibits both right- and left-handed characteristics. A

stopband exists between ωsh and ωse - the shunt and series resonance frequencies respectively. The

inset shows the characteristic CRLH transmission line unit cell, which contains series inductance

LR, shunt capacitance CR, series capacitance CL, and shunt inductance LL.

(e.g., 1D and 2D resonant and leaky-wave antennas).23,25 More recently CRLH metamaterial

waveguides and metasurfaces have been demonstrated in the THz frequency range, both for

passive waveguides, as well as in active devices integrated with THz quantum-cascade laser

gain material.26,27

II. DESIGN

A. Conductivity model and graphene plasmons

We begin by considering the propagation of plasmons by in�nite, unpatterned graphene

sheets on a dielectric half-space. If coupling with free-space propagating electromagnetic

waves is neglected, graphene plasmons are described by a dispersion relation for the in-
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plane wavenumber q:

q =
i (ε1 + ε2)ω

σ(ω)
, (1)

where ε1 and ε2 are the permittivities of the two dielectric regions, and σ(ω) is the ac sheet

conductivity of the graphene. Throughout this paper we model the graphene conductivity

using the Drude model as given by:28

σ2D(ω) =
e2EF

π~2

τ

1− iωτ
, (2)

where EF is the Fermi level, vF = 106 m/s is the Fermi velocity, e is the fundamental charge,

~ is the reduced Planck constant, and τ is the Drude momentum relaxation time. The Fermi

level is related to the sheet carrier density n by

EF = ~vF
√
π|n|. (3)

Inserting the Drude conductivity into (1) gives the dispersion relation:

q(ω) =
π~2(ε1 + ε2)

e2EF

(1 +
i

τω
)ω2, (4)

which exhibits the characteristic ω ∝ q1/2 behavior associated with 2D plasmons and the

ω ∝ n1/4 behavior associated with a Dirac bandstructure.2

It has been shown that the Drude model for conductivity does an excellent job of capturing

the essential behavior of graphene plasmons, particularly when the wavenumber q is modest

compared to the Fermi wavenumber (q � EF/~vF ),29 and at su�ciently low temperatures

such that kBT � EF . Both conditions are well satis�ed for the doping levels of graphene

considered here where n ≥ 1012 cm−2 (EF ≥ 0.13 eV). Since we will consider plasmons with

frequencies of at most 15 THz (~ω ∼ 62 meV)), interband transitions will be forbidden since

~ω � 2EF . More accurate conductivity expressions that include interband transitions and

comparisons with random-phase-approximation (RPA) based models are given in Ref. 29;

treatments of nonlocal conductivity (i.e. spatial dispersion) are given in Ref. 30 and 31.

It has been shown that classical local models for the conductivity are generally accurate

for graphene nanostructures larger than ∼20 nm.32 Our con�dence in using the local Drude

conductivity is further bolstered by reports which show that even for 60 nm wide graphene

nanoribbons, use of a nonlocal conductivity model (where conductivity σ(ω, q) is a function

of both frequency and wavenumber) only shifts resonances by 5% or less for our considered

carrier concentrations.33 For larger nanostructures at lower frequencies, the shifts are smaller,
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since the in-plane wavenumbers q involved are smaller. As a �nal check, we have performed

a post-computational analysis on our simulation results by using Fourier analysis to extract

the spectral power of the current density distribution. For the frequencies and dimensions

considered here, we con�rmed that 95% or more of the spectral power is at wavenumbers

su�ciently small that corrections due to spatial dispersion are a few percent or less.30,31

B. Design of CRLH waveguide

Since CRLH metamaterials are typically described using transmission-line (TL) models, it

is useful to begin our discussion by describing the fundamental lateral plasmon mode (m = 0)

on a microribbon of width w using a transmission line (TL) model (e.g. as in Refs. 31 and

34). This mode is schematically illustrated in Fig. 2(a) along with its dispersion relation.

In the low-damping limit (ωτ � 1), the kinetic inductance of the electrons dominates the

graphene impedance; this can be represented by an equivalent series inductor LR in the

circuit diagram in Fig. 1. The fringing E-�eld longitudinally couples charges along the

graphene ribbon and plays the role of the shunt capacitor CR. E�ective values for these

circuit elements are given in the Appendix.

In order to realize a CRLH line, a shunt inductance LL and a series capacitance CL must

be added. It is straightforward to create a distributed series capacitance by introducing

repeated gaps of size a and period p along the graphene microribbon. This adds a high-pass

characteristic to the dispersion relation for the m = 0 mode, with a cuto� frequency equal

to the series resonance ωse (see Fig. 2(b)).

In microstrip implementations, the shunt inductance LL is typically achieved using a

stub and/or a via to the ground plane. At THz frequencies such techniques are often lossy

and di�cult to fabricate; furthermore they are incompatible with the geometry of a single

graphene microribbon. However, an e�ective shunt inductance arises naturally if we consider

propagation of the �rst higher-order lateral mode (labeled m = 1) of the microribbon (also

known as an edge mode), which is associated with transverse conduction currents. This can

be modeled by two transmission lines in parallel, coupled together by an inductance 2LL

(see Fig. 2(c)). The e�ective shunt resonant frequency ωsh is given by the cuto� frequency

for this higher order mode, which occurs when the the width w is approximately equal to

one half of the plasmon wavelength, i.e. q(ωsh) ≈ π/w. This approach to obtaining LL has
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FIG. 2. Conceptual design progression for CRLH graphene plasmonic waveguide along with their

associated circuit models (for one unit cell) and dispersion relations. (a), (b) show the fundamental

m = 0 even mode with and without series gaps. (c), (d) show the higher order m = 1 odd mode

with and without series gaps. The latter case shown in (d) exhibits CRLH behavior and is the basis

for the designs presented here.

been used for passive and active THz microstrip-type waveguides.26,27,35

When gaps are introduced, the dispersion of the m = 1 mode takes on a CRLH character,

with both right-handed and left-handed propagating characteristics. The double transmis-

sion line model is shown in Fig. 2(d). When this line is excited in its odd mode, the central

symmetry plane acts as a virtual ground, so that each branch is equivalent to the circuit in

Fig. 1. With proper design, one can obtain the condition ωse = ωsh, and we say the structure

is �balanced�; the stopband closes and propagating waves exist with non-zero group velocity

even at β = 0.
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III. RESULTS: DISPERSION CHARACTERISTICS

A. Simulation Methodology

Numerical simulations were performed using a commercial �nite element full-wave elec-

tromagnetic solver (Ansys HFSS). The eigenfrequency solver was applied to a single unit cell

of length p with periodic Floquet-Bloch boundary conditions in the axial direction for a �xed

propagation constant β; this was used to extract the complex eigenfrequency ω = ω′ + iω′′.

This procedure allowed the retrieval of the dispersion relationships ω′(β).

The graphene is modeled as a 2D impedance boundary condition of Zs = σ(ω′)−1 at the di-

electric halfspace interface, where the conductivity σ is taken from Eq. (2).36 The simulation

space consisists of a cylindrical �airbox� of 15 µm radius surrounding the graphene microrib-

bon. The upper semi-cylinder has permittivity ε1 (assumed to be vacuum throughout), and

the lower semi-cylinder has permittivity ε2 which represents a semi-in�nite substrate. For

radiating modes, it is important to suppress re�ections at the transverse airbox boundaries;

this is accomplished by using a layered impedance boundary condition. Various airbox sizes

were considered to verify that their dimensions did not a�ect the complex eigenfrequency

solution.

Since the conductivity of graphene is dependent on frequency, an iterative approach was

used to achieve a self-consistent solution. The algorithm is as follows: �rst, for a given

value of β an inital radian frequency ω0 is guessed using the lumped element circuit model;

this value is used to calculate σ(ω0) for graphene which is input into the simulation, and

the complex eigenfrequency ωi is solved numerically for each i-th iteration. Second, the

conductivity σ(ω′i) is used to re-solve for the eigenfrequency ωi+1 The process is iterated until

the real part of the complex eigenfrequency converges within 20 GHz. As veri�cation, this

method is seen to accurately reproduce the analytic dispersion relation for an unpatterned

graphene microribbon in its fundamental m = 0 mode in Fig. 3.

The imaginary part of the eigenfrequency gives information both about Drude loss and

radiative loss (for modes within the light line (β < nω/c)). The modal quality factor Q is

obtained from the complex eigenfrequency according to Q = ω′/2ω′′, and with knowledge

of the group velocity vg = dω′/dβ of the mode, the power loss coe�cient per unit length is

given by α = ω′/Qvg.
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However, a complication arises if the �nite element eigenfrequency solver is used to di-

rectly extract the Drude losses, because the graphene impedance is treated as frequency

independent during any given iteration. Essentially the imaginary part of the impedance is

not allowed to vary with frequency during the eigenfrequency solution process (equivalent

to �nding a root in complex frequency space). This results in the eigenfrequency solver un-

derestimating the Drude contribution to the losses by as much as a factor of two (depending

upon the value of β). For example, for the m = 0 guided mode, the HFSS solver calculates

Q = ωτ/2, instead of the expected Q = ωτ that can be calculated analytically from Eq.

(4). This issue is addressed in detail in Sec. IVA via a hybrid method, where only the

radiative losses are extracted numerically, and an analytic expression is used for the Drude

losses based upon a transmission line model.
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FIG. 3. Simulated dispersion relationship for Design A CRLH structure (m = 1 with series gaps)

with a center frequency of 2.8 THz (red) and dimensions shown. Also shown is the dispersion for the

m = 0 plasmonic mode on a graphene microribbon of identical width (green). Shown in the insets

are plots of the graphene charge density ρ at the shunt and series resonance. Light lines (ω = cβ/n)

for vacuum (n = 1) and silicon (n = 3.41) are also plotted in black and gray, respectively.
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B. Design of a Baseline CRLH structure

An exemplar CRLH waveguide was designed to operate with a center frequency of

2.8 THz, with dimensions as follows: unit cell length p = 2.5 µm, capacitive gap size

a = 100 nm, and microribbon width w = 4.55 µm. Design proceeds as follows. For a given

carrier density, the width w of the microribbon is chosen �rst to set ωsh to the frequency of

choice. The circuit model is used to give a coarse estimate (see Appendix); the value is then

re�ned using a 2D full-wave simulation for a �nite width ribbon. Then gaps are added to

the design, with an initial guess for the period p and gap size a again provided by the circuit

model. Then the dimensions are �ne tuned using full-wave simulations so that the CRLH

structure is nearly balanced (i.e. ωsh = ωse). For this baseline design, which we will refer

to as �Design A,� the carrier density was taken as n = 3×1013 cm−2 (EF = 0.64 eV), a value

which is readily experimentally achievable. We also assumed that the graphene structure

was at the interface of a dielectric half-space between vacuum and a lossless silicon substrate

(εr = 11.6). This was chosen somewhat arbitrarily, and our results should be understood

to be applicable to a variety of dielectric substrates (i.e. SiO2, BN, etc.), provided the ap-

propriate modi�cations are made to the dimensions, plasmon damping rates, and substrate

dielectric and free-carrier losses. Similarly, we have neglected any coupling with optical

phonon Reststrahlen bands in the substrates;12 such coupling is negligible at THz frequen-

cies, but is important in the mid-IR (i.e. λ ∼ 10µm for SiO2 and BN). Unless otherwise

speci�ed, momentum relaxation time was set to be τ = 1 ps. However, simulations showed

that provided ωτ > 1, the dispersion relation is not sensitive to the particular value of τ .

The simulated dispersion relation is presented in Fig. 3, and exhibits the characteristics

shown in Fig. 1. Left-handed propagation is exhibited between 1.8�2.8 THz. The structure

is nearly balanced, however, if closely examined, there is a slight ∼20 GHz gap that remains

at β = 0. At this point distinct series and shunt resonance modes can be observed, and their

charge densities are shown in the inset of Fig. 3. However, when one considers non-zero

values of β, the propagating modes are hybrids of these two basis states. For comparison,

also shown in this �gure is the dispersion of the fundamental m = 0 mode for a ribbon

without gaps, which exhibits the characteristic ω ∝ β1/2 behavior. As expected, the shunt

resonance frequency occurs close to the half-wavelength condition (i.e. β(ωsh)w ≈ 0.9π for

the m=0 mode). The residual 20 GHz gap is likely due to the imbalances in radiative losses
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associated with the shunt and series branches of the transmission line.37,38

Several factors drive the choice of p. While ideally p should be as small as possible to obey

the metamaterial homogenization condition, in practice as long as the period satis�es the

condition p < (2π/q)/2 no higher order Bragg scattering will contribute to propagation. The

�nite-sized unit cell also gives rise to a high-pass �ltering e�ect, where the series capacitance

and shunt inductance behave as a high pass �lter with a cuto� of ωcL = 1/2
√
LLCL, which

is seen to be approximately 1.8 THz in this design. Reducing the unit cell size p results in a

larger value of LL and CL (required to keep ωsh and ωse constant) which reduces the cuto�

frequency. This can be used to engineer the group velocity and leaky-wave bandwidth of the

CRLH waveguide. From a practical standpoint, reducing the unit cell is challenging, since

the series capacitance has an only a logarithmic dependence on the gap size a. For example,

our simulations showed that modifying Design A by reducing the period from 2.5µm to 1µm

requires reducing the gap size from 100 nm to 1.3 nm to maintain the balanced condition.

C. Carrier density tunability

One of the attractive features of graphene is the ability to tune the plasmon dispersion via

electrostatic gating, chemical doping, or optical pumping. This property can be exploited

to tune CRLH waveguides while approximately maintaining their balanced character. Sim-

ulated dispersion relations for various concentrations for our Design A structure are shown

in Fig. 4. Based on the graphene dispersion relationship presented in (4) we expect a fourth

root scaling of frequency with carrier density (i.e. ω ∝ n1/4). Indeed this is observed where

two orders of magnitude change in carrier density shifts the center frequency by approxi-

mately a factor of three. This will prevent tuning of a single structure into di�erent frequency

ranges � say from the THz to the mid-IR. However, this tuning is more than su�cient to

tune a graphene structure across the leaky-wave bandwidth (i.e. hundreds of GHz) for a

beam-scanning or phase shifter application. For example, a phase shift of π radians can be

obtained across a single unit cell by changing the carrier density by a factor of ten. Fig. 4

shows that the balanced condition is approximately preserved even as the carrier density is

changed. Indeed, this is predicted by the analytic transmission-line treatment given in the

Appendix for which only geometric parameters determine the balanced condition. However,

it is seen that slight unbalancing occurs as the carrier density is tuned; whether this is within

10



acceptable limits will depend upon the application.
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FIG. 4. Dispersion relationships for Design A for various graphene carrier densities labeled in

units cm−2.

D. Frequency scalability

Table I presents the dimensions of several CRLH waveguides designed for center frequen-

cies of 2.8 THz, 5 THz, and 12 THz � labeled designs A, B, and C respectively. Dispersion

relations for Design A, B, and C are plotted in Fig. 5, along with transmission line model �ts

obtained using the model and parameters given in the Appendix. It is seen that excellent

agreement is obtained, although the use of several adjustable parameters is required to prop-

erly �t the numerical results. Unfortunately, the q1/2 nature of graphene dispersion means

that the width w must be reduced quadratically to achieve linear increases in frequency.

This is seen in our designs, where frequency is scaled up by a factor of 4.2 from 2.8 THz

(Design A) to 12 THz (Design C), requiring the width w to be downscaled by a factor of 17,

and period p by a factor of 12.5. The gap size a shrinks only by a factor of 5 from 100 nm to

19 nm; the ability to fabricate increasingly small gaps will no doubt be a limiting factor in

any attempt to realize mid-IR CRLH designs at 20-100 THz. We do not present such higher

frequency designs here since the small dimensions result in increasingly large corrections on
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the graphene conductivity model due to spatial dispersion (i.e. non-local conductivity).30,31

Such e�ects are not readily incorporated into the �nite-element eigenfrequency simulations

used here.

TABLE I. Dimensions of frequency scaled designs

Design Center frequency Periodicity p Width w Gap a

A 2.8 THz 2.5 µm 4.55 µm 100 nm

B 5 THz 0.8 µm 1.42 µm 40 nm

C 12 THz 0.2 µm 0.260 µm 19 nm
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FIG. 5. Simulated dispersion relations for the frequency scaled designs in Table I (points), along

with �ts to transmission line model presented in Appendix. Insets are zoomed in views of dispersion

near β = 0.
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IV. RESULTS: RADIATIVE PROPERTIES

A. Radiative and Drude Losses

In principle, graphene holds the promise of high mobility and low plasmonic dissipation

� however in practice the plasmon damping rates depend sensitively upon the graphene

quality and substrate interactions. Furthermore, for modes within the light line, radiative

losses must also be considered. In this section we consider both sources of loss, and the

consequences for CRLH graphene waveguides.

Radiative loss is calculated using the same �nite element eigenfrequency solver described

previously in Sec. IIIA. However, as previously discussed, the eigenfrequency solver overes-

timates Drude losses. Therefore we implemented a hybrid method, where Drude losses are

deliberately suppressed within the simulation by setting τ > 1 ns. As a result, the numeri-

cally simulated quality factor contains only radiative losses, which we label Qr. The e�ect

of free-carrier loss is separately estimated assuming τ = 1 ps using the analytic expression

for the Drude quality factor that is derived in the Appendix (see (A.11)). The total quality

factor is then given by Q−1 = Q−1
r +Q−1

D . Both the quality factor and power loss coe�cient

α are plotted for the three designs in Fig. 6.

Several trends are evident. First, the Drude losses for τ = 1 ps are very large � for Design

A at 2.8 THz (αD ∼1500 cm−1), which leads to short attenuation lengths (α−1 ≈ 6 µm). The

radiative loss is of similar magnitude, which implies implies a radiative e�ciency of 50% or

better, but further reduces the propagation length. Second, there is a notable discontinuity

of Qr at β = 0. This is due to the fact the CRLH waveguide is not perfectly balanced so that

at β = 0 a small 20 GHz gap remains; at this point the modes retain their distinctive series

and shunt resonance character. Only the shunt resonance mode exhibits dipolar character

and radiates strongly, whereas the series resonance mode is quadrupolar and is essentially a

�dark� mode with a large Qr (see Fig. 6(a)). Away from β = 0 the CRLH propagating mode

is a hybrid of both series and shunt resonances, which radiates only via its shunt dipolar

component. In fact, the presence of this residual 20 GHz gap is likely a consequence of

the fact that only the shunt-mode radiates while the series-mode is dark; closing the gap

entirely to achieve a perfect balanced condition would require the series mode to radiate

also, as described in Refs. 37 and 38. For designs B and C at higher frequencies, the total

13
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quality factor increases for two reasons. First, the Drude loss contribution scales as QD ∝ ω.

Second, the radiative loss contribution also decreases for higher frequencies (Qr ∝ ω2) since

the radiating dipole moment scales with the width w.

How realistic is τ=1 ps? Within the Drude model, the momentum relaxation time is

related to the dc mobility µ according to τ = µEF/ev
2
F , so τ = 1 ps corresponds to a mo-

bility of 15,600 cm2/V·s for n = 3× 1013 cm−2. Dc mobilities greater than 100,000 cm2/V·s

have been observed at low temperature in suspended graphene,39 and graphene on hexag-

onal boron nitride (h-BN) underlayers have demonstrated µ ≈ 60, 000 cm2/V·s (exfoliated

sample) as well as 37,000 cm2/V·s (CVD grown).40,41 When fully encapsulated in h-BN,

graphene was shown to have room temperature mobilities as high as 120,000 cm2/V·s at

densities of 5× 1011 cm−2, and 40,000 cm2/V·s at 3× 1012 cm−2, values which correspond to

e�ective Drude relaxation times of τ ∼ 0.8− 1 ps. Direct measurement of plasmon damping

at room temperature at λ ∼ 10µm has shown τ ∼ 200−300 fs in graphene/h-BN structures

with no dependence on carrier density.8 In summary graphene with τ ∼ 1 ps and perhaps

even higher is certainly within experimental reach; future improvements in material quality

will only help in achieving reduced losses. Values of τ ∼ 0.1 ps are more typical of graphene

on SiO2 substrates; such material quality is not su�cient for plasmonic CRLH waveguide

operation in the THz.

B. Beam Scanning

A balanced CRLH based graphene structure can be considered for a leaky-wave antenna

because its ability to scan its main beam from backwards to broadside to forwards.25,42

Leaky-wave antennas in graphene have been proposed via various schemes that use Bragg

scattering from periodic perturbation, such as sinusoidal modulation of the nanoribbon

width,21 or backgating to create a periodic reactance.18 This proposed CRLH leaky-wave

antenna would di�er in two signi�cant ways. First, radiation occurs because the fundamental

dispersion of the metamaterial waveguide is within the leaky-wave region � not due to

Bragg scattering. As a result, CRLH structures can be balanced so that there is no (in

theory) or negligibly small (in practice) stopband at β = 0, which enables propagating

waves across the entire leaky-wave band. Second, the radiation of our CRLH structure is

mediated through transverse dipolar currents along the graphene microribbon (i.e. through
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the shunt inductor). Coupling in and out of the metamaterial waveguide thereby occurs via

coupling with transverse-electric (TE) plane waves, rather than transverse-magnetic (TM)

plane waves, as is typical for conventional surface plasmons.27
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FIG. 7. (a) Schematic of near-�eld dipole antenna excitation scheme used for driven mode beam

simulations. (b) Design A far-�eld intensity beam pattern in x−z plane for �ve driving frequencies

simulated with τ =∞ . (c) Far-�eld intensity beam pattern in (c) y− z plane at 2.75 THz and (d)

x− z plane simulated with τ = 1 ps. All beams are normalized to unity peak intensity.

We study beam patterns from Design A using a driven 3D full-wave simulation, where

a �nite length (300µm) CRLH waveguide is excited as a LWA. We considered the Drude

relaxation time as τ = 1ps and τ =∞ (radiative losses only).

For the purposes of simulation, a near-�eld excitation is used to drive the CRLH mode,

with a horizontal electrical dipole antenna placed 0.1µm above the �rst unit cell as shown

in Fig. 7(a). This is designed to excite the transverse current �ow associated with the shunt

resonance component of the CRLH mode. In practice, a CRLH LWA might be excited by
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replacing the horizontal dipole with a photoconductive switch for narrowband THz genera-

tion via photomixing.43 Alternately, the graphene CRLH structure might be excited using

a microstrip-type waveguide � such as from a THz quantum-cascade laser � operating in

its m = 1 higher-order mode.26,35 Or, incident TE plane waves can be used to excite single

or arrays of multiple CRLH waveguides.27

The CRLH structure primarily radiates into the silicon half-space with a beam that scans

from backwards to forwards as the frequency is changed. In practice, radiation from the

substrate could be out-coupled and directed using a silicon hemispherical lens as is common

for THz photoconductive antennas. If Drude loss is neglected (as seen in Fig. 7(b)), scanning

is observed in the x-z plane from 150 to 225 degrees. At 2.75 THz (near β = 0), the LWA

radiates broadside with a fan-like beam. A typical beam pattern in the y-z plane is shown

in Fig. 7(c). In the far-�eld, the electric �eld is predominately linearly polarized in the

φ-direction (i.e. transverse to the LWA axis). This is consistent with our understanding of

radiation originating from the transverse electric current dipoles associated with the shunt

resonance component of the CRLH mode. The cross polarized component is smaller by 10

dB or more. When a Drude relaxation time of τ = 1 ps is used, the attenuation length is

shorter, so the beam is broader, and scanning is much less pronounced, from 180 to 210

degrees (see Fig. 7(d)). This highlights the importance of high mobility graphene for leaky

wave applications.

C. E�ect of a backplane

We now consider the e�ect of a perfect electric conductor backplane placed a distance

h away from the graphene microribbon on the substrate side. There are two possible mo-

tivations for this: radiation control, and electrostatic gating. We simulate several di�erent

backplane distances h using Design A and obtain their corresponding dispersion relation-

ships. First, we consider h = 8 µm which corresponds to approximately λ/4 at 2.8THz

within silicon. At this distance the ground plane is su�ciently far away such that there

is little interaction between it and the fringing �elds of the graphene plasmonic mode; the

dispersion relation is una�ected (see Fig. 8). The radiative quality factor is also similar in

magnitude to the case without the backplane. However, care must be taken when adding

a backplane when the dielectric thickness is close to a quarter wavelength, as undesirable
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coupling with surface waves may result.44 A straightforward solution to suppress these par-

asitic modes is to etch the dielectric slab into a ridge underneath the graphene. Such a

structure will prevent excitation of surface waves, while leaving the near-�eld and dispersion

relation unchanged. Although not shown here, simulations show that this scheme preserves

the scanning beam behavior except into the air side rather than the substrate.

A smaller backplane separation can be used to reduce radiative loss as well as allow

for electrostatic gating of the graphene. As seen in Fig. 8 the presence of the backplane

signi�cantly changes the dispersion relation for h = 1 µm as ωsh drops due to the increase

in shunt capacitance CR that results from interaction with the ground plane. For the case

of h = 0.2 µm the change is so large that a redesign is necessary to �re-balance� the CRLH

waveguide; the dimensions and dispersion is shown in Fig. 8 for this �Design A′�. The width

was reduced to 1.9 µm to increase ωsh back to 2.8 THz. However, since the reduction in w also

reduces CL, the gap a is reduced to 25 nm to keep ωse constant. The presence of such a close

backplane e�ectively shorts out the radiation of the CRLH structure via the image currents,

and the radiative quality factor becomes very large (Qr � 104). This con�guration will

also allow tuning of the CRLH dispersion via backgating of the carrier density with modest

voltages, perhaps for applications such as phase shifters or tunable resonators. Comparison

with recent experimental results with similar gate dielectric thicknesses (in SiO2) suggests

that voltages on the order of 50�100V would be required to tune the Fermi level from the

Dirac point to the values of 0.5-1 eV necessary for our designs.12,45 An alternative to reduce

the gate voltage and obviate the need for a backgate is to use an ion-gel top-gate, which has

been shown to modulate the Fermi level over 1 eV with a voltage swing of < 10V.45

V. CONCLUSION

In this work we have introduced a new design paradigm for graphene plasmonic CRLH

waveguides and presented several designs in the terahertz frequency range. We have also

characterized free-carrier and radiative losses, leaky-wave antenna radiation patterns, and

the e�ects of carrier density tuning. A transmission-line model provides qualitative design

guidance, and quantitative agreement with numerical results with the assistance of �tting

parameters. The dimensional requirements are challenging (i.e. the 2.8 THz design has

ribbons of width 4.5µm and gaps of 100 nm, the 12THz design has ribbons of width 260 nm
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FIG. 8. Dispersion relationship and associated radiative quality factor Qr (inset) for Design A

with an in�nite groundplane distance h placed below the graphene strips. When the groundplane

is placed close at h = 0.2 µm, Design A must be rebalanced; this new design is labeled Design A′.

and gaps of 19 nm), but within what is achievable using electron-beam lithography. However,

the primary challenges for scaling to higher frequencies is the requirement that dimensions

shrink quadraditically with frequency as dictated by the square root dispersion relation. The

gap size a is the smallest critical dimension, and will likely be the primary limiting factor

for fabrication if these structures were to be scaled up to the mid-IR, since it would need to

shrink to just a few nanometers.

The issue of loss is the most critical challenge for practical CRLH graphene devices.

For example at 3 THz, for practical values of the graphene mobility (i.e. τ=1ps, µ ≈

15, 600 cm2/V·s), losses are large and propagation lengths limited. Radiative losses are also

large � this bene�ts radiative e�ciency for leaky-wave antennas, but results in reduced beam

scanning and large beamwidths. Hence, the most critical challenge for practical implemen-

tation is the need for large-area high-mobility graphene to minimize plasmon dissipation and

achieve times of τ > 1 ps. For guided wave operation, radiative losses can be eliminated
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with the addition of a backplane, which can also act as a backgate for free-carrier tuning.

By tuning the carrier concentration by one order of magnitude, 180 degrees of phase shift

can be obtained even over the length of one unit cell � an attractive feature for a distributed

phase shifter. The situation for losses improves somewhat at higher frequencies (i.e. 5 THz

and 12 THz), since the Drude quality factor for CRLH modes scales proportionally to ω,

and the radiative quality factor Qr scales as ω2 due to the quadratic reduction in waveguide

dimensions. These challenges are not unique to our design � indeed they are ubiquitous

for any device based upon plasmons.46 However, the reduced group velocity of the CRLH

waveguide reduces the propagation length by a factor two and the Q by a factor of ∼0.75

compared to an unpatterned graphene plasmon.

In summary, our results show that while demonstrating CRLH graphene waveguides

is possible, it will be challenging, with the ultimate performance highly dependent upon

availability of high-mobility graphene with long Drude relaxation times. This challenge

will need to be weighed against potential bene�ts of using graphene, such as free-carrier

tunability, or large optical nonlinearity.
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Appendix: CRLH Transmission Line Model

The theory of CRLH metamaterials is most easily presented in terms of a transmission-

line model. In the graphene microribbon waveguide presented here, this is not strictly valid

since the CRLH behavior is based upon a higher-order transverse mode, which results in

an approximately sinusoidal variation in the electric and magnetic �elds across the width

of the ribbon. Thus, the waveguide cannot be considered sub-wavelength in the transverse

dimension, and the quasi-static limit is not applicable. Nonetheless, a circuit model is still

very useful for qualitative understanding and design guidance, provided that it is understood

that inductances and capacitances are e�ective parameters. However for detailed design
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numerical methods must be used. We begin by de�ning the series inductance LR and shunt

capacitance CR for a graphene microribbon with an e�ective width weff and unit cell length

p:

LR = − p

weffω
Im{σ−1} = pπ~2

weffe2EF

(A.1)

CR = DRpweff (ε1 + ε2) Re{q(ω)} (A.2)

= DR
pweffπ~2 (ε1 + ε2)

2

e2EF

ω2 (A.3)

The series inductance LR originates from the kinetic inductance of the graphene free carriers,

i.e. the imaginary part of the Drude resistivity in (2). We neglect any additional �Faraday

inductance� associated with the graphene currents, which is negligible in the non-retarded

limit (i.e. q � ω/c).31 The e�ective shunt capacitance CR was obtained by equating the

dispersion relation of a conventional transmission line β = ω
√
LRCR

p
to the graphene plasmon

dispersion relation given in (4) for an in�nite graphene sheet. This requires CR to acquire

a frequency/wavenumber dependence. However, an additional factor DR has been added

which enhances the capacitance to account for the modi�cation of the dispersion due to the

�nite width of the microribbon. DR can be obtained either through matching to numerical

simulations, or by using the term η calculated in Ref. 34 (DR ≈ (2π2η)2 in which η is

evaluated at qw = π). Using this expression, we accordingly take DR=1.8, 1.8, and 1.9 for

Designs A, B, and C respectively. This expression for CR also neglects the e�ects of quantum-

capacitance, which is appropriate here where the non-local corrections to conductivity are

negligible.30,31 For the fundamental lateral mode m = 0, the e�ective width weff is equal to

the physical ribbon width w. In this case, these expressions are equivalent to those derived

in Ref. 31, taken in the limit that kBT � EF , and ignoring the negligible contributions of

quantum capacitance, and Faraday inductance.

The CRLH waveguide mode is based upon an m = 1 higher order lateral mode (i.e. an

edge mode), and includes series capacitive gaps of size a. We model this according to the

double transmission line circuit model shown in Fig. 2(d) operating in its odd mode. The

previous expressions for LR and CR still apply, provided that the e�ective width in this case

is weff = Fw/2. This re�ects the fact that branch of the TL has physical width of w/2, and

the e�ective width is modi�ed by a factor F to re�ect that the current, �eld, and charge are

nonuniform over the width of the ribbon. We can approximate this factor as F = 2/πA;

ideally A = 1, which is appropriate for a �eld distribution takes on exactly a half-sinusoidal
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transverse variation.27 In reality, there is a slight phase shift associated with the re�ection

of the plasmon from the microribbon edge; we �nd A=0.9, 0.96, and 1.0 for designs A, B,

and C respectively. We also de�ne the shunt inductance:

LL = −weff

pω
Im{σ−1} = weffπ~2

pe2EF

, (A.4)

which is based upon the same kinetic inductance of the graphene used to de�ne LR, except

now for a section of length of weff and width of p. This ensures that the e�ective shunt

frequency ωsh = (LLCR)
−1/2 corresponds the condition where the microribbon width w is

nearly equal to one-half of the plasmon wavelength such that q(ωsh) = Aπ/w.

A working expression for the series capacitance CL can be obtained from the capacitance

between metal patches of width weff and length p/2 on a dielectric half-space in the limit

that p� a (derived for a Sievenpiper surface in Ref. 47), which gives

CL = DL
weff

π
(ε1 + ε2) ln (2p/a) . (A.5)

DL is a phenomenological factor that is required to reduce ωse = (LRCL)
−1/2 so that it

matches the simulated result. We �t the values of DL=0.7, 0.66, and 0.6 for the dimensions

of designs A, B, and C respectively. Without this factor, CL is overestimated since the

period of the structure is not su�ciently subwavelength to accurately use a lumped element

expression.

Despite the presence of the phenomenological parameters, we can still draw important

conclusions. For example, by equating these analytic expressions for the series and shunt res-

onance frequencies, we are able to obtain a transcendental equation for the CRLH balanced

condition:

DL ln(2p/a) =
w

p

√
DR

A
. (A.6)

This expression for the balanced condition contains only geometric parameters; there is no

dependence on carrier concentration or other material properties. This implies that the

balanced dispersion relation will be preserved as the carrier density is changed, which is

consistent with the tuning observed in the numerical simulations in Fig. 4.

Drude loss within the graphene can be included by adding resistances

RR =
2pπ~2

weffe2EF τ
, RL =

2weffπ~2

pe2EF τ
(A.7)
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in series with LR and LL respectively. We can further use this formalism to derive an analytic

expression for loss in a CRLH waveguide. The dispersion for a balanced line is given:25

β =
ω

p

√
(LR + iRR/ω)CR −

1

pω

1√
(LL + iRL/ω)CL

. (A.8)

This gives a power attenuation coe�cient

α = 2Im{β} = 2

pτ

√
LRCR +

2

pω2τ

1√
LLCL

. (A.9)

For a balanced CRLH structure, at β = 0, the attenuation coe�cient is:

α(ω = ωsh = ωse) =
4

pτ

√
LRCR =

4π~2 (ε1 + ε2)ω

τe2EF

, (A.10)

which is twice as large as for an unpatterned m = 0 graphene plasmon mode at the same

frequency. The quality factor associated with Drude loss can then be obtained using the

relation QD = ω/αvg; at β = 0 it has the value of

QD = ω/αvg, (A.11)

This relation is used to estimate the Drude losses in Fig. 6. We note that at β = 0,

QD = (3/4)ωτ � three quarters of the value of QD of an unpatterned m = 0 graphene

plasmon.
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