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Abstract: We report the first time-synchronized protocol stack running on a crystal-free device. We
use an early prototype of the Single-Chip micro Mote, SCµM, a single-chip 2 × 3 mm2 mote-on-a-chip,
which features an ARM Cortex-M0 micro-controller and an IEEE802.15.4 radio. This prototype consists
of an FPGA version of the micro-controller, connected to the SCµM chip which implements the radio
front-end. We port OpenWSN, a reference implementation of a synchronized protocol stack, onto SCµM.
The challenge is that SCµM has only on-chip oscillators, with no absolute time reference such as a crystal.
We use two calibration steps – receiving packets via the on-chip optical receiver and RF transceiver –
to initially calibrate the oscillators on SCµM so that it can send frames to an off-the-shelf IEEE802.15.4
radio. We then use a digital trimming compensation algorithm based on tick skipping to turn a 567 ppm
apparent drift into a 10 ppm drift. This allows us to run a full-featured standards-compliant 6TiSCH
network between one SCµM and one OpenMote. This is a step towards realizing the smart dust vision of
ultra-small and cheap ubiquitous wireless devices.

Keywords: crystal-free; 6TiSCH; SCµM; smart dust

1. Introduction

Low-power wireless networks are a key technology for applications ranging from industrial process
monitoring to smart city and environmental monitoring. These networks combine time synchronization to
achieve ultra-low power consumption, and channel hopping for high reliability. The resulting technology
is known as Time Synchronized Channel Hopping (TSCH). TSCH is at the core of all main industrial
standards, including WirelessHART [1], ISA100.11a [2] and IEEE802.15.4 [3]. 6TiSCH [4] is the latest such
standardization efforts, lead by the Internet Engineering Task Force (IETF). Best-in-class commercial TSCH
products today offer <50 µA average current draw and over 99.999% end-to-end reliability [5].

Today, these standards can run on virtually any IEEE802.15.4-compliant chip. All of the commercial
chips use stable oscillators as a time reference. A typical design consists of a printed circuit board with
the main chip, and 2 crystal oscillators: a fast crystal (typ. 16–20 MHz) which is used to accurately select
the communication frequency and clock the modulation/demodulation, and a slow crystal (typ. 32 kHz)
used as the main timing source for the synchronized state machine of TSCH. A crystal oscillator is a small
fragment of lab-grown and cut quartz, enclosed in a package, and excited by circuitry that is typically on
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the chip. These devices have the property of oscillating at a frequency that is precise and characterized
over temperature, supply voltage, and aging. Typical drift rates, i.e., the inaccuracy of the frequency, is
in the 10–30 ppm (parts-per-million) range. That is, rather than oscillating at 32768 Hz a 10 ppm crystal
oscillates somewhere between 32767.672 and 32768.328 Hz. This translates to: when this crystal is used to
measure a 1 s duration, it measures something between 0.999990 s and 1.000010 s, which is an acceptable
error for TSCH networks.

The problem of needing a crystal is cost, space and energy. While the crystal itself might be relatively
cheap (in the USD 0.50 range), using them requires one to make a printed circuit board to assemble the
crystal to the chip, which consumes space and increases cost.

Figure 1. The Single Chip Micro-Mote (SCµM) is a 2×3 mm2 mote-on-a-chip. It features an ARM Cortex-M0
micro-controller, an IEEE802.15.4 radio, and an optical bootloader. While SCµM runs with no external
components, it is shown here on its development board. In this setup, we use an FPGA board to implement
the digital part (including the Cortex-M0 micro-controller), and use the analog front-end of the SCµM chip.

The promise of “crystal-free” designs is to remove the need for external crystals. Indeed, the goal of
the Single-Chip micro Mote project is to remove all external components, including crystals, capacitors
and other passives, and indeed ultimately even the battery and antenna, integrating everything into the
wafer fabrication process. The current version of the chip still requires external power and antenna.

A related approach is to integrate the oscillating circuitry into the same package as the integrated
circuit. This is what Texas Instruments has done for its recent CC2652RB: it is a System-in-Package (SiP)
which combines an ARM Cortex-M4 and an IEEE802.15.4 radio on a single IC, and a separate MEMS BAW
(Bulk Acoustic Wave) oscillator. The latter consists of two piezoelectric thin films, and is “used to generate
the RF carrier to eliminate the need for an external 48 MHz crystal” [6]. This reduces design footprint and cost,
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and is a first step towards a crystal-free architecture, although it still consists of two technologies (CMOS
and MEMS) combined into one package.

Similarly, Wiser et al. build a prototype Bluetooth Low Energy (BLE) radio which uses a thin-Film
Bulk Acoustic wave Resonator (FBAR) as a replacement for a crystal oscillator [7]. To meet the
±60 ppm BLE specification on center frequency drift, they use both linear and quadratic coefficient
compensation algorithms to limit the temperature effect to ±10 ppm, using an embedded temperature
sensor. The remaining ±50 ppm budget is used to compensate for the effect of stress and aging on
frequency error.

The single-chip design realizes the crystal-free vision entirely. The idea is to design a chip in which all
oscillating circuits are inside the chip itself, and consists of different types of resonating electronic circuits
(e.g., LC resonator, RC delay-based oscillator, ring oscillators). The result is a single chip which can operate
without any external active components, and a key component for realizing the Smart Dust vision.

The Single Chip micro-Mote, or SCµM, is a true crystal-free chip we taped out in 2019 [8]. It is
a 2×3 mm2 single-chip crystal-free mote-on-chip which contains an ARM Cortex-M0 micro-controller,
a 2.4 GHz IEEE802.15.4 radio, and an optical receiver for optical programming. Figure 1 shows SCµM on
the board we use to develop/debug it.

The Michigan Micro Mote (3M) partly realizes that vision. Known as “world’s smallest computer”,
one 3M version measures only 0.04 mm3 and is composed of a stack of dies wire-bonded together [9].
They rely on visible light communication using an LED and a photodiode with a communication range of
15.6 cm. Another 3M mote, measuring 3×3×3 mm3 does include a more traditional RF transmitter [10].
Yet, because of the drift of its timing circuits, a highly-capable FPGA-based computer system is needed to
receive the signals it sends, and mote-to-mote communication is not possible. A third 4×4×4 mm3 3M
mote [11] is capable of mote-to-mote communication, but has to rely on a crystal oscillator (assembled as
one layer of the stack) for accurate timekeeping. None of these are standards-compliant, i.e., they cannot
communicate with off-the-shelf radios.

The challenge with SCµM, as with any single-chip crystal-free device, is that its internal oscillators
are far less accurate than crystal/MEMS-based external circuits. SCµM has a drift up to 16,000 ppm
over temperature [12], three orders of magnitude higher that crystal/MEMs-based oscillators. This
make it extremely difficult to (1) tune the frequency to communicate on, (2) set the correct rate to
modulate/demodulate, and (3) keep a good sense of time to schedule communication in a TSCH network.

Why use complex networking with extremely constrained devices? TSCH does has important
advantages. First, it is proven common in Industrial IoT applications, standardized in WirelessHART,
ISA 100.11a and 6TiSCH, and commercialized for example in Analog Devices’ SmartMesh IP. Second, the
micro-size of mote limits its energy storage capacity [13]. The synchronization based protocol, i.e., TSCH ,
provides ultra-low level of power consumption while mostly the other asynchronization protocol cannot
satisfy. Third, SCuM was designed for TSCH, in particular its timer structure and radio interface match
our OpenWSN implementation. One important point is that, once the oscillators on SCuM are calibrated
for it to be able to communicate with regular motes such as the OpenMote, the same oscillators give the
necessary timing to a TSCH implementation.

In [12], we showed a calibration algorithm to tune the oscillators on SCµM so it can send and receive
frames to the OpenMote, a popular off-the-shelf IEEE802.15.4 mote built around the CC2538 chip [14]. In
this paper, we go further and show an entire synchronized protocol stack running on SCµM. Specifically,
we show that, through 3 levels of calibration and compensation, we are able to have SCµM and OpenMote
drift by as little as 10 ppm, and stay synchronized with a maximum synchronization error of 300 µs.
Because it implements the full stack, SCµM appears as a full-featured host in an IPv6 TSCH network.

As a fact that the environment changes, such as temperature, voltage or humidity, heavily influences
the RC/LC oscillator frequency error, keeping sustainable frequency error while environment changes
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is a big challenge. For example, the LC oscillators of SCµM drifts hundreds ppm when the temperature
changes for 1 Celsius degree. The calibration and compensation techniques proposed in this article tune
the oscillators to the desired frequency under constant room temperature. The goal is to express that
SCµM is capable to run a full standardized protocol stack under certain circumstance.

The remainder of this paper is organized as follows. Section 2 introduces the 6TiSCH protocol stack
and the OpenWSN reference implementation of that stack. Section 3 details the main features of SCµM,
including its clock system. Section 4 focuses on how we calibrate the clocks to allow SCµM to communicate
with OpenMote. Section 5 explains the compensation algorithm we need for porting OpenWSN onto
SCµM, and presents experimental synchronization results. Finally, Section 6 summarizes this paper and
discusses ongoing and future research.

2. 6tisch Stack, Openwsn Implementation

6TiSCH [4] is a working group which is standardizing the latest protocol stack based on TSCH. It
combines the industrial performance of IEEE802.15.4 TSCH, with the IETF upper stack for IoT devices. As
depicted in Figure 2, this upper stack includes CoAP, UDP, RPL and 6LoWPAN.

Figure 2. The 6TiSCH stack. The upper stack provides IPv6 connectivity. The lower stack, through
IEEE802.15.4 TSCH, provides industrial-level performance.

At the core of the lower stack is IEEE802.15.4 TSCH. All nodes are synchronized to one another; time
is cut into timeslots, each typically 10 ms long. All communication is orchestrated by a schedule, which
indicates to each mote what to do in each slot: transmit, listen or sleep. This scheduled approach allows for
ultra low-power operation, as motes only turn their radio on when they know they need to communicate
with a neighbor, typically less than 1% of the time.

A pseudo-random hopping pattern is used for each transmission. The result is that, each time mote A
sends a frame to mote B, it does so on a different frequency. The resulting “channel hopping” is effective at
combating external interference and multi-path fading, and is also used by technologies such as Bluetooth
and cellular networks.

6TiSCH builds on top of IEEE802.15.4 TSCH. Each mote in a 6TiSCH network starts with a minimal
schedule [15]. The Minimal Scheduling Function [16] is used to track the amount of frames sent to
a particular neighbor, and uses the 6top Protocol [17] to negotiate additional cells to that neighbor when
needed. All communication is secured, and the Constrained Join Protocol [18] is used by a node to securely
join a network, through mutual authentication between the network and the joining node.
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OpenWSN [19] is the reference open-source implementation of 6TiSCH. It consists of two parts:
the firmware running on the motes and OpenVisualizer, a Python-based application running on a PC.
The firmware implements the entire 6TiSCH protocol stack; OpenVisualizer acts as the bridge between
the 6TiSCH low-power wireless network and the Internet. OpenWSN has been ported to 10 hardware
platforms. In this paper, we present a port of OpenWSN onto SCµM.

OpenWSN has very limited requirements for the hardware it runs on. All it needs is a single 32 kHz
timer with a single compare register. As detailed in Section 3, SCµM was designed with OpenWSN is
mind, and its timer structure is perfectly suited to run the OpenWSN TSCH state machine. The challenge
is that SCµM has no stable time reference.

3. the Single Chip Micro-Mote ( SCµM)

SCµM is a true single-chip low-power wireless mote-on-chip which combines an ARM Cortex-M0
core, and an IEEE802.15.4 radio. It measures 2×3 mm2, roughly the size of a grain of rice. On top of that,
it features a radio timer (RFTimer) which is designed specifically for implementing time synchronized
communication protocols such as 6TiSCH (see Section 2). Loading code into the chip is done optically by
using an external board which blinks an LED close to the optical receiver on SCµM [20]. Figure 3 shows
the optical bootloading process. It is single-chip by design, and replaces external clock sources (typically
crystal-based) by an internal clock system described below.

Figure 3. The blinking pattern of the LED on the optical programming board (top) is used to switch SCµM
into bootloading mode and transfer the binary image to be executed onto SCµM (bottom) [20].

SCµM operates at 1.5 V. It consumes 1.6 mW while transmitting, with an output power of −10 dBm,
and 1.4 mW while receiving, with a sensitivity of −83 dBm. While the radio consumption is optimized,
the same level of optimization hasn’t been implemented for the full chip, yet. We measured 150–200 µA
of leakage current from SRAM and analog circuits that cannot be shut off in this revision of the chip.
In addition, we measure 200–250 µA of current drawn by the different peripherals (including the ARM
Cortex-M0 micro-controller) which use HCLK as their clock source (which cannot be turned off). This results
in approximately 400 µA of current.
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To perform time-slotted communication with 6TiSCH, a slot with maximum length packet
transmission, which takes 4.256 ms, plus the acknowledgment reception (0.8 ms) costs 4.9 µC for SCµM
running at 1.5 V. To receive a maximum length packet (4.256 ms), plus guard time (1 ms) and send the
acknowledgment (0.8 ms), SCµM costs 4.9 µC. For idle listen slot, which takes 0.4 ms, SCµM costs 0.5 µC.
Assuming the leakage is reduced to a reasonable level, with 1 mA current for Tx/Rx radio that turns on/off
in under 100 ns, there is no doubt we can get the current below 1 µA while running 6TiSCH protocol stack.
We expect the next revision of the chip to implement low-power modes for the entire chip.

Figure 4 shows the clock system of SCµM. There are 4 main oscillators: three RC oscillators (64 MHz,
20 MHz, 2 MHz), one LC oscillator (2.4 GHz). A “crossbar switch” is used for routing the 4 oscillators to
be used as clock sources by the rest of the chip, including the micro-controller and the RFTimer. There are
4 clocks: HCLK used as the master clock of the micro-controller, RFTimer used by the TSCH state machine,
RX_CLK and TX_CLK for generating the DSSS chip rate. The crossbar switch is configured by a series of
registers called the Analog Scan Chain (ASC).

Figure 4. SCµM contains 4 main oscillators. A “crossbar switch” maps physical oscillators to clock sources
that are used by the different peripherals in the chip. The Analog Scan Chain (ASC) is the mechanism for
configuring this mapping.

Though the frequency stability of RC/LC oscillators are not comparable to the crystal oscillator,
in term of combating with the influence of temperature and voltage, it is possible to calibrate the clock
through software to meet the requirements.

The previous works presented in [21] shows the LC tank oscillator of SCµM drifts less than 40 ppm
over 13 h in the absence of temperature changes, which meets the ±40 ppm specification of IEEE802.15.4.
Over 50 ◦C temperature changing range, SCµM could drift over 4000 ppm of variation. By adding
a feedback mechanism through the incoming packet to calibrate the frequency, the effect of the temperature
variation is reduced from 150 ppm to less than 10 ppm indoor over the duration of the test, which is over
10 h, as indicated in Figure 5. Burnett et al. [22] did a thorough analysis of the stability of various clocks
used in SCµM as well. For the 32 kHz RC oscillator, to keep the time offset within 1 ms, which is the
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minimal offset allowing two TSCH motes to communicate each other, SCµM is capable to re-synchronize
every 20 s.

Figure 5. The LC oscillator frequency drift can be compensated through a feedback mechanism with
incoming packets. With the feedback mechanism, the effect of the temperature variation is reduced from
150ppm (red trace) to less than 10ppm (blue trace) indoor, by testing over night [21].

The RFTimer is designed specifically for TSCH. It orchestrates the transition between the different
states of the TSCH state machine, as shown in Figure 6. The RFTimer comes with multiple compare
registers, which allows the entire sequence of events to happen during a slot to be programmed at the
beginning of the slot. The RFTimer then works hand-in-hand with the radio. For example, a frame can be
loaded into the transmit buffer of the radio automatically at a specific time, without needing code to be
executed on the micro-controller.
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Figure 6. A TSCH slot is implemented as a state machine. The different states of a tramsmit and a receive
slot are shown at the top. The RFTimer is used to transition from one state to the next, kicking off
different actions in the radio (e.g., loading a frame in the transmit buffer) without intervention from the
micro-controller.

4. Frequency Synthesis and Clock Calibration

The goal of this paper is to show a 6TiSCH network composed of one SCµM and one OpenMote.
The challenge is that SCµM does not have an accurate sense of time, and therefore derives its time reference
from OpenMote. This section describes how SCµM tunes the frequency it communicates on, and how we
calibrate its clocks.

We need to give SCµM a rough time reference so it can send frames that OpenMote can receive.
The frequency of each of the oscillators is tunable. We designed the code running on the optical programmer
board in such a way that, at the end of the bootloading process, the optical programmer repeatedly sends
a sequence that causes a OPTICAL_ISR interrupt to be generated on SCµM. This interrupt fires every 100 ms
for 2.5 s. While this is happening, on SCµM, all the clocks are running. By recording the counter value of
each of the clocks, and knowing the interval between interrupts, SCµM calibrates each of the oscillators.

Following this coarse calibration using the optical programmer, SCµM can also calibrate against
the OpenMote. We do this offline, i.e., this calibration is done once, the result of which is reused the
next time SCµM is programmed. For this calibration, SCµM sends frames on channel 11 (2.405 GHz) to
OpenMote. OpenMote is programmed to listen on that channel, and print over its serial port the value of
its XREG_FREQEST register, which indicates the frequency offset of the incoming signal. According to that
value, we manually tune the LC oscillator of SCµM, to minimize that frequency offset. The goal of this
calibration is the same with what is done in [21]. The difference is that, in [21] the calibration is done on
SCµM side through the intermediate frequency estimation.

This procedure is repeated for each SCµM board, as each has slightly different tuning parameters.
This is illustrated in Figure 7.
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Figure 7. Setup used to tune the communication frequency of SCµM. SCµM transmits frames to OpenMote,
which logs the frequency offset for each frame it receives. These offsets are then used to manually tune the
LC oscillator of SCµM, which is used to select the transmit frequency, to minimize the mean frequency offset.

While SCµM is running the 6TiSCH stack, it keeps synchronized to the OpenMote. Part of that is
making sure the boundaries of its TSCH slots are aligned in time with that of OpenMote. This is done
natively in the OpenWSN implementation. OpenWSN uses a 32 kHz timer with a compare value set so
it fires at each slot boundary. The accuracy of the clock used by this timer influences synchronization
accuracy. RFTimer runs at 500 kHz, not 32 kHz as OpenWSN assumes. This means the OpenWSN port
to SCµM divides down the 500 kHz RFTimer so it appears as a 32 kHz clock source to the otherwise
unmodified OpenWSN stack implementation. Since 500/32 = 15.625, the integer division applied in the
port results in a rounding error. This means the slot length on SCµM is slightly different than the slot
length of OpenMote. As is, this difference in slot length results in an apparent relative drift between
OpenMote and SCµM. We therefore implement a digital trimming (tick skipping) compensation algorithm,
detailed in Section 5.

In the implementation presented in this paper, a limitation of the FPGA/SCµM setup presented
in Figure 1 is that we cannot use the 20 MHz on-chip RC oscillator (RC_20MHz in Figure 4) to source the
RFTimer. Instead, we use a 20 MHz crystal oscillator of the FPGA. The results in this paper carry over
to using the on-chip RC_20MHz, except that (1) the FPGA’s crystal oscillator has a much smaller drift over
temperature, (2) the on-chip RC delay-based oscillator is expected to have higher jitter than the FPGA’s
crystal oscillator. How much this impacts the overall stability of our implementation (including over
temperature) when running on SCµM is left for future work.

5. Implementation and Experimental Results

The port of OpenWSN on SCµM has a footprint of 54 kB. This includes the full protocol stack and
drivers. It takes the optical bootloader 2–3 s to load that code onto SCµM.

One of the goals of porting OpenWSN onto SCµM is to show that this platform is perfectly capable
of running an off-the-shelf completely standards-based full stack. As a result, we made as little changes
as possible to the OpenWSN implementation. There are, however, the following changes that we had
to make.



Sensors 2020, 20, 1912 10 of 15

First, the port of OpenWSN on SCµM does not come with link-layer security, nor secure joining. This
is because this version of SCµM does not come with an AES-128 cipher.

Second, we were able to significantly simplify the OpenWSN TSCH state machine thanks to the
RFTimer. On all other platforms OpenWSN is ported to, the time used by the TSCH state machine
only has one compare register, and cannot automatically trigger radio actions. This means that, on any
other platform, at the start of a transmit slot, the code schedules the timer to fire at the beginning of the
TXDATAPREPARE state (see Figure 6). At that time, the micro-controller is woken up again, and loads the
frame into the transmit buffer of the radio, and arms the timer again, this time to fire at the starts of the
TXDATADELAY state. In contrast, on SCµM, RFTimer provides multiple timer compare registers, so the code
arms the RFTimer to fire at the start of the TXDATAPREPARE, TXDATADELAY states, etc. states, all at once at the
start of a slot. Moreover, using the RFCONTROLLER_REG register of SCµM [23], the RFTimer directly triggers
radio actions, significantly reducing the load on the micro-controller.

Third, we had to increase the slot length to 82 ms. This is because we are using, on this revision of
SCµM, an FPGA for the digital side of the chip. Each time the FPGA configures the radio (at most twice
per slot), it takes 16 ms for it to completely use the ASC. This is a limitation of the FPGA version only,
which the next revision of SCµM will not have.

Because of the rounding error in clock division detailed in Section 4, the slot duration of SCµM and
OpenMote are slightly different, resulting in apparent relative drift. To measure this, we program the
devices to toggle a pin at the beginning of each slot. We connect both pins to a logic analyzer, and have
the devices run without communicating (i.e., without resynchronizing). Figure 8 shows the evolution of
the time offset between SCµM and OpenMote, over time. The drift (the slope of the line in Figure 8) is
567 ppm.

Figure 8. Time offset between free-running SCµM and OpenMote. No communication is taking place.
SCµM emulates a 32 kHz clock source by dividing down the 500 kHz RFTimer source. The rounding error
in this integer division results in an apparent drift between SCµM and OpenMote of 567 ppm.

The default guard time of the OpenWSN implementation is 1 ms. This is the maximum offset between
two motes, beyond which they cannot communicate. With a drift of 567 ppm, it takes less than 2 s for
perfectly synchronized motes to de-synchronize beyond the guard time. Typical drift rates of crystal
oscillators are in the 10–30 ppm, the apparent drift rate observed here is hence much larger, and must be
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compensated. To do so, we implement a digital trimming compensation algorithm. This algorithm uses
“tick skipping”: it periodically adds or substracts a tick from the lengths of the slot.

As the slot communication feature of TSCH, the offset between SCµM and OpenMote is measured
as the offset of their slot boundaries. Because of the frequency error, the slot length of SCµM is longer or
shorter than OpenMote, which leads to the time offset between them. After a certain duration, the offset
will accumulate to 1 tick (e.g., 30.5 µs at 32768 Hz). Tick trimming is applied then, to extend or short the
current slot length to compensate the offset.

Algorithm 1 shows how the digital trimming works in pseudo-code. TCx indicates the time correction
in ticks at synchronizing time TSyncx . Isync indicates the synchronization interval in seconds. TnumSlots
indicates the synchronization interval in number of slots. Dri f t indicates the number of slots drifting for
one tick. The digital trimming procedure is shown in the second part of the algorithm. More details that
how the trimming compensation is implemented is explained in [24].

Algorithm 1: Digital trimming algorithm
Result: Calculate Drift
TCx = TimeCorrection(TSyncx ) where x = 1, 2, 3...;
Isync = TSyncx − TSyncx−1 ;
TnumSlots = Isync/Sduration;
Dri f t = TnumSlots/(TCx − TCx−1);
Result: Digital Trimming
SlotCounter = Dri f t;
if IsNewSlot then

SlotCounter = SlotCounter − 1;
if SlotCounter = 0 then

SlotDuration = SlotDuration ± 1tick;
end
IsNewSlot = 0 ;

end

An I/O pin is toggled at the beginning of each slot on both SCµM and OpenMote side. By connecting
logic analyzer to that I/O pin on OpenMote and SCµM, we calculate the time offset between SCµM
and OpenMote. Figure 9 is the resulting offset when applying digital trimming. It shows two effects
working together. First, the digital trimming causes the rapid saw-tooth like compensation, resulting in
a much more manageable 10 ppm apparent drift. Second, SCµM regularly synchronizes to OpenMote,
causing larger jumps. Overall, at constant temperature, SCµM and OpenMote remain synchronized with
a synchronization error not exceeding 300 µs.
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Figure 9. Time offset between SCµM and OpenMote when SCµM periodically re-synchronizes to OpenMote.
SCµM uses a digital trimming (tick skipping) algorithm to compensate for the drift shown in Figure 8.
The result is that SCµM stays synchronized to OpenMote within 300 µs of synchronization error.

This compensation allows us to build a proof-of-concept 6TiSCH network composed of one OpenMote
and one SCµM. Since both implement the full protocol stack, the full functionality is available. By setting
the OpenMote as dagroot, it starts to send Enhance Beacons (EB), to which SCµM synchronizes. SCµM
then receives RPL DIOs packets [25], which allow SCµM to identify OpenMote as its routing parent. Using
the 6TiSCH 6top protocol, SCµM reserves a transmit cell to OpenMote. We are able to issue an ICMPv6
echo request (ping) from the PC running OpenVisualizer to the IPv6 address of SCµM and see SCµM
respond. To the best of our knowledge, this is the first example of a synchronized protocol stack (in this
case 6TiSCH) running on a crystal-free chip.

6. Conclusions

This paper details the first example of a synchronized network protocol running on a crystal-free
device. We use the Single Chip micro-Mote (SCµM), a state-of-the-art 2×3 mm2 crystal-free mote-on-a-chip,
which features an ARM Cortex-M0 micro-controller and an IEEE802.15.4 radio. We use the OpenWSN
protocol stack, the reference open-source implementation of 6TiSCH, a synchronized protocol stack being
standardized at the IETF. The challenge is that SCµM has no stable clock source, making synchronized
communication hard.

In our solution, SCµM first listens to a blinking LED to provide coarse calibration of its oscillators.
Using an OpenMote, which can measure and report the frequency offset, provides a second level of more
precise tuning. Finally, as SCµM and OpenMote are communicating, the OpenWSN port on SCµM uses
a digital trimming compensation algorithm based on tick skipping to turn a 567 ppm apparent drift due
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to a rounding error into a 10 ppm apparent drift. This allows a synchronized fully functional 6TiSCH
network to form between SCµM and OpenMote.

This is only a first step, with several avenues for follow-up work. First, in the platform used for
this paper, the RFTimer is actually driven by the FPGA’s crystal oscillator. This, in and of itself, does not
conceptually break the crystal-free nature of this work, because the frequency source used by the analog
part of the chip comes from an oscillator not locked in hardware to the FPGA’s crystal oscillator. A new
version of SCµM is about to be tested in which this shortcoming is lifted, and on which we can use the
on-board RC oscillator to drive the RFTimer.

Second, all communication in this paper is done on a single frequency, 2.405 GHz. The 6TiSCH stack
is meant for channel hopping, in which the devices hop across all 16 frequencies of the 2.4 GHz ISM
band in a pseudo-random fashion. Doing so on SCµM would mean repeating the calibration on each of
the frequencies, either keeping track of individual tuning parameters of each frequencies, or designing
a methodology for finding one factor given that of another frequency. We have started that work, which
was presented in a previously published paper [12].

Third, the network presented here is a first step only, the ultimate goal being to build a true
multi-hop mesh network composed of a combination of SCµM and OpenMotes, and eventually only
SCµM chips. The challenge with that is that SCµM-to-SCµM communication is significantly harder than
SCµM-to-OpenMote, because of the lack of stable clock now on both devices communicating.

The promise of true crystal-free architectures is, however, enormous. They are the last stepping stone
to realize the “smart dust” vision, allowing for ubiquitous, extremely small and cheap wireless devices.
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