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Summary

Immune checkpoint inhibitors (ICIs), including CTLA-4 and PD-1 blocking antibodies, can have 

profound effects on tumor immune cell infiltration that have not been consistent in biopsy 

series reported to date. Here, we analyze seven molecular datasets of samples from patients 

with advanced melanoma (N=514) treated with ICI agents to investigate clinical, genomic, 

and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior 

anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene 

signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond 
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to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures and 

altered cell cycle processes, compared to anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, 

anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource, and 

suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor 

microenvironment that impact the predictive features of PD-1 blockade therapy response.

eTOC: Context and significance

Campbell et al. aggregate genomics and transcriptomics data across melanoma datasets, 

harmonizing molecular and clinical annotation across samples. Immune cell gene expression 

patterns and tumor mutational burden, as predictors of anti-PD-1 response, are modified by 

whether the patient previously received anti-CTLA-4 therapy.

Graphical Abstract

Keywords

Melanoma; immune checkpoint blockade; immunotherapy; meta-analysis
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Introduction

Immune checkpoint inhibitors (ICIs) have revolutionized melanoma treatment. The anti-

CTLA-4 ipilimumab was approved in 2011, followed by the approval of anti-PD-1 

agents pembrolizumab and nivolumab in 2014.1,2 With five-year overall survival rates up 

to 52% in melanoma with combinatorial ICI approaches,3 there is substantial effort to 

identify predictive biomarkers for both response and resistance. Correlative studies have 

demonstrated patient stratification due to genomic and transcriptomic features; however, few 

discoveries, despite validation within and across cohorts, have been prospectively applied to 

clinical trials successfully.

Anti-PD-1 therapies have been approved for patients with tumors with mismatch repair 

deficiencies, leading to increased tumor mutational burden (TMB),4 or for solid tumors 

with high TMB (over 10 Mut/Mb), following progression on prior treatments and without 

additional treatment options.5 However, TMB and its inferred neoantigen burden have 

shown inconsistent concordance with response across and within tumor types and treatment 

settings.6–8 Bulk gene expression or spatial profiling for tumor immune infiltration or 

exclusion (e.g. TIDE, IMPRES), interferon gamma (IFNG) pathway activation (e.g. GEP), 

antigen presentation machinery, and antitumor immune cell populations have also been used 

to positively identify patients who will benefit from PD-1 blockade,9–15 and the combination 

of these patterns with high TMB have shown to be even more effective at predicting 

anti-PD-1 response.7,12

As more correlative datasets are generated, there have been challenges in both discovering 

and validating ICI biomarkers. Recent studies have attempted to overcome limitations in 

statistical power by aggregating molecular datasets.7,12,16,17 However, in doing so, it is 

important to note the level of heterogeneity in the dataset, and whether the annotation of 

technical, biological, and clinical variables is sufficient to delineate appropriate biomarkers 

and clinical contexts for application. Technical batch effects may include sample collection 

and preservation, nucleic acid extraction, sequencing approach, and methods for analysis. 

Additional biological challenges in these studies include the fundamental differences in 

the mechanism of each ICI, intrapatient or disease heterogeneity in genetic drivers, and 

immunogenicity within and across cancer types. Within melanoma, clinical trials are often 

inclusive of multiple melanoma subtypes, which have known differences in genomic profiles 

and observed differences in response to ICIs.8,18 Acral and mucosal melanomas have 

demonstrated reduced response and decreased survival, compared to cutaneous and occult 

(unknown) melanomas, and have reduced TMB, reduced UV-induced mutagenesis, fewer 

BRAF and NRAS hotspot mutations, and more frequent KIT mutations.8,18,19

Here, we present a harmonized dataset of whole exome sequencing (WES) and RNA 

sequencing (RNAseq) samples derived from melanoma tumor biopsies collected from 514 

subjects treated with ICIs enrolled across seven clinical cohorts, two of which have not 

been previously reported that are from the Checkmate 064 and 067 clinical trials.20,21 

We demonstrate that efforts in aggregating and harmonizing both molecular and clinical 

annotation of datasets facilitates statistical detection of genomic and expression-based 

correlates of response. Furthermore, exploration of clinical factors, such as melanoma 
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subtype and prior immunotherapy treatment, reveal that previously reported predictors 

of anti-PD-1 response (e.g. TMB, types of immune infiltration) vary based on prior anti-

CTLA-4 exposure. We summarize the collective immune infiltrate of biopsies using an 

aggregate metric, Tumor Immunogenicity Associated with Response to Anti-PD-1 (TIARA-

PD-1), to further define tumor-intrinsic and microenvironment expression patterns related to 

the overall immune status of each biopsy. Our work provides a single, cohesive genomic 

reference dataset for uncovering molecular characteristics associated with ICI response and 

resistance in melanoma, and it may provide future utility for exploring molecular and 

clinical stratification of this disease.

Results

Cohort summary

We aggregated seven clinical cohorts of patients with melanoma treated with ICI regimens, 

comprising 514 patients with either whole exome sequencing (WES, N=339), RNA 

sequencing (RNAseq, N=403), or matched WES and RNAseq (N=258, Figure 1A) derived 

from melanoma tumor biopsies.6,8,20–24 While some of these datasets were previously 

published, 22% of the patients enrolled in these trials (N=115 patients)20,21 with correlative 

WES (N=184 tumors) or RNAseq (N=95; N=58 paired) have never been interrogated, 

providing an additional rich source of data. The following demographics were assembled for 

all patients and corresponding tumor specimens: RECIST 1.1 response to therapy, melanoma 

subtype, sex, age, treatment regimen, prior CTLA-4 blockade therapy status, originating 

study cohort, and time point with respect to therapy (Figure 1B, Table 1). Treatment 

regimens included anti-PD-1 monotherapy, anti-CTLA-4 monotherapy, the concurrent 

combination of these two therapies, or the sequential treatment with these two therapies 

(i.e. anti-PD-1-to-anti-CTLA4 or anti-CTLA4-to-anti-PD-1).

Somatic variant calling and gene expression quantification were harmonized across all 

cohorts (Figure S1), and tumor-normal WES pairs were evaluated for a range of quality 

control metrics (Figure S1–S2, Methods). Once samples were excluded due to low 

sequencing coverage, low estimated tumor purity, or the presence of unmatched sample 

contamination, the final cohort presented in the following analyses included 427 patients, 

284 tumor biopsies with WES, and 442 biopsies with RNAseq (188 biopsies had matched 

WES and RNAseq data). With these efforts, we aimed to establish a publicly available 

resource summarizing these data, but to utilize the scale of this dataset to specifically 

evaluate genomic and transcriptomic correlates of anti-PD-1 response in cutaneous 

melanoma.

Tumor mutational burden is associated with anti-PD-1 benefit in anti-CTLA-4-experienced 
patients

Studies have described the positive association between nonsilent TMB and clinical benefit 

with ICIs, with discrepant results in the statistical significance within and across tumor 

types.17,25,26 We evaluated baseline tumor WES samples (N=246), comparing TMB across 

clinical demographics. There was no difference in baseline TMB across treatment regimens 

(Figure S2). Concordant with previous reports, TMB was significantly higher in melanoma 
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biopsies of cutaneous origin (median 7.55, 0.046–276 mut/Mb), compared to either mucosal 

(median 1.83, 0.96–15.8), acral (median 1.43, 0.047–56.4), or uveal (median 0.41, 0.097–

0.95) origin (Wilcoxon test, p<0.01, FDR<0.01) (Figure 2A). Tumors with unknown site of 

origin had ranges of TMB (median 8.11, 0.16–51.9; Wilcoxon test p=0.74, FDR 0.74) that 

were similar to cutaneous melanoma. There were no significant differences in baseline TMB 

across individual cohorts or by treatment regimen (Figure S2).

We were specifically interested in the association between TMB and response to anti-PD-1 

therapy in patients with cutaneous melanoma, leveraging the statistical power of our 

cohort. When TMB was compared across biopsies of cutaneous melanoma origin treated 

with anti-PD-1 that responded (RECIST CR/PR) or progressed (RECIST PD), TMB was 

significantly greater in biopsies of patients with anti-PD-1 clinical response compared to 

no response (Wilcoxon test, p=0.024). This association only remained significant, however, 

in tumors from patients that were previously treated with anti-CTLA-4 therapy (Wilcoxon 

test, p=0.0062, FDR=0.037) and not in anti-CTLA-4-naive tumors (Wilcoxon test, p=0.515, 

FDR=0.51) (Figure 2B), suggesting an interaction effect between these two variables. This 

was consistent with what was previously reported,8 while other subsets were not of sufficient 

size to identify these differences (Figure S2).

Single nucleotide variants in PIK3C2G are positively associated with clinical benefit to 
checkpoint inhibitors

While studies have attempted to discover associations between response to immune 

checkpoint blockade and single gene mutational statuses, success has been partially limited 

by the larger patient numbers required for statistical power following multiple hypothesis 

correction.27 Tumor sampling and purity, prior treatment, and melanoma subtype, which are 

also associated with prognosis following ICI and the genomic landscape,8 add complexity 

to this problem. We explored whether our aggregation and harmonization may overcome 

these challenges by applying logistic regression to genes and mutation types in cutaneous 

melanoma tumors treated with anti-PD-1, comparing results from biopsies of patients with 

response (CR/PR) to no response (PD). Gene-mutation combinations were filtered to those 

which occurred at least 10 times (out of 151 [6.6%] tumors evaluated), resulting in 7,579 

unique gene-mutation type pairs evaluated. There were two nonsilent alterations that met the 

statistical thresholds, following multiple testing correction (p<0.05, FDR<0.2), enrichment 

of PIK3C2G missense mutations (p=7.5e-5, FDR=0.15) and DNAH5 splice region variants 

(p=6.2e-3, FDR=0.18) in cutaneous tumors from patients with response to anti-PD-1 (Figure 

2C). When we repeated this analysis across all melanoma subtypes and ICI regimens, 

PIK3C2G missense mutations remained associated with anti-PD-1 response across all 

melanoma subtypes (p=1.3e-5, FDR=0.033) as well as response to any ICI regimen across 

all subtypes (p=3.2e-6, FDR=0.011).

The most common alterations in PIK3C2G included recurrent missense mutations R779C 

and E1272K (Figure 2D). Of the 49 tumors with PIK3C2G mutations, 44 had matched 

RNAseq data; however, when mutations were queried in RNAseq, both the gene and the 

mutation were infrequently expressed. The expression of PIK3C2G was low across all 

available melanoma tumors with RNAseq data (0–14.68 FPKM; median 0). Notably, the 
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link between PIK3C2G mutations and anti-PD-1 response was previously demonstrated 

but was not specifically reported since it was not significant following multiple hypothesis 

correction.8 The inclusion of additional harmonized cohorts (CheckMate 038, 064, and 067) 

(Figure 2E) provided additional key support of this finding.

Prior CTLA-4 blockade differentially stratifies the expression landscape of melanoma 
tumors with and without response to anti-PD-1

Previous studies have described remodeling of the tumor microenvironment by anti-CTLA-4 

blockade.28,29 Due to the differences observed in TMB with respect to prior anti-CTLA-4 

therapy and anti-PD-1 response, we performed supervised differential expression analysis 

between baseline cutaneous melanoma biopsies from anti-CTLA-4-experienced patients 

(N=39; N=17 CR/PR, N=22 PD) and anti-CTLA-4-naive patients (N=92; N=44 CR/PR, 

N=48 PD) treated with anti-PD-1 monotherapy (Figure 3A). When patients were stratified 

by their response to anti-PD-1, we found more significant differences across biopsies 

of patients with response to anti-PD-1 (CR/PR; N=1,025 significant genes), than across 

biopsies of patients without response to anti-PD-1 (PD; N=113 significant genes), when 

comparing anti-CTLA-4 experience (Figure 3B–C).

Genes that were differentially expressed between anti-CTLA-4-experienced and anti-

CTLA-4-naive tumors were mostly unique to either response or no response to anti-PD-1 

therapy, with 63.5% and 48.7% of genes specific to either subset, respectively (Figure 

3D). The lack of overlap in these results suggested that there were biological differences 

between melanomas responsive and nonresponsive to PD-1 blockade, based upon their prior 

treatment with anti-CTLA-4 (Figure 3E). Only 11 genes were shared by both analyses; nine 

out of 11 genes had shared direction of effect.

Given the divergence in gene expression patterns between anti-CTLA-4-experienced and 

anti-CTLA-4-naive tumors within each anti-PD-1 response group, we utilized two methods 

for gene set enrichment analysis (GSEA) to more broadly characterize molecular processes 

across these comparisons. First, GSEA was performed within each response group using 

only significantly different genes (FDR<0.10). Consistent with our results at the gene 

level, there were stronger differences at the gene set level when comparing anti-CTLA-4 

experience in anti-PD-1-responsive tumors using GO:BP gene sets (Figure 3F). In anti-

PD-1-responsive tumors, those with anti-CTLA-4 experience were significantly enriched 

for processes related to MAPK signaling, hypoxia response, and inflammatory signaling 

pathways (e.g. Ig production, interferon signaling, adaptive immune response), while anti-

CTLA-4-naive tumors were enriched for cell-cycle pathways. This same analysis revealed 

very few significantly enriched pathways in biopsies of patients with no response to 

anti-PD-1, with two exceptions: the adaptive immune response gene set was enriched in 

anti-CTLA-4-experienced tumors, while the innate immune system gene set was enriched in 

anti-CTLA-4-naive tumors.

In our second GSEA method, we performed a rank-based GSEA in Hallmark gene 

pathways30 across all genes from the prior differential gene expression analysis. Within the 

anti-PD-1-responsive subset, anti-CTLA-4-experienced tumors were enriched for gene sets 

associated with interferon gamma response and genes downregulated by KRAS activation, 
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while anti-CTLA-4-naive tumors were enriched for cell cycle, E2F, G2M checkpoint, 

and mTORC1 signaling pathways (Figure 3G–H). Nearly all of the significant gene sets 

in anti-PD-1-responsive tumors showed opposing, but not significant, trends in anti-PD-1-

nonresponsive tumors (e.g. gene sets enriched in anti-CTLA-4-naive tumors in the anti-

PD-1-responsive subset were enriched in anti-CTLA-4-experienced tumors in the anti-PD-1-

nonresponsive subset) (Figure 3G–H). The only two shared significant processes across 

both anti-PD-1 responding and nonresponding tumors were the enrichment of fatty acid 

metabolism and myogenesis in anti-CTLA-4-experienced tumors.

Collectively, these two approaches revealed interactions between anti-CTLA-4 experience 

and anti-PD-1 response, particularly in responsive tumors. We highlight that the majority 

of pathways from GSEA would not have achieved statistical significance without the 

stratification of anti-PD-1 baseline tumors by clinical response, supporting the continued 

stratification of patients by both anti-PD-1 response and prior anti-CTLA-4 therapy for the 

subsequent analysis.

Strength of inflammatory gene expression patterns in anti-PD-1 responding biopsies is 
associated with prior anti-CTLA-4 experience

To more specifically explore gene expression patterns associated with anti-PD-1 response, 

we stratified cutaneous melanoma tumors with RNAseq data (N=131) into four 

subsets, based upon anti-PD-1 response (CR/PR, PD) and prior anti-CTLA-4 experience 

(experienced, naive). Unsupervised principal component analysis of the top 15% most 

variable genes did not reveal separation across clinical demographics (Figure 4A, Figure 

S3A–B). We utilized four models for supervised differential expression analysis to compare 

biopsies of anti-PD-1 response with no response: comparison of all samples, comparison 

of all samples controlling for anti-CTLA-4 experience, comparison of response within anti-

CTLA-4-experienced tumors, and comparison of response within anti-CTLA-4-naive tumors 

(Figure 4B–D). By comparing the results of these approaches, we corroborated our previous 

results indicating interactions between anti-CTLA-4 experience and anti-PD-1 response 

(Figure 4E). This was supported by analysis in each patient subset, where there were no 

significantly different genes comparing anti-PD-1 response in anti-CTLA-4-experienced 

tumors.

We explored whether differences were driven by one or a subset of clinical cohorts, and we 

found that the differential expression analysis within subgroups was poorly powered (Figure 

S3C). When the ranks of significant genes were compared between the analysis of the 

aggregate dataset with each individual cohort, positive correlations were significant but weak 

(Pearson correlations: Checkmate 038, 0.32; Checkmate 064–067, 0.085; Gide, 0.49; Liu, 

0.33) for all cohorts (Figure S3D). Notably, the Liu cohort did not have the strongest rank-

based correlation despite having the largest sample contribution. This sensitivity analysis 

underscores the importance of statistical power provided by our data harmonization and 

aggregation efforts to understand associations between molecular and clinical features.

We further explored these gene patterns by performing GSEA across all genes of curated 

Hallmark and KEGG pathways, revealing striking differences between anti-CTLA-4-

experienced and anti-CTLA-4-naive tumors when comparing biopsies of patients with and 
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without response to anti-PD-1 (Figure 4F–G). Within anti-CTLA-4-experienced tumors, 

anti-PD-1 responding tumors were enriched for genes regulated by KRAS activation, while 

anti-PD-1 non-responding tumors were enriched for cell cycle and MYC target genes. 

However, these gene sets displayed the reverse patterns in anti-CTLA-4-naive tumors 

(Figure 4G). Gene sets related to inflammation, cytotoxicity, and immune cell activation 

were positively enriched in anti-PD-1 responding tumors, but enrichment was significant 

only in anti-CTLA-4-experienced patients. The expression of cytokines and immunoglobulin 

regions was also variable, with the highest expression in antiCTLA-4-experienced tumors of 

patients who responded to anti-PD-1, followed by anti-CTLA-4-naive without a response, 

with the lowest expression in biopsies of patients with no response to anti-PD-1 (Figure 4H). 

Consistent with prior studies, these results suggest that biopsies of patients with response 

to anti-PD-1 have increased immune infiltration and activity compared to non-responding 

biopsies, but these features are more strongly enriched in biopsies of patients who are 

anti-CTLA-4 experienced and responded to anti-PD-1.

Anti-CTLA-4 experience is associated with globally increased adaptive immune infiltration 
signatures

While these analyses revealed differences in expression or enrichment for inflammatory 

processes associated with anti-CTLA-4 experience and anti-PD-1 response, we were 

interested in which immune cell-types may be contributing to these signals. Previous 

studies have described the association between tertiary lymphoid structures (TLS) and the 

infiltration of antitumor CD8 T-cells and anti-PD-1 response,9 as well as the mechanism 

by which anti-CTLA-4 mediates T-cell trafficking from the lymph node to the tumor 

site.28,29 To interrogate immune cell-types in the tumor microenvironment, we computed 

a single-sample immune signature score using gene signatures from previously published 

and curated gene sets to estimate immune cell-type enrichment and activity from bulk tumor 

RNAseq data (see Methods). Concordant with the gene expression analysis, anti-CTLA-4-

experienced, anti-PD-1-responsive tumors had the greatest average enrichment across all 

immune cell signatures, with the strongest enrichment for lymphocyte, cDC1, and TLS gene 

signatures (Figure 5A). Cell signature estimation using EPIC demonstrated similar trends 

with anti-CTLA-4 experience. The EPIC Endothelial signature also suggests increased blood 

vessels in the CR/PR anti-CTLA-4 experienced group compared to PD groups (Figure S4A–

B).

To determine which immune cell-types may be cooperative within the tumor 

microenvironment, we normalized the raw cell-type signatures for each immune cell-type 

within each sample and summarized the average score for each cell-type within each 

clinically defined subset. This revealed that anti-CTLA-4-experienced, anti-PD-1 responding 

biopsies had the strongest enrichment of CD8 T cell, B cell, Th1, TLS, and cDC1 signatures, 

along with the poorest enrichment of neutrophils, Tregs, Th2, Th17, MDSCs, and NK cells 

(Figure 5A–B). Conversely, anti-PD-1 non-responding biopsies had greater enrichment of 

Treg, neutrophil, and MDSC signatures. While anti-CTLA-4-experienced tumors appear to 

have stronger overall enrichment of immune cell signatures, the anti-PD-1-non-responding 

biopsies also showed reduced lymphocyte infiltration and TLS signatures, along with 

increased NK cell signatures. When we compared the average enrichment score of each 
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cell-type between anti-PD-1 responding and non-responding biopsies, there was an overall 

inverse association in cell-type signatures, across all cell-types (Figure 5C). Importantly, 

this difference across anti-PD-1 response groups was more substantial in anti-CTLA-4-

experienced tumors.

Tumor infiltration is differentially associated with MYC and E2F targets in biopsies that 
responded to anti-PD-1 after anti-CTLA-4 treatment

Gene expression patterns associated with immune infiltration, inflammatory signaling, 

and antitumor immune cytotoxicity have been shown to positively predict response to 

anti-PD-1 from baseline tumor specimens. Several methods have been established to 

aggregate expression metrics across gene sets from bulk RNA data, leading to successful 

stratification of anti-PD-1 or ICI responders.10,13–15 However, we aimed to understand how 

tumor-intrinsic patterns may coordinate with immune cell-types responsible for anti-PD-1 

response. To better stratify tumors based upon the immune infiltrate, we generated an 

interpretable, aggregate gene expression score, using immune cell-type signatures that were 

increased or decreased in biopsies of patients with response to anti-PD-1, to summarize the 

Tumor Infiltration Associated with Response to Anti-PD-1 in melanoma (TIARA-PD-1, see 

Methods).

Given that the features defining TIARA-PD-1 were computed based upon anti-PD-1 

response in our aggregate cohort of baseline, cutaneous melanoma tumors, it was 

unsurprising that TIARA-PD-1 score was significantly increased among biopsies of patients 

with CR/PR to anti-PD-1 compared to PD (Figure 5D). Consistent with our previous 

analysis, this difference was greater in magnitude when including prior anti-CTLA-4 

treatment as a covariate in biopsies of patients with anti-PD-1 response, but not among 

nonresponsive tumors. We also computed TIDE, estimating T cell dysfunction and 

exclusion, and IMPRES, a predictor of ICI response in melanoma that includes 15 pairwise 

transcriptomics relations between immune checkpoint genes.13,15 Both TIDE and IMPRES 

support interactions with prior anti-CTLA-4 experience and response to anti-PD1 (Figure 

S4C). However, while TIARA-PD1 variance is associated with CR/PR in both the naive and 

anti-CTLA-4 experienced groups, TIDE was only able to stratify anti-PD-1 response in the 

anti-CTLA-4-experienced setting (Figure S4D). Importantly, computation of TIDE scores 

required manual supervision of whether the patients had experienced prior immunotherapy 

or not to identify these interactions (see Methods).

We sought to validate whether TIARA-PD-1 was associated with clinical response in 

melanoma tumors in other ICI contexts by quantifying immune cell-type signatures and 

TIARA-PD-1 across both baseline and on-treatment RNAseq samples from tumors treated 

with other ICI regimens associated with this study (Figure S5A–B). Consistent with our 

anti-PD-1 results in baseline, cutaneous melanoma, clinical response (CR/PR) to ICI in other 

treatment regimens tended to have larger TIARA-PD-1 scores (Figure S5C). Additionally, 

median TIARA-PD-1 was higher in on-treatment samples, compared to baseline, in both 

the anti-PD-1 and sequential anti-CTLA-4-to-anti-PD-1 treatment regimens, suggesting 

increased global immune infiltration on-therapy with ICI. We also performed an independent 

validation of TIARA-PD-1 in a small clinical trial in which patients with advanced 
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melanoma were treated with either anti-CTLA-4 monotherapy or anti-CTLA-4 plus anti-

PD-1 combination therapy.31 Tumors with either PR or stable disease (SD) in this cohort 

did show a trend of increased TIARA-PD-1 over the course of therapy, comparing lesion-

paired on-treatment samples (N=10) with baseline samples (N=10) (Figure S5D–E). When 

we evaluated TIARA-PD-1 in melanoma subtypes other than cutaneous melanoma, TIARA-

PD-1 was associated with anti-PD-1 response in mucosal melanoma, but not in tumors with 

acral, uveal, or unknown site of origin (Figure S5F). Notably, these comparisons were less 

powered than the analysis in cutaneous melanomas.

To better understand the associations between the tumor microenvironment and potential 

tumor-intrinsic processes, we performed differential expression analysis in baseline, 

cutaneous melanoma tumors treated with anti-PD-1 based upon TIARA-PD-1 score as an 

outcome variable. Gene expression analysis identified 3,961 significantly different genes 

(FDR<=0.1, Figure 5E). Genes contributing to the immune signatures used to compute 

TIARA-PD-1 were excluded from this analysis. Unsurprisingly, increased TIARA-PD-1 

was positively associated with LCK, immunoglobulins, XCL1, and other cytokines (Figure 

5E), and GSEA on ranked genes revealed enrichment for Hallmark gene sets associated 

with T-cell function, interferon signaling, and TNFA signaling via NFKB across all clinical 

subsets (Figure 5F, Table S5). Conversely, TIARA-PD-1 was negatively associated with 

myosin and actin family genes, with enrichment of genes associated with myogenesis, 

epithelial to mesenchymal transition, glycolysis, MYC targets, and hypoxia (Figure 5E–F).

TIARA-PD-1 was informed by the cell-types enriched in anti-PD-1 responding biopsies, and 

our prior analysis showed that this signal was greater in anti-CTLA-4-experienced tumors. 

Differential gene expression analysis of each clinical subset showed the greatest number 

of significant genes associated with TIARA-PD-1 among anti-CTLA-4-naive responders, 

followed by anti-PD-1 nonresponders, anti-CTLA-4-experienced non-responders, then 

anti-CTLA-4-experienced responders (Figure 5G). The low number of significant genes 

associated with TIARA-PD1 in the anti-CTLA-4 experienced subsets may be a result of 

the smaller sample size, as seen in our previous transcriptomic analysis. When GSEA 

was performed within each clinical subset, many gene sets were consistently enriched in 

the same direction, particularly those that were negatively associated with TIARA-PD-1 

(Figure 5H, Table S6). Gene sets that had opposing directions in enrichment scores were 

only significant in one or two clinical subsets. In particular, MYC and E2F targets showed 

diverging associations with TIARA-PD-1 in anti-PD-1-responsive tumors, with positive 

enrichment in anti-CTLA-4-experienced tumors and negative enrichment in anti-CTLA-4-

naive tumors. MYC targets were also negatively enriched in anti-CTLA-4-experienced, 

anti-PD-1 non-responding tumors (Figure 5H). Collectively, these results suggest differential 

roles in these processes in either coordinating with or facilitating antitumor immune activity 

responsible for anti-PD-1 response.

Mutation subtype may be associated with immune cell infiltration and anti-PD1 response in 
an anti-CTLA-4-experienced dependent manner

We sought to further understand whether the patterns with respect to prior anti-CTLA-4 

and anti-PD1 response observed in baseline cutaneous melanoma samples were associated 
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with known canonical genetic drivers of melanoma (BRAF hotspot, NRAS hotspot, 
NF1-mutant, or triple-wildtype [TWT]). Driver mutations detected in WES data were 

annotated based upon the detection of hotspot mutations in BRAF (V600) or NRAS 
(G12, G13, Q61), mutations in NF1, or the lack of these mutations (TWT). Clinical 

benefit to anti-PD1 or prior anti-CTLA4 experience was not associated with any genetic 

subtype (two-sided Fisher’s Exact Test, p=0.53). We performed differential expression 

analysis comparing anti-PD-1 response (CR/PR versus PD) for anti-CTLA-4-naive and anti-

CTLA-4-experienced tumors within each genetic subtype. There were no significant genes 

identified in anti-CTLA-4-naive tumors. In the anti-CTLA-4-experienced group, IGHM was 

the only significant gene positively associated with CR/PR in tumors with BRAF hotspot 

mutations (log2-fold change=3.56, padj=0.099, Table S7). Notably, sample sizes were small 

after stratification by anti-PD-1 response, anti-CTLA-4 experience, and mutation subtype.

Regardless of genetic subtype, anti-CTLA-4-experienced patients that responded to anti-

PD1 tended to have greater global immune infiltration than those without benefit (Figure 

S6A). There was no significant association between immune cell signatures across mutant 

subtypes or within clinical groups, stratified by mutant subtypes. TIARA-PD1 analysis 

of immune signatures was consistent across genetic subtypes, with highest TIARA-PD1 

in anti-CTLA-4-experienced, anti-PD-1 responders (Figure S6B–C), with one exception. 

Anti-CTLA-4-naive and anti-CTLA-4-experienced tumors with BRAF V600 mutations that 

responded to anti-PD-1 had equally high TIARA-PD1 scores. The inverse relationship 

between TIDE and TIARA-PD1 was strongest in BRAF V600 and TWT tumors, and 

IMPRES did not stratify differences across clinical groups within any of the genetic 

subtypes (Figure S6C). Together, the trends supported by TIDE and TIARA-PD-1 suggest 

that there may be differences in T-cell infiltration and dysfunction across genetic subtypes, 

which could further implicate the concurrent or sequential targeting of these alterations by 

MAPK inhibitors in modulating the tumor microenvironment and response to anti-PD-1 

therapy.32 It is important to note that these patients were not annotated for their prior 

treatment with MAPK inhibitors.

Statistical models to predict response to anti-PD-1 in cutaneous melanoma are improved 
by including prior anti-CTLA-4 experience

Differential gene expression analyses yielded consistent patterns across clinical subsets 

defined by prior anti-CTLA-4 experience and anti-PD-1 response; however, we aimed 

to identify which features of the defined genomic, transcriptomic, or clinical features 

would best predict anti-PD-1 response in cutaneous melanoma. Utilizing a lasso-regularized 

logistic regression (LRLR) for variable selection,33–35 we compared anti-PD-1 responsive 

and nonresponsive tumors with both WES and RNAseq data from baseline tumors (N=90). 

Features included statistically significant results across both data types from the previous 

analyses, as well as published features (Table S3, Figure S7A). Features selected by the 

model that positively predicted antiPD-1 response included PIK3C2G mutations, B cell 

signatures, TIARA-PD-1, while features selected to predict anti-PD-1 nonresponse included 

expression of AREG or MAPK10 (Figure 6A, Figure S7B). Some features were only 

selected based upon the status of prior anti-CTLA-4 therapy, further demonstrating the 

interaction between prior anti-CTLA-4 therapy with gene expression features in predicting 
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anti-PD-1 response, such as the Hallmark genes downregulated by KRAS activation as a 

predictor of anti-PD-1 nonresponse in anti-CTLA-4-naive tumors.

Due to the lack of genomic correlates in the integrated analysis and to increase statistical 

power, we attempted three additional approaches for all anti-PD-1-treated cutaneous 

melanoma tumors with RNAseq data available (N=131), regardless of matched WES. We 

performed LRLR with two distinct models: Model A was a complete model that integrates 

statistically significant factors related to response to anti-PD-1 regardless of association 

with anti-CTLA-4 experience, and Model B only considered statistically significant factors 

without interaction with anti-CTLA-4 experience (Figure 6B–C, Figure S7C). Model A 

was subsequently divided into two approaches, utilizing either LRLR-selected features 

in a complete model containing interaction effects with anti-CTLA-4 experience (A1) or 

excluding those interaction effects (A2).

Features selected by these models, consisting of only transcriptomic features, were 

consistent with the first approach, which integrated both genomic and transcriptomic 

features (Figure 6A). However, there were additional features selected, including genes 

related to the extracellular matrix across all samples and the interaction effects in association 

with genes regulated by KRAS activation or MYC, myogenesis, and TIARA-PD-1 (Figure 

6B–C). Exclusion of prior anti-CTLA-4 interactions in Models A2 and B selected similar 

features as Model A1, but inclusion of the interactions improved the LOOCV predicted 

probabilities and accuracy of the complete model (Figure 6B–C). Model A1 showed 

significant improvement in predicting anti-PD-1 response over Models A2 (Wilcoxon 

rank sum test, p=8.1e-05) and B (Wilcoxon rank sum test, p=4.8e-07). This was shown 

by predicting the greatest probability of response in anti-PD-1 responding biopsies, and 

the lowest probability of response in anti-PD-1 non-responding biopsies (Figure 6C). 

Furthermore, Model A1 had the highest overall accuracy in predicting anti-PD-1 response 

(74.8%), followed by A2 (65.6%) and B (62.6%) (Figure 6C). A random forest classifier 

selected features similar to our LRLR results, with an accuracy of 66.7% (Figure S7D–E). 

Collectively, this analysis suggests that annotation of anti-CTLA-4 experience is highly 

impactful in the context of studying anti-PD-1 response in cutaneous melanoma, and its 

inclusion may significantly refine the discovery of predictors or mechanisms responsible for 

anti-PD-1 response.

Discussion

Correlates of ICI response have been studied using genomic, transcriptomic, and pathologic 

approaches in a global attempt to stratify patient populations, through the analysis of 

individual and aggregate clinical cohorts.7,12 Gaining access to such datasets is a challenge 

in itself, and pooling larger cohorts requires additional methodology and expertise, both 

scientifically and clinically. Here, we harmonized the molecular and clinical annotation 

of seven clinical cohorts of patients with melanoma treated with ICIs, including two 

previously unpublished datasets. The integration of these studies allowed us to leverage 

the increased statistical power of an aggregate resource to more rigorously address the 

evaluation of anti-PD-1 response in cutaneous melanoma. We found that both genomic 

and transcriptomic features predictive of anti-PD-1 response were modified by prior anti-
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CTLA-4 administration, highlighting key biological differences across baseline melanoma 

tumors studied across retrospective immunotherapy trials.

One of the primary benefits of harmonizing molecular datasets is the increased statistical 

power for more rigorous identification of biological features of patient subgroups. Other 

studies have attempted to increase statistical power by combining various clinical datasets, 

including those spanning different tumor types or treatment modalities. Alternatively, we 

focused on the utility of deeper clinical annotation, particularly with regards to melanoma 

subtype, treatment regimen, and treatment history. While the Liu et al. cohort previously 

reported some correlates of anti-PD-1 response, controlling for melanoma subtype and 

anti-CTLA-4 experience, some were not reported as significant due to multiple testing 

correction. However, the rigorous harmonization of cohorts, as well as the addition of 

the Checkmate 064 and 067 datasets, made it possible to detect signals associated with 

anti-PD-1 response, such as PIK3C2G missense mutations. This study highlights correlative 

findings that may support or drive experimental studies moving forward, so that the 

mechanistic understanding of these correlations can be properly implemented clinically. 

Importantly, we found that the refined stratification of cutaneous melanoma tumors by both 

anti-CTLA-4 experience and anti-PD-1 response led to distinct sets of findings regarding 

TMB, inflammatory gene expression patterns, and potential tumor-intrinsic gene expression 

patterns. The clinical datasets interrogated in this study comprised samples spanning 

melanoma subtypes; however, our assessment of TMB, confirming known differences in 

histologically defined subtypes, demonstrated the need for histopathologic annotation of 

samples for more rigorous analysis of molecular and clinical correlates. Collectively, this 

emphasizes why these efforts in data curation and harmonization are critical to clarify our 

understanding of predictive biomarkers for ICI treatment strategies, and may also explain 

the lack of clarity, inconsistency, or lack of statistical signal in previous reports across these 

settings.

It is important to consider the relevance of our findings from these retrospective melanoma 

datasets in the context of the current treatment paradigm. Given the establishment of anti-

PD-1 alone or in combination with anti-CTLA-4, as well as the recent approval of combined 

anti-PD-1/anti-LAG-3 therapy in the first-line setting for advanced melanoma, patients do 

not receive single agent anti-CTLA-4 as frontline therapy. Our analysis shows far fewer 

differences between anti-PD-1 responsive and nonresponsive tumors in the anti-CTLA-4-

naive setting, which may highlight the need for refinement of predictive biomarkers to 

anti-PD-1, specifically in this setting. The known mechanism of PD-1 blockade involves 

the recognition of tumor cells by CD8 T cells, and the detection of infiltrating T cells 

in baseline samples has been a strong predictor of clinical benefit following anti-PD-1 

therapy.11 Anti-CTLA-4 stratified analysis of bulk RNAseq tumor infiltration signatures 

revealed that prior CTLA-4 blockade was associated with significantly higher global 

immune infiltration, with enrichment for CD8+ T cell, B cell, TLS, and cDC1 signatures, 

which have all been previously implicated in anti-PD-1 responsiveness 9,11. These results 

agree with pathology analysis data supporting that CTLA-4 blockade therapy increases 

intratumor T cell infiltrates regardless of clinical response to therapy.29,36 There was also 

a lower enrichment of cell-types commonly associated with immune suppression, such 

as neutrophil and Treg cell signatures, among patients with clinical benefit to anti-PD1. 
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Furthermore, there were much lower signals associated with immune cell populations in 

anti-PD-1 nonresponsive tumors, regardless of anti-CTLA-4 experience.

We established TIARA-PD-1 as a summary metric of immune signatures differentially 

associated with response to anti-PD1 in cutaneous melanoma, and found diverse 

transcriptional signatures as a function of immune infiltration, based upon anti-PD-1 

response and prior anti-CTLA-4 experience. Specifically, increase in TIARA-PD1 was 

strongly associated with a decrease in extracellular matrix, matrisome-associated proteins, 

glycoproteins, and myogenesis as well as glycolysis and hypoxia signatures. These 

signatures were consistent and more striking in anti-CTLA-4 experienced patients, while 

non-responders to anti-PD1 did not demonstrate a significant negative enrichment of many 

ECM and hypoxia signatures despite an increase in TIARA-PD1. This is consistent with 

reports recognizing the ECM as a crucial microenvironmental component affecting the 

immune response in tumors, as well as the role of a hypoxic TME in inducing immune 

suppression and resistance.37–40 In addition, TIARA-PD-1 was more similar across anti-

CTLA-4-experienced and -naive tumors specifically in the BRAF V600-mutant tumors. 

These results warrant further study of combinatorial treatment strategies to enhance 

immunotherapy and potentiate cancer immunity for tumors resistant to immunotherapy 

despite strong immune infiltration. This should include both immunotherapeutic strategies 

and targeted therapies, given the potential synergy in combining or sequencing MAPK 

inhibitor therapies in the context of ICIs.41,42

Early ICI genomics studies reported the association between clinical response and TMB, 
17,25,26,43 which has subsequently been used to positively identify ICI responders across 

tumor types.7,12 Generally, it is thought that the presence of more mutations increases 

the chances of neoantigens arising that can be targeted by the immune system. However, 

in cancers that commonly have high TMB such as melanoma, it can be difficult to 

identify specific recurrently mutated genes associated with response, since there are many 

mutation events to consider when performing statistical tests. Our approach, assessing 

genes with corresponding mutation types in a larger dataset, enabled us to identify the 

positive association between PIK3C2G missense mutations and ICI response. However, 

since PIK3C2G is infrequently expressed overall in melanoma, the association between 

genomic and gene expression profiles remains unclear.12 This is further supported by the 

lack of association between TMB and TIARA-PD-1, an aggregate metric of immune cell 

populations strongly associated with predicted anti-PD-1 response in cutaneous melanoma. 

Together, these findings suggest that defining the immunogenicity of tumors may require 

more specific or alternative genomic metrics, in conjunction with assessment of immune 

recognition at the tumor site.

The reported, harmonized dataset presented in this study sets a foundation for investigating 

the heterogeneity of clinical responses to ICIs in melanoma. These harmonized molecular 

and clinical annotation efforts enabled focus on specific questions related to anti-PD-1 

response in cutaneous melanoma, with the appropriate account of critical clinical and 

technical batch effects. These systematic approaches are necessary to advance the rigorous 

and complex analyses required to optimize ICI treatment strategies.
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STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the lead contact, Katie Campbell 

(katiecampbell@mednet.ucla.edu).

Materials Availability—There were no new physical or biological materials generated 

with this study.

Data and Code Availability—Raw sequencing data is available through the Sequence 

Read Archive accession identifier PRJNA923698. Processed data, including annotated 

variants and gene expression values, are available at https://github.com/ParkerICI/

MORRISON-1-public. Any additional information required to reanalyze the data reported in 

this work paper is available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

DNA and RNA sequencing data were downloaded for previously reported datasets.6,8,22–24 

The clinical results of CheckMate 064 and CheckMate 067 were previously described.20,21

For consideration in our study, samples had to have been collected from patients with a 

melanoma diagnosis, with melanoma subtype (cutaneous, acral, mucosal, uveal, unknown), 

and complete annotation for the following demographics: evaluable response by RECIST 

1.1 criteria44, patient gender and age, treatment regimen, and whether the patient previously 

received anti-CTLA-4 therapy. Throughout the study, samples from responsive (RECIST 

1.1 categories of CR or PR) tumors were grouped together and compared to samples 

from tumors with progressive disease (RECIST 1.1 PD) following anti-PD-1 therapy, in 

cutaneous melanoma tumors. Samples from tumors with stable disease (SD) following anti-

PD-1 therapy were excluded from categorical comparisons of response. Samples denoted 

“anti-CTLA-4-naive” corresponded to tumors from patients that were not treated with anti-

CTLA-4 prior to sample collection while “anti-CTLA-4-experienced” corresponds to tumors 

from patients previously treated with anti-CTLA-4 therapy.

METHOD DETAILS

WES analysis—Methods for whole exome sequencing (WES) for the CheckMate 038, 

Gide, et al., Hugo, et al., Liu, et al., and Van Allen, et al. were previously described.6,8,22–24 

For CheckMate 064 and CheckMate 067, WES was performed as previously described, 

with one modification.22 CheckMate 067 WES libraries were generated using the Agilent 

SureSelect All Exon V5 capture reagent.

Whole exome sequencing data was preprocessed (Figure S1) according to GATK best 

practices,45 and aligned to the human reference genome (GRCh38) by BWA-MEM 

v0.7.15.46 Somatic variants were detected by comparing tumor WES with patient-matched 

normal WES by Mutect2,47 Varscan2,48 Strelka,49 and SomaticSniper.50 Single nucleotide 

variants (SNVs) were further annotated using a deep learning model, DeepSVR,51 for to 
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further filter false positive variants.52 Multi-nucleotide variants (MNVs) were identified 

by extracting the read names associated with neighboring SNV calls and re-annotating 

them as MNVs if at least three shared read names correspond to all neighboring SNVs 

(Supplementary Figure S1) (https://github.com/kcampbel/public/scripts/mnvDetection.py).

SNVs and indels were subsequently filtered to those called by a minimum of two out of four 

variant callers, and SNVs corresponding to MNVs were removed. Filtered SNVs and Indels 

were annotated by Ensembl Variant Effect Predictor (VEP), using the Ensembl annotation 

database v94 53. TMB was quantified by normalizing the number of nonsilent mutations by 

the total number of bases sequenced and tumor purity, as previously described.54 Nonsilent 

mutations included any variants with ‘HIGH’ or ‘MODERATE’ impacts on proteins, 

determined by Ensembl VEP.

Sequenza was used to detect copy number alterations (CNAs) and regions of loss-of-

heterozygosity (LOH) and quantify tumor cellularity.55 Tumor-in-normal contamination was 

quantified using GATK4 CalculateContamination.56 Tumor WES samples with cellularity 

less than or equal to 0.1, average depth of sequencing in targeted regions less than or equal 

to 100X, or estimated contamination of at least 0.03 were removed from additional analysis 

(Figure S3). We estimated that with a targeted 100X coverage by WES, in samples with 

more than 3% of reads associated with cross-sample contamination, false-positive variants 

due to this type of contamination would be detected due to having more than 1–3 reads 

of sequencing read support. Notably, 20 out of 23 processed tumor WES samples from the 

Hugo et al. cohort failed the contamination thresholds; due to the high rate of contamination 

in this dataset, this cohort was entirely removed for downstream analysis. Tumor-matched 

RNAseq samples were also removed, if WES did not meet the defined criteria.

RNAseq analysis—Methods for transcriptome sequencing (RNAseq) for the CheckMate 

038, Gide, et al., Hugo, et al., Liu, et al., and Van Allen, et al. were previously 

described.6,8,22–24 For CheckMate 064 and CheckMate 067, RNAseq was performed as 

previously described, with one modification.22 CheckMate 064 RNAseq libraries were 

prepared using the Illumina Stranded mRNA sequencing kit, and CheckMate 067 RNAseq 

libraries were prepared using the Illumina TruSeq RNA Exome kit.

RNAseq data was aligned to the human reference genome (GRCh38) using HISAT257 

(Supplementary Figure S1). Gene expression was quantified by HTseq-counts58 and 

Stringtie.59 Differential gene expression analysis was performed using edgeR60 with 

cohort included as a covariate to account for batch effects due to differences in library 

prep methods. Genes were filtered by expression prior to statistical analysis using the 

edgeR::filterByExpr function and the Benjamini-Hochberg (BH) procedure was used for 

multiple hypothesis testing. Statistical significance by edgeR glmQLF test (edgeR: quasi-

likelihood negative binomial generalized log-linear model) was determined at an adjusted 

pvalue cutoff <= 0.1 after multiple hypothesis correction. Gene set enrichment analysis 

(GSEA) was performed with genes ranked according to differential expression, and run 

using clusterProfiler in R on Hallmark and KEGG pathways from the Molecular Signatures 

Database (MSigDB) and statistics were evaluated using clusterProfiler::GSEA Kolmogorov 

Smirnov (K-S) test.61,62 Prior to running GSEA and computing statistical significance, 
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MSigDB gene sets of interest for the analysis were manually curated from different 

collections (Tables S1–S2). Pathways that reached statistical significance in one of the sub-

analyses were visualized to reduce the final number of pathways included in visualizations. 

Statistically significant GSEA results were evaluated after an adjusted p-value cutoff 

of 0.10 using the BH procedure. BH-correction was stringently performed across all 

comparisons and all subsets in aggregate. Gene Ontology Enrichment Analysis (GOEA) 

was performed using XGR on differentially expressed genes (positively or negatively) 

from each comparison group.63 Significance was determined using fisher’s exact test in 

XGR::xEnricherGenes. Similar to GSEA, BH-correction was stringently performed across 

all comparisons and all subsets in aggregate at an adjusted p-value cutoff of 0.10.

The R package Combat-Seq (https://github.com/zhangyuqing/ComBat-seq) was used for 

batch-effect correction of raw sequencing counts prior to gene signature analysis.64 Combat-

Seq was not used prior to differential gene expression analysis in edgeR. Combat-Seq 

transformed counts were normalized to total mapped reads and log-scaled prior to analysis.

Principal Component Analysis was performed on the cohort-corrected log cpm gene matrix. 

Genes were mean-centered and scaled before transformation by PCA.

Single-sample scores for pathways or immune cell-type signatures were generated using a 

custom signature scoring method, similar to those used in published RNAseq analysis.65 

The score is calculated using the average expression level computed for a single-sample 

based on an input gene list. Using the Combat-Seq-corrected, log-CPM gene expression 

table, the average expression of each gene was calculated across all samples, and genes were 

ranked from highest to lowest and divided into 30 bins of equal size to generate a control 

feature set. The control gene-sets for each gene in the gene-set were generated by randomly 

selecting 100 genes from the same expression bin in the control feature set for that gene. 

The final sample score was computed by subtracting the control gene-set from the sample’s 

gene-set score.

Tumor Immunogenicity Associated with Response to Anti-PD-1 (TIARA-PD-1)
—TIARA-PD-1 was established to aggregate the immune cell gene expression signatures 

associated with anti-PD-1 response into a single metric. TIARA-PD-1 was generated using 

the baseline RNAseq data derived from cutaneous melanoma tumors that either responded 

(CR/PR) or did not respond (PD) following anti-PD-1 monotherapy. First, the mean score 

was calculated for each immune cell-type signature across anti-PD-1 responsive tumors 

and across anti-PD-1 nonresponsive tumors, and the difference was taken between the 

two means. Immune cell-types were separated into anti-PD-1 responder-up or -down, 

based upon whether the immune cell-type was higher in samples from patients with 

response or no response to anti-PD-1, respectively. Next, within each sample, the averages 

were taken across immune cell-type signatures in each of the responder-up and -down 

categories. TIARA-PD-1 is the resulting difference between the aggregate responder-up 

and responder-down groups, a calculation that can be applied to any binary comparison 

group.66 Based upon this calculation, TIARA-PD-1 is increased in magnitude due to more 

positive responder-up or more negative responder-down aggregate scores. We evaluated this 

Campbell et al. Page 18

Cancer Cell. Author manuscript; available in PMC 2024 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/zhangyuqing/ComBat-seq


calculation using the mean, median, or sum of immune cell-type signatures, and these all 

exhibited similar results (data not shown).

EPIC, TIDE, and IMPRES—EPIC to estimate immune, stromal, and other cell fraction 

estimates from the bulk RNAseq data was computed using the batch-effect corrected 

gene expression matrix and the EPIC R package. TIDE was computed using the web-

based application provided by http://tide.dfci.harvard.edu/.15 The batch-effect corrected 

gene expression matrix was normalized using the all sample average as the normalization 

control, as instructed by the developers. The normalized matrix was then split into 

anti-CTLA-4 naive and anti-CTLA-4 experienced files and inputted into the TIDE web 

application separately, and we selected the “Previous immunotherapy” option for the file 

containing the anti-CTLA-4-experienced samples. TIDE did not identify differences in an 

anti-CTLA-4 dependent manner without this “Previous immunotherapy” option. IMPRES 

was calculated using the batch-effect corrected gene expression matrix with 14 of the 15 

pairwise transcriptomic relations described in the author’s methods.13 CD27/PD1 is 1 of the 

transcriptomic pairs and CD27 was filtered out during the batch-effect correction step as it 

did not meet the minimum count and sample abundance. Using the unfiltered, uncorrected 

gene expression matrix with all 15 pairs yielded the same results (results not shown).

Model generation and evaluation—Lasso was used in R67 to identify markers 

associated with response33–35. To construct a lasso model, we used the glmnet34 

implementation of lasso in R, including a built-in cross-validation function to tune the 

L1 regularization parameter λ. We used the minimum mean-cross validated error. To 

compare probability of response across the main effect, prior anti-CTLA-4 informed, and 

interaction effect informed models, we used each model’s selected features and assessed 

performance using LOOCV. Linear discriminant analysis (LDA) was used for supervised 

dimensionality reduction68,69 to assess gene importance associated with groups defined 

by anti-PD-1 response and anti-CTLA-4 experience. The Combat-Seq corrected, log-CPM 

table was filtered to include only differentially significant gene results from prior analysis 

comparing anti-PD-1 response in the context of anti-CTLA-4 experience across all samples. 

This filtered table was an input for LDA to find genes that maximally separated samples 

based on both anti-CTLA-4 experience and anti-PD-1 response.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses and statistics were performed using R (v 4.2.0).67 TMB was compared across 

clinically defined groups using Kruskal-Wallis (across group) and Wilcoxon (pairwise) tests. 

Recurrently mutated genes in clinical groups were identified by applying logistic regression 

to the genes and mutation types across clinical subsets, controlling for tumor purity, TMB, 

melanoma subtype based on site of origin (cutaneous, mucosal, acral, uveal), and anti-

CTLA-4 experience. Significant gene-mutation pairs were selected for by p-value cutoffs 

of 0.05 and Benjamini-Hochberg adjusted p-value cutoffs of 0.20. Significant differences 

in gene expression, gene sets, and scores were selected by Benjamini-Hochberg adjusted 

p-value cutoffs of 0.10 across clinically defined groups. Correlations were reported by the 

Spearman rank correlation and reported with Benjamini-Hochberg adjusted p-values.
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Highlights

• Harmonization of molecular and clinical annotation clarifies anti-PD-1 

response patterns

• Prior anti-CTLA-4 treatment modifies predictors of anti-PD-1 response in 

melanoma

• Immune cell signature differences are enhanced in tumors with prior anti-

CTLA-4
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Figure 1. Project Overview
(A) Overview of the datasets and pipeline for harmonized data processing and analysis. (B) 
Alluvial plot depicts the demographics of patients with melanoma tumor samples in the 

final dataset (x-axis; cohort, subtype, prior ICI therapy, treatment regimen, and RECIST 

response). Each individual (alluvium) is colored by whether the corresponding sample was 

included in analysis of cutaneous melanoma tumors treated with anti-PD-1. See Table 1 and 

Figure S1.
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Figure 2. Genomic correlates of anti-PD-1 response
Comparison of TMB (Mut/Mb), quantified by the number of nonsilent mutations and 

normalized by tumor purity and sequencing coverage, across (A) subtypes or (B) clinical 

groups, defined by anti-PD-1 response and prior anti-CTLA-4 treatment. Groups are 

compared using a Wilcoxon test (**, p<0.01; ns, p>0.05). In (A), each subtype is compared 

to the cutaneous group. (C) Logistic regression comparing genes and mutation types 

between anti-PD-1 responsive (CR/PR) and nonresponsive (PD) tumors. Significance and 

log-odds ratio (x-axis) are indicated. (D) Lolliplot of PIK3C2G mutations in all baseline 

tumors, stratified by CR/PR (top) and PD (bottom). (E) Corresponding cohorts of PIK3C2G-

mutant tumors. See Figure S2.
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Figure 3. Prior CTLA-4 blockade differentially stratifies the expression landscape of melanoma 
tumors responding or not to anti-PD-1
(A-C) Differential expression analysis comparing baseline anti-CTLA-4-experienced to 

anti-CTLA-4-naive, cutaneous melanoma tumors (N=131): (A) all-samples, (anti-CTLA-4-

naive=92, anti-CTLA-4-experienced=39), (B) CR/PR-only (anti-CTLA-4-naive=48, 

anti-CTLA-4experienced=17), and (C) PD-only (anti-CTLA-4-naive=44, anti-CTLA-4-

experienced=22). (D) UpSet plot of differential genes comparing anti-CTLA-4-experienced 

to anti-CTLA-4-naive patients. (E) Scatter plot of each gene comparing the log fold-
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change difference between anti-CTLA-4-experienced and anti-CTLA-4-naive patients. 

Color indicates significance of a gene in both, neither, CR/PR-only, or PD-only subsets. 

(F) Barplots showing the number of statistically significant pathways using differential 

genes. (G) Normalized Enrichment Score (NES) results from ranked-based GSEA of 

anti-CTLA-4-experienced versus anti-CTLA-4-naive tumors in each patient subset. Filled 

circles indicate statistical significance, hollow circles indicate no statistical significance. 

(H) GSEA rank plots showing differential or shared enrichment directions between anti-

CTLA-4-experienced vs anti-CTLA-4-naive patients, colored as in (G). See Figure S3 and 

Table S1–2.
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Figure 4. Strength of inflammatory gene expression patterns in anti-PD-1 responding biopsies is 
associated with anti-CTLA-4 experience
(A) PC1 and PC2 from PCA of the top 15% most variable genes across 131 baseline, 

cutaneous melanoma samples, following batch effect correction by cohort. Colors indicate 

four clinical groups stratified across response and prior treatment. Ellipses indicate the 

distribution of clinical groups. (B-D) Differential expression analysis comparing tumors 

between CR/PR and PD patients across patient subsets: (B) all-samples (CR/PR=65, 

PD=66), (C) anti-CTLA-4-experienced-only (CR/PR=17, PD=22), and (D) anti-CTLA-4-
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naive-only (CR/PR=48, PD=44). (E) UpSet plot of differential genes comparing CR/PR 

to PD patients across each patient subset. (F) NES results from ranked-based GSEA of 

CR/PR versus PD patients in each patient subset. Hollow circles indicate no statistical 

significance. (G) Scatterplot of adjusted p-values with NES direction for GSEA results 

comparing CR/PR versus PD patients in the anti-CTLA-4-experienced and anti-CTLA-4-

naive subsets. Pathways in the colored boxes indicate statistical significance in only the anti-

CTLA-4-experienced or anti-CTLA-4-naive subset. (H) Heatmaps showing scaled mean 

expression of cytokine (top) and immunoglobulin-related genes (bottom). See Figure S3 and 

Tables S3–4.
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Figure 5. Anti-CTLA-4 experience is associated with globally increased adaptive immune 
infiltration signatures
(A) Heatmap of immune cell-type scores computed using published gene signatures. Colors 

represent the averaged, raw score from patients in each clinical group. Size of each point 

represents the averaged, relative score within each clinical group (see STAR Methods). (B) 
Heatmap of the mean score difference of each cell-type between CR/PR and PD tumors 

from 3 analyses either observing all samples together or stratified by prior treatment. Black 

tile outlines indicate statistical significance by Wilcoxon signed-rank test with BH-adjusted 
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p-values <=0.1. (C) Scatter plot comparing the averaged cell-type signature score of CR/PR 

and PD patients, colored by prior treatment. (D) Boxplots of TIARA-PD-1 score compared 

between response and prior treatment clinical groups (see STAR Methods). Statistical 

significance determined by Wilcoxon signed-rank test. (E) Differential expression analysis 

as a function of TIARA-PD-1. The x-axis is the expression difference associated with a 

unit change in TIARA-PD-1. (F) NES of ranked-based GSEA for statistically significant 

pathways curated from HALLMARK and NABA (Table S5). (G) Barplots of the number 

of genes significantly different as a function of TIARA-PD-1 within patient subsets. (H) 
Rank-based GSEA results for significant pathways curated from HALLMARK and NABA 

across each clinical group. Filled circles indicate statistical significance, hollow circles 

indicate no statistical significance. See Figure S4–6 and Tables S4–7.
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Figure 6. Statistical models are improved by including prior anti-CTLA-4 experience to predict 
response to anti-PD-1 in cutaneous melanoma
(A) Feature selection using cross-validated lasso-regularized logistic regression for 90 paired 

WES and RNAseq baseline cutaneous melanoma tumors treated with anti-PD-1, with or 

without prior anti-CTLA-4, comparing CR/PR to PD. (B) Heatmap of selected features for 

3 fitted models. Color indicates magnitude and direction of the standardized coefficient for 

that feature. Gray indicates that the feature was not selected. (C) Predicted probabilities 

from leave-one-out cross-validation (LOOCV) logistic regression comparing CR/PR vs 
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PD using all selected features from (B) in each respective model. The y-axis indicates 

probability of response. The top and bottom facets indicate the clinically annotated true 

response to anti-PD-1. LOOCV accuracy is at the bottom. See Figure S7.
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Table 1.

Overview of patient and sample demographics in final dataset

CheckMate 
038

CheckMate 
064

CheckMate 
067

Gide, et 
al.

Liu, et 
al.

Van 
Allen, et 

al. Aggregate

Patients with melanoma

Sex N

female 30 9 18 26 59 13 155

male 35 33 41 48 83 27 267

Age median (min-
max)

56 (22–89) 62.5 (30–84) 58 (34–85) 61.5 
(24–90)

NA 61 (22–
83)

59 (22–90)

Melanoma 
subtype

N

cutaneous 44 34 55 60 104 36 333

unknown 12 0 2 7 18 2 41

mucosal 7 3 0 2 10 2 24

acral 2 1 2 5 10 0 20

uveal 5 4 0 0 0 0 9

Treatment N

anti-PD-1 70 0 21 41 142 0 274

anti-CTLA-4 0 0 21 0 0 40 61

Combo (anti-
PD-1 and anti-
CTLA-4)

0 0 17 33 0 0 50

anti-CTLA-4 to 
anti-PD-1

0 23 0 0 0 0 23

anti-PD-1 to anti-
CTLA-4

0 19 0 0 0 0 19

Patients with tumors treated 
with anti-PD-1 therapy

Prior ICI N

anti-CTLA-4 
experience

39 0 0 0 58 0 97

anti-CTLA-4 
naive

31 0 21 41 84 0 177

Response N

CR 3 0 5 4 17 0 29

PR 12 0 5 15 37 0 69

SD 24 0 4 6 23 0 57

PD 31 0 7 16 65 0 119

Timepoint N

Baseline 68 0 21 41 142 0 272

On-therapy 61 0 0 9 0 0 70
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Tumor biopsies and peripheral 
blood collected from melanoma 
patients (CheckMate 064)

Weber, et al. (PMID: 27269740) https://clinicaltrials.gov/ct2/show/NCT01783938

Tumor biopsies and peripheral 
blood collected from melanoma 
patients (CheckMate 067)

Wolchok, et al. (PMID: 28889792) https://clinicaltrials.gov/ct2/show/NCT01844505

Critical commercial assays

Agilent SureSelect All Exome V2 Agilent https://www.agilent.com/en/product/next-generation-
sequencing/hybridization-based-next-generation-
sequencing-ngs/exome-probes/sureselect-clinical-research-
exome-v2-232867#productdetails

Agilent SureSelect All Exome V5 Agilent https://www.agilent.com/en/product/next-generation-
sequencing/hybridization-based-next-generation-
sequencing-ngs/exome-probes/sureselect-human-all-
exon-232866

Illumina Stranded mRNA Illumina https://www.illumina.com/products/by-type/sequencing-
kits/library-prep-kits/stranded-mrna-prep.html

Illumina TruSeq RNA Exome Illumina https://www.illumina.com/products/by-type/sequencing-
kits/library-prep-kits/truseq-rna-access.html

Deposited data

Processed data This paper https://github.com/ParkerICI/MORRISON-1-public

CheckMate 064 and 067 WES 
data

This paper BioProject: PRJNA923698

CheckMate 064 and 067 RNAseq 
data

This paper BioProject: PRJNA923698

CheckMate 038 WES and 
RNAseq data

Riaz, et al. (PMID: 29033130) SRA: SRP094781; SRA: SRP095809

Gide, et al. RNAseq dataa Gide, et al. (PMID: 30753825) ENA: PRJEB23709

Hugo, et al. WES and RNAseq Hugo, et al. (PMID: 26997480) SRA: SRP067938; GEO: GSE78220

Liu, et al. WES and RNAseq Liu, et al. (PMID: 31792460) dbGaP: phs000452.v3.p1

Van Allen, et al. RNAseq Van Allen, et al. (PMID: 26359337) dbGaP: phs000452.v2.p1

Software and algorithms

GATK4 Van der Auwera, et al. https://github.com/broadinstitute/gatk/releases

BWA-MEM v0.7.15 Li (PMID: 19451168) https://bio-bwa.sourceforge.net/bwa.shtml

Mutect2 Benjamin, et al. (https://doi.org/
10.1101/861054)

https://gatk.broadinstitute.org/hc/en-us/articles/
360036713131-Mutect2

Varscan2 Koboldt, et al. (PMID: 22300766) https://varscan.sourceforge.net/

Strelka Saunders, et al. (PMID: 22581179) https://github.com/Illumina/strelka

SomaticSniper Larson, et al. (PMID: 22155872) https://gmt.genome.wustl.edu/packages/somatic-sniper/

DeepSVR Ainscough, et al. (PMID: 30397337) https://github.com/griffithlab/DeepSVR

MNVdetect This paper https://github.com/kcampbel/public/scripts/
mnvDetection.py

Ensembl-VEP McLaren, et al. (PMID: 27268795) https://uswest.ensembl.org/info/docs/tools/vep/index.html

Sequenza Favero, et al. (PMID: 25319062) https://cran.r-project.org/web/packages/sequenza/vignettes/
sequenza.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

HISAT2 Kim, et al. (PMID: 31375807) https://daehwankimlab.github.io/hisat2/

HTseq-counts Anders, et al. (PMID: 25260700) https://htseq.readthedocs.io/en/release_0.11.1/count.html

Stringtie Pertea, et al. (PMID: 25690850) https://ccb.jhu.edu/software/stringtie/

edgeR Robinson, et al. (PMID: 19910308) https://bioconductor.org/packages/release/bioc/html/
edgeR.html

MSigDB Liberzon, et al (PMID: 26771021) https://www.gsea-msigdb.org/gsea/msigdb/

clusterProfiler Yu, et al. (PMID: 22455463) https://github.com/YuLab-SMU/clusterProfiler

XGR Fang, et al. (PMID: 27964755) https://xgr.r-forge.r-project.org/

ComBat-seq) Zhang, et al. (PMID: 33015620) https://github.com/zhangyuqing/ComBat-seq

TIDE Jiang, et al. (PMID: 30127393) http://tide.dfci.harvard.edu

Glmnet Friedman, et al. (PMID: 20808728) https://glmnet.stanford.edu/articles/glmnet.html
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