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ABSTRACT OF THE DISSERTATION 

 

 

Prediction versus Production for Teaching Computer Programming 

 

by 

Mary Conyers Tucker  

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2022 

Professor James W. Stigler, Chair 

 

Learning to program is increasingly important. Yet, it is becoming clear that most 

students struggle when learning to program (McCracken et al., 2001). This is leading to a divide 

where some people can program but many others can’t. Prior research has traced poor student 

outcomes to their early experiences learning programming. Still, little is known about how 

different programming tasks might impact the processes involved in learning programming. In 

this dissertation, I extend prior research on students’ experiences when learning computer 

programming and build on this research by testing the causal influences of different learning 

tasks on students’ emotions, motivation, and learning. In a randomized experiment, I 

manipulated the instructional tasks used to introduce programming and investigated students’ 

emotional trajectories, motivation, and learning outcomes. Participants randomly assigned to 

predict the outcome of pre-provided code showed more positive emotional trajectories, increased 

motivation, and greater learning compared to students randomly assigned to modify or produce 

their own code.  
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Prediction versus Production for Teaching Computer Programming 

Computer programming is increasingly important, but programming is often viewed as 

challenging by undergraduate students. These challenges are particularly pronounced for 

students with no prior programming experiences and those belonging to groups traditionally 

underrepresented in STEM fields (Salguero et al., 2021; Luxton-Reilly, 2016; Robins et al., 

2003; Watson & Li, 2014). Even successful graduates of introductory courses struggle to learn 

programming in the future. Many students learn to code by following steps, like a cookbook; but 

fewer really develop transferable and flexible knowledge of computer programming (Perkins & 

Martin, 1986). 

Given the growing demand for people who can do computer programming, and the 

relatively few students who develop transferable programming knowledge, issues of students’ 

early experiences and outcomes learning programming are important to address.  Other 

researchers have identified the issue of students’ challenges learning programming and attempted 

to address them using specially designed programming software and  interventions (i.e., Simon 

& Hanks, 2008). In this dissertation, I take a different approach; changing the structure of the 

tasks in which students are first introduced to programming. Extensive research has shown that 

learning environments can have a profound impact on students’ cognition, emotions, and 

motivated behavior. Yet, few studies have attempted to manipulate the structure of programming 

tasks as a way to cultivate more flexible knowledge and adaptive approaches to learning 

programming.  

Psychological Research on Code Writing and Learning Computer Programming 

Computer programming is a complex endeavor with cognitive and affective challenges. To 

develop flexible programming skills, students need to learn programming syntax (Altadmri & 

Brown, 2015), understand programming concepts (Bayman & Mayer, 1983; Cañas et al., 1994; 
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Ma, 2008; Sirkiä & Sorva, 2012), and coordinate and apply this knowledge to solve novel 

problems (Clancy & Linn, 1999; Davies, 1993 a, b; Lister et al., 2004; Lister et al., 2006; Perkins 

and Martin, 1986; Sajaniemi & Navarro-Prieto, 2005; Whalley et al., 2006) (see Quian & 

Lehman, 2017 for a review). Students also need to regulate emotions that arise during learning 

(Bosch et al., 2013; D’Mello, 2011; D’Mello & Graesser, 2011), maintain motivation and 

engagement, and persist in the face of failure (Renumol et. al, 2010). 

Carefully designed programming instruction can help students overcome these 

challenges. But some programming instruction may increase students’ difficulties. For example, 

most undergraduate courses include code writing activities in which  students follow task 

instructions to modify or write their own code. While code writing seems like a logical starting 

point for teaching  programming, decades of research documenting students’ poor programming 

outcomes bring the effectiveness of this strategy into question. Below, I discuss the effect of 

traditional code writing tasks on student outcomes and the processes through which they may 

exert their effects.  

Effect of Code Writing on Emotions  

One way code writing tasks might prevent flexible knowledge acquisition is by eliciting 

negative emotions during learning.  Emotions arise during all types of learning but are especially 

prevalent during complex learning in domains like computer programming, where students 

encounter novel and difficult problems and struggle to comprehend and make sense of abstract 

concepts (D’Mello & Graesser, 2011). In most code writing assignments, students are allowed to 

progress only after they submit code that runs correctly. However, research has shown that 

students experience high rates of failure on code writing assignments (McCracken et al., 2001), 

which elicits frustration and other negative emotions. If students continue to try new solutions 

and fail, they may experience repeated failure and negative feedback.  Repeated experiences of 
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failure can lead to frustration, which leads to disengagement and boredom, a process that 

D’Mello and Graesser refer to as the “vicious cycles” of negative emotions (D’Mello & 

Graesser, 2011, p. 15).  

This hypothesis is supported by studies of affect dynamics, which show that writing and 

submitting code is a central event that precedes and follows students’ emotions when learning 

computer programming (Bosch & D’Mello, 2008; Bosch et al., 2013). In one relevant 

study,  Bosch et al. (2013) systematically linked students’ emotions to  three behaviors during 

learning: constructing (writing code), running (clicking “Run” or “Submit” to execute the code), 

or idling (not otherwise interacting with the interface). Students experienced higher rates of 

frustration when they were running code. Similarly, whereas writing code that runs without 

errors preceded positive emotions, writing code and getting an error preceded negative affective 

states (e.g., confusion and frustration). 

Beyond reducing students’ enjoyment of learning computer programming, negative 

emotions can work through cognitive and motivational processes to impact knowledge 

acquisition and future behavior. According to cognitive resource allocation models (Ellis & 

Ashbrook, 1989), emotions that are not related to the task at hand  (i.e., being frustrated about 

getting the answer incorrect) can take up cognitive resources and distract from learning while 

positive emotions related to the learning task can focus attention on the activity. Emotional 

reactions can also activate processes which are implicated in belief formation and learning. For 

instance, the affect-as-information model holds that emotional reactions provide information 

about the objects to which the individual is reacting and thus influence beliefs about that object 

(Schwartz & Clore, 1983).  Finally, emotions have been shown to  influence the strategies and 

approaches students use during learning. While positive affective states are thought to facilitate 
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more flexible and creative approaches to solving problems, negative affective states are thought 

to lead to more rigid and analytical thinking (Isen,  2000). 

Effect of Code Writing on Motivation  

Another way code writing might impact flexible learning is by influencing students’ 

motivation. According to expectancy, value, cost models of motivation (Barron & Hulleman, 

2015), students’ perceptions of how costly an activity is in terms of the time it takes, how 

stressful it is, and how much it takes away from participation in other valued activities impacts 

their motivation and future engagement. If students struggle on early programming tasks, they 

may perceive learning programming as more costly which can influence their approaches to 

learning and their motivation to learn programming in the future.  

Over time, repeated failures can negatively affect students' self-efficacy (Bandura, 1977) 

– students’ judgments of their personal capability to achieve a desired goal. Self-efficacy 

regulates functioning through cognitive, motivational, emotional, and decision-making 

processes. Individuals with high self-efficacy pursue more ambitious goals, exert more effort 

towards those goals, persist longer in the face of setbacks and failure, and ultimately demonstrate 

deeper learning. Like emotions, self-efficacy is especially important in complex learning 

environments, where learners face frequent obstacles and frustrations (Davis et al., 1998). In the 

context of computer education, computer efficacy beliefs have been shown to influence learners’ 

decisions to use computers (Hill et al., 1987), and students with high computer efficacy learned 

more in an introductory course than students with low computer efficacy beliefs (Martocchio & 

Dulebohn, 1994; Martocchio & Judge, 1997; Webster & Martocchio, 1992). Self-efficacy has 

also been implicated in studies of how people learn computer programming.  

Finally, programming tasks might influence students’ learning and motivation to learn by 

eliciting and enhancing maladaptive beliefs about the nature of computer programming. If 
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students only experience programming as writing and submitting code, they may develop 

simplistic conceptions of what it means to “do” and what it means to “learn” programming. For 

instance, Braune and Mühling (2020) found that, to students, the programming experienced 

during learning was less complex and less representative of what it means to do programming 

“in the real world”. The authors suggest that the simplified design of educational programming 

environments may limit students’ understanding of what programming is and what it means to do 

programming outside the classroom. In line with expectancy value models of achievement 

motivation (e.g., Wigfield, 1994), if students hold simplistic beliefs about what it means to do 

programming, they may come to value learning programming less, and thus be less motivated to 

learn programming in the future and less likely to persist in the face of failure.  

Students may also develop other maladaptive beliefs that impede future learning and 

engagement. For example, among college students, programming has a reputation of being 

“difficult”, which can reduce students’ confidence and even deter students from engaging in 

programming (Medeiros et al., 2019). As past research has shown, students’ conceptions of 

programming can also affect the strategies they adopt and how they interpret events during 

learning. For instance, in a sample of 421 Taiwanese students majoring in computer science, 

Liang et al. (2015) found that students who conceived of programming as “memorization” and 

“rote learning” showed more surface-level motivation and approaches to learning. Umapathy et 

al. (2020) replicated these findings in a study with computer science students in the United 

States. Their findings further indicated that students’ who conceived of programming as 

“memorization” were more extrinsically motivated than those who held more complex beliefs.   

Effect of Code Writing on Cognitive Processing   

Finally, traditional code writing tasks may influence knowledge acquisition directly by 

the depth of cognitive processing they afford. Traditional programming instruction often makes 
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use of code writing tasks in which students are first explicitly taught concepts and then asked to 

apply that knowledge to modify or write code.  The format of this instruction is similar to what 

Schwartz and colleagues (2004; 2011) have described as a “tell and practice” approach  in which 

students are provided explicit instruction and then asked to practice what they have learned.  One 

problem with this approach is that it enables more surface level cognitive processing and 

approaches to learning compared to elaborative instructional strategies that direct students’ 

attention to deeper structural components of problems.  

The sequence of coding instruction may also influence cognitive processing required for 

developing transferable knowledge. For example, prior research suggests that code tracing – the 

ability to read and interpret what code does – is a precursor to relational thinking and problem 

solving – skills that are central to code writing. (Lister et al., 2004; Philpott, Robbins and 

Whalley et al., 2006; Lopez et al., 2008; Lister et al., 2009). Code reading is also central to 

“debugging”, a central task of programming. Despite the importance of code 

comprehension,  most introductory programming courses do not directly teach this skill. By 

introducing code writing before reading and understanding how code works, traditional 

programming activities may introduce complexity, increase the inherent task difficulty, and 

impede students’ abilities to read code in the future.  

Another way in which code writing tasks might prevent flexible understanding is by 

introducing extraneous cognitive load. Code writing activities include elements of interactivity 

over and above other learning tasks. A common assumption is that the interactivity will benefit 

learning because it increases student engagement. Another assumption is that interactivity will 

facilitate activities like “tinkering” and exploration, which are important for learning computer 

programming. However, adding interactivity can increase the cognitive burden of learning and 

inhibit knowledge acquisition and transfer (Sweller, 2010).   
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In Cognitive Load Theory, working memory is a limited resource, which is impacted by 

the inherent complexity of the learning material and the way instruction is designed (Sweller, 

1994). Intrinsic cognitive load concerns the inherent complexity of the information to be learned, 

independent of the instructional design. Extraneous cognitive load refers to complexity induced 

by the instructional materials, irrespective of the inherent difficulty of the content. A key concept 

of intrinsic and extraneous cognitive load is element interactivity, which refers to the level of 

dependency  of the elements – information or concepts – to be learned. Tasks with  low element 

interactivity can be accomplished independently and thus require less working memory. Tasks 

with high element interactivity can only be accomplished with knowledge of other elements or 

information and require more working memory (Sweller, 2010).  

Computer programming has high element interactivity because it requires students to 

understand multiple elements, including  programming syntax, programming concepts, and 

problem-solving approaches. Code writing tasks add even more element interactivity because 

they require students to understand the programming environment on top of syntax, concepts, 

and strategy. For example, students need to understand what different keystrokes do within the 

programming environment, to interpret error messages, how to resolve technical difficulties, and 

how to submit their code. If the goal of learning programming in the early stages is to understand 

what code does, adding elements of interactivity through code writing tasks could potentially 

increase the extraneous cognitive load and impede meaningful learning (Schnotz & Kürschner, 

2007).  

Taken together, prior research suggests that code writing tasks may impede meaningful 

learning through cognitive, emotional, and motivational processes. There are a number of ways 

to potentially interrupt these processes. For example, researchers have attempted to manipulate 

students’ programming mindsets directly through growth mindset interventions. Other 
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researchers have attempted to reduce the cognitive load of learning computer programming by 

designing specialized programming languages for novice learners (see Resnick et al., 2009 for an 

example).Though targeted interventions and programming languages may be a good option in 

some contexts, they are not always practical for teachers to implement into existing instructional 

routines.  Another possible option is to implement theoretically informed changes to the structure 

of the programming task so that students  acquire deeper knowledge,  have more positive 

emotional experiences, and develop more adaptive beliefs about what it means to learn 

programming.  

Limitations to Prior Work  

Our understanding of students’ experiences learning computer programming has 

advanced dramatically over the past ten years. Still, there are several limitations in studies of 

students’ experiences learning programming that are important to address. First, prior research 

indicates that students exhibit poor learning and transfer and maladaptive beliefs at the end of 

computer programming courses.  However, the mechanisms and conditions under which students 

acquire programming knowledge and  maladaptive beliefs have not been studied. Given the well-

established link between emotions and cognition in other academic contexts and the documented 

link between computer programming interactions, emotions, and performance, emotions may be 

one plausible mechanism through which early experiences learning programming might 

influence students’ knowledge acquisition and motivation to learn programming.  

Second, most of what we know about students’ experiences learning programming is 

based on research conducted with students in introductory programming courses. Yet, students 

are increasingly being exposed to programming in other instructional contexts. For example, one 

study found that there are as many jobs requiring advanced technology skills in industries outside 

of STEM as there are in STEM industries (NAEP – 2014 Technology and Engineering Literacy, 
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n.d.). Given this changing landscape, it is important to study programming in novel instructional 

contexts with populations of learners who not only lack prior programming experience but may 

also have never expressed an interest in learning programming to begin with.  

Another limitation is the types of tasks used to study students’ experiences learning 

programming. When researchers study students’ cognitive and affective outcomes in 

introductory programming courses, they tend to use traditional programming tasks that involve 

writing and submitting code and define learning as students’ ability to write code that runs 

correctly. However, writing and submitting code is only one instructional strategy that can be 

used to teach computer programming. Because writing and submitting code inherently focuses 

on programming outcomes and includes added element interactivity, it is unclear whether the 

cognitive and affective difficulties novice learners  experience is due to the structure of the 

programming task, to the nature of learning programming itself, or to individual differences that 

students bring with them to the task of learning programming.  

Further, since different programming task structures have different cognitive and 

affective affordances, they may elicit different patterns of emotions, motivations and beliefs. 

Traditional programming tasks which focus on producing correct code send implicit messages 

about the task goal and what counts as success when learning programming. Because students 

are rewarded for writing code that runs correctly, they may come to believe that writing correct 

code is what is important. Holding this belief may impact how students engage with 

programming tasks and how they interpret success and failure. For example, students may avoid 

trying new strategies for fear of failure. Holding the belief that learning programming is about 

writing correct code may also affect students’ emotional responses to mistakes and challenges 

during learning. For example, if making a mistake prevents students from achieving the goal of 

submitting correct code, they may feel frustrated rather than curious about why the code didn’t 
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work. By contrast, programming task structures that reward students for investigating, 

interpreting, and understanding why code works may elicit emotions such as curiosity and 

surprise, which activate deeper cognitive processing.  

Finally,  those studies that do investigate the effect  of programming tasks for teaching 

computer programming tend to focus on cognitive, emotional, or motivational outcomes in 

isolation. For example, some studies have investigated the effect of worked examples on 

cognitive load when learning programming; others have investigated the effect of error messages 

on students’ emotions. Few studies have investigated the effect of different instructional 

techniques on student cognitive, emotional, and motivational outcomes at once in one study.  

In this dissertation, I argue that programming instruction could benefit from carefully 

designed tasks that consider the cognitive, emotional, and motivational challenges students face 

during a first encounter with computer programming. In the section that follows, I describe how 

predicting may be one such strategy that works through cognitive and affective processes 

to  support positive learning outcomes for students first embarking on their computer 

programming journey.  

Predicting as an Alternative Instructional Strategy  

Asking students to predict what will happen prior to instruction is a popular teaching 

strategy that has been shown to support learning in a variety of domains (Brod, 2021). Reading 

teachers often ask students to predict what will happen next in a story or passage. Science 

instructors ask students to predict the outcomes of experiments. Yet the benefits of predicting 

have yet to be explored in the context of computer programming instruction. Below I discuss the 

research on predicting and why it might be particularly beneficial to students in the early stages 

of learning programming.  
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Predicting involves making a hypothesis about the outcome of a process or procedure. 

Unlike guessing, which is not based on prior knowledge, predicting involves drawing on some 

pre-existing knowledge followed by immediate feedback which can be used to compare the 

prediction to the actual outcome (Brod et al., 2018; Miller et al., 2013). In this way, predicting 

requires students to retrieve information and go beyond what is provided explicitly in instruction, 

placing it in a broader category of generative learning activities (Brod, 2021). However, 

predicting also has characteristics that set it apart from other generative learning strategies such 

as retrieval or elaboration. For example, predicting has been shown to activate emotions such as 

curiosity and surprise (when the prediction is not correct) which can direct attention during 

learning. 

Support for benefits of predicting has been found across a number of academic contexts. 

For example, White and Gunstone (1992) discuss using a predict-observe-explain strategy to 

promote conceptual understanding in chemistry. The ‘predict-observe-explain’ strategy involves 

a three-part process in which students first predict the outcome of a physical experiment, then 

conduct the experiment and describe what they see, and finally, they reconcile any differences 

between the prediction and their observation. Predicting has also  been shown to activate 

cognitive blueprints or plans that guide students’ cognitive processing during reading (Blanton et 

al., 1990). For example, Nolan (1991) found that a combined strategy of self-questioning and 

prediction benefits reading comprehension among poor readers. They posit that one explanation 

for these outcomes is that predicting forces students to self-monitor their progress and thus 

increases their active cognitive processing of the information (Nolan, 1991). Predicting is also 

thought to increase motivation by increasing personal investment or involvement in the outcome 

(Nolan, 1991).  
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Despite the documented benefits of predicting in text comprehension, mathematics, and 

other complex domains, predicting has not directly been examined as a strategy for teaching 

computer programming. However, there are a number of reasons why predicting might be 

especially beneficial in this context, especially compared to traditional production activities in 

which students modify or write their own code. Table 1 shows a comparison of predicting and 

traditional production (code writing activities) and the mechanisms through which they might 

influence students’ emotions, motivation, and learning outcomes. I discuss the differences 

between the two strategies in the section that follows.  

 

Table 1. Predicting versus production activities 

 
Incentive 

structure  

Motivation  Emotions  Cognitive 

processing  

Modifying 

or writing 

code  

Incentivizes 

performance   

Belief that 

programming is 

about following 

steps, writing code to 

produce correct 

output; more fixed 

mindset towards 

programming; lower 

self-efficacy  

Emotions tied to 

performance, 

frustration when 

code doesn’t 

produce desired 

output; negative 

emotions in response 

to errors  

Surface-level 

processing 

(following 

steps to 

produce correct 

output); 

increased 

cognitive load   

Generating 

predictions  

Incentivizes 

understanding  

Belief that 

programming is 

Emotions tied to 

understanding; 

Deeper 

cognitive 
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about making 

mistakes and 

debugging; more 

growth mindset 

towards 

programming; greater 

self-efficacy   

surprise in response 

to making an 

incorrect prediction; 

more positive 

emotions in response 

to error  

processing of 

feedback and 

instruction  

 

One way that that predicting may increase learning is by changing the incentive structure 

of the programming task. Whereas traditional programming activities focus on outcomes, 

predicting would make it impossible for students to define success as getting the correct answer. 

Instead, the goal of predicting would focus on understanding what the code does and why it 

works. Because predicting incentivizes understanding rather than getting the right answer, 

predicting tasks may activate different belief structures, goals, and approaches to learning.  For 

example, students may adopt more of a mastery approach towards learning. As a result, students 

may engage in deeper approaches to learning, be less likely to attribute incorrect predictions to 

internal or stable traits, like intelligence, and experience fewer negative emotions during 

learning. Through these experiences, students also get in the habit of experiencing programming 

as a process of making and learning from predictions – which is a more accurate representation 

of what programmers actually do.   

Another way that predicting might facilitate knowledge acquisition and more adaptive 

approaches to learning programming is by stimulating curiosity by creating a gap between what 

students know and do not know, which facilitates deeper cognitive processing of the material. 
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For example, predicting may surprise in response to incorrect responses, and thus increase 

students’ attention to the code output, which in turn benefits learning (Brod et al., 2018).  

A third way that predicting might benefit students’ learning to program is by reducing the 

extraneous cognitive load that may be introduced by code writing activities. Previous research 

from the worked example literature suggests that providing students with opportunities to read 

worked out solutions of others can benefit learning in the early stages because it reduces the 

cognitive demands of learning and allows students to focus their attention on key elements of the 

problem (e.g., Sweller & Cooper, 1985). Making predictions also eliminates the added 

interactivity of writing code and reduces what students need to remember. For example, students 

only have to generate ideas about what the outcome will be; they do not have to remember 

correct programming syntax, or the steps required to produce the correct answer.  

In sum, predicting activities have different cognitive, emotional, and motivational 

affordances than traditional code writing activities that may be more suited for the needs of 

beginning students. They 1) incentivize understanding over performance, which may facilitate 

more adaptive beliefs, goals, and approaches to learning as well as more positive emotions in 

response to setbacks and errors 2) facilitate deeper cognitive processing by directing students’ 

attention to code comprehension and reducing the cognitive demands of the task, and 3) elicit 

positive, orienting emotions that facilitate comprehension, engagement, and promote more 

positive experiences and attitudes towards programming. But while there are anecdotal reports of 

teachers using predicting to teach programming, no studies have systematically investigated the 

effects of predicting as an alternative instructional strategy. This dissertation aims to bridge this 

gap.  

Overview of the Present Research  

Research Questions and General Design  
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Can changing the programming tasks in which students are first introduced to 

programming lead to more positive emotional trajectories, increased motivation, and increased 

learning? How do early experiences with programming relate to student outcomes? And finally, 

do programming tasks influence the effect of individual differences on emotion, motivation, and 

learning outcomes?  

To answer these questions, undergraduate students were randomly assigned to one of two 

conditions – 1) a predict (Predict) condition in which participants were given instruction then 

asked to make and test predictions about pre-populated code, or 2) a traditional (Traditional) 

instruction condition in which participants were given instruction and then asked to write or 

manipulate code on their own.  

Both conditions received the same explanatory text and instructional content. The only 

difference between the conditions was the task they were asked to perform in one condition 

students were asked to make predictions and run pre-provided code (Predict condition); in the 

other condition to write or manipulate code on their own (Traditional condition). 

Hypotheses 

Programming Task (Prediction vs. Production Condition)  

I hypothesized that students assigned to the Predict condition would show more positive 

emotional trajectories, increased motivation, and increased learning than students assigned to the 

Traditional production-focused condition. This hypothesis was informed by prior research in 

which generating predictions led to increased curiosity and surprise – emotions that promote 

exploration and sensemaking. This hypothesis was further informed by research on computer 

programming which has found that students feel negative emotions in response to errors. 

Because predicting facilitates positive emotions such as curiosity and surprise while also shifting 
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focus away from performance, I expected students in the Predict condition to show more positive 

emotional trajectories, especially in response to challenges and setbacks. 

 In terms of motivation, I predicted that students assigned to the Predict condition would 

perceive the cost of learning programming to be lower and the value of programming to be 

higher, show increased self-efficacy towards programming, and be more likely to agree that they 

will take a programming course in the future. This prediction is based on social-cognitive theory 

and research, which suggests that learning environments can activate goals and belief structures 

that influence the goals students set and the way students respond to setbacks and errors during 

learning (Bandura, 1977 , 1986; Bandura et al., 2001; Schunk, 2012). Predicting tasks which 

focus on understanding over getting the correct answer will encourage students to adopt more 

mastery-oriented beliefs and approaches to learning, which will influence the way they perceive 

errors during learning. Predicting tasks may also reduce the cognitive burden of learning 

programming, which will lower students’ perceptions of cost during learning – an important 

component of motivation.  

With regard to learning, I predicted participants in the Predict condition would  score 

higher on the learning assessment and generate more solutions when presented with a novel 

programming problem at the end of the experiment. This prediction is based on research that has 

highlighted the benefits of positive emotional experiences during learning as well as the research 

on students’ cognitive processes when learning computer programming. Positive emotions can 

orient attention and facilitate exploration during learning. Predicting as an instructional strategy 

has also been shown to have cognitive benefits such as orienting students’ attention to feedback, 

increasing engagement, and reducing extraneous cognitive load.  

Learning Experiences and Interactions 
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The second research question asks whether the learning experiences and interactions in 

the Predict condition differ from those in the  condition, and how those experiences and 

interactions relate to student outcomes. One difference may be that  predicting reduces the 

cognitive demand and perceived cost of learning programming. Another difference may be that 

predicting directs student attention and increases engagement with learning materials. If that is 

true, then I would expect students in the Predict condition to rate the perceived extraneous 

cognitive load to be lower and the perceived germane cognitive load to be higher than students in 

the Traditional condition. I would also expect students in the Predict condition to show higher 

engagement during learning as evidenced by increased time spent and more words written on the 

end of chapter summaries.  

The Role of Individual Differences   

The third research question is exploratory in nature and  asks how individual student 

characteristics relate to measures of emotion, motivation, and how these relationships might vary 

based on the type of programming task. I hypothesized that predicting would benefit all students 

and that these benefits would be enhanced for those students with poorer academic performance, 

those belonging to groups underrepresented in STEM, and those with lower initial motivation to 

learn programming.  

Method 

Participants 

Participants were recruited from the Psychology subject pool and were awarded course 

credit for their participation. To avoid biasing participants’ responses and to ensure recruitment 

of participants who may not be interested in computer programming, participants were informed 

that the goal of the research was to test a new online learning module, but not explicitly told that 

the task would involve programming. My goal was to have at least 60 participants in each 
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condition for a total of 120 students. However, I ran as many participants past 120 as was 

logistically possible to counteract the possible effects of attrition and potential technical 

difficulties.   

In total, 166 participants signed up for the study. Participants who did not complete the 

experiment (N = 21), who completed the experiment in more than one sitting (N = 17), and who 

took less than 10 minutes to complete the experiment (N = 7) were excluded. The resulting 

analytic sample comprised 121 students, with 60 in the Predict condition and 61 in the 

Traditional condition. Of the 121 students, 67% were female (39 males, 1 prefer to self-

describe), with an average age of 20.35 years old, who identified themselves as Asian/Asian 

American (36%), Black/African American (4%), Latino (17%), Middle Eastern/ North African 

(7%), More than one race/ ethnicity (13%), and White (22%) with an additional student who 

chose to self-describe as “Uzbek”. Table 2 and Table 3  show a breakdown of sociodemographic 

characteristics across the two conditions. Chi-square analysis revealed no significant associations 

between condition and gender (Χ2(2) = 4.56, p = .1), condition and race/ethnicity (Χ2(2) = 6.38, 

p = .382, and condition and prior experience with R (Χ2(2) = 0.33, p = .6).  

 

Table 2. Sociodemographic characteristics of the sample.  

 

 
Condition  

 
Predict  

N (%)  

Traditional 

N (%)   

Total  60 (100%)  61 (100%) 

Gender  
  

Female  35 (58%)  46 (75%) 

Male  24 (40%) 15 (25%) 
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Non-binary / prefer to self-describe  1 (2%)  0 (0%)  

Race/ethnicity 
  

Asian/Asian Am. 20 (33%) 23 (38%)  

Black/African Am. 1 (2%) 4 (7%)  

Latino  10 (17%)  11 (18%)  

Middle Eastern/ North African  6 (10%) 2 (3%)  

Multi-racial  10 (17%)  6 (10%)  

Prefer to self-describe  1 (2%)  0 (0%)  

White 12 (20%)  15 (25%)  

Familiar with R  
  

Yes  14 (23%) 17 (28%)  

No  46 (77%) 44 (72%) 

 

Table 3. Descriptive statistics for Age and GPA .  

 
Condition F df1, df2 p 

 
Predict  

M (SD)  

Traditional 

M (SD)  

   

Age  20.02 (1.82) 20.68 (3.11) 2.06 1,118 .2 

GPA 3.15 (1.36) 3.44 (0.86) 1.91 1,118 .2 

 

Materials 

Development of the Learning Materials 

The learning materials consisted of four modules and included a total of seventeen brief 

activities. There are a variety of topics that might be covered in an introductory course in 

computer programming and a variety of ways to introduce them. To guide the design of the 

modules, I used the following criteria: First, the modules should teach topics typical of a self-

paced introductory programming course, such as basic syntax, assignment, data structures, and 
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operators. These are also topics with which students struggle. Second, the modules must include 

explanatory text interleaved with questions and interactive coding activities. These interactions 

are typical of what students would encounter in an online course. Third, each module  must take 

between ten to fifteen minutes to complete. The purpose of limiting the length of the modules 

was to avoid overwhelming participants. This length is also typical of what students might 

experience in self-paced online courses. Finally, the modules must be challenging, but accessible 

for students with no programming experience and limited knowledge of mathematics. A 

description of the learning modules and level of difficulty is shown in Table 4.  

 

Table 4. Content of the learning modules  

Module name  Activities Level of difficulty   

1: The print() function  4 Very easy  

2: Arithmetic operators 3 Easy  

3: Objects 4 Medium  

4: Vectors 6 Hard  

 

Creating the Experiment in Qualtrics 

The experiment was created and administered in the research software, Qualtrics. 

Qualtrics allows researchers to randomly assign participants to different conditions and embed 

custom content in surveys. Qualtrics also provides tools for managing participants and can be 

integrated into participant recruitment systems.  

Adding the Interactive Programming Content 

To facilitate realistic programming interactions, I used Datacamp Light (Datacamp Light 

v2.3.0, 2020), an interactive coding widget for R and python. Datacamp Light lets users develop 

their own coding exercises which can be embedded as html or markup in websites. To embed the 

https://github.com/datacamp/datacamp-light
https://github.com/datacamp/datacamp-light
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Datacamp Light exercises in Qualtrics, I created an html file for each exercise, then embedded 

the files as iframes within blank Qualtrics questions. 

Since I used an iframe, I wasn’t able to capture participants’ interactions with the coding 

exercises. To gain some sense of what participants did when coding, I included a follow-up 

question after each coding window (e.g., “Which output did you see?”) that prompted students to 

select the output they saw from five different options. The first four options were presented in a 

random order and the final option was always “I saw something else”. If students selected “I saw 

something else,” they were prompted to type the output they saw (see Figure 1 below).  

 

 

Figure 1. Example of  how students recorded output after running code in the interactive 

coding window.  
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Though Datacamp Light offers the ability to test code for correctness and provide 

correct/incorrect feedback, I opted not to use this feature. Prior research has shown that feedback 

influences students’ emotions when learning to program (Maricuţoiu, 2006, Traver, 2010) and 

even minor variations in how feedback is presented can influence students’ perceptions. Thus, to 

ensure that any differences in students’ experiences were due to the nature of the programming 

interactions rather than feedback on correctness, I opted to remove feedback messages on 

correctness from the programming environments in both conditions. Students, regardless of 

condition, were provided feedback in the form of the correct output on the page following each 

activity along with instructional text explaining the code and output (see Figure 2). The correct 

output and subsequent explanatory text were the same for students in the Predict and Traditional 

conditions.  

 

 

Figure 2. Feedback in the form of example code and output followed by explanatory text. 

Example code and explanatory text were the same across the Predict and Traditional conditions.  
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Procedure 

Upon signing up for the study, participants received a link to access the experiment and 

were randomly assigned to either the Predict or Traditional instructional conditions. All 

participants began by reading an overview of the experiment, confirming their eligibility, and 

filling out a questionnaire with measures of motivation (perceived cost of the activity, goals, 

sentiment towards R, attitudes towards computers, need for cognition, and programming 

mindset).  

Next, participants worked their way through a series of four instructional modules. 

Participants assigned to the Predict condition were first provided some introductory 

information,  shown some R code, and asked to make a prediction by selecting from one of five 

multiple choice options (i.e., “When we click Run, which output do you think we will see?”). On 

a separate page, students were reminded of their prediction and prompted to run pre-provided 

code in an embedded programming window. Students ran the code and then reported their results 

by selecting from one of five multiple choice options. On the next page, students were provided 

explanatory text that explained the R code and why it worked.  

Participants assigned to the Traditional condition were provided introductory information 

and example code. They were asked to modify the code that was provided, click “Run”, and then 

report the output they saw (i.e., “Which output did you see?”). The multiple-choice options were 

the same as the options in the Predict condition. On the next page, students were provided an 

explanation of the correct R code and why it worked. Examples of how an activity appeared in 

the Predict and Traditional conditions are provided in Figure 3.  
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Figure 3. Comparison of instruction in the Traditional (production) condition and the 

Prediction condition. 

 

At the end of each module, participants in both conditions rated their emotions and wrote 

a brief summary of what they had learned. After completing the instructional part of the 

experiment, participants were asked to complete a summative assessment of their learning. 

Finally, at the end of the session participants completed a post survey with measures of 

motivation, sentiment towards programming, programming mindset, math background, and 

demographic information. See Figure 4 for an illustration of the study procedure as well as a 

timeline of when various measures were administered.  
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Figure 3. Experimental procedure. Sentiment towards R was measured at six timepoints (t1 – t6). 

 

 

Measures 

An overview of the measures in this study is shown in Table 5.  

 

Table 5. Overview of the study measures.  

Outcome measures  

Emotion  

1. Sentiment towards R(t1-t6) 

2. Emotion in response to error   

Motivation  

1. Expectancy 

2. Value  

3. Cost  

4. Self-efficacy 
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5. Mindset  

6. Intent to take programming course   

7. Beliefs about computer programming (open-ended)     

Learning  

1. Score on post-lesson assessment  

2. Number of correct solutions on novel programming problem   

Process measures  

Behavior  

1. Word count  

2. Duration (s)  

3. Performance on lesson activities  

Cognitive Load Component Survey 

1. Intrinsic load  

2. Extraneous load  

3. Germane load   

 

Perceptions  

1. Perceived obstacles to success (open-ended) 

Individual difference measures  

Cognitive dispositions  

1. Need for cognition  

2. Attitudes towards computers  

Sociodemographic characteristics  

1. Gender  

2. Race/ethnicity  

3. GPA  

 

Outcome Measures 

 Outcome measures included measures of emotion, motivation (including beliefs), and 

learning.  

Emotion. Two measures of emotion were included in this study.  

Sentiment Expressed Towards R during Learning. Sentiment is defined as a thought 

about an object that is prompted by emotion (Munezero et al., 2014). Participants used a slider to 

rate their sentiment expressed towards R at six time points throughout the study on a continuous 
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scale from  -100 (Extremely negative) to +100 (Extremely positive). The time points were: (t1) 

prior to starting the activity on the pre-survey, (t2 - t5) immediately, after each of the 4 learning 

modules, and (t6) on the post-survey after the transfer task. Participants were prompted to explain 

the rationale for their ratings at timepoints1(presurvey) and time point 6 (post-survey). The 

purpose of these qualitative measures was to add context to students’ sentiment ratings and 

facilitate deeper insights into their experiences.  

Emotion in Response to Error. To test whether participants who generate predictions 

experience reduced negative emotion in response to failure than students who produce code 

themselves, I measured participants’ anticipated response to a hypothetical error scenario. At the 

end of the experiment, on the post-survey, participants were shown a screenshot of incorrect R 

code and the associated error message. They were prompted  to imagine they had written the R 

code and received the error message shown. They were then asked to rate how they felt using a 

slider on a scale from -100 (Extremely negative) to +100 (Extremely positive).  

Motivation. I measured several factors known to influence motivation: expectancy, 

value, and cost appraisals, motivational beliefs (programming mindsets and self-efficacy), intent 

to take a programming course in the future, and general beliefs about programming.  

Expectancy, Value, and Cost Appraisals. Expectancy, value, and cost appraisals 

were  measured using items adapted from Kosovich et al. (2015) and Gaspard et al. (2017). 

Value and cost are useful predictors of students’ academic motivation and achievement in STEM 

domains (Jiang et al., 2018) and can be influenced by educational materials (Barron & Hulleman, 

2015). Value items addressed intrinsic task value, utility value, and intrinsic motivation 

(examples include “I think this activity will be/was interesting”, “What I am going to 

learn/learned in this activity is useful”, and “What I'm going to learn/ what I learned in this 

activity will be relevant to my everyday life.”).  Cost was measured on the pre-survey and on the 



 

 28 

post-survey using  the following four items: “For some reason, computer programming seems 

like it will be particularly hard for me.”,  “I think I would have to give up too much to learn 

programming”, “I think learning computer programming would be too stressful for me”, and “I 

think learning computer programming would take up too much of my time.” Students responded 

to all items using a six-point scale from “Strongly disagree” to “Strongly agree.”   

Programming Mindset. Programming mindset refers to the belief that programming 

ability is either malleable – something that improves with practice – or an innate ability that can’t 

be changed. Programming mindset was  measured at two time points: on the pre-survey (t1) and 

on the post-survey (t6) using items adapted from the three-item Growth Mindset Scale (Dweck, 

1999) (examples include “anyone has the ability to learn programming and be good at it” 

and  “you can learn new things, but you can’t really change your programming ability”). 

Participants rated their agreement with each statement using a six-point scale from “Strongly 

disagree” to “Strongly agree”. Higher scores indicated more of a growth mindset toward 

computer programming. This measure was used to test whether the instructional condition 

(Predict vs. Traditional) influenced students’ beliefs about computer programming. It was also 

used to account for variations in  participants’ beliefs at the start of the activity.  

Self-efficacy. Self-efficacy was measured at two time points: on the presurvey (t1) and on 

the post-survey (t6). Participants rated their agreement with two statements (e.g., “I think that I 

could learn computer programming”, “I think I could handle the more difficult programming 

problems.”) using a six-point scale from “Strongly disagree” to “Strongly agree”.  

Intent to Take a Programming Course in the Future. Intent to take a programming 

course was measured using a single item on the post-survey: “How likely are you to take a 

programming course?” Students rated their agreement with the statement on a ten-point scale 

from “Not at all likely” to “Extremely likely”. I also included an additional question in which 
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students were asked to  indicate (yes or no) whether or not they would be willing to help the 

researchers test other programming activities in the future.  

Beliefs About Computer Programming. On the post-survey at t6, students were asked  to 

“write down all the words that come to mind when you think about computer programming.” 

This measure was added to capture differences in participants’ beliefs about what programming 

is and what learning to program requires.  

Learning. Learning was measured in two ways: score on a post-lesson assessment of 

learning and number of correct solutions produced on a novel programming task.  

Score on the Learning Assessment. After the four learning modules and before the post-

survey, participants completed a sixteen-item assessment that covered concepts related to each of 

the four learning modules. Participants were awarded one point for each correct item, yielding a 

total correct score between 0 and 16, with higher scores indicating greater learning. 

 Number of Correct Solutions on a Novel Programming Task. After completing the 

learning assessment but before the post-survey, participants were presented with a novel R 

coding task and asked to generate as many solutions as possible.  I counted the number of correct 

solutions generated by each participant and used the total score as an additional measure of 

learning. This measure is similar to measures of divergent thinking, an element of creative 

problem-solving (Guilford, 1967; Kwon et al., 2006).  

Process Measures 

 Process measures were included to understand how participants interacted with and 

perceived the learning activities. 

Duration (in seconds). Duration – calculated as the  total amount of time participants 

spent from first clicking the link to open the survey to clicking “submit” at the end of the survey 

–was captured automatically by the survey software. I included this measure to  account for 
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differences in the amount of time spent on the activity and confirm that the total time required 

did not differ between the Predict and Traditional conditions.  

 Word Count. As a proxy for engagement, I calculated the total number of words written 

on the four summary questions at the end of each module. I included word count to account for 

differences in the number of words students produced during learning, as generative activities, 

such as writing, in themselves may facilitate learning.  

Performance. Feedback on performance during learning can influence  motivation, 

emotions, and learning outcomes. To account for this potential confound, I calculated 

performance as the ratio of the number of correct responses on the activities in the learning 

modules. For students in the Predict condition, responses were marked correct if the prediction 

matched the pre-provided code’s output. For students in the Traditional condition, responses 

were marked correct if the output they produced matched the expected output for the activity. I 

included a measure of performance to account for variations in feedback (either positive or 

negative) that may have resulted from students’ interactions and to ensure that one condition did 

not elicit more “correct” responses than the other.  

Cognitive Load Component Survey. Nine items adapted from the Cognitive Load 

Component Survey (Morrison, Dorn, & Guzdial, 2014) were included in the post-survey to 

measure participants’ perceptions of the activity they just completed. Participants used a scale of 

0 to 10 to estimate the mental resources used: 

• to understand the content – intrinsic cognitive load (i.e., “The topics covered in the 

activity were very complex.”), 

• to make sense of the instructional materials – extraneous cognitive load (i.e., “The 

instructions and/or explanations during the activity were very unclear.”),  
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• for comprehending and remembering the material – germane cognitive load (i.e., “The 

activity really enhanced my knowledge and understanding of 

computing/programming.”).  

I included these component measures to compare students’ perceptions of the materials and 

activities across the two conditions. Specifically, I wanted to  ensure that the intrinsic cognitive 

load did not differ across the two conditions (since the content was the same).  

Obstacles (open-ended). To gain a deeper understanding of students’ experiences with 

and perceptions of the learning activity, I included an open-ended question,  “What obstacles, if 

any, did you encounter when completing this activity?” This item helped to detect issues with the 

experimental materials and any differences in students’ experiences not captured by rating 

scales.  

Individual Difference Measures 

Prior research has identified individual characteristics that may influence students’ 

experiences and outcomes when learning computer programming. I included the following 

individual difference measures:  

Attitudes Towards Computers. People hold different attitudes towards computers 

which may influence their experiences and outcomes when learning computer programming. To 

account for these differences, I included seven items to assess students’ attitudes towards 

computers. Six items addressed how much students liked computers (e.g., “I enjoy working with 

and learning about computers.”, “I would like to learn more about computers.”, “I like the idea of 

taking computer courses”,  “I find working with computers enjoyable.”, “Computers just don't 

appeal to me” (reverse-coded), “I like learning about computers”) and a seventh item addressed 

students’ computer-related anxiety (“In general, I feel anxious around computers”). After reverse 

coding negatively phrased items, I created a composite variable by averaging the seven items.  
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Need for Cognition. Need for Cognition is considered a personality trait that describes 

an individuals’ tendency to seek out and enjoy solving complex problems (Cacioppo et al., 

1984). Need for cognition has been linked to openness to experience, curiosity, and creative 

thinking, attributes which may influence students’ learning and engagement in complex and 

unfamiliar domains like computer programming. People with a high need for cognition tend to 

engage in thinking about complex topics, enjoy thinking, and are motivated to apply thinking 

skills with little prompting. To capture individual differences in Need for Cognition, I adapted 

six items from the revised Need for Cognition Scale (Cacioppo et al., 1984) averaged to create a 

composite need for cognition variable, with higher scores indicating higher need for cognition.  

Sociodemographic Variables. Participants reported demographic information such as 

age, gender, and race/ethnicity at the end of the activity on the post-survey. I included these 

measures to characterize the sample and to test whether the effect of condition (Predict vs. 

Traditional) varied for students of different backgrounds. As a measure of academic 

performance, participants self-reported their GPA to the nearest tenth of a point using a sliding 

scale from 0.00 to 4.00. The purpose of this measure was to capture differences in participants’ 

general academic performance, as participants who perform better academically may be more 

likely to perform better on the activities in this study. 

Data Analysis Plan  

Data were analyzed using quantitative approaches with qualitative insights included to 

extend quantitative findings. To characterize the sample, I began by exploring distributions of 

the pre-survey measures and their correlations. I then used t-tests to confirm random assignment 

was successful, evidenced by no detectable differences in the pre-survey measures by condition. 

For all analyses, I used R version 3.6.2 (R Core Team, 2019). 

Group Differences in Learning, Motivation, and Emotion 
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The primary research question was whether students assigned to the Predict condition 

differed from students assigned to the Traditional condition in terms of their emotions, beliefs, 

motivation, and learning outcomes. To test whether students in the Predict condition 

demonstrated increased motivation, interest, and learning compared to students in the Traditional 

condition, I used multiple regression. Separate analyses were conducted for each outcome 

variable. The independent variable was whether the participant was assigned to the Predict or 

Traditional condition. For each of these analyses, I fit two models: a simple model with 

condition as the sole independent variable and a complex model with gender, GPA, and need for 

cognition as covariates. Gender, GPA, and need for cognition were included because they have 

each been shown to individually affect the outcome variables in this study.   

Process Measures and their Relation to Learning, Motivation, and Emotion 

The second research question was whether students in the Predict and Traditional 

conditions differed in terms of their interactions with and perceptions of the learning materials 

and how those process measures, in turn, related to learning, motivation, and emotion. First, I 

analyzed the distribution of process measures and  used t-tests to test for group differences. I 

then used multiple regression analysis to test the effect of process measures on emotions, 

motivation, and learning at the end of the experiment.  

The role of  Individual Differences 

Given the relatively small sample size, this study was not sufficiently powered to 

statistically test interactions between condition and individual difference variables on student 

outcomes. Thus, to investigate the third research question – whether the effect of individual 

differences in students’ backgrounds, beliefs, and initial motivation on emotions, motivation, and 

learning varies based on the instructional condition (Predict versus Traditional), I conducted 

exploratory analyses to visually compare how the relationship between individual difference 
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variables and student outcomes might vary as a function of the programming task (Predict 

versus. Traditional). 

Results 

Characteristics of the Sample  

Descriptive statistics for all pre-survey measures, broken down by condition, and results 

from the t-tests are displayed in Table 6. Across the two conditions, students did not differ in 

their initial emotion, programming mindset, perceived cost of learning programming, perceived 

value of programming, initial expectations for success, initial self-efficacy for learning computer 

programming, attitudes towards computers, or need for cognition. These findings suggest that the 

randomization worked as intended.  

Table 6. Descriptive statistics and t-tests comparing pre-survey measures between the Predict 

and Traditional instructional conditions.  

  Predict 

M(SD) 

Traditional  

M(SD)  

b1  

[95% CI] 

t(df)  p 

Emotion  
     

Sentiment (t1)  7.65(49.77) -0.26(50.97) 7.91 

 [-10.22, 26.05] 

-0.86(118.99) .4  

Motivation  

Mindset (t1) 3.84(0.86) 3.8(0.89)  0.04 

[-0.28, 0.35] 

-0.24(118.94) .8 

Cost (t1) 3.54(0.99) 3.75(1.1) -0.21 

[-0.59, 0.16] 

1.13(118.2) .3 

Expectancy 3.86(0.93) 3.74(1.15) 0.13 

[-0.25, 0.51] 

-0.68(114.58) .5 

Value  4.13(1.03) 4.06(1.12) 0.06 

[-0.32, 0.45] 

-0.35(118.39) .7 

Self-efficacy (t1) 3.86(1.11) 3.70(1.141) 0.15 0.75(118.98) .5 
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[-0.25,0.56] 

Individual difference variables  

Attitudes towards computers 4.12(0.98) 3.88(1.04) 0.24 

[-0.12, 0.6] 

-1.32(118.82) .2 

Need for cognition  3.44(0.74) 3.41(0.73) 0.03 

[-0.23,0.30] 

0.24(118.9) .8 

GPA  
     

 

To understand the relationship between measures of participant characteristics at the start 

of the study, I ran pairwise correlations between pre-survey measures of emotion, motivation 

(expectancy, value, cost, programming mindset, self-efficacy), and individual difference 

variables (attitudes towards computers, Need for Cognition, GPA).  

Figure 4 shows a correlation plot with correlation coefficients for each pairwise 

comparison. Students who held more positive attitudes towards computers perceived the cost of 

learning programming to be lower, held higher expectations for success, valued programming 

more, showed more growth-oriented mindset towards programming, and held higher self-

efficacy for their ability to learn computer programming. Need for cognition was also positively 

correlated with measures of emotion and motivation. Students who scored higher on need for 

cognition were more likely to show positive attitudes towards computers, rate their self-efficacy 

for learning programming higher, demonstrate more positive emotions, hold higher expectations 

for success, value learning programming more, and show more growth mindsets towards 

learning programming. Measures of motivation were related to one another as would be expected 

based on prior literature.  GPA was positively correlated with cost of learning computer 

programming but not with any of the other pre-survey variables.  
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Figure 4. The pairwise correlation plot for pre-survey variables. The numbers show the 

correlation coefficients. Warm colors indicate positive correlations. Cool colors indicate negative 

correlations. Non-significant correlations are blanked out. 

 

Effect of Condition on Student Outcomes  

The Effect of Condition on Emotion  

As a reminder, students expressed their sentiment towards R  by moving a slider on a 

continuous scale from -100 (extremely negative) to +100 (extremely positive) at six timepoints. 

Participants used the same slider and scale to rate how positive or negative they felt in response 

to a hypothetical programming error on the post-survey.  

Table 7 shows the distribution of sentiment ratings at each time point for students in the 

Predict and Traditional conditions. Though students in the two conditions did not differ 
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significantly prior to the start of the activity (t1) or after the first two modules (t2-t3), students in 

the Predict condition demonstrated more positive sentiment after modules 3, 4, and 5 (t4-t5) and on 

the post-activity survey (t6).  

 

Table 7. Descriptive statistics and t-tests comparing sentiment ratings between the Predict and 

Traditional instructional conditions at each of the six time points.  

 Time Predict 

M(SD) 

Traditional  

M(SD)  

b1 [95% CI] t(df)  p 

1 7.65(49.78) -0.26(50.97)  7.91[-10.22, 26.05] -0.86(118.99) .4 

2 46.75(43.60) 30.93(51.53) 15.82[-1.38, 33.01] -1.82(116.41) .07 

3 48.88(40.70) 31.66(50.25) 17.23[0.75, 33.70] -2.07(114.79) .04 

4 53.96(43.55) 15.13(56.55) 38.84 [20.64, 57.02] -4.24(112.56) <.0001 

5 46.91(46.57) 6.54(60.81)  40.38[20.86, 59.90] -4.10(112.29) <.0001 

6 53.60(46.11) 25.75(59.50)  27.85[8.66, 47.03] -2.88(112.86) .005 
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On the post-survey, participants were shown a screenshot of negative feedback on a 

programming task similar to the ones they completed and rated how the feedback made them feel 

on a scale of -100 (negative) to +100 (positive).  The distribution of emotion ratings for the 

overall sample is shown in Figure 5. Most students felt neutral or slightly negative (M = -4.24, 

SD = 50.79), but responses ranged from -100 to 100.  

 

 

 

 Figure 5. Histogram of participants’ emotion ratings when shown a hypothetical 

programming error. Vertical red line represents the mean.  

 

Figure 6 shows the distribution of emotion ratings to the hypothetical error scenario for 

students in the Predict and Traditional conditions. Participants in the Predict condition  rated 

their emotion as neutral, whereas participants in the Traditional condition rated their emotion as 

negative (b1= 28.77 , F(1, 119)=10.30, p =.002, 95% CI[11.02, 46.52]).  The effect of condition 

on emotion in response to error remained statistically meaningful when GPA, need for cognition, 



 

 39 

and emotion rating on the pre-survey were included as covariates in the model (b1= 27.24 , F(1, 

114)=9.63, p =.003, 95% CI[9.42, 45.06]).  

 

 

 

Figure 6. Boxplot of the effect of instructional condition on emotion rating in response to a 

hypothetical error. The points represent the individual participants’ scores. The horizontal line 

represents the group medians. The red dots represent the means.  

 

Students’ open-ended explanations provide some insight into what features of instruction 

may have influenced  their emotions during learning. For example, students in the Predict 

condition may have experienced positive emotions when their experience did not match negative 

perceptions. In the words of one student in the Predict condition, “I thought that coding with R 

was very fun to learn. I was very nervous to learn R at first, but it was not as difficult as I 

thought.” In the words of another student assigned to the Predict condition, “It was really fun to 

learn R this way. I thought even the basics of coding would be too intimidating, but this was 



 

 40 

quite cool, and I'd love to learn more about it. I feel even more positive than before about R.’ 

Another student in the Predict condition said, “I think I would be able to handle R with some 

effort. It makes me feel more positive than facing something unknown.”  

For students in the Traditional condition, issues with remembering programming syntax 

may have contributed to their more negative emotional experiences. According to one student, 

“It was not as bad as I expected, but it does get a little confusing and stressful to remember all 

the commands. I don't really like how sensitive R is with commands. This definitely isn't for 

me.” Others in the Traditional condition explicitly mentioned feeling discouraged when their 

code didn’t work (i.e., “I feel like I could only follow along for a period of time, before I got 

confused. It was discouraging to me when I did not get a correct answer because I was focused 

and thorough.”) while others felt positive when their code ran correctly (i.e., “I thought it was 

fun to type and have the code return the answers I was expecting, it would be helpful for more 

complex situations but I don't feel the code I have learned will be applicable.”). Though only 

anecdotal examples, these responses suggest that, for some students, writing and submitting code 

may have contributed to their emotional experience during the activity.  

The Effect of Condition on Motivation 

Descriptive statistics for measure of motivation on the post-survey are shown in Table 8. 

Participants randomly assigned to the Predict condition did not differ from students randomly 

assigned to the Traditional condition in terms of their perceived value of computer programming, 

programming mindset, or self-efficacy beliefs, but they did differ from participants in the 

Traditional condition in terms of the perceived cost of learning programming and their intent to 

take a programming course in the future.  
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Table 8. Descriptive statistics and t-tests comparing post-survey measures of motivation between 

the Predict and Traditional instructional conditions.  

 Time Predict 

M(SD) 

Traditional  

M(SD)  

b1  

[95% CI] 

t(df)  p 

Value 4.52(1.30) 4.30(1.34) 0.23 

[-0.25, 0.70] 

0.95(118.97) .3 

Cost 2.94(1.09) 3.51(1.34)   -0.58 

[-1.02,-0.14] 

2.61(115.15) .01 

Intent to 

take programming 

courses  

6.30(3.09) 5.18(3.01) 1.12 

[0.02,2.22] 

2.02(118.78) .05 

Programming 

mindset 

4.09(1.06) 3.84(0.95)  0.25 

[-0.12,0.61] 

1.34(117.33) .2 

Self-efficacy  4.20(1.40) 3.92(1.31) 0.28 

[-0.21,0.77] 

1.14(118.23) .3 

 

Figure 7 shows the distribution of cost ratings on the post-survey. On average, 

participants rated the cost of learning computer programming a 3.22 out of 6 with a standard 

deviation of 1.25.  
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Figure 7. Histogram of participants’ cost ratings on the post-survey. Vertical red line represents 

the mean. 

 

Figure 8 compares post-survey cost ratings for participants in the two conditions. 

Participants in the Predict condition perceived learning programming to be less costly than 

participants in the Traditional condition (b1= -0.57, F(1, 119)=6.80, p = .01, 95% CI[-1.0, -0.13]). 

The effect of condition on post-survey cost ratings remained statistically meaningful when GPA, 

need for cognition, and pre-survey cost ratings were included in the model (b1=  -0.35, F(1, 

114)=5.39, p = .02, 95% CI[-0.66,-0.05].  
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Figure 8. Boxplot of the effect of instructional condition on the average rating of cost on 

the post-survey . Points represent the individual participants’ scores. The horizontal line 

represents the median. The red dot represents the mean. 

 

Figure 9 shows the distribution of students’ ratings of how likely they would be to take a 

programming course in the future. On average, students rated their likelihood of taking a 

programming course a 5.73 out of 10 with a standard deviation of 3.09, indicating they were only 

moderately likely to take a programming course in the future.  
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Figure 9. Histogram of  intent to take a programming course. The vertical red line represents the 

mean.  

 

Figure 10 compares how likely students would be to take a future programming course 

for students in the two conditions.  On average, participants in the Predict condition showed 

stronger agreement with a statement about their intention to take a programming course in the 

future (b1= 1.12 , F(1, 119)=4.08, p =.05, 95% CI[0.02, 2.21]). The effect of condition on intent 

to take a programming course in the future remained statistically meaningful when GPA and 

Need for Cognition were included as covariates in the model (b1= 1.16 , F(1, 116)=4.46, p =.04, 

95% CI[0.07, 2.24]).  
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Figure 10. Boxplot of the effect of instructional condition on the average intent to take a 

programming course. Points represent the individual participants’ scores. The horizontal line 

represents the median. Red dots represent the mean.  

 

The Effect of Condition on Learning 

The distribution of scores on the post-lesson learning assessment and the distribution of 

the number of correct solutions generated on a novel programming task are shown in Figures 11 

and 12, respectively. On average, participants answered 9.21 out of 16 questions correctly with a 

standard deviation of 3.86.  
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Figure 11. Histogram of scores on the post-lesson assessment. The vertical red line 

represents the mean.   

 

 

 

 

Figure 12. Histogram of number of correct solutions generated on the novel programming 

problem. The vertical red line represents the mean.   
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Descriptive statistics for scores on the learning measures for students in the Predict and 

Traditional conditions are shown in Table 9.  Participants in the Predict condition scored higher 

on the learning assessment (Figure 13) (b1=1.37, F(1, 119)=3.94, p = .05, 95% CI[0.00, 2.75]) 

and generated more correct solutions to a novel programming task (Figure 14)  (b1=0.61, F(1, 

119)=6.69, p = .011, 95% CI[0.14, 1.08]) than participants in the Traditional condition. The 

effect of condition on score on the post lesson assessment remained statistically meaningful 

when gpa and need for cognition were included in the model (b1=1.38, F(1, 116)=4.12, p = .05, 

95% CI[0.03, 2.72]). The effect of condition on the number of correct solutions also remained 

statistically meaningful when need for cognition and GPA were  included in the model (b1=1.38, 

F(1, 116)=4.12, p = .05, 95% CI[0.03, 2.72]). 

 

Table 9.  Descriptive statistics and t-tests comparing post-survey measures of learning between 

the Predict and Traditional instructional conditions.  

 

 Time Predict 

M(SD) 

Traditional  

M(SD)  

b1  

[95% CI] 

t(df)  p 

Score on learning assessment  9.90(3.72) 8.52(3.90) 1.38 

[0.00,2.75] 

1.99(118.91) .05 

Number of correct solutions  2.18(1.48) 1.57(1.09)  2.183 

[0.14,1.08] 

2.58(108.32) .01 
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Figure 13. Boxplot of the effect of condition on score on the post-lesson assessment. Points 

represent the individual participants’ scores. The horizontal line represents the median. The red 

dot represents the mean.  
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Figure 14. Boxplot of the effect of instructional condition  on the number of correct 

solutions students generated on a novel programming problem. Points represent the individual 

participants’ scores. The horizontal line represents the median. The red dot represents the mean.  

 

Process Measures and their Relation to Learning, Motivation, and Emotion 

Distributions of process measures, broken down by condition, and results 

from  independent t-tests are shown in Table 10. Participants in Predict and Traditional 

conditions did not differ in word count (p = .06), duration (p = .06), or  perceived intrinsic load 

(p = .37). However, compared to participants in the Traditional condition, participants in the 

Predict condition  perceived the extraneous load to be lower (p = .005) and the germane 

cognitive load to be higher (p = .05).  

 

Table 10. Descriptive statistics and t-tests comparing process measures between the Predict and 

Traditional instructional conditions.  

  Predict 

M(SD) 

Traditional  

M(SD)  

b1  

[95% CI] 

t(df)  p 

Behavior 
     

Word count 74.88(43.47) 61.62(30.98)  13.26[-0.31,26.83] -1.93 

(106.53) 

.06 

Duration (s)  3560.20 

(1492.26) 

3073.52 

(1327.60) 

486.7[-21.55,994.91] -1.89 

(116.93) 

.06 

Performance 11.28(2.65) 14.18(3.20) -2.90[-3.95,-1.84] 5.43 

(115.69) 

<.001 

Cognitive load  
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Intrinsic load 4.11(2.14) 4.45(2.03) -0.34[-1.09,0.41] 0.90 

(118.37) 

.37 

Extraneous load 2.38(2.04) 3.45(2.10) -1.07[-1.81,-0.32] 2.83 

(118.98) 

.005 

Germane load 7.23(1.95) 6.44(2.44) 0.79[-0.01,1.59] -1.97 

(114.17) 

.05 

 

Pairwise correlations between process measures are shown in Figure 15. Duration was 

correlated only with word count (r = 0.29), suggesting that students who wrote more words spent 

more time on the activity. Students who wrote more words also tended to estimate the extraneous 

load to be lower (r = -0.31) and estimated the germane cognitive load to be higher (r = 0.24). 

They also produced more correct responses on the activities during learning (r = 0.2). Similarly, 

students who produced more correct responses on the learning module activities estimated the 

extraneous load to be lower(r = -0.22) and the intrinsic load to be lower (r = -0.34).  

 

 

Figure 15. The pairwise correlation plot for performance variables. The numbers show 

the correlation coefficients. Warm colors indicate positive correlations. Cool colors indicate 

negative correlations. Non-significant correlations are blanked out.  
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Next, I investigated correlations between process measures (separated into categories: 

behavior and cognitive load). Pairwise correlations between process measures of behaviors and 

post-survey measures are shown in Figure 16.   

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 16. Pairwise correlations of process measures of behavior and post-survey measures. The 

numbers show the correlation coefficients. Warm colors indicate positive correlations. Cool 

colors indicate negative correlations. Non-significant correlations are blanked out.   

 

Students who wrote more words in their summaries demonstrated increased self-efficacy 

(r = 0.3),  more intent to take a programming course in the future (r = 0.29), greater interest in 

computer programming (r = 0.34), more positive sentiment on the post-survey (r =0.32), and 

more of a growth-oriented mindset towards computer programming. They also perceived the 
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value of learning programming to be greater (r = 0.36), scored higher on the post-lesson learning 

assessment (r = 0.33), and generated more correct solutions to the novel programming problem 

(r = 0.33). Performance across the 19 learning module activities was positively correlated with 

self-efficacy (r = 0.39),  intent to take a programming course in the future (r = 0.26), 

programming interest (r = 0.38), perceived value of programming (r = 0.42), post-survey 

emotion (r = 0.38), as well as score on the learning assessment (r = 0.54), and number of correct 

solutions on the novel programming task (r = 0.36).  

Notably, neither duration nor performance were correlated with perceived cost of 

learning programming while somewhat counterintuitively,  higher word count was correlated 

with lower perceived cost. These findings suggest students’ perceptions of cost are influenced by 

subjective appraisals rather than more objective measures, such as time or quantity of work. 

Further, duration (but not performance or word count) was weakly correlated with students’ 

emotions in response to the hypothetical error scenario (r = 0.18), suggesting that students who 

spent more time overall, expressed more positive emotions at the end of the activity.  

 Next, I examined pairwise correlations between cognitive load and the post-survey 

measures (see Figure 17 for results).  
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Figure 17. Pairwise correlations of process measures of estimated cognitive load  and post-

survey measures. The numbers show the correlation coefficients. Warm colors indicate positive 

correlations. Cool colors indicate negative correlations. Non-significant correlations are blank. 

 

As expected, extraneous cognitive load was negatively correlated with all post-survey 

measures of learning, emotion, and motivation. Conversely, germane cognitive load was 

positively associated with all outcome measures of emotion, motivation, and learning. Intrinsic 

cognitive load was negatively correlated with all outcome measures except programming 

mindset. 

The Role of Individual Differences 

To explore whether the relationship between individual difference measures (GPA, 

attitudes towards computers, need for cognition, and initial motivation) and outcome measures ( 
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emotion, motivation, and learning) varied as a function of condition,  I visually compared the 

relationship between pre-survey and individual difference variables and student outcomes for 

students in the Predict and Traditional conditions.  

Having a growth mindset towards programming positively predicted emotional response 

to error for participants in the Traditional condition, but it did not predict emotional  response to 

error for participants in the Predict condition.  

 

 

Figure 18. Faceted scatterplot comparing the relationship between programming mindset 

and emotion in response to error for participants in the Traditional and Predict conditions. 

 

In addition, the strength of the relationship between attitudes towards computers and 

perceived cost of learning programming was weaker for participants in the Predict condition 

compared to participants in the Traditional condition.  
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Figure 19. Faceted scatterplot comparing the relationship between computer attitudes and 

perceived cost of learning programming for participants in the Traditional and Predict 

conditions.  

 

The relationship between individual difference measures and other measures of emotion, 

motivation, and learning did not visually appear to differ between students assigned to the 

Predict and Traditional condition. Taken together, these results suggest that in most cases, the 

effect of individual differences on emotion, motivation, and learning did not vary depending on 

the type of programming in the task. However, in some cases, predicting tasks may suppress the 

effect of programming mindset and attitudes towards computers.   

Discussion  

 Students’ struggles to learn programming are well documented in the literature. Prior 

studies indicate these struggles may be due in part to the tasks used to teach programming. In this 
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dissertation, I sought to develop a more comprehensive understanding of how programming 

tasks influence students’ outcomes and experiences in introductory programming courses. 

Additionally, I sought to extend prior research investigating the effect of different programming 

tasks on instruction and explore the potential of predicting as an alternative strategy to teach 

programming.  

Overall, I found that students randomly assigned to generate predictions demonstrated 

more positive outcomes than students randomly assigned to write and submit their own code. 

Specifically, students randomly assigned to generate predictions demonstrated more positive 

emotional trajectories, expressed increased motivation to learn programming, and performed 

better on measures of learning than students assigned to produce their own code. These findings 

complement prior studies that show benefits of predicting in complex learning environments.  

Effect of predicting on emotions 

Students assigned to the predicting condition demonstrated more positive emotional 

trajectories during learning. Though the two groups did not differ in their sentiment expressed at 

the start of the activity, students in the predict condition demonstrated more positive sentiment 

than students in the traditional condition as the lesson progressed. Importantly, the differences in 

the two groups first emerged as the task difficulty increased, suggesting that predicting may help 

buffer against negative emotions associated with challenges or setbacks. This hypothesis is 

further supported by the finding that students assigned to the predicting condition demonstrated 

more positive responses when shown a hypothetical programming error on the post-survey.  

Effect of predicting on motivation  

Students assigned to the predicting condition scored higher on some, but all measures of 

motivation. Compared to students assigned to write and submit code, students assigned to 

generate predictions perceived the cost of learning programming to be lower and demonstrated 
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greater intent to take a programming course in the future. However, students in the two groups 

did not differ in terms of other measures of motivation, including perceived value of 

programming. Condition was similarly not associated with motivational beliefs, including 

programming mindsets or programming self-efficacy.  

When looking at students’ open-ended responses about their beliefs about programming 

at the end of the activity, students in both conditions expressed a variety of views. For example, 

one student assigned to the Predict condition described programming as, “hard work. frustration. 

figuring out how to fix your code. breaking tables and cups because you can't figure out how to 

fix your code. enjoyment because you fixed your code. feeling of accomplishment because you 

finished a project. tedious. boring at times. problem solving.” Another student assigned to the 

Predict condition described coding as, “Hard, long hours, complicated, no solutions.” 

One possible explanation for these findings is that programming tasks affected students’ 

momentary appraisals but did not influence beliefs, which are harder to change. Because this 

experiment took place over just a few hours, it’s possible that the time wasn’t sufficient to 

socialize students’ beliefs. An interesting direction for future research would be to investigate the 

effect of predicting versus other forms of instruction on students’ beliefs when predicting 

is  integrated into programming instruction over weeks or months rather than introduced in a few 

short activities.  

Effect of Predicting on Learning  

Students who generated predictions scored higher on the learning assessment and 

generated more correct solutions on a novel programming problem than students who wrote their 

own code, despite being presented with the same instructional content. One possibility is that 

generating predictions elicited emotional responses such as curiosity and interest, which 

facilitated knowledge acquisition and made students more motivated and open to generating 
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solutions on the post-lesson assessment. Students assigned to the Predict condition demonstrated 

more positive emotional trajectories during learning, providing initial evidence that predicting 

impacted students’ subjective emotions and attitudes towards learning programming. Prior 

research has shown that emotions like curiosity can lead to greater exploration and facilitate 

making connections, which could lead to deeper and more connected understanding. Positive 

emotions during learning can also orient students’ attention to feedback. Thus, students in the 

Predict condition may have learned more from the instruction than students in the Traditional 

condition.  

Another possible explanation for this difference is that code writing activities increase the 

cognitive burden of learning programming. Students assigned to the predicting condition rated 

the extraneous cognitive load lower and the germane cognitive load higher than students 

assigned to the traditional condition, which suggests that some aspect of writing and submitting 

code increased the perceived cognitive load of learning from the perspective of beginning 

students. Students also perceived the cost of learning to be higher in the Traditional condition, 

even though the amount of time and effort (as evidenced by word count) did not meaningfully 

differ across the two conditions. One factor that may have increased the perceived cost of 

learning programming  could be the extraneous cognitive load introduced by the added 

interactivity of the code writing activities. Another option could be the burden added by negative 

emotions during learning.  Future research should investigate which aspects of code writing tasks 

might increase this perceived cognitive burden.  

A third possible explanation is that predicting influenced cognitive processes known to 

benefit deeper learning. For instance, predicting could be seen as a form of retrieval, which is 

known to benefit encoding and memory (i.e., Karpicke & Roediger, 2008). Students in the 

predicting condition were asked to draw on what they learned to make predictions at multiple 
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timepoints during learning. It’s possible that the effect of repeated testing alone facilitated deeper 

encoding and post-lesson performance.  Predicting could also be considered a form of productive 

failure, which can prepare students for future learning (Kapur, 2008). When presented with ill-

structured problems, students struggle and produce incorrect solutions, only to perform better on 

well-structured problems later compared to students presented with only well-structured 

problems (Kapur, 2008).  One explanation is that ill-structured tasks cause students to engage in 

deeper cognitive processing such as drawing on prior knowledge to make up for limited 

information in the problem text. (McNamara, 2001). This cognitive processing prepares students 

to better process information and apply prior knowledge in subsequent structured tasks.  

Another explanation is that well-structured tasks limit curiosity and exploration of the 

problem space (Reiser, 2004) and limit the types of strategies and approaches students use. If 

students are told to modify some code so that it runs correctly, they are limited to searching for 

explanations for why the code doesn’t work. Instead, if students are asked to predict what the 

code will produce, they have to imagine multiple possible outcomes of what the code might do. 

The former would lead students to retrieve from memory knowledge of syntax and errors 

whereas the latter would lead students to elaborate on what they already know. When asked 

about obstacles they encountered during learning, students assigned to the Traditional condition 

tended to mention memorization. For example, one student said, “It got complicated, and I felt 

like I was being bombarded with too much new information to learn and regurgitate.” Another 

student said, “it was hard to memorize some of the more complex codes.” In the words of 

another student, “I found it a bit difficult to memorize all the rules and apply them all at once 

during the latter stage.”   

Finally, predicting could facilitate deeper learning by directing students’ attention to 

relevant aspects of the problem. In this way, predicting could be seen as a form of comparing 
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contrasting cases (Loibl et al., 2020; Schwartz & Martin, 2004) that highlight the deeper 

structural aspects of the programming language. Contrasting cases were introduced by Schwartz 

and Bransford (1998) as a way to help students notice similarities and differences that highlight 

principles when introducing new concepts. The predicting activities in this study were designed 

to highlight subtle differences in lines of code and direct students’ attention to features of 

programming syntax. For example, students were asked to predict what print(“Hello, world”) 

would produce and then compare the output to their prediction. It’s possible the element of 

comparison could be driving the differences in learning outcomes between the two conditions.   

Effect of Individual Differences Under Different Task Conditions  

 This study lacked statistical power to test interactions between individual difference 

measures and instructional conditions (predict vs traditional). However, visual inspection of the 

data suggests that predicting may influence the relationship between some aspects of students’ 

initial motivation and their learning outcomes. For example, predicting seemed to suppress the 

effect of initial mindsets and attitudes towards computers on students’ emotions in response to 

error and perceived cost of learning programming respectively. 

 One way that predicting might influence the effect of individual differences is by 

changing the goal structure of the learning environment. Prior research suggests that students’ 

goals can be modified by situational cues about effort, evaluation, and the purpose of engaging in 

the learning task (Ames, 1999; Nicholls, 1984 for reviews). Students who have a growth mindset 

towards programming tend to adopt more mastery-oriented goals and approaches to learning. If 

mastery goals are cued by elements of the learning environment in the Predict condition, then we 

might expect the effect of programming mindsets to be less pronounced for students in the 

Predict but not Traditional condition.  These cues would lead students in the Predict condition, 
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regardless of initial mindset or orientation, to adopt more adaptive goals and approaches toward 

learning, buffering against the effect of initial programming mindset.  

Predicting might similarly buffer against the effect of negative attitudes towards 

computer programming by the implicit cues evoked during learning. Most programming 

instruction involves code writing activities similar to those in the Traditional condition. It is 

possible that the Traditional tasks evoked prior knowledge or beliefs about computer 

programming because they matched students’ pre-existing schema about what programming 

requires. The Predict activities on the other hand, may have provided conflicting cues and thus 

not activated students’ attitudes towards programming to the same extent of the tasks in the 

Traditional condition. Anecdotal evidence from students’ open-ended responses suggests that 

some students in the Predict condition may even  have been pleasantly surprised that the activity 

did not match their negative perceptions of computer programming. For example, one student 

stated, “I have found the format of the learning style very interesting and easy-to-follow. 

Initially, I thought it would be somewhat difficult because I have always seen coding as 

complex. However, this has made me understand how quickly I can be able to understand R 

coding and made me want to consider taking future courses.”  

Limitations and Future Directions  

This study provides initial evidence of the potential of using predicting as a strategy to 

improve learning among students in the early stages of learning programming. However, there 

are a number of  limitations that should be considered when interpreting the results. 

Participants and Measures  

 First, participants were recruited from the psychology department at a competitive 

university, and thus may not be representative of the broader population of beginning 

programming students. Within the population, most students were high performing, as evidenced 
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by the high GPAs.  Second, this study only investigated the effect of predicting versus traditional 

instruction using the R programming language. Prior research indicates that some programming 

languages may be easier to learn than others. Because we only looked at one programming 

language, it’s not clear whether or not predicting might similarly benefit learners in the early 

stages of learning another, more complex language.  

Another important limitation of this study is the measurement of student outcomes. 

Measures of emotion, motivation, and  perceived cognitive load relied on self-report ratings, 

which may be less accurate than more objective behavioral measures, such as, for example, 

students’ actual rather than anticipated future programming course engagement or more 

objective measures of cognitive load. In addition, sentiment ratings were captured at multiple 

timepoints throughout the activity. However, asking students to stop and rate their sentiment 

during learning can disrupt learning processes and impact students’ experiences during learning. 

Less intrusive and more direct measures of emotions such as physiological measures or 

automated affect detection present a promising alternative to self-reported ratings and would be 

valuable to include in future research. Additionally, because measures of learning included 

problems that were relatively similar to those used during instruction, it is not clear whether 

predicting benefits ‘far transfer’  – performance on tasks that share fewer surface-level 

similarities with the content covered in the lesson.  

Study Context  

Although this study provides initial evidence that predicting may influence learning in a 

controlled experimental setting, it does not provide information on whether these findings extend 

to naturalistic learning contexts.  Mastering computer programming takes years. And most 

people encounter programming, not as a single lesson, but in the context of a broader course or 
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series of courses.  It will be important to study the effects of predicting in these more realistic 

contexts.  

 One related question is how the effect of predicting might vary based on the broader 

academic culture in which instruction takes place. For example, would predicting benefit learners 

the same way in a high-pressure environment in which passing the course is required for students 

to gain acceptance into a major as in low-stakes settings such as an elective? Another important 

question is whether the benefits of predicting can be observed over a longer period of time. For 

example, it would be interesting to see whether varying programming instruction in the first few 

weeks of a course would benefit students as the course progresses over weeks or even months.  

Beyond looking at the effect of predicting over a longer period of time, it would be 

interesting to investigate whether predicting activities really do prepare students to learn more 

advanced programming concepts in the future. To investigate the effects of predicting on future 

learning and transfer, experiments could adopt a procedure similar to Schwartz & Bransford 

(1998) in which participants are provided initial instruction using either predicting or traditional 

methods, then provided the same instruction in a new concept. Such an approach would allow 

researchers to compare students’ learning from the second programming lesson to answer 

questions about whether predicting prepares students to learn more deeply from subsequent 

instruction.  

Another important question is how generating predictions might affect outcomes at 

different stages during learning. Research from cognitive psychology suggests that worked 

examples only benefit novice learners at the early stages of learning. Is predicting only beneficial 

for beginning students or could it also benefit students with more expertise? A second question 

concerns how predicting fits in with other learning strategies. In this experiment, we used only 

one instructional strategy in each condition. However, in a real classroom setting teachers use 
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multiple strategies and approaches together to enhance students' learning. How might 

interleaving predicting with other instructional activities influence student outcomes? Could 

introducing predicting activities alongside traditional instruction improve student outcomes?  

Mechanisms Through which Predicting Affects Student Outcomes 

Although the information in this study does not explain how predicting influences 

emotions, motivation, and learning, it does provide a basis for future studies of these 

mechanisms. Several questions could be used to investigate the potential mechanisms through 

which predicting influences student outcomes when learning computer programming.  

One question is whether changing the nature of the predicting activity produces similar 

improvements to students’ emotions, motivation , and learning. In this study we carefully 

designed predicting activities to highlight specific concepts. Would students experience similar 

benefits if asked to make a more general prediction? We are currently conducting a follow-up 

study to investigate this question. In this follow up study, students are randomly assigned to one 

of three instructional conditions: a Traditional condition similar to the Traditional condition in 

the present study, a Predict condition similar to the predict condition in this study where students 

make specific predictions by selecting from multiple choice options, and an open-ended Predict 

condition in which students generate their own predictions using an open-ended response option. 

Our hypothesis is that students in both the general and multiple choice Predict conditions will 

demonstrate more positive emotions and motivation than students in the Traditional condition, 

but students the multiple choice Predict condition will learn more than students in the Traditional 

and general Predict conditions because the multiple choice Predict task helps to direct students’ 

attention to deeper features in the problem that will benefit learning and transfer.  

Another follow-up question is how predicting compares to other well-researched 

strategies whose mechanisms for affecting learning are known. Comparing predicting to 
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activities like retrieval, or self-explanation and worked examples, might clarify the mechanisms 

through which predicting influences student outcomes. Similarly, investigating the affective 

outcomes of previously researched learning strategies would add to our knowledge of how these 

strategies work to improve student outcomes. Though many studies have investigated the 

cognitive benefits of strategies like retrieval, worked examples, and contrasting cases, almost 

none have investigated the effect of these strategies on students’ emotional and motivational 

outcomes.  

Finally, there were important features of the code-writing tasks that were not controlled 

for in this study that may have contributed to students’ difficulties. Specifically, the Traditional 

code writing tasks included additional elements of interactivity and more complicated task 

instructions which could have introduced extra cognitive load or influenced students’ emotions 

during learning. Students’ open-ended responses to the obstacles encountered during learning 

provide some insight into this issue. For example, some students mentioned the slow loading 

time of the coding environment (i.e.,  “the computer was a little slow to execute the functions”; 

“the loading time for the coding to work”). Other students indicated they lacked the prior 

knowledge required to interpret code-writing instructions and error messages in their code. 

Task instructions and feedback are plausible avenues through which code writing tasks 

might influence student outcomes. For instance, instructions in the Traditional condition varied 

with each new code-writing activity depending on the goal of the task. By contrast, instructions 

in the Predict condition remained relatively constant, as each task required them to do the same 

thing: predict what code would do. Keeping the instructions consistent may have reduced 

extraneous cognitive load, freeing up cognitive resources for students to focus on understanding 

what the code does.  Since code writing is still an important part of learning programming, more 

research is needed to identify which elements of the code writing activities may have contributed 
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to students’ poorer outcomes, and, how to design code-writing tasks in a way that reduces the 

impact of these features. Though these questions were  not addressed in the present study, they 

would be a logical next step for future research.  

Conclusion  

 In this randomized experiment comparing two instructional strategies to teach computer 

programming, evidence was found that generating predictions can lead beginning students to 

have more positive subjective emotional experiences, increased motivation, and more positive 

learning outcomes than modifying or writing code. This study is the first to our knowledge to test 

a theoretically informed hypothesis about the effect of different learning strategies for teaching 

programming on both students’ cognitive and affective outcomes. Given the importance of 

cognitive and affective processes when learning computer programming, examining how 

different instructional approaches influence these processes in tandem is important to consider 

when designing programming instruction. This study also raises questions about the usefulness 

of popular instructional strategies for teaching programming especially for novice programmers 

in the early stages of learning. Though writing code may seem like the obvious way to introduce 

students to the practice of computer programming, asking students to write and submit their own 

code too early may exacerbate some of the challenges of learning programming.  

Looking beyond computer programming, the findings from this study provide a glimpse 

of how learning tasks may impact multiple learning processes and underscore the need to 

consider cognition and affect together in educational research and design.   
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