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Abstract

While economists have long been interested in effects of health and human capital
on productivity, less attention has been paid to the influence of time use. We inves-
tigate the productivity effects of the single largest use of time—sleep. Because sleep
influences performance on memory and focus intensive tasks, it plausibly affects eco-
nomic outcomes. We identify the effect of sleep on wages by exploiting the relationship
between sunset time and sleep duration. Using a large, nationally representative set
of time use diaries from the United States, we provide the first causal estimates of the
impact of sleep on wages: a one-hour increase in long-run average sleep increases wages
by 16%, equivalent to more than one year of schooling. We also document the non-
linearity of the sleep-wage relationship. Our results highlight the economic importance
of sleep and pose potentially fruitful questions about the effects of time use on labor

market outcomes. (JEL No. J22, J24, J31)
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1 Introduction

FEconomists have long been interested in determinants of productivity. Understanding
what makes workers more effective is a fundamental question in economics and is
important for both individual decisions and public policy. While there are traditions
of research in human capital (Becker, 1962, 1964) and health (Grossman, 1972), less
attention as been paid to the influence of time use on worker productivity. Many types
of time use, from reading to vacationing, plausibly impact productivity on the job. In
this study we focus on one of the most important influences on human performance:
the time workers spend sleeping.

Evidence from medical research points to the vital role sleep plays in determining
productivity. Tired doctors make more mistakes (Ulmer et al., 2009). Tired students
perform worse on tests (Taras and Potts-Datema, 2005). Poor sleep raises total mortal-
ity rates (Cappuccio et al., 2010). These results suggest that inadequate sleep lowers
productivity, impedes the development of human capital, and imposes large direct
costs on society. Moreover for the average individual, sleep takes up more time than
any other activity. Despite the manifest importance of sleep, economists have largely
treated it as a biological phenomenon outside of their purview. We investigate an im-
portant question that has been overlooked almost entirely in economics: what are the
effects of sleep on productivity and wages?

Answering this question poses formidable challenges. First, a pioneering study by
Biddle and Hamermesh (1990) shows that higher wages raise the opportunity cost of
sleep time, leading individuals to decrease their sleep. This result demonstrates that
causal relationships between sleep and wages could run in both directions. Additionally,
sleep may be correlated with unobservable worker characteristics, like ability, that
also influence wages. Finally, because sleep is a large portion of the time budget
and complementary to almost all human activity, it is extremely difficult to isolate
exogenous variation in sleep.

We resolve this endogeneity by using changes in sleep induced by differences in

sunset time within time zones—a strategy motivated by medical research on circadian



rhythm. Our identification depends on small differences in the timing of sunset, while
controlling for other spatial characteristics of a location. These timing differences stem
from US time zone boundaries drawn in 1883, which stem in turn from the historical
accident that placed the Prime Meridian through Greenwich, England. Intuitively, for
two locations at the same latitude and in the same time zone, the location farther
east will experience sunset sooner than the location farther west. Because solar cues
influence human sleep schedules, those who live farther east will go to sleep slightly
earlier, on average. Because work start times are inflexible, this earlier bed time
translates into more sleep for the more eastern residents.

To implement our empirical strategy, we geocode observations from the American
Time Use Survey (ATUS), at the county level where possible and at the state level
otherwise. ATUS provides rich labor market information about individuals, a wealth
of control variables, and detailed time use data from daily diaries. Knowing the diary
date and location, we assign each observation a sunset time. We then use sunset time
as an instrument for sleep to estimate the causal effect of sleep on wages.

Our main result is that sleeping one extra hour per night on average increases wages
by 16%, highlighting the importance of restedness to human productivity. These are,
to our knowledge, the first causal estimates of how sleep affects wages.! This result
suggests that, were the average worker in our dataset to sleep one additional hour every
night without changing her number of hours worked, she would receive an additional
$6,000 per year.

Our identification strategy naturally raises concerns that workers might sort on
sunset time or on its correlates. As part of our large set of robustness checks, we
demonstrate that our wage effects are fully offset by increased home prices, removing
the incentive to sort. In addition, we conduct a variety of tests for worker sorting and
find no evidence for it.

Motivated by findings from the medical literature, we also investigate non-linearities

in the sleep-wage relationship. In particular, we examine whether there is a level of sleep

!Biddle and Hamermesh (1990) includes a regression with wages on the left-hand side and sleep on the
right and finds a negative relationship. This is consistent with reverse causality and highlights the difficulty
of isolating quasi-experimental variation in sleep.



above which more sleep reduces wage. Using a plausible functional form assumption in
an IV setting, we demonstrate that wage-optimizing sleep is approximately 9 hours per
night in the United States. This is higher than the average sleep amount reported in the
data—=8.3 hours—and it is much higher than the 7 to 8 hours per night that the medical
literature generally considers to result in lowest total mortality (Cappuccio et al., 2010),
indicating a potential tension between wage optimization, health optimization, and
other time uses.

Our study demonstrates that sleep is not just an economic curiosity, but rather a
vital determinant of productivity. A one-hour increase in average daily sleep raises pro-
ductivity by more than a one-year increase in education (Psacharopoulos and Patrinos,
2004). These results point to the large impact that non-labor market activities can
have on labor market performance. By examining the largest use of human time, our
study contributes to the time-use literature following Becker (1965). We also contribute
to the growing literature on how environmental forces influence worker productivity
(Zivin and Neidell, 2012) and to the broader productivity literature on factors like in-
formation technology (Bloom et al., 2012) and workplace practices (Black and Lynch,
2001). Future work should extend these results to compare them to non-time intensive
changes in leisure or lifestyle attributes.

The rest of the paper proceeds as follows. Section 2 presents a time use model with
sleep as a choice variable, illustrating challenges associated with identifying the effect
of sleep on wages, and discusses related literature. Section 3 presents the estimating
equations and discusses our identification strategy. Section 4 describes the data used
in the study, while Section 5 reports and discusses our primary linear model results,
provides robustness checks, and discusses extensions to the main results. Section 6
reports and discusses nonlinear estimates of the sleep-wage relationship, and Section 7

concludes.



2 Identifying the effect of sleep on productivity and wages

2.1 Previous research

Existing studies of the relationship between sleep and wages in economics are few
and are largely concerned with addressing the question of whether sleep should be
treated as a choice variable rather than simply a biological necessity. Biddle and
Hamermesh (1990) is the first paper to provide empirical evidence on this issue and
remains one of the only empirical investigations of labor market impacts of sleep.
The authors lay out a model with agents optimizing over sleep, work, and leisure
time in an otherwise standard setting. While their theoretical model allows sleep
to affect productivity, Biddle and Hamermesh do not focus on this relationship in
their empirical work. Instead they emphasize the causal mechanism operating in the
opposite direction, modeling sleep as a function of instrumented wage (see Biddle and
Hamermesh (1990) Table 6). Brochu et al. (2012) and Szalontai (2006) also estimate
the impact of changes in wage on sleep using more recent data from Canada and
South Africa. Finally, Bonke (2012) has examined the impact of two chronotypes—
whether the individual is a “morning” or “evening” person—on income. This study
provides evidence on the related question of whether sleep quality impacts labor market
outcomes.

Daylight savings time (DST) has been used in a variety of settings in economics
as a proxy for sleep changes. However, the short-term nature of any sleep change
induced by DST limits its use in studying slow-moving outcomes like wages. Moreover,
examination of ATUS data shows that the relationship between DST and sleep is
complex. Transition into DST reduces sleep by 40 minutes on the day of the change,
but transition out of DST is not associated with a noticeable change in sleep time
(Barnes and Wagner, 2009).

Medical studies concerned with the effect of long term differences in sleep on health
or mortality? are closest to our study in terms of time horizon. A series of papers

starting with Mckenna et al. (2007) have used laboratory tasks to examine the impact

2For instance Cappuccio et al. (2010) and Krueger and Friedman (2009).



of short-term sleep loss on a variety of outcomes that provide insight into how sleep
could impact work performance. Van Dongen et al. (2003) conducted the longest
laboratory-controlled study on the effect of sleep levels on cognitive performance. The
researchers kept subjects in the lab for two weeks, placing them into groups receiving
4, 6, and 8 hours of sleep. The subjects were given daily tests of their focus in the form
of psycho-motor vigilance tests (PVTs). The research found that the groups subjected
to 4 and 6 hours of sleep experienced progressively worse performance on the test even
though the subjects’ subjective assessment stopped declining after a short habituation
period. This study provides one of the most compelling pieces of evidence for the

negative productivity effects of reduced sleep.

2.2 A productive sleep model

The following analytical model, adapted from Biddle and Hamermesh (1990), illustrates
the trade-offs between consumption, leisure, and sleep when sleep affects wages. It
also illustrates the reverse causality from wages to sleep that creates one of the main
identification challenges and clarifies how we think about our instrument. Consider a
consumer optimizing over sleep time Ts and a composite leisure good Z, which requires
inputs of both time T, and goods X such that T, = bZ and X = aZ. The good X
trades at the exogenous price P. The consumer has non-labor income I and time
endowment T%. Denote work time T},. Let an individual’s market wage w,,, depend on
sleep as follows: w,, = w1 + weTs, with w; > 0 and wy > 0.3

Note that this theoretical model could easily be adapted to study other non-work
time uses, but the function linking wage to time use would likely be different. We
assume that a function of sleep, aTy, enters the utility function, where « is the relative
utility enjoyed by the individual per hour of sleep.* The parameter o provides a
convenient link between our analytical model and our instrumental variables estimation

strategy, as discussed below. The worker optimizes over sleep and composite leisure,

3In section 6 we provide evidence that this relationship is non-linear, but a linear wage function suffices
to illustrate the relevant trade-offs.

40ur predictions are qualitatively unchanged if we assume that sleep does not enter the utility function
directly, but rather as an input to the production of the composite leisure good Z.



subject to time and income constraints, as follows.

ZH%FaX)\U (Z,aTs) + A(I + (w1 + woTs) (T* —Tg —bZ) —aPZ)
LS,

Combining first-order conditions yields a two by two system of equations that implicitly

describe the worker’s optimal choice.
Uiwi + Uywo (TS — Tw) — aUsaP — aUsbw,, =0

and

I+(w1+w2TS) (T* —TS—bZ)—aPZ:()

Applying the implicit function theorem, we can evaluate several interesting deriva-

tives. First, consider the effect of an exogenous wage increase on sleep time.

oT. _ oT,
aTi = (aP + bwy,) (U — alib) D' + Twa—f

In the previous expression, D~! < 0 equals the negative of the Jacobian. This is a
variant of the usual Slutsky equation. The first term captures the substitution effect,
which differs from the typical form in that it includes —aUsb. When a = 1 the value
(Ur — aUszb) > 0 and the first term is negative. Increased wages raise the opportunity
cost of sleep, decreasing optimal sleep. This means that a naive regression of wages on
sleep will not recover causal effects.

To motivate our later use of an instrument for sleep, consider the effects of an
exogenous increase in . Since « controls the relative attractiveness of sleep, an increase

in the parameter will induce agents to want to consume more sleep.

oT
S = Us (a?P? 4 0w}, + 2UpabPwy,) (D)™ > 0

The effect on leisure can operate in either direction.

oT,

A = bUs (P + bwy,) (—wy + woT,) (D) S0




The ambiguous sign comes from the expression (—wy, + waT),), which is the opportu-
nity cost of an additional leisure hour. More specifically, this expression is the gross
opportunity cost of an additional leisure hour —w,,, adjusted for the additional income
generated by increased sleep, wo Ty, (recall that T increases in response to an increase
in a). All else equal, individuals with low wages (low wj) or high work hours will
tend to increase leisure time in response to increased «. Intuitively, this is because in
our model all workers experience the same wage gains from additional sleep. For low-
wage workers this sleep-driven wage increase dominates the small wage loss incurred
by switching an hour of time from work to leisure. We test these empirical predictions

in Section 5.

3 Empirical strategy

3.1 Estimating equation

Our goal is to estimate an equation of the form
wage;, = f(Ts,it) + €it

where we expect 0f /0Ts > 0, at least for low Tg. Given the reverse causality between
wages and sleep, however, we might erroneously find df/0Ts < 0.° To avoid this
problem and to account for the wide variety of other omitted variables that might

co-vary with sleep and wages, we instrument for sleep using the local sunset time, then

®The general form is given in the model above, but we can also illustrate the issue with a simple two
equation system that will prove useful below. Let the sleep-wage relationship be given by

w=alg+¢e
Ts = pw+v

where ¢ and v are random error terms, E[ev] = 0, E[Tse] = 0, and Flwy] = 0. Then if 8 < 0 as is argued
by the previous literature, the bias from OLS estimation can be signed as follows:

L Elew)
pima=a+p

E[Tg]
——

<0

So plim & < «. Naive OLS will tend to understate the effect of sleep on wages if this is the dominant source
of bias.



use the instrumented values of sleep to estimate wage impacts.

Ts ;¢ = asunset;; + vqlatitude; + x;t’m + Vit

ln(wageijT) = BTs,ijt + v3latitude; + X;t"}/4 + €ijr (1)

In the above equations T ;j; is nighttime sleep for individual 7 in location j on date
t, sunsetj; is the sunset time on that date in that location, x;; is a vector of controls,
and wage,, is a measure of wages or earnings at time 7. We distinguish between the
time subscripts on wages, 7, and sleep, t, to highlight the fact that we treat sleep on
date t as a consistent estimate of average sleep at time 7.° Our wage measure is the
answer to a question about “usual weekly earnings” rather than wages on the day of
the interview, so 7 may be thought of as indexing the wage-setting period, for instance
a year. Controls are listed in Table I and are latitude, an indicator for female, age, age
squared, race indicators, day of week of interview indicators, a holiday indicator, year
indicators, and a set of occupation indicators.

It is implausible to assume that the relationship between sleep and wages is linear
over the entire range of possible sleep. Purely mechanically, as sleep reaches extremely
high levels, little time remains for work. A worker who sleeps 16 hours per day may
have difficulty finding a job. Moreover, medical studies often find that sleep is non-
linearly related to outcomes like health and memory. Motivated by these findings, we
also investigate non-linear functional forms of the sleep-wage equation.

We now need additional instruments to identify the non-linear terms. Calculating
sunset relies on four inputs: the date, latitude, longitude, and time zone. We can
approximate three of these four components using annual average sunset time, solar
declination (the angle of the sun relative to the equator) on the diary date, and the
interaction of the two. Our nonlinear specifications use these variables as instruments.
While this invokes additional functional form assumptions, our choice of instruments is

not arbitrary. Rather it explicitly leverages the seasonal variation in sunset time over

5We also treat a worker’s observable characteristics on date ¢ as consistent estimates of observables at
time 7. Since many such characteristics are fixed or vary extremely slowly (for example race, occupation,
and education), we believe this assumption is benign.



the year as well as the purely geographic variation in annual average sunset time that

occurs within a time zone. The estimating equations are

Ts i+ = agsunset;; + aodeclination;y + agsunset;; x dec.;; + X;ﬂg +ura (2)
T 37“ = ajsunsety + asdeclinationy + agsunset;; x dec.;y + X v4 + voir  (3)

In(wage;.) = 175, + 52T3, i+ XiYs + €2 (4)

which comprise a modified version of the linear two-stage estimate given above by
Equation (1). Bolding denotes vectors and overbars indicate averages over the year.

The value —f31 /235 gives optimal sleep for wage maximization.
3.2 Local sunset time instrument

We would like to estimate the relationship between sleep and wages, but, as discussed
above, sleep is plainly endogenous. To isolate exogenous variation in sleep, we predict
sleep using local sunset time. In a vacuum, an earlier sunset time would cause workers
to go to bed earlier and rise later, so it would not affect sleep duration. But workers
coordinate work start times, often at 8am or 9am, so earlier sunset and earlier bedtime
increase sleep duration. This is the exogenous variation that identifies the wage effect
of sleep. We discuss the details of this argument below.

Human sleep patterns and circadian rhythm are synchronized with the rising and
setting of the sun through a process known as entrainment. Roenneberg et al. (2007)
show that “the human circadian clock is predominantly entrained by sun time rather
than by social time,” indicating that a variable based on solar cues might provide a
relevant instrument for sleep duration or timing.

Figure I shows how the mismatch between standard time and solar time varies
within a stylized time zone. In the morning (left panel), a city farther west (having a
larger distance from the eastern time zone boundary) will be in darkness for a period
of time during which a city farther east is lit. In a vacuum, we might expect residents
of the eastern city to rise earlier. Hamermesh et al. (2008), however, show that work
scheduling is not sensitive to solar time, and workers must wake up in time for a

coordinated start—this is one reason for the widespread use of morning alarm clocks.
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western time zone boundary

The right panel shows a stylized sunset, which forms the basis of our instrument.
Here the eastern location grows dark earlier than the western location. As Roenneberg
et al. (2007) show, this induces residents of the eastern location to begin sleep earlier
than the residents of the western location, leading to longer sleep duration for the
eastern residents. Unlike in the morning, there is no coordination constraint muting
the effect of the solar cue. On net, workers sleep longer in the eastern than in the

western city.

Figure I: Schematic effects of local sunrise and sunset time

//_D*\

eastern time zone boundary
western time zone boundary

6:30 am 6:30 pm

Notes: The figure gives a schematic representation of how local sunset time impacts
sleep. The left panel shows the relative light levels when a worker awakes in two cities,
and the right panel shows the same for when the worker returns home.

[Figure 2 about here.]

Figure II shows how Figure I looks for actual sunset times across the continental
United States on the summer solstice (Panel IIa), the vernal equinox (Panel IIb), and
the winter solstice (Panel Ilc) in 2012. Darker reds indicate later sunset times. The
sunset time difference on the equinox matches the stylized example, and one can observe

that, on average during the year, locations farther west have later sunset times than

11
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Figure II: Actual sunset time

[ |
9:02 PM 6:44 PM 7:1 5:41
(a) Summer solstice, Jun 20 (b) Vernal equinox, Mar 20

EE—
6:03 PM 3:45 PM
(c) Winter solstice, Dec 21

Notes: Each map shows sunset time for the continental United States in 2012. Panel (a) is for
the summer solstice, Panel (b) is for the vernal equinox, and Panel (c¢) is for the winter solstice.
Sunset times are indicated by color according to the scale under each figure. Darker red indicates
later sunset, lighter red indicates earlier. The time zone boundaries are given by bold black lines.

locations farther east within each time zone. The exact difference, however, changes
seasonally, with locations farther north experiencing later sunset during the summer
and the reverse in the winter. This variation in the angle of the sunset gradient is
caused by changes in solar declination, or the angle of the sun relative to the equator.
For more discussion of solar mechanics, see Section B. Our estimation strategy uses
both the cross-sectional (geographic) variation in sunset time and the intra-annual

seasonal variation.
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In summary, sunset time is a relevant instrument because human sleep timing re-
sponds strongly to solar cues. In fact, the detailed ATUS files enable us to demonstrate
this phenomenon directly. Examination of ATUS activity logs shows that workers ex-
periencing earlier sunset also go to bed earlier and that this correlation between sunset
and bedtime persists even if the worker goes to bed well after dark. Coordinated work
start times translate this earlier bedtime into longer sleep.

The difference in sunset time between two locations over the year is plausibly or-
thogonal to other factors influencing the labor market, making local sunset time a
valid instrument. In particular, time zone boundaries break the link between average
sunset time and longitude, and the seasonal variation in sunset time means that any
given location has a large geographic comparison group that changes over the year. On
average sunset time is, by construction, orthogonal to latitude, however controlling for
latitude makes our estimates easier to interpret. On any given day, two locations at
the same latitude will experience the same daylight duration, differing only in when
sunrise and sunset occur relative to local time. The maximum difference in sunset time
within a US time zone is approximately 60 minutes.

The design of US time zones derived primarily from scientific, rather than commer-
cial, considerations. Railroads implemented the first US time zones, called Standard
Railroad Time (SRT), on November 18, 1883. They replaced a patchwork of railroad
time standards and were quickly adopted by the US government and Western Union
(Allen, 1883; Anonymous, 1883). While railroads were the first adopters, the primary
impetus for standard time and the zone plan itself came from scientists concerned with
problems like simultaneous observation of the aurora borealis at different points across
the US (Bartky, 1989). The width of a zone, 15 degrees of longitude, was chosen
to correspond with a one-hour difference in solar time (LOC, 2010). Ultimately, US
time zones derive from the speed at which the earth rotates and the historical accident
that drew the Prime Meridian through Greenwich, England: King Charles II chose
Greenwich as the site for the Royal Observatory in 1675.

Endogenous modifications to time zone borders could have undermined this initial

randomization. Indeed, state and local governments may petition the Department of
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Transportation to switch time zones, which has resulted in a long-run westward move-
ment of boundaries (USNO, 2014). This movement means that the precise location
of the boundary is endogenous and research designs based on comparing nearby com-
munities on opposite sides of the boundary will be biased. Note, however, that the
westward movement of boundaries is the opposite of what we expect if counties are
choosing their time zone based on sleep-driven productivity considerations. Switch-
ing from being on the eastern side of a time zone to the western side (which is what
has happened to shift the time zone boundaries) moves the county from getting the
“best” sunset treatment to getting the “worst” in terms of sleep duration. Moreover,
our design does not depend on the exact location of the boundary, but on the relative
longitudes of cities within a time zone; the distance between the easternmost city in
our data and the border is common to all observations in the time zone and does not
contribute to our coefficients of interest. (In Table V we show our results are robust
to the exclusion of counties on time zone borders.) Finally, while time zone borders
sometimes coincide with state borders, they frequently do not, and twelve of the lower
48 US states span multiple time zones (Hamermesh et al., 2008).

Current or past worker sorting on sunset time would also threaten the validity of our
sunset time instrument. We provide empirical evidence against such sorting in Section
5.3.2. Furthermore, visual inspection of Figure II makes a sorting story difficult to
credit. Changes in solar declination mean that sunset time in a given location, relative
to another location in the same time zone, changes throughout the year unless the
other location is located at exactly the same latitude. It is hard to argue workers sort
based on local sunset at the summer solstice rather than local sunset at the winter
solstice. Even if we focus, for example, on sunset at the equinoxes, there is no intuitive
similarity across locations with the same local sunset time. Central Kentucky is not
obviously like Eastern Colorado, nor is San Francisco like Central Missouri. To test
for contemporary worker sorting, we regress county demographics on our instrument in
Appendix Table XII and show there is no significant relationship. We also investigate
the possibility of sorting responses to the 1883 institution of time zones in Section

5.3.2.
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Firms might also sort on local sunset time, but simple firm optimization theory
suggests that firms do not have strong incentives to do so. If a firm pays its workers
their marginal product, managers may not care whether that marginal product is
slightly higher or lower. Nonetheless this sorting is a theoretical possibility, and we
test for it by regressing total wage bill in a county on sunset time and find no effect.
In contrast, per-capita wage bill is influenced by sunset time, as shown in Table VIII.

Other possible channels for failure of our exclusion restriction are discussed below,
and for issues that are amenable to empirical investigation, results are shown in Section
5.3. First, sleep and sunset contain seasonal trends. This would bias our estimates if
wages contained a correlated but causally unrelated seasonal trend. We show in Figure
III that wages do not contain seasonal trends, eliminating this concern. Nonetheless,
we explore the sensitivity of our estimates to different seasonal controls in Appendix
Table XIV. The sign and significance of our result survive the addition of a fine set of
seasonal controls, even fixed effects for each day of the year.

Second, if sunrise and sunset shift the timing of activities within a day, this could
conceivably influence productivity in ways that are hard to anticipate. In part, this
motivates the use of our instrument, which induces changes in sleep small enough to be
unlikely to trigger schedule changes but large enough to identify effects. Hamermesh
et al. (2008) show that, conditional on hours worked, sunrise and sunset do not alter
within-day work schedules. In addition, we regress work hours on sunset time and find
no relationship.” Together these results rule out within-day schedule shifts that might
somehow influence productivity.

Third, introspection suggests that sunset time might have direct effects on mood
and thus productivity. This is substantially more difficult to argue when comparing
cities at the same latitude, which experience the same amount of daylight. Even if
sunset is correlated with mood, this could be the result of changes in sleep duration
(Minkel et al., 2011). We would have to believe that conditional on daylight duration
and sleep time, sunrise and sunset still have direct effects on mood, perhaps through

an interaction with schedule. For example, if a worker anticipates eating dinner in

"Estimates are presented in Table IX.
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darkness, perhaps she is sad and less productive all day. If this were true, it would
create downward bias in our estimates: workers closer to the eastern edge of a time
zone would be sad (reducing productivity) and sleep more (boosting productivity).

There are numerous such possible narratives and we cannot sign the potential net bias.

3.3 Wage timing mismatch and measurement error

Aside from the instrument validity discussed above, there is an additional issue inher-
ent in studying wages instead of directly studying productivity—the timing mismatch
between the observations of sleep, sunset, and control variables on one hand, and wages
on the other. Sleep and sunset vary daily, but wages are likely set infrequently. Because
there are seasonal trends in sunset time and sleep, one might worry that this timing
mismatch could lead to inference failures. The question becomes whether we should
use daily sunset to predict daily sleep, or instead use an alternative measure of sunset
time to predict a longer-term measure of sleep.

Both options involve trade-offs. The primary benefits of using daily sunset to
predict daily sleep are three-fold: first, we observe sleep at the daily level, so the natural
frequency for the first stage of Equation (1) is daily. Second, if wage setting is non-
annual for some workers, using daily sunset time provides us with additional identifying
variation. Third, daily sunset time reduces potential endogeneity from worker location
choice. The cost is the potential introduction of measurement error. Fortunately, the
degree of measurement error can be calculated fairly precisely by modeling the data
generating and sampling process.

Consider wages set every 1" days, and let the current wage setting period be indexed
by 7, as in Equation (1). Let y, refer to the day of the year on which the 7" wage
setting event begins. Thus, y, can be defined recursively by y, = mod(y,-—1,365) given
an initial wage setting date. Daily date is indexed by ¢.%

Let sleep on a given day ¢t € 7 be a function of average annual sleep, T, a seasonal

8Note that 7 both indexes the wage setting periods and refers to ¢ such that y, + 1 <t <y, +T.
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trend, and a mean zero error term over the period 7, denoted by €g,. In particular

Tsy =Ts+Ts(t) + €sr

=Ts+ Acos(0t) +esr (5)

where 6 = 360/365 degrees and A is the amplitude of the seasonal trend in sleep. This
choice of functional form is highly tractable, but not arbitrary: it derives from the
known functional form underlying sunset seasonality given in Appendix Section B.

Suppose wage is set based on average sleep

1 yr+T
wr = > (Ts+Ts(d) +esr)
d:y7+1

so to obtain correct inference, we would like to estimate
wy = BoTlsr + &7

which would yield 5’0 = 1. There is a problem, however—we do not know 7. Instead

we observe one uniformly random draw of sleep for a date ¢t € 7 with which we estimate
wr =a+ B Ts +&r (6)

This is a simplified version of Equation (1) where other covariates have been dropped

for ease of interpretation and analysis. Estimating 31 with OLS yields®

Ao E[agﬂ']
= Yar(Ts() + BIe%,)

where the variance of the seasonal component of sleep, Ts(t), comes from the sampling
process. This value is also equal to the attenuation associated with using daily sleep
rather than period 7 sleep.

Expected attenuation is greatest when wages are set once annually. In that case,

9See Appendix Section C for the derivation and further details.
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var(Ts(t)) = A?/2, and the attenuation from using daily sleep becomes'”

Eleg,]
(42/2) + E[e2.]

(7)

The equation is almost identical to the classical measurement error formula (Carroll
et al., 2012), with the true variance given by E[¢% ] and the measurement error being
controlled by the amplitude of the seasonal sleep process. Calibrating A and E[ng]
with ATUS data yields A = 0.1 and E[e%_] = 2.0, which would make attenuation equal
to 1%. Using the estimate of within individual annual sleep variance (which might be a
closer empirical analogue to the variance of sleep in the model) from Lauderdale et al.
(2008) of 0.15 gives an expected attenuation of 3.3%. In either case, the worst-case
attenuation is extremely slight. Intuitively, this is because the cross-sectional variation
in sleep dominates the measurement error created by small seasonal fluctuations. Thus

we believe that the benefits from using daily sunset and sleep outweigh the costs.

4 Data

The most recent and largest data set from the United States containing both sleep
time and wage information is the American Time Use Survey (ATUS), which asks a
subset of Current Population Survey (CPS) participants to fill out a time use diary for
one day. ATUS began in 2003 and the most recent data are for 2012. For this study,
we use the sample of individuals who report receiving positive weekly wages from a
primary or secondary job and who sleep between 2 and 16 hours per night. Summary
statistics for variables of interest are given in Table I along with a comparison between
early and late sunset time areas. The table shows values for all individuals who report
earning a weekly wage. In the appendix, we discuss data processing in more detail.
Aside from giving basic information on the sample, Table I also provides initial
evidence in support of our main results. One can see that early sunset locations have
significantly higher wages and sleep duration than areas with later sunset times. In
contrast, other individual characteristics are well balanced across the two groups. Out

of 11 other tests, only one difference is significant—the fraction of the population with

10 Again, see Appendix Section C for details.
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Table I: ATUS Summary Statistics

Early Sunset Late Sunset Difference

Variable Mean/(SD)  Mean/(SD) (SE) Obs.

Weekly earnings 836.4 823.3 13.09%%* 71,947
(632.6) (618.8) (4.67)

Hourly wage 15.28 15.10 0.18* 40,352
(9.532) (9.225) (0.093)

Sleep 8.369 8.248 0.12%%* 71,947
(2.016) (1.983) (0.015)

Sunset time 17.64 20.10 -2.46*** 71,947
(0.745) (0.548) (0.0049)

Work hours 4.090 4.075 0.015 71,947
(4.297) (4.298) (0.032)

Female 0.531 0.526 0.0043 71,947
(0.499) (0.499) (0.0037)

Age 41.67 41.56 0.12 71,947
(12.80) (13.02) (0.096)

Race, white 0.820 0.823 -0.0028 71,947
(0.384) (0.382) (0.0029)

Race, black 0.123 0.123 0.0001 71,947
(0.329) (0.329) (0.0025)

Weekend 0.509 0.506 0.0032 71,947
(0.500) (0.500) (0.0037)

HS or less 0.341 0.352 -0.0114*** 71,947
(0.474) (0.478) (0.0036)

Some college 0.288 0.288 0.0005 71,947
(0.453) (0.453) (0.0034)

College 0.232 0.229 0.0033 71,947
(0.422) (0.420) (0.0031)

Number of children 0.992 0.986 0.0062 71,947
(1.134) (1.131) (0.0085)

Ever married 0.748 0.747 0.0013 71,947
(0.434) (0.435) (0.0032)

Notes: Summary statistics for two sub-samples from ATUS are shown. Early
sunset is defined as having a sunset time earlier than the median, and late
sunset time is later than the median. Significance is determined from a t-test
on the difference between means.

a high school degree or less. This difference works in the direction of explaining the
difference in wages in the two groups, but other (insignificant) differences work in the

opposite direction. Results controlling for these characteristics are reported in Sections
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5.1 and 5.2.

To assign locations to individuals in ATUS, we began by merging the ATUS data
with the corresponding CPS data (the match rate was 100%). For a given individual,
the CPS data often contain location at the county level. This variable is censored
for individuals living in counties with fewer than 100,000 residents. When county is
available, we assign the county centroid as an individual’s location. We have county
location for approximately 44% of ATUS observations and 42% of workers. For re-
maining individuals, ATUS contains location at the state level. We assign the 2010
population-weighted state centroid (computed by the Census) as the location for these
individuals. In all cases where we refer to Federal Information Processing Standards
(FIPS) codes, we are referring to either the county level code (FIPS 6-4), if available,
or the state level code (FIPS 5-2) where the county level code is unavailable.

Nighttime sleep is our primary sleep measure and is calculated net of naps. We
define a nap as any sleep that starts and ends during daylight hours on the date of
diary entry. ATUS gathers data on all sleep during the course of a single 24 hour
period for each individual, so there are potentially other ways to calculate naps, and
our results are robust to alternative definitions. By removing individuals who sleep
fewer than 2 hours per night, we also likely remove night-shift workers.

Our primary wage measure is “usual weekly earnings” as reported in ATUS. This
variable is defined for all respondents who have positive labor income and are not self-
employed. It is top-coded above $2,884.61. We also estimate a version of our model
including only workers who receive an hourly wage, “hourly earnings at main job”
as reported in ATUS. This variable is likewise top-coded at the level such that hourly
earnings multiplied by usual weekly hours equals $2,884.61. Some control variables (e.g.
occupation codes) appear in both ATUS and CPS files, with very minor differences
across the two versions. Where possible we use ATUS variables. Some variables (e.g.
race) are available only in the CPS.

The main shortcoming of ATUS is that it asks a new cross section of individuals
for time use diaries each year, so we cannot construct an individual-level panel. As

the summary statistics make clear, however, it offers a rich set of covariates including
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education, gender, race, and household characteristics. For a more detailed description
of ATUS, see Hamermesh et al. (2005). Importantly, ATUS also releases the exact
date that the survey was conducted. Using this date and respondent location, we are
able to determine sunset time for each individual in the dataset using solar mechanics
algorithms from Meeus (1991).

The Quarterly Census of Employment and Wages (QCEW), collected by the US
Bureau of Labor Statistics, includes information on wages and employment (workers,
not hours) at the county level. We construct a panel in counties, 1990-2012, in order to
investigate reduced-form effects of our instrument. Table X, in the appendix, presents

summary statistics.

5 Results: Linear effect of sleep on wages

5.1 Linear results

The primary question we wish to address is whether a marginal increase in sleep will,
on average, change hourly wage. Here, we present results from ATUS on this question.
Estimation methodology is described in Section 3.1.

Table II shows estimates of the effect of sleep on wages using the sunset time
instrument described in Section 3.2. The first column reports the first-stage estimates
for sleep as a function of sunset time. Sunset time is a significant predictor of sleep
duration, in the direction expected from the discussion in Section 3.2: a later local
sunset time causes an individual to sleep less. The raw correlation between sleep and
wage (Column 4) is slightly negative, as we would expect given strong reverse causality.
Using the sunset time instrument, however, the effect of sleep on wage of 16% is large,
positive, and significant. Based on Section 3.3, we interpret this as the estimated effect
of increasing average sleep over the wage setting period 7.!1 This effect is larger than
most estimates of the return to an additional year of education (Psacharopoulos and
Patrinos, 2004). We cluster standard errors at the FIPS code level (county or state)

to reflect that the exogenous variation is at the group rather than the individual level.

"Note that our coefficient estimate of 0.15 corresponds to a 16% change. Applying the maximum atten-
uation correction from Section 3.3 would move this estimate to 16.7%.
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Table II: Linear ATUS Estimates

First stage Reduced form 2SLS OLS
Sleep In(earnings)  In(earnings) In(earnings)
Sunset time -0.057%** -0.0085***
(0.0057) (0.0019)
Sleep 0.15%%* -0.017#%*
(0.036) (0.0013)

Individual controls Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes
Time controls Yes Yes Yes Yes
Occupation Yes Yes Yes Yes
Observations 71947 71947 71947 71947
Adjusted R? 0.123 0.410 0.284 0.411
F-stat on IV 101.83

Notes: The table shows results from estimating Equation (1). The first three columns show
the first stage, reduced form, and two-stage least squares estimates. The fourth column
reports the OLS version of the second stage of Equation (1). The dependent variable is
indicated at the top of each column. Earnings refers to “usual weekly earnings”. Controls
are listed in Table I and are latitude, an indicator for female, age, age?, race indicators, day
of week of interview indicators, a holiday indicator, year indicators, and a set of occupation
indicators. Standard errors clustered at the FIPS (county or state) level are reported in
parentheses. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

Note that clustering at higher levels does not change the inference. We have clustered
up to the state level without any appreciable difference in standard errors.

Note also that a one-hour increase in sleep represents a non-marginal change: ap-
proximately 12% at the mean value of 8.3 hours in the ATUS data. The implied
elasticity of wage with respect to average nightly sleep is 1.1. This is similar to the
result in Van Dongen et al. (2003), which shows that the elasticity of attention lapses
in laboratory tasks with respect to cumulative waking time is about 1.1. Interpreting
this result in units closer to a true marginal change, increasing average nightly sleep
by 6 minutes raises wages 1.5%.

The first-stage F statistic of 101.8 well exceeds the relevant Stock-Yogo critical
value of 16.4, so we reject the null hypothesis of weak instruments, where “weak” is
defined as true size greater than 10% for a nominal 5% test (Stock and Yogo, 2002).

This reassures us that the results of our t-tests are reasonable.
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Using the bias calculation described in Section 3.1, we can estimate another inter-
esting parameter: the semi-elasticity of sleep with respect to wage. This is the same
object studied in Biddle and Hamermesh (1990). In that study the authors find that a
one percent wage increase decreases sleep by 141 minutes on average, 181 for men and
61 for women. Together our OLS and IV estimates from Table 5.1 imply a decrease
of 77 minutes, roughly in line with the established result. This provides additional
evidence that our estimating equations are reasonably well specified.

Several nuances bearing on the interpretation of our estimate warrant discussion.
First, our instrument affects all workers in a location identically, which changes the
interpretation of our results if there are productivity spillovers across workers. While
we do not know if sleep generates such spillovers, Moretti (2004) finds evidence that
human capital does. In such a case our estimated 3 captures not the effect of increasing
individual sleep, but rather the effect of increasing sleep for all workers in a location.
Second, managers might set wages based on average productivity in a location rather
than individual worker productivity. Under this assumption, an increase in sleep by an
individual would have no effect on her wage, as it would not appreciably change average
productivity. In a case like this, our estimate captures the effect of increased sleep by
all workers on average productivity, rather than an individual-level effect. Finally, it is
possible our instrument influences both sleep duration and sleep quality. This is true,
however, of any exogenous variation in sleep, even in a laboratory setting. In such a
case our estimates are still consistent for the effect of an exogenous sleep change, but
the interpretation changes slightly.

Table IIT shows the same results as Table II but only for workers who report being
paid hourly. These results are quite similar to those for the full sample of workers in
Table II. In principle the coefficients are not directly comparable, since the change in
weekly wage could include both wage and hour effects. As we show below, however,
our instrument is not highly correlated with hours worked, so the two tables represent
roughly the same change. Moreover, the elasticity of wage with respect to sleep from
the hourly wage estimates is 1.2, almost identical to that for the weekly wage.

In part, we examine hourly wage earners to address concerns like those raised in
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Table III: Linear ATUS Estimates: Hourly workers

First stage Reduced form  2SLS OLS

Sleep In(wage) In(wage) In(wage)

Sunset time -0.059%+* -0.00717%%*
(0.0068) (0.0016)
Sleep 0.12%**%  _0.0071%**
(0.032)  (0.0010)

Individual controls Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes
Time controls Yes Yes Yes Yes
Occupation Yes Yes Yes Yes
Observations 42247 42247 42247 42247
Adjusted R? 0.110 0.439 0.206 0.439
F-stat on IV 74.68

Notes: The table shows results from estimating Equation (1). The first three columns
show the first stage, reduced form, and two-stage least squares estimates. The fourth
column reports the OLS version of the second stage of Equation (1). The dependent
variable is indicated at the top of each column. Wage refers to hourly wage for those
workers who report being paid hourly. Controls are listed in Table I and are latitude,
an indicator for female, age, age?, race indicators, day of week of interview indicators,
a holiday indicator, year indicators, and a set of occupation indicators. Standard
errors clustered at the FIPS code level are reported in parentheses. Significance
indicated by: *** p<0.01, ** p<0.05, * p<0.1.

Borjas (1980) about the use of constructed hourly wage measures. Note that we do
not include usual hours worked as a control variable in the main specification. This
has been done intentionally to allow the worker to take additional sleep time out of
either work time or other (non-work, non-sleep) time. By controlling for work time,
we would be forcing all changes in sleep to come out of other time, likely biasing our
estimates upward. Nonetheless in one of our robustness checks we also control for a
quadratic in hours worked and the results are qualitatively unchanged.

The hourly wage results also allow us to explore one interesting possible source of
heterogeneity between salaried and hourly workers. One might expect that salaried
workers are engaged in less routine tasks so attention lapses or other sleep-driven
performance changes might be more costly. We do not find a substantial or significant

difference between the two groups here, but we take a more detailed look at this
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comparison in Sections 5.4.1 and 5.4.2.

Taking average values for wages, hours worked per week, and assuming 50 work
weeks per year, one can calculate the annual income effect of sleeping an additional
amount each day. If the worker were to sleep an extra hour and take that entire hour
out of non-work time, thus holding work time fixed, our estimated wage effect implies
that annual income would rise by about $6,000. Increasing sleep by reducing work
by the full hour each day would actually lead to a loss of income of $2,200 per year.
In reality, extra sleep comes out of both work and non-work time. If a worker took
roughly 74% of the extra sleep hour out of work time, then he or she would just break

even on income.

5.2 Robustness checks

We test the sensitivity of our primary results to a wide variety of robustness checks.
Broadly, we examine the inclusion or exclusion of controls, changes to the estimation
sample, variations in how geography is treated, and placebo tests. We also conduct
a deeper exploration of seasonality and geographic sorting that might invalidate our
instrument in Section 5.3. All of these checks indicate that the results reported above
are extremely robust to varying assumptions and changes in estimation technique.

In particular, we first show the linear results hold under alternative control variable
specifications in Table IV. The first pair of rows show that including a quadratic in
usual hours worked does not move the coefficient estimate appreciably. As discussed
above, we exclude hours worked from the primary specification to avoid bias from
forcing sleep increases to come at the expense of leisure. Moreover, without additional
instruments, the inclusion of hours worked is not well identified. That its inclusion does
not move the coefficient estimate, however, reassures us that bias from work hours is
not driving our result.

Next, we include only latitude as a control, without any other covariates. Although
the exclusion restriction for the validity of our instrumental variable estimate is based
on the error term for the full model, it is reassuring to see that the coefficient on the no-

controls model is very close to the baseline specification (a hypothesis test fails to reject
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Table IV: Robustness of ATUS estimates: Controls

First stage Reduced form 2SLS
Sleep In(earnings) In(earnings)

Usual work hours quadratic
Sunset time —0.056***(0.006) —0.013***(0.002)
Sleep 0.225**%(0.040)
Only geographic controls
Sunset time —0.053***(0.006) —0.011***(0.003)
Sleep 0.215%%K0.059)
No occupation indicators
Sunset time —0.057***(0.006) —0.009***(0.002)
Sleep 0.152*%0.046)
Additional individual controls
Sunset time -0.057**%0.005) -0.009**%0.002)
Sleep 0.166™*%(0.037)
Notes: The table shows results from estimating Equation (1). Dependent vari-
able is indicated at the top of each column. Unless otherwise noted, controls,
number of observations, and standard error clustering are the same as in Table
II. For the final group, additional controls are an interaction of Hispanic with
existing race indicators, indicators for 5 education levels, 6 indicators for mari-

tal status, and number of children in the household. Significance indicated by:
ik p<0.01, ** p<0.05, * p<0.1.

the null hypothesis of zero difference in these two estimates). The controls do make
the coefficient estimate more precise, however, as can be seen by comparing standard
errors between the main result and robustness check. This result implies that sunset
time is not highly correlated with the covariates in the main specification, which also
provides initial evidence against sorting on sunset time. In the second set of results we
implement a less drastic change in control variables, removing occupation indicators
from our preferred specification. These variables are potentially endogenous, so it is
important to show that our coefficient estimate does not change with these variables
excluded.

In contrast to the first two sets of robustness checks, we next add a richer set
of individual controls. These include interactions of race indicators from the main
model with an indicator for whether the individual is coded as Hispanic, education

category indicators, marital status, and the number of children younger than 18 in the
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household. Adding these additional variables does not change the results.

The second set of robustness checks, presented in Table V, deals with changes to the
sample. First, we show that our results hold even with the inclusion of naps. For this
specification, we still truncate sleep above 16 hours or below 2 hours per day, but we
do not exclude daytime sleep, so the specification likely includes night-shift workers.
We have explored many variations of this specification, including keeping naps but
excluding night-shift workers, defining naps based on various fixed time windows, and
not excluding any individuals. The results are robust to each of these variations and

are available upon request.

Table V: Robustness of ATUS estimates: Sample

First stage Reduced form 2S5LS
Sleep In(earnings) In(earnings)

Sleep and naps
Sunset time -0.033*%0.006) -0.008***0.002)
Sleep and naps 0.246™*(0.070)
Observations 72394 72394 72394
Only full time workers
Sunset time -0.055**K0.007) -0.012**K0.002)
Sleep 0.215%*%0.047)
Observations 58198 58198 58198
No weekend diaries
Sunset time -0.043***0.007) -0.007**%0.002)
Sleep 0.168***%(0.063)
Observations 35454 35454 35454
No time zone border counties
Sunset time -0.049*%K0.007) -0.007**%0.002)
Sleep 0.136**%0.053)
Observations 45799 45799 45799

Notes: The table shows results from estimating Equation (1). Dependent variable
is indicated at the top of each column. Unless otherwise noted, controls, number of
observations, and standard error clustering are the same as in Table II. Significance
indicated by: *** p<0.01, ** p<0.05, * p<0.1.

Next, in the main specification, we do not control for full-time or part-time status

of the individual, because we are interested in wage rather than income and we want
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to avoid introducing endogenous variables. The second specification, however, shows
that our main results still hold even when we drop part-time employees entirely. In
unreported results, controlling for full-time status also leaves the estimate unchanged.

ATUS oversamples weekends so that roughly half of the total observations are from
weekend dates (see Table I). We account for this by including day of week indicators
in our main specification to allow for different average sleep amounts on each day. We
also try dropping the weekend diary entries entirely. The estimate is almost identical to
baseline, and despite losing more than half of the sample, still highly significant. Lastly,
we estimate our preferred model excluding counties within four degrees longitude of a
time zone border. This drops all counties that might have selected into a time zone
based on economic considerations. Again our results are essentially unchanged.

In a series of additional robustness checks, reported in Appendix Section D, we
test alternative geographic controls, run placebo tests on the first stage and reduced
form, and conduct other minor verifications. In perhaps the most important of these
checks, we show that dropping any single time zone does not change our result. This is
particularly important for the Eastern Time Zone, which one might believe is driving
results due to high coastal wealth concentration.

All of these robustness checks support our primary result. Overall, the first-stage
coefficient on sleep is remarkably stable between —3% and —6%. Delaying local sunset
by one hour reduces sleep by approximately 5 minutes. The estimate is always signifi-
cant at the 1% level. Likewise the reduced-form estimate on our instrument is stable
near —1%. The overall pattern of results, showing stability of the coefficients under

different reasonable control sets, supports our assumption of instrument validity.

5.3 Instrument validity

The robustness checks in Tables IV and V provide evidence against some of the more
plausible potential omitted variable or specification failures. In the following subsec-
tions, we conduct more direct tests for some of the potential identification failures

discussed in Section 3.2.
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5.3.1 Seasonality

First we empirically explore potential bias from seasonality. Sunset time and sleep
exhibit seasonal trends, and although Section 3.3 shows that these trends are not
inherently problematic, if wages exhibit additional seasonal trends, we might find a
spurious effect driven by these seasonal patterns. Our wage data, however, do not
exhibit discernible seasonality. Figure III shows estimates from a regression of log
weekly wage on 365 day-of-year indicators. There is no apparent seasonal pattern,
suggesting that the inclusion of such dummies in our primary models would not be
appropriate. By reducing the variation in sleep and sunset time, seasonal dummies
might lead to over-fitting problems. In Appendix Table XIV we show that the sign
and significance of our sleep estimate survive the addition of day of year indicators,

but the estimate becomes large, consistent with over-fitting.

Figure I1I: Wages do not exhibit seasonality

Coefficient value
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Day of Year

Notes: Figure shows point estimates and 95% confidence intervals from
a regression of log weekly wage on 365 day of year indicators and an
intercept.

Preserving the seasonal variation in sunset time has one additional attractive fea-

ture. As discussed above, seasonal variation in the angle of incidence of the sun on
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the Earth—the solar declination—breaks the simple link between distance from a time
zone boundary and daily sunset. This helps mitigate concerns about sorting, which we

next address in more detail.
5.3.2 Sorting

We might worry that workers sort across locations in ways that will create correlation
between unobservable variables and our instrument. For sorting to threaten identifica-
tion, workers would have to sort based on the timing of daylight. Sorting on daylight
duration would not bias our estimates, as we hold daylight duration fixed. Note that
even if workers actually sort on the sunset-induced wage differential, we can still test
for the problem by examining sorting on sunset.

Before proceeding with empirical tests, it will be helpful to consider a few theoretical
points. First, a worker who decides to sleep more need not move to another city; she
can simply sleep more. Only if workers suffer some optimization failure, like an inability
to commit to a particular bedtime, will they have an incentive to sort. Second, workers
care about real, not nominal, income. If home prices in more productive (higher sleep)
locations adjust to offset wage gains, workers will not have a financial incentive to move.
This is exactly the prediction of a sorting model like Roback (1982). With perfect
worker and firm mobility, the gains from a productive location-specific amenity accrue
to owners of land, the fixed factor. Such a model predicts that locations with earlier
local sunset times will have higher rents and house prices, even without worker sorting
on ability. Using county-level Census data from 2010, Table VI provides evidence that
this is indeed so. We regress log median county home value on average sunset time

and a rich set of controls.

In(median home value); = Bsunset; + x;y + ¢;

A county experiencing sunset one hour earlier than a comparison county will have, on
average, a median home value approximately 6% higher. This result is statistically
significant at the 5% level. In levels, the estimated effect on median home value is

approximately $7,000 if sunset is an hour earlier. Based on the discussion following
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Table II, a worker’s annual income gain from moving to a location where sunset is
an hour earlier is approximately $340. The present discounted value of this increase,
assuming a five percent discount rate, is approximately $6,800. This result implies that
the wage gains from additional sleep in a location accrue to landowners, not workers,
and workers do not have an incentive to sort on sunset time.

Table VI: Effects on log median home value

Log value Log value Log value

Sunset time -0.0659**  -0.0596**  -0.0447**
(0.0261) (0.0254) (0.0213)
Location attributes Yes Yes Yes
Population and migration No Yes Yes
Education and labor No No Yes
Observations 2824 2824 2824
Adjusted R? 0.646 0.662 0.792

Notes: White standard errors are reported in parentheses. Signif-
icance indicated by: *** p<0.01, ** p<0.05, * p<0.1. Data are
2010 5-year ACS estimates. Sunset time is the average for a given
county. Location attributes include latitude, land area, state dum-
mies, and dummies for Census rural-urban categories. Population
and migration controls include 2010 population, net migration,
and net population change. Education and labor controls include
shares with less than HS, HS, some college, and college education,
plus unemployment rate and civilian labor force.

Our hedonic results support our interpretation of the findings in Section 5.1 and are
consistent with a general equilibrium model in which workers do not sort on ability.
They could also, however, be consistent with worker sorting. Therefore we conduct
direct sorting tests: first, we examine historical population growth patterns in response
to time zone creation in 1883 and 1918. Second, we examine the relationship between
current county-level characteristics and sunset time. Figure IV shows the county-level
growth patterns around the dates of the 1883 and 1918 time zone implementations. For
both figures, the 10% of counties that are closest to the eastern or western time zone
boundary are considered to be on the eastern or western side, respectively. The dashed
lines show median population growth rates (inter-census) for eastern side counties, and

the solid lines show the same for western side counties. The composition of these groups
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differs between the two panels due to changes in the location of the 1883 versus 1918

time zones.
Figure IV: Historical time zone sorting
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Notes: The figure shows median growth rates between censuses in counties on the eastern
and western edges of the 1883 (left panel) and 1918 (right panel) time zones. Eastern
counties are represented by the dashed line and western counties are the solid line. All data
are from Haines and Inter-university Consortium for Political and Social Research (2010).

If gross sorting were occurring, one would expect eastern side counties to grow faster
than western side counties after time zone implementation. Indeed, one might even
expect the incentive to sort with respect to the 1883 time zones to be stronger than in
the present day due to the lack of electrification. Instead, one can see that there is no
evidence of gross sorting in response to the 1883 time zone. After implementation, the
two regions of the time zones grow at almost identical rates. Growth rates around the
1918 law are more volatile but tell a similar story. Western side counties experience a
slightly larger drop in growth rates after 1918 compared to eastern side counties, but
the difference in changes between the two groups is not significant.

Table XII in the Appendix compares present-day county level characteristics by
regressing a number of demographic variables on sunset time. Out of nine variables,

we find only one case—the unemployment rate—that is significant at the 10% level,
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which is not surprising given the number of tests conducted. Moreover, the results
suggest that unemployment is lower for locations with later sunset time; the reverse of
what we would expect if sorting or selection was driving our result. Finally, Table IV
also provides present-day sorting evidence by indicating that our estimate is robust to
the inclusion or exclusion of individual characteristics. This indicates that people of
different ages, genders, race, and education levels are exposed to roughly equal sunset
times, on average, across the United States.

Taken together, Table IV, Table XII, and Figure IV suggest that sorting does not
bias our results. The lack of sorting is perhaps unsurprising given the extremely small
wage differences implied by our reduced-form results: even at the extremities of the
widest (Central) time zone, the wage differential between two locations at a given
latitude is less than one percent. There is however, one particular form of sorting we
cannot exclude. If more productive workers sort into locations with earlier sunset,
if that inflow is exactly matched by outflow of less productive workers, and if these
workers have similar observable characteristics, our sorting tests will not reveal this
pattern. While this is a knife-edge case, we cannot rule it out, and such behavior

would bias our estimated wage effects upward.
5.4 Additional linear results

5.4.1 Heterogeneity

There is some disagreement in the medical studies of sleep about whether sleep de-
privation effects cognitive or manual tasks more. For instance Samkoff and Jacques
(1991) argue that routine mental tasks might suffer from lack of sleep, but that perfor-
mance on novel tasks does not decline. In contrast, the PVT used in Van Dongen et al.
(2003) to measure sleepiness involves repeated mental tasks combined with a simple
manual action (pressing a button). Performance on the PVT declines monotonically
with sleepiness. To shed some light on the question of whether sleep impacts cognitive
or manual tasks more, we investigate differences in the effect of sleep for high- and
low-educated workers.

Table VII presents results from a variant of our model where sleep interacts with
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Table VII: Linear ATUS Estimates: by Education

First stage Reduced form 2SLS
Sleep In(earnings)  In(earnings)
Sunsetx HS or less -0.0696***  -0.00349
(0.00987)  (0.00353)
Sunset x Some college or more  -0.0526***  -0.00814***
(0.00616) (0.00274)
Sleepx HS or less 0.0436
(0.0554)
Sleepx Some college or more 0.156***
(0.0568)
Observations 71947 71947 71947
Adjusted R? 0.122 0.330 0.239
F-stat on IV 53.66

Notes: The table shows results from estimating a variant of Equation (1) modified by
interacting sleep with two educational attainment indicators: one for high school com-
pletion or less, the other for some college or more. These indicators are also included as
controls. Dependent variable is indicated at the top of each column. Controls and sample
are the same as in Table II. Standard errors clustered at the FIPS level are reported in
parentheses. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

two indicators for educational attainment: one for high school completion or less, the
other for some college or more. The first-stage estimates are quite close to each other
and to the estimate from our main specification. The reduced-form and 2SLS estimates,
however, show much larger wage effects on more educated workers. A test for equality
of the 2SLS coefficients returns a p-value of 0.15, so we cannot reject the null at a
conventional threshold. Nonetheless these results provide suggestive evidence that the
productivity of higher-educated workers may be more sensitive to sleep than that of
lower-educated workers. In unreported results, we investigated possible heterogeneity
on other dimensions, including race and gender, and generally found quite similar point

estimates for different groups.

5.4.2 County average wages

To corroborate the results from ATUS data, we also estimate reduced-form models

using data from the BLS Quarterly Census of Employment and Wages (QCEW). Unlike
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ATUS, QCEW data allow us to observe all US counties. In the following equation, 4

indexes county and t quarter-year

In(wi) = oy + ¢ + Psunsetyy + g4 (8)

Table VIII: Effects on average wage

All industries  Goods Services

Sunset time -0.00647**  -0.0124*** -0.00369**
(0.00311) (0.00328) (0.00178)

Latitude Yes Yes Yes
State FEs Yes Yes Yes
Year x Quarter FE Yes Yes Yes
Observations 287399 283430 284307
Within R? 0.88 0.81 0.89

Notes: Standard errors are reported in parentheses. Clustering is at
the county level. Significance indicated by: *** p<0.01, ** p<0.05,
* p<0.1. Data are from the BLS Quarterly Census of Employment
and Wages. Sunset time is the quarterly county average.

The dependent variable is the average weekly wage per worker. We include state
fixed effects and dummies for quarter-year. Results appear in Table VIII. Importantly,
these results suggest that seasonal trends do not bias our primary results: we can
include a rich set of seasonal controls and recover approximately the same reduced-
form estimate (-.65%) as our preferred ATUS specification (-.85%). The estimate for
goods (-1.2%), is substantially larger than for services (-.4%). This difference could
indicate sleep is more important to productivity in goods, or it could simply be the
product of a noisier wage-setting process in services, where productivity may be harder
to observe. There is some superficial tension between these results and those from Table
VII, which show larger effects on more educated workers. It is important to bear in
mind that the sectoral division into goods and services is not equivalent to a division
into high- and low-skill workers. The goods sector, for example, includes managers,

technicians, and electrical engineers.
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5.4.3 Other time uses

Our primary analysis demonstrates that workers experiencing an earlier sunset get more
sleep. It is natural to ask where the additional sleep time comes from, and the answer
to this question informs the interpretation of our estimates. Previous work has found
a relationship between sleep and hours worked (Biddle and Zarkin, 1989). If workers
are increasing sleep by decreasing work time, our estimates reflect the combined effects
of these two changes. Table IX, however, shows that our instrument does not strongly
affect hours worked. As discussed in Section 3.2, this ameliorates one type of concern
about our exclusion restriction. Later sunset does, however, increase time devoted to
waking non-work activities, like leisure and home production. The estimates in Table
IX imply that delaying sunset by one hour increases the time devoted to waking non-
work activities by approximately two minutes. If these changes in waking non-work
time impact wages, our estimates remain a combination of effects from increased sleep
and decreased non-work time. If, however, waking non-work time does not have wage

effects, our estimates should be interpreted as the result of sleep changes alone.

Table IX: Non-work time as a function of sunset time

Work time Non-work time

Sunset time 0.0021 0.027#%*
(0.010) (0.0098)

Individual controls Yes Yes
Geographic controls Yes Yes
Time controls Yes Yes
Occupation Yes Yes
Observations 71947 71947
Adjusted R? 0.353 0.246

Notes: The table shows results from estimating the first
stage of Equation (1), replacing sleep time with either work
time or waking non-work time as the dependent variable.
Dependent variable is indicated at the top of each column.
Unless otherwise noted, controls, number of observations,
and standard error clustering are the same as in Table II.
Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

Recall that in Section 2.2, we found the sign of the derivative 9T, /Oc, the derivative
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of leisure time with respect to the parameter «, was theoretically ambiguous, depending
on wage and hours worked. In a regression of waking non-work time on sunset time
(as in column 2 of Table IX), this prediction corresponds to smaller, possibly negative,
coefficients on sunset time for workers with low wages and high work hours. To test this
prediction, we estimate separate regressions for these groups. (Results are reported in
Appendix Table XIII.) The results are consistent with our theoretical predictions. For
individuals with high work hours, the coefficient on sunset time is modestly smaller,
though still positive. For low-wage workers, the coefficient is negative, in marked

contrast to the overall result from Table IX.

6 Results: Nonlinear estimates

Figure V shows a local polynomial fit along with 95% confidence interval for the scatter
plot of residual instrumented sleep against residual wage. This plot provides evidence
that the relationship between sleep and wage is nonlinear in the way suggested by
the medical literature. In particular, residual wage peaks for moderate levels of sleep
and falls for both high and low levels of sleep, motivating our choice of a quadratic
specification in equations (4).

The left panel of Figure VI presents our nonlinear IV estimates, based on the
parametric estimation strategy from Section 3. The parameters underlying this figure
are presented in Appendix Table XVI along with first stage estimates in Appendix
Table XV. These results provide causal evidence that the sleep-wage relationship takes
the form of an inverted U, peaking around 9 hours. This is consonant with the medical
and epidemiological literature measuring the link between sleep and work performance.
The minimum first-stage F statistic of 40.6 exceeds the relevant Stock-Yogo critical
value of 13.43, so we reject the null hypothesis of weak instruments, where ”weak” is
defined as true size greater than 10% for a nominal 5% test (Stock and Yogo, 2002).

To evaluate the robustness of our quadratic IV specification, we also estimate a
cubic IV specification, an IV with a four-knot linear spline, and two control-function

specifications.'?> The cubic IV provides the right panel of Figure VI. The addition of a

12The IV spline specification requires additional instruments. We square the three instruments used in
our preferred (quadratic) specification, giving us a total of 6 instruments.
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Figure V: Local polynomial fit of residual wage versus sleep
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Notes: The figure shows a local cubic polynomial fit to the data from Table
XVI. Wage residuals are from equations (4), with instrumented sleep excluded
from the wage equation. Residual instrumented sleep comes from an auxiliary
regression of first-stage sleep from equations (4) on our other baseline controls.
An Epanechnikov kernel with bandwidth of 0.07 is used.

Figure VI: Non-linear IV specifications
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Notes: The upper panels are variants of our primary non-linear IV specification (Equation
(4)), allowing for second (left panel) and third (right panel) order terms in sleep. 95%
confidence bands for the quadratic are given by dashed lines. Confidence bands for the
cubic are large and we omit them in the interest of clarity.
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cubic term makes no meaningful difference, producing an inverted U shape with a peak
near 9 hours. In addition, we explore the control function approaches of Newey et al.
(1999) and Kim and Petrin (2013). In these specifications we control for endogene-
ity by including quadratic polynomials in the first-stage residuals in the second-stage
wage equation. The Kim and Petrin model also demeans the higher-order residual
terms with respect to the instruments and interacts all residual terms with the in-
struments. In both control-function approaches, sleep enters the wage equation as a
fourth-degree polynomial. In contrast to our more conventional IV specifications, these
control function specifications find very little evidence of non-linearity. Plots of all esti-
mated functions, including splines and control-function estimates, appear in Appendix
Figure X.

The sensitivity of our non-linear IV results to specification recommends caution.
While we find an inverted U in most specifications, the location of the peak (wage-
optimizing sleep) is modestly sensitive to the choice of specification. This nonlinearity
has important implications for how sleep should be viewed in a personal optimizing
framework. Because the marginal effect of sleep on wages is negative at high sleep
levels, the simple linear income extrapolation in Section 5 overstates the impact of
sleep for individuals who already sleep a lot. For more on the interpretation of our

nonlinear results, see Appendix Section E.

7 Conclusion

Although time use is entangled in a causal web with labor market outcomes, economists
have largely neglected these relationships. In particular, the profession has paid scant
attention to sleep. Our results demonstrate that sleep has a powerful impact on labor
market outcomes and should be considered an integral part of a worker’s optimiza-
tion problem. Using individual time-use diaries matched with labor market variables
from ATUS, we show that increasing average sleep by one hour per night produces a
16% higher wage. Our use of instrumental variables techniques addresses the reverse-
causality and omitted variable problems that would bias naive estimates. We buttress

this finding with reduced-form evidence from BLS county wage data and a hedonic
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model of home prices.

Sleep is arguably the third most important determinant of productivity, following
ability and human capital. A one-hour increase in average sleep boosts productivity by
more than a one-year increase in education (Psacharopoulos and Patrinos, 2004). This
finding has important implications for individuals, firms, schools, and governments. A
worker who desires higher wages might be able to obtain them by increasing sleep.
Firms might be able to increase profit by varying start times, providing workers with
incentives to sleep more, or with information interventions (e.g. information on how to
improve sleep quality or consistency). Governments conducting cost-benefit analyses
of policies that change sleep time, for example daylight savings time, should consider
the productivity effects to design efficient policies.

The medical literature has investigated sleep impacts on a variety of outcomes,
routinely finding a nonlinear relationship. Motivated by these findings, we examine
possible non-linearities in the sleep-wage relationship. In particular, we demonstrate
that wage-optimizing sleep is approximately 9 hours per night in the United States.
This is modestly higher than average reported sleep. Important heterogeneity in the
population exists, however, as indicated by the 2-hour standard deviation in our sleep
variable. Many workers sleep far below the wage-optimizing level. Further work will
investigate heterogeneity by industry, with particular attention to industries character-
ized by chronic sleep shortages. In addition to wages, optimal sleep plausibly depends
on other factors like leisure complimentarities, direct sleep utility, and health optimiza-
tion. Each of these trade-offs suggests an interesting research question. More broadly,
our results demonstrate that non-labor time uses can have first-order effects on labor
outcomes—effects that should continue to be investigated in future work.

Affiliations: Matthew Gibson and Jeffrey Shrader, Department of Economics, UC

San Diego
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A Data and summary statistics

Figure VII: County level geocoding

% - = '
T v 4
o= e R
= ¥ - "
.' - l"u'j ‘ L
- .y W78
A S
4 Ve 1 0 *’.
| Emssel g
n e ‘lck’ﬁ t”
- g 2 s

Notes: The map shows, in blue, locations in the continental United
States where we are able to geocode ATUS records at the county level.
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Table X: QCEW summary statistics

Variable Mean Std. Dev.

Weekly wage 492.37 171.88
Weekly wage - goods 609.35 240.53
Weekly wage - services 431.84 161.19
Sunset time 18.38 94
Observations 285,680

Notes: All data are from the Quarterly Census of Em-
ployment and Wages at the county level from 1990-2012.

B Solar mechanics

Here, we provide a brief summary of how sunset time is calculated and a glossary
of terms. We calculate sunset, sunrise, solar declination, and sunlight duration each
day using the algorithm of Meeus (1991) as implemented by NOAA’s Earth Systems
Research Laboratory (ESRL). The calculator takes inputs of the date, time zone offset,
latitude, and longitude. The Stata code that we used for calculation is available upon
request.

Sunset and sunrise time are both calculated assuming 0.833° of atmospheric refrac-
tion, or the bending of the path of light as it passes through the Earth’s atmosphere.
In practice a refraction correction would need to incorporate information on air pres-
sure and humidity. Also, we calculate sunset assuming an observer with a 0 elevation
change view of the horizon. Over a full county, this assumption should introduce
minimal error.

Sunlight duration is simply calculated as the difference between sunrise and sunset
time for a location on a given day.

Solar declination is the angle of a line segment from the sun to the earth relative to a
plane projected from the equator of the Earth. The solar declination is a function only
of the day of year and time zone offset (to compute fractional days for high-resolution
local time sunset), and changes in solar declination correspond to the seasonal move-

ment of the sun. The highest solar declination, 23.44° occurs on the summer solstice,
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and the lowest solar declination, -23.44°, occurs on the winter solstice. On the equinox,

solar declination is 0°. A rough calculation of solar declination can be made with the
following equation:

360

—23.44 —(d+10

cos (365( + )>

where d is the day of the year. This functional form motivates our choice of seasonal
parameterization for sleep in Section 3.3.

For a much more detailed glossary, see NOAA’s ESRL website.

C Seasonality model

The setup and notation are the same as in Section 3.3: Wages are set every 1" days, the
current wage setting period is indexed by 7, y, refers to the day of the year on which the
7th wage setting event begins, so y, can be defined recursively by y, = mod(y,_1, 365)
given an initial wage setting date. Daily date is indexed by . Sleep on each day is

given by

Tsi =Ts + Ts(t) +es-

=Ts + Acos(0t) + €5, 9)

where 6 = 360/365 degrees and A is the amplitude of the seasonal trend in sleep. Let
n=yr+1and N =y, + 7T so that T'= N —n + 1. Wages are defined as

N
1
wr =7 > (Ts + Ts(d) + esr)
d=n
1
=7 Z(Tg + Acos(6d) + 57) (10)
d=n
Estimating Equation 6, we have
A T T
b = cov(wy, Tst) (1)

var(Tst)
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Note that Tg(t) is not stochastic, but we will abuse notation slightly and set
E[Ty(t)] = s + & Zfiv:nAcos(Gd), so the expectation (and variance) of sleep is with
respect to the sampling process. For a single round of wage-setting starting on day ¢

and ending on day ¢t + 7', substitution and cancellation yield

cov(wr, Tsy) = Elw,Tst] — E[w,]|E[Ts]
= T2 + 2TsE[Ts(t)] + E[Ts(t))> + E[e%,] — T2 + 2TsE[Ts(t)] + E[Ts(t)]?

= E[¢%,] (12)

Let E[e% ] = 025. For the denominator, we can get an abstract expression simply by

noting the independence of T, Ts(t), and g, give
var(Ts;) = var(Ts(t)) + 02g

To find an analytical expression, use the power reduction identity, Lagrange’s iden-

tity, and simplify to find

var(Ts(t Z A? cos? (0d) — ( Z A cos(0d) )

=T <ill (csc(t)(sin(2NO + 6) — sin(2nf — 0)) + 2(N —n + 1)))

<2ff2 (cos(nf) + cos(N) + cot <Z> (sin(NV6) — sin(ne)))>2 (13)

For a single wage setting, this function evaluates to A%2/2 forn = 1 and N = 365, 730, . ..
and oscillates above and below this value for other choices of N. We will argue infor-
mally that the bias is worst for annual wage setting: the intuition is that annual wage
setting creates the largest average error between wages and a random draw from daily
sleep. Algebraically, for any N > 0 such that mod(N, 365) # 0, as the number of wage
setting periods goes to infinity, Equation (13) is evaluated at all points, so the variance
goes to A?/2.

For n =1 and N = 365, the function has a particularly tractable simplification by
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noting that E[Ts(7T")] = 0. Thus

var(Ts(t)) = %(CSC(Q) sin(N0) cos((N +1)8) + N)
A2

2

From T = N and sin(N¢) = 0. Therefore, var(Ts;) = A?/2 + o2.

Plugging this and Equation (12) back into Equation (11), we find

o2
attenuation = ————£5 (14)

(A%/2) + o2
To calibrate the expected attenuation, we need an estimate for the amplitude of the
seasonality of sleep, A, and an estimate for the variance of sleep over the wage-setting
period. The amplitude of seasonality can be estimated by regressing sleep on a non-
linear function of the day of the year. Figure VIII shows one such fit, made by fitting
a local polynomial. Taking the maximum of the black curve minus the minimum and
dividing by two gives 0.15 as the amplitude. One can also fit the model’s parametric
seasonality function to the data by regressing sleep on cos(D#) where D is the day of
the year. The coefficient from this regression, which corresponds exactly with A in the

model, is 0.1.

D Auxiliary linear robustness and results

We relax our linearity assumption on the latitude control by including indicators for
each degree of latitude in the sample (between 19 and 62°). Including these indicators
has almost no effect on the estimates. Indeed, in unreported results, excluding latitude
also does not have an effect. This should be expected since latitude is, by construction,
uncorrelated with average sunset time, however it might still be important to control
for latitude to account for effects stemming from seasonal variation in sunlight timing
and the very strong North-South wage differential in the United States.

Including time zone indicators reduces the precision of the estimates but does not
change the magnitudes. In theory sunset timing operates the same in each time zone,

so one can pool all time zones together, as we have done in the main results. Alter-
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Figure VIII: Sleep seasonality
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Notes: The figure shows a local polynomial fit to sleep data from
ATUS. Calculations use a bandwidth of 10 days and an Epanech-
nikov kernel. Note that the range of sleep in the sample is 2 to 16
hours and the standard deviation is 2.03.

natively, one might believe that each time zone has unique features that interact with
the biological sunset mechanism that we emphasize. The similarity of the main results
to the results including time zone indicators does not support this latter story.

We also remove the eastern time zone entirely, with little impact on the results.
One might worry that the high wealth concentration along the east coast is driving the
results. In fact, dropping any single time zone does not change the results appreciably.

0.2% of the sample has topcoded wages. A tobit accounting for this does not change
the results. Likewise, accounting for the truncation of sleep does not change inference.
Results are available upon request.

We also estimated the first stage and reduced form using placebo values for sleep and
wages. These estimates are reported in Figure IXa and IXb. Panel (a) shows the results
for 1,000 estimates using random sleep values generated by a uniform distribution
bounded between 2 and 16 (the range of sleep observed in our data). Panel (b) shows
similar results with log wage generated by a normal distribution with mean of 2.6 and

standard deviation of 0.5. In both panels, the red lines given the estimate from the
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Table XI: Robustness of ATUS estimates: Geography

First stage Reduced form 2SLS
Sleep In(earnings) In(earnings)

Latitude bins

Sunset time -0.058**%0.005) -0.008***%(0.002)

Sleep 0.137**%0.036)
Time zone indicators

Sunset time -0.055%**%(0.005) -0.007**%0.002)

Sleep 0.132**%(0.037)
Longitude

Sunset time -0.057%%%0.005) -0.008**+0.002)

Sleep 0.148**%0.036)

Longitude and time trend

Sunset time -0.058***%(0.005) -0.008**%0.002)

Sleep 0.144*%%0.035)

No eastern time zone

Sunset time -0.064***0.007) -0.007**%0.002)

Sleep 0.110%%%0.038)
Notes: The table shows results from estimating Equation (1). Dependent variable
is indicated at the top of each column. Unless otherwise noted, controls, number of

observations, and standard error clustering are the same as in Table II. Significance
indicated by: *** p<0.01, ** p<0.05, * p<0.1.

main results in Table II. Reassuringly, the true estimates are far in the left tails of
both sets of placebo estimates, indicating that severe misspecification is not driving
the observed results.

In Table XII we report estimates of county level characteristics as functions of
sunset and latitude.

Table XIV presents results including seasonal dummy variables. As discussed in
Section 5.3.1, there is no seasonality in wages, so the inclusion of these dummies is
over-fitting; these models discard useful identifying variation in sleep. Moreover, the
model in Sections 3.3 and C gives good reason to prefer daily sleep and sunset over
annual sunset and daily sleep. We include these results only in the interest of compre-
hensiveness. Even in these problematic specifications, the sign and significance of our

primary results survive. Addition of quarter of year indicators leaves the first stage
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Table XII: Robustness: County characteristics

Log pop. density  Pop. change frac.  Net migration frac.

Sunset time -0.709 -0.00101 -0.000967

(0.510) (0.00146) (0.000584)
Observations 3104 3104 3104
Adjusted R? 0.045 0.001 0.001

Log poverty rate Labor force change Unemployment rate

Sunset time -0.0169 0.000197 -1.541*

(0.0689) (0.0122) (0.917)
Observations 3103 3103 3103
Adjusted R? 0.176 0.020 0.072

Notes: Dependent variable is indicated at the top of each column. All data are from the
Census and is at the county level. Population, net migration, and unemployment rate are
all 2012 values. Poverty is from 2011. Labor force change is from 2000 to 2010. Standard
errors clustered at the FIPS code level are reported in parentheses. Significance indicated

by: *** p<0.01, ** p<0.05, * p<0.1.

almost unchanged, indicating that a large portion of the seasonality in sleep is indeed
driven by sunset. The reduced form becomes larger in magnitude, but we cannot reject

the null hypothesis that it is equal to our preferred estimate. Adding 365 day of year

indicators gives still larger results.
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Table XIII: Waking non-work hours as a function of sunset time, selected groups

Non-work time Non-work time

High work hours Low wage earners
Sunset time 0.023 -0.078%**

(0.038) (0.028)

Individual controls Yes Yes
Geographic controls Yes Yes
Time controls Yes Yes
Occupation Yes Yes
Observations 5197 8494
Adjusted R? 0.236 0.044

Notes: The table shows results from estimating the first stage of Equation (1), replac-
ing sleep time with waking non-work time as the dependent variable. In column 1 the
sample is workers who usually work more than 60 hours per week (95th percentile). In
column 2 the sample is workers with log wages below 5.44 (10th percentile). Depen-
dent variable is indicated at the top of each column. Unless otherwise noted, controls,
number of observations, and standard error clustering are the same as in Table II.
Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

Table XIV: Robustness of ATUS estimates: Seasonality

First stage Reduced form 2SLS
sleep In(earnings) In(earnings)
Quarter fixed effects
Sunset time -0.059**%0.011) -0.027**%0.004)
Sleep 0.454*%%%0.104)
Day of year fixed effects
Sunset time -0.072*%%%0.022) -0.071**%0.013)
Sleep 0.980***%(0.293)
Notes: Dependent variable is indicated at the top of each column. Unless otherwise noted,

controls, number of observations, and standard error clustering are the same as in Table II.
Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

E Auxiliary non-linear results

Table XV shows results from the first stage regressions used in column 1 (the quadratic
specification) of Table XVI. We omit the first-stage cubic results in the interest of

brevity, but they are available upon request. Instrument relevance is not a problem in
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the cubic specification: the F statistic for the first-stage regression of the cubic sleep

term on our instruments is 36.26.

Table XV: First Stage ATUS Estimates: Nonlinear Models

Sleep Sleep? Sleep Sleep?
Equinoctial sunset time  -0.0368 -0.523  -0.0493** -0.784*
(0.0281)  (0.514)  (0.0241)  (0.427)
Solar declination -0.0568%*  -1.251*** -0.0444** -0.997***
(0.0235)  (0.400)  (0.0221)  (0.369)
Avg. sunsetx Solar dec. 0.00282** 0.0627*** 0.00216*  0.0493**
(0.00123)  (0.0209) (0.00116) (0.0193)

Individual controls No No Yes Yes
Geographic controls No No Yes Yes
Time controls No No Yes Yes
Industry & Occ. No No Yes Yes
F-test on IV 32.2 35.5 40.3 44.6
Observations 71947 71947 71947 71947

Notes: The table shows the results from estimating the first stage of equation (4).
Dependent variable is sleep or log sleep as indicated. Standard errors clustered at
the FIPS level are reported in parentheses. Significance indicated by: *** p<0.01, **
p<0.05, * p<0.1.

It is reasonable to ask why we observe workers on the declining portion of the
wage-sleep curve. The answer, in brief, is that workers optimize over more than just
wages. Figure XI formalizes this intuition. Sleep not only increases productivity, it
also plausibly provides direct utility, complements leisure, and serves as an input to
long-run health. This means that for at least some workers, the total marginal benefit
from sleep is greater than the marginal benefit in terms of wages alone. If these workers
optimize, they will locate not where the marginal wage benefit of sleep equals zero, but
rather where the total marginal benefit (including leisure complementarity) is zero and
the marginal effect on wages is negative. For these workers utility-optimal sleep will

be greater than (to the right of) wage-optimal sleep.
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Table XVI: Nonlinear ATUS Estimates

In(earnings) In(earnings)

Sleep 4.050%* -108.4
(1.576) (308.7)
Sleep? -0.218%* 13.81
(0.0875) (38.32)
Sleep? -0.546
(1.487)
Individual controls Yes Yes
Geographic controls Yes Yes
Time controls Yes Yes
Industry & Occ. Yes Yes
First stage F (40.3, 44.6)
Observations 71947 71947

Notes: The table shows the results from estimating equa-
tion (4). Dependent variable is log wage. The instrumental
variables are sunset time, solar declination, and the inter-
action of the two. First stage F-statistics are for the linear
and quadratic terms in sleep respectively, and first stage re-
sults can be found in Table XV. Controls, where indicated,
are the same as in Table II. Standard errors clustered at
the FIPS level are reported in parentheses. Significance
indicated by: *** p<0.01, ** p<0.05, * p<0.1.
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Figure X: Non-linear IV specifications
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Notes: The upper panels are variants of our primary non-linear IV specification
(Equation (4)), allowing for higher-order terms in sleep. The lower panels reflect
the control function approaches of (Newey et al., 1999) and (Kim and Petrin, 2013).
In these specifications we control for endogeneity by including quadratic polynomials
in the first-stage residuals in the second-stage wage equation. The Kim and Petrin
model also demeans the higher-order residual terms with respect to the instruments
and interacts all residual terms with the instruments. In both control-function ap-
proaches, sleep enters the wage equation as a fourth-degree polynomial.
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Figure XI: Marginal benefit of sleep

o6



	Introduction
	Identifying the effect of sleep on productivity and wages
	Previous research
	A productive sleep model

	Empirical strategy
	Estimating equation
	Local sunset time instrument
	Wage timing mismatch and measurement error

	Data
	Results: Linear effect of sleep on wages
	Linear results
	Robustness checks
	Instrument validity
	Seasonality
	Sorting

	Additional linear results
	Heterogeneity
	County average wages
	Other time uses


	Results: Nonlinear estimates
	Conclusion
	Data and summary statistics
	Solar mechanics
	Seasonality model
	Auxiliary linear robustness and results
	Auxiliary non-linear results



