
UC Irvine
ICS Technical Reports

Title
Network Border Patrol

Permalink
https://escholarship.org/uc/item/8zq0w2q0

Authors
Albuquerque, Celio
Vickers, Brett J.
Suda, Tatsuya

Publication Date
1999-10-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8zq0w2q0
https://escholarship.org
http://www.cdlib.org/

no.99-44 ICS
TECHNICAL REPORT

Network Border Patrol

Celio Albuquerque
Brett J. Vickers

Tatsuya Suda

UCI-ICS Technical Report No. 99-44
Dept. of Information and Computer Science

University of California, Irvine, CA 92697-3425

October 01, 1999

may be protected
by Copyright Law
(Title 17 U.S.C.)

Information and Computer Science
University of California, Irvine

LIBRARY X.,,
iversity of Californla^i

SLBAR.

Network Border Patrol cV
Celio Albuquerque^, Brett J. Vickers^ and Tatsuya Suda^ f7 ^Y

t Dept. of Information and Computer Science
University of California, Irvine

{celio,suda}@ics.uci.edu

Abstract— The end-to-end nature of Intemet congestion
control is an important factor in its scalability and robustness.
However, end-to-end congestion control algorithms alone are
incapable of preventing the congestion collapse and unfair
bandwidth allocations created by applications which are unre
sponsive to network congestion. In this paper, we propose and
investigate a new congestion avoidance mechanism called Net
work Border Patrol (NBP). NBP relies on the exchange of feed
back between routers at the borders of a network in order to

detect and restrict unresponsive traffic flows before they enter
the network. The NBP mechanism is compliant with the Inter
net philosophy of pushing complexity toward the edges of the
network whenever possible. Simulation results show that NBP
effectively eliminates congestion collapse, and that, when com
bined with fair queueing, NBP achieves approximately max-
min fair bandwidth allocations for competing network flows.

Keywords— Intemet, congestion control, congestion col
lapse, max-min faimess, end-to-end argument

I. Introduction

The essential philosophy behind the Internet is ex
pressed by the scalability argument; no protocol, al

gorithm or service should be introduced into the Internet if
it does not scale well. A key corollary to the scalability ar
gument is the end-to-end argument: to maintain scalability,
algorithmic complexity should be pushed to the edges of the
network whenever possible; Perhaps the best example of
the Intemet philosophy is TCP congestion control, which is
achieved primarily through algorithms implemented at end
systems. Unfortunately, TCP congestion control also illus
trates some of the shortcomings of the end-to-end argument.

As a result of its strict adherence to end-to-end con

gestion control, the current Intemet suffers from two mal-

This research is supported by the National Science Foundation through
grant NCR-9628109. It has also been supported by grants from the
University of California MICRO program, Hitachi America, Hitachi,
Standard Microsystem Corp., Canon Information Systems Inc., Nip
pon Telegraph and Telephone Corp. (NTT), Nippon Steel Information
and Communica-tion Systems Inc. (ENICOM), Tokyo Electric Power
Co., Fujitsu, Novell, Matsushita Electric Industrial Co. and Fundagao
CAPES/Brazil.

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

t Dept. of Computer Science
Rutgers University

bvickers@cs.rutgers.edu

adies: congestion collapse from undelivered packets, and
unfair allocations of bandwidth between competing traffic
flows. The first malady—congestion collapse from undeliv
ered packets—arises when bandwidth is continuously con
sumedby packets that are droppedbefore reaching their ul
timatedestinations [1]. Unresponsive flows,' which are be
comingincreasingly prevalent in the Intemet as networkap
plicationsusing audio and video become more popular, are
the primary cause of this type of congestion collapse, and
the Intemet currently has no way of effectively regulating
them.

The second malady—^unfairbandwidth allocation—arises
in the Intemet for a variety of reasons, one of which is the
presence of unresponsive flows. Adaptive flows (e.g., TCP
flows) that respond to congestionby rapidly reducing their
transmissionrates are likely to receive unfairly small band
widthallocations whencompetingwithunresponsive or ma
licious flows. The Intemet protocols themselves also intro
duce unfaimess. The TCP algorithm, for instance, inher
ently causes each TCP flow to receive a bandwidth that is
inverselyproportional to its round trip time [2]. Hence, TCP
connectionswith short round trip times may receiveunfairly
large allocations of network bandwidth when compared to
connections with longer round trip times.

These maladies—congestion collapse from undelivered
packets and unfair bandwidth allocations—^have not gone
unrecognized. Some have argued that they may be miti
gated through the use of improved packet scheduling [3]
or queue management [4] mechanisms in network routers.
For instance, per-flow packet scheduling mechanisms like
WeightedFair Queueing (WFQ) [5], [6] attempt to offer fair
allocations of bandwidth to flows contending for the same
link. So does Core-Stateless Fair Queueing (CSFQ) [7], an
approximation of WFQ that requires only edge routers to
maintain per-flow state. Active queue management mecha
nisms like Fair Random Early Detection (FRED) [8] achieve

Ân unresponsive flow isany flow generated by an application that fails
to reduce its transmission rate in response to increased packetdiscarding
caused by congestion.

10 Mbps

Ri
1.5 Mbps

R,

10 Mbps

128 kbps

Fig. 1. Example of a network which experiences congestion col
lapse

an effect similar to fair queueing by discardingpackets from
flows that are using more than their fair share of a link's
bandwidth. All of these mechanisms are more complex
and expensiveto implement than simpleFIFO queueing,but
they reducethe causesof unfairnessandcongestioncollapse
in the Internet. Nevertheless, they do not eradicate them.
For illustration of this fact, consider the example shown in
Figure 1. In this example, two unresponsive flows compete
for bandwidth in a network containing two bottleneck links
arbitrated by a fair queueing mechanism. At the first bottle
neck link (R1-R2), fair queueing ensures that each flow re
ceives half of the link's availablebandwidth (750 kbps). On
the second bottleneck link (R2-S4), much of the traffic from
flow B is discarded due to the link's limited capacity (128
kbps). Hence, flow A achievesa throughputof 750 kbps and
flow B achieves a throughputof 128 kbps. Clearly, conges
tion collapse has occurred, because flow B packets, which
are ultimately discarded on the second bottleneck link, un
necessarily limit the throughput of flow A across the first
bottleneck link. Furthermore, whileboth flows receiveequal
bandwidth allocations on the first bottleneck link, their allo
cations are not globally max-minfair? A globally max-min
fair allocation of bandwidth would have been 1312 Mbps
for flow A and 128 kbps for flow B.

This example, which is a variant of an example presented
in [1], illustrates the inability of local scheduling mecha
nisms, such as WFQ, to eliminate congestion collapse and
achieve global max-min fairness without the assistance of
additional network mechanisms.

Jain et al. have proposed several rate control algorithms
that are able to prevent congestion collapse and provide
global max-min fairness to competing flows [10]. These al
gorithms (e.g., ERICA, ERICA-h) are designed for the ATM
Available Bit Rate (ABR) service and require all network
switches to compute fair allocations of bandwidth among
competing connections. However, these algorithms are not
easily tailorable to the current Internet, because they violate
the Internet design philosophy of keeping router implemen-

^An allocation of bandwidth is said to beglobally max-min fair if, at
every link, all active flows not bottlenecked at another link are allocated
a maximum, equal share of the link's remaining bandwidth [9].

tations simple and pushing complexity to the edges of the
network.

Floyd and Fall have approached the problem of conges
tion collapse by proposing low-complexity router mecha
nisms that promote the use of adaptive or "TCP-friendly"
end-to-end congestion control [1], Their suggested ap
proach requires selected gateway routers to monitor high-
bandwidth flows in order to determine whether they are re
sponsive to congestion. Flows that are determined to be un
responsive are penalized by a higherpacketdiscarding rate
at the gateway router. A limitation of this approach is that
the procedures currently available to identify unresponsive
flows are somewhat arbitraryand not alwayssuccessful [7].

In this paper, we introduce and investigate a new Inter
net traffic control mechanism called Network Border Patrol
(NBP). The basicprincipleof NBP is to compare, at the bor
ders of the network, the rates at which each flow's packets
are entering and leaving the network. If packets are enter
ing the networkfaster than they are leaving it, then the net
work is very likely to be buffering or, worse yet, discarding
the flow's packets. In other words, thenetwork is receiving
more packets than it can handle. NBP prevents this scenario
by "patrolling" the network's borders, ensuring that pack
ets do not enter the network at a rate greater than they are
able to leave it. Thishas the beneficial effect of preventing
congestion collapse from undelivered packets, because an
unresponsive flow's otherwise undeliverable packets never
enter the network in the first place.

NBP's prevention of congestion collapse comes at the ex
pense of some additional network complexity, since routers
at theborders of the network (i.e., edgerouters) areexpected
to monitor and control the rates of individual flows. NBP

also introduces an added communication overhead, since
in order for an edge router to know the rate at which its
packetsare leavingthe network, it must exchangefeedback
with other edge routers. However, unlike other existing
approaches to the problem of congestion collapse, NBP's
added complexity is isolated to edge routers; routers within
the core of the network remain unchanged. Moreover, end
systems operate in total ignorance of the fact that NBP is
implemented in the network, so no changes to transport pro
tocols are necessary.

Note that the primary goal of NBP is to prevent conges
tion collapse from undelivered packets. On its own, NBP
cannot provide global max-min fairness to competing net
work flows. Nevertheless, when combined with fair queue
ing at core routers, NBP can achieve approximate global
max-min fairness, as we will showlater in this paper.

The remainder of this paper is organized as follows. In

Domain 1
Domain 2

)End systems Edge router 1 1Core router

Fig. 2. The core-stateless Internet architectureassumed by NBP

section II, we describe the architectural components of the
Network Border Patrol mechanism in further detail and

present the feedback and rate control algorithms used by
NBP edge routers to prevent congestion collapse. In sec
tion ni, we present the results of several simulations, which
illustrate the ability of NBP to avoid congestion collapse
and, when combined with a fair queueing algorithm in core
routers, to provide global max-min fairness to competing
network flows. In section IV, we discuss several implemen
tation and scalability issues that must be addressed in order
to make deploymentof NBP feasible in the Internet. Finally,
in section V we provide some concluding remarks.

II. Network Border Patrol

Network Border Patrol is a core-stateless congestion
avoidance mechanism. That is, it is aligned with the core-
stateless approach [7], which allows routers on the borders
(or edges) of a network to perform flow classification and
maintain per-flow state but does not allow routers at the core
of the network to do so. Figure 2 illustrates this architec
ture. In this paper, we draw a further distinction between
two types of edge routers. Depending on which flow it is
operating on, an edge router may be viewed as an ingress or
an egress router. An edge router operating on a flow pass
ing into a network is called an ingress router, whereas an
edge router operating on a flow passing out of a network is
called an egress router. Note that a flow may pass through
more than one egress (or ingress) router if the end-to-end
path crosses multiple networks.

NBP prevents congestion collapse through a combination
of per-flow rate monitoring at egress routers and per-flow
rate control at ingress routers. Rate monitoring allows an
egress router to determine how rapidly each flow's pack
ets are leaving the network, whereas rate control allows an
ingress routerto policethe rateat which eachflow's packets
enter the network. Linking these two functions together are

Arriving
packets

Row

Classifler

Forward

Feedback

Rate

Monitor

1 Rate
1 Monitor
1 1

Rate 1 Rate n I

Backward

Controller

To forwarding
function and

output pans

Fig. 3. An input port of an NBP egress router

thefeedback packets exchanged between ingress andegress
routers; ingress routers send egress routers/onvar<ifeedback
packets to inform them about the flows that are being rate
controlled,and egress routers send ingress routers backward
feedback packets to inform them about the rates at which
each flow's packets are leaving the network.

This sectiondescribesthree importantaspectsof the NBP
mechanism: (1) the architectural components, namely the
modified edge routers, which must be present in the net
work, (2) the feedback control algorithm, which determines
how and when information is exchanged between edge
routers, and (3) the rate control algorithm, which uses the in
formation carried in feedback packets to regulate flow trans
mission ratesand thereby prevent congestion collapsein the
network.

A. Architectural Components

The onlycomponents of the network that require modifi
cation by NBP are edge routers. The input ports of egress
routersmust be modified to performper-flow monitoringof
bit rates, and the output ports of ingress routers must be
modifled to perform per-flow rate control. In addition, both
the ingress and the egress routers must be modified to ex
change and handle feedback.

Figure 3 illustrates the architecture of an NBP egress
router's input port. Packets sent by ingress routers arrive
at the input port of the egress router and are first classi
fied by flow. In the case of IPv6, this is done by examin
ing the packet header's flow label, whereas in the case of
IPv4, it is done by examining the packet's source and des
tination addresses and port numbers. Each flow's bit rate is
then rate monitored using a rate estimation algorithm such
as the Time Sliding Window (TSW) [11]. These rates are
collected by a feedback controller, which returns them in
backward feedback packets to an ingress router whenever a
forward feedback packet arrives from that ingress router. In
some cases, to be described later in this section, backward

Traffic

Sh^xr

♦ .
1

1
1

I

1 Traffic

1 Shaper

A

Rale 11 Rate n \

Elate CoDtroIler

Feedback

Controller

To output
butter and

network

Fig. 4. An output port of an NBP ingress router

feedback packets arealsogenerated asynchronously; thatis,
an egress router sends them to an ingress router without first
waiting for a forward feedback packet.

The output ports of NBP ingress routers are also en
hanced. Each contains a flow classifier, per-flow traffic
shapers (e.g., leaky buckets), a feedback controller, and a
rate controller. See Figure 4. The flow classifier classifies
packets into flows, and the traffic shapers limit the rates at
which packets from individual flows enter the network. The
feedback controllerreceives backward feedback packets re
turning from egress routers and passes their contents to the
rate controller. It also generates forward feedback pack
ets, which it periodically transmits to the network's egress
routers. The rate controller adjusts traffic shaper parame
ters according to a TCP-like rate control control algorithm,
which is described later in this section.

B. The Feedback Control Algorithm

The NBP feedback control algorithm determines how
and when feedback packets are exchanged between edge
routers. Feedback packets take the form of ICMP packets
and are necessary in NBP for three reasons. First, they allow
egress routers to discover which ingress routers are acting as
sources for each of the flows they are monitoring. Second,
they allow egress routers to communicate per-flow bit rates
to ingress routers. Third, they allow ingress routers to detect
network congestion and control their feedback generation
intervals by estimating edge-to-edge round trip times.

The contents of NBPfeedback packets are shown in Fig
ure 5. Contained within the forward feedback packet is a
time stamp and a listof flow specifications^ for flows origi
natingat the ingressrouter. The time stampis used to calcu-

flow specification is a valueuniquelyidentifying a flow. In IPv6 it
is the flow's flow label. In IPv4, it is the combination of sourceaddress,
destination address, sourceportnumber, anddestination portnumber.

Forward Feedback (FF) Packet
IP/ICMP

Headers
Timestamp

Flow

Spec 1
Flow

Specn

1 FF k

IP/ICMP

Headers
Timestamp Hop

Count

Flow

Spec 1
Egress
Rate 1

Flow

Specn
Egress
Raten

Router

Backward Feedback (BF) Packet

Fig. 5. Forward and backward feedback packets exchanged by
edge routers

late the roundtrip timebetweentwoedge routers,andthe list
of flow specifications indicatesto an egress router the iden
tities of active flows originating at the ingress router. (An
edge router adds a flow to its list of active flows whenever
a packet from a new flow arrives; it removes a flow when
the flow becomes inactive.) In the event that the network's
maximum transmission unit size is not sufficient to hold an
entire list of flow specifications, multiple forward feedback
packets are used.

When an egress router receives a forward feedback
packet, it immediately generates a backward feedback
packet and returns it to the ingress router. Contained within
the backward feedback packet are the forward feedback
packet's original time stamp, a router hop count, and a list
of observed bit rates, called egress rates, collected by the
egress router for each flow listed in the forward feedback

packet. Therouter hopcount, which is used by the ingress
router's rate control algorithm, indicateshow many routers
are in the path between the ingress and the egress router.
The egress router determines the hop count by examining
the time to live (TTL) field of arriving forward feedback
packets. When the backward feedback packet arrives at the
ingress router, its contents are passedto the ingress router's
rate controller, which uses them to adjust the parameters of
each flow's traffic shaper.

In order to determinehow often to generateforward feed
back packets, aningress router keeps, foreach egress router,
a timerwhichdetermines the frequency of forwardfeedback
packetgeneration. To maintain an adequate and consistent
feedback update interval, the timer repeatedly expires after
an interval of time known as the base round trip time. The

base round trip time for egress router e, denoted e.baseRTT,
is defined as the shortest observed round trip time between
the ingress router and egress router e, and it generally re
flects the round trip time between the two edge routers when
the network is not congested. The value e.baseRTT is cal
culated by estimating the current round trip time from each
arriving backward feedback packet and updating e.baseRTT
whenever the current round trip time is less.

Egress routers may also generate backward feedback
packets asynchronously. If an egress router does not receive
a forward feedback packet from an ingress router within a
fixed interval of time (denoted Asynchlnterval), it gener
ates and transmits a backward feedbackpacket to the ingress
router. Asynchronouslygenerated backwardfeedbackpack
ets are specially marked by the egress router and are not
used by the ingress router to update the round trip time mea
surement. The reason for asynchronous backward feedback
packet generation is to prevent the squelching of conges
tion feedback when forwardfeedback packetsare delayedor
dropped by the network. It also ensures that ingress routers
receive frequent rate feedback and are able to respond to
congestion even when the distance between edge routers is
very large.

C. The Rate Control Algorithm

The NBP rate control algorithm regulates the rate at
which each flow enters the network. Its primary goal is to
converge on a set of per-flow transmission rates (hereinafter
called ingress rates) that prevents congestion collapse from
undelivered packets. It also attempts to lead the network to
a state of maximum link utilization and low router buffer

occupancies, and it does this in a manner that is similar to
TCP.

In the NBP rate control algorithm, shown in Figure 6, a
flow may be in one of two phases, slowstart or congestion
avoidance, which are similar to the phases of TCP conges
tion control. New flows enter the network in the slow start

phase and proceed to the congestion avoidance phase only
after the flow has experienced congestion. The rate control
algorithm is invoked whenever a backward feedback (BF)
packet arrives at an ingress router. Recall that egress routers
send two types of BF packets to ingress routers: normal BF
packets,which are generatedwhenan egressrouter receives
a forward feedback (FF) packet, andasynchronous BFpack
ets, which egress routers generate without any prompting
from an ingress router. Both types of BF packets contain
a list of flows arriving at the egress router from the ingress
router as well as the monitored egress rate for each flow.
However, only normal BF packets contain meaningful time

on arrival of BF packet p from egress router e
if (p.asynchronous == FALSE)

e.currentRTT = cur_time - p.timestamp",
if {e.currentRTT< e.baseRTT)

e.baseRTT = e.currentRTT",
deltaRTT = e.currentRTT - e.baseRTT",
for each flow/listed in p

f.mrc = min (MSS / e.currentRTT, f.egress_rate / MF);
if (/.phase == SLOW_START)

if {deltaRTT xf.ingress_rate < MSS Xe.hopcount)
f.ingress_rate = f.ingress_rate x 2;

else

/.phase = CONG_AVOID;
if {/.phase == CONG_AVOID)

if {deltaRTTx/.ingress_rate < MSS Xe.hopcount)
/.ingress_rate =/.ingress_rate +/.mrc;

else

/.ingress_rate =/.egress_rate -/.mrc",
else /* p.asynchronous == TRUE */

for each flow/listed in p
if {/.phase == SL0W_START)

if {/.ingress_rate >/.egress_rate X8)
/.ingress_rate =/egress_rate -/.mrc",
/.phase = CONG_AVOID;

else /*/phase == CONG_AVOID */
if {/.ingressjrate>/.egress_rate + 3 x/.mrc)

/.ingress_rate =/.egress_rate -/.mrc".

Fig. 6. Pseudocode foringress router ratecontrol algorithm

stampswhich are copiedfrom arrivingFF packets.
If the arriving BF packet is a normal BF packet, then

thealgorithm calculates thecurrent round trip time andup
dates the base round trip time, if necessary. It then calcu
lates deltaRTT, which is the difference between the current
round trip time (e.currentRTT) and the base round trip time
(e.baseRTT). A deltaRTTvalue greater than zero indicates
that packets are requiring a longer time to traverse the net
work than they once did, and this can only be due to the
buffering of packets within the network.

NBP's rate control algorithm decides that a flow is ex
periencing congestion whenever it estimates that the net
work has buffered the equivalent of more than one of the
flow's packets at each routerhop. To do this, the algorithm
first computes the product of the flow's ingress rate and
deltaRTT. This value provides an estimate of the amount of
flow data that is buffered somewhere in the network. If it is

greater than the number of router hops between the ingress
and the egress router multiplied by the size of the largest
possible packet, then the flow is considered to beexperienc
ingcongestion. The rationale for determining congestion in
this way is to maintain both high link utilization and low
queueing delay. Ensuring thereis always at leastonepacket
buffered for transmission on a network linkis the simplest

way to achieve full utilization of the link, and deciding that
congestion exists when more than one packet is buffered at
the link keeps queueing delays low.

When the rate control algorithm determines that a flow is
not experiencing congestion, it increases the flow's ingress
rate. If the flow is in the slow start phase, its ingress rate
is doubled. Doubling the ingress rate allows a new flow to
rapidly capture available bandwidth if the network is under
utilized. If the flow is in the congestion avoidance phase,
its ingress rate is conservatively incremented by a minimum
rate change (MRC) value in order to avoid the creation of
congestion. MRC is computed as the maximum segment
size divided by the current round trip time between the edge
routers. This results in rate growth behavior that is similar to
TCP in its congestion avoidance phase. Furthermore, MRC
is not allowed to exceed the flow's current egress rate di
vided by a constant factor (MF). This guarantees that rate in
crements are not excessively large when the round trip time
is small.

When the rate control algorithm determines that a flow is
experiencing congestion, it reduces the flow's ingress rate.
If a flow is in the slow start phase, it enters the congestion
avoidance phase. If a flowis already in the congestion avoid
ance phase, its ingress rate is reduced to the flow's egress
rate decremented by MRC. In other words, an observation of
congestion forces the ingress router to send the flow's pack
ets into the network at a rate slightly lower than the rate at
which they are leaving the network.

The actions described above are taken only when a normal
BF packet arrives at an ingress router. A different set of ac
tions is taken when an asynchronousBF packet arrives. This
is because, unlike normal BF packets, asynchronous BF
packets are not generated in response to FF packetsand thus
do not carry meaningful time stamps. Therefore, the con
gestion status of the network cannot be determined through
the use of round trip time measurements. Instead, it is de
termined by comparing a flow's ingress and egress rates. In
the slow start phase, a flow is considered to be experiencing
congestion when its current ingress rate exceeds its reported
egress rate by a factor of eight. The reason for the choice of
the value eight is that we found a delay of three round trip
times is typically required for a change in the ingress rate to
be fully reflected in the egress rate of a backward feedback
packet. During this time, the flow may double its ingress
rate three times, increasing it by at most a factor of eight.
Similarly, in the congestion avoidancephase, a flow is con
sidered to be experiencing congestion whenever its current
ingress rate exceeds its reported egress rate by three MRC
increments. The reasoning in this case is similar to the rea-

Simulation parameter Value

Packet size 1000 bytes
Router queue size 100 packets
Maximum segment size (MSS) 1500 bytes
TCP implementation Reno [12]
TCP window size 100 kbytes
MRC factor (MF) 10

Asynchlnterval 10 msec

TSW window size 10 msec

End-system-to-edgepropagation delay 100 //sec
End-system-to-edge link bandwidth 10 Mbps

Table 1. Default simulation parameters

soningused in the slow start case, except that a flow in the
congestion avoidance phase may only increase its ingress
rate by at most three MRC increments during three round
trip times.

Clearly, the steps taken to determine congestion when an
asynchronous BF packet arrives are more tolerant of tran
sient congestion than the steps taken to determine conges
tion when a normal BFpacket arrives. This is because asyn
chronous BFpackets are only meant tobeused as a stopgap
measure to prevent serious congestion from developing dur
ing the interval betweennormalBF packet arrivals.

III. Simulation Experiments

In this section, we present the results of several simulation
experiments, each of which is designed to test a different as
pect of NetworkBorderPatrol. The first set of experiments
examines the ability of NBPto prevent congestion collapse,
and the second set of experiments examines its ability to
provide fair bandwidth allocations to competing network
flows. All simulations were run for 100 seconds using the
UC Berkeley/LBNLA^INT ns-2 simulator [13]. The ns-2
code implementing NBP and the scripts to run these sim
ulations are available at the UCI Network Research Group
web site [14]. Default simulation parameters are shown in
Table 1 and are used in all simulation experiments unless
otherwise noted.

A. Preventing Congestion Collapse

The first set of simulation experiments explores NBP's
ability to prevent congestion collapse from undelivered
packets. In the first experiment, we study the scenario de
picted in Figure 7. One flow is a TCP flow generated by
an application which always has data to send, and the other
flow is an unresponsive constant bit rate UDP flow. Both
flows compete for access to a shared 1.5 Mbps bottleneck
link (R1-R2), and only the UDP flow traverses a second hot-

G)— 10 Mbps

(E)—

TCP Flow

1.5 Mbps

Unresponsive UDP Flow

[= Ingress Router
E = Egress Router
R = Core Router

S = End System

tOMbps
—0

128 kbps

D—©

Fig. 7. A network with a single shared link

tleneck link (R2-E2), which has a limited capacity of 128
kbps.

Figure 8 shows the throughput achieved by the two flows
as the UDP source's transmission rate is increased from 32

kbps to 2 Mbps. The combined throughput delivered by
the network (i.e., the sum of both flow throughputs) is also
shown. Three different cases are examined under this sce

nario. The first is the benchmark case used for comparison:
NBP is not used between edge routers, and all routers sched
ule the delivery of packets on a FIFO basis. As Figure 8(a)
shows, the network experiences severe congestion collapse
as the UDP flow's transmission rate increases, because the
UDP flow fails to respond adaptively to the discarding of
its packets on the second bottleneck link. When the UDP
load increasesto 1.5Mbps, the TCP flow's throughputdrops
nearly to zero. In the second case, weighted fair queueing
replaces FIFO queueing in each of the routers, and the re
sult, shown in Figure 8(b), is better throughput for the TCP
flow. However, as indicated by the combined throughput
of both flows, congestion collapse still occurs as the UDP
load increases. Although WFQ allocates 750 kbps to both
flows at the first bottleneck link, only 128 kbps of this band
width is successfully exploited by the UDP flow, which is
even more seriously bottlenecked by a second link. The re
maining 622 kbps is wasted on undelivered packets. In the
third case, FIFO queues are reintroduced, and NBP is in
stalled in the edge routers. As Figure 8(c) shows, NBP effec
tively eliminates congestion collapse; the TCP flow achieves
a nearly optimal throughput of 1.37 Mbps, and the combined
throughput remains very close to 1.5 Mbps.

In the second experiment, we examine whether these pos
itive results continue to be demonstrated when a TCP flow

traverses several bottleneck links carrying traffic from unre
sponsive UDP flows. The simulation model for this experi
ment is shown in Figure 9. In this configuration, a TCP flow
shares several 1.5 Mbps bottleneck links with unresponsive
UDP flows,each of which is further bottlenecked by another
link with a capacity of 128 kbps. All links have propagation

1.6 -

1 1 T ;
Combined ~ t— '

1 d TCP —x~
1.4

UDP

1.2 -

1 -

0.8
- -

0c

0.2

0 1 1 f ;
I 500 1000 1500

UDP input trafllc load (Kbps)

(a) Severecongestioncollapse using FIFO only

1000

UDP input trarnc load (Kbps)

(b)Moderate congestion collapse using WFQ only

1000

UDP input trafllc load (Kbps)

Combined »
TCP —K—
UDP —

(c) No congestion collapse using NBP with FIFO

Fig. 8. Congestion collapse observed as unresponsive traffic load
increases. The solidline shows the combined throughput de
livered by the network.

delays of 10msec, and the UDP sources each transmit pack
ets at a constant rate of 1 Mbps.

Figure 10 shows the throughput of the TCP flow as the
number of congested router hops increases from 1 to 10.
When only FIFO scheduling is used, the TCP flow achieves
a throughput of approximately 0.5 Mbps regardless of the
number of hops, whereas NBP allows the network to avoid
congestioncollapse, allocatingnearly 1.31Mbps to the TCP
flow when the number of hops is small. As the number
of hops increases, the throughput of the TCP flow dimin
ishes somewhat due to increased feedback delays between
the TCP flow's edge routers.

B. Achieving Fairness

The primary goal of NBP is to prevent congestion col
lapse from occurring. However, its secondary goal is to
improve the fairness of bandwidth allocations to competing
networkflows. In this secondset of simulationexperiments,
we examine whether NBP can achieve fair bandwidth allo

cations on its own, and, if not, whether it can do so in con-

» • I • • i] j MbpSi I ' ^I *\/Mpps

= .-.r.r.^EjRp~^— Ir - F-

Fig. 9. A network withmultiple congested routerhops

S. 1.4

5 6 7

Number of congested hops

NBP + FIFO

Fig. 10. TCP throughput in a network with multiple congested
router hops

junction with other commonnetwork protocolsand mecha
nisms.

In the first fairness experiment, we consider only one
cause of unfairness: the existence of unresponsive flows.
Wc return to the scenario depicted in Figure 7 but replace
the second bottleneck link (R2-E2) with a higher capacity
10Mbps link. TheTCP flow is generated by an application
which always has data to send, and the UDP flow is gener
ated byanunresponsive source which transmits packets ata
coilstant bit rate.

i
§ince there is only one 1.5 Mbps bottleneck link (Rj-

R2) in this scenario, the max-min fair allocation of band-
wicjth between the flows is 750kbps (if the UDP source ex-
ceefls a transmission rate of 750 kbps). However, as Fig
ure'.11(a) shows, fairness is clearly not achieved when only
FIFp scheduling is used in routers. As the unresponsive
UDP traffic load increases, the TCP flow experiences con
gestion and reduces its transmission rate, thereby granting
an unfairly large amount of bandwidth to the unresponsive
UpP flow. Thus, although there is no congestion collapse
from undelivered packets, there is clearly unfairness. Fig
ured 1(b) shows the throughput of each flow when NBP is
intrpduced. Notice that NBP is able to reduce the amount of
unfairness observed with FIFO scheduling only, but it does
not'completely eliminate unfairness. This is due to the fact
thatNBPhas no mechanism thatexplicitlyenforces fairness.

Ip the second fairness experiment we consider another
cause of unfairness: TCP's dependence on the round trip
tim|. Inorder tostudy this type ofunfairness, we reuse the

1.4

1.2

1

0.8

0.6

0.4

0.2

Combined

500 1000 1500

UDPii^ut trafficload(Kbps)

(a) Severeunfairnessusing FIFOonly

Combined—H—
TCP —H-
UDP —

500 1000 1500

UDPinput trafficload (Kbps)

Fig. 1

(b) Moderateunfairnessusing NBP with FIFO

1. Unfairnessas the unresponsivetraffic load increases

scenariofrom the firstfairness experiment, but we return the
second bottleneck link capacity to 128kbps and introduce a
new TCP flow (TCP2) between S2 and S3. Thus, two TCP
flows and one unresponsive UDP flow share the first bottle
neck link (R1-R2), and only the UDP flow crosses the sec
ond bottleneck link (R2-E2). In order to study theimpact of
increasing round trip times on fairness, the round trip time
of the original TCP flow (TCPl) is varied by changing the
propagation delay of link Ii-Ri. All other link propagation
delays remain fixed as shown in Figure 7, and the transmis
sion rate of theUDP source is set to 1.5 Mbps.

Figure 12(a) shows theresulting throughput of each flow
when FIFO scheduling isused inallrouters. Congestion col
lapse occurs to such an extent that both TCP flows achieve
throughputs of zero, regardless of the round trip time of the
TCPl flow. Figure 12(b) depicts thethroughput of each flow
when FIFO scheduling is replaced with WFQ at all routers.
WFQallowsthe flows to achieve perfectlyfair allocations of
the bottleneck link bandwidth, but it does not prevent con
gestion collapse, as indicated by the fact that the combined
throughput is less than 1.5 Mbps. Figure 12(c) shows the
throughput of each flow when NBP is combined with FIFO
scheduling. Although thecombined throughput is very close
to 1.5 Mbps andcongestion collapse is prevented, NBP does
not completely eliminate the unfair bandwidth allocations
createdby TCPl's longer round trip time.

In the third and final fairness experiment, we study
whether NBP can be made more fair by combining it with a
fair queueing mechanism such as weighted fair queueing or
core-stateless fair queueing. We consider the network model

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Combined

0.04 0.06 0.08

TCPl round trip lime (sec)

(a) Severecongestion collapseusing FIFOonly

0.04 0.06 0.08

TCPl round trip time (sec)

Combined—i—
TCPl —
TCP2

(b) Good fairness with congestion collapse using WFQ only

1.6 1 -1 1 1 q
1.4

- Combined , _

_ TCPl
TCP2

1
- UDP —O—• .

08 _

0.6
g.

0.2

0
^° " 7 •

0.04 0.06 0.08

TCPl round trip time (sec)

(c) Slight unfairness but nocongestion collapse using NBP with FIFO

Fig. 12. Unfairness as theTCP round trip time increases

shown in Figure 13. Thismodel is adapted from the second
General Fairness Configuration (GFC-2), which is specifi
cally designed to test the max-min fairness of traffic control
algorithms [15]. It consists of 22 unresponsive UDP flows,
each generated by a source transmitting at a constant bit rate
of 1GO Mbps. Flows belong to flow groups which arelabeled
from A to H, and the network is designed in such a way
that members of each flow group receive the same max-min
bandwidth allocations. Links connecting core routers serve
as bottlenecks for at least one of the 22 flows, and all links
have propagation delays of 5 msec and bandwidths of 150
Mbpsunless otherwise shown in the figure.

The first column of Table 2 lists the global max-min fair
shareallocations forall flows shown inFigure13. Theseval
ues represent the ideal bandwidth allocations for any traffic
controlmechanism that attempts to provide global max-min
fairness. The remaining columns list the equilibrium-state
throughputs actually observed after 4.5 seconds of simu
lation for several scenarios. (Only the results for a single
member ofeach flow group are shown.) In thefirst scenario,
NBP is notusedandall routers perform WFQ. As indicated

20ins ^ I lOms I Sms i 5ms i 5ms
^ - I R ... I R —r— R ... R

50

Mbps

A B D EEAB AF BHH CCC GGGGG<3G

Fig. 13. The GFC-2 network

100

Mbps

H H AAA CCCOGGGGGGBBB

U 1 tl ttm

Mbps Mbps Mbps I Mbps

n m

Flow

Group

Ideal global
max-min

fair share

Simulation results
Throughput

using
WFQ only

niroughput
using NBP
with FIFO

Throughput
using NBP
with WFQ

Throughput
using NBP
with CSFQ

A 10 8.32 10.96 10.00 10.40
B 5 5.04 1.84 5.04 4.48
C 35 27.12 31.28 34.23 31.52
D 35 16.64 33.84 34.95 32.88
E 35 16.64 37.76 34.87 33.36
F 10 8.32 7.60 10.08 8.08
G 5 4.96 1.04 4.96 5.28
H 52.5 36.15 46.87 50.47 47.76

Table 2. Per-flow throughput inthe GFC-2 network (in Mbps)

by comparing the values in the first and second columns,
WFQ by itself is not able to achieve global max-min fair
ness for all flows. This is due to thefact that WFQ does not
preventcongestion collapse. In the second scenario, NBP is
introduced atedge routers and FIFO scheduling is assumed
at all routers. Results listed in the third column show that
NBP with FIFO also fails to achieve global max-min fair
ness in the GFC-2 network, largely because NBP has no
mechanism to explicitly enforce fairness. In the third and
fourth simulation scenarios, NBP is combined with WFQ
and CSFQ, respectively, and in both cases NBP is able to
achieve bandwidth allocations that are approximately max-
min fair for all flows.

NBP with WFQ achieves slightly better fairness than
NBP with CSFQ. We suspect two reasons forthis fact. First,
CSFQ isan approximation ofWFQ, and itsperformance de
pends on the accuracy ofitsestimation ofa flow's input rate
and fair share. Second, CSFQ's fairness mechanism engages
only whencongestionis detected(i.e., when a router's buffer
occupancy becomes sufficiently large). Since NBP keeps
buffer occupancies low by continuously monitoring and re
sponding to variations in the edge-to-edge round trip time,
CSFQ is not given many opportunities toengage.

Figures 14(a) and 14(b) show how rapidly the throughput
of each flow converges to its max-minfair bandwidthalloca
tion for the NBP with WFQ and the NBP with CSFQ cases,
respectively. Even in a complex network like the one simu
lated here, all flows converge to an approximately max-min

70

60

^ 50

I 40
3
&

•§» 30
S

.0

10

60

50

40

30

20

/ //f

Time (sec)

(a) Using NBP with WFQ

1 r
A(ideal=10)-
B(5)
C (35)
D (35)

•.E<35) ...-•.r
F(10)
G (5)
H (52.5)

A(idcal=i0) —
B (5)
C(35)
D (35)
E(35)

"T'OO)
0(5)
H (52.5)

Time (sec)

(b) Using NBP with CSFQ

Fig. 14. Per-flowthroughput in the GFC-2 network

fair bandwidth allocation within one second.

IV. Implementation Issues

As we saw in the previous section, Network Border Patrol
is a congestion avoidance mechanism that effectively pre
vents congestion collapse and provides approximate max-
min fairness when used with a fair queueing mechanism.
However, a number of important implementation issues
must be addressed before NBP can be feasibly deployed in
theInternet. Among these issues are thefollowing:

I. Scalableflow classification. Perhaps the biggest imped
iment to NBP's scalability is its reliance upon flow classi
fication at edge routers. In a network with a large number
of flows, the overheads of maintaining per-flow state, com
municating per-flow feedback, andperforming per-flow rate
control and rate monitoring may become inordinately ex
pensive. Fortunately, it is possible to address this concern
by classifying flows more coarsely at edge routers. Instead
of classifying a flow using the packet's addresses and port
numbers, the network's edge routers may aggregate many
flows together by, for instance, classifying flows using only
thepacket's address fields. Alternatively, they might choose
to classify flows even more coarsely usingonlythepacket's

10

destination network address. Coarse-grained flow aggrega
tion has the effect of significantly reducing the number of
flows seen by NBP edge routers. However, its drawback is
that adaptive flows aggregated with unresponsive flows may
be indiscriminately punished by an ingress router. Hence,
NBP flow aggregation creates a trade-off between scalabil
ity and per-flow fairness.

2. Scalable inter-domain deployment. Another approach to
improving the scalability of NBP, inspired by a suggestion
in [7], is to develop trust relationships between domains
that deploy NBP. The inter-domain router connecting two
or more mutually trusting domains may then become a sim
pleNBP core router with noneed to perform per-flow tasks
or keep per-flow state.

3. Scalablefairness. Althoughsimulationresults showthat
NBP is able to achieve the best approximation to max-min
fairness when it is combined with WFQ, WFQ requires that
core routers perform per-flow operations, making it less
scalable than CSFQ. In networks where only a moderate
number of simultaneous flows is possible (e.g., a campus
network), NBP with WFQ may be preferable for its bet
ter fairness. However, NBP with CSFQ is preferable in
networks with a large number of flows since approximate
globalmax-minfairness is achievedin a more scalablecore-
stateless fashion.

4. Incremental deployment. It is crucial that NBP be im
plemented in all edge routers of an NBP-capable network.
If one ingress router fails to police arriving traffic or one
egress router fails to monitor departing traffic,NBP will not
operate correctly and congestion collapse will be possible.
Nevertheless, it is not necessary for all networks in the In
ternet to deploy NBP in order for it to be effective. Any
network that deploys NBP will enjoy the benefits of elimi
nated congestion collapse within the network. Hence, it is
possible to incrementally deploy NBP into the Internet on a
network-by-network basis.

5. Multicast. Multicast routing makes it possible forcopies
of a flow's packets to leave the network through more than
one egress router. When this occurs, an NBP ingress router
must examine backward feedback packets returning from
each of the multicast flow's egress routers. To determine
whether the multicast flow is experiencing congestion, the
ingress router should execute its rate control algorithm us
ing backward feedback packets from the most congested
ingress-to-egress path (i.e., the one with the lowest flow
egress rate). This has the effect of limiting the ingress rate
of a multicast flow according to the most congested link in
the flow's multicast tree.

6. Multi-path routing. Multi-path routing makes it possible
forpackets from a single flow to leave the network through
different egress routers. In order to support this possibility,
an NBP ingress router may heed to examine backward feed
back packets from more than one egress router in order to
determine the combined egress rate for a single flow. For a
flow passingthrough more than one egress router, its com
bined egress rate isequal tothesum oftheflow's egress rates
reported in backward feedback packets from each egress
router.

7. Integrated or differentiatedservices. NBP treats all flows
identically, but integrated and differentiated services net
works allow flows to receive different qualities of service.
In such networks, NBP should be used to regulate best ef
fort flows only. Flows using network services other than
besteffort are likely to be policed by separate traffic control
mechanisms.

V. Conclusion

In thispaper, wehave presented anovel congestion avoid
ance mechanism for the Internet called Network Border Pa
trol. Unlike existing Internet congestion control approaches,
which rely solely on end-to-end control, NBP isable to pre
vent congestion collapse from undelivered packets. It does
this by ensuring at the border of the network that each flow's
packets do not enter thenetwork faster than they are able to
leave it. NBP requires no modifications to core routers nor
toend systems. Only edge routers are enhanced so that they
can perform therequisite per-flow monitoring, per-flow rate
controland feedback exchangeoperations.

Extensive simulation results provided in this paper show
that NBP successfully prevents congestion collapse from un
deliveredpackets. They also show that, while NBP is unable
to eliminate unfairness on its own, it is able to achieve ap
proximate global max-rnin fairness for competing network
flows when combined with a fairqueueing mechanism such
as WFQ. Furthermore, NBP, when combined with CSFQ,
approximates global max-min fairness in a completely core-
stateless fashion.

As in any feedback-based traffic control mechanism, sta-
bility is an important performance concern in NBP. Using
techniques described in [16], we plan as part of ourfuture
work to perform an analytical study of NBP's stability and
convergence toward max-min fairness. Preliminary results
already suggest thatNBP benefits greatly from itsuseofex
plicit rate feedback, which prevents rate over-corrections in
response to indications of network congestion.

11

References

[11 S. Floyd and K. Fall, "Promoting the Use ofEnd-to-End Congestion
Control in the Internet," lEEE/ACM Transactions on Networking,
August 1999, To appear.
J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, "Modeling TCP
Throughput; A Simple Model and its Empirical Validation," in
Proa. ofACM SIGCOMM, September 1998, pp. 303-314.
B. Suter, TV. Lakshman, D. Stiliadis, and A. Choudhury, "Design
Considerations for Supporting TCP with Per-Flow Queueing," in
Proc. ofIEEE Infocom '98, March 1998, pp. 299-305.
B. Braden etal, "Recommendations on Queue Management and
Congestion Avoidance in the Internet," RFC 2309, IETF April
1998.

A. Demers, S.Keshav, and S.Shenker, "Analysis andSimulation of
aFair Queueing Algorithm," in Ptoc. ofACM SIGCOMM, Septem
ber 1989, pp. 1-12.
A. Parekh and R. Gallager, "A Generalized Processor Sharing Ap
proach toFlowControl - theSingle NodeCase," lEEE/ACM Trans
actions on Networking, vol. 1,no.3, pp.344-357,June1993.
1. Stoica, S. Shenker, and H. Zhang, "Core-Stateless Fair Queue
ing: Achieving Approximately Fair Bandwidth Allocations in High
Speed Networks," in Proc. ofACM SIGCOMM, September 1998,
pp. 118-130.
D. Lin and R. Morris, "Dynamics ofRandom Early Detectiori," in
Proc. ofACM SIGCOMM, September 1997, pp. 127-137.
D. Bartsekas and R. Gallagher, Data Networks, second edition.
Prentice Hall, 1987.

[10] R. Jain, S. Kalyanaraman, R. Goyal, S. Fahmy, and R. Viswanathan,
"ERICA Switch Algorithm: AComplete Description," ATM Forum
Document 96-1172, Traffic Management WG, August 1996.

[11] D. Clark andW. Fang, "Explicit Allocation of Best-Effort Packet
Delivery Service, lEEE/ACM Transactions on Networking, vol. 6,
no. 4, pp. 362-373, August 1998.

[12] W.Stevens, TCP Slow Start, Congestion Avoidance, Fast Retrans
mit, and Fast Recovery Algorithms," RFC 2001, IETF, January
1997.

[13] LBNL Network Research Group, UCB/LBNUVINT Network Sim
ulator - ns (version 2), http://www-mash.cs.berkeley.edu/ns/,
September 1997.

[14] UCl Network Research Group, Network Border Patrol (NBP),
http://netresearch.ics.uci.edu/nbp/, 1999.

[15] B. Vandalore, S. Fahmy, R. Jain, R. Goyal, and M. Goyal, "A
Definition of Generalized Fairness and its Support in Switch Al
gorithms," ATM Forum Document 98-0151, Traffic Management
WG, February 1998.

[16] W.K. Tsai and Y. Kim, "Re-Examining Maxmin Protocols: AFun
damental Study on Convergence, Complexity, Variations, and Per
formance," inProc. ofIEEE Infocom, April 1999, pp. 811-818.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

