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In this dissertation, I develop ME-Models. ME-Models are genome-scale

models that seamlessly integrate metabolic and gene product expression pathways.

They can be used to compute optimal cellular states for growth in steady-state en-

vironments. They take as input the availability of nutrients to the cell and produce

experimentally testable predictions for: (1) the cell’s maximum growth rate (µ*)

in the specified environment, (2) substrate uptake/by-product secretion rates at

µ*, (3) metabolic fluxes at µ*, and (4) gene product expression levels at µ*. Unlike

previous genome-scale models, ME-Models explicitly account for the production

of all RNAs and proteins. I first build a prototype ME-Model for the simple mi-
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croorganism Thermotoga maritima. The T. maritima genome was sequenced in

1999, and needed correction and complete re-annotation. I developed a framework

drawing on multi-omic data to annotate genomic features involved in transcription,

translation, and regulation. These features in T. maritima were found to display

distinctive properties. In addition to basic characterization, the re-annotation was

used to build the T. maritima ME-Model. Reactions to produce all the RNAs

and proteins were added to its metabolic model, and metabolism was linked to

gene expression through ‘coupling constraints.’ In the second part of this disser-

tation, the method was extended to E. coli. Backed by the wealth of phenotypic

information available for this organism, I was able to firmly support the state-

ment that ME-Models extend and refine microbial growth phenotype prediction.

Next, a previous model predicted a ppc knockout of Salmonella enterica serovar

Typhimurium would grow, but it did not experimentally. Ultimately, network

modeling pinpointed the cause of the discrepancy (the inability of cells to route

flux through the glyoxylate shunt when ppc is removed). The ppc project illus-

trates the importance of considering expression and regulation in genome-scale

models. Finally, I demonstrate (albeit preliminarily) that ME-Models begin to

bridge systems and synthetic biology approaches for engineering life.
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Chapter 1

Introduction

1.1 Life, constraints, and being good enough

What is life, exactly?

“Life is about the physical embodiment of knowledge.”
– David Deutsch

“You can’t clone a mountain.”
– Sydney Brenner

As you may be able to tell from the quotations above, I favor a view of life that

appreciates that cells are exquisite molecular information storage and processing

devices. A cell’s long-term information storage device is its genome. Over time,

random changes to the genome produce phenotypic variation, which leads to the

emergence of cells that thrive in particular environmental niches. In the absence

of competition for limited resources, cells that are ‘good enough’ to merely survive

are evolutionary winners. But often it’s the case that competition is fierce, and

so what’s good enough today will not be in the future. Fast-forward a few billion

years and you can see why we might expect living organisms to be as complex

as they are. To keep up with the competition, some cells taught themselves how

to operate very close to the boundary separating possible and impossible (hard

constraints imposed by the physical laws of the universe). ‘Good enough’ became

more and more demanding as time went on.

1
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Then the first full genome sequences of microbes came online in the mid-

1990s. We could finally see evolutionary winners and their solutions to fundamental

biological problems. And we could build computer models and use them to ask

whether cells were growing optimally. Usually, but sometimes the answer was

“No.” Then again, were we even aware of the evolutionary trade-offs underlying

the answer to this question?

1.2 Systems microbiology and its promise

I illustrate systems microbiology in a nutshell in Figure 1.1. Evolution se-

lects among the phenotypes that arise when a cell with a given genotype is placed in

a given environment. The fittest cells best optimize multiple trade-offs (not shown).

Cyanobacteria are pictured to the right of the top box in Figure 1.1 to serve as a

reminder that cells can actively shape their own environments; Cyanobacteria are

believed to have oxygenated Earth’s atmosphere.

By:

knowledge of cells <==> computer model
systems biology

Understand:

environment <==> genome
evolution

In order to:
alter our own human environment

Figure 1.1: Systems microbiology in a nutshell. Cyanobacteria image taken
from http://sgevurtz.blogspot.com/.

The promise of systems microbiology is shown in the middle box in Fig-

ure 1.1. The promise is as follows: If you systematically organize all available
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knowledge for a particular biological system, the tool you create in the process

promises to allow you to learn more about the system. Usually, the tool takes the

form of a database and/or a detailed computer model, the specifics of which I will

address in the next section.

Systems microbiology has many implications for applied microbiology and

synthetic biology. We eventually accumulate enough knowledge about the biolog-

ical system that we are well-positioned to re-engineer it. Applications typically

relate to our desire as a species to alter our own environment, whether it be rid-

ding it of a pathogen or converting one of our waste streams to cellulosic ethanol

(see final box of Figure 1.1).

1.3 Systems microbiology as a four-step proce-

dure: Then and Now

When I started my PhD in late 2008, the use of experimental and computa-

tional techniques in a synergistic, iterative process had already gained acceptance

as the optimal method for understanding the behavior of biochemical systems,

ranging from reactions in a single cell to communities and ecosystems.

To practice systems microbiology, one can employ a four-step procedure [1]:

(i) the enumeration of the biological components that make up a biological process,

(ii) the reconstruction of the network of interactions among these components, (iii)

the application of physicochemical equality constraints such as mass and energy

balance and the steady-state assumption to determine network capabilities in a

simulated environment with specified boundary conditions, and (iv) the compar-

ison of computed network properties with actual phenotypic observations. The

procedure is iterative since you learn by going through the four steps, especially

when it can be resolved why a computed phenotype does not match an actual

phenotype.

As I wrap up my PhD in late 2013, the same four steps remain in place. The

difference is that each of the steps is now taken to the extreme. Many more cellular

parts and biological processes are considered. As a result, thousands of cellular
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interactions that were either missing or implicit are now present and explicit. We

also have better and more general constraints on network behavior. Finally, there

are much improved experimental methods and data sources to validate or invalidate

computed functional states of cells.

1.3.1 Then: M-Models (c. 2008)

Genome-scale metabolic models (termed as M-Models) can be built by re-

constructing the full complement of metabolic reactions in an organism. The

metabolic network reconstruction process is now at an advanced stage of devel-

opment and has been translated into a 96-step standard operating procedure [2].

M-Models capture basic knowledge of reaction stoichiometry (e.g. ‘1 A+ 1 B →
1 C’). Each reaction is assigned a ‘gene-protein-reaction relationship,’ or a GPR.

GPRs are Boolean logic statements (e.g. ‘(gene 1 and gene 2) or (gene 3 and gene

4)’) that dictate which sets of genes are required to be present for a reaction to

carry flux.

M-Models have found a wide range of applications, particularly for model

organisms such as Escherichia coli [3]. M-Models are great, but they can be im-

proved. The 8 biggest weaknesses of M-Models for microbes are as follows:

1. The cell composition and energy requirements (both growth and non-growth

associated) are fixed vs. free variables

2. Absolute rates (such as growth rates) cannot be predicted unless substrate

uptake and by-product secretion rates are specified

3. GPRs bridge genotype to phenotype, but insufficiently for many applications

4. Enzyme kinetics and regulation (transcriptional or metabolic) are not ac-

counted for, even though they can significantly influence reaction fluxes

5. Few predictions can be directly experimentally validated (notable exceptions:

prediction of growth or no-growth on different carbon sources/media, central

carbon fluxes, and gene essentiality calls)



5

6. Very limited spatial resolution

7. No temporal resolution (methods such as dynamic flux balance analysis are

usually inadequate for applications)

8. Missing information: Metabolite damage, enzyme promiscuity, and spon-

taneous side reactions (all unaccounted for) have major implications for

metabolic modeling and engineering

Additionally, when using an M-Model there is often an inherent optimality

assumption. This is necessary because the system is underdetermined as it is

specified. In order to get around this problem, you have to assume you know

something about what the cell has programmed itself to do over millions of years.

Often, we assume the cell maximizes its growth rate, minimizes the total flux

through all reactions (operates parsimoniously), and/or maximizes energy (ATP)

generation. These assumptions get us closer to reality for some growth conditions

[4, 5], but severely limit the types of predictions that can be made. Even when

these assumptions are made, we may still not be left with a unique flux prediction.

In these cases, the best we can do is select a solution randomly.

1.3.2 Now: ME-Models (c. 2013)

M-Models can be extended to include the process of gene expression (termed

as ME-Models because they are integrated models of metabolism and gene

expression). ME-Models are described in detail in Chapters 3 and 4, so I won’t

say much here. The basic idea is to explicitly account for the production of all

RNAs and proteins. Once all the RNAs and proteins are produced, metabolism

can be linked to gene expression through additional constraints called ‘coupling

constraints’ (detailed later). As a result, growth phenotype prediction is greatly

extended and refined.

In a major departure from the past, the construction and application of

ME-Models depends heavily on omics data analysis and integration. Omics data

sets describing virtually all biomolecules in the cell are now available. These data

can be generally classified into 3 distinct categories [6] (see Figure 1.2). All this
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Figure 1.2: Types of omics data and their uses for constructing and
building ME-Models. Components (or parts) data detail the molecular content
of the cell or system by accounting for all metabolites, proteins, RNA molecules,
lipids, and the genomic DNA strands. Interactions data specify links between
these molecular components. Functional-states data provide insight into cellular
phenotype and come primarily in the form of gene and protein expression.

data must be reconciled as a ME-Model is built. For example, determining the

transcription units (single RNA molecules) in Thermotoga maritima so that its

ME-Model could be built was in and of itself a large undertaking (see Chapter 2).

ME-Models overcome some (but not all) of the major weaknesses of M-

Models listed in the last section. These changes are summarized in Chapter 7.

Before we dive in, let’s step back and appreciate that the view of life through the

lens of a ME-Model is fundamentally different than through the lens of an M-Model.
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With an M-Model, I think its fair to say that a cell is viewed as a sac where “energy

transactions through chemical transformations” take place. With a ME-Model, the

in silico cell additionally carries out the central dogma of molecular biology. This

gives us an additional view the cell, this time as a molecular information storage

and processing device.

1.4 There’s more than one way to model a cell,

so where do ME-Models fit in?

The genotype-phenotype relationship is fundamental to biology. Find-

ing general, underlying rules that govern the complex relationship between gene

expression and cell growth, however, has proven a challenge. The genotype-

phenotype relationship in microbes can be conceptualized as a five-layer hierar-

chical model (see Figure 1.3). A cell faces myriad constraints on its function at

all layers [7, 8]. At the whole-cell level, it may be difficult to determine the con-

straints that govern cellular functions on a mechanistic basis, but they can be

identified from empirical observation. Microbiologists pursued this approach in

the 1950s and 1960s, resulting in empirical parameters such as the growth and

non-growth maintenance coefficients [9] and yield coefficients that are widely used

in the bioprocessing literature [10].

Terry Hwa and colleagues have been progressively expanding on the whole-

cell empirical approach by means of an insightful combination of targeted experi-

mentation and mathematical analysis [11, 12, 13, 14, 15, 16]. They predominantly

use Escherichia coli cells grown under a variety of conditions. Systems micro-

biologists will always be closing the gap between the new biology uncovered by

taking such approaches, and what is currently capable by taking the genome-

scale approach. The advantage of taking a genome-scale approach is that you

get predictions that are specific and detailed, which sometimes means they are

more actionable when pursuing practical applications. We’ve incorporated some

of the information from these pioneering studies to test and parameterize our ME-

Models. Interestingly, we find that it may be possible to have the best of both
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Figure 1.3: The microbial genotype-phenotype relationship. Bacterial cell
growth and gene expression are linked through a hierarchy that extends from tens
of thousands of molecules to a single cell. Each layer in the hierarchy imposes
constraints on adjacent layers (arrows, right). At the top, empirical models can
predict the relative levels of proteins belonging to major subsystems within a cell
(e.g., metabolism (P), macromolecular synthesis (R)). At the bottom, genome-scale
models can make predictions by accounting for all single molecules and protein
complexes. A future modeling challenge is to characterize the functionality of the
approximately 100 coordinately expressed clusters of protein complexes and to
determine the evolutionary pressures leading to regulon formation (middle layer).

worlds! Phenomenological models can be embedded inside ME-Models to test their

validity in the context of the more detailed description of the cell (more on that

in Chapter 4).

Taken together, our combined efforts are leading to a multiscale under-

standing of the genotype-phenotype relationships underlying metabolism, gene ex-

pression, and growth in microbes. At all levels, model structures must be continu-

ally developed and re-worked in order to adequately capture new information and

constraints allowing for optimization to approximate the cellular objective [17].

Cementing the levels shown in Figure 1.3 into a coherent multiscale framework is

a challenge facing the field. The ME-Model is another major step toward meeting

this challenge. Clearly, an exciting era is ahead of us, in which a combination

of in silico and experimental approaches promises to continue the development

of mechanistic and principled genotype-phenotype relationships that are akin to

the development of fundamental physical laws a century ago. If successful, such

development will move microbiology into a fundamentally new realm.
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Chapter 2

The genome organization of

Thermotoga maritima reflects its

lifestyle

2.1 Abstract

The generation of genome-scale data is becoming more routine, yet the

subsequent analysis of omics data remains a significant challenge. Here, an ap-

proach that integrates multiple omics datasets with bioinformatics tools was de-

veloped that produces a detailed annotation of several microbial genomic features.

This methodology was used to characterize the genome of Thermotoga maritima-

a phylogenetically deep-branching, hyperthermophilic bacterium. Experimental

data were generated for whole-genome resequencing, transcription start site (TSS)

determination, transcriptome profiling, and proteome profiling. These datasets,

analyzed in combination with bioinformatics tools, served as a basis for the im-

provement of gene annotation, the elucidation of transcription units (TUs), the

identification of putative non-coding RNAs (ncRNAs), and the determination of

promoters and ribosome binding sites. This revealed many distinctive properties of

the T. maritima genome organization relative to other bacteria. This genome has

a high number of genes per TU (3.3), a paucity of putative ncRNAs (12), and few

10
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TUs with multiple TSSs (3.7%). Quantitative analysis of promoters and ribosome

binding sites showed increased sequence conservation relative to other bacteria.

The 5′UTRs follow an atypical bimodal length distribution comprised of ‘Short’

5′UTRs (11−17 nt) and ‘Common’ 5′UTRs (26-32 nt). Transcriptional regulation

is limited by a lack of intergenic space for the majority of TUs. Lastly, a high

fraction of annotated genes are expressed independent of growth state and a linear

correlation of mRNA/protein is observed (Pearson r = 0.63, p < 2.2×10−16 t-test).

These distinctive properties are hypothesized to be a reflection of this organism’s

hyperthermophilic lifestyle and could yield novel insights into the evolutionary

trajectory of microbial life on earth.

2.2 Author Summary

Genomic studies have greatly benefited from the advent of high-throughput

technologies and bioinformatics tools. Here, a methodology integrating genome-

scale data and bioinformatics tools is developed to characterize the genome or-

ganization of the hyperthermophilic, phylogenetically deep-branching bacterium

Thermotoga maritima. This approach elucidates several features of the genome

organization and enables comparative analysis of these features across diverse

taxa. Our results suggest that the genome of T. maritima is reflective of its

hyperthermophilic lifestyle. Ultimately, constraints imposed on the genome have

negative impacts on regulatory complexity and phenotypic diversity. Investigating

the genome organization of Thermotogae species will help resolve various causal

factors contributing to the genome organization such as phylogeny and environ-

ment. Applying a similar analysis of the genome organization to numerous taxa

will likely provide insights into microbial evolution.

2.3 Introduction

A fundamental step towards obtaining a systems-level understanding of

organisms is to obtain an accurate inventory of cellular components and their in-
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terconnectivities [18, 19, 20]. The genome sequence and in silico predictions of

gene annotation are the starting points for assembling a network. For prokary-

otes, these in silico approaches detect open reading frames and structural RNAs

with varying degrees of accuracy [21]. Recently, multi-omic data generation and

analysis studies [22, 23, 24, 25, 26, 27, 28] have revealed an abundance of ge-

nomic features that are not detected computationally such as transcription start

sites (TSSs), promoters, untranslated regions (UTRs), non-coding RNAs, ribo-

some binding sites (RBSs) and transcription termination sites [29]. However, the

rate at which multi-omic datasets are being generated is substantially outpacing

the development of analysis workflows for these inherently dissimilar data types

[30]. Here, multi-omic experimental data is generated and analyzed in conjunction

with bioinformatics tools to annotate numerous bacterial genomic features that

cannot accurately be detected using in silico approaches alone. This methodology

was applied to study the genome organization of Thermotoga maritima-a phylo-

genetically deep-branching, hyperthermophilic bacterium with a compact 1.86 Mb

genome.

Originally isolated from geothermally heated marine sediment, T. maritima

grows between 60− 90◦C with an optimal growth temperature of 80◦C [31]. This

species belongs to the order Thermotogales that have, until recently, been exclu-

sively comprised of thermophilic or hyperthermophilic organisms. Compared to

most bacteria, Thermotogales are capable of sustaining growth over a remarkably

wide range of temperatures. For instance, Kosmotoga olearia can be cultivated be-

tween 20− 80◦C [32]. Recently, the existence of mesophilic Thermotogales [33, 34]

was confirmed with the description of Mesotoga prima, which grows from 20−50◦C

with an optimum at 37 ◦C [35]. Sequencing of M. prima revealed that it has the

largest genome of all the Thermotogales at 2.97 Mb with ≈15% noncoding DNA

[36]. T. maritima, which grows at the upper-limit known for Thermotogales, has

one of the smallest genomes in this order and maintains one of the most compact

genomes among all sequenced bacterial species (<5% noncoding DNA) [37, 38].

The short intergenic regions in the T. maritima genome (5 bp median) resem-

ble those in the genome of Pelagibacter ubique, a bacterium that has undergone
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genome streamlining and has the shortest median intergenic space (3 bp) among

free-living bacteria [37]. Although it remains unclear whether T. maritima has also

undergone streamlining, both organisms encode only a few global regulators (four

sigma factors in T. maritima versus two in P. ubique) and carry just a single rRNA

operon. In contrast with P. ubique, T. maritima displays more metabolic diversity

through its ability to ferment numerous mono- and polysaccharides [31, 39].

Thermotogales have been the focus of many evolutionary studies [40, 33, 41].

Organisms in hydrothermal vent communities, where many Thermotogales have

been isolated, are thought to harbor traits of early microorganisms [42]. Phyloge-

netic analysis of 16S rRNA sequences place the Thermotogae at the base of the

bacterial phylogenetic tree [43, 44]; however, Zhaxybayeva et al. [41] determined

through analysis of 16S rRNA and ribosomal protein genes that Thermotogae and

Aquificales (a hyperthermophilic order) are sister taxa. The authors also deter-

mined that the majority of Thermotogae proteins align best with those found in the

order Firmicutes [41]; therefore, the exact phylogenetic position of Thermotogae

is still unresolved. Nevertheless, members of this phylum are among the deepest

branching bacterial species and, as such, prime candidates for evolutionary studies.

Thermophiles such as T. maritima implement numerous strategies at both

the protein and nucleic acid levels to support growth at high temperatures. For in-

stance, intrinsic protein stabilization is achieved by utilizing more charged residues

at the protein surface, encoding for a dense hydrophobic core, and increasing disul-

fide bond usage [45, 46]. DNA is typically kept from denaturing by introducing

positive supercoils via reverse gyrase activity while phosphodiester bond degra-

dation is prevented by stabilization through interaction with cations (e.g. K+,

Mg2+) and polyamines [47, 48]. However, the impact of temperature on genome

features essential to gene expression such as promoters and RBSs remains largely

unexplored. Bacterial transcription initiation is governed by recognition of pro-

moter sequences by sigma factors, which load the RNA polymerase holoenzyme

upstream of the transcription start site (TSS). Translation initiation is predom-

inantly reliant on base pairing between the anti-Shine-Dalgarno sequence found

near the 3′-terminus of the 16S rRNA and the Shine-Dalgarno sequence (i.e. the



14

RBS). Therefore, thermophilic macromolecular synthesis machinery must estab-

lish and retain contacts with nucleic acids while facing greater thermodynamic

challenges.

The integrated approach described here enables an experimentally anchored

annotation of several bacterial genomic features including protein-coding genes,

functional RNAs, non-coding RNAs, transcription units (TUs), promoters, ribo-

some binding sites (RBSs) and regulatory sites such as transcription factor (TF)

binding sites, 5′ and 3′ untranslated regions (UTRs) and intergenic regions. This

is achieved through the simultaneous analysis of genomic, transcriptomic and pro-

teomic experimental datasets with complementary bioinformatics approaches. In

addition to providing a valuable resource to the research community, this analysis

framework facilitates quantitative and comparative analysis of annotated features

across microbial species. For the genome of T. maritima, several distinguishing

characteristics were identified and their potential causal factors are discussed.

2.4 Results

2.4.1 An integrative, multi-omic approach for the annota-

tion of the genome organization

An integrative workflow was developed to re-annotate the genome of T.

maritima. The re-annotated genome is the result of the simultaneous reconcili-

ation of multiple omics data sources (Figure 2.1, upper left) with bioinformatics

approaches (Figure 2.1, upper right). Omics data generated included: (1) genome

resequencing, (2) transcription start site (TSS) identification using a modified

5’RACE (Rapid Amplification of cDNA Ends) protocol, (3) transcriptome pro-

filing using both high-density tiling arrays and strand-specific RNA-seq, and (4)

LC-MS/MS shotgun proteomics. Transcriptome data were generated from cul-

tures grown in diverse conditions including log phase growth, late exponential

phase, heat shock, and growth inhibition by hydrogen (See Materials and Meth-

ods). Proteomic datasets include log phase growth and late exponential phase
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Figure 2.1: Generation of multiple genome-scale datasets integrated
with bioinformatics predictions reveals the genome organization. Ex-
perimental data generated for the study of the T. maritima genome include
genome resequencing, TSS determination, RNA-seq, tiling arrays (not shown) and
LC-MS/MS peptide mapping (top left). Bioinformatics approaches used include
genome re-annotation, functional RNA prediction, ribosome binding site energy
calculations, and determination of intrinsic terminators (top right). Integration of
these distinct datasets involves normalization and quantification to genomic coor-
dinates. This experimentally anchors gene annotation improvements, defines the
TU architecture, identifies non-coding RNAs and serves as a basis for the iden-
tification of additional genetic elements such as promoters and ribosome binding
sites.

growth conditions. In combination with various bioinformatics approaches, inte-

gration of these omics datasets allowed for the definition of gene and transcription

units (TU) boundaries with single base-pair resolution. The updated and expanded

annotation served as the basis for genome-wide identification of promoters, ribo-

some binding sites (RBSs), intrinsic transcriptional terminators and UTRs.
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Annotation of open reading frames (ORFs)

Reannotation of the T. maritima MSB8 genome began with whole genome

resequencing of the ATCC derived strain. Genome resequencing was prompted

by the recent identification of a ≈9 kb chromosomal region in the DSMZ derived

strain (DSMZ genomovar, Genbank Accession AGIJ00000000.1) that is not present

in the original genome sequence derived from a TIGR strain (TIGR genomovar,

Genbank Accession AE000512.1) [49]. Resequencing the ATCC derived strain (pre-

sented as the ATCC genomovar, Genbank Accession CP004077) ensured that sub-

sequent analyses referenced an accurate genome sequence. The ATCC genomovar

sequence consists of 1,869,612 bp and, like the DSMZ genomovar, carries an ≈9

kb chromosomal region found between TM1847 and TM1848 of the TIGR anno-

tation. The draft genome was annotated using the RAST Pipeline [50] and was

then reconciled with the existing TIGR genomovar annotation. The RAST draft

annotation had 1,887 protein-coding sequences while the TIGR annotation con-

tained 1,858. Comparison of these two annotations with transcriptome, proteome

and bioinformatics datasets resulted in a final annotation containing 1,893 protein-

coding sequences (Table S1 in [51]). The final gene annotation retained a total of

1,830 NCBI annotated genes while 28 NCBI annotated genes were dropped (or

replaced) due to a lack of experimental support. An additional 63 genes were an-

notated based on evidence found in multiple data-types. Furthermore, 370 genes

varied in length when comparing the final gene annotation to the NCBI annotation.

These discrepancies in gene length were predominantly due to differences in the

start codon assignment, thus changing the amino acid sequence at the N-terminus.

Gene length annotation differences of less than 10 amino acids were not resolved

using the generated datasets without the presence of direct proteomic evidence to

support one annotation over the other. However, 118 of these 370 genes (32%)

had large discrepancies in their gene length annotation, equaling or exceeding 10

amino acids. For these cases, annotation conflicts were resolved using data from

peptide mapping, transcript presence and bioinformatics tools.
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Annotation of transcription units (TUs)

In addition to the annotation of ORFs, the genome annotation was ex-

panded to include the TU architecture. The TU architecture is defined here to be

the genomic coordinates of all RNA molecules in the transcriptome. To expand the

annotation to include TUs, transcript bounds were resolved with single base pair

resolution using data from RNA-seq and TSS determination. Definition of these

bounds was facilitated by bioinformatics approaches; for example, the prediction

of intrinsic transcriptional terminators was used to aid in assigning 3′ bounds of

transcripts. This approach resulted in the assignment of 748 TUs with a total of

676 unique TSSs (Table S2 in [51]). The majority of TUs were found to be poly-

cistronic (427, 57%) while the rest of the TUs contain only a single gene (321, 43%).

The average TU contains 3.3 genes which is greater than the typical 1-2 genes per

transcript observed in other bacteria [24, 52, 53] but similar to those found in ar-

chaea [26, 54]. Previous high-resolution studies of microbial transcriptomes have

identified the transcription of suboperonic regions as a source of transcriptional

complexity [22, 25, 52]. In T. maritima 165 TUs (22%) are suboperonic, having

their initiation site within a longer TU. This fraction of suboperons observed in

T. maritima is within the range observed in other bacteria; however, some organ-

isms such as Helicobacter pylori have similarly sized genomes (1.67 Mb) but use

suboperonic transcription much more frequently (47%, excluding antisense sub-

operons) [25]. Another source of transcriptional complexity comes from the use of

multiple start sites, however, only a small number of T. maritima TUs (28, Table

S3 in [51]) were observed to utilize them.

Annotation of non-coding RNAs

Beyond facilitating protein-coding gene annotation, transcriptome data pro-

vided experimental evidence supporting the bioinformatics prediction of 46 tRNAs,

3 rRNAs, 8 CRISPR cassettes and an additional 10 non-coding RNAs which in-

clude riboswitches, leader sequences, RNase P RNA, tmRNA and SRP RNA. These

features are included in the final annotation presented here (CP004077, Table S1

in [51]). Transcription was detected antisense to 19% of annotated genes (Table



18

S4 in [51]). However, 3′UTRs account for 52% of these antisense transcripts and

only 62 antisense transcripts have an experimentally identified TSS. Furthermore,

the median log phase FPKM (Fragments Per Kilobase of transcript per Million

mapped reads) values are much lower for antisense transcripts (4.5) than those

found for protein-coding genes (117). Transcriptome data also enabled identifica-

tion of 13 putative non-coding RNAs (ncRNAs, Table S5 in [51]). No secondary

structures could be defined for these putative ncRNAs using the prediction algo-

rithms RNAfold [55] and Infernal [56] at 80◦C. Four of these putative ncRNAs

contain small ORFs (<40 amino acids) but no peptide evidence for these small

ORFs was found in the proteomic datasets.

2.4.2 Identification of promoters and RBSs followed by

quantitative intra- and interspecies analysis of bind-

ing free energies

The genome-wide identification of promoter and RBS sites was facilitated

by the annotated TU start loci and protein start codons (Figure 2.2A). Promoter

and RBS sequences were then quantitatively analyzed using thermodynamic prin-

ciples. These same quantitative measures were applied to numerous organisms for

interspecies comparison.
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Figure 2.2: Identification and quantitative comparison of genetic ele-
ments for transcription and translation initiation. (A) Schematic showing
the position of the promoter upstream of the TSS and the RBS upstream of the
translation start codon. (B) The genomic position of the 3′ end of each promoter
element is shown relative to the TSS for all T. maritima TUs. Promoter elements
were identified using a gapped motif search for a -35 hexamer and a -10 nonamer.
This revealed an E. coli σ70 promoter architecture for the housekeeping sigma
factor of T. maritima, RpoD. The motif for both promoter elements is displayed
as a sequence logo (insets). (C) The relative binding free energy of σ70 is captured
using information content. Each panel shows the distribution of promoter infor-
mation content for T. maritima and E. coli. Mode 1 (C1) calculates information
content based on σ70 contacts with the -35 and -10 hexamer promoter elements
ntmari = 265, ntmari fRNA = 38, neco = 650). Mode 2 (C2) represents binding to
the extended -10 promoter (ntmari = 676, ntmari fRNA = 57, neco = 1,481). Mode
3 (C3) represents σ70-binding to both the -35 and the extended -10 promoter ele-
ments (ntmari = 274, ntmari fRNA = 37, neco = 657). (C4) shows the distribution of
information content for all promoters when only the highest scoring mode is con-
sidered (ntmari = 676, ntmari fRNA = 57, neco = 1,481). The inset shows the highest
distribution of functional RNAs across the modes. (D) The σ70 binding modes
from (C) were used to calculate the promoter information content for seven addi-
tional bacterial species. Analogous to (C4), the distribution of information scores
when only the highest bit score mode is considered is shown. The organism ab-
breviations correspond to the following: bsu, Bacillus subtilis ; cpn, Chlamydophila
pneumoniae CWL029; eco, Escherichia coli K12 MG1655; gsu, Geobacter sul-
furreducens PCA; hpy, Helicobacter pylori 26695; sey, Salmonella enterica subsp.
enterica serovar Typhimurium SL1344; syn, Synechocystis sp. PCC 6803; tmari, T.
maritima MSB8. The genome size is given in paranthesis. *bsu data is extracted
from a highly curated source that is a collection of small-scale experiments and,
as such, this distribution is not a genome-scale assessment of promoter strength.
(E) The calculated median RBS ∆G for all genes based on the position relative
to the start codon. Temperature profiles are shown for T. maritima at 37◦C (for
comparison), 65◦C (lower growth limit), 80◦C (growth optimum) and 90◦C (upper
growth limit). Similar profiles are shown for E. coli at 37◦C (optimal) and 80◦C
(for comparison). (F) The local minimum RBS ∆G for all genes in a 30 nt window
upstream of the annotated start codon generated for T. maritima and E. coli at
37◦C and 80◦C. (G) Similar to (F), the median of the local minimum RBS ∆G was
calculated and plotted for 109 bacteria against their optimal growth temperature.
Species in the Thermotogae phylum (n = 15) are shown in red.
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Annotation-guided search for motifs reveals promoter structures that

enable many contacts with RNA polymerase holoenzyme

Bacterial RNA polymerase is recruited predominantly through the binding

of sigma factors to promoter regions. A promoter motif search was performed

upstream of all unique T. maritima TU start sites. This revealed a strongly

conserved, E. coli σ70-like consensus sequence for the housekeeping sigma fac-

tor RpoD (Tmari 1457). No motifs were detected for the alternate sigma factors

RpoE, SigH and FliA (See Materials and Methods). The RpoD motif has three

distinct promoter elements: a -10 hexamer, a -35 hexamer and a 5′TGn element

directly upstream of the -10 hexamer (Figure 2.2B). Individual promoters identi-

fied carried combinations of these three elements. The distance between the TSS

and the 3′ end of the -10 element was found to be 7 bp (Figure 2.2B). This is in

strong agreement with the expected spacing for the consensus sequence of E. coli

σ70. The same is true of the -35 element though the location of the -35 hexamer is

more variable compared with the -10 hexamer partly due to the variability of the

spacing between the -10 and -35 promoter elements. Plotting the spacer between

the -10 and -35 promoter elements yields a distribution centered around 17 bp,

which also is in agreement with the E. coli σ70 consensus (Figure S1 in [51]). Fur-

thermore, plotting of genomic AT content upstream and downstream of aligned -10

promoter elements reveals an increase in AT content ≈75 bp upstream of the -10

promoter element (Figure S2 in [51]). This suggests the presence of UP elements

for a subset of T. maritima promoters. The α-subunits of RNA polymerase bind

to UP elements, facilitating initiation of transcription [57, 58].

Quantitative assessment of T. maritima promoters indicates high infor-

mation content across multiple σ70 binding modes

The identification of σ70 promoter elements enabled the quantitative study

of the relative binding free energy associated with individual promoters. The

sequence conservation of an individual promoter element (i.e. the information

content measured in bits [59]) can be computed through application of molecular

information theory and is achieved through quantitative comparison of a given
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sequence to the average sequence conservation across the genome as measured

through the position weight matrix [60] (See Materials and Methods). Information

content has been correlated to binding free energy (∆G) through the second law of

thermodynamics [61, 62, 63], where sequences with high information content are

closer to consensus and, therefore, have stronger relative binding free energy (more

negative ∆G). Experimental results, both in vitro and in vivo, have shown that

information content is moderately predictive of promoter strength and activity

[64].

The information content for individual T. maritima promoters was com-

puted using a model of σ70 promoters that accounts for the information content

of each promoter element and the variation in spacing between the -10 and -35

elements [63]. Using this approach, the information content of each T. maritima

promoter was determined for three, σ70-binding modes that represent the potential

contacts between σ70 and the promoter elements (Figure 2.2C1− C3). Plotting

the maximum information carrying binding mode for all promoters (Figure 2.2C4)

shows that the vast majority of promoters (90%) have information content greater

than zero. This indicates that, for these TUs, σ70 binding and transcription ini-

tiation is thermodynamically favorable (∆G<0). Furthermore, the distribution

of information content indicates that the median T. maritima promoter has 8.7

bits compared to E. coli σ70 promoters whose median is 5.9 bits. Comparison of

T. maritima promoters across all modes shows that the extended -10 promoter

(-10 hexamer and upstream 5′TGn, Mode 2) provides the highest information for

most TUs (63%). Furthermore, an extended -10 promoter combined with a -35

box (Mode 3) yields the highest information content in 25% of all promoters and

51% of functional RNA promoters (Figure 2.2C4 inset). These RNAs, which are

among the most actively transcribed genes, encode promoters with exceptionally

high information content (median 12.1 bits).
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Interspecies comparative analysis reveals that T. maritima promoters

have high relative sequence conservation

The surprisingly high sequence conservation of T. maritima promoters

prompted a comparative analysis of information content across multiple bacterial

species. The scope of the comparative analysis was limited by the lack of datasets

detailing bacterial TSS locations and the association of those TSSs with σ70. Pub-

lically available datasets for only seven additional, diverse microorganisms met

this criteria. The organisms included in the analysis are the Gammaproteobac-

teria Escherichia coli K12 MG1655 [65] and Salmonella enterica subsp. enterica

serovar Typhimurium SL1344 [66], the Deltaproteobacterium Geobacter sulfurre-

ducens PCA [24], the Epsilonproteobacterium Helicobacter pylori 26695 [25], the

Chlamydiae Chlamydophila pneumoniae CWL029 [67], the Cyanobacterium Syne-

chocystis sp. PCC 6803 [68] and the Firmicute Bacillus subtilis [69]. Since these

datasets contain only experimentally confirmed TSS loci, only T. maritima TUs

with an experimentally confirmed TSS were included in this interspecies compari-

son (495 TUs out of 676). As before, the information content across all three σ70-

binding modes was calculated. The distribution of the highest information content

mode (Figure 2.2D) indicates that T. maritima promoters are the strongest among

all organisms studied, carrying a median of 10.2 bits of information. Thus, among

bacteria, T. maritima promoter information content associated with σ70-binding

is relatively high.

Analysis of T. maritima RBS binding strength reveals strong binding

free energies that support translation initiation at 80 ◦C

The RNA/RNA binding free energy of the Shine-Dalgarno with the anti-

Shine-Dalgarno was calculated in a temperature-dependent manner using the gene

annotation as a reference point. Across all protein coding genes, the median RBS

∆G was calculated ±100 nucleotides (nt) from the start codon at temperatures

ranging from 37 ◦C to 90 ◦C (Figure 2.2E). The position of the lowest ∆G is shown

to be 4−6 nt upstream of the start codon, which is in agreement with the optimal

RBS location for translation initiation [70]. T. maritima is shown to maintain a
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thermodynamically favorable median ∆G up to its growth temperature maximum

of 90 ◦C [31]. Plotting the distribution of local minimum ∆G’s at 80 ◦C (Fig-

ure 2.2F) reveals that 93% of T. maritima protein-coding genes have a RBS with

∆G<0. Calculating RBS free energy distributions at different temperatures (Fig-

ure 2.2F) reveals that at higher temperatures there is a narrowing in the range of

observed free energies. T. maritima RBSs have a median absolute deviation of 1.30

kcal/mol at 37 ◦C compared to 0.87 kcal/mol at 80 ◦C (p = 4.4× 10−33, Wilcoxon

rank-sum test). Comparison of E. coli and T. maritima RBSs reveals that T.

maritima RBSs are substantially weaker at their respective optimal growth tem-

peratures (Figure 2.2F). A large fraction (36%) of E. coli genes have a ∆G>0 at

80 ◦C and would not be capable of supporting hyperthermophilic life. When com-

pared at equal temperatures (Figure 2.2F, 80 ◦C) T. maritima RBSs are stronger.

Interspecies analysis indicates that RBS binding strength is influenced

by both optimal growth temperature and phylogeny

To more rigorously test for a relationship between RBS strength and opti-

mal growth temperature, RBS ∆G’s were calculated for all genes in 108 additional

bacterial species spanning numerous phyla (including 14 members of the Thermo-

togae phylum). These organisms include psychrophilic, mesophilic, thermophilic

and hyperthermophilic microorganisms. A significant linear correlation was found

between optimal growth temperature and median RBS ∆G (Pearson r = -0.653,

p < 1 × 10−6 random permutation test), where increasing optimal growth tem-

peratures trend with a lower median RBS ∆G calculated at 37 ◦C (Figure 2.2G).

However, the energetic analysis of RBSs applied here is based on the 16S rRNA

sequence of the anti-Shine-Dalgarno and, as such, phylogeny is a potential con-

tributing factor to this correlation. To test this, three distance matrices were

constructed: (1) for local minimum median RBS ∆G (across all genes in a given

genome), (2) for optimal growth temperatures, and (3) for phylogenetic distances

determined from 16S rRNA sequences. The Mantel test was then applied to eval-

uate the correlations among the pairwise distance matrices (Figure S3 in [51])

allowing for the contribution of optimal growth temperature to be decoupled from
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phylogeny with respect to RBS strength. This test indicated that both phylogeny

and optimal growth temperature impact median RBS strength, with tempera-

ture slightly more significant than phylogeny (Mantel Statistic r = 0.37 vs 0.35,

p = 1× 10−4 random permutation test).

2.4.3 T. maritima promoter-containing intergenic regions

reveal a unique distribution of 5′UTRs and spatial

limitations on regulation

Regulation in T. maritima was studied from the vantage point of an or-

ganism with extremely short intergenic regions. In both microbes [71] and higher

organisms [72] it was shown that the regulatory complexity of an operon positively

correlates with the amount of intergenic space found upstream of that operon.

Promoter-containing intergenic regions (PIRs) served as well-defined genomic re-

gions for this analysis (Figure 2.3A). PIRs contain target sites for transcriptional

regulation (e.g. promoters and TF binding sites) as well as translational regulation

(e.g. RBSs). Each PIR can be divided into two components in relation to the TSS:

the sequence downstream of the TSS (the 5′UTR) and the sequence upstream of

the TSS.



26

B

C

A

5’ UTRUpstream PIR

TSS-35 Ext -10 RBS CDS

Fr
ac

tio
n 

of
 T

U
s 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100

5' UTR length (nt)

Promoter-containing Intergenic Region (PIR)

●●

●●●
●
●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●
●

●
●●●

●

●●

●
●●

●

●

●
●

●

●
●
●
●●

●●
●

●
●
●●
●

●●

●

●●
●

●

●
●
●
●
●
●
●
●
●●

●

●

●

●

●
●●

●

●●
●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

All UTRs (n=419)
Short UTRs (n=118)
Common UTRs (n=104)

0 1 2+

0
10

0
20

0
30

0

# of TF Binding Sites

PI
R 

Le
ng

th
 (b

p)

n = 301

n = 33
n = 15

(38 TFBSs)

Figure 2.3: Arrangement of genomic features contained within
promoter-containing intergenic regions (PIRs). (A) Schematic of the two
subdivisions of the PIR and the genetic elements they typically carry. (B) The
5′UTR distribution is shown for all TUs with an experimentally identified TSS.
The Short 5′UTR group (11− 17 nt) is shown in red. The Common 5′UTR group
(26− 32 nt) is shown in green. Transcripts with an annotated functional RNA as
the first feature were omitted from the analysis. Though only the first 100 nt are
plotted, frequencies are based on the entire set of 5′UTR lengths. (C) A quartile
plot of the length distribution of PIRs is shown. PIRs are grouped according to
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T. maritima has a bimodal distribution of 5′UTRs comprised of unchar-

acteristically ‘Short’ 5′UTRs and ‘Common’ 5′UTRs

T. maritima exhibits an unusual bimodal distribution with respect to the

length of 5′UTRs (Figure 2.3B). To date, the 5′UTRs of all other microorganisms

follow a unimodal distribution centered at approximately 30 nt [24, 25, 52, 53].

Though T. maritima has a distinct peak (local maxima) from 26-32 nt (Com-

mon 5′UTR Group), it has a second peak containing shorter 5′UTRs with lengths

between 11 − 17 nts (Short 5′UTR Group). Interestingly, there is underrepresen-

tation of 5′UTRs with lengths between 18 − 25 nt. Leaderless transcripts were

not detected in T. maritima, echoing the RNA/RNA binding energy analysis that

indicated exclusive use of RBSs for translation initiation.

To better understand the bimodal nature of the 5′UTR distribution, various

factors were tested that could differentiate the Short 5′UTR Group from the Com-

mon 5′UTR Group and provide insights into the lack of 5′UTRs between 18− 25

nt. Factors tested for over- or underrepresentation of the different 5′UTR groups

included: (1) gene expression level (both mRNA and protein levels), (2) protein

expression normalized to mRNA expression, (3) phylogenetic origin of genes, (4)

RBS and promoter strengths, (5) divergent vs. convergent operons, and (6) cellu-

lar functional categorization. These factors yielded no discrimination between the

Short 5′UTR Group and the Common 5′UTR Group and could not explain the

bimodal nature of the 5′UTR length distribution.

T. maritima PIRs are predominantly too short to permit transcription

factor regulation

To enable regulation of transcription, space in the genome must be dedi-

cated to operator sites, which serve as docking locations for TF recruitment. Typ-

ically, these sites reside upstream of the TSS, but can also be found downstream

of the TSS (in the 5′UTR). An analysis centered on PIRs was chosen to capture

the potential for TF binding sites both upstream and downstream of the TSS. A

total of 31 TF regulons with a combined total of 91 genomic binding sites were ex-

tracted from the RegPrecise database [73]. Mapping of the TF binding sites to the
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T. maritima genome showed that 71 were within PIRs, 12 mapped to intergenic

regions not carrying a promoter and the remaining 8 were within or overlapped an

annotated gene (Table S6 in [51]). The length distribution of PIRs without a TF

binding site was compared to that of PIRs with TF binding sites (Figure 2.3C).

The median length of PIRs that do not contain a TF binding site is 78 bp. This

is significantly shorter than the length of PIRs that carry a single TF binding site

(median = 161 bp, Wilcoxon rank-sum test p = 6.9× 10−8) or multiple TF bind-

ing sites (median = 252 bp, Wilcoxon rank-sum test p = 2.8 × 10−7). Thus, the

majority of T. maritima PIRs do not contain the typical space required to encode

a TF binding site.

2.4.4 T. maritima has an actively transcribed genome that

is tightly correlated to protein abundances

Transcriptome data indicate that the genome of T. maritima is exception-

ally active irrespective of growth condition (Figure 2.4A) with 91-96% of genes

expressed above an FPKM threshold of 8. This fraction of genes transcribed is

uncharacteristically high compared to other free-living bacteria (see Table S7 in

[51]). Furthermore, translational evidence supporting the high gene expression

activity of T. maritima is found in the proteomic datasets. In each condition

tested, peptide evidence was detected for 74% of the annotated proteins. It is

also found that mRNA and protein abundances are tightly linked (Pearson r =

0.63, p < 2.2 × 10−16 t-test) (Figure 2.4B). This correlation is stronger and more

significant than those reported in comparable studies for other bacteria [74, 75].
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Figure 2.4: Global analysis of mRNA and protein expression levels. (A)
The fraction of transcribed genes as a function of the FPKM threshold. Under
growth promoting conditions (log-phase) and early in the transition to stressed
conditions (carbon-limited late exponential phase, heat shock, and hydrogen inhi-
bition), 91-96% of the genome is expressed using a conservative FPKM threshold
of ≥8. (B) Correlation of mRNA expression and protein abundance. The line of
best fit indicates a strong linear relationship (Pearson r = 0.63, p < 2.2 × 10−16

t-test) between transcription and translation. The peptide abundance score for
each protein was derived by dividing the total spectral count by the number of
possible tryptic peptides (400-2000 m/z up to a charge state (z) of 3, hence a max-
imum fragment mass of 6000). Abbreviations: FPKM, Fragments Per Kilobase of
transcript per Million mapped reads; m/z, mass-to-charge ratio.



30

2.5 Discussion

Genome-scale technologies have provided researchers unprecedented access

to large volumes of data detailing the composition of a cell. However, approaches

for data analysis and interpretation have lagged behind due to the scope and com-

plexity of these data types. Here, we present a framework for multi-omic data

analysis that annotates genomic features involved in transcription, translation and

regulation. This methodology integrates genome-scale datasets with bioinformatics

predictions to produce 1) an improvement of the gene annotation, 2) an experi-

mentally validated TU architecture and 3) the identification of putative antisense,

non-coding transcripts and alternative TSSs. Using these annotated genomic fea-

tures enabled the genome-wide identification of promoters and RBSs, which are

difficult to identify solely using in silico approaches [76, 77]. Furthermore, the

relative binding strength of individual promoters and RBSs was quantitatively

measured using thermodynamic principles enabling multi-species comparison of

these sequence features. The annotated genome organization served as a scaffold

for analyzing regulatory features. Transcription factor regulation was examined

with respect to promoter containing intergenic regions while the translational im-

pact of the 5′UTR distribution was considered. The multi-omic data generation

and analysis demonstrated here is applicable to many microbial species.

Applying this methodology to study the genome organization of T. mar-

itima revealed that it has many distinctive properties compared to other organ-

isms. Genome-scale analysis of promoters showed that T. maritima encodes a

highly conserved, robust architecture that ensures transcription initiation. Sim-

ilarly, RBS sequence conservation was shown to be thermodynamically sufficient

for translation initiation for almost all T. maritima genes at 80◦C compared with

only a fraction of E. coli genes. The distinctive properties of the T. maritima

genome extend beyond sequence composition and are apparent at the organiza-

tional level. The high protein-coding density and minimal intergenic space found

in this organism have resulted in a high number of genes per TU, a paucity of

putative ncRNAs and few TUs with multiple start sites. Furthermore, transcrip-

tional regulation appears to be limited to a few TUs due to a lack of genomic
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space in PIRs. Interestingly, the 5′UTR component of the PIR was found to be

uncharacteristically bimodal and was comprised of an unusually short grouping of

5′UTRs. Lastly, the constrained genome organization of T. maritima is reflected

in the physiological state of the cell. Transcription of the vast majority of genes

is detected independent of culture condition and the correlation between protein

and mRNA is stronger than previously observed in other bacteria.

We hypothesize that the hyperthermophilic lifestyle of T. maritima could

potentially explain the distinctive characteristics of this organism’s genome orga-

nization. For instance, the increased sequence conservation of promoter elements

and RBSs throughout the T. maritima genome may be attributed to the need to

maintain gene expression under extreme temperature conditions. Macromolecular

interactions (e.g. protein/protein, protein/DNA and RNA/RNA) are intrinsically

harder to maintain at higher temperatures. In the case of TF binding sites, it

has been shown that each nucleotide deviation from consensus results in a ≈2kbT

penalty to the maximum binding free energy for a given TF (where kb is Boltz-

mann’s constant and T is temperature) [78]. Increasing the temperature amplifies

the binding free energy penalty for every non-conserved base pair. Therefore at

80◦C, mismatches between the Shine-Dalgarno and anti-Shine-Dalgarno sequence

are especially severe. Thus, T. maritima must overcome the intrinsic challenge

of recognizing and retaining contact at the initiation site for both transcription

and translation. Our data suggests that high sequence conservation of promoter

and RBS sequences is one of the mechanisms used by T. maritima to ensure suffi-

cient gene expression. This sequence-level adaptation could be analogous to many

others observed in thermophilic organisms such as the amino acid composition of

proteins [45, 46] and the GC content of structural RNAs [79].

The minimal intergenic space found in the T. maritima genome is reminis-

cent of a streamlined genome, which could explain the limited regulatory capacity

observed in this organism. Inflexibility of metabolic regulons has been previously

alluded to for other Thermotogales [80]. Here it is demonstrated that, for most

TUs, a lack of physical space exists for transcriptional regulation by TFs. Further-

more, the Short 5′UTR group carries the minimum number of nucleotides needed
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to recruit the ribosome based on Shine-Dalgarno/anti-Shine-Dalgarno interactions

[70]. Further reduction in 5′UTR length would abolish translation. Short 5′UTRs

also reduce the capacity to regulate by limiting 5′UTR interactions [81, 82].

Though thermodynamics and physical space are hypothesized to contribute

to the characteristic features of the T. maritima genome, the phylogenetic contri-

bution cannot be dismissed. These potential causal factors are difficult to decouple.

For RBSs, we were able to determine the impact of phylogeny and optimal growth

temperature on RBS binding strength. By analyzing RBSs from 109 bacterial

species spanning many phyla and having a diverse range of optimal growth tem-

peratures we were able to demonstrate that both phylogeny and optimal growth

temperature were significant determinants of RBSs sequence composition. How-

ever, a recent analysis of genome size among species of the order Thermotogales

could not resolve the impact of phylogeny from optimal growth temperature [36].

The authors found that a negative correlation between genome size and optimal

growth temperature exists within this order but the correlation did not hold when

phylogeny was accounted for in the analysis. Interestingly, this study also found

that the number of predicted transcriptional regulators and intergenic space is

higher in Mesotoga prima, a mesophilic member of the Thermotogales. Thus, the

relationship between phylogeny and the genome organization is difficult to eluci-

date without the generation of more datasets similar to the one presented here.

Thermotogae are an ideal phylum for future investigations on the causal

impact of factors such as temperature, intergenic space and phylogeny on genome

organization. This phylum contains organisms that are found in many diverse en-

vironments with a wide range of optimal growth temperatures. Generating multi-

omic datasets and analyzing them using an integrated, quantitative workflow for

numerous Thermotogae species would enable assessment of various environmental

factors in the context of phylogenetic distance. Furthermore, given their phyloge-

netic depth, characterization of the Thermotogae will also provide insights in the

evolutionary trajectory of microbial life on earth.
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2.6 Materials and Methods

2.6.1 Culture conditions and physiology

T. maritima MSB8 ATCC derived cultures were grown at 80◦C under

anoxic conditions in a chemically defined, minimal medium [83]. Cultures were

maintained in either serum bottles or pH-controlled (6.5) fermenters with con-

tinuous 80% N2, 20% CO2 sparging. Maltose and acetate concentrations were

measured using an HPLC. HPLC parameters were previously described [84]. The

following growth conditions were used for omics analysis: 1) log phase, 2) carbon-

limited late exponential phase, 3) heat shock and 4) H2 inhibition. Log phase sam-

ples were collected from mid-exponential phase cultures grown in 125 mL serum

bottles with 50 mL working volume of media and 10 mM maltose as the sole

carbon source. Carbon-limited late exponential phase cultures were grown in pH

controlled fermenters with pH control and continuous stripping of evolved hydro-

gen. Cultures were monitored for OD and maltose concentration and samples were

collected upon depletion of maltose. The heat shock condition was achieved by

rapidly heating mid-exponential phase cultures grown in serum bottles (similar to

the log phase condition) to 90◦C and sampled after 10 minutes for transcriptome

analysis. This has been shown to result in the heat shock response [85]. H2 inhi-

bition was achieved by allowing the native evolution of hydrogen to accumulate in

serum bottles (similar to the log phase condition). Arrested growth was indicated

by successive OD readings that showed no change measured every 30 minutes.

Growth profiles for these conditions are shown in Figure S4 in [51].

2.6.2 Genome resequencing and annotation updates

The recent identification of a 9 kb gap in the T. maritima MSB8 genome [49]

prompted genome resequencing. Genomic DNA was isolated using Promega’s Wiz-

ard Genomic DNA Purification Kit. Paired-end resequencing libraries were gener-

ated following standard Illumina protocols and sequenced on an Illumina GAIIx

platform. The updated genome sequence was assembled as follows: (1) Reads were

aligned to the 8.9 kb region identified in the T. maritima MSB8 DSMZ genomovar
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(AGIJ00000000.1) [49] and the TIGR genomovar (AE000512.1) sequence using

SHOREmap [86] and MosaikAligner (http://bioinformatics.bc.edu/

marthlab/Mosaik). (2) Unaligned reads were de novo assembled using Velvet [87]

to ensure no additional assemblies were present. (3) The sequence was corrected

for SNPs and indels detected during read alignment.

An updated genome annotation was generated using the RAST pipeline

with the default parameters [50]. Predicted gene sequences were mapped to the

AE000512.1 annotation using a bidirectional Smith-Waterman alignment to iden-

tify the corresponding locus tags. Instances where ≥30 bp separated the predicted

gene length between annotations were reconciled through manual inspection of

gene expression data and bioinformatics predictions. Gene length differences <30

bp could not be reconciled (unless peptide data supported only one annotation).

In these cases, the updated sequence annotation was retained.

2.6.3 Transcription start site determination

Total RNA was isolated from log phase cultures using the hot SDS/phenol

approach as previously described (http://www.bio.davidson.edu/projects/GCAT/

protocols/ecoli/RNApurification.pdf). DNase-treated total RNA samples were re-

covered using Fisher SurePrep TrueTotal RNA columns. Two biological replicate

TSS sequencing libraries were constructed as previously described [24]. Illumina

reads were aligned to the updated T. maritima genome using the Mosaik Aligner.

The number of sequenced reads and the number of aligned reads can be found in

Table S10 in [51]. Only uniquely mapped 5′ ends with ≥5 reads were retained as

potential TSSs.

2.6.4 Transcriptome characterization and gene expression

Tiling array and RNA-seq data were generated under log phase growth,

carbon-limiting late exponential phase, heat shock and hydrogen inhibited condi-

tions. Total RNA was isolated using the TRIzol (Invitrogen) extraction procedure

followed by DNase treatment and purification using either the Qiagen RNeasy Mini
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Kit (Tiling Arrays) or the SurePrep TrueTotal RNA columns (RNA-seq).

Custom tiling arrays were synthesized based on the AE000512.1 genome

sequence by Roche Nimblegen to carry 71,548 probes with a mean interval of 25

bp. Probe information was remapped to the updated genome sequence. Of the

original 71,548 probes, only 125 did not map. Labeled cDNA was generated and

processed as previously described [24]. The Transcription Detector algorithm [88]

determined probes expressed above background at a FDR = 0.05.

Paired-end, strand-specific RNA-seq was performed using the dUTP method

[89] with the following modifications. rRNA was removed with Epicentre’s Ribo-

Zero rRNA Removal Kit. Subtracted RNA was fragmented for 3 min using Am-

bion’s RNA Fragmentation Reagents. cDNA was generated using Invitrogen’s

SuperScript III First-Strand Synthesis protocol with random hexamer priming. Il-

lumina reads were aligned to the updated T. maritima genome using Bowtie [90]

with up to 2 mismatches per read alignment. The number of sequenced reads and

the number of aligned reads can be found in Table S10 in [51]. FPKM values were

calculated using Cufflinks [91]. Functional RNA transcripts were excluded from

FPKM determination.

2.6.5 Proteomics, peptide mapping, and protein abundance

quantitation

Proteomics samples and data were generally prepared as previously de-

scribed [92]. In summary, triplicate samples of both log phase and late exponential

phase culture were lysed by French press, and proteins were extracted into global,

soluble, and insoluble fractions. The three protein fractions were digested with

trypsin (Promega) for 4 h at 37◦C and then cleaned-up using C18 or SCX SPE

columns (Supelco), as appropriate. Resulting peptide samples were separated in

the first dimension by high pH HPLC (Agilent) and then analyzed by LC-MS/MS

using C18 resin (Phenomenex) with an expontial gradient on a custom built LC

platform coupled to a linear ion trap (LTQ) or a Velos Orbitrap mass spectrometer

(Thermo Scientific) operated in data dependent mode. Peptides were identified by

SEQUEST (Thermo Scientific) against a six-frame translation of the T. maritima
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genome with no protease specified in the search. Xcorr values were refined to con-

form to generally accepted criteria and were applied to result in a false discovery

rate of 0.16% at the peptide level. Non-quantitative peptide-level data can be

found in Table S8 in [51].

Normalized protein abundances can be found in Table S9 in [51]. Quantita-

tive Peptide-level data was extracted from Lerman et al. [93] and mapped to the

CP004077 genome annotation. The following criteria were used to filter proteins

for quantitative analysis: 1) the protein has a total spectral count ≥2 across all

conditions (minimum of two unique peptides or a single unique peptide with two

observations), 2) the protein has ≥1 observed peptide under log phase since our

data was correlated against log phase transcriptome data. Redundant peptides

(i.e. peptides mapping to multiple protein entries) were excluded from the anal-

ysis to minimize potential ambiguity. For quantitative analysis, we normalized

the observed spectral counts for each ORF by the number of possible fully tryptic

peptides in the ORF. The number of possible fully tryptic peptides for each ORF

was determined using the Protein Digestion Simulator (http://omics.pnl.gov

/software/ProteinDigestionSimulator.php). Default settings were used, except the

parameter Max Missed Cleavages was set to 0 and Minimum Residue Count was

set to 6. These options require fully tryptic peptides of at least length 6. This

program only considers peptides 400-2000 m/z up to a charge state (z) of 3, hence

a maximum fragment mass of 6000.

2.6.6 Promoter element motif analysis and position weight

matrix (PWM) generation

The process of determining individual σ70 promoter elements upstream

of each unique TU start in T. maritima was an iterative process, involving two

software packages: BioProspector [94] and MEME [95]. BioProspector is able to

identify gapped motif elements so it was used to initially identify T. maritima

motifs. In BioProspector, sequences 75 bp upstream of TU starts were searched

for bipartite elements (6 and 9 bp in width) with a 10-25 bp allowable gap and

visualized through WebLogo [96]. MEME provides deterministic position-weight



37

matrices appropriate for information content calculations. The -10 and extended

-10 boxes were searched [-1 to -18] upstream of the TSS while the -35 box was

searched [-20 to -44]. E. coli TUs annotated with σ70 promoters and experimen-

tally validated TSSs in the EcoCyc Database (version 15.0) [65] were extracted for

comparative analysis.

A similar approach was applied to identify promoter motifs for alternative

sigma factors. T. maritima has three annotated alternative sigma factors: RpoE

(Tmari 1606), SigH (Tmari 0531) and FliA (Tmari 0904). For RpoE and SigH,

the upstream region of TUs having genes showing high differential expression under

a given stress condition (heat shock, hydrogen inhibited and carbon-limited late

exponential phase) were searched for motif elements. The upstream regions of

flagellar gene encoding TUs were searched for a FliA motif. However, no sequence

motif could be detected for any of the three alternate sigma factors.

2.6.7 Information content calculations

Position weight matrices (PWMs) for each promoter element were converted

to individual information weight matrices using the following formula established

in the field of molecular information theory [60]: Riw(b, i) = 2-(-log2f(b, i)), where

f(b, i) is taken to be the probability of observing base b at position i. The individual

information of a sequence, Iseq, was calculated by summing the relevant entries of

Riw. For any particular sequence, only one entry of Riw is relevant among 4 bases

for each position i in the sequence. Iseq is measured throughout in bits since the

log was base 2 in converting the PWM to Riw.

Iseq reflects sequence conservation for a single sequence, but natural pro-

moters are often formed by multiple promoter elements, each with their own se-

quences and corresponding Iseq values. When multiple elements are present, vari-

able length spacers are frequently found between the elements. We applied an

approach previously described by Shultzaberger et al. [63] to properly account for

all possible promoter elements and the variation in their spacing. This allowed

us to assess total sequence conservation for an entire promoter. For each pro-

moter, the information content for a particular binding mode was calculated based
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on the formulas: (1) Mode 1: Iseq whole promoter = Iseq(-10 element)+Iseq(-35

element)-GS(d); (2) Mode 2: Iseq whole promoter = Iseq(extended-10 element);

(3) Mode 3: Iseq whole promoter = Iseq(extended-10 element)+Iseq(-35 element)-

GS(d). GS(d) is gap surprisal accounting for variable spacing (of length d) between

the -10 and -35 elements. GS(d) penalizes for unexpected spacing given the major

groove accessibility of B-form DNA and was defined as in equation (3) in Shultz-

aberger [65] with no small-sample correction factor as the analysis here is performed

at genome scale. In accordance with the Shultzaberger model, the space between

the -10 and -35 elements was restricted to 15 − 20 bp as measured from the 3′

end of the -35 element and the 5′ end of the -10 element. This limit on the spacer

distance Iseq whole promoter is measured in bits.

2.6.8 Ribosome binding site energy calculations

The anti-RBS sequence 5′-UCACCUCCUU-3′ (3′ end of the 16S rRNA)

was selected for this study. The hybrid-2s program in the UNAFold software pack-

age [97] was used to compute hybridization energies (∆G) for all possible 10-mers

over the temperature range 20-100◦C. This dictionary was mined for three ap-

plications: (1) binding energy values for all 10-mer sequences in the updated T.

maritima genome were computed to aid in annotation improvement, (2) the me-

dian positional ∆G for all CDSs ±100 bp from the start codon, and (3) the local

minimum ∆G for all CDSs 30 bp upstream of the start codon. RBS binding en-

ergies across 109 organisms were calculated using this dictionary. Optimal growth

temperatures for all non-Thermotogae bacteria were collected from Takemoto et

al. [98] and the protein coding gene annotation for each bacterium was extracted

from NCBI. CDS data for all Thermotogae with a complete genome sequence were

extracted from NCBI with the exception of T. maritima for which the annotation

generated in this study was used. For each organism, the median RBS ∆G was cal-

culated from the set of minimum RBS ∆G’s found for each CDS 30 bp upstream of

the annotated start codon. Three distance matrices were constructed for analysis

of the 109 bacterial species for which optimum growth temperatures were found.

The matrices included are as follows: (1) the absolute difference of median RBS
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strength values, (2) the absolute difference of optimal growth temperatures and

(3) the distance matrix generated by aligning full-length 16S rRNA gene sequences

using ClustalW2 (slow mode) followed by the phylogenetic tree generation script

(http://www.ebi.ac.uk/Tools/phylogeny/) with default settings. Next, the Man-

tel test, which tests the correlation between two distance matrices, was applied to

compute the significance of various correlations. The vegan package of R was used

with its default settings.

2.6.9 Rho-independent terminator site determination

Intrinsic terminators were predicted using the TransTermHP program [99].

To avoid bias introduced by annotation, no genome annotation was used in predic-

tion of Rho-independent terminators. Only terminator structures predicted with

a 100% confidence score were included in the curation of TUs.

2.6.10 Prediction of small RNAs

Small RNAs were predicted with Infernal [56] using cmsearch with de-

fault settings against the Rfam 10.0 Database [100] of small RNA families. sR-

NAs with an E-value<0.01 were manually curated to verify expression. These

sRNAs were checked against the sRNA predictions from Rfam and fRNA-DB

(http://www.ncrna.org) based on the AE000512.1 genome sequence.

2.6.11 Transcription unit assembly

TU assembly was accomplished through an iterative procedure beginning

with tiling array expression data. Tiling array data was processed with two Bio-

conductor packages for transcript segmentation based on change point analysis:

tilingArray (http://www.bioconductor.org/

packages/2.2/bioc/html/tilingArray.html) and DNAcopy

(http://www.bioconductor.org/packages/2.3/bioc/html/DNAcopy.html).

Manual comparison of the output from both packages with array data was used

to refine the automated set of transcriptional segments. Additional datasets and
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bioinformatics predictions were added and manually curated to fully characterize

the TU assembly. TSS and RNA-seq data provided single-base pair resolution of

segment boundaries. Intrinsic terminator predictions were also used for 3′ bound-

ary definition. ncRNAs were identified using the transcript segments. Transcribed

regions not associated with a TU and with length exceeding 68 nt (the combined

length of the paired end reads with no insert separating them) were quantified

using Cufflinks to generate FPKM values across all RNA-seq conditions. Regions

with at least two conditions showing FPKM values >8 were retained as putative

ncRNAs.

2.6.12 Transcription factor binding site mapping

TF binding sites were extracted from RegPrecise [73] and coordinates were

mapped to the updated genome. Table S6 in [51] has the TF binding sites used in

Figure 2.3C.

2.6.13 Data deposition

The T. maritima MSB8 ATCC (genomovar) genome and annotation are

found under Genbank Accession CP004077. RNA-seq, TSS, and tiling array

datasets are available in the Gene Expression Omnibus under Accession GSE37483.

Proteogenomic data are made available through PNNL (http://omics.pnl.gov) and

in Table S8 in [51].
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Chapter 3

In silico method for modelling

metabolism and gene product

expression at genome scale

3.1 Abstract

Transcription and translation use raw materials and energy generated

metabolically to create the macromolecular machinery responsible for all cellular

functions, including metabolism. A biochemically accurate model of molecular bi-

ology and metabolism will facilitate comprehensive and quantitative computations

of an organism’s molecular constitution as a function of genetic and environmental

parameters. Here we formulate a model of metabolism and macromolecular ex-

pression. Prototyping it using the simple microorganism Thermotoga maritima, we

show our model accurately simulates variations in cellular composition and gene

expression. Moreover, through in silico comparative transcriptomics, the model

allows the discovery of new regulons and improving the genome and transcription

unit annotations. Our method presents a framework for investigating molecular

biology and cellular physiology in silico and may allow quantitative interpretation

of multi-omics data sets in the context of an integrated biochemical description of

an organism.

42
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3.2 Introduction

A goal of systems biology is to provide comprehensive biochemical descrip-

tions of organisms that are amenable to mathematical enquiry [101]. These models

may then be used to investigate fundamental biological questions [101], guide in-

dustrial strain design [102] and provide a systems perspective for analysis of the

expanding ocean of omics data [30]. Over the past decade, there has been steady

progress in developing genome-scale models of metabolism (M-Models) for basic

research and industrial applications [103, 104, 105]. M-Models are stoichiometric

representations of the enzymatic and spontaneous biochemical reactions associated

with an organism’s metabolic network at the genome scale; however, M-Models

do not quantitatively describe gene expression (Figure 3.1a). The lack of an ex-

plicit representation for enzyme production precludes quantitative interpretation

of omics data and can result in biologically implausible predictions [106, 107].

Because M-Models do not contain chemical representations of transcription and

translation, to date, it has only been possible to use omics data as ad hoc con-

straints for enzyme activities [108, 109, 110, 111].
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Figure 3.1: Genome-scale modelling of metabolism and expression. (a)
Modern stoichiometric models of metabolism (M-models) relate genetic loci to
their encoded functions through causal Boolean relationships. The gene and its
functions are either present or absent. The dashed arrow signifies incomplete
and/or uncertain causal knowledge, whereas blue arrows signify mechanistic cov-
erage. (b) ME-Models provide links between the biological sciences. With an
integrated model of metabolism and macromolecular expression, it is possible to
explore the relationships between gene products, genetic perturbations and gene
functions in the context of cellular physiology. (c) Models of metabolism and ex-
pression (ME-Models) explicitly account for the genotypephenotype relationship
with biochemical representations of transcriptional and translational processes.
This facilitates quantitative modelling of the relation between genome content,
gene expression and cellular physiology. (d) When simulating cellular physiology,
the transcriptional, translational and enzymatic activities are coupled to doubling
time (Td) using constraints that limit transcription and translation rates as well
as enzyme efficiency. τmRNA, mRNA half-life; kcat, catalytic turnover constant;
ktranslation, translation rate; v, reaction flux.
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A modelling approach that accounts for the production and degradation

of a cell’s macromolecular machinery will provide a full genetic basis for every

computed molecular phenotype (Figure 3.1b). Such computations in turn enable

the direct comparison of simulation to omics data and the simulation of variable

expression and enzyme activity [112, 113]. In other words, an integrated model

of metabolism and macromolecular expression (ME-Model) affords a genetically

consistent description of a self-propagating organism at the molecular level and

moves us substantially closer to establishing a systems-level quantitative basis for

biology.

Here, we developed an ME-Modelling approach for the relatively simplis-

tic microorganism, Thermotoga maritima, which metabolizes a variety of feed-

stocks into valuable products including H2 [114]. T. maritima possess a number

of characteristics conducive to systems-level investigations of the genotypepheno-

type relationship: a compact 1.8-Mb genome [38], wealth of structural proteome

data [115], a limited repertoire of transcription factors (TFs) [116] and reduced

genome organizational complexity compared with other microbes [51]. Taken to-

gether, T. maritima’s small set of TFs and reduced genome complexity impose

a narrowed range of viable regulatory and functional states [51]. The existence

of few regulatory states may simplify the addition of synthetic capabilities and

facilitate metabolic engineering efforts by reducing unexpected and irremediable

side-effects arising from genetic manipulation [117]. A combination of metabolic

versatility and genomic simplicity make T. maritima a promising candidate for in-

vestigating fundamental relationships between molecular and cellular physiology,

both in silico and in vivo, and for the creation of a minimal chassis for chemical

synthesis [118]. Our T. maritima ME-Model simulates changes in cellular com-

position with growth rate, in agreement with previously reported experimental

findings [119, 11]. We observed positive correlations between in silico and in vivo

transcriptomes and proteomes for the 651 genes in our ME-Model with statisti-

cally significant (P < 1 × 10−15 t-test) Pearson correlation coefficients (PCC) of

0.54 and 0.57, respectively. And, when we used our ME-Model as an exploratory

platform for an in silico comparative transcriptomics study, we discovered puta-
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tive TF-binding motifs and regulons associated with L-arabinose (L-Arab) and

cellobiose metabolism, and improved functional and transcription unit (TU) ar-

chitecture annotation. Overall, ME-Models provide a chemically and genetically

consistent description of an organism, thus they begin to bridge the gap currently

separating molecular biology and cellular physiology.

3.3 Results

3.3.1 Genome-scale modelling of metabolism and expres-

sion

We developed a network reconstruction and modelling method that in-

cludes macromolecular synthesis and post-transcriptional modifications in addi-

tion to metabolism (Figure 3.1c; Supplementary Methods in [93]). Specifically,

our method accounts for the production of TUs, functional RNAs (that is, transfer

RNAs (tRNAs), ribosomal RNAs (rRNAs) and so on) and peptide chains, as well

as the assembly of multimeric proteins and dilution of macromolecules to daughter

cells during growth. Based on available genomic, structural proteomic and bio-

chemical literature we constructed an ME-Model for T. maritima that accounts

for the functional activities of 50% of the annotated gene products and, more

importantly, mechanistically links these enzyme activities to the genome.

To accurately model self-replicating cells at the molecular level, it is nec-

essary to account for material dilution during cell division as a result of volume

doubling, and to provide limits on the number of proteins that may be translated

from an messenger RNA before the mRNA decays or is transmitted to a daughter

cell. To approximate dilution of transcripts and proteins to daughter cells and pre-

vent infinite translation of peptides from an mRNA, we devised a series of coupling

constraints (Figure 3.1d; Supplementary Methods in [93]). These constraints effec-

tively provide upper limits on enzyme expression and activity and are a function

of the organism’s doubling time (Td). These coupling constraints may be tuned

for specific mRNAs or enzymes if their, respective, degradation rates or catalytic
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turnover constants (kcat) are known.

Applications of M-Models often involve simulating log-phase cellular growth

using flux balance analysis (FBA) [120, 121]. The organism’s gross lipid, nu-

cleotide, amino acid (AA) and cofactors, as well as growth-associated and main-

tenance ATP usage, are experimentally measured. Then, these measurements are

integrated with the organism’s Td to define a biomass reaction that approximates

the dilution of cellular materials during formation of daughter cells. However, cel-

lular composition is known to vary as a function of Td and medium [119] –with

Schaechter et al. indicating that Td is more influential than growth medium.

Our ME-Model explicitly describes transcription, translation and the di-

lution of gene products to daughter cells, thus it is unnecessary to use a gross

biomass production reaction when simulating growth. Instead, ME-Models con-

tain a structural reaction that accounts for the dilution of structural materials

(that is, DNA, cell wall, lipids and so on) during division and the energy cost asso-

ciated with cellular maintenance of the structure (Supplementary Table S1 in [93]).

Conceptually, this structural reaction approximates the production of a cell whose

composition varies as a function of environment and growth rate (Figure 3.2a).
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Measurement

Constant        composition
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Figure 3.2: Comparison of M- and ME-Models objective functions and
assumptions. (a) M-Models simulate constant cellular composition (biomass)
as a function of specific growth rate (µ), whereas ME-Models simulate constant
structural composition with variable composition of proteins and transcripts. (b)
Linear programming simulations with M-Models are designed to identify the max-
imum µ that is subject to experimentally measured substrate uptake rates. Only
biomass yields are predicted as µ enters indirectly as an input through the supplied
substrate uptake rate (see the measurement column for M-Models). Importantly,
the substrate uptake rate is derived by normalizing to biomass production. Linear
programming simulations with ME-Models aim to identify the minimum ribosome
production rate required to support an experimentally determined µ. µ enters into
the coupling constraints and so it must be supplied (or sampled) as the problem
would otherwise be a Nonlinear Program (NLP). As all M-Models reactions are
contained within the ME-Models, ME-Models can simulate all M-Models objec-
tives in addition to the broad range of objectives associated with macromolecular
expression.
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3.3.2 Molecularly efficient simulation of cellular physiology

The RNA-to-protein mass ratio (r) has been observed to increase as a

function of specific growth rate (µ) [119, 11] and decreases as a function of trans-

lation efficiency [11]. Schaechter et al. also observed an increase in the number

of ribonucleoprotein particles with increasing µ, whereas the translation rate per

ribonucleoprotein particle was relatively constant [119]. The increase in r and ri-

bonucleoproteins may be due to the reduced number of translation events mediated

by a ribosome as Td decreases.

To ascertain whether our ME-Model recapitulated the observed increases in

r, ribosomal RNA and proteins with increasing µ, we simulated a range of growth

rates in a defined minimal medium [83] (Supplementary Table S2 in [93]). To

simulate the molecular physiology of T. maritima for a particular µ, we used FBA

[121] subject to linear programming optimization [122] to identify the minimum

ribosome production rate required to support a given µ (Figure 3.2b). Ribosome

production has been shown to be linearly correlated with growth rate in Escherichia

coli [11, 123, 124]. Assuming that efficient use of enzymes contributes to the fitness

of an evolutionarily adapted lineage [125], we would expect a successful organism

to produce the minimal amount of ribosomes required to support expression of the

proteome.

Consistent with experimental observations [119, 11], our ME-Model simu-

lated an increase in r with increasing µ and with decreasing translation efficiency

(Figure 3.3a). We observed that the fraction of the transcriptome associated with

ribosomal RNA in silico increased with µ (Figure 3.3b). In addition, the riboso-

mal proteins account for a larger proportion of the total proteome as µ increases

(Figure 3.3c). These results indicate that it is possible to mechanistically model

changes in cellular physiology that have only recently yielded to phenomenological

modelling [11].
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Figure 3.3: Simulation of variable cellular composition and efficient use
of enzymes. (a) With our ME-model, the RNA/protein ratio increases linearly
with growth rate and with a slope proportional to translational capacity in amino
acids per second (circles: 5 AA/s, squares: 10 AA/s, triangles: 20 AA/s). (b)
Ribosomal RNA (rRNA) synthesis increases, relative to total RNA synthesis, with
growth rate (symbols as in a). (c) Ribosomal protein promoter activity increases,
relative to total RNA synthesis, with growth rate (symbols as in a). (d) Random
sampling of the M-Model solution space indicates that the M-Model solution space
contains numerous internal solutions with a broad range of total network flux. The
probability of finding an M-Model solution as efficient as an ME-Model simulation
is 2.1×10−5; the probability was calculated from a normal distribution constructed
from the M-Model sample space. The M-Model sample contains 5,000 flux vectors
randomly sampled from the M-Model solution space. (e) Smooth estimate of the
density of the flux ranges for the metabolic enzymes that may be simulated while
maintaining the objective for efficient growth with a 1% tolerance (M-Model: red
line, ME-Model: blue line). The shaded area denotes biologically unrealistic flux
values. All simulations were performed with an in silico minimal medium with
maltose as the sole carbon source.
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With M-Models, the cellular macromolecular composition is constant, ergo

they cannot reproduce the observed increases in r or ribosomes with increasing

µ. Although it is possible to empirically determine a relationship between gross

biomass composition and µ and then use this relationship to study variable com-

position in M-Models [126], the M-Models will compute a solution space where the

range of activity for a number of enzymes may be rather broad and even infinite

[106], if not specifically constrained. The biologically implausible sections of the

M-Model solution space are due, in large part, to unconstrained thermodynam-

ically infeasible internal loops that can operate at an arbitrary flux level [107].

These arbitrary activities contradict previous observations that efficient organisms

should maintain a minimal total flux through their biochemical network [125, 127].

By explicitly accounting for enzyme expression and activity, ME-Model

simulations should identify the set of proteins that will result in optimally efficient

conversion of growth substrates into cells. To determine whether our ME-Model

was more economic in terms of enzyme usage than the M-Model, we compared our

ME-Model simulation to a random sampling of the M-Model solution space [106].

After we fit a normal distribution to the sampled M-Model space, we found that

there is a small (2.1× 10−5) probability of finding an M-Model solution as efficient

as the ME-Model solution (Figure 3.3d). Because ME-Models explicitly account

for the costs of enzyme expression and dilution to daughter cells, the most efficient

growth simulations will minimize the materials required to assemble the cell; that

is, ME-Models will efficiently use enzymes when simulating a µ.

To compare the range of permissible, that is, computationally feasible, ac-

tivity for each metabolic enzyme in the ME-Model versus the M-Model, we per-

formed flux variability analysis. Flux variability analysis identifies the flux range

that each reaction may carry given that the model must also simulate the specified

objective value, such as µ, with a set tolerance. The permissible enzyme activities

for simulating efficient growth with a 1% tolerance tended to have smaller ranges

in the ME-Model compared with the M-Model (Figure 3.3e; Supplementary Data

1 in [93]), highlighting the sharply reduced flexibility in the ME-Model solution

space when simulating optimal growth.
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Our ME-Model contains gene products that carry out 142 of the 206 func-

tions estimated as essential for a minimal organism [128], whereas the M-Model

contains only 65 of these core functions. With the ME-Model, 120 of the 142

functions were essential for ribosome production, whereas only 23 of the 65 func-

tions in the M-Model were essential for biomass production (Supplementary Data

2 in [93]). This broader coverage of cellular functions means that ME-Models may

be used for in silico investigations of phenotypic states that are inaccessible to

M-Models.

3.3.3 Gene product production and turnover alters path-

way activity

In addition to simulating variable cellular composition and effectively elim-

inating the infinite catalysis problem, there are a number of metabolic activities

that are required for optimally efficient growth with the ME-Model but not with the

M-Model (Figure 3.4). These differences are due to the ME-Model producing small

metabolites as by-products of gene expression and explicitly accounting for the ma-

terial and energy costs of macromolecule production and turnover. The ME-Model

includes metabolic activities for recycling S-adenosylhomocysteine, which is a by-

product of rRNA and tRNA methylation, and guanine, which is a by-product of

queuosine modification of various tRNAs (Figure 3.4a). The ME-Model, also, pro-

duces CTP from CMP that is produced during mRNA degradation (Figure 3.4b).

Interestingly, the M-Model does not require CDP production to simulate growth,

whereas CDP production is essential in the ME-Model. The ME-Model exhibits

frugality with respect to central metabolic reactions (Figure 3.4c) and proposes

the canonical gylcolytic pathway during efficient growth, whereas the M-Model

indicates that alternate pathways are as efficient. When the efficiency requirement

is relaxed these less-efficient pathways may be active in the ME-Model solution

space (Supplementary Data 1 in [93]). The genes associated with optimal ac-

tivities tended to be strongly expressed (approximately 60th90th percentile) in

transcriptome data.
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Figure 3.4: Metabolic reactions required for efficient growth with the
ME-Model but not the M-Model. (a) Recycling of by-products of RNA modi-
fications. Adenosylhomocysteinease (SAHase) hydrolyses S-adenosylhomocysteine
(SAH) to L-homocysteine (L-HCys) and adenosine. Purine nucleoside phospho-
rylase (PNP) phosphorylases adenosine to adenine and ribose-1-phosphate (Rib-
1-P). Rib-1-P is converted to ribose-5-phosphate (Rib-5-P) by phosphopentomu-
tase (PPM). Phosphoribosylpyrophosphate synthetase (PRPPS) phosphorylates
Rib-5-P to produce 5-phosphoribosol-1-pyrophosphate (PRPP). Guanine phospho-
ribosyltransferase (GPT) produces GMP from the reaction of PRPP and gua-
nine, which is a by-product of tRNA metabolism. (b) CMP produced during
mRNA degradation is recycled to CTP using cytidylate kinase (CMPK) and
nucleoside-diphosphate kinase (NDK-CDP). (c) The ME-model uses the canon-
ical glycolytic pathway, whereas with the M-Model can circumvent portions dur-
ing optimal growth simulations. The canonical pathway involves phosphorylation
of D-glucose (D-Glc) to glucose-6-phospate (G6P) by hexokinase (HK1). G6P
is isomerized to fructose-6-phosphate (F6P) by phosphoglucose isomerase (PGI).
F6P is phosphorylated to fructose-1,6-bisphosphate (FBP) by phosphofructokinase
(PFK). FBP is metabolized to glyceraldehyde-3-phosphate (G3P) and dihydrox-
yacetone phosphate (DHAP) by FBP aldolase (FBA). The M-Model can circum-
vent the HK1/PGI portion with glucose/xylose isomerase (GXI) and fructokinase
(FRK); however, HK1 or PGI must also be expressed because G6P is an essen-
tial metabolite. PFK can be circumvented by diphosphate-fructose-6-phosphate
1-phosphotransferase (PPi-PFK). FBA can be circumvented by a pathway using
1-phosphofructokinase (FRUK), fructose-1-phosphate aldolase (FPA), alcohol de-
hydrogenase (ADH(glycerol)), glycerol kinase (GLYK), glycerol-3-phosphate de-
hydrogenase (GPDH) and triose phosphate isomerase (TPI). Enzyme commission
numbers are provided for each reaction. mRNA and protein expression (and quan-
tile) values are provided. Flux variability analysis was performed for simulated
growth on maltose minimal medium. Blue arrows: reactions required for optimally
efficient growth with the ME-Model, but not the M-Model. Green arrows: active
reactions in a single maltose minimal medium simulation shown to put results into
pathway context. Grey arrows: alternate optimal pathways in the M-Model.
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These differences highlight the interplay between macromolecular synthesis

and degradation, metabolism and salvage, and optimal use of the proteome. The

ME-Models allow a fine resolution view of these processes and their simultaneous

reconciliation. Not only can one analyse specific pathways in isolation, such as

the three examples given above, but it is now possible to investigate in detail the

coordination of functions within an organism’s biochemical repertoire.

3.3.4 Simulation of systems-level molecular phenotypes

To assess our ME-Model’s ability to simulate systems-level molecular phe-

notypes, we compared model predictions to substrate consumption, product secre-

tion, AA composition, transcriptome and proteome measurements. With the only

external constraints for the ME-Model being the experimentally determined µ dur-

ing log-phase growth in maltose minimal medium at 80 ◦C, our model accurately

predicted maltose consumption and acetate and H2 secretion (Figure 3.5a; Sup-

plementary Table S3 in [93]). Predicted AA incorporation was linearly correlated

(0.79 PCC; P < 4.1× 10−5 t-test) with measured AA composition (Figure 3.5b).
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Figure 3.5: The ME-Model accurately simulates molecular phenotypes
during log-phase growth. (a) The ME-Model accurately simulates H2 and ac-
etate secretion with maltose uptake when constrained with a measured growth
rate (n=2). Experiment: grey bars, simulation: black bars. (b) The in silico
ribosome incorporates the 20 amino acids at rates proportional (Pearson correla-
tion coefficient=0.79; P < 4.1 × 10−5 t-test) to the bulk amino-acid composition
of a T. maritima cell as measured by high-performance liquid chromatography
(n=1). (c) Simulated transcriptome fluxes are significantly (P < 2.2 × 10−16

t-test) and positively correlated (Pearson correlation coefficient=0.54) with semi-
quantitative in vivo transcriptome measurements (n=4). RNAs containing ri-
bosomal proteins (blue) were expressed stoichiometrically in simulations but ex-
hibited variability in measurements. (d) Simulated translation fluxes are signif-
icantly (P < 2.2 × 10−16 t-test) and positively correlated (Pearson correlation
coefficient=0.57) with semiquantitative in vivo proteomic measurements (n=3).
Ribosomal proteins (blue) were expressed stoichiometrically in simulations but
exhibited variability in measurements.
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FBA simulates reaction fluxes, whereas transcriptomics and proteomics

technologies provide semiquantitative measurements of expressed gene product

abundance. Thus, the simulated fluxes through the transcriptome and proteome do

not directly approximate the respective omics measurements; however, for macro-

molecules there should be a positive correlation between gene and protein synthesis

fluxes and the respective gene product abundances during log-phase growth. In

other words, proteins and genes are relatively stable and when an organism is

growing at steady state a relative increase in expression rate for a protein will

effectively increase the quantity of that protein.

Interestingly, when we compared the simulated transcriptome and proteome

fluxes to transcriptome and proteome measurements, respectively, there were sta-

tistically significant (P < 2.2 × 10−16 t-test) positive correlations for both the

transcriptome (0.54 PCC; Figure 3.5c) and the proteome (0.57 PCC; Figure 3.5d).

This degree of concordance was unexpected because the model does not account

for transcriptional regulation or transcript-specific RNA degradation rates. How-

ever, this concordance may be the result of our simulation objective being aligned

with T. maritima’s regulatory programme, whereas a decreased concordance would

be expected if the regulatory network was responding to a stress. We have pre-

viously observed a tendency to increase the expression of metabolically efficient

pathways, and decrease inefficient alternatives, by E. coli after adaptive evolution

under growth selection pressure [127]. Also, we have observed that T. maritima’s

genome is highly active with >89% of the protein-coding genes expressed in diverse

conditions [51], which could indicate a general eschewal of complex and expensive

circuitry within the global regulatory strategy.

Approximately 30% of T. maritima’s genome is not functionally annotated

and 50% of the functionally annotated genes fall outside of the scope of our ME-

Model. A number of genes not accounted in our model were expressed in vivo

(Supplementary Fig. S1 in [93]), and the costs of their expression as well as their

functional activities may contribute to the differences between simulation and mea-

surement. In addition, unknown regulatory features might be responsible for irreg-

ularities observed when comparing simulation to the measurement. For instance,
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ribosomal RNAs and proteins are expected to be expressed at stoichiometric ra-

tios, as occurs with the simulation, yet there is sizable variability in their measured

values (Figure 3.5c,d, blue colouring). These results illustrate that it is possible

to sketch a molecular description of a replicating organism solely from simple, but

stoichiometrically accurate, chemical equations represented on a genome scale.

3.3.5 In silico gene expression profiling drives discovery

With our ME-Model it is now possible to compute the gene expression

profile associated with growth in a specific condition or for a specific mutant.

These gene expression profiles may then be compared to identify genes that are

likely differentially regulated. The set of differentially expressed in silico genes

may then be used to drive biological discovery or improve our model (Figure 3.6).
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Figure 3.6: In silico transcriptome profiling drives biological discov-
ery. (a) In silico comparative transcriptomics identifies sets of genes that are
differentially regulated for growth in L-arabinose (L-Arab) versus growth in cel-
lobiose minimal media. TM0276, TM0283 and TM0284 are essential for metab-
olizing L-Arab, whereas TM1219TM1223, TM1469 and TM1848 are essential for
metabolizing cellobiose. (b) In vivo transcriptome measurements (n=2) confirm
the in silico transcriptomics predictions for differential expression of genes when
metabolizing L-Arab or cellobiose. (c) Two distinct putative TF-binding motifs
are present upstream of the TUs containing genes differentially expressed in silico
when simulating growth in L-Arab versus cellobiose minimal media. The motif
upstream of the genes upregulated during growth in L-Arab medium is termed
AraR, whereas the motif of the genes upregulated during growth in cellobiose
medium is termed CelR. Genes (grey: not in the model, green: upregulated by
L-arabinose, red: upregulated by cellobiose) organized into TUs involved in the
shift are shown. Each TU contains a promoter region (circle) arbitrarily taken to
be 75 base pairs upstream of the first gene in the TU. Promoters found to contain
the AraR or CelR motifs are coloured blue and purple, respectively. (d) Search-
ing T. maritima’s genome for additional AraR and CelR motifs results in new
biological knowledge. Although T. maritima can metabolize L-Arab, there is no
annotated transporter in the current genome. We identified a putative AraR motif
in a single TU (TM0277/0278/0279) not contained in the ME-Model. Analysis of
the TM0277/0278/0279 TU with the SEED RAST server indicated that the genes
are likely components of an ABC transporter that may be associated with L-Arab
transport. The CelR motif was not present in the promoter region upstream of
the cellobiose transporter operon (TM1218/1219/1220/1221/1222); however, the
CelR motif was present in the promoter of the TU (TM1223) directly upstream of
the cellobiose transport operon. Examination of the in vivo transcriptome mea-
surement indicates that the cellobiose transporter operon belongs to the same TU
as that of TM1223.
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Towards this end, we computed the transcriptome profiles for T. maritima

grown in a minimal medium with either L-Arab or cellobiose as the sole carbon

source (Figure 3.6a). Our computations identified genes that were exclusively

expressed and essential for growth with each carbon source. Because these genes

are essential for growth on the respective substrate they are conditionally essential

genes. Conditionally essential genes are often subject to transcriptional regulation,

however, they may be constitutively expressed. To assess whether the genes were

differentially expressed in vivo, we measured the transcriptome of T. maritima

growing in minimal medium with L-Arab or cellobiose as the carbon source. The

genes with the strongest differential expression in vivo were among the set of

differentially expressed genes in silico (Figure 3.6b) providing supporting evidence

for the presence of transcriptional regulation.

Conditionally expressed genes may be regulated by the same TF [129].

The presence of a common motif in the promoter regions of a set of genes may

indicate regulation by a common TF. To identify potential TF-binding motifs, we

scanned the promoter and upstream regions of the in silico differentially expressed

genes with MEME (Multiple Expectation Maximum for Motif Elicitation) [130].

Surprisingly, there was a high-scoring motif for the genes essential for growth on

L-Arab and a high-scoring motif for the genes essential for growth on cellobiose

(Figure 3.6c). The motif found upstream of the L-Arab upregulated genes is similar

to the AraR motif from Bacillus subtilis [131] (Supplementary Fig. S2 in [93]).

Also, the motif upstream of the cellobiose upregulated genes bears resemblance to

catabolite-responsive elements (cres), known to have an important global role in

catabolite repression through the binding of the CcpA protein in B. subtilis [132].

Here, we term the motif the CelR motif, as the regulated genes are involved in

cellobiose metabolism. These discoveries highlight how ME-Model simulations can

guide discovery of new regulons.

After identifying the putative AraR and CelR motifs, we scanned T. mar-

itima’s genome for the presence of other members of the putative regulons. For

the nondegenerate AraR motif 5′-GTACGTAC-3′, we identified a single additional

instance in an intergenic region upstream of the TU-containing genes TM0277,



62

TM0278 and TM0279 (Figure 3.6d). These genes were induced when L-Arab was

the carbon source, but not when cellobiose or maltose serves as the carbon source

(Supplementary Fig. S3 in [93]). L-Arab transport is an orphaned activity in our

model, which means that T. maritima may import L-Arab, however, the respon-

sible loci are not known. When we examined these genes using the SEED RAST

server [50], TM0278 and TM0279 were classified as permeases of an ABC trans-

porter putatively involved in L-Arab utilization, whereas TM0277 was not classified

because it was annotated as containing an authentic frameshift [133]. Recent rese-

quencing of T. maritima’s genome [51] refute the initial annotation that TM0277

contains a frameshift mutation; and the SEED RAST annotation for TM0277 is a

predicted sugar-binding protein for an arabinoside ABC transporter. Interestingly,

the TUs containing ABC transporters for maltose and chitobiose are organized in

the same manner: a binding protein followed by two permeases. The presence of

the AraR motif, the strong upregulation of the TM0277/TM0278/TM0279 TU in

response to L-Arab in vivo, the SEED RAST classification and resequenced genome

strongly suggest that we have identified a functional L-Arab transport system in

this organism. This discovery illustrates how in silico molecular biology at the

genome scale can be used to expand regulons and improve genome annotation.

When we scanned T. maritima’s genome for matches to the degenerate

CelR motif TGWAAAYRTTTWCA, the promoter regions of TUs associated with

cellobiose metabolism were identified. Interestingly, the promoter region of the

TU-containing TM1222, TM1221, TM1220, TM1219 and TM1218 did not contain

a CelR motif (Figure 3.6c,d). TM1222, TM1221, TM1220 and TM1219 encode for

a cellobiose ABC transporter, while TM1218 is annotated as a LacI family tran-

scription regulator. However, the promoter region of the TU for TM1233, which is

directly upstream of TM1222, contains the CelR motif. TM1233 encodes for the

cellobiose-binding protein that facilitates cellobiose transport. In the TU archi-

tecture of our model, there was a predicted Rho-independent terminator following

TM1223 that resulted in a new TU starting with TM1222. However, no promoter

was detected in the intergenic region between TM1223 and TM1222 using Prom-

Base [77]. This result leads us to believe that the initial assignment of TM1223
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and TM1222 to separate TUs was incorrect (Figure 3.6d). The presence of the

cellobiose transport system in the updated TU, the strong CelR motif and the

annotation of TM1218 as a TF suggest that TM1218 may encode for CelR.

3.4 Discussion

Our ME-Modelling approach represents a fundamental advance in the evo-

lution of genome-scale biochemical models of life and significantly broadens the

scope of microbial systems biology. It is now possible to ask systems-level ques-

tions in silico beyond metabolism and quantitatively analyse, in a bottom-up and

mechanistic manner, a variety of omics data in the context of a growing organism.

For instance, we can use a systems perspective to identify the minimal number

of genes required to support homeostasis and replication–120 of the 142 of the

proposed minimal bacterial genome [128] were essential for ribosome production

in maltose minimal medium (Supplementary Data 2 in [93]).

Not only can ME-Models predict global phenotypes that are traditionally

employed with M-Models, such as maximal growth rate in a defined medium, but

they can also be used to calculate whether the system has any material and en-

ergy reserves available for ancillary functions. For example, the measured maltose

consumption rate was greater than the one that we calculated for economically

efficient growth (Figure 3.5a). This discrepancy between measurement and simu-

lation could indicate that T. maritima does not strive for economic efficiency or

represent the portion of sugar used to support the activities of the unannotated

genes or regulatory circuitry. Given that the expression levels for the gene products

associated with the more efficient pathways were highly expressed (Figure 3.4c),

we are disposed towards the latter. Although the ME-Model does not account for

regulatory events, the presence of a strong discordance between simulation and

measurement would indicate that factors other than economic efficiency are in-

fluencing the expressome, thus informing hypothesis generation. For example, if

a more expensive isozyme was expressed in vivo than in silico, then it would be

possible to estimate the improvement in kcat required for the expensive isozyme to
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offset its higher materials and energy costs.

Technological advances have contributed to an expanding ocean of omics

data that has been under-explored [30]. Omics data have been under-analysed, in

part, due to the lack of a mechanistic systems-level framework for analysing myr-

iad molecular components in the context of cellular physiology. To date, with the

notable exception of C13 metabolic flux analysis, it has only been possible to per-

form indirect comparative analysis between omics data and M-Models [127] or to

neglect the complexity of the genotypephenotype relationship and use omics data

as ad hoc constraints for M-Model enzyme activities [108, 109, 110, 111]. Because

ME-Models explicitly represent gene expression, directly investigating omics data

in the context of the whole is now feasible.

Viewing multi-omics data in the context of biochemically and genomically

consistent ME-Models may allow us to extract more value from legacy and future

omics data. Comparing in silico and in vitro transcriptomes, or proteomes, can

highlight under-explored areas of molecular biology. For example, a set of genes

highly expressed in silico but not expressed in vivo may indicate the presence of

transcriptional regulation. Differential expression of a class of genes may indicate

incompleteness in our knowledge of how those gene products interact or allude to,

heretofore unknown, moonlighting functions. For instance, in the case of ribosomal

proteins (Figure 3.5c,d, blue) the model predicts uniform expression, whereas omics

measurements exhibit variability. The model was designed based on evidence that

ribosomal protein synthesis is highly coordinated [134], and does not account for

feedback circuits affecting degradation rates that have yet to be fully elucidated

[134, 135].

Although there is a positive correlation between the simulated transcrip-

tome fluxes and semiquantitative transcriptome data there was still a substantial

amount of dispersion (Figure 3.5c). When comparing in silico and in vivo tran-

scriptome measurements it is important to realize that both are approximations

of the transcript levels in an organism, and that omics technologies have been

inherently noisy to date [136]. Incomplete knowledge, such as a lack of specific

translation efficacy for each protein and degradation rates for each mRNA, and
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lack of signalling and regulatory circuitry will contribute to deviations from reality

by ME-Model simulations. Similarly, probe-binding and sample-labelling effica-

cies, as well as other technical issues, serve as barriers to absolute quantitative

transcriptome measurements [137].

Although it is a non-trivial endeavour to identify the source of all variation

between the simulated and measured transcriptomes, it is possible to use the ME-

Model for comparative transcriptomics approaches similar to two-channel DNA

microarray studies. Despite the early technological limitations of DNA microar-

rays, biological discovery was enabled by performing comparative transcriptomics

[138, 139, 140, 141]. Transcriptome profiling has been used extensively to identify

genes that are differentially regulated as a function of genetics and environment

[138]. Analysis of differentially expressed genes has contributed to the identifica-

tion of gene products responsible for unannotated enzymatic activities [139]. In

combination with sequence analysis, differential gene expression data can be used

to investigate transcriptional regulation [140, 141].

We devised and implemented a workflow for in silico comparative transcrip-

tomics, which resulted in the discovery of new regulons and improved both genome

and TU annotation (Figure 3.6ad). The similarities between the comparative tran-

scriptomics in silico (Figure 3.6a) and in vivo (Figure 3.6b) studies are striking,

given the variation observed between the simulated and measured transcriptomes

(Figure 3.5c) –this emphasizes that, in spite of its shortcomings, the ME-Modelling

framework is a powerful tool for biological research.

Finally, ME-Models enable integrated molecular biology on a genome scale

while accounting for the metabolic requirements, which partially fulfills the chal-

lenge of Project K [142] and moves us one step closer to a molecular representation

of CellMap [101].
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3.5 Methods

3.5.1 Network reconstruction procedure

The detailed procedure and formalism are described in detail in the Supple-

mentary Methods in [93]. Our method accounts for biochemical reactions associ-

ated with transcription of TUs, TU degradation, translation, protein maturation,

RNA processing, protein complex formation, ribosomal assembly, rRNA modifica-

tion, tRNA modification, tRNA charging, aminoacyl-tRNA synthetase charging,

charging EF-Tu, cleavage of polycistronic TUs to release stable RNA products,

sources, sinks and tRNA activation (EF-TU) as well as metabolism. In our formal-

ism, metabolic reactions are represented as multi-step processes including substrate

binding by the enzyme and dissociation of substrateenzyme complex to enzyme and

products. The metabolic content for our reconstruction was based on the previ-

ously published model [115], with updates to correct errors and incorporate new

data (Supplementary Data 3 in [93]).

The molecular machinery (for example, proteins, genes, RNAs) involved in

macromolecular synthesis were identified from the genome annotation [38], SEED

subsystem analysis [143], comparative genomics analysis of the E. coli model [124]

and KEGG [133]. The functions of each of the 159 proteins associated with macro-

molecular synthesis in T. maritima were determined by primary literature when

available. When no primary literature was available, the Uniprot [144] and SEED

[143] databases were used to infer function by homology. All proteins currently

believed to be used for macromolecular synthesis by T. maritima are enumerated

in Supplementary Data 4 in [93], and 93% of these genes are mechanistically linked

in our ME-Model.

The reactions associated with transcription and translation, including ini-

tiation, biopolymerization and termination, were generated from the genome se-

quence and a set of T. maritima template reactions (Supplementary Methods in

[93]). In our modelling formalism, reversible reactions were represented as two

unique reactions: one for the forward direction and one for the reverse.
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3.5.2 Protein complexes

For each functional protein, we used primary literature and the RCSB

Protein Data Bank [145] to determine whether the machine was a monomer or

oligomer. The Protein Data Bank entries provided an opportunity to integrate

3D structural data into our reconstruction (this model includes structures for 32

additional open reading frames compared with Zhang et al.). When data for mul-

timeric state were unavailable for a protein of interest, state data for orthologs

from closely related organisms were used; otherwise, the Uniprot database [144]

was consulted. In the absence of data providing insight into the multimeric state

of the protein, we assumed that the functional protein was a monomer.

3.5.3 Genetic code determination

From inspection of tRNA sequences and structures downloaded from the

transfer RNA database [146], we determined that T. maritima uses uniform-GUC

decoding with only 46 tRNA genes (see Supplementary Data 5 in [93]). In both

Archaea and Bacteria, but not in Eukarya, the conversion of C34 of a CAU-

anticodon to lysidine (k2C) or analogue generates an anticodon for isoleucine [147].

TMtRNA-Met-2 was assigned this role based on a strong sequence alignment to

E. coli tRNAs containing k2C. The T. maritima genome encodes two additional

tRNA genes with CAU anticodons, TMtRNA-Met-1 and TMtRNA-Met-3. Based

on structural similarity [148] to those found in a crystal structure of E. coli’s

formyl-methionyl-tRNAfMet55, TMtRNA-Met-1 may be involved in translation

initiation, therefore, TMtRNA-Met-3 was designated to participate in translation

elongation.

3.5.4 TU architecture determination

We assembled a draft TU architecture (Supplementary Data 6 in [93]) for

T. maritima based on a series of rules (Supplementary Methods in [93]). In short,

we assumed all TUs start with a gene start and proceed until one of the following

conditions is met: (1) two genes are found in convergent orientation on different
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strands, (2) two genes are found in divergent orientation on different strands, (3) a

high-confidence Rho-independent transcription terminator is found separating two

genes oriented in series on the same strand, (4) more than 55 base pairs separate

two genes in series on the same strand or (5) experimental evidence indicates a

TU boundary. Finally, to reflect the possibility of internal transcription start sites

in TUs reconstructed using the rules above, we added an additional TU in cases

where a high-confidence promoter was found in the region separating two genes

oriented in series on the same strand.

3.5.5 In silico molecular biology

Log-phase growth simulations were performed using FBA [121]. Linear pro-

gramming was used to identify the maximum µ or minimum ribosome production

flux supporting a particular µ from the components of the in silico minimal media.

Because of the presence of fast (metabolic) and slow (macromolecular synthesis)

timescale reactions, the parameters in the ME-Model span a wide range that can

result in inaccurate simulations due to floating point limitations of currently avail-

able floating point linear programming software (Supplementary Methods in [93]).

To remove the possibility of simulation results being artefacts arising from floating

point limitations, we used the exact simplex routines available in the QSopt ex

package [122], with default parameter settings for ME-Model simulations. The

predicted transcription level of a gene was determined by summing across the sink

fluxes of TUs containing the gene, which is equivalent to the transcription fluxes

less the TU degradation fluxes. Translation levels were reported as the sum across

the relevant translation initiation fluxes, as many TUs can contribute to the pro-

duction of a given protein. These values were compared with each other in the

case of simulated nutrient shifts or to the abundances reported experimentally.

3.5.6 In vivo methods

T. maritima MSB8 (ATCC: 43589) was grown in 500 ml serum bottles

containing 200 ml of anoxic minimal media with 10 mM maltose, L-arabinose or
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cellobiose as the sole carbon source at 80 ◦C. All samples were collected during

log-phase growth. Substrate uptake and by-product secretion rates, compositional

analyses, and transcriptome and proteome measurements were performed as de-

scribed in the Supplementary Methods in [93]. Transcriptome data have been

submitted to the NCBI Gene Expression Omnibus (accession ID: GSE28822) and

processed values are in Supplementary Data 7 in [93]. Proteomics data are avail-

able through Pacific Northwest National Laboratory (http://omics.pnl.gov) and

processed values are in Supplementary Data 8 in [93].

3.5.7 RNA modifications

A variety of post-transcriptional modifications of rRNAs are represented

in our model. For 16S rRNA, there was experimental evidence for ten modifi-

cations [149] in this organism (Supplementary Table S4 in [93]). The locations

of pseudouridines, which are mass silent, were not available, but an 11th modifi-

cation, U to Y at position 516, was included in the reconstruction based on the

fact that it is well conserved in bacteria and the alignment (Supplementary Data

9 in [93]) supports its inclusion. An unusual derivative of cytidine-designated N-

330 has been sequenced to position 1,404 [149] in the decoding region of the 16S

rRNA. This modified nucleoside was excluded from the reconstruction as the ex-

act chemical composition of the modification is unknown. We were unable to find

organism-specific literature supporting modifications to the 5S and the 23S rRNA.

Modifications to 5S rRNA are infrequent in bacteria [150]. Attempting to extrapo-

late 23S rRNA modifications from E. coli was relatively unsuccessful as alignment

via ClustalW2 [151] showed significant differences near many of the putative modi-

fication sites (Supplementary Data 10 in [93]). The alignment reveals that the 23S

rRNA of T. maritima is significantly longer (>100 bp) than that of E. coli. Only

three proteins with annotated roles in modifying the 23S rRNA were added to the

model for a total of six modifications (Supplementary Table S5 in [93]). Those

were TM0940, TM0462 and TM1715.

Post-transcriptional modification of tRNA also requires a significant in-

vestment in genes, enzymes, substrates and energy [152]. We included a variety
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of modifications (Supplementary Table S6 in [93]) in our model based on bioinfor-

matics predictions and literature evidence (Supplementary Table S7 in [93]).

3.5.8 Sensitivity analysis

To explore the influence of some of the newly introduced parameters on

model output, the bulk parameters used for the coupling constraints (Supplemen-

tary Methods in [93]) were varied (two-, four- and eight-fold increases and decreases

away from the parameter set used). The results are summarized in Supplementary

Fig. S4 in [93].

3.5.9 File formats

Our final model is available as a Systems Biology Markup Language (SBML)

XML file (Supplementary Data 11 in [93]). The model is also available as an LP

file (Supplementary Data 12 in [93]) for use with linear programming solvers.

3.5.10 Accession codes

Transcriptome data have been submitted to the NCBI Gene Expression

Omnibus under accession code GSE28822.
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Chapter 4

Genome-scale models of

metabolism and gene expression

extend and refine growth

phenotype prediction

4.1 Abstract

Growth is a fundamental process of life. Growth requirements are well-

characterized experimentally for many microbes; however, we lack a unified model

for cellular growth. Such a model must be predictive of events at the molecu-

lar scale and capable of explaining the high-level behavior of the cell as a whole.

Here, we construct an ME-Model for Escherichia coli—a genome-scale model that

seamlessly integrates metabolic and gene product expression pathways. The model

computes ∼80% of the functional proteome (by mass), which is used by the cell

to support growth under a given condition. Metabolism and gene expression are

interdependent processes that affect and constrain each other. We formalize these

constraints and apply the principle of growth optimization to enable the accurate

prediction of multi-scale phenotypes, ranging from coarse-grained (growth rate,

nutrient uptake, by-product secretion) to fine-grained (metabolic fluxes, gene ex-

72
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pression levels). Our results unify many existing principles developed to describe

bacterial growth.

4.2 Introduction

The genotype-phenotype relationship is fundamental to biology. Histori-

cally, and still for most phenotypic traits, this relationship is described through

qualitative arguments based on observations or through statistical correlations.

Understanding the genotype-phenotype relationship demands vantage points at

multiple scales, ranging from the molecular to the cellular. Reductionist ap-

proaches to biology have produced ‘parts lists’, and successfully identified key con-

cepts (e.g., central dogma) and specific chemical interactions and transformations

(e.g., metabolic reactions) fundamental to life. However, reductionist viewpoints,

by definition, do not provide a coherent understanding of whole cell functions.

For this reason, modeling whole biological systems (or subsystems) has received

increased attention.

A number of modeling approaches have been developed to predict systems-

level phenotypes. What distinguish these models from each other are the un-

derlying assumptions they make, the input data they require, and the scope and

precision of their predictions [153]. The type of modeling formalism employed is

influenced by all of these distinguishing characteristics [154]. Genome-scale opti-

mality models of metabolism (termed as M-Models) have made much progress in

recent years as they require only basic knowledge of reaction stoichiometry, are

genome-scale in scope, and have fairly accurate predictive power. Recently, M-

Models have been extended to include the process of gene expression (termed as

ME-Models) [93, 155], opening up completely new vistas in the development of

microbial systems biology. On the heels of these developments, a whole-cell model

(WCM) of the human pathogen Mycoplasma genitalium appeared [156]. The WCM

integrates many more cellular processes and can be used to simulate dynamic cel-

lular states; however, it depends on detailed molecular measurements of an initial

state (e.g., growth rate, biomass composition, and gene expression). While the
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model described by Karr et al is a major advance toward whole-cell computation,

many practical applications rely on the ability to compute optimal phenotypic

states. The WCM does not have this ability owing to the disparate mathematical

formalisms it employs. The WCM and genome-scale optimality models thus have

different capabilities and will find use to predict and explain different biological

phenomena.

Here, we construct an ME-Model for E. coli K-12 MG1655. The ME-

Model is a microbial growth model that computes the optimal cellular state for

growth in a given steady-state environment. It takes as input the availability

of nutrients to the cell and produces experimentally testable predictions for: (1)

the cell’s maximum growth rate (µ*) in the specified environment, (2) substrate

uptake/by-product secretion rates at µ*, (3) metabolic fluxes at µ*, and (4) gene

product expression levels at µ*. The creation of this model required the devel-

opment of a new modeling formalism and optimization procedure to couple gene

expression with metabolism, which provided new insight into growth rate- and

nutrient limitation-dependent changes in enzymatic efficiency. The model predicts

three distinct regions of microbial growth, defined by the factors (nutrient and/or

proteome) limiting growth. We show that proteomic constraints improve predic-

tions of metabolism itself, rectifying dominant failure modes in M-Models. Finally,

we compute gene expression changes as the cell transitions through and between

the different growth regions. The ME-Model computes measurable coarse- and

fine-grained cellular and molecular phenotypes, and provides unity in the field by

reconciling a variety of principles related to cellular growth at various scales of

complexity.
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4.3 Results

4.3.1 Integration of genome-scale reaction networks of pro-

tein synthesis and metabolism

To create an ME-Model for E. coli, we started from two previous network

reconstructions. The first reaction network includes all known metabolic pathways

as of late 2011 [157] and is referred to as the M-Model throughout. The second

accounts for reactions that describe gene expression and the synthesis of functional

macromolecules in a mechanistically detailed manner [124]. The two reaction net-

works were integrated (see Materials and methods), and reactions and gene func-

tions in both networks were updated to reflect gaps in knowledge that have been

filled since their creation. We updated subunit stoichiometries for hundreds of

multiprotein complexes and expanded the types of prosthetic groups, cofactors,

and post-translational modifications required for catalytic activity (Materials and

methods; Supplementary Table S1 in [158]). The scope and coverage of cellular

processes in the integrated network is extensive. The integrated network mecha-

nistically links the functions of 1541 unique protein-coding open reading frames

(ORFs) and 109 RNA genes; it thus accounts for ∼35% of the 4420 protein-coding

ORFs, ∼65% of the functionally well-annotated ORFs [159], and 53.7% of the

non-coding RNA genes identified in E. coli K-12 [160]. In total, 1295 unique func-

tional protein complexes are produced. Taken together, these complexes account

for 80-90% of E. coli ’s expressed proteome by mass (Supplementary Table S2 in

[158]).

The integrated reaction network covers and accurately predicts a large pro-

portion of essential cellular functions. It includes 223 of the 302 (73.8%) genes

classified as essential for cell growth under any condition [161] (Supplementary

Table S3A in [158]), and 166 of the 206 functions (80.6%) estimated as essential

for a minimal organism [128] (Supplementary Table S3B in [158]). In silico pre-

diction of gene essentiality in glucose M9 minimal media results in an accuracy

of 88.8% (precision=60.4%, recall=75%, Supplementary Table S4 in [158]). One

of the dominant failure modes of essentiality predictions is due to the assumption
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that all tRNA and rRNA modifications are essential; removing these genes from

predictions increases performance notably (accuracy=92.3%, precision=75.3%, re-

call=75%, Supplementary Table S4 in [158]). This accuracy is on par with previous

approaches using the metabolic reaction network alone (accuracy=91.2%, preci-

sion=81%, recall=68%) [157]. Many of the key differences between the M-Model

and the ME-Model essentiality predictions are due to the mechanistic treatment of

cofactor and prosthetic group synthesis and utilization in the ME-Model. Specif-

ically, for a protein complex to be functional in the ME-Model it has to contain

the embedded prosthetic groups required for function; while this change in model

structure results in some false predictions of essentiality compared with M-Models

(which include all prosthetic groups in a biomass objective function that does not

change across conditions), the essentiality predictions in the ME-Model can be

directly related to the essential enzymes requiring the prosthetic group.

4.3.2 Growth demands and general constraints on molec-

ular catalysis

To compute functional states of the integrated network, growth demands

are first imposed. Growth requires the replication of the organism’s genome and

synthesis of a new cell wall to contain the replicated DNA. In the ME-Model,

growth rate-dependent DNA and cell wall demand functions formalize these re-

quirements (Figure 4.1A; Supplementary information in [158]). We derived these

demand functions from growth rate-dependent trends in cell size [162] and DNA

content [163, 164] (Supplementary information in [158]). In addition, as in previous

models, we imposed growth-associated and non-growth-associated ATP utilization

demands [9] as the ostensible energy requirements [165, 166].
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Figure 4.1: Growth demands and coupling constraints leading to growth
rate-dependent changes in enzyme and ribosome efficiency. (A) Three
growth rate-dependent demand functions derived from empirical observations de-
termine the basic requirements for cell replication (detailed in Supplementary in-
formation in [158]). (B) Coupling constraints link gene expression to metabolism
through the dependence of reaction fluxes on enzyme concentrations. (C, D)
RNA:protein ratio predicted by the ME-Model with two different coupling con-
straint scenarios, one for variable translation rate versus growth rate (red lines)
and one for constant translation rate (orange lines). Experimental data in (C)
obtained from Scott et al (2010). (E) Phosphotransferase system (PTS) transient
activity following a glucose pulse in a glucose-limited chemostat culture (red) and
glucose uptake before the glucose pulse (blue) is plotted as a function of growth
rate. The data shown were obtained from O’Brien et al (1980)). Data from µ > 0.7
h−1 were omitted. (F) Data from (E) are used to plot glucose uptake as a fraction
of PTS activity. The resulting value is the fractional enzyme saturation (black
line). The fractional enzyme saturation predicted by the ME-Model is plotted as
a function of growth rate under carbon limitation (red dots). (G) The cartoon
depicts changes in extra- (blue) and intra- (green) cellular substrate (circle) and
product (triangle) concentrations and metabolic enzyme (orange) and ribosome
(purple/maroon) levels as the concentration of a growth-limiting nutrient (and
growth rate) increases. The dials show keff/kcat, the effective catalytic rate over
the maximum for metabolic enzymes (orange) and ribosomes (purple/maroon).
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One large improvement is that RNA and protein are not included as de-

mand functions (as they are in M-Models; [120]; instead, expression of specific

RNA and protein molecules are free variables determined during ME-Model simu-

lations. ‘Coupling constraints’ [167, 93] relate the synthesis of RNA- and protein-

based molecules to their catalytic functions in the cell (Figure 4.1B). The coupling

constraints are based on parameters that define the effective catalytic rate (keff )

and degradation rate constant (kdeg) of molecular machines (Supplementary infor-

mation in [158]).

A nutritional environment is then defined by setting constraints on the

availability and uptake of nutrients. For a particular nutritional environment, there

is a maximum growth rate at which the cell can no longer produce enough RNA

and protein machinery to meet the demands of growth. The computed cellular

state (biomass composition, substrate uptake and by-product secretion, metabolic

flux, and gene expression) at this maximum growth rate is the predicted optimal

response of the cell to the specified nutritional environment.

4.3.3 Derivation of constraints on molecular catalytic rates

Previous studies disagree as to if ribosomes translate with the same effi-

ciency (amino acids per ribosome per second) across growth conditions [168, 11].

Here, we use the ME-Model and available data to determine an appropriate con-

straint for ribosomal efficiency as a function of growth rate. We find that if a

constant translation rate of 20 amino acids per second is imposed as a constraint

in the ME-Model, the model predicts a linear growth rate-dependent RNA-to-

protein ratio (Figure 4.1C), consistent with the previous measurements [11]; how-

ever, the predicted RNA content does not quantitatively match measured values.

In particular, a constant translation rate results in no RNA production in the

limit of no growth. We therefore hypothesized that ribosomal translation rate sys-

tematically varies with growth rate, and back-calculated a growth rate-dependent

translation rate using measured growth rate-dependent RNA content (Supplemen-

tary information in [158]). Ultimately, we recovered a Michaelis-Menten-type rate

law (Figure 4.1D) with a maximal rate (Vmax) of ∼20 amino acids per second,
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consistent with previous findings for maximal ribosomal speed [164]; the rate law

results in a quantitative match of RNA content compared with experimental data

(Figure 4.1C, Pearson’s r=0.96). This rate law causes translation efficiency to

increase under nutrient-richer conditions, which recent experimental evidence sup-

ports [169, 170]. Interestingly, when we applied the same Michaelis-Menten-type

equations to constrain tRNA and mRNA catalytic rates, we recovered maximal

turnover rates highly consistent with previous estimates (Supplementary informa-

tion in [158]). The catalytic rates of metabolic enzymes are variable as well, and

tend to decrease when nutrients are limited. Both metabolomics [171] and pro-

teomics [170] data sets suggest a large-scale scaling of enzyme efficiencies under

nutrient limitation. We approximate these changes in metabolic catalysis in the

ME-Model with two minimal assumptions: (1) when the cell is nutrient-limited,

protein content is maximized (at a given growth rate) and (2) this protein con-

tent specifically is metabolic enzymes not operating at their maximal catalytic

rate [170] (i.e., keff/kcat < 1, see Figure 4.1G and Supplementary information,

Optimization procedure in [158]). These two assumptions allow us to predict av-

erage catalytic rates of metabolic enzymes under nutrient limitation. The nutrient

limitation-dependent shape of our computed catalytic rates matches assays for

glucose transporters under glucose limitation [172] (Figures 4.1E and F), LacZ un-

der lactose limitation [173] Supplementary Figure S1A in [158]), and the enzyme

efficiency in a small-scale optimality model accounting for substrate concentra-

tions with Michaelis-Menten kinetics [174] (Supplementary Figure S1B in [158]).

However, because the current ME-Model simulation procedure assumes that keff

decreases uniformly across metabolism, the model does not capture the importance

of specific enzymes for particular nutrient limitations; recent data sets [170] and

kinetic models [14] can help us understand and model these trends better at the

genome-scale.

4.3.4 Growth regions under varying nutrient availability

Upon derivation of the growth demands and molecular efficiencies, we inves-

tigate high-level model behavior to variable nutrient availability. Unlike previous
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genome-scale models [157, 155], growth rate in the ME-Model is a non-linear func-

tion of the substrate uptake rate bound (Figure 4.2A), and eventually reaches a

maximum. This behavior is consistent with long-standing empirical models of mi-

crobial growth [175, 176], in which growth is first nutrient-limited, but then limited

by some intra-organismal bound.
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Figure 4.2: Predicted growth, yield, and secretion. (A) Predicted growth
rate is plotted as a function of the glucose uptake rate bound imposed in glucose
minimal media. Three regions of growth are labeled Strictly Nutrient-Limited
(SNL), Janusian, and Batch (i.e., excess of substrate) based on the dominant
active constraints (nutrient and/or proteome limitation). The proteome-activity
constraint inherent in the ME-Model results in a maximal growth rate and sub-
strate uptake rate. The behavior of a genome-scale metabolic model (M-Model) is
depicted with an arrow. (B) Predicted growth rates as a function of uptake of a
limiting nutrient with glucose in excess. The shaded regions correspond to those
as labeled in (A). (C) Experimental (triangle) and ME-Model-predicted (circle)
acetate secretion in Nitrogen- (blue) and Carbon- (red) limited glucose minimal
medium are plotted as a function of growth rate. Data were obtained from Zhuang
et al (2011). The root-mean-square error (RMSE) between data and the ME-Model
is 0.12 (for comparison, RMSE=0.40 for the M-Model). (D) Experimental (trian-
gle) and ME-Model-predicted (circle) carbon yield (gDW Biomass/g Glucose) in
Carbon- (red) and Nitrogen- (blue) limited glucose minimal medium are plotted as
a function of growth rate. Data were obtained from Zhuang et al (2011). RMSE
between data and the ME-Model is 0.04 (for comparison, RMSE=0.07 for the
M-Model). (E) The cartoon depicts changes in extra- (blue) and intra- (green)
cellular substrate (circle) and product (triangle) concentrations and metabolic en-
zyme (blue/orange) and ribosome (purple/maroon) levels during the Janusian re-
gion. Metabolic enzymes are saturated throughout the entire Janusian region. To
increase the growth rate, the cell expresses metabolic pathways that have lower
operating costs. (Pathways with the smaller blue proteins taken to be 0.25 the
cost of the pathways with larger orange proteins.) A higher glucose uptake and
turnover results, but energy yield is lower and some carbon is ‘wasted’ and secreted
(brown triangles). The dials show keff/kcat, the effective catalytic rate over the
maximum for metabolic enzymes (blue/orange) and ribosomes (purple/maroon).
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Under nutrient-excess conditions, growth in the ME-Model is limited by

internal constraints on protein production and catalysis—the cell is ‘proteome-

limited’—resulting in a corresponding maximal growth rate (Figure 4.2A). This

feature allows Batch culture growth to be simulated without specifying nutrient

uptake bounds; instead, the ME-Model predicts a maximum batch growth rate

and optimal substrate uptake rate.

Supporting the validity of the proteomic constraints limiting growth in

Batch culture, optimal Batch growth rates, substrate uptake rates, and biomass

yields correlate with experimental data for growth on different carbon sources

(Supplementary Table S5 in [158]). The ME-Model predicted substrate uptake

and biomass yield closely matches laboratory evolved strains (Pearson’s r=0.89

and r=0.91, respectively) (Supplementary Table S5C in [158], sensitivity analy-

sis in Supplementary Table S6 in [158]). Though less accurate, predicted growth

rates by the ME-Model correlate with measured growth rates in batch culture

better than standard M-Models, in which growth rate is maximized subject to a

specified nutrient uptake, and the correlation increases when compared with lab-

oratory evolved strains (M-Model Pearson’s r=0.49, ME-Model Pearson’s r=0.61)

as opposed to wild-type strains (M-Model Pearson’s r=0.30, ME-Model Pearson’s

r=0.39). Other methods that include various approximate constraints on the total

flux through the metabolic network also show an increased performance in growth

rate prediction, though all computational methods [177, 178] still correlate better

with each other than with the experimental data (Supplementary Table S5B in

[158]).

When the uptake of glucose is restricted below the amount required for

optimal growth in batch culture, the cell’s growth is carbon-limited. Growth rate

linearly increases with glucose uptake when glucose availability is low. In this re-

gion (termed as the Strictly Nutrient-Limited (SNL) region in Figure 4.2A), the

capabilities of the proteome are not fully utilized as the proteome could process

more incoming glucose if it was available (Figures 4.1E-G). By varying the glucose

availability, we find that a region exists in which the cell is both nutrient- and

proteome- limited; we refer to this transition region as the Janusian region [179].
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ME-Model computations thus reveal three distinct regions of microbial growth

(Figure 4.2A; see Supplementary information, Optimization procedure, Computa-

tional definition, and identification of growth regions in [158]).

When the uptake of non-carbon sources is restricted below the amount

required for optimal growth in batch culture, the cell’s growth is limited by that

nutrient. Unlike carbon-source limitation, we find the nutrient- and proteome-

limited regions to be distinct (Figure 4.2B). However, in the SNL region, growth

is sometimes non-linear as a function of uptake rate, due to changing biomass

requirements (e.g., Sulfur and Magnesium).

4.3.5 Effect of proteome limitation on secretion pheno-

types

To understand the proteome-limited growth regions in the ME-Model, we

first investigate trends in secretion phenotypes and biomass yield. Under glucose

limitation, different metabolic pathways are utilized in the Janusian region than in

the SNL region, resulting in acetate secretion (Figure 4.2C, red). This metabolic

switch, combined with growth rate-dependent ATP requirements, results in a con-

cave biomass yield as a function of growth rate (Figure 4.2D, red). Both the

biomass yield and secretion trends have repeatedly been experimentally observed

[166]. The example of glucose limitation provides an illustrative example for the

general behavior in the Janusian growth region. In the Janusian region, the cell

increases its growth rate through differential expression of pathways, as illustrated

in Figure 4.2E. Due to proteome limitations, the cell switches to pathways that

require less protein mass but are lower in nutrient yield (defined as energy and/or

biomass precursors produced per molecule of limiting nutrient consumed). This

behavior is in contrast to that in the SNL region, in which high-yield pathways

are optimal (as in M-Models) and growth rate increases through changes in the

effective catalytic rate of metabolic enzymes (Figure 4.1G). These results provide

further support that ‘overflow’ metabolism can be understood in terms of pro-

teomic constraints, as suggested with a small-scale model [174].

The ME-Model also predicts that acetate will be secreted at all growth rates
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when E. coli is Nitrogen (Ammonium)-limited (Figure 4.2C, blue). Experimen-

tally, acetate is secreted under nitrogen limitation even at low growth rates [180].

This secretion phenotype is explained by the ME-Model as follows: protein ‘saved’

by utilizing low-yield carbon metabolism is diverted to synthesize other enzymes

that are not operating at their maximal catalytic capacity.

No Janusian region is observed under non-carbon limitation. In the ME-

Model, this is likely due to reaction network topology—while there are many al-

ternative pathways for energy, redox, and biomass precursor generation in carbon

metabolism, non-carbon nutrient assimilation is often achieved using more linear

pathways. As a result, there are fewer opportunities for trade-offs between uptake

rate and biomass yield. However, perhaps including variable substrate affinities for

alternative pathways would reveal Janusian regions corresponding to non-carbon

limitations.

4.3.6 Central carbon fluxes reflect growth optimization

subject to catalytic constraints

Further supporting the importance of proteomic constraints on metabolic

phenotypes is the prediction of central carbon fluxes by the ME-Model. When

glucose availability is varied, the ME-Model predicts changes in central carbon

metabolism consistent with the changes from 13C fluxomic data sets (Figure 4.3;

Supplementary Figure S2 in [158], Pearson’s r=0.93, 0.90, 0.86) [181, 4, 5]. Im-

portantly, the ME-Model predicts the dominant changes in pathway splits as the

glucose availability is varied (Figure 4.3, insets).
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Figure 4.3: Central carbon metabolic flux patterns under glucose-
limited and glucose-excess conditions. (A-C) Relative fluxes from 13C ex-
periments are plotted versus the fluxes predicted by the ME-Model. (A, B) Com-
parison of nutrient-limited model solutions with chemostat culture conditions and
(C) comparison of the batch ME-Model solution with batch culture data. All sim-
ulations and experiments correspond to growth in glucose minimal media. Fluxes
are normalized so that glucose uptake is 100. Insets show the main flux changes
under increasing glucose concentrations. The only model parameter that is mod-
ulated is the glucose uptake rate bound. Data were obtained from Nanchen et
al (2006) and Schuetz et al (2007). The ME-Model flux for the reaction ‘pyk’ is
taken to include phosphoenolpyruvate (PEP) to pyruvate (PYR) conversion via
the phosphotransferase system (PTS). Flux splits shown as insets were computed
using the ME-Model. The percentages indicate the percent carbon (Glucose) con-
verted to CO2 (for branch labeled ‘TCA’), acetate, and biomass. Both the TCA
and acetate branches contribute to ATP production. The total mmol ATP per
gDW biomass produced is indicated.
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Previous studies have evaluated the ability of M-Models together with

assumed optimality principles to predict metabolic fluxes [4, 5]. These studies

concluded that no single objective function applied to M-Models can accurately

represent fluxomic data from all environmental conditions studied [4]. Instead,

metabolic fluxes can be understood as being Pareto optimal: multiple objectives

are simultaneously optimized and their relative importance varies depending on

the environmental condition [5]. The three objectives needed to explain most of

the variations in the data from Schuetz et al were (1) maximum ATP yield, (2)

maximum biomass yield, and (3) minimum sum of absolute fluxes (which is a proxy

for minimum enzyme investment). These three objectives formed a Pareto optimal

surface that was valuable for interpreting fluxomic data; however, the surface was

large and it was not possible to predict the importance of each of the objectives a

priori.

By explicitly accounting for variable growth demands, enzyme expression,

and constraints on enzymatic activity, the ME-Model eliminates the need for mul-

tiple objectives; growth rate optimization alone is sufficient to predict the fluxes

through central carbon metabolism (Figure 4.3; Supplementary Figure S2 in [158];

Supplementary Table S7 in [158]). The three original objectives chosen by Schuetz

et al are biologically meaningful dimensions and required for interpreting fluxomic

data when using an M-Model. In contrast, the ME-Model accounts for all three

of these dimensions implicitly during growth rate maximization without adjusting

any model parameters (see Supplementary information in [158] and Supplementary

Table S7 in [158]). Accordingly, ME-Models can determine, at least qualitatively,

the importance and weighting of the objectives for growth in a given environment.

Ultimately, the primary changes in flux through central carbon metabolism can

be understood as responses to the same constraints causing the observed relation-

ship in biomass yield (Figure 4.2D): at low growth rates under carbon limitation,

the dominant changes are due to a changing ATP demand, and in the transition

from carbon-limited to carbon-excess (proteome-limited) conditions, the primary

changes are due to the switch to lower yield carbon catabolism (Figure 4.3, insets).
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4.3.7 In silico gene expression profiling from

nutrient-limited to batch growth conditions

We now use the ME-Model to predict groups of proteins that change in

expression under various degrees of glucose limitation. Under glucose limitation,

the optimal proteome changes due to shifting growth demands and proteomic con-

straints. The groups of functionally related proteins that shift in our simulations

match those previously reported experimentally [182, 183], but the model predic-

tions of quantitative differential expression (at the level of single genes) are weak.

We separate the analysis of the SNL region (Figure 4.4; Supplementary Table S8A

in [158]) from the Janusian region (Figure 4.5; Supplementary Table S8B in [158]),

due to the different dominant constraints and phenotypic responses specific to each

region.
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Figure 4.4: Growth rate-dependent gene expression under glucose limi-
tation. (A) Gene expression changes predicted by the ME-Model to occur in the
Strictly Nutrient-Limited (SNL) growth region indicated in light blue under glu-
cose limitation in minimal media are analyzed. (B) ME-Model-computed relative
gene-enzyme pair expression is plotted as a function of growth rate; the normalized
in silico expression profiles are clustered hierarchically (see Materials and meth-
ods). Solid lines are expression profiles of individual gene-enzyme pairs and dotted
black lines are the centroid of each cluster. Each leaf node is colored and quali-
tatively labeled by function. The number of genes in each leaf node is indicated
and listed in Supplementary Table S8A in [158]. Asterisks indicate clusters with
monotonic expression changes that significantly match the directionality observed
in expression data (Wilcoxon signed-rank test, P < 1 × 10−4). Expression data
were obtained from a previous study [183], in which E. coli was cultivated in a
chemostat at dilution rates 0.3 h−1 and ∼ 0.5 h−1.
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In the SNL region, the expression of most proteins decreases as growth rate

increases (Figure 4.4B, left side of tree, Supplementary Figure S3 in [158]). The

largest group of proteins includes those responsible for amino-acid and cell wall

synthesis; the growth rate-dependent decrease in expression of these proteins is due

to the combined effects of a decrease in cell wall and protein biomass (g/gDW) and

an increase in the effective catalytic rate of enzymes (Figures 4.1E-G). Proteins

involved in energy metabolism also decrease in expression with increasing growth

rate due to changes in catalytic rate and growth rate-dependent demands. Sur-

prisingly, the predicted expression levels of several accessory transcription proteins,

including four stress-associated sigma factors (RpoS, RpoH, RpoE, and RpoN), are

elevated at very low growth rates, reflecting an association with metabolic proteins

needed for slow growth.

A smaller number of proteins show increases in their relative expression lev-

els at higher growth rates (Figure 4.4B, right side of tree, Supplementary Figure S3

in [158]). These proteins include those responsible for protein synthesis (ribosome,

RNAP, and accessory proteins such as elongation factors) and proteins involved

in RNA biosynthesis. The increase in expression of RNA biosynthetic machin-

ery is necessary for de novo synthesis of ribonucleotides and to ensure flux through

nucleotide salvage pathways (mainly to support an increase in rRNA biomass). Fi-

nally, the expression profile of the pentose phosphate pathway reflects the interplay

between the increasing demand for ribonucleotide precursors and the decreasing

demand for amino-acid precursors.

To validate our predicted expression changes, we compared gene clusters

with expression data from E. coli grown at 0.3 h−1 and ∼ 0.5 h−1 in a glucose-

limited chemostat [183]. In this data set, genes in Energy Metabolism (purple),

Core Expression Machinery (orange), and RNA Biosynthesis (red) all significantly

change in the predicted direction (Wilcoxon signed-rank test, P < 1 × 10−4),

supporting our predicted expression profiles. The other clusters showed no sig-

nificant changes in the data set; these clusters are either small in size or do not

change monotonically, hindering direct comparison with this data set. The ME-

Model is not yet predictive of quantitative gene expression changes (at the level
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of single genes); the correlation over the entire data set is statistically significant

(P < 0.005), but weak (Pearson’s r=0.14). Our approach is at present limited to

qualitative predictions of the direction of change of small groups of functionally

related proteins.
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Figure 4.5: Gene expression during the Janusian region. (A) Gene ex-
pression changes predicted by the ME-Model to occur in the Janusian growth
region indicated in purple under glucose limitation in minimal media are analyzed.
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In the Janusian region of growth (Figure 4.5), the cell transitions from

carbon-limited to proteome-limited constraints, resulting in a distinct transcrip-

tional response. At the beginning of this transition, the cell has reached a nutrient

level where enzymes are saturated (Figure 4.1G); as growth rate increases, the to-

tal demand of anabolic processes increases, causing a global increase in the bulk of

metabolism and gene expression machinery (Figure 4.5B). To meet these proteome

demands, energy metabolism is altered to favor lower yield catabolic pathways that

require less protein (so that the protein can instead be used for anabolic processes);

this is accomplished through a decrease in TCA Cycle and Oxidative Phosphory-

lation expression in favor of a transient increase in the Glyoxylate Cycle followed

by a large increase in Glycolysis and acetate secretion (Figures 4.5B and C), con-

sistent with previously observed changes in gene expression in the transition to

glucose-excess environments [182].

The ME-Model predicts intricate expression changes as glucose availabil-

ity changes by employing relatively simple constraints on molecular catalysis and

biomass composition. This study is the first to attempt genome-scale prediction of

gene expression levels under changing growth rate and/or nutrient limitation from

optimality principles alone. Systematic consideration of transcriptional regulation

and inclusion of missing constraints and parameters impacting optimality (e.g.,

kinetic constraints and parameters) are future endeavors necessary to extend the

predictive power to the level of single genes (see Discussion).

4.4 Discussion

The ME-Model is a microbial growth model that computes the optimal

cellular state for growth in a given steady-state environment. It takes as input the

availability of nutrients to the cell and produces experimentally testable predictions

for: (1) the cell’s maximum growth rate (µ*) in the specified environment, (2)

substrate uptake/by-product secretion rates at µ*, (3) metabolic fluxes at µ*, and

(4) gene product expression levels at µ*.

Important to the predictions of the ME-Model is the proper coupling be-
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tween metabolism and gene product expression. Through comparison of model

simulations with experimental data, we derived two general classes of molecular

efficiencies that vary based on the growth rate and the degree of nutrient limita-

tion. For ribosomes (and tRNA and mRNA), we propose a growth rate-dependent

Michaelis-Menten-type model for polymerization speed, which has preliminary ex-

perimental evidence [169], though we have not seen it previously proposed. We

furthermore show that two simple assumptions allow us to approximate the ef-

fect of nutrient limitation on metabolic enzyme catalysis. While enzyme-specific

trends in catalytic rates depend on the limiting nutrient [184, 171], our formula-

tion is a first step toward modeling genome-scale effects of nutrient limitation and

suggests that simple principles may underlie these trends. Both of these molecular

efficiency variables are essential for genome-scale modeling of gene expression and

warrant future studies to validate and refine them further. Paired proteomic and

metabolomic data sets under nutrient-limited conditions will allow for a deeper

understanding of nutrient limitation-dependent effective catalytic rates, and new

data sets [185] and models [186] on the processes of gene expression can help to

refine model parameters and determine their genome-scale effects.

The proteomic constraints inherent to the ME-Model result in qualitatively

different growth predictions compared with previous genome-scale models. In the

ME-Model, growth rate is not a simple linear function of substrate uptake bounds;

instead, the ME-Model predicts a maximal growth rate and optimal substrate up-

take rates, which better reflects empirical growth models and better predicts ex-

perimentally measured growth rates and substrate uptake rates. The ME-Model

reveals three distinct growth regions, which we term SNL, Janusian, and Batch;

while nutrient-limited (chemostat culture) and nutrient-excess (batch culture) con-

ditions are commonplace, the Janusian region (where the cell is limited by both

nutrient availability and proteome capacity) is rarely considered in microbiology.

Interestingly, we observe the Janusian region to occur under carbon limitation but

not under various non-carbon limitations. We take this to mean that Janusian

regions may exist for non-carbon limitations, but the constraints that may cause

them to arise are outside the scope of the current ME-Model.
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The proteomic constraints in the ME-Model also improve predictions of

by-product secretion and metabolic flux under both nutrient-excess and nutrient-

limited conditions. By accounting for the metabolic cost of proteins and limitations

of protein production capacity, the ME-Model accurately decouples substrate up-

take, growth rate, and growth yield, allowing for important rate-yield trade-offs

to be predicted. In particular, we show that seemingly inefficient metabolism in

batch culture and under nitrogen limitation (both when carbon is in excess), can

be explained and predicted through proteomic trade-offs. This capability rectifies

the dominant failure mode in predicting metabolic flux previously reported for

M-Models [5], and suggests that a single objective of growth rate (if the proper

constraints are included) may be able to predict metabolic fluxes. This result

shows that proteomic constraints are necessary to accurately predict metabolic

responses—optimal growth and metabolic phenotypes cannot be fully understood

without taking gene expression into account. From a practical standpoint, the

natural parsimony present in ME-Model simulations [93] strongly reduces the op-

timal solution space, allowing for more precise predictions, an important feature in

diverse applications. The effect of proteomic constraints on secretion phenotypes

is of particular importance for applications in systems metabolic engineering, and

will be necessary for simulating behavior in complex media and predicting nutrient

preferences.

At the level of gene expression, the ME-Model predicts detailed behavior in

each growth region. In the SNL and Janusian growth regions, gene modules have

distinct nutrient limitation-dependent profiles. A number of the gene modules

change in the correctly predicted direction compared with expression data from E.

coli in a chemostat at different growth rates [182, 183], supporting our predicted

expression profiles. By predicting optimal gene expression profiles, the ME-Model

aids in understanding the factors shaping the evolution of gene expression patterns

(e.g., proteomic constraints and changing biomass composition).

Modeling optimal transcriptional responses is complementary to the eluci-

dation and modeling of specific regulatory mechanisms [13, 187, 188]. It is tempting

to relate the expression profiles predicted by the ME-Model to molecular mecha-
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nisms underlying the control gene expression in vivo [13, 188, 189]. For example,

constitutively expressed genes display growth rate-dependent expression trends

[12, 13], which might provide the cell with an economical way of responding to

global changes in metabolic efficiency [170]. Also, PurR could be responsible for

regulating the increase in expression of nucleotide biosynthesis genes at higher

growth rates (as PurR is an autorepressor, this could be accomplished through

mechanisms described in [13]. Finally, though the primary role of ArcA is to re-

spond oxygen availability [190], it also represses many of the genes in the TCA

cycle and Oxidative Phosphorylation that decrease during the glucose-limited to

glucose-excess (Janusian) transition [182, 191]. However, as regulatory mechanisms

are not explicitly considered in the ME-Model, the relation between regulatory

mechanisms and simulated expression profiles is indirect; while this comparison

can assist in explaining and expanding upon the functional roles of cellular regu-

lators, much further work is required to validate the resulting hypotheses.

As it is an optimality model, the ME-Model is particularly suited for stud-

ies related to adaptive laboratory evolution (ALE). Recently, it was reported that

it is not possible to predict some changes that occur during ALE in Batch culture

using an M-Model [192]. This is because M-Models only take biomass yield op-

timization into account; these results are consistent with the rate-yield trade-offs

present in the ME-Model under nutrient-excess conditions. In the ME-Model, a

number of inherent factors can limit cellular growth (e.g., translation rate and

metabolic catalysis); the ME-Model can thus provide alternative hypotheses for

the mechanisms of growth increase and aid in understanding the results of ALE.

The ME-Model can simulate coarse- to fine-grained cellular and molecu-

lar phenotypes with an improved accuracy and scope compared with previous

genome-scale models. The ME-Model shows complex behavior as a result of lin-

ear constraints applied to an integrated network. The ME-Model thus shows that

intricate and seemingly unintuitive phenotypes can be modeled at a genome-scale

with simple enough assumptions to understand their underlying cause. Due to

the richness of the model simulations, we primarily focused on E. coli growing

in glucose minimal media at different growth rates by modulating the availabil-
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ity of glucose; there are therefore many future opportunities to investigate model

predictions under many environmental and genetic conditions.

A whole-cell E. coli model has been desired for some time [142] as such a

model would have profound impacts for basic microbiology, the study of microbial

communities, antibiotic discovery, the elucidation of regulatory networks, and sys-

tems metabolic engineering. We hope the ME-Model will serve as a scaffold for

continued model development toward these practical applications.

4.5 Materials and methods

4.5.1 Network reconstruction

The two primary reaction networks used to create the ME-Model were the

most recent metabolic reconstruction [157], and a network detailing the reactions

of gene expression and functional enzyme synthesis [124]. The gene expression

reconstruction is formalized as a set of ‘template reactions’ that can be applied

to different components (e.g., gene, peptide, and set of peptides) to generate bal-

anced reactions. Merging the E. coli metabolic network reconstruction with the

gene expression reconstruction required a conversion of the Boolean Gene-Protein-

Reaction associations (GPRs) into protein complexes. We utilized EcoCyc’s anno-

tation to map gene sets to functional enzyme complexes. The content of the final

reconstruction is detailed in Supplementary Tables S1, S9, and S10 in [158].

4.5.2 Coupling constraint formulation and imposition

Coupling constraints provide a mechanism for linking the flux values of

one or more reactions in the ME-Model. For example, they were used to bound

the number of proteins that may be translated from an mRNA before the mRNA

decays or is transmitted to a daughter cell. They are also the mechanism through

which we related enzyme abundance and activity. Often, the coupling constraints

are a function of the organism’s growth rate (µ). The coupling constraints are a

set of inequality constraints appended to the stoichiometric matrix as additional
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rows. Assumptions and literature citations for all parameters used can be found

in Supplementary information in [158].

4.5.3 Optimization procedure

As the demand reactions and coupling constraints are functions of the or-

ganism’s growth rate (µ), growth-rate optimization is not a linear program (LP)

as in metabolic models, which rely on a linear biomass objective function. In-

stead, to optimize for growth rate, we solve a sequence of LPs to search for the

maximum growth rate, µ*, that still results in a feasible LP. This search for µ*

is accomplished through a binary search; the search procedure is slightly different

depending on whether the cell is proteome-limited (Janusian and Batch growth

modes) or SNL. Detailed traces of the execution of the optimization procedures

can be found in Supplementary information in [158].

4.5.4 Hierarchical clustering

For Figure 4.4B, relative fractional proteome mass was calculated for each

gene-enzyme pair. If a gene is present in multiple enzyme complexes, then it is

represented twice, and all subunits of an enzyme complex are counted separately.

To filter out the stochastic expression of alternative isozymes (to make the observed

trends clear), we eliminated gene-enzyme pairs that were not expressed across all

growth rates and filtered gene-enzyme pairs that changed in relative expression by

>0.3 across more than one pair of consecutive growth rates. Hierarchical clustering

was performed on the resulting expression profiles; we used a signed power (β = 6)

correlation similarity (as in [193]) and average agglomeration.

4.5.5 File formats and accessibility

The model is freely available as part of the openCOBRA Project

(http://opencobra.sourceforge.net).
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Chapter 5

Reconciling a Salmonella enterica

metabolic model with

experimental data confirms that

overexpression of the glyoxylate

shunt can rescue a lethal ppc

deletion mutant

5.1 Abstract

The in silico reconstruction of metabolic networks has become an effective

and useful systems biology approach to predict and explain many different cellu-

lar phenotypes. When simulation outputs do not match experimental data, the

source of the inconsistency can often be traced to incomplete biological informa-

tion that is consequently not captured in the model. To address this problem,

general approaches continue to be needed that can suggest experimentally testable

hypotheses to reconcile inconsistencies between simulation and experimental data.

Here, we present such an approach that focuses specifically on correcting cases in

101
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which experimental data show a particular gene to be essential but model simula-

tions do not. We use metabolic models to predict efficient compensatory pathways,

after which cloning and overexpression of these pathways are performed to investi-

gate whether they restore growth and to help determine why these compensatory

pathways are not active in mutant cells. We demonstrate this technique for a

ppc knockout of Salmonella enterica serovar Typhimurium; the inability of cells to

route flux through the glyoxylate shunt when ppc is removed was correctly iden-

tified by our approach as the cause of the discrepancy. These results demonstrate

the feasibility of our approach to drive biological discovery while simultaneously

refining metabolic network reconstructions.

5.2 Introduction

The in silico reconstruction of metabolic networks is a systems biology

framework that serves as a collection of highly curated genetic and biochemical

information for a particular organism [19, 194, 195]. The subsequent conversion

of this parts list to a mathematical format allows one to simulate phenotypic

states and consequently to investigate different relationships between genotype

and phenotype using a computational model. The ability to simulate different

phenotypes is a notable strength of this modeling framework and distinguishes

this approach from static maps of biochemical pathways. Static maps represent

all known pathways in a network, whereas the simulation of metabolic network

reconstructions provides additional information concerning which pathways are

likely to carry flux - and are therefore active - vs. pathways that are present but

not used. To date, the simulation of metabolic models has found applications in

metabolic engineering [196, 197, 198], network analysis [199, 200, 201], biological

discovery [202, 203, 204], and target identification for drug discovery research [205,

206]. Metabolic models have also been used to investigate drug off-target effects

by incorporating structural data for proteins [207] and to provide context for the

analysis of high-throughput omics data [208, 207, 209, 204].

Because these models are constructed from experimental data, attempts
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to reconcile inconsistencies between experimental data and model simulations of-

ten form the basis for hypothesis-driven biological discovery [210]. In turn, the

new discoveries serve to refine the models. This continuous loop in which one

performs simulations, carries out experiments to test simulation results, resolves

inconsistencies, and then performs new simulations to start a new round of model

reconciliation ultimately improves the predictive capabilities of the models and

thereby increases their utility. In one example, the use of systems analysis coupled

with high-throughput screening and follow-up genetic and biochemical work led

to the functional assignment of eight ORFs in Escherichia coli that had two new

enzymatic activities and four unidentified transport properties [203]. Other studies

in E. coli identified a new mechanism that enables growth on myo-inositol [211]

and the gene that encodes succinate semialdehyde dehydrogenase in this organism

[212].

Several computational algorithms have been developed to close gaps in

metabolic models and to reconcile inconsistencies between model simulations and

experimental data [210, 213]; however, there is a constant need for new gap filling

strategies that complement existing ones so that the accuracy of metabolic net-

work reconstructions can continue to be refined and improved. Here, we present

such a method based on an analysis of a metabolic model for a knockout mutant

vs. the wild-type. Our method focuses specifically on formulating hypotheses that

can correct metabolic models when a gene is essential experimentally but it is

nonessential in the model. We demonstrate our approach by investigating a case

in which a metabolic reconstruction for Salmonella enterica serovar Typhimurium

(hereafter referred to as S. Typhimurium; [214] predicted in silico that a ∆ppc mu-

tant would be viable in glucose M9 minimal medium but the actual mutant, when

constructed and tested in the laboratory, was not. The absence of key regulatory

information from the model was found to be the cause of the discrepancy.
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5.3 Materials and methods

5.3.1 Bacterial strains

Bacterial strains used in this study are summarized in Table 5.1. Salmonella

enterica serovar Typhimurium strain 14028s was a generous gift provided by Fred

Heffron at Oregon Health & Science University.
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Table 5.1: Strains and plasmids used in this study. AmpR and CamR indicate
genes that confer resistance to ampicillin and chloramphenicol, respectively

Strain or plasmid Characteristics Source

Salmonella enterica
serovar Typhimurium
strain 14028s

Wild-type See Materials and
methods

∆ppc ppc deletion mutant This study
∆ppc∆iclR ppc and iclR double dele-

tion mutant
This study

ppc(pS7) The ∆ppc mutant bearing
plasmid pS7

This study

ppc(pS8) The ∆ppc mutant bearing
plasmid pS8

This study

ppc(pS10) The ∆ppc mutant bearing
plasmid pS10

This study

ppc(pS8 + pS10) The ∆ppc mutant bearing
the plasmids pS8 and pS10

This study

pKD13 PCR template used to gen-
erate ppc knockout cassette
based on kanamycin resis-
tance

[215]

pKD46 Encodes arabinose-
inducible λ-Red recom-
bination system

[215]

pCP20 Encodes FLP recombinase [215]
pASK-IBA33+ Expression plasmid contain-

ing a tetracycline inducible
promoter; AmpR

IBA GmbH, Germany

pASK1988 Derivative of pASK-
IBA33+ containing CamR

in place of AmpR

This study

pS7 pASK-IBA33+ containing
aceBAK

This study

pS8 pASK-IBA33+ containing
aceBA

This study

pS10 pASK1988 containing aceK This study
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5.3.2 Growth media

Strains of Salmonella Typhimurium 14028s were cultured at 37 ◦C with

magnetic stir bars for aeration in either Luria-Bertani (LB) broth or M9 min-

imal medium. The M9 medium contained 2 g L−1 glucose, 100 µM CaCl2, 2

mM MgSO4, 6.8 g L−1 Na2HPO4, 3 g L−1 KH2PO4, 0.5 g L−1 NaCl, 1 g L−1

NH4Cl, and 250 µL L−1 trace elements. The trace element solution consisted

of (L−1) FeCl3◦6H2O (16.67 g), ZnSO4◦7H2O (0.18 g), CuCl2◦2H2O (0.12 g),

MnSO4◦H2O (0.12 g), CoCl2◦6H2O (0.18 g) and Na2EDTA◦2H2O (22.25 g). An-

tibiotics were added as necessary at the following concentrations: ampicillin at 100

µg mL−1, kanamycin at 50 µg mL−1, and chloramphenicol at 25 µg mL−1. LB

powder was purchased from EMD Chemicals (Gibbstown, NJ) and used at the

manufacturer’s recommended concentration. All other chemicals were purchased

from Sigma-Aldrich (St. Louis, MO).

5.3.3 Construction of the ∆ppc mutant

The ∆ppc knockout mutant in S. Typhimurium 14028s was created using

the λ-Red recombination system [215]. A kanamycin resistance cassette containing

flanking FRT sites was generated by PCR using pKD13 as the template. The ends

of the cassette contained 50 nucleotides that are homologous to the 50 bp immedi-

ately upstream and downstream of ppc. The plasmids pKD46 and pCP20 were used

to insert the kanamycin cassette into the genome via homologous recombination

and to remove the kanamycin resistance marker, respectively. Correct insertion of

the marker and subsequent removal from the chromosome were confirmed by PCR.

All PCR products were purified with the QIAGEN PCR clean-up kit (Valencia,

CA).

5.3.4 Growth rate and glucose uptake rate measurements

For growth rate measurements, strains were first cultured in LB media

overnight, centrifuged at approximately 3000 g, washed twice with glucose M9, and

an aliquot inoculated into 25-mL flasks containing 10 mL of glucose M9. Cultures
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were aerated at 37 ◦C in an air incubator using a magnetic stir bar that spun inside

the flask. The next day, an aliquot was inoculated into 250-mL Erlenmeyer flasks

containing 100 mL glucose M9 media in triplicate such that the initial OD600 nm

was 0.05. The flasks were then transferred to a 37 ◦C water bath with continuous

magnetic stir bar aeration as described above. Cell growth was monitored by

measuring the OD600 nm every 30 min. The growth rate was then calculated by

fitting an exponential curve to the time course OD600 nm measurements.

The glucose uptake rate was obtained by collecting supernatant at the same

time we took each OD600 nm measurement. The supernatant was first filtered

through 0.22-µM syringe-fitted membranes and then injected into a Waters HPLC

system fitted with a Bio-Rad Aminex HPX-87H ion exclusion column (300 × 7.8

mm). The mobile phase was 5 mM H2SO4; the flow rate was 0.5 mL min−1;

and the area of the glucose peak in each sample was measured using refractive

index detection. The glucose concentration in each sample was then obtained

through comparison to a standard curve. Lastly, the glucose uptake rate was

calculated from the glucose concentration at each time point, the growth rate, and

an experimentally determined value of 0.41 g dry weight (gDW) per liter per unit

OD (R2 = 0.94).

5.3.5 In silico modeling

The genome-scale metabolic models for Salmonella Typhimurium LT2 [214]

and Escherichia coli K-12 MG1655 [157] were implemented using the COBRA

toolbox [216]. Growth simulations were performed by constraining the model such

that model parameters representing the in silico growth environment mimicked

glucose M9 media and then by maximizing the default objective function. In

both models, the default objective function was an equation representing biomass

production from the different cellular components (e.g. DNA, RNA, amino acids)

in stoichiometric amounts [120]. To compute the minimized sum of fluxes, the

growth rate was first fixed to 0.1 h−1, while the sum of all fluxes in the model was

minimized [127]. A priority score was defined for each simulated double knockout

because some double knockouts do not show a decrease in growth rate despite
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an increase in the minimal sum of fluxes. This effect stems from the fact that

metabolic models do not account for the total cost of protein synthesis. The

priority score was defined for each pair of genes as follows: Minimum flux with

knockout of gene 1 and gene 2 - Maximum (Minimum flux with knockout of gene

1, Minimum flux with knockout of gene 2). Synthetic lethality was determined by

computationally removing all pairs of enzymes in the model. Gene pairs for which

the in silico growth rate was < 0.001 h−1 were defined as synthetically lethal.

5.3.6 Construction of pASK1988

Plasmid pASK1988 was constructed by replacing the ampicillin resistance

gene of pASK-IBA33+ (IBA GmbH, Goettingen, Germany) with the chloram-

phenicol resistance gene of pACBSR [217]. The CamR gene from pACBSR was

PCR amplified with primers that included an AgeI restriction site on one end and

a BlpI site on the other. The plasmid pASK-IBA33+, excluding the ampicillin re-

sistance gene, was similarly PCR amplified using primers that introduced AgeI and

BlpI restriction sites on each end. All PCR was carried out using Phusion DNA

polymerase. Both PCR products were purified from a 1% agarose gel using the

QIAGEN QIAquick Gel Extraction Kit, digested with AgeI and BlpI, and ligated

with T4 DNA ligase at 16 ◦C overnight. The ligated products were then trans-

formed into TOP10 cells (Life Technologies, Carlsbad, CA) by heat shock at 42 ◦C,

recovered in SOC media, and plated on LB agar plates containing chlorampheni-

col. Successful transformants were cultured in LB media with chloramphenicol

overnight for plasmid isolation the following day using the QIAprep Spin Miniprep

Kit. We confirmed successful replacement of AmpR with CamR by PCR. The

AgeI and BlpI restriction enzymes, Phusion DNA polymerase, and T4 DNA ligase

were all purchased from New England BioLabs (Ipswich, MA).

5.3.7 Construction of pS7, pS8, pS10

The genes aceBA, aceK, and aceBAK were amplified by PCR using S.

Typhimurium 14028s genomic DNA as a template. The full aceBAK operon and
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the genes aceBA were cloned into pASK-IBA33+ according to the manufacturer’s

directions, yielding pS7 and pS8, respectively. The gene aceK was cloned into

pASK1988, yielding pS10. All plasmids were isolated using the QIAprep Spin

Miniprep Kit.

5.3.8 Induction and protein overexpression

Strains bearing pS7, pS8, pS10, or both pS8 and pS10 were first cultured

in LB medium overnight with the appropriate antibiotic. The next day, an aliquot

was inoculated into two 250-mL Erlenmeyer flasks containing 20 mL of LB media

such that the initial OD600 nm was 0.05. After allowing the cultures to grow at 37

◦C until they reached mid-log phase (OD600 nm approximately 0.5), anhydrote-

tracycline (ATc) was added to one of the flasks to a final concentration of 100

ng mL−1. Both flasks were then cultured for an additional 3 h, after which the

cultures were spun down and washed twice with glucose M9 media. The washed

cells were then inoculated into 250-mL Erlenmeyer flasks containing 100 mL of M9

medium with or without inducer in triplicate. The six flasks were then placed in

a 37 ◦C water bath and their OD600 nm values measured periodically over the

following several hours.

5.4 Results

5.4.1 In contrast to model simulations, a Salmonella Ty-

phimurium ∆ppc mutant is nonviable in glucose M9

medium

We implemented the consensus S. Typhimurium metabolic reconstruction

[214] and model simulations suggested that a ∆ppc knockout mutant would be

viable in glucose M9 medium. When the ∆ppc knockout mutant was experimen-

tally constructed, it was found to be viable in LB medium but not in glucose M9.

Supplementation of the glucose M9 medium with 5 mM succinate restored growth

of the ∆ppc mutant to a rate of 0.87 ± 0.010 h−1, similar to that of the wild-type
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0.86 ± 0.021 h−1. The glucose uptake rate calculated for the ∆ppc mutant on the

supplemented M9 medium was 14 ± 6.2 mmol gDW−1 h−1, which was also similar

to the value for the wild-type (15 ± 0.41 mmol gDW−1 h−1).

5.4.2 Comparing efficient flux states enables a hypothesis-

driven approach to reconcile metabolic models with

experimental data

We hypothesized that overexpressing one or more key genes in the ∆ppc

background might restore growth and thereby reconcile simulation results with

the experimental data. Furthermore, if the reactions that correspond to these key

genes are indeed compensatory, then they likely form a bottleneck - and therefore

become critical reactions - when the first gene is deleted. We have developed a

procedure to identify such bottlenecks by first calculating the minimized sum of

all fluxes for a reference metabolic model, a value that represents an optimal flux

state for the entire network. The reference here is the model for ∆ppc. Next,

one constructs models of all possible double knockouts such that ppc is one of the

two deleted genes, and the minimized sum of fluxes is likewise calculated for each

member of this set. The reaction corresponding to the second gene in the pair

is a potential bottleneck if the double mutant shows a significant increase in the

minimized total flux over the single ∆ppc knockout. This second gene thereby

becomes a potential candidate for overexpression.

We performed this analysis for ∆ppc using both the S. Typhimurium [214]

and E. coli [157] metabolic reconstructions. Even though all experimental work

performed here was carried out in S. Typhimurium, we utilized the E. coli recon-

struction as well because it is the most extensively curated reconstruction for a

microbe and because of the close phylogenetic relationship between the two or-

ganisms. Both models pointed to isocitrate lyase, encoded by aceA , as the key

compensatory enzyme, but in different ways. In the E. coli model, the minimized

sum of fluxes increases 1.3-fold for the ∆ppc∆aceA double mutant and has the

highest priority score of 23.4 (see Supporting Information, Table S1 in [218]). In
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the S. Typhimurium model, the two genes are synthetically lethal (Table S2 in

[218]). Isocitrate lyase is part of the aceBAK operon, which encodes genes for the

glyoxylate shunt (Figure 5.1). Supplementation of glucose M9 media with interme-

diates of the glyoxylate shunt (glyoxylate, malate, and succinate) restored growth

in the ∆ppc mutant (Table S3 in [218]). In E. coli, a prior study noted increased

flux through the glyoxylate shunt in an adaptively evolved ∆ppc mutant; however,

no direct causal link between the two was conclusively proven [219].
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Figure 5.1: The location of the ppc knockout and the glyoxylate shunt
within glycolysis and the TCA cycle.



113

5.4.3 Deleting iclR from the ∆ppc mutant restores viabil-

ity

In E. coli, the ∆ppc mutant is unable to convert phosphoenolpyruvate

(PEP) into oxaloacetate, which diverts PEP toward pyruvate biosynthesis [220].

Excess pyruvate, in turn, can activate IclR, a transcription factor that regulates

transcription of genes involved in the glyoxylate shunt [221]. We therefore created

a ∆ppc∆iclR double mutant in S. Typhimurium to investigate this possible mech-

anism linking deletion of ppc to the glyoxylate shunt and viability. Growth was

restored in the ∆ppc∆iclR double mutant at a rate of 0.45 ± 0.01 h−1 in glucose

M9 medium, which is approximately 60% of the wild-type growth rate (Figure 5.2).
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Figure 5.2: Growth curves for wild-type Salmonella Typhimurium and
the ∆ppc and ∆ppc∆iclR mutants in glucose M9 media. Error bars rep-
resent the standard deviation from three independent replicates.
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5.4.4 Simultaneous expression of aceBA and aceK from

two separate plasmids can rescue growth in the ∆ppc

mutant, but overexpression of aceBA, aceK, or ace-

BAK individually from a single plasmid cannot

We next overexpressed aceBAK using the pASK-IBA33+ inducible expres-

sion vector to confirm directly whether this operon by itself can rescue growth

in the ∆ppc mutant. The inducer was anhydrotetracycline (ATc), which can be

toxic at high concentrations [222]. We performed a dose-response study to as-

sess its toxicity to S. Typhimurium and found that ATc did not inhibit growth

at concentrations up to 100 ng mL−1 (Fig. S1 in [218]). Both aceBA and aceK

were then cloned into pASK-IBA33+ and pASK1988 (Fig. S2 in [218]), yielding

pS8 and pS10, respectively, and both transformed into the ∆ppc mutant, yielding

strain ppc(pS8+pS10). Induction and simultaneous expression of aceBA and aceK

rescued growth in the ∆ppc mutant (Figure 5.3). The ppc(pS8+pS10) mutant was

no longer viable in glucose M9 when it was cured of one of the two plasmids (data

not shown). Consistent with this observation, transformants bearing either pS8 or

pS10 were also not viable in glucose M9 (data not shown).
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Figure 5.3: Growth curves for ppc(pS8 + pS10) in glucose M9 media
in the presence and absence of the inducer anhydrotetracycline (ATc).
Error bars represent the standard deviation from three independent replicates.
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5.5 Discussion

The in silico reconstruction of metabolic networks provides a computa-

tional framework with which to organize genomic, transcriptomic, proteomic, and

metabolomic data, allowing one to compute phenotypic states from genome-scale

information. Continual refinement of the models to ensure consistency with exper-

imental data serves to improve their accuracy and predictive ability. We present

a method here for model refinement that focuses on reconciling inconsistencies

between simulated vs. experimental gene essentiality data that is based on an

analysis of synthetic lethality and the minimized sum of fluxes in the models. We

demonstrate our approach with ppc/aceBAK by showing that overexpression of

aceBA and aceK is sufficient to rescue the ∆ppc mutant. Viewed another way, the

S. Typhimurium metabolic model is incorrect because it erroneously allows flux to

flow through the glyoxylate shunt when ppc is deleted due to the absence of regu-

latory information (i.e. iclR and aceK ). We also provide indirect evidence that the

key regulatory feature is a 184 intergenic region between aceA and aceK. This reg-

ulatory information would now ideally be incorporated into the S. Typhimurium

model to update and refine it, but doing so is challenging computationally as it

would require implementing conditional enzyme expression rules into a model that

is based primarily on metabolism. However, these data can be more easily incorpo-

rated into expanded models that account for both metabolism and gene expression

[93].

Expression of the aceBAK operon must occur on two separate plasmids to

rescue the ∆ppc mutant. The proteins AceB and AceA catalyze the two reactions

of the glyoxylate shunt, whereas aceK is a regulator that controls the branch point

between the TCA cycle and the glyoxylate bypass [223]. The intergenic region

between aceB and aceA is only 32 bp long, but between aceA and aceK it is 184

bp [224, 225]. The long space between the latter two genes is palindromic and

therefore is capable of forming a stable stem-loop structure, which might play a

significant role in regulating transcription or aceK [226, 227]. Data presented here

support this hypothesis: growth could be restored only when aceBA and aceK

were cloned separately into two different expression plasmids such that the 184
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intergenic region was removed. We did not observe restoration of growth in the

∆ppc mutant when we cloned the aceBAK operon in its entirety and attempted

to express it from a single expression vector (pS7).

We resequenced the genome of the ppc(pS8+pS10) mutant using Illumina

technology to confirm that there were no additional mutations in the genome that

might have contributed to restored growth. No mutations were detected, providing

further evidence that overexpression of aceBA and aceK by itself is sufficient to

rescue growth.
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Chapter 6

ME-Models as a conduit for

integration of systems and

synthetic biology

6.1 Introduction

Synthetic biology approaches are rapidly maturing, making it possible to

engineer genes with predictable mRNA and protein expression levels in model or-

ganisms such as E. coli. Tools developed by synthetic biologists can now accurately

compute sequence-dependent binding energies for interactions between: (1) RNA

polymerase and an arbitrary DNA promoter sequence [228], and (2) the ribosome

and an arbitrary Shine-Dalgarno sequence upstream of a coding sequence on an

mRNA [229]. Promoter strength can be tuned to yield gene expression over ap-

proximately 3 orders of magnitude, while the ‘Ribosome Binding Site Calculator’

out of the lab of Howard Salis at Penn State University allows for tuning protein

levels over a range of 100,000-fold. The latest version of the RBS Calculator takes

RNA secondary structure around the Shine-Dalgarno sequence into account, since

this has been shown to influence the ability of the ribosome to bind these elements.

This refinement is just one in a long series of refinements that has led to the gen-

esis of predictive tools in this space. It’s efforts like this that are closing the gap
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between genotype (the actual sequence at base-pair resolution) and phenotype.

Recently, these tools were put to the test on a massive scale. A library

composed of thousands of combinations of promoters and ribosome binding sites

(RBSs) was constructed by George Church and colleagues at Harvard. Each pro-

moter and RBS combination drives expression of GFP (or the green fluorescent

protein). Real-time PCR (polymerase chain reaction) and relative fluorescence

intensity measurements were applied to determine relative RNA and protein lev-

els for each construct in the library. The data from this screen (presented in

[230]) indicates that 92.5% of the variance in RNA expression levels can be ex-

plained by the promoter sequence. An additional 3.8% can be explained by the

sequence of the RBS, which clearly exerts its influence on RNA expression lev-

els post-transcriptionally. One hypothesis as to why there is an influence is that

a strong RBS leads to a higher density of ribosomes on the transcript, which in

turn may sterically hinder the RNA degradation machinery. Astonishingly, only

3.7% of the variance remains unexplained. Protein expression levels could not be

predicted as well, but they were still predicted decently: 53.8% of the variance in

protein expression levels could be explained by the promoter sequence, while an

additional 29.6% could be explained by the RBS sequence. 16.7% of the variance

in protein levels remains unexplained.

Synthetic approaches have advanced to the point that it is now clearly easier

to predict heterologous gene expression levels vs. predicting the expression levels

of native genes on the chromosome! When the synthetic biology tools mentioned

above are applied to natural promoter and RBS sequences, they don’t perform

nearly as well [personal communication with Ali Ebrahim and my own experience

with the data for Thermotoga maritima]. In natural systems, the expression of

a gene is tuned in many ways (probably tens to hundreds) during the course of

evolution. As François Jacob stated [8], evolution is a “tinkerer, not an engineer.”

Evolution has many ways to tune expression beyond modulating the initiation

rates of transcription and translation (synthetic biologists have focused almost ex-

clusively here). One example is the control of steady-state mRNA levels through

tweaks in degradation rates. Gene expression is also influenced by supercoiling and
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the 3D structure of the chromosome. Ultimately, evolution randomly interleaves

the genetic code with many other codes (many of which we have not discovered or

are unsure how to read yet). The specific factors underlying the expression levels

of native genes are therefore indecipherable to us; however, in synthetic biology

the determinants of expression can be engineered to be completely ‘orthogonal’ to

the native regulatory circuits by ‘refactoring’ the operons. This means that the ge-

netic elements in the operon are re-organized and re-coded (sometimes randomly)

to limit the influence of native regulation as much as possible. A good example of

refactoring was recently put forth by Chris Voigt and colleagues [231]. There, they

refactored the nitrogen fixation gene cluster in Klebsiella oxytoca. The refactored

cluster has almost the same activity as the native nitrogen fixation system, but the

various cistrons are highly organized because they were systematically designed.

Later, they built a version that works in E. coli, whereas transplanting the original

system from Klebsiella oxytoca leads to little or no activity (probably due to dif-

ferences in regulation). Similar approaches have also been applied to gene clusters

important for antibiotic production in Streptomyces orinoci [232].

The effect of adding expression vectors (plasmids) to model organisms such

as E. coli can be quantitatively modeled now that synthetic biology approaches

are reaching a level of maturity. Models can be used to compute the systems-wide

effects of heterologous gene expression, whether these effects are metabolic burdens

due to expression of the vector and its products, or as a result of new metabolic

pathways siphoning resources away from growth. A few key parameters such as

promoter and RBS strength can be translated directly into model constraints on

mRNA and protein production rate, but other key parameters such as the keff

parameters for newly introduced enzyme-reaction pairs remain unknown and must

be sampled or approximated using in vitro approaches.

I modified the code used for the project presented in Chapter 4 to allow for

heterologous gene expression from a plasmid (or plasmids if multiple expression

vectors are desired). In the sections that follow, I provide results showing that ME-

Models provide a basic conduit for integration of systems and synthetic biology.

In a few years time, hopefully we’ll be more routinely writing genetic code from
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scratch and simulating the functions of these sequences in models such as the E.

coli ME-Model. Synthesizing whole genes is gaining traction now that costs have

dropped significantly (from more than $10 per base prior to the year 2000 to less

than $1 per base pair around 2005 [233]). My hope is that when it becomes even

more economical to order entire vectors/designs, they can also be easily simulated

in the context of the larger biological system. When one can test an ordered

construct in silico by simply uploading the order file to a web-based modeling

application, we’ll know we’re on the right track to closing the gap between systems

and synthetic biology approaches to engineering life. What follows are a few basic

illustrative examples.

6.2 pUC19 cloning vector

Here, I perform basic simulations of an E. coli cell carying the pUC19

cloning vector. The pUC19 cloning vector was created by Messing and co-workers

[234], and is one of the most popular vectors for heterologous gene expression.

To simulate the effect it has on E. coli, I added reactions to express pUC19

in silico. I left the copy number (the number of plasmids per cell) as a free variable.

Typically, the copy number relates to the strength of the origin(s) of replication on

the plasmid, but this is not precisely known for pUC19 (and many other vectors).

Additionally, as in [235], I added a constraint to enforce a stoichiometric relation-

ship between plasmid production and production of each open reading frame on

the plasmid (the number of proteins produced per plasmid). This parameter lumps

the transcriptional and translational efficiency. Looking at the data from George

Church’s screen, many values for this parameter are achievable experimentally (up

to a maximum of about 2000 proteins per plasmid, considering a value of 1838

corresponds to fully activated LacZ production from the lac operon, which has

very strong binding sites [235]).

The first simulation performed relates to expression of bla, or the beta-

lactamase enzyme (EC 3.5.2.6) that is present on the plasmid to confer resistance

to Ampicillin and aid in selection of cells harboring pUC19. In deciding how to
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couple bla production to plasmid production, I consulted literature and found that

it is not uncommon for antibiotic resistance markers to take up approximately 20%

of the proteome of the cell [235, 236]! A typical E. coli proteome is composed of

approximately 3 million proteins. Assuming about equal molecular weights, there

would therefore be approximately 600,000 copies of bla per cell. A conservative

(quite high) estimate for the pUC19 plasmid copy number (per cell) is 700. Taking

600,000 bla copies per cell / 700 pUC19 copies per cell, I reasoned an appropriate

coupling value would be approximately 857 bla copies per copy of pUC19. Fig-

ure 6.1 shows the predicted impact on growth rate for maintenance of pUC19 at

various copy numbers per cell. The simulation demonstrates that the burden of

plasmid carriage mostly arises due to the expression of plasmid-encoded protein

(vs. the expression of the vector itself).
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Figure 6.1: Metabolic burden of plasmid maintenance. A) The predicted
impact on growth rate for maintenance of pUC19 at various copy numbers per cell
(x-axis). The red dots indicate the predicted impact if only the maintenance of
the DNA backbone is considered. The blue ‘X’ marks show the predicted response
when both the maintenance of the DNA backbone and expression of beta-lactamase
are enforced. B) Percent of the proteome occupied by beta-lactamase and its
impact on growth rate. Orange dots are data points from [237] as in [11], whereas
green points derive from ME-Model simulations. Note: Plasmid vector pBR329
was used for the experiments, though the exact vector probably has little impact
on the qualitative shapes of these relationships.
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A study in the late 1980s [238] demonstrated that common vectors (pUC19

probably included) lead to unnecessarily high levels of antibiotic resistance gene

expression. Weakening the promoter driving expression frees up the proteome

for expression of the other genes on the plasmid. Interestingly, the development

of vectors without (or with minimal) antibiotic-based selection remains an active

area of research today, but it has probably been overlooked somewhat considering

pUC19 is still used in our lab for metabolic engineering projects.

6.3 Production of spider silk proteins

ME-Models are well-suited for modeling costs associated with specific gene

expression, so I thought it would be interesting to use the model to probe the cost

of expressing specific proteins; however, it is somewhat uninteresting to model

overexpression of most proteins. Although costs of synthesis vary significantly

among amino acids, and every protein has a unique sequence of amino acids, most

proteins have a characteristic amino acid composition (approximately 7.4% Ala-

nine, approximately 3.3% Cysteine, and so on). For a protein at or near the typical

amino acid composition, the simulation will almost certainly produce a result like

that shown in Figure 6.1B (even the slope and intercepts will be approximately

the same!).

The spider silk protein is a special case because it has atypical amino acid

composition. Spider silk is very rich in glycine (44.9%), and requires metabolic

engineering for high levels of production in hosts such as E. coli. Recently, Sang

Yup Lee and colleagues achieved recombinant spider silk protein production [239].

Their study provides the basis for the analysis that follows, especially for com-

parison of ME-Model simulations to their actual experience engineering E. coli

for spider silk production. To simulate spider silk production in silico, I replaced

the bla gene on pUC19 with the spider silk gene and simulated overexpression in

the ME-Model. As a control, I compare to simulations expressing bla. Figure 6.2

shows the amino acid and codon usage for production of bla vs. spider silk. Glycine

and glycine codons are expected outliers. Interestingly, one strategy (predictable
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from the simulation) for producing spider silk experimentally is elevation of the

glycyl-tRNA pool.
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Figure 6.2: Amino acid and codon usage for production of bla vs. spider
silk. A) Amino acid usage (Glycine highlighted in orange). B) Codon usage (with
codons coding for Glycine highlighted in orange). Note that there are 61 codons
(stop codon usage is not plotted), but 63 data points on the plot. This is because
the start codon is plotted separately as ‘START,’ and UGA is used infrequently
to code for L-Selenocysteine. Differential use of Glycine is discussed in the text.
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The model also predicts genes that would likely need to change expression

in order to support high levels of spider silk production (Figure 6.3). Such changes

include the elimination of the glycine cleavage system (gcvT, gcvH, and gcvP),

and overexpression of glyA, glyS, glyQ, and serA-C, which are needed in higher

abundance to support production of spider silk. The effects of these changes were

verified experimentally [239], and found to match the model’s predictions. Interest-

ingly, adding exogenous glycine to the media did not lead to increased production

because it led to allosteric inhibition of serA. This could not be predicted by the

ME-Model (though the need for serA was correctly predicted). The model also

suggests folD overexpression could be beneficial, though this remains to be tested

experimentally.

These computations were provided as an illustrative example. In this partic-

ular case, many of the predictions are intuitive, and a detailed model is not neces-

sarily needed. But that’s not always going to be the case, especially in cases where

proteins either require unique prosthetic groups or lead to new pathways that draw

further resources away from growth. Also, it’s likely that additional constraints

relating specific codon usage to translation efficiency (discussed in Chapter 7) will

make things more interesting. The present example also illustrates that some bi-

ology important for redesign (e.g. allosteric regulation) is not yet captured in the

model.
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Figure 6.3: Differential gene expression for production of bla vs. spider
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copy number of 1000. The spider silk protein is coupled with the same parameter
(857 protein copies per plasmid) as with forced bla expression. Genes of interest
are circled and discussed further in the text.
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6.4 Introduction of a 2-step heterologous path-

way to produce indole-3-acetaldehyde

This last specific example concerns adding a plasmid coding for a new 2-step

pathway for production of indole-3-acetaldehyde (a nonnative target metabolite

for E. coli K-12 MG1655). This compound can be produced by some E. coli

strains, and interestingly it has been found to inhibit E. coli O157:H7 biofilm

formation [240]. Two reactions (and their catalysts) were added to the model:

(1) 2-oxoglutarate + L-trpyophan → L-glutamate + indole-3-pyruvate, and (2)

indole-3-pyruvate + H+ → CO2 + indole-3-acetaldehyde. A demand reaction was

also added for indole-3-acetaldehyde so that it could leave the cell. A kcat of 65

reactions per second was arbitrarily set for the first step, while a kcat of 10 reactions

per second was arbitrarily set for the second step. Note that it is not uncommon

for one reaction in a design to have a low kcat value compared to the rest of the

reactions in the design (e.g. a design that depends on a promiscuous enzyme

activity for one of the reactions, or a highly unoptimized synthetically designed

protein). These considerations often determine whether the genes in the design

should be split across multiple plasmids, since it may be beneficial for some genes

to be expressed from low or high copy number plasmids. One important unknown

is the amount of flux that will be siphoned away from growth by the design. For

this example, I assumed the proteins would act at rates corresponding to their kcat

values. I imagine that much more work will go into formulating more appropriate

constraints in the future. They will probably be non-linear constraints related to

expression ratios (of enzymes consuming metabolites at the branch point into the

nonnative pathway), and take into account as many kinetic and thermodynamic

considerations as possible.

The purpose of this highly simplified example is to illustrate that the ME-

Model can be used to compute the best plasmid in the design space for a given

objective. To do so, the parameters of the plasmid are sampled. These parame-

ters include: (1) the number of plasmids per cell, and (2) the number of proteins

produced per plasmid copy number. As discussed previously, both of these pa-
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rameters are experimentally tunable over broad ranges. As these simulations are

computationally demanding for the time being, I limited the search space to the

following: (1) 1 plasmid with potential copy numbers from the list [1, 5, 10, 50,

100, and 500], and (2) the number of proteins per plasmid was constrained to be

an integer on the range [1, 1000]. The feasible results are shown in Figure 6.4 (note

that much of the design space is infeasible).
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Chapter 7

Conclusions and Outlook

7.1 Conclusions

In this dissertation, I develop ME-Models. ME-Models are microbial growth

models that compute the optimal cellular state for growth in a given steady-state

environment. They take as input the availability of nutrients to the cell and pro-

duce experimentally testable predictions for: (1) the cell’s maximum growth rate

(µ*) in the specified environment, (2) substrate uptake/by-product secretion rates

at µ*, (3) metabolic fluxes at µ*, and (4) gene product expression levels at µ*.

ME-Models explicitly account for the production of all RNAs and proteins.

In the first part of this dissertation (Chapters 2 and 3), I prototyped my approach

using the simple microorganism Thermotoga maritima. The T. maritima genome

had been sequenced in 1999 (one of the first!), and needed correction and complete

re-annotation. We developed a framework for multi-omic data analysis that anno-

tates genomic features involved in transcription, translation, and regulation. The

genome organization of T. maritima displayed many distinctive properties (quan-

titatively) compared to other organisms. T. maritima has very strong promoters

and RBSs (perhaps evidence of sequence-level adaptation given that recognizing

and retaining contacts at the initiation sites for both transcription and transla-

tion is difficult at 80 ◦C?). We also hypothesized that growth at this temperature

places constraints on regulatory flexibility. Importantly, the information generated

was used to build the T. maritima ME-Model in Chapter 3. Once all the RNAs

133
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and proteins are produced, metabolism was linked to gene expression through ad-

ditional constraints called ‘coupling constraints.’ I show these constraints extend

and refine growth phenotype prediction for this organism. Specifically, I show the

ME-Model for T. maritima: (1) has increased scope (75% of 206 functions esti-

mated essential), (2) has a more realistic solution space in that the composition

of the cell is variable, the cost of enzymes are accounted for, and detailed enzyme

properties are accounted for, (3) provides more opportunity for data integration

and analysis, and (4) is a useful for discovery (the examples I show are related to

transcriptional regulation and gene function annotation).

In the second part of this dissertation (Chapter 4), I extended the core

methods developed for T. maritima to E. coli. This was not a trivial endeavor,

since there is much more information available for E. coli (much harder to build

a complete model!). Backed by the wealth of phenotypic information available

for E. coli, I was able to better support the statement that ME-Models provide a

fundamental advance in the evolution of genome-scale biochemical models of life.

I showed exactly why and how ME-Models extend and refine growth phenotype

prediction.

Below, I explicitly state the improvements ME-Models bring to the table

with respect to the 8 biggest weaknesses of M-Models (I stated these in Chapter 1).

The biggest changes are as follows: (1) the cell composition is now a free variable,

(2) energy requirements (both growth and non-growth associated) are reduced since

the energy required for macromolecular synthesis is accounted for directly (though

the energy requirements that remain are still fixed), (3) absolute rates (such as

growth rates) can be predicted even when substrate uptake and by-product secre-

tion rates are not specified, (4) GPRs were removed and replaced with explicit

enzymes and coupling constraints, and (5) more predictions can be directly exper-

imentally validated since transcript and protein levels can be directly compared to

simulations. In addition, ME-Models incorporate some aspects of enzyme kinetics

(see Chapter 4). No progress was made toward incorporating regulation (transcrip-

tional or metabolic); however, the ME-Model can compute the need for some form

of regulation by simulating 2 or more conditions. With my help, the ME-Model
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is now being extended to include spatial informaiton at the level of compartmen-

talizing network components to 10 cellular locations (mostly involving the inner

and outer membranes). It will be fascinating to see if topobiological constraints

(such as cellular crowding/diffusion) become relevant for constraint-based models

in the years to come. The ME-Models do not provide temporal resolution, though

I have been thinking about an interesting extension involving dynamic flux balance

analysis. I am thinking that this will be especially interesting when modeling a

diauxic growth shift (e.g. growth on glucose to growth on xylose). When growth

conditions change, some proteins will no longer be useful, or even harmful for the

new growth condition. The cell can only rid itself of these proteins at the rate of

its growth rate. It will be interesting to see the intersection of this approach with

knowledge of regulated post-translational modifications and targeted degradation

of proteins (these circuits may have evolved to accelerate various shifts). Finally,

ME-Models do nothing to address missing information (metabolite damage, en-

zyme promiscuity, and spontaneous side reactions), although I am guessing that

they could be used as tools when one attempts to fill these gaps.

In the third part of this dissertation, I provide an example why it is impor-

tant to consider protein and pathway cost. I demonstrate this for a ppc knockout

of Salmonella enterica serovar Typhimurium. The M-Model said the organism

should grow, but it did not experimentally. The Salmonella enterica serovar Ty-

phimurium ME-Model was not ready at the time, so I instead relied on ‘ME-style

thinking’ to get this project done and resolve the discrepancy (see Chapter 5 for

details). The results held up in the ME-Model when I tested them later. Ulti-

mately, the inability of cells to route flux through the glyoxylate shunt when ppc

is removed was correctly identified by our approach as the cause of the discrep-

ancy. Unaccounted-for regulation was at the root of the discrepancy, and so I got

a glimpse of what is to come once regulation is explicitly included in these models

(though to be honest I know of no good way to do this).

Finally, I discuss (and begin to demonstrate) how I believe ME-Models will

serve as a bridge between systems and synthetic biology approaches for metabolic

engineering.
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Throughout, I tackled many behind the scenes barriers that derailed and

discouraged me throughout the years. Chief among these barriers were:

1. Detailing the biochemistry of macromolecular synthesis. This is a manual

process. Unlike for metabolism, the information is not sitting in a database

waiting to be queried. I benefited greatly from the work of Ines Thiele [113],

who came before me and detailed much of the basic reactions I relied on.

2. Omics integration is required to define various additional cellular parts and

network interactions. There are no shortcuts to doing these experiments.

3. Limited software. I had to write a custom database schema, help with CO-

BRApy [241], and create my own versions of BiGG [194] and SimPhenyTM ,

the latter of which Genomatica created to help standardize processes for

M-Model creation. Both tools were insufficient for my project.

4. Representation of machinery usage constraints. It was difficult to find general

constraints so as not to overtfit.

5. Commercially available linear algebra software was not good enough for my

ill-conditioned constraint matrices and crazy optimization routines. This

one took so long to resolve! The solutions are detailed in the supplementary

material associated with Chapters 3 and 4. Luckily, I received great help from

some brilliant American and German mathematicians. I also had to learn

how to use resources at NERSC, supercomputers at the National Energy

Research Scientific Computing Center. It took awhile to find these resources

and people, and speak the highly specialized language required to get the

help needed.

Ultimately, my dissertation not only contributes knowledge, but a very gen-

eral approach to generate additional knowledge through computation. The entire

phylogeny of approaches operating on a stoichiometric matrix (S) of an organism

benefits from expansions to S (see in [242]). The methods I helped develop allow

researchers of today and tomorrow to ask systems-level questions in silico beyond
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metabolism and quantitatively analyze, in a bottom-up and mechanistic manner,

a variety of omics data in the context of a growing organism. As a result, I have no

doubts that ME-Models will impact (at least in some small measurable way, but

hopefully much more significantly) basic microbiology, the study of microbial com-

munities, antibiotic discovery, the elucidation of regulatory networks, and systems

metabolic engineering through existing and emerging synthetic biology approaches.

Read the next and final section of my dissertation for my detailed 5-10 year vision

of what’s on the horizon.
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Figure 7.1: ME-Models enable new applications of constraint-based
modeling. ME-Models afford direct integration of knowledge of organizational
structures underlying the transcriptome and proteome. The transcriptome is or-
ganized into transcription units, which are determined through Genomic DNA
sequencing, ChIP-chip data for the RNA polymerase, knowledge of transcription
start sites (TSSs), and transcriptomics data. Transcription units are nodes in the
ME-network and serve as constraints for expression of specific proteins. Knowledge
of the proteome is also easily integrated. 3D structures and protein-protein interac-
tions (PPIs) can be used to determine properties of protein complexes, which lead
to constrains for production of catalysts. Post-translational modifications (PTMs),
including phosphorylation, methylation, and prosthetic groups can be used to in-
crease the resolution of the in silico proteome. Example applications enabled by
our ME-Modeling approach: (1) modeling recombinant protein or metabolite over-
production, (2) modeling processes underlying antibiotic-mediated cell death, since
the integrated model accounts for the majority of antibiotic targets, and (3) inter-
preting regulatory circuits in terms of economic efficiency. The ME-Model approx-
imates the content of the transcriptome and proteome in the absence of regulatory
constraints with failures indicative of regulatory constraints.
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7.2 Outlook

7.2.1 The most promising basic uses of the E. coli ME-

Model

As an analysis tool for adaptive laboratory evolution (ALE) data

What follows is an excerpt from Chapter 4, where I foreshadowed the ME-

Model’s ability to interpret ALE data: “As it is an optimality model, the ME-

Model is particularly suited for studies related to adaptive laboratory evolution

(ALE). Recently, it was reported that it is not possible to predict some changes

that occur during ALE in Batch culture using an M-Model [192]. This is because

M-Models only take biomass yield optimization into account; these results are

consistent with the rate-yield trade-offs present in the ME-Model under nutrient-

excess conditions. In the ME-Model, a number of inherent factors can limit cellular

growth (e.g., translation rate and metabolic catalysis); the ME-Model can thus

provide alternative hypotheses for the mechanisms of growth increase and aid in

understanding the results of ALE.”

Here, I reduce this to practice and show you exactly what I mean. I removed

this material from Chapter 4 because the analysis I’m about to present is severely

underdeveloped. I considered not including it in my dissertation at all, but I

think the concept the analysis exposes is an important one to keep in mind when

analyzing ALE data with the ME-Model, and so I have this material here in this

outlook section.

The ME-Model can simulate various mechanisms of growth increase through

evolution. A few key parameters determine the maximum growth rate in the ME-

Model, so in silico and in vivo phenotypic changes can be compared to understand

systems-level mechanisms of growth increase (Figure 7.2A). I use E. coli grown in

glycerol batch culture as an illustrative example. When evolved in excess glycerol,

mutations in rpoC lead to large changes in gene expression [243, 244]. We compare

in silico changes in substrate uptake rate, biomass yield, and expression of cellular

subsystems to measurements from evolved strains. We find that increasing the
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effective catalytic rate of enzymes in the ME-Model results in phenotypic changes

that closely match with experiments (Figure 7.2B). Increasing the average catalytic

rate of metabolic enzymes results in increases in glucose uptake and growth yield,

and decreases in expression for a number of subsystems (Figure 7.2B). The ME-

Model thus provides a systems-level hypothesis for the mechanism of evolution

in glycerol: The altered gene expression caused by the mutated RNA polymerase

results in a rebalancing of the proteome that increases the average flux per enzyme

(Figure 7.2C). Other simulated mechanisms do not have such a close agreement

with the data (Figure 7.2B, all other columns). Interestingly, there is experimental

evidence that the global keff increases as a function of growth rate, but this data is

limited to transitions between nutrient-limited and batch growth conditions [170].

It remains to be seen whether this is a general strategy that can be used during

evolution in batch growth conditions.
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Figure 7.2: Evolution to higher growth rate in Batch culture by increase
in whole-cell enzyme effective catalytic rate (keff). A) The ME-Model was
used to analyze cells evolving in glycerol in batch culture conditions. Many in
silico evolutionary trajectories are possible. B) Evolution results in changes in
biomass yield, substrate uptake rate, and the differential expression of genes in the
subsystems listed (see Experimental Methods in [158]) [244]. The directionality
of the change during evolution is shown with arrows. We simulated five different
global parameters that affect the maximum growth rate achievable in ME-Model
simulations. For each parameter, changes in the identified phenotypes are calcu-
lated after a change in the parameter that would increase the maximum growth
rate in the ME-Model. The fold change of subsystems in the ME-Model is cal-
culated based on the change in the fractional proteome mass of all genes in that
subsystem. Increasing keff produces results most consistent with experimental
data. C) Simulation results combined with gene expression and physiological data
from wild-type and evolved strains support an increase in whole-cell keff . In vivo,
the increase in keff is likely achieved by balancing investments into metabolic gene
expression to achieve the maximal growth rate.
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This type of analysis was previously infeasible (or indirect at best) as

genome-scale metabolic model. M-Models cannot predict changes in nutrient up-

take and gene expression, and do not include the proteomic parameters of the

ME-Model. Much more work is needed to verify the predictions the ME-Model

makes. One issue confounding the analysis of ALE data is that abundance of a

molecule does not always correlate with its activity in the cell. It is highly likely

that the data fitting procedure described below can be used to circumvent these

problems.

As a tool to probe new regulatory functions

Regulatory constraints and interactions are beyond the scope of the ME-

Model. It may be fruitful to determine if the patterns the ME-Model predicts are

consistent with our knowledge of transcriptional regulation through the action of

transcription factors (TFs). One could compare hundreds of in silico expression

shifts and check the predictions against the analogous in vivo shifts. It should be

kept in mind that many incorrect predictions will be as a result of the fact that

suboptimal control of gene expression is widespread in bacteria [245]. To rectify the

failure modes (where learning might take place), I would stray away from adding

regulators and regulatory rules to fix the failure modes (as this is just fitting, and

I feel an entirely new modeling paradigm is required to describe and understand

regulatory processes). Instead, I’d focus on identifying the trade-offs the regulatory

network evolved to help the cell optimize itself for growth. ME-Models will only

be able to make statements about steady-state growth conditions, so regulation

related to dynamics cannot be considered using this approach. Detailed knowledge

of the regulatory network topology can be gained by integrating ChIP-exo binding

data with RNA-seq expression profiles from transcription factor deletion strains.

Such transcriptional regulatory network reconstructions serve as one starting point

for finding missing constraints.
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As a tool to back-calculate hard-to-measure parameters and model non-

optimal growth

As they are, ME-Models contain many unknown parameters. The most im-

portant unknowns relate to translation efficiency (# of proteins per mRNA) and

effective catalytic rates, or keff parameters. Data sources are rapidly coming on-

line to determine translation efficiency (e.g., ribosome profiling, and quantitative

transcriptomics paired with quantitative proteomics). Upon first inspection, it is

clear that the # of proteins per mRNA seems to be conserved across conditions

(Pearson’s r between 0.9 and 0.97 for growth on different carbon sources in mini-

mal media) [personal communication with Ali Ebrahim]. I therefore assume these

parameters can one day soon be imposed to yield fairly general predictions for new

conditions of interest. That leaves the unknown effective catalytic rate parameters

as the biggest and most important unknown parameter set. Interestingly, most

enzymes seem to operate ‘moderately efficient’ in the cell; the distribution of kcat

parameters is log-normal and centered on approximately 10 s−1 [246]. This per-

haps underlies the success of the ME-Model at predicting basic microbial growth

phenotypes despite setting keff parameters using crude assumptions. But nailing

down these values is particularly important for predicting absolute gene expression

levels, something the ME-Model does a pretty poor job of.

A promising emerging approach is to fit the data to the model and back-

calculate a keff distribution most consistent or compatible with the data. The

challenges here are that the data are noisy/incomplete, and the distribution of

keff values may not be unique. That said, preliminary results are highly promising

[personal communication with Edward O’Brien]. Once refined, this method will

represent a big step up from approaches such as GIMME [109]. Our refined method

will exploit the structure of the ME-Model to constrain the range of parameter

values. This procedure can be repeated for many different experimental conditions,

and the parameter set will become more predictive over time (for example kcat

can be taken as the highest keff value observed for any fit growth condition).

Getting this approach to work will be a highly rewarding line of basic research. It

should also have big applied implications. For example, it would be very useful to
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metabolic engineers to be able to compute the effect of a small perturbation away

from a very well-characterized and parameterized base condition. Stay tuned for

major updates along these lines.

As a tool for modeling simple microbial communities

M- and ME-Models now exist for multiple organisms, so an intriguing po-

tential application is using the models for analysis of relationships between different

organisms. Although much is known about these relationships, the use of M- and

ME-Models will allow a much more systematic, detailed, and complete description

and will give researchers the ability to model and perturb the relationships in sil-

ico. Numerous challenges confront investigators of the interface and interactions

between two metabolic networks. Exchanges of metabolites between the networks

can be difficult to model since they often must pass through an unpredictable ex-

ternal environment. Often, the networks are under separate systems of regulatory

control. Generally, both networks can exist outside of the interaction under study

and thus must maintain some independence of the other network. Therefore, many

of the assumptions used in the reconstruction of metabolic networks of individual

cells do not necessarily hold for interactions between two networks. For this reason,

models describing complex communities have failed to appear.

A potential research avenue that escapes many of these concerns but still

provides insight into network interactions and interfaces is the analysis of inter-

actions between different strains of the same species, many of which are known

to produce or consume distinct metabolites. ME-Models can help model both

competitive or syntrophic relationships among these strains, natural phenomena

particularly well-suited for constraint-based modeling.

In the future, I imagine high-throughput expression profiling technologies

(combined with the data fitting procedure previously described) can help constrain

individual genome-scale models to capture growth parameters and community

composition of simple bacterial communities over time. ME-Models are partic-

ularly well-suited to capture the metabolic load of communication (signaling) and

transfer of metabolites (and even electrons) between species.
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As a tool for studying translation (especially tRNA properties)

ME-Models will likely prove useful for investigating the impact of cellular

tRNA pool perturbations on global protein expression. As a result of the immense

cost of protein synthesis, the process has been highly regulated and tuned during

the course of evolution. Regulation occurs at the level of translation initiation,

translation elongation, and translation termination.

Translation initiation rates are a function of many physical features. These

features include the number of available free ribosomes, the folding energy of the

5’ UTR, the beginning of the coding sequence, and the base pairing potential

between the 5’ UTR and the 16S ribosomal rRNA. These features are extremely

hard to quantify, so the constraints underlying translation elongation have been

the traditional focus. One argument for focusing on translation elongation is that

relative initiation rates can perhaps be inferred based on elongation pressures (a

cell would unlikely make a transcript that it would not subsequently translate).

Elongation rates have been shown to be highly dependent on codon order and

composition of the particular mRNA being translated [186]. The degeneracy of the

genetic code (61 codons coding for just 20 amino acids) combined with the relative

efficiency of anticodons in reading certain codons during protein synthesis, leads

to an enormous amount of flexibility in the process. Organisms have optimized

the throughput of the process due to selective pressures to enhance translation

efficiency, especially in highly expressed proteins such as the ribosomal proteins.

ME-Models have the ability to incorporate factors determining translation

efficiency at the systems-level, and costs of maintaining translational throughput

are explicitly modeled. Currently, the constraints bounding translation efficiency

in the ME-Model are biologically unrealistic. For example, one bound the burst

size (proteins per mRNA), can be computed using: (1) the maximum amino acid

incorporation rate, (2) the size of the ribosome footprint in nucleotides, and (3)

the mean lifetime of an mRNA molecule. The mRNA can then be assumed to be

completely saturated with ribosomes. In reality, this situation cannot occur due

to collisions between ribosomes, so we set the burst size to an arbitrary number

that was lower, but more realistic.
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In the future, a ribosome flow model can be used to more tightly bound

the burst size. A ribosome flow model is a simple, probabilistic, physically plau-

sible computational model of ribosome progression across an mRNA that is solely

based on the coding sequence [247]. Ribosomes advance probabilistically according

to cellular tRNA concentrations and cannot pass each other (i.e. a downstream

ribosome can prevent an upstream ribosome from progressing if it does not clear a

portion of the mRNA fast enough). These models are likely not ready for integra-

tion with the ME-Model at this time, but one day soon they will be. Experimental

methods to quantify the cellular tRNA concentrations must be improved.

Although many of the molecular details of translation are part of the ME-

Model, constraints of this sort have not been previously integrated into stoichio-

metric models for use with flux balance analysis. The integration is expected to

define a much more biologically relevant reduced solution space for ME-Models,

given the enormous importance of translation with respect to the cellular econ-

omy. A model with an understanding of constraints underlying translation would

allow one to pre-compute the effects of targeted changes to the cellular tRNA pool.

These perturbations could take on many forms. The model can first be prototyped

using simple perturbations such as the complete removal of a certain tRNA gene

or the addition of a new tRNA gene. The model could then be used to help formu-

late arguments for the presence of tRNA genes in phage genomes, which are under

evolutionary pressures to be small and compact [248]. The presence of tRNA genes

in phage genomes is further evidence of the importance of translation elongation

constraints. As phages and metabolic engineers face similar challenges [249], I

imagine the constraints revealed by such an analysis could potentially be funda-

mental with respect to metabolic engineering, which usually involves expressing a

pathway for metabolite overproduction and tinkering the cell to withstand heterol-

ogous protein expression. This possibility can be explored using expression of a

peptide (from a plasmid) designed to deplete one or more tRNA types. This deple-

tion phenomenon has been observed in industrial applications [250]. For example,

spider silk is rich in glycine, so it imposes unique metabolic and macromolecular

synthesis constraints on the cell to support the overproduction. With respect to
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metabolite overproduction, tRNA pool perturbations could be used to shift the

state of the cell’s proteome to favor the pathways relevant to the overproduction.

It is likely the specific applications will be refined as the modeling progresses.

7.2.2 The most promising applied uses of the E. coli ME-

Model

As a tool to power the in silico portion of the iterative metabolic engi-

neering loop

ME-Models will be used to close the design-build-test loop that is currently

taking the metabolic engineering industry by storm. I purposefully omit many

details here due to intellectual property and licensing concerns. I feel ME-Models

will be particularly useful as context for content, in that data can be mapped and

analyzed in the context of the model. The data fitting techniques described above

will be key. The trick will be making the data actionable. Metabolic engineers

care about better understanding the system, but at the end of the day a decision

needs to be made about how to best improve the current strain design, leading

to the next design. Once methods are built up more, I believe ME-Models will

become a tool of choice for bridging synthetic and systems biology approaches to

metabolic engineering.

As a tool to probe or design antibiotic functions in the context of the

larger system

ME-Models could improve network-based drug target identification, a pre-

requisite for rational drug development, in two key ways.

The first key improvement: As ME-Models explicitly account for the costs

of enzyme expression and dilution to daughter cells, the most efficient growth

simulations will try to minimize the materials required to assemble the cell; i.e.,

ME-Models will efficiently use enzymes when simulating growth at a specified rate.

After genetic or chemical perturbations, a cell may lose its ability to satisfy growth

demands efficiently. As we will see, this possibility can only be directly assessed
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using a ME-Model.

It has been previously noted that organisms make efficient use of their

enzymes to maintain a minimal total flux through their biochemical network. In M-

Models, compensatory pathways, regardless of complexity, can be used to support

growth. This is mirrored in the results seen in Chapter 5. In M-Models, an enzyme

may carry infinite fluxes, unless vmax constraints are imposed, and pathways carried

out by simple monomeric enzymes are equivalent to longer pathways supported by

complex multimeric proteins with expensive cofactor requirements. ME-Models

rectify these problems, allowing for cost-conscious, semi-quantitative forecasts of

the ability to grow after genetic and/or chemical perturbations. If compensatory

pathways are more expensive than the pathways lost, the ME-Model prediction

will indicate slower growth.

The second key improvement: ME-Models contain a majority (about 80%

for the E. coli ME-Model) of the 206 functions estimated as essential for a minimal

organism, whereas M-Models contain approximately 30% of these core functions.

With the ME-Model, many of these functions are essential for growth and ribo-

some production. This broader coverage of cellular functions inherently increases

the ability to ME-Models to predict and interpret phenotypic states over M-Models.

This increased scope allows for insight into many more potential targets. Interest-

ingly, many antibiotics target proteins involved in macromolecular synthesis. Of

particular interest now is the ME-Model’s capability to predict synergy between

an existing target and all metabolic enzymes. The ME-Model can simulate com-

plete removal of the protein, or the coupling constraint controlling the protein’s

efficiency can be tuned to simulate partial inhibition. This ability was successfully

demonstrated with the simulation of different bulk translational efficiencies for the

ribosome in the T. maritima ME-Model (see Chapter 3).

7.2.3 Automating the construction of a ME-Model for a

bacteria of your choice

I’m sure this is going to happen. In this dissertation, I focused on T.

maritima and E. coli. These microbes are both gram-negative, but besides that,
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they are as different as two microbes get. A similar approach to Model SEED

[251] can be taken building off of my work, and I think in this case it will be more

successful since the macromolecular synthesis machinery and reactions are more

conserved than your average metabolic machinery and functions. The specifics of

the constraints will be tricky, particularly when considering that ribosomal capacity

and protein synthetic efficiency must be approximated, but are probably highly

variable among microbes. A model for Staphylococcus aureus would be of particular

interest due to its relevance to human health.

7.2.4 ME-Models for Yeast and Humans

Best of luck with this. Detailed versions of these models analogous to the

E. coli ME-Model will require sustained efforts lasting many years, but perhaps

coarse-grained versions could be built much faster.

7.2.5 Roadmap to a steady-state whole-cell

E. coli model

There’s a lot to do with ME-Models as they are today (see above sections).

In my opinion, its more pressing to explore these applications than to continue ex-

panding the model. But we are rapidly moving towards a whole-cell stoichiometric

model for E. coli, and so here I lay out my vision for how this is realized. First,

I’d start with the 40 functions estimated as essential for a minimal organism that

are not present in the current model (note: integrating protein translocation and

secretion is underway at the time of writing). This list can be found by sorting

the ‘in ME-Model?’ column of Supplementary Table S3B in [158].

Next, I’d move on to integrating the functions of the proteins that compose

the highest unaccounted-for fraction of the wild-type proteome (by mass) when

growing in M9 glucose medium. Finally, it will be a major challenge to mecha-

nistically incorporate stress responses and maintenance energy expenditures. This

will move us one step closer to being able to model stationary (no growth) phase,

during which expression of mRNAs ceases (mostly), and the cell acts as a ‘sac
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of enzymes.’ Life is complex, but it is possible to sketch a molecular description

from simple, but stoichiometrically accurate, chemical equations represented on a

genome scale.
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