
UC Berkeley
UC Berkeley Previously Published Works

Title
Estimation of blood cellular heterogeneity in newborns and children for epigenome‐wide 
association studies

Permalink
https://escholarship.org/uc/item/8zq6m993

Journal
Environmental and Molecular Mutagenesis, 56(9)

ISSN
0893-6692

Authors
Yousefi, Paul
Huen, Karen
Quach, Hong
et al.

Publication Date
2015-12-01

DOI
10.1002/em.21966
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8zq6m993
https://escholarship.org/uc/item/8zq6m993#author
https://escholarship.org
http://www.cdlib.org/


Estimation of blood cellular heterogeneity in newborns and 
children for epigenome-wide association studies

Paul Yousefi1, Karen Huen1, Hong Quach1, Girish Motwani1, Alan Hubbard1, Brenda 
Eskenazi1, and Nina Holland1

1School of Public Health, University of California, Berkeley, CA, USA

Abstract

Confounding by cellular heterogeneity has become a major concern for epigenome-wide 

association studies (EWAS) in peripheral blood samples from population and clinical studies. 

Adjusting for white blood cell percentage estimates produced by the minfi implementation of the 

Houseman algorithm (minfi) during statistical analysis is now an established method to account 

for this bias in adults. However, minfi has not been benchmarked against white blood cell counts 

in children that may differ substantially from the reference dataset used in its estimation. We 

compared estimates of white blood cell type percentages produced by two methods, minfi and 

differential cell count (DCC), in a birth cohort at two time points (birth and 12 years of age). We 

found that both minfi and DCC had similar trends as children aged, and neither count method 

differed by sex among newborns (p>0.10). However, minfi estimates did not correlate well with 

DCC in samples from newborns (ρ = −0.05 for granulocytes; ρ = −0.03 for lymphocytes). In older 

children, correlation improved substantially (ρ = 0.77 for granulocytes; ρ = 0.75 for lymphocytes), 

likely due to increasing similarity with minfi’s adult reference data as children aged. Our findings 

suggest that the minfi method may provide suitable estimates of white blood cell composition for 

samples from adults and older children, but may not currently be appropriate for EWAS involving 

newborns or young children.
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Introduction

Epigenome-wide association studies (EWAS) have increasingly been used to identify novel 

biological mechanisms that contribute to disease status or respond to environmental 

exposures. Several large-scale DNA methylation assays have been developed in recent 
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years, including methylated DNA immunoprecipitation (MeDIP), reduced representation 

bisulfite sequencing (RRBS), and whole genome bisulfite sequencing (wgBS) [Laird, 2010; 

Lister et al, 2009; Meissner et al, 2008; Weber et al, 2005], but due to its reliability, 

relatively low cost, and broad coverage, the Illumina Infinium HumanMethylation450 

BeadChip® (450K) has been widely adopted in population-based EWAS [Bibikova et al, 

2011; Liu et al, 2013; Sandoval et al, 2011; Teschendorff et al, 2009].

Unlike genetics, epigenetic markers may change over time or in response to exposures. 

DNA methylation in particular undergoes widespread remodeling in utero [Foley et al, 

2009; Hughes, 2014; Perera and Herbstman, 2011]. For this reason and because early life 

exposures have been hypothesized to contribute differential risk towards later life ill health, 

performing EWAS at birth or in young children has been of great interest to investigators. 

Several EWAS, including those for prenatal exposure to smoking and arsenic [Joubert et al, 

2012; Koestler et al, 2013], have quantified DNA methylation in cord blood. This strategy to 

assess epigenetic perturbation as near as possible to the prenatal period remains a high 

priority in light of the fetal origins of human disease hypothesis [Armstrong et al, 2014; 

Babenko et al, 2014; Barker, 1998; Essex et al, 2013].

Whole blood is a desirable matrix to use for EWAS as it is readily available and has been 

obtained for many human studies with a wide variety of initial aims (including past genome-

wide association studies (GWAS)) [Chadwick et al, 2014; Liang and Cookson, 2014; Lowe 

and Rakyan, 2014; Michels et al, 2013]. However, as EWAS are more commonly performed 

in blood, there is growing awareness that heterogeneous white blood cell type populations 

may bias results due to confounding [Liang and Cookson, 2014; Lowe and Rakyan, 2014]. 

Since DNA methylation may vary by cell type, analyses involving health outcomes or 

exposures that also covary with cell type may be confounded. The consequence of such bias 

has been clearly demonstrated by Jaffe and Irizarry [Jaffe and Irizarry, 2014], who found 

that many published associations between blood-based CpG methylation and age were no 

longer statistically significant after adjustment for cell composition.

Several approaches have been proposed to address confounding bias in EWAS due to 

varying white blood cell type composition. One method is to restrict DNA methylation 

measurement to isolated populations of white blood cells. In practice, this requires 

performing fluorescence-activated cell sorting (FACS) prior to DNA isolation and 

subsequently quantifying DNA methylation signal in isolated cell populations. While 

appealing theoretically, this approach is not feasible for large population-based studies that 

rely on banked samples.

One alternative involves estimation of the relative proportions of different cell types, 

allowing for statistical adjustment for cellular mixture during data analysis. The 

performance of this approach depends largely on the quality of the estimate of cell type 

proportions. The most reliable white blood cell count is performed either by automated 

hematology analyzer, as part of a complete blood count (CBC), or retrospectively by 

microscopic differential cell count (DCC) using histologically stained blood smear slides.
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However, since many epidemiologic studies do not have direct white blood counts, there is 

growing interest in computational approaches that estimate cell type proportions based on 

DNA methylation data. In 2012, Houseman et al. were the first to develop such a 

computational method, using 27k BeadChip results from n=46 isolated white cell samples 

from an unknown number of blood donors as a reference dataset [Bibikova et al, 2009; 

Houseman et al, 2012]. The updated version, produced by Jaffe and Irizarry [Jaffe and 

Irizarry, 2014] (referred to here as the minfi method), has seen the most widespread use 

because it was incorporated in a popular bioinformatic software pipeline for 450K data, and 

made several adjustments to specifically improve performance for 450K BeadChip data 

including the addition of a 450K BeadChip reference dataset (see methods for details). The 

minfi method is appealing in the context of EWAS studies because it can be readily 

implemented with no additional cost or data collection. However, the cell type estimates 

produced by minfi have not yet been systematically validated against a gold standard cell 

count, such as CBC or DCC. Additionally, minfi uses a small (n=6) cell-sorted 450K dataset 

from middle-aged Swedish men in its estimation procedure that may not be an appropriate 

reference when estimating cell composition in infants and children [Reinius et al, 2012].

Here, we conduct a comparison of the estimates of the relative abundance of white blood 

cell types produced by two methods, minfi and DCC, with randomly selected samples from 

a large epidemiologic cohort followed by the Center for the Health Assessment of Mothers 

and Children of Salinas (CHAMACOS) study at birth and at 12 years of age with 450K 

BeadChip data. We report findings showing that reference data and other assumptions 

should be carefully considered prior to utilizing computationally derived white blood cell 

estimates in EWAS studies in cord samples.

Materials and methods

Study population

The CHAMACOS study is a longitudinal birth cohort study of the effects of exposure to 

pesticides and environmental chemicals on the health and development of Mexican-

American children living in the agricultural region of Salinas Valley, CA. Detailed 

description of the CHAMACOS cohort has previously been published [Eskenazi et al, 2003; 

Eskenazi et al, 2004]. Briefly, 601 pregnant women were enrolled in 1999–2000 at 

community clinics and 527 liveborn singletons were born. Follow up visits occurred at 

regular intervals throughout childhood, including a visit at 12 years of age that included only 

male child participants. For this analysis, we include the subset of subjects that had 450K 

BeadChip data available at birth (n=151) and matched data for the 12-year follow up (n=60). 

DCC analysis included the subset of subjects with whole blood smear slides available at the 

birth (n=111) and 12-year visits (n=45). Both newborns and 12 year olds included in the 

sample were healthy at the time of blood collection according to the study protocol, and 

confirmed by abstracted medical records and questionnaires. All subjects included in the 

subset were Latino in ancestry and 94.0% had at least one Mexican-born parent. Study 

protocols were approved by the University of California, Berkeley Committee for Protection 

of Human Subjects. Written informed consent was obtained from all mothers and assent was 

provided at the 12-year visit.
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Blood collection and processing

Whole blood was collected in BD vacutainers (Becton, Dickinson and Company, Franklin 

Lakes, NJ) containing either heparin anticoagulant or no anticoagulant. Whole blood smear 

slides were prepared from heparinized blood using the push-wedge blood smearing 

technique [Turgeon, 2011] and stored at −20°C until staining. Aliquots of blood clot were 

stored at −80°C until DNA isolation.

DNA preparation

DNA isolation was performed using QIAamp DNA Blood Maxi Kits (Qiagen, Valencia, 

CA) according to manufacturer’s protocol with small, previously described modifications 

[Holland et al, 2006]. Following isolation, all samples were checked for DNA quality and 

quantity by Nanodrop 2000 Spectrophotometer (Thermo Scientific, Waltham, MA). Those 

with good quality (260/280 ratio exceeding 1.6) were normalized to a concentration of 

55ng/ul.

450K BeadChip DNA methylation analysis

DNA samples were bisulfite converted using Zymo Bisulfite Conversion Kits (Zymo 

Research, Irvine, CA), whole genome amplified, enzymatically fragmented, purified, and 

applied to Illumina Infinium HumanMethylation450 BeadChips (Illumina, San Diego, CA) 

according to manufacturer protocol. 450K BeadChips were handled by robotics and 

analyzed using the Illumia Hi-Scan system. DNA methylation was measured at 485,512 

CpG sites.

White blood cell composition estimation

White cell composition was characterized by two different methods in whole blood:

Differential cell counts (DCC)—Whole blood smears were stained utilizing a 

DiffQuik® staining kit, a modern commercial variant of the Romanovsky stain, a 

histological stain used to differentiate cells on a variety of smears and aspirates. This 

staining highlights cytoplasmic details and neurosecretory granules, which are utilized to 

characterize the differential white blood count. The staining kit is composed of a fixative 

(3:1 methanol: acetic acid solution), eosinophilic dye (xanthene dye), basophilic dye 

(dimethylene blue dye) and wash (deionized water). For consistency and to ensure the best 

results the slides were all fixed for 15 minutes at 23°C (room temperature), stained in both 

the basophilic dye and eosinophilic dye for five seconds each and washed after each staining 

period to prevent the corruption of the dye.

Slides were scored for white blood cell type composition by Zeiss Axioplan light 

microscope with 100× oil immersion lens. Scoring was conducted at the perceived highest 

density of white blood cells using the standard battlement track scan method, which covers 

the entire width of a slide examination area. The counts for each of the five cell types 

(lymphocytes, monocytes, neutrophils, eosinophils, and basophils) were recorded by a 

dedicated mechanical counter. At least 100 cells were scored for each slide. Scoring 

reliability was initially validated by repeated scoring of 5 sets of 100 cells from the same 

slide with excellent reproducibility (CV ≤ 5%).
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Minfi cell count estimation—Results from the 450K BeadChip analysis were stored as 

raw IDAT files, and read into the minfi (v1.10.2) Bioconductor R package [Aryee et al, 

2014] using the read.450k.exp function. Estimation of the six (CD8+ T and CD4+ T 

lymphocytes, CD56+ natural killer cells, CD19+ B cells, CD14+ monocytes, and 

granulocytes) different white blood cell types was performed using the default 

implementation of the estimateCellCounts function. Briefly, this function takes a user-

supplied target 450K BeadChip dataset, combines that with the cell-sorted Reinius reference 

dataset available in the FlowSorted.Blood.450k Bioconductor package (v1.2.0) [Jaffe; 

Reinius et al, 2012] and quantile normalizes the combined data. The reference dataset has n 

observations from i =6 subjects at each of j =6 different separated cell types. Six hundred 

cell type informative CpG sites are chosen in the reference dataset, by comparing the mean 

methylation in a given cell type to the mean methylation of all five remaining cell types for 

CpG sites assayed. One hundred CpGs are chosen to distinguish each of the j cell types. 

These represent the 50 CpG sites with the greatest T statistic that were hypermethylated and 

the 50 CpG sites that were most hypomethylated compared to other cells. This results in a 

600 × n matrix of CpG site methylation subset from the full reference dataset, called S0. 

Within S0, the relationship between indicators for each cell type and DNA methylation is 

then estimated, producing a vector of coefficients, called B̃
0, of length j. Individual level 

predictions of cell type proportion, Γ*, are then fit in the corresponding user submitted 

dataset, S1, using the coefficients estimated in S0 by the following equation:

Detailed description of the algorithm has previously been published [Houseman et al, 2012; 

Jaffe and Irizarry, 2014].

Statistical analysis

All statistical analyses were performed using R statistical computing software (v3.1.0) 

[Team, 2013]. Differences in means by age and sex were assessed by Mann-Whitney U-

Test. The linear relationships between cell type estimates by the two methods were 

determined using the Spearman correlation coefficient.

Results

Estimates of white blood cell composition by the two different methods implemented, minfi 

and DCC, are summarized in Table I. The minfi method estimated the relative percentages 

of six white blood cell types (CD8+ T and CD4+ T lymphocytes, CD56+ natural killer cells, 

CD19+ B cells, CD14+ monocytes, and granulocytes) in samples from n=151 newborns and 

again for 60 of the same children at age 12. Microscopic differential cell count (DCC) of 

these newborns (n=111) and 12 year olds (n=45) used banked available whole blood smear 

slides to count the frequency of five types of easily visually identifiable blood cells 

(lymphocytes, monocytes, neutrophils, eosinophils, and basophils) (see Methods for details).
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Cell composition estimates by age and sex

By the minfi method, the mean percentage estimates of all cell types except CD4+T 

lymphocytes were significantly different between newborn and 12 year old samples 

(p<0.01) (Table I). Estimates of granulocytes represented the largest percentage of cell types 

in newborn samples (mean=55.0%), while lymphocytes (CD8+ T and CD4+ T lymphocytes, 

and natural killer cells) were noticeably less frequent (mean=37.2%, p<0.01) (Figure 1A). In 

minfi estimates from 12 year olds, granulocyte and lymphocyte populations became much 

more comparable, with means 49.1% and 46.1% respectively (p=0.21).

By the DCC method, the mean percentage of all but one cell type (eosinophil granulocytes) 

also differed significantly between newborns and 12 year olds (Table I). For newborns, 

mean DCC counts were 63.6% for granulocytes and 29.2% for lymphocytes (p<0.01; Figure 

1B). By 12 years of age, the gap in the frequency of cell types narrowed (46.9% and 46.8% 

respectively; p=0.57).

In newborns, there was no difference in cell type distributions by sex (p>0.10) by either 

minfi estimates (n=58 girls, n=93 boys; Figure 2A) or DCC direct analysis (n=58 girls, n=53 

boys; Figure 2B). At age 12 only boys were sampled (Nminfi=60; NDCC = 45) so the 

comparison by sex was not possible.

Comparison of cell composition estimates by minfi and DCC

Three cell type populations (Figure 3) were used for more direct comparison of the two 

methods of assessment of white blood cell composition. For the minfi method, the 

frequencies for CD8+ T, CD4+ T, natural killer cells, and B cells, were summed to give an 

estimate of lymphocytes. For DCC, proportions of neutrophils, eosinophils, and basophils 

were summed to give an estimate of granulocytes.

In samples from newborns, those estimates by minfi and DCC had poor linear 

correspondence with one another (Figure 3). In fact, the Spearman rank correlation 

coefficients calculated between minfi estimates and direct DCC analysis of monocytes, 

granulocytes and lymphocytes ranged from −0.01 to −0.05 and were not statistically 

significant (Figure 3). In scatterplots showing comparison between the two methods, the 

minfi method appeared to overestimate the proportion of lymphocytes (mean = 37.2%) 

relative to that by DCC (mean = 29.2%) and reference levels from newborns that range from 

19–29% (Figure 3A–C) [Dallman, 1977; Nathan and Oski, 1981]. However, minfi also 

appears to overestimate the percent of monocytes (mean = 11.1%, reference = 5–7%) and 

gives a smaller percentage of granulocytes (minfi mean = 55.0%, DCC mean = 63.6%, 

reference = 32–83%). The minfi estimates also had greater variability in newborn samples, 

standard deviations (SDs) ranging from 2.3 to 8.8, compared to DCC estimates with SDs 

from 1.8 – 3.6.

However, the two estimates of cell counts were much more consistent in older children than 

in newborns. At 12 years of age, the means and standard deviations of all comparable cell 

populations, including granulocytes, lymphocytes and monocytes, were similar by both 

approaches (Figure 1). The Spearman correlation values for 12-year-old subjects ranged 

from 0.26 to 0.77 and were significant for granulocytes and lymphocytes (both p<0.001), 
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and approached significance for monocytes (p=0.08) (Figure 3). Scatterplots comparing the 

estimates by minfi and DCC at 12 years of age also showed the trend between methods to be 

linear with comparable amounts of variance.

Discussion

Here, we present a detailed comparison of the leading method for estimating white blood 

cell composition, minfi, against results from a well-established clinical cell counting 

procedure, DCC, in samples from Mexican-American children at two time points to produce 

adjustment covariates in a whole blood EWAS analysis. While both methods yielded similar 

results in 12 year olds, minfi estimates and DCC were quite different in newborns. Our 

findings suggest that the algorithms applied by minfi may not be appropriate for cell type 

estimation in newborns and young children.

Longitudinally, as children aged from birth to 12 years old, we observed similar trends by 

both minfi and DCC. Each found that granulocyte levels were higher than lymphocytes at 

birth, but became comparable with one another by 12 years of age (Figure 1). This change 

corresponds with age-specific reference values, which demonstrate high levels of 

granulocytes (32–83%) relative to lymphocytes (19–29%) in newborns [Dallman, 1977; 

Nathan and Oski, 1981]. The levels of these two cell types vary noticeably postnatally and 

through early childhood, reaching a peak difference at 24 months, but stabilizing to adult 

levels around 9–12 years of age (28–48% for lymphocytes and 33–76% for granulocytes) 

[Dallman, 1977; Nathan and Oski, 1981].

Among older children, we found that minfi and DCC estimates were consistent with one 

another and mean estimates by both methods fell within published age-specific reference 

values [Dallman, 1977; Nathan and Oski, 1981]. However, minfi and DCC estimates 

differed greatly in newborns. In fact, we saw a negative correlation and linear trend across 

methods for each comparable cell type (Figure 3) suggesting that the algorithm implemented 

by minfi may have difficulty estimating cell composition in samples from newborns.

This deviation is likely explained by the reference dataset used in the minfi prediction 

model, which is derived from six middle-aged Swedish men. The composition of this 

reference dataset is crucial to minfi’s performance: it is used to both identify CpGs 

differentially methylated by cell type and fit a regression model to those informative sites. 

The coefficients estimated in the reference data, B0̃, establish the linear relationship between 

methylation at the informative sites and cell composition, which is used for prediction in the 

target dataset. A key assumption of this method is that the magnitude of the elements in B̃
0 

are consistent between the reference and target data. In many situations, this may not be an 

unreasonable assumption to make. Since the sites used to fit B̃
0 are chosen by their 

association with cell type, one may expect them to perform cell type specific functions that 

would be consistent over time. However, given the poor performance of the minfi estimator 

in newborns, it seems likely that consistent effect of B̃
0 in an adult reference does not hold 

for young children and impacts the estimator’s accuracy. White blood cell populations are 

still maturing in the early post-natal period and are known to change greatly in relative 

abundance [Cheng et al, 2004; Dallman, 1977; Nathan and Oski, 1981]. Further, DNA 
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methylation is known to vary greatly over embryogenesis and may still be changing during 

early life [Guo et al, 2014; Smith et al, 2014]. Should the relationship between these two 

factors be inconsistent between early childhood and later life, this would result in biased 

minfi estimates.

Similar bias could occur if the consistent effect assumption does not hold across other 

biological host factors, such as gender or racial/ethnic ancestry. Both leukocyte populations 

and DNA methylation are known to vary by such factors [Adkins et al, 2011; Hsieh et al, 

2007; Lim et al, 2010; McCarthy et al, 2014]. The current minfi reference data may be 

particularly susceptible to these forms of bias because all subjects are men of northern 

European descent. However, these biases are likely not as pronounced as those introduced 

by age in young children since the minfi estimates in CHAMACOS boys of Mexican 

ancestry are relatively accurate at age 12. Filtering out sites that vary by ethnicity or sex 

when fitting B̃
0 could potentially reduce bias further, resulting in more accurate estimates of 

cell composition. Similarly, sites that vary by age could be excluded, an approach that has 

been used previously to identify candidate metastable epialleles [Harris et al, 2013]. 

However, given the lack of variation of the current Swedish male reference dataset over any 

of these potentially biasing factors, it is preferable to expand or generate a new reference 

that would have observations from early childhood, and that vary by race and ethnicity.

In conclusion, our comparison of the minfi method for estimating white blood cell 

composition against a cytological differential cell count demonstrates that minfi can robustly 

estimate cell populations in children as young as 12 years of age. However, minfi did not 

perform well in samples from newborns that are important targets of future EWAS because 

of interest in prenatal epigenetic changes due to exposure or physiological effect on future 

health. We hypothesize that this is due to low generalizability of the reference dataset 

currently used in the minfi estimation and suggest that improvement of this dataset would 

likely enhance its predictions in young children. We encourage using caution when applying 

the minfi method in populations that deviate substantially in white cell composition and/or 

methylation patterns from the current minfi reference data, such as by sex, racial/ethnic 

ancestry, and age in particular. Future work should explore further other factors, such as 

environmental exposures, that may also impact the validity of the minfi estimates.
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Figure 1. 
Box plots of percent cell composition estimated by minfi and differential cell count (DCC) 

in samples from newborns and 12 year olds. The minfi estimates are taken from n=151 

newborns and n=60 12 year old boys, and have summed estimates of CD8+ T, CD4+ T, 

natural killer cells, and B cells into a single category of lymphocytes for comparison. The 

DCC estimates are taken from n=111 newborns and n=45 12 year olds, and have summed 

proportions of neutrophils, eosinophils, and basophils into category of granulocytes.
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Figure 2. 
Box plots of percent cell composition estimated by minfi and differential cell count (DCC) 

for girls and boys in samples from newborns. The minfi estimates are taken from n=151 

newborns (n=58 girls and n=93 boys). They have summed estimates of CD8+ T, CD4+ T, 

natural killer cells, and B cells into a single category of lymphocytes for comparison. The 

DCC estimates are taken from n=111 newborns (n=58 girls and n=53 boys). They have 

summed proportions of neutrophils, eosinophils, and basophils into category of 

granulocytes.
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Figure 3. 
Scatter plot of cell type percentages by minfi and differential cell count (DCC) methods in 

cord samples for lymphocytes (A), granulocytes (C), and monocytes (E). Also, plots of 12 

year samples for lymphocytes (B), granulocytes (D), and monocytes (F). Estimate of linear 

trend by regression shown in blue with 95% confidence interval in gray. Exact linear 

correlation, slope=1 and intercept=0, shown in dotted red for reference. Spearman rank 

correlation, ρ(P-value), shown in bottom right corner for each comparison.
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