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Covariability of V3 Loop Amino Acids

P.J. BICKEL,! P.C. COSMAN,? R.A. OLSHEN,? P.C. SPECTOR,! A.G. RODRIGO,* and J.I. MULLINS*

ABSTRACT

We reanalyzed for covariability a set of 308 human immunodeficiency virus type 1 (HIV-1) V3 loop amino
acid sequences from the B envelope sequence subtype previously analyzed by Korber et al.,! as well as a new
set of 440 sequences that also included substantial numbers of sequences from subtypes A, D, and E. We used
the measure employed by Korber et al., essentially the likelihood ratio statistic for independence, plus two ad-
ditional measures as well as clade information to examine the new set and both data sets simultaneously. We
set forth the following conclusions and observations. The eight most highly connected sites identified through
these statistical approaches included all of the six residues previously shown to have determining roles in
structure, immunologic recognition, virus phenotype, and host range; each of the seven pairs of covariant sites
found by Korber were signaled by our additional two measures in the set of 308 sequences, although 2 or 3
dropped out of the examination of the set of 440 when the requirement of stringent significance was applied
for some or all of the three tests, respectively; using the same criteria, a total of 20 (including 5 Korber et al.
pairs) or a total of 6 (including 4 Korber et al. pairs) were found when the set of 440 was added. Several lim-
itations to statistical analysis of this type of HIV sequence data were also noted. For example, the data sets
were, by historical necessity, collected haphazardly. For example, it was not possible to separate substantially
sized groups out according to time of or since infection, disease status, antiviral treatment, geography, etc.
There was also an enormous ‘“wealth of significance” within the data. For example, for one measure the 440
data set showed 233 of the 465 pairs of sites with a likelihood ratio statistic of <0.001. Last, most sites had
consensus amino acids in 80% or more of the sequences; hence, there was an absence of data on many com-
binations of amino acids. Given the observed linkage between sites shown to be covariable and those known
to have critical biological function, the statistical approaches we and Korber et al. have outlined may find use
in predicting critical structural features of HIV proteins as targets for therapeutic intervention.

INTRODUCTION

observed statistically could be the result of biochemical inter-
actions between the sites—constraints of protein structure of
functional relation driven by selection, which are processes that
one would wish to uncover. However, it was recognized that
the statistical covariation could be the result of phylogenetic ef-

IT HAS BY NOW BEEN KNOWN for years that the envelope gene
is one of the most variable parts of the HIV genome. Its V3
loop region has been sequenced and studied intensively in view

of its immunogenicity and functional importance. Korber et al.!
analyzed a set of 308 DNA sequences encoding the 31 V3 loop
amino acids from the 1991 AIDS database? whose provenance
is described in Ref. 1. Their goal was to identify pairs of sites
where mutations would “with high confidence be identified as
covarying.” They advanced a set of seven pairs of covarying
sites that seemed to merit further analysis. The covariation they

fects, “an evolutionary heritage from distinct founder viruses.”
That is to say, a group of sequences might be largely descen-
dants of a single ancestral virus, and the appearance of a strong
covariation between two sites might simply reflect that there
was insufficient time to achieve much divergence in the inde-
pendent evolution of those sites. To this should be added that
the 1991 database is not a random sample from the population
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of HIV viruses. We expect biases from several other sources.
A possible source is unknown epidemiological clustering where
several patients are infected by the same individual. An attempt
was made to eliminate known epidemiological clustering. Also,
within patients there can be substantial variability of viruses as
a function of length of infection and of disease state. In the
gathering of these databases, there was no careful effort made
to ensure that sampling from different groups of individuals
would be representative in terms of geography, disease status,
treatment with antivirals, etc. In these various ways, covari-
ability can be an artifact of sampling. Nevertheless, several of
the pairs that were identified had been observed to covary in
functional ways in vitro.3-10 For a review of this work and,
more generally, HIV sequence variability, see Ref. 11.

Our work can be seen in part as a follow-up to Ref. 1. Thus,

1. We reanalyze their 308 sequences with different statisti-
cal tools and examine what answers other measures of co-
variability give.

2. We analyze a new set of 440 sequences (provided by B.
Korber, L.A.N.L. and Santa Fe Institute) with the same
set of 31 residues from the 1993 AIDS database, using
their measures and ours.

3. We see to what extent covariation persists and what new
pairs of sites appear statistically covariant in the new set.

We also develop tools to explore interaction between groups
(triples, quadruples, etc.) of sites. In particular, we explore

1. The extent to which particular sites are critical to inter-
actions

2. The existence of cliques (sets of more than two sites that
appear to act in concert)

We propose

1. Some broad conclusions on the Korber et al.! and our
methodologies as applied to these data sets

2. Some covariable pairs that have stood a variety of tests
and thus bear examination for biological function

3. Two new measures of covariability, one of which is of a
type generalizable to assessing linkage disequilibrium

In particular,

1. We note that all but one of the six sites signaled as signifi-
cant by Korber ez al. and four to five of their seven pairs are sin-
gled out as significantly covariable by our new data and criteria.

2. We argue that the Korber et al. criteria are too extreme,
potentially ruling as not significantly perfectly covariable pairs.
Qur criteria do not have this feature but still have a degree of
arbitrariness. For a list of 20 distinguished pairs we require less
significance than Korber et al. on at least one of three mea-
sures, coupled, however, with requirements that significance be
present in both data sets and separately in clades (that are dis-
cussed below). We also focus on a sublist of six pairs for which
significance by all three measures is realized.

3. We note biological evidence of importance and covari-
ability for six of the eight sites on our short list. Details are
given in the section Biological Correlates. However, our sta-
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tistical techniques are employed purely as a hypothesis-gener-
ating procedure. In other words, the methods seek to highlight
covariation between sites and not to explain the biological rel-
evance of the covariation. As discussed below, to the extent that
data are available on the biological significance of covarying
sites, our methods do in fact identify these sites. But we indi-
cate in our discussion why any statistical measures of covari-
ability for data sets such as these can only be considered as
pointers to possible biological activity. If it were possible to re-
move the various biases, for example owing to unknown stage
of infection, epidemiological linkage, and the impact of anti-
retroviral therapies, then indeed a significant result statistically
could only be due to either direct biochemical interaction of the
sites, interaction of the sites with some selective pressure in the
environment that acts in a correlated way at both sites, or ran-
dom chance, which should only occur with probability equal to
the significance level. However, given the limitations of these
data sets, such conclusive results are currently not possible. But
our goal in this work is also to introduce statistical techniques
that may be useful to any researchers interested in sequence co-
variation. Such issues will become increasingly susceptible to
analysis as better data become available, e.g., from patients re-
peatedly sampled over time. A supplementary analysis of these
data using a modification of a clustering method that has proven
successful in data compression and other engineering applica-
tions!'? will appear elsewhere. That approach to clustering is
closely related to the CART!3 algorithms for classification and
regression.

The set of 440 sequences consists in part of 364 “nonem-
bargoed” sequences from the set of 410 sequences described in
Ref. 14. As described there, these constitute a mix of single se-
quences from an individual when only one was available, a ran-
domly chosen one if only two were available, and a consensus
if more than two were available. Experiments in which se-
quences were drawn from individuals who were known to be
epidemiologically linked and who had genetically similar se-
quences were represented by only one sequence. To these 364
were added 76 sequences consisting of single sequences from
unlinked individuals taken early in their infections.!> This set
of 440 and the 308 sequences studied by Korber et al.! had 152
in common (identical for the 32 residues considered). However,
as will become evident, the two sets differed in many ways.
Sequences from the LaRosa et al.'% set were not included in
the 440. Clades A, C, and E, are represented by 135 sequences
in the 440 but did not exist in the 308; and the distributions of
residues at many sites are very different. For instance, at posi-
tion 24 the consensus amino acid (with 24%) of the 308 is as-
partic acid, whereas in the 440 (with 41%) it is glutamic acid.
This is not surprising. The epidemic is dynamic; and, of course,
neither of these sets can be viewed as a random sample from
the population of HIV viruses extant on or before 1991 and
1993, respectively. We discuss these matters further after we
present our methodology and findings.

METHODOLOGY

Our approach, as in Ref. 1, starts with covariation. Our first
step is to isolate pairs of sites i, j that appear to covary signif-
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icantly. We use three statistics for this purpose. The first is the
information theory-based M;; of Korber et al.! Our second sta-
tistics, G, was developed by Goodman and Kruskal'? on the
basis of a statistic introduced by L. Guttman. It has been ap-
plied with success in the social sciences. The third statistic, Py,
focuses on covariability of a single pair of residues at a pair of
sites. In statistical language, M;; is the likelihood ratio statistic
for testing the hypothesis of independence of two sites against
arbitrary covariability. In information theory language M;; is the
mutual information at sites i and j. Qualitatively, M;;, which is
never negative, is large if any of a number of particular pairs
of residues at i and j are favored relative to what would be ex-
pected from their marginal frequencies by chance (if i had noth-
ing to do with j). Mj; is approximately equivalent for large sam-
ple sizes to the familiar Pearson’s chi-square statlsuc x, , for
testing independence. We used M;; rather than Xu for compa-
rability with Korber et al. Gj; is the reduction in the chance of
guessing incorrectly that knowledge of the residue at i gives in
guessing the residue at j and conversely. If i and j have noth-
ing to do with each other, then G;; = 0. Finally, in statistical
language, P;(a,b) is the likelihood ratio statistic for testing the
hypothesis of independence of sites i and j against the alterna-
tive that a pair of residues (a,b) is favored relative to what would
be expected from chance. Pi{a,b) has been used in the genet-
ics literature to study linkage disequilibrium, where attention
focuses on a particular pair of alleles.'® Pj; is the largest of the

Pi{a,b). Qualitatively, Py, like Mj;, tends to be large if there is
covariance at i, j; but it focuses on situations where only one
particular pair of amino acids exhibits covariance (although we
do not know which pair that is). For instance, it is perfectly
suited to picking out situations where if one site does not have
the consensus amino acid, it is very likely that the other site
will correspondingly be “forced” also to have a nonconsensus
amino acid. The particular pair of amino acids a,b making Py
largest can be viewed as playing the role of pairs having the
highest specific information but the definition is different—see
the Appendix.

Each of these measures focuses on a different aspect of co-
variability. As applied to our data, they frequently “light up”
together.

Here are the definitions. For a set of N aligned sequences of
the same length let

Pij(a,b) = (number of sequences with residue a at site i,
residue b at site j)/N
Then
M; = azb pij(a.b) log[ %]
where
pi(a) = (number of sequences with residue a at site i)/N

For reference,

X; =N [pijlab) — piap(b)VIpia)p;(b)
ab
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The statistic G;; is given by
G,‘j =
1 X.pyj(a, max) + Tpp;(max, b) — pi(max) — p{max)
2 1-172 [i’i(max) + i’j(max)]
where  p;j(a, max) = max,p;(ab), pi(max)=max,pia),

pij(max, b) = maxaizij(a,b). As we mentioned, this awkward-
looking quantity has a very nice interpretation. If we were asked
to predict the residue at i with information only about frequency
of residues at i, we would use the residue giving the modal
(consensus) frequency p;(max). If we knew the residue b at j,
then we would use the residue giving the modal (consensus)
conditional frequency p;j(max, b)/p;(b). G;; gives the average
reduction in the chance of guessing incorrectly that knowledge
of i gives for j and knowledge of i for i.
The statistic P;; is given by

P; = max Pj(a,b)
ab

where Py(a,b) is the M;; statistic obtained by replacing the 20-
letter alphabet at site i by a,a and at site j by b,b, where a is
“not @” and b is “not b.” While, as we stated, P;{(a,b) has ap-
peared before in the literature,8 to the best of our knowledge,
Pjj is new here.

We use M, G, and P to create lists of sites that are candi-
dates for covariability as follows:

1. For each data set of N sequences under consideration, the
308 of Ref. 1, the 440, and the envelope sequence subtypes
(clades, see below), we generated 100,000 pseudo data sets of
N sequences each by independently permuting the amino acids
at each site. Compared to the “real” data set, these pseudo data
sets have the same marginal probabilities for the amino acids
at each site, but the information about covariation between sites,
if any, is not maintained.

2. For the V3 loop of length 31 amino acids there are (31 X
30)/2 = 465 pairs of sites to consider. For each of the pseudo
data sets and each pair of sites i,j the corresponding M;; is com-
puted. For each pair of sites i,j, we count the number n;; of such
M;; that are equal to or exceed the M;; observed in the original
data set. We examine the fraction p; = n,/100,000. The moti-
vation for this is that if there were only chance variation (in-
dependence) between sites i and j, then the distribution of val-
ues of M, obtained from “real” data sets or from the pseudo
data sets should be the same. Thus, we would not expect the
“real” M;; to be an extreme value among the 100,000 values. If
n; is the number of permuted M;; values that exceed the “real”
one, then (n; + 1)/(100,000 + 1) is the attained one-sided sig-
nificance level for testing the hypothesis of independence of
sites / and j against arbitrary covariability. Note that p;; can be
0—the “real” M;; can be larger than any of the 100,000 gener-
ated M;. This would correspond to a significance level of
(103 + 1)~1, If there were only chance variation between i and
Jj we have observed something extremely rare. The same process
is carried out for G;; and Py;. In the following, p;; denotes the
fraction 7,;/100,000 of pseudo scores that exceed the real score,
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and it is also loosely used to denote the significance level (n; +
1)/(100,000 + 1) of that event.

We use this methodology, as did Korber ez al., for obtain-
ing significance probabilities, rather than the chi-square ap-
proximation for M;; and similar approximations derivable for
Gj and Py, for two reasons:

1. It is well known that in the case of M;; (and x7) the chi-
square approximation can be poor for sparse tables and large
values of the statistics even if the sample size N is large.!?

2. We are making statements about many pairs at the same
time. The scheme we describe enables us to obtain measures of
the simultaneous validity of these statements. Of course, we
still need to note that even if everything is happening accord-
ing to chance, the chance of at least one statement being wrong
is much higher than the chance of a particular statement being
wrong. That is the reason for working at significance levels
such as 1/100,000 for the full set of sites.

RESULTS

Initial list of covariable pairs

At this point the following phenomena can be noted.

1. There is a huge amount of “statistical structure.” A very
large number of site pairs have p; = 0 for one of M, G, P (Table
1). Histograms of the p;; for G and the 440 data set reveal that
on the order of 50% of the pairs have p;; = 0.001. That is, at
most 100 of the 100,000 pseudo data sets gave a value as large
as or larger than the observed! The value 0.001 is usually taken
as an adequate level of statistical significance. It ensures that,
on the average, only 1 time in 1000 will we call something sig-
nificant when in fact it happened by chance alone. However, if
a statistical test yields a false claim of significance only 1 time
in 1000, still, if we run the test thousands of times, sooner or
later there will be false claims. This is the problem of making
calls of significance simultaneously for many pairs. In our case,
we examine 465 pairs. Calling 50% of the pairs covarying is
unreasonable since we expect that some of those claims arise
simply from this multiplicity of tests. Still, this is a remarkably
large number of covarying pairs; if no sites were truly covari-
able, then chance alone would not be expected to produce a sin-
gle pair with p;; = 0.001! It seems reasonable to restrict our-
selves to the site pairs for which p; = 0. Since each has a
significance level of 10~3, the chance that we make a false co-
variability call for any of the 465 pairs is <1073 X 465, that is
to say, <0.005. Thus a restriction to this group means we have
a simultaneous 0.005 significance level.

TaBLE 1. NUMBER OF SITE PAIRS WITH p;; = 0
Data
set M P G MPG* MorPorG
308 63 58 52 36 81
440 134 125 117 95 152

a8MPG means M and P and G.

BICKEL ET AL.

Korber et al. arrived at 7 pairs of sites for the 308 data set
as follows. They used 1,000,000 rather than 100,000 pseudo
random data sets and required that, for a pair of sites i,j to be
declared covariable, M;; must be larger than the largest value
observed among the pseudo random data sets, not only for i,/
but for all other pairs of sites as well. A motivation for this is
the desire to avoid having any false-positive pair on the list. If
all sites had identical compositions, then the criterion of re-
quiring that a pair should score higher than the random scores
generated from all pairs would make sense. Since they made
simultaneous significance statements for 465 pairs of sites, us-
ing 1,000,000 sets assured them that their chances of declaring
significance where there was none were no greater than about
0.0005. We used 100,000 data sets generally to save on com-
puting time, since it seemed to make no difference in the final
sets of candidates we proposed. For example, with 1,000,000
pseudo random data sets our figures for M and the 440 data set
in Table 1 would change from 134 to 121, and all the pairs we
included for their M significance would still be included.

2. As Table 1 shows, from 44 to 62% of the pairs of sites
that have p;; = 0 for G or M or P have p;; = 0 for all three mea-
sures. We can draw the comforting conclusion that a substan-
tial proportion of the pairs that covary tend to do so as mea-
sured in any of these three intuitively plausible although hardly
distinct ways.

3. By all three measures the amount of structure revealed by
the 440 is considerably greater than what is revealed by the 308.
This is not simply the familiar story of more effects detected
with larger samples. Twice the number of pairs called signifi-
cant by M or G were still observed when the 440 were reduced
to the 288 sequences that did not appear among the 308. This
is consistent with other observations!!-20 of the increasing com-
plexity of the viral quasispecies, in view of the fact that the 440
contained mainly sequences acquired between 1991 and 1993.

Lists of the site pairs with p;; = 0 counted in Table 1 and in-
deed software with which we did nearly all computations are
available from the authors (e-mail: spector@stat.berkeley.edu).

Pruning the list of covariable pairs

When the modal frequency (frequency of the consensus
amino acid) at either member of a pair of sites is high, the sta-
tistics G, P, M that quantify covariability tend to have small
values that are sensitive to changes in a small number of se-
quences. In particular, highly significant values can be a con-
sequence of alignment errors or even typographical errors in a
few sequences. Korber et al.! met this issue by their tremen-
dously restrictive criterion that their observed M values be
larger than anything seen in the 1,000,000 pseudo random data
sets at any pair of sites. We argue in the Appendix that this is
too restrictive. Indeed, we begin by restricting our subsequent
analyses to site pairs whose observed G or M or P statistics
have p;; = 0. This restriction helps but is insufficient to elimi-
nate pairs for which changes in a few sequences could create
large changes in significance—see the Appendix. Some
progress comes from adding the requirement, as we do, that the
numerical value of the test statistic be in the top quartile of its
set of values for the data set in question. This is, of course, in
the same spirit as Korber et al.’s restriction to the maximum
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being exceeded for all pairs of sites.! However, it is far weaker,
excluding at least some bizarre tables. For instance, association
of site 0 (in which residue C is known not to vary) with site 17
would owe to what may be a typographical error in which two
sequences are ascribed Q at 0. This association is excluded. We
also restrict to pairs satisfying these criteria for both data sets.
Our logic is that if two sites covary significantly in both the
308 and the later 440, this should point more toward funda-
mental biological covariation.

The resulting list of 60 pairs for which significance was
found by any of the three criteria is given in Fig. 1. In Table
2a we give the 23 sites involved and their connectivities, the
numbers of sites to which they are significantly connected. We
view this as our basic, too-large list of suspects, but which we
nonetheless offer for examination by those with other evidence.
Subsequently, we discuss some site pairs that appear to be sig-
nificant in one but not the other data set.

One possibility for pruning this list is to consider the 21 pairs
that had p;; = 0 for G and M and P, again for both data sets.
Our logic here is that being signaled by M and G and P is a
strong indication of structure. The weak point is that, as statis-
tics, G, M, and P each point to departure in senses that were
described in our discussion of methodology. And any departure
could come from fundamental biology. This list and the corre-
sponding 13 sites are also given in Fig. 1 and Table 2b.

Covariable pairs within clades

A variety of other possibilities exist for pruning the initial
large list down to a size that is of use to experimentalists.
However, one observation leads us to a different approach. The
wealth of observed covariation may in large part be due to phy-

Bl One or more measures significant | G-27
= il 1-26
- All three measures significant = i
C BEE 1-25
{—E-24
|| —G-23
T-22
= T-21
—Y-20
B & % F-19
| -
L)

TTTTT1 TITETTITUET T T I T T
CTRPNNNTRKSIHIGPGRAFYTTGE I |
012345678 910111213141516171819202122232425262728293031

FIG. 1. Significant connections for both data sets, with the
constraint that to be significant not only must p; = 0, but also
the ¥alue of the statistic must lie in its upper quartile for the
data set.
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TABLE 2. NUMBER OF CONNECTIONS AND SITES
FOR SIGNIFICANT PAIRs: 308 AND 440

No. of connections Site

aMorPorG

15 11
10 4,19

8 5, 15

7 9, 10, 30
6 24

5 7,12, 17, 26
4 18, 25

3 28

2 6, 21, 23, 31
1 8, 13, 27

b. MPG

11
4,9, 15
5,19
7, 10, 17, 24, 26
12, 18

- A0

logenetic effects. The characteristics of a shared ancestor them-
selves presumably sometimes reflect functional or structural
significance. This would not be true for regions of the genome
that are under no selection. Even when it is true, covariability
that persists even when shared ancestry is partially accounted
for seems more likely to be due to functional or structural fac-
tors. Korber, Myers, and others,>! on the basis of a phyloge-
netic analysis based on long (883) site stretches of the env gene,
have produced largely consistent trees ending in seven clades:
A, B,C, D, E, F, and the aberrant subgroup O. The geograph-
ical clustering of these clades is consistent with the history of
the epidemic. We are not entirely comfortable with the preci-
sion of the fine detail of these or any other phylogenies for HIV.
Nevertheless, it seems reasonable that the effect of shared an-
cestry can be reduced by examining covariability within clades
determined by similarity over long stretches of the HIV genome.
Korber et al. took this factor into account in part of their analy-
sis by their classification of amino acid pairs (in their Table 1)
as interesting according to both “predictiveness” and “fre-
quency.” We divided the 440 sequences into the same clades
and repeated our analyses for the three statistics within each. It
is possible, of course, that there are subclades within the
clades—that some sequences within a clade share a common
ancestor that is closer than the purported ancestor of the entire
clade. Attempts to subdivide the clades in this way would re-
sult in too few sequences for any remaining analysis of co-
variation. Even as it is, the number of sequences per clade varies
from 248 for B to 8 for O. For the C, F, and O groups (which
are not present in the 308) our ability to detect covariability
(the power of the test based on G, M, or P) is reduced. We
therefore limited ourselves to clades A, B, D, and E since A, D,
and E have 40-50 sequences per clade. Within that group we
arbitrarily noted pairs in our lists of 60 and 21 pairs, respec-
tively, that had, for one of our statistics, values of p; =< 0.01 in
B, and had p;; < 0.05 in at least one of clades A, D, and E.
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Figure 2 gives:

1. The 6 pairs and 8 sites that are G and M and P signifi-
cant and continue to be significant throughout the clades

2. The 19 pairs and 15 sites that are G or M or P significant
and continue to be significant throughout the clades.

In Table 3b we give the P;; statistic and the pair of residues
yielding the maximum value of P;(a,b) as well as the consen-
sus pair of residues for each of the 20 pairs. The rest of our dis-
cussion refers primarily to the pairs of Fig. 2.

Biological correlates

There are interesting biological correlates for the most highly
connected sites. Numbers 5 and 7 are potential N-linked gly-
cosylation sites and have been implicated in immune escape by
Davis et al.> Substitutions at sites 10 and 12 have been impli-
cated as determinants of cell tropism.”-10 Korber et al.! and de
Jong et al® linked simultaneous mutations at site 10 in con-
junction with mutation at the block of sites 21-24 to conver-
sion from a non-syncytium-inducing, low-replicating to a syn-
cytium-inducing, high-replicating phenotype. Chesebro et al.”
showed that a single change at site 12 from S to H created non-
infectious virus and that altering site 12 in conjunction with
sites 20-29 caused a phenotype switch from T tropic to
macrophage tropic. Ghiara et al.?! found no substitution for
phenylalanine possible at site 19 in a crystallographic study in
which substitutions at sites such as 10 that strongly covary with
19 are forbidden. It is gratifying that all six of these sites—S5,
7, 10, 12, 19, and 24—appear in our shortest list of eight sites.

Among the pairs in Fig. 2, only two pairs, 5-28 and 12-19,
were not significant for all three statistics in at least one data
set. Both of these were signaled by M only, which suggests that
the Korber et al. statistic is the most sensitive of the three.

o

FIG. 2. Significant connections. (—) Significant for all
three statistics, both data sets, and in clades as indicated in text.
(——-) Significant for at least one statistic, both data sets, and in
clades as indicated in text.

BICKEL ET AL.

An analysis of cliques

A cligue is a set in which each site covaries with the other
clique members. Table 3 presents one clique of four sites
{10,12,19,24}, and two cliques of three sites {5,7,9} and
{5,7,26}. At this point we address such questions as, “Is the
observed covariability between 19 and 24 possibly an artifact
(spurious correlation) of actual covariability between 10 and 19
and 10 and 24?” Such questions may be answered by fitting a
second-order log-linear model to the three-way contingency
table corresponding to the three sites. This can be done (see the
Appendix) provided there are sequences that exhibit all possi-
ble pairs of residues for each pair of sites. But there are not.
For instance, both A and Y appear repeatedly for 10 and 19,
respectively; but they never appear together. To reduce these
problems we can distinguish less finely between residues by
creating a few broad categories into which we group the 20
amino acids. A natural possibility is to classify according to the
four types of side chains (positive, negative, polar, nonpolar)
or to the two classes (hydrophobic, hydrophilic). Another pos-
sibility is to use the data to reduce our alphabet. The P statis-
tic provides us with pairs of residues that with extreme covari-
ation may or may not be the consensus (modal) pair. For each
site we can use an alphabet consisting of the consensus amino
acid, other amino acids that have been members for that site of
a pair of amino acids maximizing P;{a,b), and all amino acids
without this property lumped together. Typically, this amounts
to creating classes out of the most frequent and next most fre-
quent amino acid at a site and lumping others together. We ap-
plied these types of analyses to the three cliques above.

Analysis of sites 10, 12, 19, and 24 with a data determined
alphabet (given in the Appendix) revealed that, for the 308, the
10-19, 12-19, and 10-24 connections had p < 0.01; 12-24 had
p = 0.05; while the 19-24 connection was not significant. On
the other hand, for the 440, 10-19, 10-24 and 12-24 had p <
0.001, while 10-12 had p = 0.03; and 12-19 was not signifi-
cant. The only clear indication is the persisting strength of the
10-19 and 10-24 connections.

Analysis of sites 5, 7, and 9 for the 308 gave 5-7ap < 1074
for 308 and 440, with 7-9 equally extreme for the 440 but not
the 308, and 5-9 mildly significant for both.

Analysis of sites 5, 7, and 26 both gave strong readings for
5-7, 5-26 with the 440 and only mild significance for 5-26 in
the 308, and 7-26 in both. The second-order analyses here sug-
gest that the observed higher order interactions may be gen-
uine.

Reconciliation with Korber et al.

All of the pairs suggested as significantly covarying by
Korber et al.! in the 308 sequences were signaled as such by
G and P as well. But 3 of these, 23-24, 12-24, and 12-23,
were not signaled by G and P in the 440. One, 12-23, was
also not signaled by M and, if the criterion larger than M at
any pair of sites is applied, the 23-24 connection is also elim-
inated. Using our criterion of M or G or P in both data sets
and significance in the clades, we found that the five pairs not
involving site 23, namely 10-12, 10-24, 12-18, 12-24, and
19-24, are retained. As we noted earlier, de Jong et al.® found
biological covariation between site 10 and a group of sites in-
cluding both 23 and 24. Our analysis suggests that it may only
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THE SIGIFICANT PAIRS: 308 AND 440, M oR P oR G AND IN CLADES

a. Number of Connections and Sites

No. of connections Sites
5 7, 10
4 5,12
3 19, 24, 26
2 9,11, 18
1 4,6, 8, 28

b. P Statistics, Significance, Determining Pair of Residues, and Consensus Pair?

Pair P308 sig. 308 P440 sig. 440 308 pair 440 pair Consensus pair
47 0.11405 0.00000 0.140577 0.00000 Y-T Y-T N-T
5-7* 0.103002 0.00000 0.234929 0.00000 N-T N-T N-T
5-9 0.114984 0.00000 0.096428 0.00000 N-Q N-K N-K
5-26 0.057838 0.00094 0.256108 0.00000 N-1 N-1I N-I
5-28 0.041566 0.00678 0.055771 0.00001 N-D N-D N-D
626 0.078047 0.00001 0.108245 0.00000 N-I N-I N-I
7-26 0.050493 0.00168 0.166351 0.00000 T-1 T-1 T-1
7-9 0.093647 0.00000 0.175587 0.00000 T-K T-K T-K
7-10 0.068062 0.00004 0.117923 0.00000 R-H T-R T-S
8-10 0.052759 0.00136 0.117297 0.00000 R-S R-S R-S

10-12* 0.091336 0.00000 0.076898 0.00000 S-N G-H S-H

10~-19* 0.155750 0.00000 0.153428 0.00000 G-V S-F S-F

10-24* 0.111502 0.00000 0.157668 0.00000 R-Q S-D S-E.D

11-15 0.230370 0.00000 0.210741 0.00000 T-P T-P I-P

11-18 0.107030 0.00000 0.045988 0.00008 L-R V-T I-A

12-18* 0.368264 0.00000 0.241172 0.00000 -V -V H-A

12-19 0.068594 0.00014 0.029221 0.01187 R-F R-F H-F

12-24 0.096354 0.00000 0.036567 0.00230 R-R H-E H-E,D

19-24* 0.091741 0.00000 0.123356 0.00000 F-R F-D F-E,D

3(1) The six M and G and P pairs are indicated by asterisks; (2) P308 and P440 are the values of P for the 308 and 440 data
sets; (3) sig. 308 and 440 are the significance probabilities for P in these data sets; (4) 308 and 440 pairs are the residue pairs
corresponding to the maximal P;;. Consensus pair is the consensus pair with a switch in site 24 from the 308 to the 440.

be the 10-24 connection that really matters. It should also be
noted that the signaling criterion used by us, although not as
extreme as that of Korber and Myers (which is less than 1079),
is still very demanding. The p value for M at 12-23 in the 440
is2 X 10731

To sum up, the restrictive M and P and G significance for
both data sets and clades criterion leads to the retention of four
of the seven Korber et al. pairs. It adds the glycosylation pair
5-7 and also 10-19. The less stringent M or P or G significance
for both data sets and clades criterion leads to the retention of
the five pairs cited above. In addition, 15 pairs are added that,
among other things,

1. Complete the 10-12-19-24 clique

2. Bring in connections of the glycosylation sites 5 and 7
not only to neighboring sites on the left side of the loop
but also to site 26 on the right side

In Fig. 3 we exhibit the 20 pairs that had p; = 0 for G or M
or P in the 308 but not the 440. The only sites not appearing
in Fig. 2 are 1, 20, and 22, although new connections appear,
and, of course, the two Korber et al. pairs eliminated by the
440 set are here.

New covarying pairs in the 440

In Fig. 4 we give the 83 pairs in the 440 that had p; = 0 for
G or M or P, but did not appear in the 308. Sites not appear-
ing in both the 308 and 440 are 1, 20, 22, and 29. Sites 1, 20,
and 22 appear to be coupled with different partners in the 308
and 440 and thus figure as “new” sites of interest in both. All
these sites have connectivities of 1 or 2 only and do not seem
worth pursuing.

DISCUSSION

The statistical analysis we have made is both limited and
somewhat inconclusive. Although we point to some aspects of
V3 loop variation that currently generalize, on the whole it sup-
ports the pessimistic views of Wain-Hobson?° regarding the dif-
ficulty of finding persistent features of the genotype of the virus
or at least of the V3 loop.

Perhaps the greatest limitation of the analysis, as we noted
earlier, is that the data are haphazard rather than representing
samples drawn from the population of HIV viruses extant up
to 1991 and 1993, respectively. As Korber et al.! noted, this
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can introduce a number of biases: “Founder virus effects,” un-
known epidemiological clustering, unrepresentative sampling
from different groups of individuals in terms of geography, dis-
ease status, treatment with antivirals, etc. On top of this is the
dynamic nature of the epidemic, with the virus evolving in re-
sponse to immune challenges as it spreads into new populations.
Thus, any statistical tools we use, significance probabilities, es-
timates of interaction strength in second-order log-linear models,
are used as a guide to importance and not as confirmation.

A second major limitation is the “wealth of significance™ that
has caused us (and Korber et al.) to prune on the basis of fairly
arbitrary thresholds in order not to have too many candidate
sites to consider. As we have noted, for G in the 440 data sets
more than 233 of the 465 pairs of sites have p; < 0.001, a value
that is usually taken as extremely significant. Therefore pairs
such as 12-23 that fail our significance test in the 440 cannot
really be ruled out.

Another related major source of difficulty is the sparsity of
the data. Many sites in the variable V3 loop are not obviously
particularly variable. Most sites have the consensus amino acid
80% or more of the time, with 5-10 other amino acids each ap-
pearing rarely. There are two consequences. One we have noted
before is that the study of the relationship of more than pairs
of sites is made difficult by the absence of data on many com-
binations of amino acids. Another is that a small number of
cases can make big changes in the observed significance of the
covariability of a pair of sites. Examples are discussed in the
Appendix.

So where does this leave us? All the Korber et al. sites and
connections other than those with 23 continue to be signaled.
The technology they initiated, somewhat modified, confirms
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FIG. 3. Pairs significantly covarying in the 308 only, for G
or M or P, with the constraint that the value of the statistic must
lie in its upper quartile for the data set.
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or M or P, with the constraint that the value of the statistic must

lie in its upper quartile for the data set.

known biologically significant sites such as 5, 7, and 10 and
points to others such as 19, 24, and 26.

APPENDIX

Further discussion of the Py statistic

Although the Pj; statistic has not to our knowledge been in-
troduced previously, it is based on a classical test for the hy-
pothesis of independence against the alternative of a particular
kind of “quasi independence”—see Refs. 22 and 23. Specifically,
if p;(x,y) denotes the probability (population frequency) of amino
acid x at i and y at j and p(x) is the probability of amino acid x
at i then Pi{a,b) is the likelihood ratio test statistic for the hy-
pothesis of independence,

H: pii(xy) = pix)p;(y) forall xy

under the blanket assumption that, for functions f and g,
pixy) = fi(x)gj(y) for x#a and y#*b (1)

The hypothesis simply specifies that (1) appliestox =a,y = b
as well. This reflects the view that, if there is covariability, it
occurs only for a particular pair of amino acids, i.e., that there
has been possible “slippage” from the hypothesis of indepen-
dence only for a,b.

The statistic Pj; corresponds to the likelihood ratio statistic
if in Eq. (1) we do not specify which pair (a,b) has “slipped.”

Note that this idea can be extended to construct other plau-
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sible statistics. For instance, we may make the assumption that
Eq. (1) holds provided that x # a. This leads to the statistic

Pi(a) = > [pi(») — byay)]
y

x log{[l - ki@ ][1 - i’i(a)]“}

iy
. pij(ay) }
+ i' 3, l ﬁ— 2
% Py(@) °g{ @b, () @

The corresponding statistics max,P«a) and max,P{b) are well
worth pursuing in linkage studies when mutation at one site re-
sults in selective pressure not only at its own but also at related
loci. P;{a) may be thought of as a measure of the effect on pre-
diction at site j of knowledge of amino acid a at site i. As such,
it measures somewhat the same features as the specific infor-
mation at j given residue a at site i of Korber et al. Their ex-
pression I(S,), is, in our notation,

= > bi@p;(y) log pi(y)

y

i’ij(a,)’) ]
pia)

15 = S byay log[
y
which differs from the second term in Eq. (2) by
> [piay) — pi@pi(y)] log pi(y)
y

Returning to P; we note that it has the advantage over G
and M; of pointing to the pair of residues that seems to be sta-
tistically most covariant. In turn, that enables us when consid-
ering more than two sites simultaneously to use the data to re-
duce the amino acid alphabet at the sites under consideration
and examine covariance between collections of sites as we will
indicate. It is also worth noting that the extremal 2 X 2 table to
which the Pj; statistic leads us visually highlights the strength
of the relationship between a and b at sites i and j. Here is the
440 10-19 extremal table that illustrates our point:

F F

s | 215 66 341
(241) | (100)

S 36 63 99
(70) (29)
311 129 440

This table presents observed and (expected) numbers of cases
in extremal P for sites 10 and 19. Categories are S (serine),
S[m] (not S), F (phenylalanine, F[m] (not F).

Fitting second-order models

Given 3 sites and on the order of 10 amino acids appearing
at each site in a set of sequences, we have approximately 10° =
1000 distinct possible combinations of amino acids at the 3
sites. Given that we have even in our largest data set 440 se-
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quences, we do not see many possible combinations. In fact,
given that the consensus frequency at each site is typically not
less than 70% and the high degree of covariability observed,
we typically see fewer than 100 of the 1000 possible combi-
nations.

We want to examine the possibility that covariation of sites
i and j is a consequence of this mutual covariation with site %,
i.e., that given the amino acid at site k, the amino acids at { and
Jj vary independently. In view of our remarks above we cannot
hope to examine all triples of amino acids. However, we can
try to use a device that is standard in analyses of discrete data.
We consider modeling py(a.,b.c), the probability that amino
acid a occurs at i, b at j, and ¢ at k by

logpyab,c) = hij(ab) + hyla.c) + hi(b,c) 3)

where hj;, hix, and hj; are arbitrary functions on the pairs of pos-
sible amino acids subject only to the constraint that

> piabic) = 1.

ab.c
This restriction reduces the number of parameters that need to
be fitted from the data. For instance, if A = 10 amino acids ap-
pear at each site, “only” 3A(A — 1) = 270 need to be fitted. If
we could then test the hypothesis that, in this context, ky(-,") =
0, which corresponds to i and j independent given k, we could
then use the resulting ¥ tests and p values crudely with small
p values as real evidence of covariability, and large p values as
supporting the hypothesis. See Chapter 7 of Ref. 23 for a dis-
cussion of such methods.

Unfortunately, this program is not applicable to most triples
of sites since in fact we do not have the observations requisite
to fit the 270 or so parameters. As a consequence we reduce
the “alphabet size” at each site in one of two ways. If the sites
have charged consensus residues we use the charge alphabet,
+, —, P, NP, where +, — refer to the charges on amino acid
side chains when it is charged; P represents polar, and NP is
nonpolar. For 3 sites this immediately reduces the number of
possible combinations to 64, and all 64 parameters or at least
a second-order model with 36 parameters can usually be fit. For
sites that rarely exhibit charged side chain amino acids we use
the P statistic to produce smaller data-determined alphabets. For
example, consider the clique of sites 10, 12, 19, and 24, which
are significantly covariant under any of the three statistics and
for both data sets. If we consider the extremal P tables for each
of these sites, and all pairings among the short list of 12, we
find these amino acids occurring:

10
12
19
24

, S

’

=0

\%

mE o ®

o

Not surprisingly, the modal (consensus) residue at the site
for each data set appears in each list. In fact, S, G, and R are,
in order, the three most frequent residues for site 10; F and L.
are, in order, the two most frequent for site 19; and E and D
are, respectively, the consensus amino acids for site 24 in the
308 and 440 data sets. We can now analyze the relationship be-
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tween sites 10, 12, 19, and 24 as in expression (3) above by re-
placing the amino acid alphabet by the four-letter alphabet: {G,
R, S, other} for 10, {T, H, other} for 12, {F, L, V, other} for 19,
and {D, E, other} for 24. These analyses have the unsatisfactory
aspect that the alphabet depends on the data set. On the other
hand, in practice it appears to boil down to using as distinct cat-
egories the residues of each site in order of frequency. This poses
problems when examining the dynamic AIDS epidemic but
should be reasonably stable for many other situations.

Sensitivity of results to small numbers of cases

We noted earlier that if the modal (consensus) frequencies
of one of a pair of sites was high, highly significant values of
our statistics (p;; = 0) could be turned to low significance by
changing the residue values for a small number of cases.
Essentially this occurs when the values of the statistic G, M, or
P is small in absolute magnitude, although large relative to what
could have been given the marginal frequencies of residues at
the two sites. We try to eliminate this situation in our short list
by insisting on P, M, and G values in the top quartile of their
distribution. We do not know the frequency of such misclassi-
fications due to misalignment or mistyping, but it would cer-
tainly seem reasonable to be suspicious of strong covariation
that is determined to be such by five or fewer cases.

Here is an example, drawn from our list of 20 pairs of Table
3, that shows what can happen.

The observed extremal 5 versus 26 table for the 308 is

N N
I | 232 15 247
I 45 16 61
(6.14)
277 31

Here, I is isoleucine, N is asparagine; and INare not I and not
N, respectively; and the number in parentheses is “expected.”
This table has a significance probability < 103 for P.

If five cases are moved from the /,N cell, maintaining the
marginals we obtain,

227| 20

50| 11

the significance probability of the table becomes at least 0.01,
which is above the median significance probability of 0.001 ob-
tained for all pairs. On the other hand, the observed extremal
5 vs. 26 table for the 440 is

N N

1| 373 6

11 29 | 32
(5.27)

BICKEL ET AL.

This again has P with significance <1075 However, one
would have to move more than 10 cases from the (I, N) cell to
create a change in significance as drastic as before. Such analy-
ses using the six pairs in Table 3 that are G and M and P sig-
nificant show this kind of robustness of the relationship for both
the 308 and 440 data sets. The situation for the other statistics
M and G is more difficult to analyze. As we have seen with
5-26, P robustness may not hold for some of the remaining G
or M or P pairs and at least one of the data sets. We intend to
investigate such questions of robustness elsewhere.

Extreme thresholds can be misleading

Korber et al.! used as a threshold of significance the maxi-
mum value of the M statistics obtained in any of their 1,000,000
pseudo data sets for any pair of sites. We can illustrate that this
rule is misleading by considering the P statistic, for which we
can compute in closed form the maximum value it can attain
for specified marginal frequencies.

Specifically, if the extremal P table is (when the entries are
normalized by N) the number of cases given by

X B—x

l—a—-B+x

where a = 8 =< 1/2, then the maximal value of P is —f3 log
B—(l—a)logl—a)+(B—a) log(B—a). If a=B=
1/2 this achieves its maximum possible value of log2.

For the 440 the maximum value of P observed over all
100,000 pseudo data sets and pairs of sites is 0.052. On the
other hand, the pair 10-27 exhibits a P of 0.021, which exceeds
the maximum value of P for that pair over all pseudo data sets.
In fact the maximum possible value of P at that pair of sites is
0.026. Thus we have a clear example in which setting the thresh-
old value on the basis of the maximum value of the statistic ob-
served at all pairs of sites for all pseudo random data sets is
equivalent to setting an impossible goal.
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