
UC Berkeley
Sustainable Infrastructures 

Title
Distribution network topology detection with time-series measurements

Permalink
https://escholarship.org/uc/item/8zq9x1qx

Authors
von Meier, Alexandra
Arghandeh, Reza
Cavraro, Guido
et al.

Publication Date
2015-02-18
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8zq9x1qx
https://escholarship.org/uc/item/8zq9x1qx#author
https://escholarship.org
http://www.cdlib.org/


Distribution Network Topology Detection with
Time-Series Measurements

G. Cavraro
DEI - University of Padova

Padova, Italy
cavraro@dei.unipd.it

R. Arghandeh
CIEE - U. C. Berkeley

Berkeley, USA
arghandeh@berkeley.edu

G. Barchi
DISI - University of Trento

Trento, Italy
grazia.barchi@unitn.it

A. von Meier
EECS - U.C. Berkeley

Berkeley, USA
vonmeier@berkeley.edu

Abstract—This paper proposes a novel approach to detecting
the topology of distribution networks based on the analysis
of time series measurements. The analysis approach draws on
data from high-precision phasor measurement units (PMUs or
synchrophasors) for distribution systems. A key fact is that time-
series data taken from a dynamic system show specific patterns
regarding state transitions such as opening or closing switches,
as a kind of signature from each topology change. The algorithm
proposed here is based on the comparison of the actual signature
of a recent state transition against a library of signatures derived
from topology simulations. The IEEE 33-bus model is used for
initial algorithm validation.

I. INTRODUCTION

Power transmission networks tend to be far better equipped
with measurement devices than distribution systems, for eco-
nomic reasons and necessity. For transmission systems, the
ratio of available measurements to state variables ranges from
about 1.7 to 2.2 in practice, meaning that the operating state of
the system is generally observable [1]. Distribution systems,
by contrast, are largely unobservable beyond the substation.
Switches and protective devices may not reliably communicate
their status to the distribution operator, so the topology can
only be determined with certainty on location, by sending
crews into the field. With the integration of distributed energy
resources (DER), electric vehicles and controllable loads, the
need for observability in distribution systems is increasing.
Along with impacts on voltage levels, DER will affect faults or
short circuits both upstream and downstream in the feeder. Re-
configuration actions may be more frequent, the risk of unin-
tentional islands may be greater, and the actual topology status
of the system may be less clear. But knowledge of the correct,
updated topology is essential for safety, for service restoration
after outages, and for any advanced operating strategies such
as volt-VAR optimization [2], [3]. Different tools have been
developed and implemented to monitor distribution network
behavior with more detailed and timely information, such
as SCADA (supervisory control and data acquisition), smart
meters and line sensors. Creating situational awareness out of
disjointed data streams still remains a challenge, though. Given
the present monitoring technologies, more, better and faster
data from behind the substation will be needed to realize smart
distribution networks [4]. The cost of monitoring systems
in distribution networks remains a barrier to equipping all
nodes with measurement devices. To some extent, a capable
Distribution System State Estimation (DSSE) can compensate
for the lack of direct sensor data to support observability.
However, switch status errors will easily be misinterpreted as
analog measurement errors (e.g. voltage or current readings).
Thus topology detection is an important enabling technology

for state estimation as well as a host of other functions based
on knowledge of the system operating state in real-time.

Previous work on distribution network topology detection
tackles the problem from different perspectives. In [5] authors
propose a state estimation algorithm that incorporates switch-
ing device status as additional state variables. A normalized
residual test is used to identify the best estimate of the topol-
ogy. In the typical radial topologies of distribution circuits,
opening of a switching device results in some lost loads
downstream. The analysis of expected load values performed
by aggregating and mapping multiple loads to a common
switching device (such as a sectionalizer, circuit breaker, fuse
or recloser) suspected of being open. In [6], the authors provide
a tool for choosing sensor placement for topology detection.
Given a particular placement of sensors, the tool reveals the
confidence level at which the status of switching devices can
be detected. Authors in [7] and [8] are focused on estimating
the impedance at the feeder level. However, even a perfect
identification of network impedance cannot always guarantee
the correct topology, since multiple topologies could present
very similar impedances.

In this paper, a novel approach to topology detection is
proposed based on time series analysis of measurements. This
approach is inspired by high-precision phasor measurement
units (PMUs or synchrophasors) for distribution systems,
which the authors are involved in implementing [9]. The main
idea derives from the fact that time-series data from a dynamic
system show specific patterns regarding system state transi-
tions, a kind of signature left from each topology change. The
algorithm is based on the comparison of the actual signature
of a switching action and a library of signatures derived from
simulations of different topology transitions. We build a trend
matrix and a trend vector from system observations in order to
understand when the topology change occurred, and to identify
the new topology.

The rest of this paper is organized as follows: Section II
describes the distribution network model. Section III describes
how switching actions will propagate in the mathematical
representation. Section IV presents our topology detection
algorithm, and Section V shows the initial validation through
simulation in a 33-bus system.

II. DISTRIBUTION NETWORK MODEL AND PHYSICAL
TOPOLOGY

This section presents the distribution network model and its
related notations. Given a matrix W , we denote its (element-
wise) complex conjugate by W̄ , its transpose by WT and
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its conjugate transpose by W ∗. We denote the real and the
imaginary part of W by <(W ) and by =(W ) , respectively.
We denote the entry of W that belongs to the j-th row and to
the k-th column by [W ]jk. We define the column vector of all
ones by 1 . Given two vectors v and w, we denote by 〈v, w〉
the inner product v∗w. We associate the electric grid with a
directed graph G = (V, E , σ, τ), where V is the set of nodes
(the buses), E is the set of edges (the electrical lines connecting
them). Moreover σ, τ : E → V are two functions such that edge
e ∈ E goes from the source node σ(e) to the terminal node
τ(e). Finally, with T j we define the j-th possible topology.

In this study, we assume that the system reaches its steady-
state condition after a switching action and all voltages and
currents are sinusoidal signals with the same frequency ω0.
Thus, they can be expressed via a complex number whose
magnitude corresponds to the signal root-mean-square value,
and whose phase corresponds to the phase of the signal with
respect to an arbitrary global reference. Therefore, x represents
the signal x(t) = |x|

√
2 sin(ω0t + ∠x). The system state is

described by the following quantities:

• u ∈ Cn, where uv is the grid voltage at node v;

• i ∈ Cn, where iv is the current injected at node v;

• s = p+iq ∈ Cr, where sv , pv and qv are the complex,
the active and the reactive power injected at node v.

We model the substation as an ideal sinusoidal voltage source
(slack bus) at the distribution network nominal voltage UN ,
with arbitrary, but fixed, angle φ. We also consider, without
loss of generality, φ = 0. We model all nodes but the substation
as constant power or P-Q buses. It is known that the system
state satisfies the following equations

i = Y u (1)
u0 = UN (2)
uviv = pv + iqv v 6= 0 (3)

Y is the bus admittance matrix of the grid, defined as

[Y ]jk =

{∑
j 6=k yjk, if j = k

−yjk, otherwise
(4)

where yjk is the admittance of the branch connecting bus j
and bus k and where we neglect the shunt admittances. From
(4) we have

Y 1 = 0 (5)

and then 1 (all-ones vector) belongs to the Kernel of Y .
Furthermore, it can be shown that if G, the graph associated
to the electrical grid, is connected, then the kernel of Y has
dimension 1.

The following Lemma [10] introduces a particular pseudo
inverse of Y , which will be useful in the proposed algorithm
proof.

Lemma 1: There exists a unique symmetric, positive
semidefinite matrix X ∈ Cn×n such that{

XY = I − 11T0
X10 = 0.

(6)

The matrix X is related to the Moonre Penrose pseudoinverse
XP of Y by the equation

X = (I − e01T )XP (7)

Applying Lemma 1, from (1) we can express voltages of the
grid as a function of currents

u = Xi+ 1UN (8)

Finally, we introduce the useful approximation of the relation-
ship between voltages and powers [10], that is basically a first
order Taylor expansion w.r.t. the nominal voltage UN .

Proposition 2: Consider the physical model described by
the set of nonlinear equations (1), (2), (3) and (8). Node
voltages then satisfy

u = UN1 +
1

UN
X s̄+ o

(
1

UN

)
(9)

(the little-o notation means that limUN→∞
o(f(UN ))
f(UN ) = 0).

Power flow equations are highly non-linear. In the presence
of measurement noise and load uncertainty in distribution
networks, finding the power flow solution can be numerically
intensive. The former proposition is a linear approximation
of power flow equations. It is applied to state estimation [11],
Volt/Var optimization [3], and the optimal power flow problem
[12].

III. IDENTIFICATION OF SWITCHING ACTIONS

In this section we discuss how topology changes appear in
the network representation. The basic idea behind our proposed
approach is that changes in switching status will create specific
signatures in the grid measurands (voltage, current, frequency,
etc) that allow us to infer what is happened. In order to develop
the theoretical base for the proposed algorithm and its ease of
mathematical proof, we make two assumptions. However, these
assumptions will be relaxed in Section V, thus the algorithm
will be tested in a more realistic condition.

Assumption 3: We assume that the loads are not time
varying at the time of switching action.

Assumption 4: We assume that all the lines have the
same resistance over reactance ratio. Therefore, =(ye) =
α<(ye),∀e ∈ E , where ye is the admittance of the line
e. This assumption is used for ease of admittance matrix
decomposition.

Now assume that at time t − 1 before the switches status
changes, the distribution network has the topology T j with
bus admittance matrix Y j . Because of Assumption 4 and
because Y j is symmetric, =(Y j) and <(Y j) share the same
eigenvector. Therefore, we can write

Y j = UΣRU
∗ + iUΣIU

∗ (10)

where ΣR,ΣI are diagonal matrices whose diagonal entries are
the non-zero eigenvalues of =(Y j) and <(Y j), and U is an
orthonormal matrix that includes all the associated eigenvector.
Furthermore, Assumption 4 allows us to write ΣI = αΣR.
Utilizing the well known properties of the Moore Penrose
pseudoinverse and (7), we have

Xj = (I − e01T )
(
U(ΣR)−1U∗ − iαU(ΣR)−1U∗

)
= (I − e01T )XP

j (11)

and thus, applying Proposition 2 and neglecting the infinitesi-
mal term, the voltages can be expressed as

u(t− 1) = Xj
s̄

UN
+ 1UN (12)



Now assume that at time t a switch, located in the edge e′

change its status. After this action the new topology is T k.
Since we are basically adding or deleting an edge from the
graph that represents the grid, we can write

Y k = Y j + γye′ae′a
T
e′ (13)

where γ is +1 or −1 depending on whether the switch in e′
is closing or opening, ye′ is the admittance of the line e′, and
the elements of ae′ are all zeroes except for σ(e′) and τ(e′)
for which is equal to +1 or −1 respectively. This allows us to
write

u(t) = Xk
s̄

UN
+ 1UN (14)

It is now trivial from (5), U spans the image of I−11T /(1T1),
i.e. all Rn “except” 1. Since ae′ is orthogonal to 1, there exists
be′ such that Ube′ = ae′ . This allow us to write

Y k = U(ΣR + <(ye′)be′b
T
e′)U

∗ + iU(αΣR + =(ye′)be′b
T
e′)U

∗

Xk = (I − e01T )XP
k (15)

where

XP
k = U(ΣR+<(ye′)be′b

T
e′)

−1U∗−iU(αΣR+=(ye′)be′b
T
e′)

−1U∗

(16)
Define the trend vector δ(t) = u(t)− u(t− 1). Its properties

will be fully exploited by our detection algorithm. We have,
from (11) and (15),

δ(t) = (I − e01T )Φjk
s̄

UN
(17)

where Φjk = XP
k − XP

j . The following Proposition is
fundamental for the development of our topology detection
algorithm.

Proposition 5: Φjk is a rank one matrix.

Proof: From (11), (15), using Ken Miller Lemma [13]
with some simple computations, we can write

Φjk =

(
<(ye)− i

=(ye)

α2

)
UΣ−1R beb

T
e Σ−1R U∗ (18)

It’s trivial to see that Φjk is a rank one matrix with normalized
eigenvector

gjk =
UΣ−1R be

‖UΣ−1R be‖
(19)

associated to the non-zero eigenvalue

λjk =

(
<(ye)−

i

α2
=(ye)

)
‖UΣ−1R be‖2 (20)

We can therefore write Φjk = λjkgjkg
∗
jk That is, all the

information included in a rank one matrix is contained in its
non-zero eigenvalue and its associated eigenvector.

Thanks to Proposition 5, we can see that δ(t) represents
how the opening or the closing of a switch spreads on the
voltages profile, and it is spanned, Φjk being a rank one matrix,
by (I − e01T )gjk, that is

δ(t) ∝ (I − e01T )gjk. (21)

Therefore, every specific topology change has its associated
normalized eigenvector gjk, which is linearly related to the
trend vector built from the time series measurements. This
means every abrupt change in voltage measurement vector due
to a switching action is linearly proportional to gjk, that can

be seen as its particular signature. This fact is the cornerstone
for the topology detection algorithm in this paper. It means
that network topology changes from T j to T k can be inferred
directly from the Φjk, irrespective of other variables such as
voltages u and loads s that describe the network operating
state at the time.

IV. PROPOSED TOPOLOGY DETECTION ALGORITHM

In Section III, we showed how each switching action can be
inferred from the voltage measurement in the network and how
it is fully characterized by the eigenvector introduced in (19).
Assuming the distribution network physical infrastructure, i.e.
conductor impedances and switch locations, are known, we
can construct a topology library L in which we collect all the
normalized eigenvectors (19) for all possible transitions from
one topology to another (as a consequence of Proposition 5).

L = {gjk : transition from T j to T k is possible} (22)

In reality, there is some noise associated with PMUs or
ant other type of measurement. The PMU measurements are
presented by the complex vector y. The trend vector is also
affected by the measurement noise. With a modification on
notation, we denote the trend vector as the empirical trend
vector

δ(t) = y(t)− y(t− 1) (23)

The empirical trend vector analogous to the trend vector. After
a topology change, we compare δ to the vectors in the topology
library L in order to understand which topology transition
happened. The comparison is made simply by projecting
the normalized empirical trend vector δ

‖δ‖ onto the topology
library L. The projection is performed with the inner product,
and it allows us to obtain for each vector in L

cjk =

∥∥∥∥〈 δ

‖δ‖
, (I − e01T )gjk

〉∥∥∥∥ , (24)

If cjk ' 1, it means that δ is spanned by (I − e01T )gjk and
the transition from T j to T k has occurred.

In actual distribution networks, loads are time varying.
Therefore, the trend vector δ is typically non-zero even if there
has not been any switching action. Thus we need a criterion
that allows us to distinguish load-based variation of δ from
switching actions. When a switch opens, a branch is deleted
form the network graph. If a switch closes, a branch is added
to the network. When any switch is opened or closed, there is
usually an abrupt change in the currents flowing through some
conductors, which cause abrupt voltages variation. Therefore,
we need to distinguish normal behavior of sources and loads
on the grid, and where the variation is due to a dramatic event
like a topology change. We have been inspired by [14], in
which the authors analyzed the maximum singular value (i.e.
the norm) of a measurement history matrix for capturing major
cyber attacks on measurement data. The measurement history
matrix, here called the trend matrix, depends on the parameter
w that is the size of the considered time window exploited for
the computation of the trend matrix.

∆(t) =

 (y(t)− y(t− 1))T

...
(y(t)− y(t− w))T

 (25)

The parameter w must be tuned adequately. In Section V, there
is a brief discussion on the selection of w. Notice that the



transpose of the trend vector composes the first row of the trend
matrix. We compute the norm of ∆ and when delta exceeds a
chosen threshold, we state that there has been an abrupt change
in the network topology and we perform the projection of the
trend vector δ in the topology library. These considerations
lead to the formalization of our topology detection algorithm
as follows:

Algorithm 1 Topology transition detection
At each time t

1: PMUs at each node j record (noisy) voltage phasor
measurements yj(t)

2: the algorithm builds the trend vector δ(t) and the trend
matrix ∆(t)

3: if there is a significant spike in ‖∆(t)‖ then
4: the algorithm projects δ(t) in L obtaining the set of

values

C =

{
cjk =

∥∥∥∥〈 δ

‖δ‖
, (I − e01T )gjk

〉∥∥∥∥ , gjk ∈ L} ;

5: the algorithm chooses the maximum in C and infer
which switch has changed its status.

6: end if

V. RESULTS, DISCUSSIONS AND CONCLUSIONS

We tested our algorithm for topology detection on the IEEE
33-bus distribution test feeder [15], which is illustrated in the
Figure 1. In this testbed, there are five switches (namely S1,
S2, S3, S4, S5) that can be opened or closed, thus leading
to the set of 32 possible topologies T 1, . . . ,T 32. Because of
the ratio between the number of buses and the number of
switches, some very similar topologies can occur (for example
the topology where only S1 is closed and the one in which
only S2 is closed). In the IEEE33-bus test case, Assumption 4
about line impedances does not hold, making the test condition
somewhat more realistic than our initial presentation. For now,
we assumed the distribution level PMUs are installed on every
bus 267 every bus (this assumption will need to be revisited in
light of economics). The algorithm has been tested in several

Figure 1. Schematic representation of the IEEE33 buses distribution test case
with the five switches

scenarios via Monte Carlo simulations based on different levels

of uncertainty or variability in loads and measurements. For
each scenario, we ran the algorithm 20,000 times. The active
pj and the reactive qj loads on each bus j are time varying.
In order to simulate the normal behavior of the grid at each
time t, pj(t)t and qj(t) are Gaussian random variables, i.e.
pj(t) ∼ N (p̄j , σ

2
` ), qj(t) ∼ N (q̄j , σ

2
` ), where p̄j , q̄j are the

nominal values that can be found in [15]. We explore the
situations in which loads can vary up to 50% of their nominal
value, by setting 3σ` = 0, 0.1, 0.2, 0.3, 0.4, 0.5. This choice is
informed by [16], which presents an study on loads historical
time series analysis. It shows that load estimations based on
metering data typically have 30%− 50% uncertainty.

Each simulation run is as follows: 1) randomly choose an
initial topology, 2) choose the switch that is going to change
its status leading to the second topology, 3) perform the switch
action at a certain time, 4) record the PMU measurement of
voltage phasor at time t for each iteration, 5) compute the
δ(t), 6) when we see a significant abrupt change (a spike) on
the trend matrix norm, say at time T , we project δ(T ) in the
topology library L and finally 7) we identify the new topology
by finding the maximum value.

Based on our studies, the magnitude of abrupt change in the
time-series eigenvalues profile is related to the time window
parameter win the trend matrix. In this paper, we select w
based on some heuristics through our simulations. In Figure
2, we can see how the choice of w influences the topology
change detection. The topology change occurs at t = 50. If
we choose w = 1 (black line), the spike is small and can be
masked by other signal variations due to the load variability.
With w = 5 (red line), the spike is clearly detectable. The same
is true for w = 10 (blue line). Because a shorter time window
of measurement records means less computational time for
the algorithm, we choose the smaller w = 5 for the rest of
our simulations. After detecting the time T of the topology

Figure 2. Maximum singular value trajectory of a Monte Carlo simulation.
This is a particular realization where 3σ` = 0.4.

transition, the algorithm projects the trend vector on L and then
decides which possible topology eigenvector is most similar to
the eigenvector of the measurement trend vector.

To evaluate the performance of our algorithm, we examine
its error rate in various scenarios, as shown in Figure 3. Each
scenario is characterized by different values of measurement
noise, and plotted against the uncertainty in the loads.
Scenario 1 Noiseless measurements: firstly we simulate our
algorithm algorithm with ideal, noiseless measurements. The



results are depicted with the black line in Figure 3.
Scenario 2 Measurements taken by µhigh-precision PMU
devices: we simulate our algorithm in a distribution network
where we have the high-precision µPMU devices [17] on
every bus. They are affected by two different types of noise,
the voltage magnitude and the voltage phase angle. Let’s
assume that the voltage at bus j is given by uj . The measured
voltage magnitude is affected by the additive Gaussian noise
εj ∼ N (0, σε|uj |), while the measured voltage angle is
affected by the additive Gaussian noise θj ∼ N (0, σθ), where
σε = 0.05·10−2, σθ = 0.01. Therefore, the output of our PMU
placed at bus j is

yj = |uj + εj |ei(∠uj+θj) (26)

The results are depicted with the red line in Figure 3.
Scenario 3 Measurements taken by PMU devices with Total
Vector Error (TVE) ≤ 0.005: we simulate our algorithm in a
network where PMU measurements are effected by Gaussian
noise such that the Total Vector Error is less than 0.5 % (TVE
= 0.005) based on the PMU manufacturer test information. It
is also comply the IEEE standard C37.118.1-2011 for PMUs
[18]. As a consequence, the output of our PMU placed at bus
j is

yj = uj + ej (27)

where ej is a complex number such that |ej | ≤ TV E|uj |.
The results are depicted with the green line in Figure 3.
Scenario 4 Measurements taken by PMU devices with TVE
≤ 0.01: we simulate our algorithm in a distribution network
where PMU measurements are effected by Gaussian noise such
that the Total Vector Error is less than 1 % (TVE = 0.01). It is
also satisfying the IEEE standard C37.118.1-2011. The output
of the PMU placed at bus j is again in the form given by (27),
but this time with |ej | ≤ TV E|uj |. The results are depicted
with the blue line in Figure 3.

In Figure 3, notice that the black curve values for σ` = 0 is
zero, meaning that in the 20,000 runs the algorithm always suc-
ceeds. Therefore, we can see that in the steady-state condition
and in the absence of noise, the algorithm is extremely efficient
and robust for the 33-bus test case. It also overcomes the
linearization from Proposition 2 and the initial Assumption 4.
We can see that the red and the black lines converge and
sometimes overlapping, meaning that the level of measurement
noise assumed for the high-precision µPMU has a negligible
impact compared to load variability. Finally we can see how
the curves in Figure 3 have basically similar trajectory with
different offset values. It shows that the load variability and
the PMU accuracy are independently affecting accuracy of
our topology detection algorithm, where the trajectory of the
algorithm error is based on the load variability and its offset
depends on the PMU device accuracy. More accurate PMUs
leads to more accurate topology detection. In this paper, we
assumed having PMUs on all buses. In future work, we will
study the number of PMU devices and their placement impacts
on the topology detection algorithm on a larger distribution
network test bed.
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