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MONTE CARLO METHODS IN THE PROBABILISTIC ASSESSMENT 

OF EXCAVATION-INDUCED BUILDING DAMAGES 

Jinyan. Zhao1 and Matthew J. DeJong1 

1 The Department of Civil and Environmental Engineering 
University of California, Berkeley 

e-mail: {jinyan_zhao,dejong}@berkeley.edu 

Abstract 

This paper presents an uncertainty quantification problem involving high-dimensional uncer-
tainty inputs and a nonlinear structural analysis model. The uncertainty quantification problem 
can be considered a high-dimensional numerical integration with a nonlinear integrand. The 
crude Monte Carlo, multi-fidelity Monte Carlo, and randomized quasi-Monte Carlo methods 
are applied to solve the numerical integration problem, and numerical experiments are con-
ducted to compare the efficiency of the Monte Carlo methods. It is shown that both multi-fidelity 
Monte Carlo and randomized quasi-Monte Carlo may significantly improve the efficiency of 
the studied problem. The randomized quasi-Monte Carlo method is easier to implement, but a 
carefully selected quasi-random sample and more sophisticated variance estimation are needed 
to successfully apply the randomized quasi-Monte Carlo method. 

Keywords: Uncertainty quantification; Numerical integration; Monte Carlo; Multi-fidelity 
Monte Carlo; Randomized Quasi-Monte Carlo 

1   INTRODUCTION 

Due to complex and lengthy geological processes, e.g., deposition, sedimentation, metamor-
phism, weathering, and biological effects, the physical and mechanical properties of soil can 
have significant spatial variability. In tunnel and deep excavation engineering, random field 
(RF) models are more and more commonly used to analyze the effect of spatial variability on 
tunnel stability, braced support stability, and ground movements (e.g., [1-3]). Simulating an RF 
model in numerical analyses may require tens to hundreds of independent random variables 
(i.e., tens to hundreds of uncertainty input dimensions), and the forward propagation process of 
such high-dimension uncertainty can be a challenge. Monte Carlo (MC) methods generally 
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show a dimension-independent convergence rate and are powerful for the uncertainty propaga-
tion of computational models involving high-dimensional uncertainty. As reviewed in [4], the 
crude MC method is the most adopted method for uncertainty propagation in tunneling and 
excavation engineering. However, the excessive calculation expanse in the crude MC method 
may prohibit practical engineers from utilizing uncertainty quantification in the analyses of soil 
spatial variability. In contrast, some advanced MC methods (such as variance reduction meth-
ods and quasi-MC methods) may significantly reduce the calculation expanse and can be used 
for high-dimensional uncertainty quantification in tunneling and excavation engineering and 
broader civil infrastructure engineering practice.  

In this paper, the crude Monte Carlo (CMC), a multi-fidelity MC (MFMC) method, and a 
randomized quasi-MC method (RQMC) are applied in the uncertainty propagation of a deep 
excavation analysis, and their efficiencies are compared. Both MFMC and RQMC are relatively 
easy to implement and showed significant efficiency improvement, which demonstrates a 
promising application of the advanced MC methods. In section 2, a probabilistic excavation-
structure interaction model involving RF models is presented and used as a benchmark problem 
for comparing the efficiency of the MC methods. In section 3, the MFMC and RQMC methods 
are briefly reviewed and applied to the benchmark problem. In section 4, the performance of 
the MFMC and RQMC methods is discussed. This paper demonstrates the benefit of using 
advanced MC methods in high-dimensional and nonlinear uncertainty quantification problems.  

2   A HIGH DIMENSIONAL FORWARD PROPAGATION PROBLEM IN DEEP 
EXCAVATION ENGINEERING 

The complete uncertainty propagation procedures are usually not reported in civil engineer-
ing uncertainty quantification research involving soil spatial variabilities. As a result, an uncer-
tainty quantification study involving soil RF models and a nonlinear structural analysis model 
(SAM) is reviewed and used as a benchmark to analyze the performance of the advanced MC 
methods. 

The probabilities of building damage induced by an adjacent deep excavation are estimated 
on a small community-level scale by Zhao et al. [5], as shown in Fig. 1. The SAM adopted in 
[5] is a customized hybrid finite element code called ASRE 3D [6] which takes the ground 
displacements, building geometries, soil stiffnesses, building stiffnesses, and building weights 
as inputs. The uncertainty inputs are an RF model of the excavation-induced ground displace-
ment, an RF model of soil stiffnesses, and four random variables describing building stiffnesses 
and building weights. The ground displacement profile perpendicular to the wall is described 
with the profiles proposed in [7], which is determined by three parameters 𝑑௩,௠௔௫/𝐻, 𝜂, and 
𝑑௟,௠௔௫/𝐻, as shown in Eq. (1). The spatial variabilities of 𝑑௩,௠௔௫/𝐻 and 𝜂 along the excavation 
wall are investigated in [5] and described with two 1D lognormal RFs with Gaussian semivari-
ogram functions. 𝑑௟,௠௔௫/𝐻  is modeled as 𝑑௩,௠௔௫/𝐻  multiplying a random variable as sug-
gested in [8]. The soil stiffness (𝐸௦) in the area is described by another lognormal RF model, 
with a scale of fluctuation (SOF) equal to 10 m, which corresponds to the worst-case SOF 
scenario of building differential settlement as suggested in [9]. The RF models adopted in this 
paper are stationary, and the mean values, coefficient of variances (CoVs), correlation functions, 
and SOFs are summarized in Table 1.  

 𝑑௩ = 𝑑௩,௠௔௫
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 𝑑௩ = 𝑑௟,௠௔௫
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To generate RF samples, the RF models are first discretized at the 𝑁 nodes at the soil-struc-
ture interface, as shown in Fig. 1(c). The realizations of 𝑑௩,௠௔௫/𝐻, 𝜂, and 𝐸௦ are generated with 
the discrete Karhunen Loeve Expansion (KLE) method [10], where the covariance matrices (in 
the logarithmic space) of the discretized RFs are first calculated. The matrices are eigen decom-
posed, and the 𝑀 largest eigenvalues accounting for 99% of the sum of all eigenvalues are se-
lected. 𝑀 independent random variables are then generated with the PCG64 pseudorandom 
number generator implemented in the Python package NumPy. The vector of 𝑀 independent 
random variables is multiplied by the first 𝑀 eigenvalues and then multiplied by the first 𝑀 
eigenvectors to form a realization of the RFs at the 𝑁 nodes. An RF with a larger SOF and 
smaller CoV is more uniform and requires a smaller 𝑀 to capture the variance in the model, 
while an RF with a smaller SOF and larger CoV shows a larger fluctuation, and a larger 𝑀 is 
needed. In this study, the 𝑀 values required for the simulation of 𝑑௩,௠௔௫/𝐻, 𝜂, and 𝐸௦ are 4, 10, 
and 510. With another 6 independent variables describing the uncertainty in the estimated 
𝑑௟,௠௔௫/𝑑௩,௠௔௫, building stiffnesses, and building dead loads, the total uncertainty dimension of 
the studied model is 550. Given a realization of the RFs, the ground movements and soil stiff-
ness matrix coefficients are calculated based on Eq. (1) and Mindlin’s solutions at the discre-
tized nodes and assigned to the SAM model. The outputs of the SAM are the characteristic 
strain (99% quantile of the strain in all elements) of the two buildings (𝜀஺ and 𝜀஻). The quanti-
ties of interest (QoIs) are the probabilities (𝑝௙,஺ and 𝑝௙,஻) that 𝜀஺ and 𝜀஻ exceed the limit state 
strains (𝜀௟௜௠), which are defined in [11]. 

RF Distribution Mean CoV 
Correlation 

function 
SOF 

𝑑௩,௠௔௫/𝐻 Lognormal 0.1% 0.38 Gaussian 18 m 
𝜂 Lognormal 1.3 0.097 Gaussian 5 m 
𝐸௦ Lognormal 10 MPa 0.4 Exponential 10 m 

Table 1: Random field models in the benchmark. 

The crude MC method with 5000 simulations is conducted to estimate the QoIs. The adopted 
pseudorandom number generator PCG64 has a period of 2ଵଶ଼, which is greater than 𝑁௥

ଶ, where 
𝑁௥ is the number of random numbers used in this study. As suggested in [12], a pseudorandom 
number generator with a period greater than 𝑁௥

ଶ is required to ensure the randomness behavior 
of the samples. The MT19937 (default in Matlab) pseudorandom number generator with a long 
period of 2ଵଽଽଷ଻ − 1 can be adopted if a larger 𝑁௥ is needed in a study. The convergence and 
corresponding confidence intervals estimated from the asymptotic normal distribution can be 
found in Fig. 3 and 4. To enable fast simulation, ASRE 3D is computationally optimized by 
C++ optimizing compiler, sparse storage scheme, and high-performance linear solver. The time 
required for one model evaluation is around 108 seconds using a single CPU thread. As a com-
parison, an implementation of ASRE 3D in Matlab costs around 324 seconds for one model 
evaluation using multiple CPU threads. The optimized ASRE 3D can be installed in high-per-
formance computer clusters, and 5000 MCS takes 2 hours, 6 minutes, and 35 seconds.  
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 (a) (b) (c) 

Figure 1: (a) Bird’s eye view of the benchmark problem (from Google Earth); (b) Location of the excavation 
wall and studied buildings; (c) 3D soil-structure interaction structural analysis model. 

3   APPLICATION OF ADVANCED MC METHODS: MULTI-FIDELITY MC AND 
RANDOMIZED QUASI-MC 

3.1   Convergence and efficiency  

The convergence of the crude MC method and the concept of efficiency are reviewed to 
analyze the performance of the MC methods. Let 𝜀 = 𝑔(𝑿) stands for the SAM, where 𝑿 is a 
vector of the latent random variables used to generate the realizations of the RF and random 
variable inputs of the SAM. The QoI can be written as 𝑝௙ = 𝑃(𝜀 > 𝜀௟௜௠) = 𝐸[𝐼(𝜀 > 𝜀௟௜௠)] =

𝐸[𝑓(𝑿)]. A crude MC estimator of 𝑝௙ is defined as 𝑄௡ =
ଵ

௡
∑ 𝑓(𝑿௜)

௡
௜ୀଵ , which is also a random 

variable. The expectation of 𝑄௡  is 𝐸[𝑄௡] =
ଵ

௡
∑ 𝐸[𝑓(𝑿௜)]௡

௜ୀଵ = 𝐸[𝑓(𝑿)] = 𝑝௙ . According to 

the central limit theorem, 
ொ೙ିா[ொ೙]

ఙ/√௡
 convergence to the standard normal distribution (i.e., 

ொ೙ିா[ொ೙]

ఙ/√௡
⇒ 𝑁(0,1)), where 𝜎 = ቀ∫ (𝑓(𝑿) − 𝐸[𝑓(𝑿)])𝑑𝑿

ஐ೉
ቁ

ଵ/ଶ

. As a result, a confidence in-

terval of 𝑄௡ in the form of Eq. (2) can be estimated based on the standard normal distribution 

of 
ொ೙ିா[ொ೙]

ఙ/√௡
 when 𝑛 is sufficiently large, 

 ቀ𝑄௡ ±
ఙ

√௡
𝑧ఈ/ଶቁ (2) 

Where 𝑧ఈ/ଶ is the 1000(1 − 𝛼/2)th percentile of the standard normal distribution, and 𝜎 can 

be estimated with the sample standard deviation 𝜎ො =  ቀ∑
(௙(𝑿𝒊)ିொ೙)మ

௡ିଵ

௡
௜ୀଵ ቁ

ଵ/ଶ

. It can be observed 

that the confidence interval shrinks in a rate of 
ఙ

√௡
, and the convergence rate of 𝑄௡ is usually 

considered in the order of 𝑂(1/√𝑛) [13]. It can also be observed that the convergence rate is 
independent of the dimension of 𝑿, which makes 𝑄௡ preferred for high-dimension uncertainty 
quantification over surrogate modeling methods. 

A convergence proportional to 
ఙ

√௡
 is often considered too slow, and advanced MC methods 

seek to improve the convergence rate in two paths. The first is to reduce the magnitude of 𝜎, 
which is often referred to as variance reduction techniques, and the second path is referred to 
as quasi-MC, which uses a deterministic sequence of numbers (often called quasi-random or 
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low-discrepancy samples) to replace the pseudorandom numbers in the crude MC. The low-
discrepancy samples are designed to be more uniform than pseudorandom samples, especially 
when the sample size is small, and the convergence rate of the quasi-MC estimators for suffi-
ciently smooth integrands can be as high as O(nିଷ/ଶ logୱ/ଶ 𝑛), where 𝑠 is the dimension of 𝑿 
[13]. Low-discrepancy samples, such as lattice sequences, Halton sequences, and Sobol’s se-
quences, are hard to design when the dimension of 𝑿 is large, however, recent research [14-15] 
constructed Sobol’s sequences with dimensions up to 21201. In this paper, the performance of 
a variance reduction technique using the Multi-fidelity MC (MFMC) method and a randomized 
quasi-MC (RQMC) method using Sobol’s quasi-random sampling are studied.  

The concept of efficiency [16] is adopted to describe the performance of the MC methods. 
The efficiency of an estimator 𝜇̂ for a quantify 𝜇 is given by: 

 Eff(𝜇̂) = [MSE(𝜇̂) × C(𝜇̂)]ିଵ (3)

Where MSE(𝜇̂) =  Var(𝜇̂) + Biasଶ(𝜇̂) is the mean-square error of 𝜇̂ and C(𝜇̂) is the expected 
computation time for 𝜇̂. For a crude MC estimator 𝑄௡, Biasଶ(𝑄௡) is zero, Var(𝑄௡) = 𝜎ଶ/𝑛 
(see Eq. (2)), and C(𝑄௡) = 𝑐𝑛, where 𝑐 is the cost for single SAM evaluation and 𝑛 is the num-

ber of samples. As a result, Eff(𝑄௡) = ቂ
ఙమ

௡
× 𝑐𝑛ቃ

ିଵ

= [𝜎ଶ𝑐]ିଵ, which is independent with the 

sample size, i.e., increasing sample size does not increase efficiency for the crude MC method. 
To achieve better efficiency, a faster reduction of MSE(𝜇̂) than the increase of C(𝜇̂) is needed. 
Because efficiency considers both MSE and computation expense, it is used to compare the 
performance of the MC methods in this paper.  

3.2   A MFMC method 

The MFMC method studied in this paper is based on the control variate framework. Given 

a crude MC estimator 𝑄௡ =
ଵ

௡
∑ 𝑓(𝑿௜)

௡
௜ୀଵ , the control variate method calibrates 𝑄௡ by the error 

of another MC estimator 𝑄௖,௡ =
ଵ

௡
∑ ℎ(𝑿௜)

௡
௜ୀଵ , where ℎ(𝑿) is positively correlated to 𝑓(𝑿) and 

𝐸[ℎ(𝑿)] is known or cheaper to compute. Because ℎ(𝑿) and 𝑓(𝑿) are positively correlated, 
𝑄௡  is likely to be overestimating 𝐸[𝑓(𝑿)] if 𝑄௖,௡  is larger than 𝐸[ℎ(𝑿)]. Since 𝐸[ℎ(𝑿)] is 
known or cheap, the error of 𝑄௖,௡ can be estimated cheaply and 𝑄௡ can be calibrated to reduce 
the variance/MSE of 𝑄௡ with a low computation cost. More specifically, a control variate esti-
mator 𝑄௖௩,௡ is defined as: 

 𝑄௖௩,௡ =
ଵ

௡
∑ ൛𝑓(𝑿௜) + 𝛽൫𝐸[ℎ(𝑿௜)] −  ℎ(𝑿௜)൯ൟ௡

௜ୀଵ  (4)

Where 𝛽  is a constant to be determined. It can be proved that 𝑄௖௩,௡  is unbiased because 
𝐸ൣ𝑓(𝑿௜) + 𝛽൫𝐸[ℎ(𝑿௜)] −  ℎ(𝑿௜)൯൧ = 𝐸[𝑓(𝑿௜)] + 𝛽𝐸[𝐸[ℎ(𝑿௜)] −  ℎ(𝑿௜)] =  𝐸[𝑓(𝑿௜)] +

𝛽(𝐸[ℎ(𝑿௜)] − 𝐸[ℎ(𝑿௜)]) =  𝐸[𝑓(𝑿)]. In addition, it can also be proved that Var(𝑄௖௩,௡) is min-

imized when 𝛽 = 𝛽∗ =
େ୓୚൫௙(𝑿),௛(𝑿)൯ 

୚ୟ୰൫௛(𝑿)൯
, and Var൫𝑄௖௩,௡൯ =

ଵ

௡(௡ିଵ)
∑ ൫𝑓(𝑿௜) + 𝛽∗൫𝐸[ℎ(𝑿௜)] −௡

௜ୀଵ

ℎ(𝑿௜)൯ − 𝑄௖௩,௡൯
ଶ

 [16]. In practice, the covariance COV൫𝑓(𝑿), ℎ(𝑿)൯  is usually unknown. 
Therefore, a small number 𝑟 of pilot simulations can be used to estimate the 𝛽∗ with: 

 𝛽መ =
∑ ௙(𝑿೔)∙௛(𝑿೔)ೝ

೔సభ ି௥(ொೝ∙ொ஼ೝ)

(௥ିଵ)୚ୟ୰൫௛(𝑿೔)൯
 (5)

In the benchmark problem, 𝑓(𝑿) is the nonlinear SAM ASRE 3D. If a rigid connection is 
assumed at the soil-structure interface and the nonlinear sliders (see Fig.(1c)) are deactivated, 
a linear model can be obtained. The linear model can be considered a lower-fidelity model of 
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ASRE 3D and is much cheaper to evaluate. The linear (lower fidelity) and nonlinear (higher 
fidelity) models are strongly correlated, and the linear model is used as ℎ(𝑿) in this paper. Be-
cause multiple fidelity models are used in the MC method, this method is called the multi-
fidelity MC method in many engineering communities (e.g., [17-19]). ℎ(𝑿) can be estimated 
with a much smaller computation expanse (40 seconds), and 5000 crude MC simulation is done 
first to estimate 𝐸[ℎ(𝑿)]. Afterward, 200 pilot simulation (𝑟 = 200) is adopted to estimate 𝛽መ , 
and another 4800 MC simulations are conducted to calculate an MFMC estimator with Eq. (4). 
The convergence and efficiency of the MFMC estimator are discussed in section 3.4. 

3.3   A randomized quasi-MC method. 

Quasi-MC methods use low-discrepancy point sets that behave more similarly to multi-var-
iate uniform distribution than pseudorandom samples when the dimension is high and the sam-
ple size is relatively small. In fact, discrepancy (e.g., the star discrepancy defined in [20]) is a 
group of measures that describe the distinction between the empirical distribution of a point set 
and multi-variate uniform distribution. It is widely recognized that in numerical integration, the 
trapezoidal and quadrature rules provide faster convergence than random samples when the 
integral dimension is low. This is because the design of experiment (DOE) points in trapezoi-
dal/quadrature rules are more uniformly distributed (i.e., have lower discrepancy) than random 
sample points. However, as the integral dimension increases, trapezoidal/quadrature rules con-
struct DOE points with a complete combination or product rule, and the number of DOE points 
increases exponentially with dimension. As a result, the number of integrand evaluations in 
trapezoidal/quadrature rules is not affordable in high-dimensional integral, and this phenome-
non is called the “curse of dimensionality” [21]. Fig. (2a) is a plot of 64 DOE points for the 
trapezoidal rule in two dimensions, and it can be observed that the points in the same col-
umn/row have the same first/second coordinate. In contrast, points in crude MC samples or 
low-discrepancy point sets have distinct coordinates when they are projected on each dimension, 
as illustrated in Fig. (2b-2d), so that the integrand 𝑓(𝑿) is evaluated at more locations with a 
small sample size under high dimensionality. Moreover, low-discrepancy point sets (e.g., Fig. 
(2c) and Fig. (2d)) are designed such that the projection of the points on each coordinate dis-
tributes more evenly than crude MC sample points. As a result, low-discrepancy sample points 
take advantage of both trapezoidal/quadrature rules and crude MC method to achieve fast nu-

merical integration. An estimator 𝑄௤௠௖ =  
ଵ

௡
∑ 𝑓(𝑿ప

෪)௡
௜ୀଵ , where 𝑿ప

෪ are points in a low-discrep-

ancy point set (𝑃௡), is called a Quasi-MC estimator. The lattices method and digit sequence/digit 
net are two groups of methods to construct low-discrepancy samples, and a digit sequence, 
Sobol’s sequence, is adopted in this paper.  

It needs to be realized that points (𝑿ప
෪) in low-discrepancy samples are not independent of 

each other. Therefore, the central limit theorem does not hold for 𝑄௤௠௖, and the confidence 
interval defined in Eq. (2) cannot be used. Instead, a randomized quasi-Monte Carlo method 
can be applied. The idea of RQMC is to create 𝑚 random samples of 𝑄௤௠௖, each based on 𝑚 
randomized low-discrepancy point sets of size 𝑛. The randomized low-discrepancy point sets 
can be obtained from Sobol’s sequences by scrambling and permutation [13], and the 𝑚 𝑄௤௠௖ 
can be considered 𝑚 i.i.d. samples drawn from the population distribution of 𝑄௤௠௖. As a result, 
an RQMC estimator 𝑄௥௤௠௖ can be defined as the mean of the 𝑚 quasi-random estimators (i.e., 

𝑄௥௤௠௖ =
ଵ

௠
∑ 𝑄௤௠௖,௟

௠
௟ୀଵ ), and the central limit theory can be applied to 𝑄௥௤௠௖. The variance of 

𝑄௥௤௠௖ can be estimated with 𝜎ො௠,௥௤௠௖
ଶ =

ଵ

௠
𝜎ො௥௤௠௖

ଶ , where 𝜎ො௥௤௠௖
ଶ =

ଵ

௠ିଵ
∑ ൫𝑄௤௠௖,௟ − 𝑄௥௤௠௖൯

ଶ௠
௟ୀଵ . 

The total number of model evaluations in RQMC is 𝑚𝑛, and 𝑚 and 𝑛 are taken as 10 and 512, 
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respectively, in this paper. In theory, 𝑛 should be taken as large as possible to reduce the vari-
ance of the quasi-random estimators, and 𝑚 needs to be sufficiently large (𝑚 ≥ 10) to achieve 
a reliable estimation of 𝜎ො௠,௥௤௠௖

ଶ  [23]. 

 
 (a) (b) (c) (d) 

Figure 2: Four different DOE point sets with 64 samples (a) trapezoidal rule; (b) crude MC; (c) A low-dis-
crepancy point set constructed with Korobov lattices; (d) A low-discrepancy point set constructed with Sobol’s 

sequence (after [22]). 

3.4   Performance of the MFMC and RQMC methods 

Fig. 3 compares the evolution of 𝑝௙,஺ and 𝑝௙,஻ with the number of model evaluations be-
tween the crude MC and MFMC methods. It can be observed that 𝑝௙,஺ and 𝑝௙,஻ estimated with 
the MFMC method are very close to the values estimated with the crude MC method, but the 
95% confidence interval (CI) half-width bandwidths of the MFMC estimators are much smaller 
than the crude MC estimators. The values of 𝑝௙,஺ and 𝑝௙,஻ estimated with the MFMC method 
at a small sample size are also closer to the final estimations than the crude MC method. This 
implies that the MFMC method needs fewer model evaluations to achieve the same level of 
accuracy as the crude MC method. The computation times and efficiencies are reported in Table 
2 and Table 3. 𝜀஺ and 𝜀஻ are two outputs from the structural analysis model, so the computation 
time for each method is the same in Table 2 and Table 3. The computation time in the MFMC 
method is longer than the crude MC method because of the additional evaluations of the lower-
fidelity model. Building A in the SAM shows weak nonlinearity, and the correlation coefficient 
between the linear and nonlinear models is around 0.7. In contrast, building B shows stronger 
nonlinearity, and the correlation coefficient between linear and nonlinear models is around 0.5. 
Since a strong correlation between multi-fidelity models is preferred in the MFMC method, the 
efficiency of building A increased more from the MFMC method.  

Fig. 4 compares the convergence of the crude MC method and the RQMC method. The 𝑝௙,஺ 
and 𝑝௙,஻ estimated with RQMC also show smaller confidence intervals than the crude MC 
method. The computation time and efficiency are also reported in Table 2 and Table 3. The 
computation time is slightly larger than the crude MC method because around 100 more model 
evaluations are required in the RQMC method. However, the efficiency for estimating both 𝑝௙,஺ 
and 𝑝௙,஻ improved significantly, and the efficiency improvement of 𝑝௙,஺  is more significant 
than 𝑝௙,஻. To better study the convergence rate of 𝑝௙,஺ and 𝑝௙,஻, another 5120 quasi-random 
samples are generated (i.e., 𝑚 = 20) and evaluated with the SAM for a better estimation of 
𝜎ො௥௤௠௖

ଶ . A log2-log2 plot is then produced for the 95% confidence half-width bandwidths of the 
crude MC and 𝑄௤௠௖,௟ in Fig. 5. As suggested in [24-25], RQMC can also reduce the estimator 
variance because: 

 Varൣ𝑄௤௠௖,௟൧ =
୚ୟ୰ൣ௙(𝑿ഢ෪)൧

௡
+

ଶ

௡మ
∑ Covൣ𝑓൫𝑿ప

෪൯, 𝑓൫𝑿ఫ
෪൯൧௜ழ௝  (6)
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and Covൣ𝑓൫𝑿ప
෪൯, 𝑓൫𝑿ఫ

෪൯൧ is generally pairwise negative in the RQMC method. Fig. 5 shows that 
the variance reduction effect for estimating 𝑝௙,஺ is more significant than 𝑝௙,஻. This may again 
because the nonlinearity in building A is weaker than building B, and 𝑿ప

෪ and 𝑿ఫ
෪ are better sep-

arated after transformed by 𝑓 (i.e., the SAM). 𝑝௙,஻ shows a larger convergence rate than 𝑝௙,஺, 
and this may be because the SAM of building B is “smoother” than building A. Quasi-MC 
methods can usually achieve faster convergence when the integrand is “smoother.” However, 
the “smoothness” is defined based on the derivative of 𝑓(𝑿) and is hard to be examined for the 
SAM in this paper. 

 
 (a) (b) 

Figure 3: Convergence of crude MC and MFMC (a) evolution of 𝑝௙,஺; (b) evolution of 𝑝௙,஻. 

 
 (a) (b) 

Figure 4: Convergence of crude MC and RQMC (a) evolution of 𝑝௙,஺; (b) evolution of 𝑝௙,஻. 

Method 𝑝௙,஺ HW Time (min) Efficiency 
Efficiency 

improvement 
Crude MC 61.12% 1.35% 126.6 166.19 0% 

MFMC 60.97% 0.9% 169.8 281.13 69.16% 
RQMC 61.86% 0.79% 151.2 408.26 145.66%  

 

Table 2: Comparison of MC estimators for 𝑝௙,஺, where HW is the half-width of a 95% confidence interval. 
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Method 𝑝௙,஻ HW Time (min) Efficiency 
Efficiency 

improvement 
Crude MC 19.04% 1.09% 126.6 256.19 0% 

MFMC 19.06% 0.83% 169.8 329.40 28.58% 
RQMC 19.84% 0.64% 151.2 438.68 71.23% 

 

Table 3: Comparison of MC estimators for 𝑝௙,஻, where HW is the half-width of a 95% confidence interval. 

 
 (a) (b) 

Figure 5: Convergence rate of crude MC and QMC, left: 𝑝௙,஺; right: 𝑝௙,஻ 

4   CONCLUSIONS 

This paper presents a benchmark problem of high-dimensional uncertainty propagation in 
deep excavation engineering involving random field models and nonlinear structural analysis 
models. Numerical experiments are conducted to compare the crude MC method, multi-fidelity 
MC method, and randomized quasi-MC method in the benchmark problem. It was found that 
the MFMC method improved the numerical integration efficiency by 30-70%, and the RQMC 
method improved the efficiency by 70-140%. The performance of the MFMC method depends 
on the correlation between the lower- and higher-fidelity models. A more considerable effi-
ciency improvement can be achieved if a lower-fidelity model strongly correlated to the higher-
fidelity model can be constructed. On the other hand, the performance of the RQMC method 
may depend on the integrand (the structural analysis model) in the numerical integration. A 
“smoother” SAM with weaker nonlinearity may benefit more from the RQMC method. In prac-
tice, a lower-fidelity model needs to be developed for the MFMC method, while the RQMC 
method is easier to implement. Quasi-random number generators can be found in many scien-
tific computing platforms, such as Python, R, Matlab, and C++. Simply replacing pseudo-ran-
dom generators with quasi-random generators may significantly increase the efficiency of 
uncertainty propagation. However, the number of samples in RQMC needs to be carefully se-
lected (e.g., Sobol’s sequence requires the sample size to be a power of 2), and the estimation 
of variance is not as trial as the crude MC method. Nevertheless, both MFMC and RQMC 
methods show promising potential in geotechnical engineering and broader civil infrastructure 
engineering applications.  
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