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FINAL REPORT TO THE EPA ON MULTILEVEL MODELS FOR
GENERALIZATION

JAN DE LEEUW
RICHARD A. BERK
DEPARTMENT OF STATISTICS
UCLA

1. EXECUTIVE SUMMARY

Multilevel statistical models are characterized by analyses undertaken si-
multaneously at different levels of aggregation or spatial/temporal scales.
For example, one might study several reaches in a stream for a number of
different research sites. Or one might study several transects in each of
several forests. The basic idea in multilevel models is to have a regres-
sion equation characterizing relationships at the smaller, or micro, level and
then have one or more of the regression coefficients at the micro level a
function of predictors at the macro level. At the micro level, for instance,
taxa richness may be a function of stream velocity (and other things). Then
at the macro level, the regression coefficient linking stream velocity to taxa
richness may be a function of proximity of the stream to land used for agri-
culture. Thus, one can address how the relationship between stream veloc-
ity and taxa richness varies (or not) in different locations, here with locale
characterized by proximity to land use for agriculture. Thatis, one can learn
when to generalize over sites and when not to generalize over sites. One can
also learn how different temporal and/or spatial scales are linked.

These sorts of relationships can also be formulated as interaction effects
within conventional regression models. However, the usual estimation pro-
cedures used for those models will not properly characterize the uncertainty
in the results, so that the usual confidence intervals and hypothesis tests will
be wrong. Special estimation procedures are required. Such procedures are
well known and widely available in existing software.

Our goal was to extend multilevel models to more complicated and real-
istic situations. The first extension was to allow for spatial autocorrelation
in the residuals of multilevel models. The problem addressed is that more
proximate spatial units at the micro level can be expected to have distur-
bances that are more alike than spatial units at the micro level that are more
distant from one another. Thus, transects that are closer together will likely

have disturbances that are more alike than transects that are farther apart.
1
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Failing to take this spatial autocorrelation into account will generally lead
to biased standard errors, and hence, inaccurate confidence intervals and
hypothesis tests.

Formally, a good solution to this problem for linear regression can be
found in a classic paper by J. Keith Ord. For the usual sorts of regression
models, one constructs a matrix capturing the distance between all micro
units within each macro unit (e.g., transects within sites) and builds that in-
formation into the estimation process. We initially adopted this approach,
introduced it into a multilevel formulation, and applied it to two data sets.
One data set was collected to study biodiversity in streams located in Ven-
tura County, California, and the other was collected to study the impact of
marine preserves on biodiversity and total fish biomass in coral reefs in the
Philippines.

The results were disappointing. First, there was essentially no theory or
empirical research in ecology or related disciplines to inform in sufficient
detail the construction of the distance matrix. One difficulty was that it
was not clear how to measure distance given ocean currents, for example,
that transport of nutrients more readily between some locals than others.
Another difficulty was that there are a number of different functions of that
distance that could have been used in the distance matrix (e.g., exponential
decay with increasing distance) and, again no guidance from the scientific
literature. It is our sense that similar problems are common for a wide
variety of environmental applications.

Second, except for very simple and somewhat unrealistic models, the nu-
merical methods used in the estimation did not perform well. There were
several technical reasons, but a key obstacle was that the regression coeffi-
cients and the distance matrix were competing for the much the same infor-
mation. This was because the predictors necessarily also contained spatial
information. Micro units that were closer were also likely to be more sim-
ilar in the values of predictors than micro units that are farther apart. Such
predictors could include composition of the streambed and the amount of
shading from trees along the banks, for instance. Because of the competi-
tion for spatial information, the output from the statistical models tended to
be very unstable. Small changes in the model or the data could introduce
large changes in the output.

Finally, we planned move beyond multilevel linear models to multilevel
generalized linear models. That way, we would be able to include popular
procedures such as logistic regression for binary outcomes and Poisson re-
gression for count data. Unfortunately, the Ord approach led to effectively
intractable mathematical problems when applied to generalized linear mod-
els.
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These three difficulties forced us to reconsider the entire project and in-
deed, the usual philosophy by which spatial modeling is undertaken. To
begin, we suspect that for spatial regression models, far too much is made
about the exact form of the distance matrix. With scant scientific guidance
about how the distance matrix should be formulated, any one of several
competing formulations can be applicable. But there is no way to know
which. In addition, the distance matrix by itself is rarely of much scientific
interest. Its usual role is to allow for more accurate estimates of the regres-
sion coefficients that are the real focus of scientific concern. In statistical
parlance, the distance matrix represents a set of “nuisance parameters.” At
a deeper level, George Boxs famous dictum that all models are wrong, but
some are useful, applies. Given the current state of subject-matter knowl-
edge, it is native to aim for the “right” model. And in the absence of the
right model, many of the usual statistical concern become relatively unim-
portant. In particular, confidence intervals and tests no longer have much
probative value. Rather, one should develop models that are descriptively
informative, relatively simple, and that capture in broad-brush strokes the
essential features of the empirical world at hand.

These and other considerations led naturally to consider methods by which
the distance matrix could be well approximated and in a manner that elim-
inated much of the instability produced by taking the Ord approach at face
value. Two methods seem to be especially effective. One method extracts
the eigenvectors of the distance matrix and uses the first few to adjust for
spatial autocorrelation. That still requires, however, that a distance matrix
be specified. The second method constructs simple functions of the spatial
coordinates (e.g., longitude and latitude) and uses these to adjust for spa-
tial autocorrelation. For example, one might include longitude, latitude and
their product. Analysis of real data and many simulations indicate that both
methods work well work, although the second method is somewhat simpler
to implement. Moreover, one can in both cases improve the approximation
of the distance matrix as much as desired by using more of its eigenvectors
or more complicated functions of the spatial coordinates. That is, one can
make the approximations arbitrarily close to the specified distance matrix
although at some point the instabilities reappear. Finally, we have devel-
oped novel algorithms for estimating multilevel linear models with spatial
autocorrelation that have been implemented in our software. The Formal
properties of these procedures have also been derived.

The work continues. With our new approach, we can now easily turn to
multilevel generalized linear models with spatial autocorrelation. All of the
pieces are now in place. It is important to emphasize again, however, that
we have in important ways reformulated the manner in which the modeling
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is approached; we are no longer seeking the right model but rather, a useful
model.

2. INTRODUCTION

This project took at its task to develop and implement multilevel statis-
tical models with which to address whether relationships found between a
set of predictors and a response varied across research sites. Could one ad-
dress directly with statistical tools how best to generalize across sites? The
answer is clearly “yes” in principle. But as usual, the devil is in the detalils.

We built on several existing traditions in statistics. Spatial regression
models (Anselin, 1988) are heteroscedastic linear models with correlated
disturbances, in which the covariance between the disturbances depends
on the spatial distance of the sites. Random coefficient models (Long-
ford, 1993) are heteroscedastic linear models with correlated disturbances,
in which the covariance between the disturbances depends on the predic-
tor similarity of the sites. Multilevel models (Kreft and de Leeuw, 1998)
are random coefficient models in which the predictor similarity is deter-
mined by the fact that sites are grouped into clusters. Disturbances between
clusters are uncorrelated, but within clusters the covariance depends on the
predictor similarity of the sites. Since distance and similarity are closely re-
lated constructs, one would expect a relationship between these two classes
of models.

Spatial regression models and random coefficient models both have cor-
related disturbances, and the size of the correlation depends on the similar-
ity of the sites. Similarity can be defined spatially or, more generally, in
terms of similarity of the sites on a number of predictors which may not
be spatial. Multilevel models simplify the overall correlation structure by
assuming that sites in different clusters are uncorrelated, which means that
the covariance matrix of the sites is block-diagonal, and presumably sparse.

Here, we assumeultilevel data In the simplest case, that of two levels,
the units of level one (which we briefly call tiome-unit$ are nested in units
of level two (thetwo-unit9. We will concentrate on spatial examples, so we
will often use the terminology of "sites” and "transects” for the units in our
levels. Transects are nested in sites.

It should come as no surprise that much of our work relies on the earlier
work of many others. But we make four new contributions as follows.

(1) We combine autoregressive models with multilevel models.

(2) We consider spatial effects both as functions of non-spatial covari-
ates with random coefficients and as autocorrelated errors.

(3) We usefully approximate autocorrelated error structures by usung
spatial regressors with random coefficients.
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(4) We develop augmentation and majorization methods for generalized
multilevel autoregressive models.

We also have a single, broad “take-home message.” The development
of statistical tools for environmental applications and the use of those tools
should forego the traditional search for the “correct model” and focus in-
stead on building one or more “useful models.”

3. THE MODEL

3.1. Basics. In the two-level case, we have two-units, and within two-
unit 7, we haven; one-units. For each two-unjtthere is a vectoe;, of
lengthp;, of regressors describing the two-units. This implies that there
will be p; regression coefficients, excluding the intercept, for two-units.
There are als¢n; x ¢) matricesX; of regressors describing one-units. This
implies that there will be regression coefficients, excluding the intercept,
for one-units. The total number of one-units insalltwo-units isn.

We usually allow for an intercept in regression models. So, we add a
column ofn; x 1 columns of 1's toX;, and a 1 as the lead element:in
Then, the standard two-level mo@eissumes that within each two-upit
we have aandom-coefficient regression mofeif the form

1) Y, = Z xijséjs + €

s=0
Here: is the index used for one-units, which are nested in the two-units.
Thus(i = 1,---,n;). We follow conventional practice and assume that

the errorse;; are uncorrelated with the predictors; there are no “omitted
variables” at the one-unit level, and the functional forms are appropriate.
The ¢ + 1 random regression coefﬂ(:len;ﬂs in equation [L express the

relationship between tHest-level predlctorsand theoutcomesThese ran-
dom coefficients, of which there ape-1 for each two-uniy, are themselves
outcomes of a second regression model shown in eqydtion 2

p
(2) éjs - Z ZirVrs + éjm
r=0

in which the regression coefficients are outcomes predictexdbynd-level
predictors Again following convention, we assume that the eridrsare
uncorrelated with the predictors; there are no “omitted variables” at the
two-unit level, and the functional forms are appropriate.

'Random variables are always underlined.
2\We use element-wise notation initially, matrix notation further on.
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In the spatial case, the first level predictors describe properties of the
transects. They can be spatial, in the sense that they are functions of the
coordinates of the transects, or non-spatial. The second level predictors
describe properties of the sites, and again they can be spatial or non-spatial.

One can substitute equatipn 2 into equafipn 1 to write the model as a
single equation.

3) Qij = Y0 TiisAD o Zir s + 05} € =
(4) = q =0 ZT‘ 0 LTijsZjrIrs + Z Z_]Séjs + Ezg

Thus we see that the fixed part for two-upihas the form

(5) —U Z Z’%‘sz]rmzys

r=0 s=0

with (p + 1)(¢ + 1) fixed predictors, each of which is a product of a first-
level and a second-level variable, often called “interaction variables,” and
the random part has the form

(6) Qw _L] Z xz]s—]s —z]

We need some additional assumptlons on the distribution of the error
terms. Some very general ones are

E(éz‘j) =0,
E(é;s) =0,
C(Eijaéu) =0ifj#¢,
C()s:00) =01fj#Y,
Cle;j94s) =0.
Thus first-level disturbances for different two-units are uncorrelated, and

so are second level disturbances. The dispersion matrices of the first-level
disturbances are

(7) E(¢e)) = o7A;,
and those of the second-level disturbances are
(8) E(9,0;) = 079,

The dispersion matrix; A ; allows the one-unit errors; for a given two-
unit to have different variances and to be correlated with one another. The
dispersion matrix;<2; allows the errorg);, for a given two-unit to have
different variances and to be correlated with one another. The former is
where spatial dependence not captured by the regressors is likely to be seen.
The latter will reflect dependence between the random coefficients that is
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not spatial, but a results of chance processes not captured by the two-unit
model.

As a practical matter, it will be impossible to estimate the value4 ;of
and(2;. These matrices contain weights that determine the error variances
and covariances and as such, there are far too many parameters to estimate.
Often we suppose that tiig are the same for all two-units, and usually the
0]2 are supposed to be the same too. That helps. Still, in most cases (see the
examples below) th@; andA; are assumed to depend on a small number
of parameterg, which may again be constant over two-units.

3.2. An Example. A simple spatial example may help clarify the model.

It's not intended to be realistic, but but to illustrate some key concepts. The
one-units are observation stations, the two-units are counties. We suppose
rainfall at station; in countryj; depends on altitudea{t) and distance to

the ocean distance from the oceatid).

(9) MU = ﬁOjlij + ﬁljaltij + ﬁzjdfoij + €ij>
wherel,;; is the intercept, which is equal to one for all one-units. We do
not assume that the regression coefficients are the same for all counties.
In fact they vary according to a second regression model, for which we use
indicator variables coding for the counties in the study. Thus; fer0, 1, 2,

(10) ﬁjs = Yos1j + Y1sLA;j + 7258B; + 0,

where againt; is the intercept, now equal to one for all two-units. All
observation stations in Los Angeles Courity) have the same random co-
efficient distribution, and so have the observation stations in San Bernadino
County 6B) and those in neither Los Angeles or San Bernadino County.

If one substitutes the equations at the county level into the equations at
the station level, foi # &, and assuming for notational simplicity tha;(
and(2; are the same for all two-units,

C(rain;;, rain;;) =

—zj’
Woo Wo1  Wo2 1
02 [1 altij dOCij] W19 W11 Wi2 altkj
Woo Wa1 Waa| [doCy;

Thus, the covariance between the one-units in the same two-unit is deter-
mined by the similarity of predictor values of the one-units, where similarity
is measured by their inner product in the mefeic
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3.3. Matrix Notation. Define the matrixZ; as the direct sum of copies
of the row vector}. Thus itisq by gp, and it looks like

40 0 - 0
0 2 o0 0
(11) Z;=10 0 zi - 0
o0 0 --- 2

J

Using this matrix, and stacking the, in a single vectoty, we can rewrite[(2)
as

(12) B, =Zyy+35,,

If we substitute[(R) intg[ (1) we find

(13) y, = Uy + X;8; + ¢,
with U; = X;Z;, and thus

(14a) E(y,) = Uy,

(14b) Viy,) = o; (XX + Ay).

It is convenient to write; for X, Q. X7 + A
Now U; is of the form

J Jq97)

wherez;, is columnr of X;. Thus, in Equation (14a), the predictorslin

are products of a first-level predictor from and a second-level predictor
from Z. In principle, all theseross-level interactionare part of the model,

but we can eliminate some of them by setting the corresponding element
of ~ equal to zero. Also observe that often the first column of both the
X, and of Z is aninterceptcolumn with all elements equal tel. If we

form all cross-level interactions, this implies that the columnXadnd 7
themselves also occur as predictors, because they are the intersections with
the intercept at the other level.

3.4. Generalizations.

3.4.1. More Than Two Levelsln a more-than-two-level model, there are
one-units, two-units, and three-units, and so on, nested within each other.
For instance, we can have transects nested within streams nested within
watersheds, and so on. For this case we can adopt a more general notation.
Suppose we have, observations on level, andq, predictors on that
level. Thus we have, x (¢, + 1) matricesX (") with predictors. We also
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use indicator matrice§™), which aren, x n,.;, and which indicate how
ther-units map into thér + 1)-units.
The first two equations defining our multilevel model are

(163) Z 1151 Zgll 2 z S1 EZ‘1)’

31:0 2271

(s)
(16b) _1251 Z szSQ Z 91213_1 5154 g1251'

$5=0 13=1

Thus we see we hawe random variables in"). These are the observed
outcomes. We have, x ¢, unobserved random variablesjft, these are
the random regression coefficients from our previous formulation. Then we
havens x ¢; x ¢, unobserved random coefficientsyff), and so on.

In the same way as before we can combine equations to form single equa-
tions, which of course rapidly become unwieldy. Frdm|(16) we find, for
example,

(17) y( Z 1131 ZQZ i Z Z25152 2912 3—1 5184 _522 ] +§£1)

$,=0 iy=1 $5=0 i3=1

3.4.2. Multivariate Outcomeslf there is more than one outcome variable,

we can use a simple trick to force the model into the multilevel framework.
We usevariablesas an additional level, in fact as the first level. Thus vari-
ables are nested in transects, transects in sites, and so on. Having multiple
outcomes just adds a level to the hierarchy, and it does not really compli-
cate modelling in any essential way. It is also clear that missing data can be
incorporated without problems in this way, because this simply means that
some transects have fewer units (i.e. variables) than others.

3.4.3. Non-independent Two-Unit$n our models we usually assume that
(2; are the same for all sites. If we make this assumption, it is also possible
to use a simple model for correlated sites, which has

(18a) Cly,.y,) = ou(X,QX] + AN
forall j # ¢, and

for all j, where ther;, are the covariances between sites.
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3.4.4. Generalized MAR Modeldn the same way as linear models are
generalized to generalized linear models, we can try to construct gener-
alized mixed linear models from mixed linear models. The trick is simply
to condition on the random effects. In generalized linear models first-level
observations are independent given the random effects, and thus the con-
ditional distribution is a simply product of univariate Poisson, binomials,
or gammas. But in generalized mixed linear models with autocorrelated
or spatially correlated first-level errors, we no longer can use independence,
and we have to assume that the errors within sites have multivariate Poisson,
binomial, or gamma distributions. There is no agreement in statistics how
to define such multivariate distributions, and the definitions that are in use
do not have many of the simplifying properties of ther univariate versions.

We shall see below, however, that models with correlated first-level er-
rors can be approximated by models with additional random effects and
uncorrelated first-level errors. In these approximations conditioning on the
random effects makes the observations independent again, and the results
developed for generalized mixed linear models apply again.

4. MODELS FORERRORDISPERSIONS

The dispersion matrices; of first-level disturbances can take many dif-
ferent forms. Generally, they are a function of a number of unknown pa-
rameters, collected in a vectpr Estimation simplifies considerably if the
A; are known, and in particular in the homoscedastic case with uncorrelated
errors in whichA; = I;, the identity matrix of order;. But in spatial sit-
uations the assumption that the errors are uncorrelated often is difficult to
defend.

This is why a great deal of attention has been paid to modeling the depen-
dence of spatial observations, taking as the main inspiration the literature on
time series models. The key paper in spatial autoregressive (SA) modeling
is/Ord [1975]. Also compare Griffith [2002b] and Ansélin [2001]. There
are various forms of these SA models, but the most important ones are one-
parameter models, in which the single parametsrinterpreted as spatial
autocorrelation. It indicates the strength of the spatial effects.

In multilevel models we also often have restrictions on fhe for in-
stance that they are equal, that specific elements are zero, and so on. We
shall discuss these restrictions elsewhere, and concentrate on first-level dis-
turbances in this section.

4.1. The Spatial Lag Model. This is also known as the AR, or autoregres-
sive reponse model. It specifies

(19) Yy, =PiWiy, + X;8, + ¢
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wheree; is homoscedastic with varianeé. Clearly in this AR model

(20a) E(y, | 8) = (I; — piW;) " X;0;,
(20b) Viy, | 8;) = o3 [(L; = psWi) (L — p,WHI .

In this model the autoregression is defined directly in terms of the outcomes.
The spatial dependence is built into the model in a structural manner. That
is, the data analyst will typically have a subject-matter rationale for why and
how values of the outcome variable are related. For example, if air quality is
the outcome of interest, there may be diffusion of air pollution from any one
location to locations near by. Depending on the valug;pfthe diffusion
affects might be large or small, or perhaps even be negative. Note also
that to isolate their role the predictors, adjustments have to be made for the
diffusion process, which links the outcome across locations. A failure to
make such adjustments may mean that effects attributed to one or more of
the predictors are really just a result of the movement of air pollution from
one place to another.

4.2. The Spatial Error Model. This model is also known as the SAR or
simultaneous autoregressive model. It has

(21a) Y, = Xjﬁj &)
and it assumes an autoregression structure for the errors terms. Thus
(21b) & = PjoEj + Qj,

where thgj are homoscedastic with varianajé
This leads to

(22a) E(y; | 5;) = X;0,
(22b) Viy, | 8;) = o3 [(L; = psWi)(L; — p,WHI .

This formulation implies that the spatial dependence is not potentially con-
founded with the predictors. It derives solely from dependence among the
errors themselves. Errors that are more proximate in space, for instance,
may tend to be more alike that errors that are farther apart. The reasons for
the dependence are usually not of much interest. As such, the dependence
is a mere nuisance and/or beyond current subject matter interest. The goal
is to “mop up” the spatial dependence in the errors so that it does not affect
the precision of estimates of thik or estimates of their standard errors.
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4.3. The Conditional Autoregression Model. Under this CAR model, we
let
(23) yj = Xj@j + (Ij - ijj)_l/ZE‘

77

wherelV; is now a symmetric weight matrix, and wheres homoscedastic
with varianceaf. This implies

(24a) E(y, | 6;) = X0,
(24b) V(Qj ‘ ﬁ]) = ‘7]2'([]' - ij/Vj)il

If dependence in the errors can be treated as a mere nuisance, the model
one uses for the errors is of little importance as long as the dependence is
taken into account when the regression coefficients are estimated. In this
context, the conditional autoregressive model can be seen as an alternative
to the spatial error model, and it has some of the same look and feel. Larger
values ofp; imply more dependence among the errors. And just as for the
spatial error model, the dependence may be a function of distance; closer
errors may tend to be more alike. The main advantage of the conditional
autoregressive model will be more apparent later. But suffice it to say that
it can be as effective in mopping up dependence in the errors as the spatial
errors model, but will be far easier to compute.

4.4. Weight Matrices. How to choose théV; has been discussed many
times in the geostatistics literature. A good review is Bavaud [1998], see
also| Cressig [1991]. Although it is possible to give some general indica-
tions, choosing a precise and appropriéite is difficult, probably even
more difficult than choosing a correct set of predictors. The usual prob-
lem is that there is too little a priori knowledge to inform the choice and at
best some general clues in the data.

4.4.1. Choice of WeightsFor I//; we assume, in spatial situations, that its
elements are similarities of transects in gitd he more similar (the closer)

the transects, the larger the corresponding elemént;irif we do not have

a good reason to choose a specifi¢, we can make it some (decreasing)
function of the transect distances, but again choosing the function is often
disturbingly arbitrary. In many cases, moreover, we even want to replace
simple Euclidean distance by other distances (measured along a network
or stream, for instance), which take the actual spatial setting into account.
Throughout, we suppose the elements$igfare non-negative.

4.4.2. Large matrices.In spatial analysis we often encounter situations in
which the order of théV; is very large, maybe0® or 105. Obviously in
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such cases, it will generally not be possible to store floating-point matri-
ces of this size, let alone compute their determinants, inverse, or eigen-
decomposition.

There are several ways around this problem. The first is to use patterned
weight matrices of zeroes and ones (coding adjacency or nearest neigh-
bor, for instance), with a determinant or an inverse available in analytical
form [Pace and Zou, 2000]. The second is to use sparse matrix techniques
for weight matrices with a very large proportions of zeroes [Pace and|Barry,
1997¢,b,c] (again, adjacency matrices come to mind). We have also seen
that multilevel analysis suggests partitioning transects or sites into clusters,
and making the between cluster covariance equal to zero. This also intro-
duces a great deal of sparseness. And finally, fast numerical approximations
to the loss function are also a possibility. Specifically, techniques for ap-
proximating the determinant in the normal log-likelihood for all AR, SAR,
and CAR models are in Smirnov and Anse|in [2001] and Gr]ffith [2002a].

In the models discussed in this paper, we have the additional complication
that the dispersion matrix is made up out of two components: a part based
on similarity of the regressors and a part based on spatial information, coded
in the weight matrices. This makes patterned weight matrix and sparse
matrix techniques more difficult to use, and we have to resort to other types
of approximations.

4.4.3. Normalizing the Weightsilt is computationally convenient if the weight
matrices in the SAR and AR models are symmetric. In that case,

(Ij = o W)Ly — psW)) = (I; — p;W;)?

. This usually simplifies some approximations (see below). Unfortunately
in many applications an asymmetric set of weights may make more sense
(think of the influence of stream flow or hillside slope on ecological dis-
tance, for instance).

Let us indicate briefly why having symmetric matrices is convenient. If
the W; are known symmetric matrices. We can compute the spectral de-
compositionV; = K@, K7, and we find

1

(25a) Aj(pj) = E ——k Kk,
J( J) - (1—,0]‘925]'5)2 Js'™y

for SAR and

1
25b A;(p; :E —k Kk,
( ) J(pj> . 1= pioojs js'vj
for CAR. Thus, the eigenvectors 4f (p;) are the same as thoseldf;, and

the eigenvalues are simple functions of the eigenvaluéi;off we change
p;, only the eigenvalues change, the eigenvectors remain the same.
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For interpretation purposes, we often normalize the weights in such a way
that the rows of¥; sum to unity. This makes the weight matrix stochastic,
and by Frobenius theorem this implies that the largest eigenvalu¢ s
equal to+1. This means that the smallest eigenvalué;of p,IW; is1 — p;,
and thusl; — p;WV; is positive definite as long ag < 1, which helps in the
interpretation of as a type of auto-correlation coefficient.

In some cases, we waliilt; to be both symmetric and normalized (i.e.
doubly stochastic). This is discussed for CAR models in Page and LeSage
[2002]. In our code section we give an algorithm to normalize non-negative
symmetric matrices in such a way that they become doubly stochastic.

4.5. Special Case: Time Series Modelslf the outcomes are one-dimensional
(for instance if transects are arranged in lines), then it makes sense to use
a time series model for the first-level errors [Hedeker, 1989, Hedekér and
Gibbons] 1996]. We discuss these models here briefly because they show
where the SA models come from, and because they are more familiar to
most statisticians.

A first obvious choice for a time-series model is taeadom walkwhich
has

(26) &= Wig; +¢,,

wherelV; has all elements equal to zero, except the ones immediately below
the main diagonal, which are one. It follows that

(27) € = Tjgjy

whereT; has all elements on and below the main diagonal equal to one and
all elements above the main diagonal equal to zero. Thus

(28) A; = T;T3,

which means that elemefy, t) is equal tomin(s, t).
In an AR(p) process we have

(29) & = Wie; + ¢,

wherelV; has a band of widtl below the diagonal and zeroes elsewhere.
Thus there are parameters, the autoregression coefficient$/’jn AR(1)
is thus very much like the random walk, except that the element below the
diagonal is the single parametg.

A MA(q) process also uses a banded matrix with parameter values, but
we now have

(30) & = Wi,

wherelV; has diagonal one, and a band of wigtin each row below the
diagonal. Thus MA(1) has diagonal one, arjdelow the diagonal.



FINAL REPORT TO THE EPA ON MULTILEVEL MODELS FOR GENERALIZATION 15

We can easily extend this to ARMA(p,q) and even more complicated
processes, but this is comparatively straightforward and it may be overkill
in many situations. For our purposes the most interesting models are AR(1)
and MA(1), which can be defined in term of the backshift maffjxwhich
has elements equal to one below the diagonal only. Then for AR(1) we have

(31a) Aj(ps) = (I; = p;B;) "' (I; = p; B)) ™Y,
and for MA(1) we have
(31b) Nj(pj) = (I; + pi B;) (I + p; BS).

The random walk is AR(1) witly,; = 1.

5. MODEL APPROXIMATION

In this section, we discuss two ways to approximate the various AR mod-
els. Because the concept of “the true model” is at least obscure and because
even if we know how to think about “the true model” we usually do not
have very precise information about whigh; produces it, it makes sense
to employ an approximation the dispersion matrix that is computationally
convenient. We first simplify the model by an approximation that works
well for small p;, and then we approximate the model by another model
with homoscedastic first-level errors, i.e. a model with= I;.

5.1. Simplified AR. Consider again the SAR model described in Section
4.2. Recall that the variance-covariance matrix of the errorsoys; —
p;W;)(I; — p;W))]~", where all of the terms to the right of’ represent
A;(0). In theSimplified AR Mod€e[SIMAR), we assume

(32) Aj(0) = I; + p; W,

where the off-diagonal elements of the symmetric mafrixare again some
decreasing function of the Euclidean distances between the transects, or,
more generally, of the spatial dissimilarities.

In the CAR model, ifp, is small, we have

(33) (I; — p;W;) 1 = I+ p;W; + o(py),
and in the SAR and CAR models,
(34) Aj(ps) = (I = p;W,) "ML = pW)) ™t = L + p;(W; + W) +0(p;),

which are both of the SIMAR form.
For both AR(1) and MA(1), and smafl;,

(35) Aj = I; + pi(B; + B}) + o(p;),
which is again of the required SIMAR form.
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5.2. Spatial Effects as Random CoefficientsBy using random coeffi-
cients in appropriate ways we can emulate the covariance structure of the
SIMAR without assuming correlated errors for the first-level units. Thus
we can maintain\; = I;. The trick is really quite simple. We know that in
our spatial multilevel models

(36) y, = Uy + X505 + ¢,
where
(37) V(e;) = o5 (L; + p;WV5).

Now supposéV; = K;®; K’ is the spectral decomposition df;. Then we
can write

(38) gj :Uj’)/‘f'Xjéj‘f’Kjﬂj‘f’gj,
whereg; andgj are uncorrelated, and where
(392) V(n,) =00,

(39b) V() =31}

But (38) and|(3P) can be interpreted as a simple multilevel model in which
the covariance matrix of the random effects is of the form

Q; 0
a0 oo
First-level errors are homoscedastic, and the regression coefficients corre-
sponding with the eigenvector-predictdks only have a random part and
a vanishing fixed part. Moreover the random parts are uncorrelated, with a
diagonal dispersion matrix proportional to the eigenvalued’afin short,
one can write the SIMAR model as a multilevel model with restrictions on
the covariance matrix of the random effects.

5.3. Positive definite variances.One problem with this formulation is that

it is not guaranteed that the eigenvaldgsof 17/; are non-negative. If there

are negative eigenvalues, then Equatjon(39a) becomes hard to interprete.
We can use the fact, however,thiat+- p;1¥; must be positive definite.

Suppose; > 0, and writey; for the smallest eigenvalue ;. Then

(41) L+ piWi = (L+ pjibi) L + pi (P — ¥, 1) K
and we can rewrité (39) as
(42a) Vn,) = o2 p;j(®; — ;1)

(42b) V(¢,) = a5 (1+ pjay)I;.
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These are somewhat more complicated restrictions, but they always give
positive semidefinite dispersion matrices.

5.4. Using Fewer Eigenvalues.A second problem with our approxima-
tion is that we replace working with a very large spatial error covariance
matrix with working with a very large number of random effects. The num-
ber of random effects we add is equal to the order of the spatial covariance
matrix.

We attack this problem by using only a small number of eigenvectors of
W;, those corresponding with the largest eigenvalues (in modulus). Thus
we use a principal component type approximation to the random effects, In
the case of spatial information ifY;, using some function of the distances,
we can expect that two or three principal components to give a rather good
approximation.

5.5. General Approach. Instead of approximating the SA models by SIMAR,
and then approximating SIMAR by using eigenvectors, we can also follow

a more straightforward approach. Consider the following multilevel model

for sitej

(43) gj - Xjﬁj + Zjﬂj + €5

whereX; contains regression coordinates a@fjccontains (functions of the)
spatial coordinates. For our second level model we use

(443) B, = Ajy +9;,

(44b) n, = Bjk + §j.

This implies

(45a) y, = XA + Z;Bjk + v,

where

(45b) vy =X;0; + Z;€, + ¢

and thus, with suitable uncorrelatedness assumptions,
(46a) E(gj) = X;A;v + Z;BjK,

(46b) Viy,) = o (X; X + 2,0,Z; + I).

This becomes an approximate multilevel Ord model if weBet= 0, i.e.
the spatial regression coefficients do not have a fixed part, and e let

p?]j, i.e. the spatial regression coefficients are uncorrelated. Then we get

(47a) E(y,) = X;4;7,
(47b) Viy,) = oj[X;Q,X] + (I; + 0} Z;2;)].
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Moreover, if we want to get closer to SA, we can chod§en a clever
way, using the results be discussed earlier in this section. [thmatrix

in the Ord model is a function of the spatial distances, then it obviously
is a function of the coordinates, and thus all its eigenvectors are functions
of the coordinates. If we choosg as a low-rank (principal component)
approximation ofi¥;, using the eigenvectors, then we can get very close to
the Ord model.

6. NORMAL LIKELIHOOD

We do not assume, here or anywhere else, that our data are sampled
from a normal distribution. But we do use the normal likelihood to mea-
sure the distance between observed and fitted expected values and disper-
sions [de Leeuw and Kreft, 1986].

6.1. Log-likelihood. The normal negative log-likelihood is (except for ir-
relevant constants)

(48) L(0?,Q;,A;,7) =Y njlogo? + ) logdet(X;)+
j=1

)

<

Zm: (y; = U)'S;  (y; — U )‘
i=1 %

We can use the result on partitioned determinants from Appéndix A to sim-
plify the log-likelihood, i.e. rewrite it in such a way that it involves less
computation and smaller matrices. This gives

(49) logdet(X;) = logdet(X;Q, X} + A;) =
log det(A;) + log det(Q;) + log det(Q; ' + X[A' X)) =
log det(A;) + log det(X[A;'X,) + log det(€; + (XjA; ' X))

6.2. Standard Errors. Assume alla]? are the same. Then

m -1 m
(50) y = (Z U;zj—lUj> > Uiy,

and thus

(51) V(y) = (i U;.fzglUj> .
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7. AUGMENTATION

7.1. General Idea. An augmentation algorithmo minimize a function
f(z) overz € X constructs amugmentation functiog(z,y) on X ® Y,
such that

(52) min g(z,y) = f(z)

yey

for all z € X. We now minimize the functiog(z, y) by block relaxation
i.e. we start with an initiak, € X. We then find

(53a) Yo = argmin g(zo,y),
yeyY

(53b) x1 = argmin g(x, o),
zeX

(53C) Y1 = cw‘gmin g(x(]a y)7
yeyY

and so on, until convergence.

7.2. Key Result. We define an augmentation function by introducing the
additional variableg;; andX;.

A

(54) F(o7,, ;7. 55, i)

+) [nj log o7 + log det () + tr X771 (X, QX + A — ij)] T

J=1

s (y; — Upy — X5i5)' NS (y; — Uyy — X)) + @595 iy
o2
j=1 J
To show that we have a proper augmentation, we need two lemma’s.

Lemma 1.
(5 = U X594 X5 + A (y; = Upy) =
minf(y; = Uyy - Xin)' A (yy — Upy = Xjp) + @' .
and the minimum is attained for
f=[XIATX, + Q7 TIXOA (g — Upy) =
QXGGQXG + A (s = Up)

Proof. The first expression fqi is obvious. By Sherman-Morrison-Woodbury
(AppendixA)
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If we substitute this in the first expression foerand simplify, we find the
second expression (see Corollaty 6 in Apperjdjx A). Now substitute the
second expression into the loss function, and we find the final resulf]

Lemma 2.
logdet (X;Q,; X} 4+ A;) = 121:1;%1 log det(X)+
tr XXX+ A) —p,
and the minimum is attained fd¥ = XjQX]’- + A,
Proof. ¢ From Appendik P. O

We combine the two lemma’s in a theorem.

Theorem 3.
E(O-;WQJVAJ'?/Y) = mmmm]:(afa Qj7Aj777ij7ﬂj)
Hj Zj
Proof. From Lemma L and Lemnja 2. O

7.3. Augmentation Algorithm. The theorems in the previous section im-
ply that finding maximum likelihood estimates of the parameters can be
done by minimizingF over all its parameters. We minimiz€ by block
relaxation i.e. there are six sets of parameters, and we cycle through them,
minimizing over each set while keeping the other five fixed at their cur-
rent values. The minimization gives new values for the active subset of the
parameters, and we proceed to the next subset.

Step 1:3;: We already know how to solve fat;. This is just
Step 2:f1;: Forfi; we find
(57) fi; = [X;A7'X; + Q7T XA [y — Upnl =
X357 (y; = Upy)
Step 3:0%: Solving fora? is easy. Let; =y, — U;y — X,fi;. Then
1 _ ) ]~
(58) 0]2- = n—j{r;Aj 17“j + M;Qj 1uj},

and if all 0]2- are required to be the same

1 « _ 1
(59) 0% = =D (A A )
7=1
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Step 4:~: By weighted least squares,

(60) Y= Q_UINTU)T Y U (= Xy)-
j=1 i=1
Step 5:2;: Define
A o1
(61) A= X000 X,
Al _
(62) B;= ;Njﬂj-
J
Then
oF - -
If all ©2; are required to be the same, we find
oF
4 —=A-Q"'BQ".

Setting the partials to zero gives an equation is of the form discussed
in AppendiX €. The solution for all the same is

(65) O = Bl/Q(Bl/ZABl/Q)fl/QBl/Q.
Step 6:A;: ForA; we find similarly
OF -1 -1 -1
(66a) 8_AJ =X — A7 CA,
where
Al
(66b) C;= 37T

In this case certainly th&; will have to be restricted to some para-
metric form.

7.4. Restrictions on the variance parameters.

7.4.1. Q). In multilevel analysis we often have restrictions{of however,
in which case this solution does not apply any more. If there are restrictions,
we may have to use a numerical optimization method.

Diagonal: If we requiref2 to be diagonal, then the solution for diago-
nal elementu, is simply
bSS
(67) Wss = -

aSS
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Almost Diagonal: Alternatively, we may be in a situation where we
require() = K®K’, with K orthonormal and known and un-
known. Then

_ H{K'BK}g,
(68) ¢ss - m

Linear: If the model is of the fornf2 = > w, T, then
oOF

s

with V' theg x m matrix with thev; as columns. Also

0?F 2
= —tr VQ T TQ V.
OwsOw; 02
Simultaneously Diagonalizable:If there is an orthonormak” and di-
agonal®, such thatl, = Ko, K’

1
(69a) = tr X;H; ' X, T, — <t V'Q'TQ7'V,
g

(69D)

7.4.2. A. In the spatial case, discussed above, Ahelepend on a single
parametef, which we could find by some univariate minimization method.
For ease of reference we compute the derivatives with respéctiearly

oF _ 0N 1 0N
(70) A TR AR T
and
X PN, 1, P,
(1) g =t 7 = Gty aQQJA nit
2_ AT 18A]A 18A3A 1

o217 ag 00

In the Ord model, wheré; = (I — 6W;)~'(I — 6W))~', then we can
perhaps most easily minimizg€ by grid search.

The derivatives are also fairly easy to compute. Pét) = I — (0 +¢)W
and witeP for P(0). Then

(728) Ple) ' =P '+ ePT'WP T+ EPTTWPTIW P + o(e?)

and

(72b) P(e) T =Pt +ePTW P+ EPTTWPTTW P +o(6?),

whereP~T is short for(P~1) = (P")~!. Now

(73) Ale) = P(e)'P(e) T = A+ e(AW' P + P'WA)+
EMW'PTW'PT + PTIWP WA+ PTIWAW'P™T) + o(€)
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Thus

(74a) 88/; AWP + P 1WA
9’A

(74b) 507 =

AWIPTTWIPTT + POYW,PTY WA, + PTYW A WP

7.5. Another Augmentation Algorithm. Instead of Lemmp|2 we can also
use

Lemma 4.
log det(X,;Q; X} + A;) = logdet(A;) 4 log det(£2;)+
minlog det (W) + tr¥ ™1 (2 + XjA1X; — W),
and the minimum is attained far = Qj’l + X;Aj*lXj.
Proof. Same as before. O
This lemma leads to the augmentation function

(75) G(o2, 9, Ay, 7,05, /1) 2

+ Z [nj log o7 + log det(A;) + log det(;) + log det(¥;)+
=1

tr\ij.—l(sz.—l + XA - )] +

2
g;

m ~ ~r =1 ~
i Z - X;i;) A (yj — Ujy — Xjii;) + /‘;Qj Mj_
J=1

and to an algorithm in which the updates &jr, fi;, andy are the same as
before, but in which

(76a) Uy = Q7+ XGATTX
oG _ INPEI _
ag 1 -1 T,—1 v/ -1
(76c) g, =N AKX+ C)A;

Thus, if there are no restrictions éh the update is
(77) Q; =¥ + B,
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and if all2; are restricted to be the same

(78) =%Z‘P B

8. ENSENMAJORIZATION

8.1. Majorization. A majorization algorithnto minimize a functionf (x)
overx € X constructs anajorization functiory(x, y) on X ® X, such that

(79a) f(z) < g(z,y) Va,y € X
(79b) f(z) = g(x,x) Ve e X
Clearly a majorization function defines an augmentation function, so aug-

mentation is the more general process. If we apply block relaxation to a
majorization function with

(80a) Yo = argmin g(zo,y),
yeX

(80b) x1 = argmin g(z, yo),
zeX

(80c) y1 = argmin g(zo,y),
yeX

we findyy = xo, y1 = =1, and so on. Thus we can also write more briefly

(81a) xr1 = argmin g(x, xg),
zeX

(81b) xy = argmin g(x, x1),
zeX

8.2. Jensen Majorization. In Jensen majorization we use Jensen'’s inequal-
ity to get the majorization function. We use this in the situation where we
are maximizing a function of the form

(82) fa) =log | hiz.y)dy,
whereh(z, y) is positive everywhere. Write

J Wz, y)dy y dy / h(z,y)
(83a) o8 oy — 8 ] MO 195
where
(83b) (y | 2) 2 1)
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Now, by Jensen’s inequality,

) 1ox [ hiule) =Dy > [ ol tos =Dy =

/ h(ylz) log h(z, y)dy — / h(yl=) log h(z, 2)dy

and thus, summarizing, we hayér) = g(z,z) = max,cx g(z, z), where

(85a) g(x, 2) 2 k(z,z) — k(z,2) + f(2).
and
(85b) k(x,z) é/h(y | 2)log h(z,y)dy

Maximizing g(z, z) overxz € X can be done by maximizing(z, z), which
is the only term depending an

8.3. Normal Likelihood. We use an integral representation of the normal
log-likelihood, which merely says that we get the marginal density of the
observables by integrating the product of the conditional density of the
observables given the second-order disturbances with the density of these
second-order disturbances. Thus

(86) f(07, 9y, Aj,7) =
Zlog/pU?,QjAj,'y(yj | 5j)p0?,QjAj,v(6j)d5j

j—1

Using Jensen Majorization means that we actually have to maximize

87) k(02,5 0,762, Q5,A5,7) =

Z/p(;;,aj@m(% | ;) 108 Doz 0, 0, 4 (U, 0;)d8; =
)

ZE~J2 {1ng0'2Q A 'y(ij ]) ’ y]}
—1

In order to simplify this, we first write the joint density as a product of
the condtional and marginal densities. The conditional mean and variance
of Yo given the second-order disturbandesis

(88a) E(y,[0;) = Upy + X0,
(88b) V(y,16;) = 0*A;.
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Thus two times the negative logarithm of the joint densityg]ofandéj,
assuming normality, and using (88), can be written as

1 Sa
(89) logdet(c°A;) + ;(yj — Uy — X;0;) A (y; — Uy — X;65)+

1
2 —1
log det(c°Q) + - 050,

To compute the majorization function, we need the conditional expecta-
tion of the logarithm given by (89). This can be expressed most simply by
defining

A _
(90a) 4 =E(J;]y;) = QXH(X, QX+ Ay) " (y; — Upy) =
= [XGATX + Q7 TIXGAT (s - Uy),
and
A _
(90b) ¥; 2V (4;ly;) = o[ — QX{(X;QX) + A) 7' X,Q] =
2 -1 —17—
=0 [XJ’»A]- X+ Q7] L
The part of the majorization function we have to minimize turns out to be
logdet(a?A;) +log det(a79;)+

1 - _ -
—5 (5 = Uiy = X5) A7 (y; = Upy = Xjig)+
J

=1 ~ 1 _ _ =

— QT iy + —tr (7 4+ XGATTX )DL

of of

The tilde above the symbojs and ¥ indicates they are evaluated at the
current values of the parameters, which Zafraﬂj, A

8.4. Jensen Majorization Algorithm. The majorization functiony(z, )

is a function of the eight sets of parametefsQ;, A;, v anda?, Q;,A;,7.

This means that we could use block relaxation procedures that cycles over
the eight blocks. Instead, we will use the fact that the minimum(of z)

overz is attained at = x, and thus we update by minimizirig {(91) by block
relation of the four blocksj?, Q;, A;, v before computing a new superblock

52,Q,A;, 7. In fact, we shall only carry our one cycle of upgrades of the
four blocks, before computing the new superblock, although many varia-
tions are possible in which we use more than one cycle.

In the EM algorithm|[McLachlan and Krishnan, 1997] updating the su-
perblock is known as the E-step, and updating the four parameter blocks is
the M-step.



FINAL REPORT TO THE EPA ON MULTILEVEL MODELS FOR GENERALIZATION 27

8.4.1. E-Step 1.

(92) ji; = QXG(X;QX] + A) " (y; — Upy) =
[XjAj lXj + Qj ]_IXJ,‘AJ'_I(?JJ' - Uj7)7

8.4.2. E-Step 2:3;.

(93) ;=3[ — QX (X;0,X) + M) ' X,Q)) =
= [ XA X, + QN

8.4.3. M-Step 3.

m m

(94) =0 _UNU)TY U (g — Xuy).

=1 j=1
8.4.4. M-Step 4.07.

- -1 -1 -1
PN S e B(XOATTX 4 Q) ).

95 52 —
( ) nj+q

J

If we require allaf. to be the same, this becomes

POy AT i uj+tr2 (X;A;lXjJrQ;l)

96 52 =
(%6) ’ n + mq
8.4.5. M-Step 5:Q2;. We find
ok _ I o i o & A
(97) —zav = Qj L ?Qj 1[ILLj/Lj + Zj]Qj 1.

J

If all ©2; are the same, and if they are unrestricted, this gives

m o~ / i
(98) =S BT Ja
7j=1

8.4.6. M-Step 6:A,. In much the same way as in thg step

ak _ ~ ~/
(99) _28T_Aj ——jA G +XEX]A
But the model in whichA; are the same and unretricted is not of much
interest.
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APPENDIXA. PARTITIONED INVERSE AND DETERMINANT

. A B]|.
Theorem 5. The inverse O{B, C} IS
A — A7'B(C - B'A™'B)"'B'A™" —A7'B(C-B'A™'B)™'] _
—(C - B'A'B)"'B'A™! (C—-BA'B)! N
B (A— BC B! —(A—-BC'B)'BC™!
~ |-C'B(A-BC'B)! C'-C'B(A-BC'B)'BCt|”

provided all the relevant inverses exist.

Proof. We must have

200 5 ello 7= i)
ie.

(101a) AP+ BQ' =1,
(101b) AQ+ BR =0,
(101c) B'P+CQ =0,
(101d) B'Q+CR=1.

We see from[(101b) tha) = —A~'BR. Use this in[(I01d) to gef'R —
B'A'BR=1,ie.
R=(C-BA'B)™.
This gives
Q=-A"'B(C-BA'B)™,
and finally, from [(10Ta),
P=A"1"-A"'"BQ =A"-A"'B(C-BA'B)'BA™".
On the other hand, from (101&)! = —C~'B’P, and thus, from[(10]1a),
AP — BC'B'P=1,i.e.
P=(A-BC'B)
This gives
Q=—(A-BC'B)'BC,
and finally, from [(101{d),
R=C'-C'B(A-BC'B)'BC™
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Corollary 6 (Sherman-Morrison-Woodbury)f the relevant inverse exist
then

(A-BC'B)Y'=A"1-A"'B(C-BA'B)'B'A™
Proof. This is just the upper left hand corner of the partitioned inverse from
the previous theorem. U

Theorem 7. The determinant o A, B is
B C
det(A)det(C — B'A™'B) = det(C)det(A — BC™'B’),
provided the relevant inverses exist.

Proof. Clearly

A B|[I —A'B] [A 0
(102) {B’ C] [0 I }: [B’ C—BA'B

The rest follows by symmetry. O

APPENDIXB. OTHER MODIFIED INVERSEFORMULAS

A modifed inverse formulgives an expression fdtd + XBX')~! in
terms of its component matrices. We have already seen one such results, in
Corollary[§. In multilevel models, the following result is even more useful.

Theorem 8. Suppose! is positive definiteB is positive semi-definite, and
X is of full column-rank. Then

(A+ XBX')!' =
ATX (XA X) T (XA X)) + BTN (XA X)X AT
+[AT - ATX(XATX) XA
Proof.
(A+ XBX")™' = A2 + XBX'| A7/,
whereX = A-Y/2X. Now
[+ XBX' = X[(X'X)"' + BIX' +[I - X(X'X)"'X"],
and thus
(I +XBX)™' =
XX'X)MX'X) " 4+ B M (X'X) X 4+ [T - X(X'X) 71X

Combining these results gives the formula in the Theorem. O
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By straightforward multiplication it actually follows that the formula is
true for all non-singulad and for all B such tha{ X’A~'X)~! + B has an
inverse. There is no need f&to be definite, in fact the result even remains
true for B = 0.

APPENDIXC. THE MATRIX EQUATION A = XBX

Theorem 9. SupposeA is positive semi-definite, ang is positive defi-
nite. Then the unique positive semi-definite solutioMot= X BX is
X = B—1/2(BI/QABI/Q)I/QB—I/Q_

Proof. We rewrite the equation as
Bl/ZABfl/Z _ (Bl/QXBl/2)(Bl/2XBl/2),

which shows thaB'/2X B'/? is the symmetric square root &'/2AB'/2,
ThusB'/2X B'/? = (BY2AB'/?)1/2, which leads to the result in the theo-
rem. U

Theorem 10. Supposed is positive semi-definite, anf is positive semi-
definite.

(1) if Ais positive definite and is singular, thend = X BX does not
have a solution.
(2) If A= XBX is solvable, then a solution is

X — B_1/2(Bl/QABl/Q)l/QB_l/Q,

whereB~1/2 is now defined as the square root of the Moore-Penrose
inverse.

Proof. If A is positive definite, then the solutioki cannot be singular. If
X was singular, then there is a nonzersuch thatXz = 0, and thus
Az = X BXz = 0, contradicting non-singularity af.

If Ais positive definite3 is singular, andX is non-singular, then there is
anonzera such thaBz = 0. Lety 2 X ~'2. Thendy = XBX X'z = 0,
again contradicting that is non-singular. This proves the first part.

Because square roots of positive semidefinite matrices are uniquely de-
fined, we can stiil conclude th&'/2X B'/? = (BY/2ABY/2)'/2,

Suppose3 = KA?K’, with A, or orderr, wherer is the rank of B. Also
Ky, is an orthonormal basis for the null spaceffNow BY/?2 = KAK' is
still uniquely defined, and thus we can still conclude that O

APPENDIXD. LINEAR MAJORIZATION OF THEDETERMINANT

Theorem 11. Supposed and B are positive definite. Then
logdet(A) < logdet(B) +tr B'(A — B)
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Moreover we have equality if and onlyAf= B.

Proof. BecauseA and B are positive definite, there exists &nsuch that
B =55 andA = S®S5’, with & diagonal with positive diagonal elements
¢s. After substituting these expressions fdrand B the result we want to

prove becomes
D loggs <> (6 — 1),

with equality if and only if¢, = 1 for all s. This follows trivially from the
strict concavity of the logarithm. O

Theorem 12. Supposed, B andCare positive definite. Then
tr A7'C >tr B'C —tr B'(A- B)B™'C
Moreover we have equality if and onlyAf= B.

Proof. We proceed in the same way as in the proof of the previous theorem.
The result we have to prove becomes

Z% szs_(l_gbs)d&

whered, are the diagonal elements 8f'C'(S~')’. This amounts to show-
ing (¢; — 1) > 0, which is obviously true. O

(103) tr A'C =tr [B+ (A— B)|"'C =
tr B7'C —tr B'(A—B)B"'C+tr D" (A-B)D"'(A—B)D™'C,

whereD is on the line connectingl and B. Let us look at the last term in
detail, usingA for A — B, andE for D-'C'D~!. Then

(104) tr ADT'AE =" "6;(DAE); =
[
Z Z (51']' Z djk(AE)]m = Z Z (5ij Z djk Z 5]#6&' ==
( J k i J k )4
Z Z Z Z (5Z‘j5kldjk€gi.
% 7 k ¢

APPENDIXE. CODE

Our programs are written in R, the statistical environment also known as
GNU S. For additional information about R we refer to Dalgaard [2002],
for use of R in the geosciences and geography see Bivand and Gébhardt
[2000], Grunsky|[2002].
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HHEHHHBHHRBHARBHHRBHHHBH AR BHAHBH AR BHHHBH AR BHHHBH AR BHHHBHAHBHHHH

#H### nee
HH#HH 1.

HHHAH
HHH#H
HHEH#H
HHH#H
HHH#H
HHEH#H
HHHH
HH#HH 9.

#### 10.

O~NO OB WN

d for input:
first level predictors (organized in a matrix)
response (organized in a vector)

. second level predictors (organized in a matrix)

coordinates (a n by 2 matrix)

. a vector indicating number of transects within each site

vector indicating which first level predictors are rels
vector indicating which fistt level predictors have ran
real number. when the change of {dtgkehood after one it
binary variable indicating whether we should take spaf
a variable indicating which kind of form the omiga matri

O W

HAEHHBBHHHBBHHBBHHBBHH BB H AR BHAHBHABBHHHBH AR BHHHBH AR BHHHBHAHBHHHA

## input a weight matrix, first row normalize then column normali
weight.normalizec—function (w, error=0.000001)
{
W. CUr<-w
repeat
{
W. pre<—w. cur
for(j in 1:nrow(w.cur))
{
s<—sum(w.cur[j,])
w.cur[j,]J<—w.cur[j,]/s
¥
for(j in 1:ncol(w.cur))
{
s<—sum(w.cur[,j])
w.cur[,j]l<—w.cur[,j]/s
}
w.cur<—(w.cur+t(w.cur))/2
if (max(abs (w.prew.cur))<error) break
}
return (w.cur)
}

## get the Euclidean distance
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dist<—function(a,b)

{
result<—sum((a-b)"2)
result<—sqrt(result)
return(result)

¥

## helper function

| <—0.00001

f<—function (x)

{ return (exp€lxxxx))}
fl<—function (x)

{ return (1/x)}

spatial<—function(x,y,z,coor,lev2.index ,index.gamma, index.omiga, !

{

site .n<—nrow(lev2.index)
X.exp<—chind (1,x)

#calculate all wj

for (i in 1:site.n)

{
temp.w—matrix (0,lev2.index[i,1],lev2.index[i,1])
if(i==1) previous.en&-0

else previous .end-sum(lev2.index[1:(i1),1])
for (j in 1:lev2.index[i,1])
{

corj<—previous.end+]
for(k in 1:j)
{
cork<—previous .end+k
if (j'=k)
{
temp .w[j ,kk—fl(dist(c(coor[corj,1],coor[corj,2]),c(coor
temp .w[k, jk—temp.w[j , K]
}
}
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}

temp.w—weight.normalize (temp.w)
if(i==1) wil<—list (temp.w)
else wil[[i]]l<x—temp.w

}

#calculate all wj

for (i in 1:site.n)

{
w.temp<—diag (rep(1l,lev2.index[i} 1))
temp.w—matrix (0,lev2.index[i],lev2.index[i])
temp.w[2:lev2.index[i],1:(lev2.index[i}1)]<—w.temp
if(i==1) w2<—list (temp.w)
else w2[[i]]l<x—temp.w

}

Hwl<—w2

#calculate the Zj

z.exp<—chind(1,2z)

for (i in 1:site.n)

{
temp .z —matrix (0,ncol(x.exp),ncol(x.expyncol(z.exp))
if(i==1) previous.en&-0

else previous .end-sum(lev2.index[1:(i1),1])
for (j in 1:ncol(x.exp))
{

temp.z[j,((j—1)xncol(z.exp)+1l):(jkncol(z.exp))k—z.exp[previo
¥

if(i==1) Z<—list(temp.z)
else Z[[i]]lx—temp.z

}

#make x,y into lists
for(i in 1:site.n)
{

if (i==1)

{
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X<—list(x.exp[l:lev2.index][i],])
Y<—list(y[l:lev2.index[i]])
h

else
{
X[[i]] <—x.exp[(sum(lev2.index[1:(+1)])+1):(sum(lev2.index[1:
Y[[i]] <=y[(sum(lev2.index[1:(i—1)])+1):(sum(lev2.index[1:i]))
}
}

index.seg-c(1,2,3,4,5,0)
#index .seg-c(1,0,2,5,3,4)
get.index—function (ind)

{ return (index.seq[ind])}

get.R—function (gamma. cur ,v.cur)

{
R<—matrix (O,nrow(x.exp),1)
for (i in 1l:site.n)
{
if(i==1) R—1list(Y[[I]] —(X[[1]]% *%Z[[i]])[, index .gamma]%%gami
else R[[i]]I<=YI[[1]] —=(X[[i]]% *%Z[[i]])[,index .gamma]%%gamma. C
¥
return (R)
}

get.sigma—function(theta.cur ,gamma.cur,v.cur,omiga.cur)
{

R<—get.R(gamma. cur ,v.cur)

temp<-0

for (i in 1:site.n)

{
A.i<—diag(1l,lev2.index[i],lev2.index[i]}theta.curwl[[i]]
clumda . k—solve (A. 1)
temp<—temp+t (R[[i]])%*%clumda . i%%R[[i]]+t(v.cur[[i]])% x% solve

¥

sigma.square.cw—(temp/nrow(x.exp))[1,1]

return(sigma.square.cur)
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get.H—function(theta.cur,omiga.cur)

{
for (i in 1:site.n)
{
A.i<—diag(1l,lev2.index[i],lev2.index[i]}theta.curwl[[i]]
H.cur[[i]]<—X[[i]][,index.omiga]%+«%omiga. cur%ot (X[[i]][,index
¥

return (H.cur)

}
get.w—function(theta.cur,omiga.cur,gamma. cur)
{

for (i in 1:site.n)

{

A.i<—diag(1,lev2.index[i],lev2.index[i]}theta.curwl[[i]]

clumda. ik—solve (A. i)

v.cur[[i]]<—solve (t(X[[1]][,index.omiga])%%clumda. i%%X[[i]]]
}

return(v.cur)

}
get.gamma—function (dimension,theta.cur,v.cur)
{
templ<—matrix (0O,dimension ,dimension)
temp2<—matrix (0,dimension ,1)
for (i in 1:site.n)
{
A.i<—diag(1l,lev2.index[i],lev2.index[i]}theta.curwl[[i]]
clumda . k—solve (A. 1)
templ<—templ+t ((X[[]]%*%Z[[i]])[,index.gamma])%%clumda . i%%
tempx—temp2+t ((X[[1]]%«%Z[[i]])[,index.gamma])%%clumda . i%%
}
gamma. cug—solve (templ)4%temp?2
return (gamma. cur)
¥

get.omiga—function(v.cur,sigma.square.cur ,H.cur)

{
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}

dimensionc—nrow (as . matrix (index .omiga))

A<—matrix (0,dimension ,dimension)

B<—matrix (0,dimension ,dimension)

for (i in 1l:site.n)

{
A<-A+t (X[[1]][,index.omiga])%*%solve (H.cur [[i])%«%X[[i]][,ind
B<—B+v.cur[[i]]%«%t(v.cur[[i]])

}

B<—B/sigma.square.cur

B.u<—as.matrix (eigen(B) $vectors)

B.lumda<—eigen (B) $values

B. half<-B.u%%diag (sqrt(B.lumda),nrow(as. matrix(index.omiga))

temp<—B. half%%A%«%B. half

temp.valuec—eigen (temp) $values

temp.vee—eigen (temp) $vectors

temp . half<—temp .vec%odiag (sqrt (temp.value),nrow(as. matrix (inc

omiga.temp—solve (solve (B. half)%%temp . half%%solve (B. half))

return(list (omiga=omiga.temp,B.lumda=B.lumda, half=temp.value

get.omiga.2—function(v.cur,sigma.square.cur ,H.cur)

{

templ<-0

temp2<-0

for(i in 1:site.n)

{
templ<—templ+sum(diag (solve (H.cur [[i]D¥06X[[i]][,indeXx.omic
tempx—temp2+t(v.cur[[i]])%«%vVv.cur[[i]]

}

tempx—temp2/sigma.square.cur
theta.omiga—sqrt(temp2[1,1]/templ)
omiga.cuk—theta.omigadiag (1,nrow(as. matrix(index.omiga)),r
return(omiga.cur)

get.ml.thetac—function (theta.temp,H.cur ,R,sigma.square.cur)

{
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temp<-0
for(i in 1:site.n)
{

A.i.temp<—diag(l,lev2.index[i],lev2.index[i]}theta.tempwl][[i
clumda.i.tempi—solve (A.i.temp)
templ<—sum(diag (solve (H.cur[[i]])%%A.i.temp))

temp2<—(1/sigma.square.cur) t(R[[i]])% x%clumda.i.temp¥®R[[i]
temp<—temp+templ+temp?2

h
return(temp[1,1])

get.theta.search-function(sigma.square.cur ,gamma.cur ,v.cur,om

{

R<—get.R(gamma.cur ,v.cur)
par (mfrow=c(2,3))
num.search—10
star .pc—theta.cur
index .s<—star.p
ml<—get.ml.theta(star.p,H.cur ,R,sigma.square.cur)
for (k in 1:3)
{
gh.mk—rep (ml,2«num. search-1)
step<—1/(num.search k)
<=1
repeat
{
theta .temp—star .p+ixstep
#print(theta.temp)
if(theta.temp>=1) break
temp<—get.ml.theta(theta.temp,H.cur ,R,sigma.square.cur)
gh.ml[i]<—temp
if (ml>=temp)

{
index .s<—star .ptixstep
ml<—temp
i<—i+1

}

else { break}
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}
plot(gh.ml)
gh.mk—rep (ml,2«num. search-1)
I<—1
repeat
{
theta .temp—star.p-ixstep
#print(theta.temp)
if(theta.temp<0) break
temp<—get.ml.theta(theta.temp,H.cur ,R,sigma.square.cur)
gh.ml[i]<—temp
if (ml>=temp)
{
index .s<—star .p-ixstep
ml<—temp
i<—i+1
}
else { break}
¥
plot (gh.ml)

theta .k—index.s

#print(theta.k)

star.pc—theta .k
}
theta.cuk—theta .k
return(theta.cur)

}

get.mlec—function (sigma.square.cur ,H.cur,omiga.cur,theta.cur,g
{
R<—get.R(gamma.cur ,v.cur)
templ<-0
temp2<-0
for(j in 1:site.n)
{
A.j<—diag(1l,lev2.index[j],lev2.index[j]}3theta.curwl[[]]]
clumda. k—solve (A.))
templ<—templ+log(det(H.cur[[j]]))+sum(diag(solve (H.cur[[j]])¥
tempx—temp2+t (R[[]j]])%«%clumda. | %%R[[j]]+t(v.cur[[]j]])% x%so0
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result<—sum(lev2.index}log(sigma.square.cur)+templ+temp2/sigi
return(result)

#debugl«—-1:9
#initialize parameters

d.omiga<—nrow (as. matrix (index .omiga))
omiga.curk—diag(1,d.omiga,d.omiga)
theta.cuk-0

for(i in 1:site.n)

{

if(i==1)

{
v.cur<—list(as.matrix(rep(1l,nrow(as.matrix(index.omiga)))))
v.0O<—list (as.matrix(rep(0,nrow(as.matrix(index.omiga)))))
H.cur<—list (diag(rep(1,lev2.index[i])))

h

else

{
v.cur[[i]]<—as.matrix(rep(1,nrow(as.matrix(index.omiga))))
v.O[[i]]<—as.matrix(rep (0,nrow(as.matrix(index.omiga))))
H.cur[[i]]<—diag(rep(1,lev2.index][i]))

¥

h

dimensionc—nrow (as. matrix (index.gamma))
sigma.square.cuw—1
gamma.cug—get.gamma(dimension ,theta.cur,v.0)

sign<—TRUE
mle.cur<—get.mle(sigma.square.cur ,H.cur ,omiga.cur,theta.cur,ga

#do loop to implement CCA
ind<-0
count<—0

repeat

{
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count<—count+1
print("new loop begins”)
print(count)

#H######### These pre’s may not be needed except mle. pre
mle . pre<—mle . cur

ml. pre<—mle. pre

for (integer in 1:6)

{
ind<—ind%%6+1
index<—get.index(ind)
if (index==3)
{
sigma.square.cu—get.sigma(theta.cur ,gamma.cur,v.cur,om
¥
else if (index==1)
{
H.cur<—get.H(theta.cur,omiga.cur)
}
else if (index==2)
{
vV.cur<—get.v(theta.cur,omiga.cur ,gamma.cur)
}
else if(index==4)
{
gamma. cug—get.gamma(dimension , theta.cur,v.cur)
¥
else if(index==5)
{

temp<—get.omiga(v.cur,sigma.square.cur ,H.cur)
omiga.cux—temp$omiga
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else if(index==0)

{
if(effect.spatial==TRUE]
theta.cuk—get.theta.search(sigma.square.cur ,gamma.cur ,\
#R<—get.R(gamma. cur ,v.cur) #theta .curoptimize (f=ge
}

}

ml.cur<—get.mle(sigma.square.cur ,H.cur,omiga.cur,theta.cur
if (ml.cur>ml.pre) { print(index)
sign<—FALSE
print("error”)
print (temp$B.lumda)
print(temp$half)
¥
ml. pre<—ml. cur
}
mle . cur<—get.mle(sigma.square.cur ,H.cur,omiga.cur,theta.cur,
if(abs(mle.curmle.prekerror) break

print(mle.cur[1,1])
#debugl[coung—theta.cur
#if (count==7) break
}
variance .gamma-matrix (0,dimension ,dimension)
for(i in 1:site.n)
{

variance .gamma-variance .gamma+t ((X[[ 1]]%%Z[[i]])[ , index .gamma

}

variance .gamma-solve (variance .gammajligma.square.cur

## AIC & BIC

RSS<—0

for(i in 1:site.n)

{
residual . ik=Y[[i]] —=(X[[1]]% x%Z[[i]])[, index.gammal%%gamma. cur
RSS—RSS+(t(residual.i)%b6residual .i)[1,1]

}

para.num.gammanrow(as. matrix (index.gamma))

if (omiga.form=="general”) para.num.omiga(nrow(as.matrix(index.
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else if(omiga.form=="diag”) para.num.omiganrow(as.matrix(index.
else para.num.omiga-1

K<—1+para.num.gamma+para.num.omiga+1

AIC<—log (RSS/nrow (x.exp))+2K/nrow (x.exp)

BIC<—log (RSS/nrow(x.exp))+Klog (nrow(x.exp))/nrow(x.exp)

return(list(sigma=sigma.square.cur ,gamma=gamma. cur ,omiga=omiga.

}
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