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Hugosson, Prof. Abedin Vahedian, Kenny Ranerup, Dr. Dave Garret, Dr. Sumanth Jan-
nyavula Venkata, Tor Silfverberg, Igor Lantsov, and Dr. Jalil Kamail.

My dissertation has been supported in part by funding from Intel Corporation and I thank
Intel for their support.

xi



VITA

Emad Malekzadeh Arasteh

EDUCATION

Doctor of Philosophy in Computer Engineering 2022
University of California, Irvine Irvine, California

Master of Science in Electronic Design 2011
Lund University Lund, Sweden

RESEARCH EXPERIENCE

Graduate Research Assistant 2018–2022
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Instructor 2022
University of California, Irvine Irvine, California

Cyber-Physical Systems Case Studies 2022

Teaching Assistant 2018–2022
University of California, Irvine Irvine, California

Advanced C Programming 2022
Embedded Systems Modeling and Design 2021
Security and Privacy in Cyber-Physical Systems 2020
Computational Methods in Electrical and Computer Engineering 2020
Computational Methods in Electrical and Computer Engineering 2019
Computational Methods in Electrical and Computer Engineering 2018

INDUSTRY EXPERIENCE

System Architecture Intern Summer 2021
Samsung Semiconductor Inc San Jose, USA

Hardware Engineering Intern Summer 2019
Syntiant Corp Irvine, USA

xii



Experienced ASIC Engineer 2015–2018
Axis Communications Lund, Sweden

ASIC Engineer & DSP Engineer 2012–2014
Ericsson Modems Lund, Sweden

Embedded Software Engineer 2011–2012
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ABSTRACT OF THE DISSERTATION

Transaction-Level Modeling of Deep Neural Networks
for Efficient Parallelism and Memory Accuracy

By

Emad Malekzadeh Arasteh

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2022

Professor Rainer Dömer, Chair

The emergence of data-intensive applications, such as Deep Neural Networks (DNNs), exac-

erbates the well-known memory bottleneck in computer systems and demands early attention

in the design flow. Electronic System-Level (ESL) design using Transaction Level Modeling

(TLM) enables early performance estimation, efficient design space exploration, and grad-

ual refinement. In this dissertation, we present our exploratory modeling framework for

hardware-software codesign based on IEEE SystemC TLM with particular focus on expos-

ing parallelism and memory contention. We demonstrate the effectiveness of our approach

for representative large DNNs such as GoogLeNet and Single Shot MultiBox Detector.

First, we study the impact of communication mechanisms on the available parallelism in TLM

models. Specifically, we demonstrate the impact of varying synchronization mechanisms and

buffering schemes on the exposed parallelism using different modeling styles of a DNN. We

measure the performance of aggressive out-of-order parallel discrete event simulation and

analyze the available parallelism in the models. Our study suggests that increased parallel

simulation performance indicates better models with higher amounts of parallelism exposed.

Second, we explore the critical aspects of modeling and analysis of timing accuracy with

the respect to memory contention. A major hurdle in tackling the memory bottleneck is

xvi



the detection of memory contention late in the design cycle when detailed timed or cycle-

accurate models are developed. A bottleneck detected at such a late stage can severely limit

the available design choices or even require costly redesign. To explore new architectures

prior to RTL implementation, we propose a novel TLM-2.0 loosely-timed contention-aware

(LT-CA) modeling style that offers high-speed simulation close to traditional loosely-timed

(LT) models, yet shows the same accuracy for memory contention as low level approximately-

timed (AT) models.

Finally, we further refine the TLM-2.0 AT model by adding a cycle-accurate model of a

memory subsystem. This model provides a higher timing accuracy for contention analysis.

Hence it provides more accurate estimation of the performance. We revise our LT-CA

memory delay modeling to provide further accuracy comparable to the cycle-accurate AT

model of the shared memory subsystem. The high amount of contention on the shared

memory suggests the need to move toward new processor architectures with local memories.

xvii



Chapter 1

Introduction

With the rapid growth in complexity of electronic devices and the drastic reduction in time

to market, Electronic System Level (ESL) methodology has been proposed for modeling

systems at higher levels of abstraction [6, 20]. ESL ideas resulted in defining System-level

Description Languages (SLDL), such as SpecC [22] and SystemC [24], that can model both

hardware and software components and their detailed interactions.

1.1 Electronic System Level and Transaction Level Mod-

eling

ESL techniques focus on Transaction Level Modeling (TLM) which separates computation

from communication in the model [8]. This allows refinement of computation and communi-

cation independently as well as on different abstraction levels. In this way, TLM can speed

up simulation significantly by replacing many pin-level events in RTL simulation with an

abstract function call. In general, the higher the level of abstraction is, the faster the simu-

lation runs. Naturally, this simulation speedup typically comes at the price of lower model

1



accuracy.

Electronic System Level
(ESL)

Untimed (UT)

Loosely-timed (LT)

Approximately-timed (AT)

Register Transfer Level
(RTL) 

Gate Level Netlist 
 

Physical Layout
(GDSII) 

Place and Route

                 Logic Synthesis

Simulation  
Speed

Timing  
Accuracy

module test; 
     input a;     
endmodule

Figure 1.1: Top-down ESL design methodology

Figure 1.1 illustrates this classic trade-off of speed/accuracy in ESL design methodology.

Electronic system-level models specify the behavior of the design in the highest level of

abstraction by presenting both hardware and software components in parallel. Instead of

defining a strict taxonomy of abstraction levels, TLM standard defines a set of application

programming interfaces (APIs) and describes a set of coding styles that are appropriate for

various system-level modeling use cases. As such, the loosely-timed (LT) coding style is

appropriate for the use cases of software development and performance optimization. LT

models simulate fast and have sufficient timing details to boot an operating system. On

the other hand, the approximately-timed (AT) coding style is suitable for the use cases of

architecture exploration and detailed performance analysis. AT models simulate slower but

carry better timing accuracy than LT models [27].
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In summary, ESL and TLM raise the design abstraction above RTL to overcome the chal-

lenges of designing today’s complex system-on-chips (SoCs). In particular, TLM provides an

agile hardware-software codesign framework for early exploration of wide ranges of design

metrics and evaluation of design candidates. Moreover, TLM provides a codesign environ-

ment wherein software can be developed in parallel with hardware. This is beneficial not

only for earlier system integration, but also for rapid feedback to system designers.

1.2 Parallel SystemC Simulation

The Accellera Systems Initiative maintains the official IEEE standard SystemC language and

also provides an open source proof-of-concept library to simulate SystemC design models [49].

However, this reference simulator implements the classic discrete event simulation (DES)

scheme which runs sequentially. Hence, the simulator can not utilize the available parallel

computing resources in today’s multi-core and many-core processor hosts. To achieve faster

execution, parallel discrete event simulation (PDES) techniques can be employed [16].

Earlier works on PDES, such as [9], focused on distributed simulation hosts. Fujimoto [19]

presented the first initial work on parallel and distributed hosts. While significant obsta-

cles for standard-complaint parallel SystemC simulation exist [15], many parallel SystemC

simulation approaches have been proposed [13, 51, 55]. Beyond these synchronous PDES

techniques, out-of-order parallel simulation was first proposed in [11] to maximize simulation

speed for ESL designs at any abstraction level. The out-of-order PDES approach proposes to

allow threads in different cycles to run in parallel if those threads do not have potential data

or event conflicts [11]. OoO PDES maximizes multi-core and many-core CPU utilization

by localizing global simulation time for each thread and performing conservative analysis of

potential conflicts among the active threads.
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OoO PDES approach is realized in Recoding Infrastructure for SystemC (RISC) that per-

forms parallel SystemC simulation in maximum compliance with the IEEE standard seman-

tics using a dedicated SystemC compiler that automatically analyzes existing conflicts in

the model [42]. RISC identifies all potential race conditions, and instruments the model to

avoid any conflicts. This transformation is completely automatic and it does not require any

manual recoding or application-specific knowledge [16].

Despite the fact that RISC maximizes the number of threads to run in parallel, we optimize

TLM models such that they exhibit further parallelism opportunities so that RISC achieves

even faster simulation.

1.3 Memory Bottleneck

The term von Neumann bottleneck, widely known as the memory bottleneck, was coined by

John Backus in 1978 [4]. Von Neumann computers are built around an inherent bottleneck

that is “the word-at-a-time tube connecting the CPU to the memory” [4]. Since the birth of

the first von Neumann computer in 1945, various innovations have developed to alleviate the

memory bottleneck. Multi-level cache hierarchies, shared scratchpad memory, multi-channel

memory architecture, Non-Uniform Memory Access (NUMA) architecture, and more re-

cently, computation-in-memory [59] are only a few of the inventions to tackle the memory

bottleneck in computer systems. Despite all these efforts, the memory bottleneck still re-

mains as one of the grand challenges of computer science and engineering.
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1.4 Deep Learning and Convolutional Neural Networks

Deep Learning (DL) is a known technique in machine learning to extract useful features from

input data, perform data transformations, and arrive at a final meaningful representation.

One of the main application areas of DL is visual recognition and in particular, image

classification, which is the problem of assigning a descriptive label to an input image from a

fixed set of categories.

A Convolutional Neural Networks (CNN) mainly consists of alternating convolution layers

and pooling (sub-sampling) layers. Each convolution layer extracts features in the input by

applying trainable filters to the input. Later, the convolved feature is fed to an activation

function, for example a Rectifier Linear Unit (ReLU) to introduce nonlinearity and obtain

activation maps. Each pooling layer downsamples the activation maps to reduce computation

and memory usage in the network. Features extracted from previous convolution and pooling

layers are fed to a fully connected layer to perform classification. Typically, a softmax

activation function can be placed following the final fully connected layer to output the

probability corresponding to each classification label.

Early work on CNN dates back to 1989 with the LeNet network for handwritten digit recog-

nition [38]. For example, LeNet-5, a CNN for digit recognition, as depicted in Figure 1.2,

contains three convolution layers, two sub-sampling layers, and one fully connected layer

[39]. However, the early 2010s started a new era for CNN applications by the introduction

of AlexNet [34] for image classification. Growth of computing power, availability of huge

datasets that can be used for training, and rapid innovation in deep learning architectures

have paved the way for the success of deep learning techniques in recent years [61].

Choosing a state-of-the-art deep CNN for TLM modeling enables the means to investi-

gate parallelism opportunities and the memory bottleneck problem. Therefore, we select

GoogLeNet [62], a deep CNN for image classification and detection, and start with a refer-
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Figure 1.2: Architecture of LeNet-5, a CNN for digits recognition [39]

ence model in SystemC [1].

1.4.1 GoogLeNet Structure

GoogLeNet is a deep CNN for image classification and detection. It won the ImageNet

Large Scale Recognition Competition (ILSVRC) in 2014 with only 6.67% top-5 error [62].

GoogLeNet was proposed and designed with computational efficiency and deployability in

mind. The two main features of GoogLeNet are (1) using 1x1 convolution layers for dimension

reduction and (2) applying Network-in-Network architecture to increase the representational

power of the neural network [62].

GoogLeNet is 22 layers deep when counting only layers with parameters. As detailed in Ta-

ble 1.1, the overall number of independent building blocks is 142 distinct layers. The main

constituent layer types are convolution, pooling, concatenation, and classifier. GoogLeNet

includes two auxiliary classifiers that are used during training to combat the so-called van-

ishing gradient problem. Our focus for now is on inference by using the proposed neural

network architecture, and not the training for fine-tuning network parameters or suggesting

improved network architecture. Therefore, our model does not include the two auxiliary

classifier layers. The detailed types of layers inside GoogLeNet and the number of each type

6
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Figure 1.3: GoogLeNet network with all the bells and whistles [62]

of layers are summarized in Table 1.1.

Table 1.1: GoogLeNet layer summary

Layer type Count

Convolution 57
ReLU 57
Pooling 14
LRN 2
Concat 9
Dropout 1
InnerProduct 1
Softmax 1

Total 142

A schematic view of GoogLeNet is depicted in Figure 1.3. An image is fed in on the left,

and processed by all layers. Then, a vector with probabilities for the set of categories comes

out on the right. The index of a class with a maximum probability is looked up in a table

of synonym words that outputs the class of the object in the image, i.e. “space shuttle”.

1.4.2 Single Shot MultiBox Detector Structure

Single Shot Detector (SSD) is our second state-of-the-art deep CNN application that was

introduced in 2016 for object detection. Object detection is a computer vision technique

to detect objects of a certain class in an image. SSD is an efficient method for detecting

objects in images and videos with a competitive accuracy of 74.3 % mean average precision
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at 59 FPS for a 300x300 input image in the VOC2007 dataset [44]. In addition to localizing

objects in the image and generating scores for detected objects in a single forward pass of

the network, SSD creates bounding boxes with proposed coordinates around each detected

object. Such object detection has a wide range of use cases in autonomous driving, health

care and machine safety. A summary of the layers in the SSD network is shown in Table 1.2.

Table 1.2: Single Shot Detector layer summary

Layer type Count

Convolution 35
ReLU 23
Flatten 13
Permute 12
PriorBox 6
Pooling 5
Concat 3
Reshape 1
Normalize 1
Softmax 1
DetectionOutput 1

Total 101

SSD object detection network comprises base network to extract feature maps, and convo-

lutional predictors to detect objects. A key feature of SSD is elimination of bounding box

proposals to achieve real-time detection speed [44]. Similar to GoogLeNet, our focus is on

the inference using pre-trained neural network parameters which is ready for deployment.

Figure 1.4 illustrates the schematic of SSD using Netron [54], a viewer for neural network,

deep learning, and machine learning models. An image is fed to the network from the top,

after layers of processing, the network generates a set of bounding boxes coordinates and

class labels for objects detected in the image with their corresponding class probabilities.
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Figure 1.4: Single Shot MultiBox Detector (SSD) network schematic

1.5 Related Work

Static analysis of SystemC models and TLM modeling techniques for parallel SystemC simu-

lation has been studied in other works. The SystemC-clang framework [33] analyzes SystemC

models at register-transfer level and transaction-level with support for some TLM 2.0 con-

structs. Authors in [63], [65], and [66] propose modified parallel SystemC simulation kernels
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that require users to manually translate their sequential models into safe parallel models. [47]

provides SystemC designers with a set of primitives to manually parallelize SystemC tasks

for loosely-timed models. These techniques require the designer to manually instrument the

model for safe parallel simulation. In contrast to prior works, our approach leverages from

the complete automatic parallelization in the RISC to increase PDES simulation performance

in a safe and standard-compliant fashion.

Automatic generation of a set of RTL primitives by analyzing CNN architecture and param-

eters to be used on FPGA has been carried out in [69]. To the best of our knowledge, there

is no similar work on improving the parallelism in SystemC TLM for CNN.

There is a large body of research on performance modeling and memory contention modeling

and analysis. Most methods for system level performance analysis can be broadly catego-

rized into the two main classes of analytical and simulation based methods. In analytical

approaches, the system is mathematically modeled and its performance is analytically de-

rived as a function of workload and input parameters. Frank et al. [18] define an analytical

contention model in parallel algorithms on a multiprocessor workstation. Chen et al. [10]

use queueing theory to model contention in bus-based system design. Analytical models

are dependent on the architecture described, and a new model must be developed for each

new architecture or application [7]. Moreover, analytical modeling does not take into ac-

count the dynamic behavior of the system and often use of more realistic assumptions makes

meaningful analysis difficult [5].

Simulation-based approaches can capture many dynamic and complex interactions in a sys-

tem. SpecC [22] and SystemC [24] are widely-used system level description languages for

modeling, simulation and validation of complex system-on-chip models. The SystemC C++

class library is an IEEE standard that enables both system and transaction level modeling

using discrete event simulation (DES) [27]. Simulation techniques often suffer from long

simulator run-times at lower abstraction levels. Furthermore, there are high costs associated
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with manually building simulation models and debugging them.

Gajski et al. [21] introduces estimation trade-off metrics such as accuracy, fidelity, and speed

in design modeling. A systematic and quantitative analysis of the speed/accuracy trade-off

in TLM has been studied in [57]. A method of overcoming this general trade-off for the

specific case of processor models is proposed in [58].

To overcome strictly simulation-based methods, a hybrid approach of analytical and simu-

lation methodologies has been proposed. Lunzli et al. [35] propose a method to combine

SystemC based simulation with formal analysis based on real-time calculus. Borbek et al.

[7] also combine simulation with an analytical method with focus on the analysis of shared

resource contention. While these mixed methodologies help to shorten simulator run-times,

the coverage for corner cases in simulation still remains difficult [64]. Furthermore, [7] oper-

ates at a much higher level of abstraction than TLM and thus sacrifices some accuracy for

higher simulation speedup.

Aside from analytical and simulation based modeling approaches, there are also experimen-

tal techniques to measure the effect of memory contention. More recently, DNN library

profilers such as PyTorch Profiler [53] and performance profilers such as Intel VTune Pro-

filer [28] provide some coarse-grain measures on memory usage and footprint. However,

the results are valid only for a specific processor architecture and memory hierarchy. This

hardware dependency is not helpful for design space exploration or refinement to lower-level

abstraction.

Exploration of alternative memory architectures for programmable embedded systems has

been carried out in [25] and efficient utilization of scratch-pad or working memories in em-

bedded processor application has been described in [52]. Moreover, integrated circuit (IC)

technology roadmaps plan for a close integration of memory-logic fabrics in the future SoCs

[67]. As such, UPMEM [14] is the first designed and fabricated Processing in-Memory (PIM)
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architecture for real-world data-intensive applications which is publicly available. UPMEM

PIM architecture consists of thousands of processors placed within the DRAM memory chips.

This allows to offload the computation directly into the memory chips where the data resides

to drastically reduce off-chip data movements.

Our proposed TLM framework is based on the well-defined top-down ESL design method-

ology which SystemC makes easy to deploy. Our automatic model generation dramatically

reduces the burden of constructing and debugging simulation models. Furthermore, memory

contention is modeled accurately and simulates fast, enabling efficient early design space

exploration.

1.6 Goals

The commonality between emerging computing applications is being data-centric. Artifi-

cial intelligence, machine learning and deep neural networks all demand for high-capacity

and high-bandwidth memories for data storage and processing. While latest technological

advances allow availability of massively parallel processor arrays in a single SoC [48, 70],

a growing productivity gap exists in the hardware and software design of embedded sys-

tems [17]. The continuing trends towards data-intensive applications and rapid advances

in 3-D integration of memory-logic fabrics [56] necessitate new hardware-software codesign

approaches with particular emphasis on parallelism and memory contention. Such a system-

level modeling framework will be a cornerstone to build the next generation intelligent SoCs

that are efficient, safe, and reliable.

In this dissertation, we aim to propose system-level models of deep neural networks which

expose the design opportunities and challenges early in the development cycle. Specifically,

we aim to propose a holistic system-level modeling framework to explore parallelism and
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memory accuracy in early stages of the design. These efforts significantly improve the overall

design time, cost and quality of final physical implementations. Our goals include:

1. DNN System Level Modeling with Exposed Parallelism: We need system-

level models of DNNs for analysis and simulation. We aim to design and simulate a

system-level model of a DNN based on SystemC in a modular and reusable manner.

Later, we aim to explore the effects of thread-level parallelism at SystemC level and

multi-threaded parallelism at application level on simulation speedup.

2. Improvement of System Level Parallelism: TLM explicitly exposes inherent par-

allelism in the application by modeling concurrency, hierarchy, synchronization and

timing. We aim to exploit the available parallelism in the TLM simulation model with

a parallel simulator for maximum simulation speedup. Moreover, we aim to find out if

the model that simulates faster in PDES is also a better model for further refinement.

3. Fast Loosely-Timed System Models with Accurate Memory Contention:

TLM enables early performance estimation, efficient design space exploration, and

gradual refinement. However, memory contention is often not detectable before de-

tailed TLM-2.0 approximately-timed or cycle-accurate RTL models are developed. A

memory bottleneck detected at such a late stage can severely limit the available de-

sign choices or even require costly redesign. We aim to find a modeling approach that

breaks the speed/accuracy tradeoff between regular loosely-timed and approximately-

timed models and offers fast and accurate observation and visualization of memory

contention early in the design cycle.

4. Cycle Accuracy in Memory Modeling: Cycle-accurate memory models exhibit

the most accurate estimation of memory contention in the design. We aim to design

TLM models that can accurately show the behavior of real-world memory subsystems.

To avoid the orders of magnitudes slower simulation in cycle-accurate models, we aim
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to find a technique to improve the accuracy and fidelity of our system models without

losing simulation performance. Furthermore, we aim to deploy our modeling framework

to propose alternative memory architectures to mitigate memory contention in DNNs.

In the rest of this dissertation, we present our work and contributions to achieve the above

goals:

In Chapter 2, we introduce a newly designed untimed SystemC model of GoogLeNet using

OpenCV library [1]. We successfully validate the functionality of the model using Accellera

SystemC 2.3.1 simulator. Then, we use RISC (Recoding Infrastructure for SystemC) to

speed up the simulation by exploiting thread-level parallelism. We also explore the effect of

multi-threaded parallelism at application level on simulation speedup and report extensive

experimental results.

In Chapter 3, we propose and analyze a set of non-invasive standard-compliant modeling

techniques to increase parallelism in IEEE SystemC TLM-1 and TLM-2.0 models [2]. In

particular, we demonstrate the impact of varying synchronization mechanisms with simulator

run time using six modeling styles of a DNN. To quantify the parallelism in these six models,

we measure the performance of aggressive out-of-order PDES in RISC [2, 3]. Our study

suggests that increased parallel simulation performance indicates better models with higher

amounts of parallelism exposed.

In Chapter 4, we propose a novel TLM-2.0 loosely-timed contention-aware (LT-CA) mod-

eling style that offers high-speed simulation close to traditional loosely-timed (LT) models,

yet shows the same accuracy for memory contention as low level approximately-timed (AT)

models [45]. We describe our extensible SystemC model generator that automatically pro-

duces desired TLM-1 and TLM-2.0 models from a DNN architecture description for design

space exploration with focus on parallelism and memory contention. The experimental re-

sults show that the proposed LT-CA modeling is 46x faster in simulation than equivalent
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AT models with an average error of less than 1% in simulated time.

In Chapter 5, we augment our modeling framework to include cycle-accurate memory models

of Dynamic Random Access Memory (DRAM) subsystems. We also propose an enhancement

of our memory delay estimation for LT-CA modeling to improve timing accuracy and fidelity

of the design model. We report extensive experimental results with cycle-accurate memory

models and analyze accuracy of LT, LT-CA and cycle-accurate memory modeling. As a

result, we propose a local memory architecture as an alternative to conventional approaches

to mitigate memory contention in DNNs.

Finally, Chapter 6 summarizes the contributions of this dissertation and presents the poten-

tial research problems for future work.
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Chapter 2

Untimed SystemC Model of DNN

In this chapter [1], we develop an untimed SystemC model of GoogLeNet [62], a state-of-

the-art deep CNN. Following the top-down specification approach for a classical system on

chip design [23, 24], our goal is to separate communication parts from computation parts.

To achieve this, we exploit the fact that a neural network is a directed graph where the

nodes are different layers in the network and edges connect neighboring layers. Later, we

explore the effects of multi-threaded parallelism at application level, thread-level parallelism

at SystemC level, and also combination of both sources of parallelism on simulation speedup

in multi-core processors.

2.1 Introduction

Latest trends in cutting edge deep neural network architectures like GoogLeNet (2014) [62],

ResNeXt (2016) [68], FractalNet (2016) [37], DenseNet [26] (2017), etc. show a substan-

tial increase in the number of multiple parallel connections between layers in the network.

This comes with a high level of thread-level parallelism, which parallel simulators can take
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advantage of for faster simulations.

The rest of this chapter is organized as follows: Section 2.2 introduces the system-level mod-

eling framework and modeling strategies. Section 2.3 describes SystemC modeling details

of each layer. Section 2.4 describes the top-level test-bench structure of untimed SystemC

model of a DNN. Section 2.5 presents sequential and parallel simulation results with an

analysis of valuable observations. At last, Section 2.6 concludes this case study.

2.2 System-level Modeling Framework

A well-defined modeling strategy is essential to manage the system complexity and provide

maximum flexibility. Our system modeling framework follows three criteria introduced in

[1]:

1. Generic layers : Since a CNN is composed of a handful of layer types, the layers shall be

parameterized by their attributes using a custom constructor. For example, a pooling

layer shall be parameterized by its type (max-pooling or average pooling), its kernel

size, its stride, and the number of padding pixels.

2. Self-contained layers : Each layer shall implement the functionality it requires without

the need of an external scheduler to load its input or in some cases load its parameters.

For example, a convolution layer shall have a dedicated method to load its parameters

(weight matrix and bias vector) used only at the time of construction.

3. Reusability and modularity : Since most CNNs share a common set of layers, the code

shall be structured in a way to enable the feeding of any kind of CNN with minimum

effort. For example, the layer implementation shall be organized as code template

blocks and the SystemC model shall be automatically generated using only the network

model defined by the AI framework.
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To obtain pre-trained network parameters, we have used the Caffe (Convolutional Architec-

ture for Fast Feature Embedding) model zoo. Caffe is a deep learning framework originally

developed at University of California, Berkeley, and is available under BSD license [29]. Caffe

models come with (1) a binary file .caffemodel that contains network parameters, and (2)

a text file .prototxt that specifies the network architecture. Class labels are also provided

in a text file format that includes a synonym ring or synset of those labels.

Our SystemC models rely on efficient optimized code inside OpenCV 3.4.1. OpenCV is

a library of computer vision functions mainly aimed for real-time applications written in

C/C++ [50]. The OpenCV library was originally developed by Intel and is now free for use

under the open-source BSD license. OpenCV uses an internal data structure to represent

an n-dimensional dense numerical single-channel or multi-channel array, a so called Mat

class. Therefore, our models use the Mat data type to store images, weight matrices, bias

vectors, feature maps, and class scores. This becomes practical while interacting with various

OpenCV application programming interfaces (APIs).

Furthermore, OpenCV provides an interface class, Layer, that allows for construction of

constituent layers of neural networks. A Layer instance is constructed by passing layer

parameters and is initialized by storing its learned parameters. A Layer instance computes

an output Mat given an input Mat by calling its forward method. We refer to this class as

OpenCV layer for the rest of this dissertation. OpenCV also provides utility functions to

load an image and read a Caffe model from .prototxt and .caffemodel files.

Note that these goals will allow us to easily generate a SystemC model also for other Caffe

CNNs. At the same time, the models generated will have a well-organized structure that

enables static analysis. Specifically, this allows us to perform parallel simulation with RISC

[41]

Our system-level modeling framework follows the well-known Specify-Explore-Refine (SER)
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methodology [20] which is successive, stepwise refinement of design models. We now describe

how we design a DNN SystemC model based on the pure functional C++ model.

2.3 DNN Layer Implementation

Each layer in the CNN is modeled as a SystemC sc module with input and output ports.

Ports in each module are defined as sc port and are parameterized either by primitive or

by user-defined interface classes. The user-defined interfaces are derived from sc interface

and declare read and write access methods with a granularity of Mat. The choice of Mat

for the granularity of port parameterization simplifies the design by focusing on the proper

level of abstraction at this level of modeling. As an example, the module definition of the

first convolution layer conv1 7x7 s2 is shown in Listing 2.1.

As shown in lines 41-53 of Listing 2.1, each module has several attributes that are all defined

as data members inside the class definition. For example, a convolution module is defined

by its name, number of outputs, number of pixels for padding, kernel size, and number of

pixels for stride. If a layer also has learned parameters, two Mat objects are defined as

member variables to store the weight matrix and the bias vector. In that case, their values

are initialized at the time of module construction. For example, a convolution module has a

designated load method that reads pre-trained Caffe model files and stores weight and bias

values in the weights and bias member variables.

1 c l a s s conv1 7x7 s2 t : s c c o r e : : sc module

2 {

3

4 pub l i c :

5 s c c o r e : : s c por t<m a t i n i f> b l o b i n ;

6 s c c o r e : : s c por t<mat out i f> blob out ;

7
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8 SC HAS PROCESS( conv1 7x7 s2 t ) ;

9

10 conv1 7x7 s2 t ( s c c o r e : : sc module name n ,

11 St r ing name ,

12 unsigned i n t num output ,

13 unsigned i n t pad ,

14 unsigned i n t k e r n e l s i z e ,

15 unsigned i n t s t r i d e ,

16 unsigned i n t d i l a t i o n ,

17 unsigned i n t group ) :

18 s c c o r e : : sc module ( n ) ,

19 name( name ) ,

20 num output ( num output ) ,

21 pad ( pad ) ,

22 k e r n e l s i z e ( k e r n e l s i z e ) ,

23 s t r i d e ( s t r i d e ) ,

24 d i l a t i o n ( d i l a t i o n ) ,

25 group ( group ) ,

26 weights (4 , we ight sz , CV 32F , weight data ) ,

27 b ia s (4 , b i a s s z , CV 32F , b i a s da ta )

28 {

29 load ( ) ;

30 SC THREAD( main )

31 }

32

33 void load ( ) ;

34 void main ( ) ; ;

35 void run ( std : : vector<Mat> &inpVec ,

36 std : : vector<Mat> &outVec ) ;

37

38 p r i v a t e :

39

40 St r ing name ;
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41 unsigned i n t num output ;

42 unsigned i n t pad ;

43 unsigned i n t k e r n e l s i z e ;

44 unsigned i n t s t r i d e ;

45 unsigned i n t d i l a t i o n ;

46 unsigned i n t group ;

47 s t a t i c const i n t we ight s z [ 4 ] ;

48 unsigned i n t weight data [ 6 4*3*7*7 ] ;

49 s t a t i c const i n t b i a s s z [ 4 ] ;

50 unsigned i n t b i a s da ta [ 6 4 ] ;

51 Mat weights ;

52 Mat b ia s ;

53

54 } ;

Listing 2.1: Conv1 7x7 s2 module definition

Figure 2.1: Convolution layer

Each module has a main thread that continuously reads its input port, computes results, and

writes those to its output port. Data processing is handled by a run method that interacts
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with the OpenCV library. The run method creates an instance of OpenCV layer and calls

its forward method by passing references to input Mat and output Mat objects.

As an example, Figure 2.1 illustrates the module defining the first convolution layer in

GoogLeNet. The input to the module is a Mat object containing 3 color channels of 224x224

pixels of the input “space shuttle” image and the output is another Mat object containing

64 feature maps with the size of 112x112 pixels.

2.4 Validation by Simulation

A top level test bench validates our GoogLeNet SystemC model against the reference OpenCV

implementation. The test bench instantiates our SystemC GoogLeNet module which con-

tains all modules inside the network with all the interconnecting queues as Design under Test

(DUT). It also instantiates a stimulus module to feed the design with images of size 224x224

with three color channels, and a monitor module to read the final class scores and output

the label with the maximum probability (Figure 2.2). To measure the performance of the

model, our test bench can also be configured to continuously feed in a stream of images. In

that case, a checker module is plugged inside the monitor to check the correct classification

and its probability against the reference model.

2.5 Experimental Results

Our untimed SystemC model of GoogLeNet compiles and simulates successfully with Ac-

cellera SystemC 2.3.1. For parallel simulation, we also compile and simulate the model using

RISC V0.5.1 to speed up simulator run time. Both simulation results match the OpenCV

reference model output.
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Figure 2.2: Top-level test bench

2.5.1 Performance Setup

We use two different computer platforms to benchmark the simulations. The specifications

of each platform are shown in Table 2.1. We name platforms based on the number of logical

cores visible to the operating system. The number of logical cores is double the number of

physical cores when hyper-threading technology (HTT) is enabled.

To have reproducible experiments, the Linux CPU scaling governor is set to ‘performance’

to run all cores at the maximum frequency, and file I/O operations, i.e. cout, are minimized.

SystemC 2.3.1 and OpenCV 3.4.1 are built with debugging information 1.

Moreover, the OpenCV library can be built with support for several parallel frameworks, such

as POSIX threads (pthreads), Threading Building Blocks (TBB), and Open Multi-Processing

(openMP), etc. We build OpenCV with the support for pthread to run in multithreaded

mode and also without support for pthread to run only on a single-thread. Lastly, the

stimulus module is configured to feed 500 images with size of 224x224 pixels to the model.

1OpenCV has built with -O0 flag meaning (almost) no compiler optimizations.
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Table 2.1: Simulation platforms specification

Platform name 4-core host 8-core host 16-core host 32-core host
OS CentOS 7.6 CentOS 7.6 CentOS 6.10 CentOS 6.10
CPU Model name Intel E3-1240 Intel E3-1240 Intel E5-2680 Intel E5-2680
CPU frequency 3.4 GHz 3.4 GHz 2.7 GHz 2.7 GHz
#cores 4 4 8 8
#processors 1 1 2 2
#threads per core 1 2 1 2

Table 2.2: Measurement results on 4-core host (HTT off)

Single-thread Multithreaded
Time (sec) Accellera RISC Accellera RISC
User time 627.19 651.59 680.01 664.02
System time 1.55 1.11 34.26 18.26
Elapsed time 629.49 253.29 199.44 234.36
CPU utilization 99% 257% 358% 291%

Speedup 1x 2.48x 3.15x 2.68x

2.5.2 Simulation Results

For benchmarking, we measure simulation time using Linux /usr/bin/time under CentOS.

This time function provides information regarding the system time, the user time, and the

elapsed time. Measurements are reported for sequential SystemC simulation using Accellera

SystemC compiled with POSIX threads. Parallel simulation is performed using RISC simula-

tor V0.5.1 in non-prediction (NPD) mode. Tables 2.2 to 2.5 show the measurements for each

simulation mode on the four different platforms using the single-thread and multithreaded

OpenCV. In case of parallel simulations, we set the maximum number of concurrent threads

allowed by the RISC simulator to the number of available logical cores on each platform.
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Table 2.3: Measurement results on 16-core host (HTT off)

Single-thread Multithreaded
Time (sec) Accellera RISC Accellera RISC
User time 912.79 921.95 1164.69 960.48
System time 34.76 42.19 705.22 134.25
Elapsed time 947.93 275.29 154.45 260.7
CPU utilization 99% 350% 1210% 419%

Speedup 1x 3.44x 6.13x 3.63x

Table 2.4: Measurement results on 8-core host (HTT on)

Single-thread Multithreaded
Time (sec) Accellera RISC Accellera RISC
User time 621.49 961.44 1164.13 1046.39
System time 1.52 1.28 84.06 34.85
Elapsed time 622.68 254.07 184.09 232.57
CPU utilization 100% 378% 678% 464%

Speedup 1x 2.45x 3.38x 2.67x

Table 2.5: Measurement results on 32-core host (HTT on)

Single-thread Multithreaded
Time (sec) Accellera RISC Accellera RISC
User time 911.98 1177.02 2124.87 1299.86
System time 35.31 52.76 1838.35 224.84
Elapsed time 947.7 273.27 155.72 274.29
CPU utilization 99% 450% 2544% 555%

Speedup 1x 3.46x 6.08x 3.45x
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2.5.3 Analysis

Table 2.2 allows the following observations:

1. RISC introduces thread-level parallelism

RISC is faster than single-thread OpenCV with Accellera and it speeds up simulator

run time up to 2.48x on the 4-core machine.

2. OpenCV parallelism is even faster than RISC

We observe that multithreaded OpenCV speeds up simulator run time using Accellera

up to 3.15x on the 4-core machine. Therefore, thread-level parallelism in OpenCV

primitives is more efficient than thread-level parallelism at SystemC level.

3. Combining OpenCV and RISC parallelism does not deliver the best speedup

Since RISC and OpenCV threads unknowingly from each other compete for resources,

exploiting parallelism in RISC and OpenCV at the same time does not increase the

speedup. For example, multithreaded OpenCV using RISC (2.68x) performs worse

than multithreaded OpenCV using Accellera (3.15x) on the 4-core machine.

4. RISC performance improves slightly with OpenCV parallelism

RISC gains small speedup by also using parallelism in OpenCV. For example, RISC

speeds up multithreaded OpenCV (2.68) in comparison with single-threaded OpenCV

(2.48x).

Table 2.3 supports observations 1 through 4 as well. It also allows for the following obser-

vation:

5. Performance does not scale by the number of cores
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Quadratic increase in the number of cores only leads to double increase in performance.

Relative good speed up to 3.15x on the 4-core machine does not scale to 16-core

machines and only gets 6.13x speedup compared to sequential single-thread simulator

run time.

Table 2.4 and 2.5 use hyper-threading technology (HTT) and allow for the following obser-

vations:

6. HTT is ineffective for this application

Enabling HTT slightly improves speedup from 3.15x on the 4-core machine without

HTT to 3.38 on the 4-cores with HTT (8-cores). In the case of 16-cores to 32-cores,

performance has not improved at all.

7. HTT substantially increases user and system time

We observe that the user and system times increase significantly with HTT turned on.

At this point, the origin of this time increase is unclear for us. We will investigate this

further in more detailed future research.

In summary, Figure 2.3 shows the speedups for different sources of parallelism: single-

threaded OpenCV using RISC, multithreaded OpenCV using Accellera and multithreaded

OpenCV using RISC. The illustration shows a significant speedup using parallelism intro-

duced by RISC and multithreaded OpenCV. It also demonstrates that combining OpenCV

and RISC parallelism does not provide a remarkable speedup.

2.6 Conclusion

In this chapter, we have described an untimed SystemC model of GoogLeNet using OpenCV

3.4.1 library. We also developed a tool to automatically generate SystemC code from Caffe
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Figure 2.3: Speedup comparison on different platforms based on the source of parallelism

model files. We successfully simulated the generated model using Accellera SystemC 2.3.1

and RISC V0.5.1.

Experimental results show significant simulation speedups using RISC, as well as using mul-

tithreaded OpenCV. Results also show that combining OpenCV and RISC parallelism did

not deliver significant speedup.
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Chapter 3

Improving Parallelism in System

Level Models

Transaction level modeling (TLM) explicitly exposes inherent parallelism in the application

by modeling concurrency, hierarchy, synchronization and timing. TLM guidelines use differ-

ent methods to model communication of concurrent modules in the design. TLM-1 focuses on

modeling communication using channels and TLM-2.0 focuses on modeling address-accurate

communication using memory-mapped buses. The choice of synchronization and communi-

cation mechanisms in TLM models affect the available level of parallelism. Parallel Discrete

Event Simulation (PDES) is an attractive approach to measure parallelism of TLM models

and compare simulation performance between models using different parallelization tech-

niques [2, 3].
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3.1 Introduction

Exponential growth of computational requirements of new emerging applications such as

deep learning, puts an extra demand on finding parallelism opportunities and simulation

performance. To this end, fast and yet standard-compliant simulation of design candidates

will enable rapid design space exploration and hence, shorter time to market.

In this chapter, we propose a set of IEEE standard-compliant modeling techniques to increase

available parallelism in SystemC TLM-1 and TLM-2.0 models for parallel discrete event

simulation. As shown in Figure 3.1, we illustrate simulator parallelism, model parallelism and

simulation speedup in a 3-dimensional space. As the red arrow indicates, both higher model

parallelism and simulator parallelism achieve the maximum simulation speedup. Moreover,

by increasing model parallelism opportunities in one dimension, the simulator can better

leverage its parallelization capabilities for the maximum simulation speedup. In particular,

we demonstrate our proposed techniques on SystemC TLM models of a DNN using out-of-

order parallel simulation.

Simulator parallelism
Model parallelism

Simulation speedup

Figure 3.1: Simulator parallelism, model parallelism and simulation speedup forms a 3-
dimensional space[2]

Our key contributions in this chapter are as follows:

(1) A systematic analysis of parallelism opportunities in SystemC TLM-1 and TLM-2.0
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models of a representative DNN (GoogLeNet) for parallel simulation

(2) A proposal of less restrictive communication mechanisms and transaction types for en-

hanced parallelism with out-of-order parallel simulation of TLM-1 and TLM-2.0 models

(3) Experimental results that demonstrate the improved parallelism in a given reference

model [1] with simulator run time reduced by 38%

3.2 Parallelism in TLM-1 Modeling

Following the distinction between simulator parallelism and model parallelism introduced in

Figure 3.1, we propose alternative channel constructs to increase parallelism opportunities.

We also analyze how the number of buffers inside channels can increase parallel simulation

performance.

3.2.1 TLM-1 Modeling of DNNs

TLM-1 implements message-passing semantics with the primary purpose to separate com-

munication from computation. Through well-defined TLM-1 interface method calls, any

internal state changes in one SystemC module are hidden from other modules [27]. Follow-

ing TLM-1 coding style, channels are modeled as queues with FIFO semantics, allowing to

consume/produce data in a first-in, first-out discipline. These channels implement interface

methods for read and write access. By encapsulating communication in channels, various

communication mechanisms and buffer sizes can be modeled independently from the module

functionality. This exploratory approach provides early feedback on the amount of available

parallelism and local communication interactions.
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3.2.2 Channel type

Starting from the model proposed in the previous chapter (Section 2.3), we improve the

communication and synchronization mechanism in this chapter. To this end, we propose

three channel types according to the channel synchronization mechanism:

1. Blocking channel : In a blocking channel, synchronization is handled using a set of two

wait statements in read and write access functions.

2. Non-blocking channel : In a non-blocking channel, the write access function does not

block and synchronization is handled using only one wait statement in the read access

function.

3. SystemC FIFO channel : This channel is built on the predefined primitive channel

sc fifo with default read and write member functions which use the request update

mechanism.

In a blocking channel two sc events ensure synchronization between each consumer and pro-

ducer. In a non-blocking channel, we design a synchronization scheme between producer and

consumer that uses only one wait statement and one sc event. Lastly, we design SystemC

channels that do not require any calls to the wait construct. The improved communication

techniques increase the potential that an out-of-order PDES simulator schedules threads

more aggressively.

3.2.3 Buffering scheme

The TLM-1 model of a data processing application can be considered as a graph data struc-

ture with modules as nodes and channels as edges connecting neighboring modules. Each

module continuously fetches data from its input channel(s), processes the data and writes
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its result(s) into output channel(s). These data processing modules often form a pipeline

structure that execute in parallel while buffers in channels hold intermediate results between

pipeline stages. The more buffers exist in the channels, the more possibilities there are for

pipelining of data in the graph. This gives a parallel simulator more freedom to schedule

even more parallel threads at the same delta cycle.

In particular, having only a single buffer inside blocking channels, modules can only process

data in every other delta cycle. However, with double buffers inside channels, a producer

can write to the back buffer while a consumer can read from the front buffer. This results

in more active threads that perform their tasks in fewer delta cycles. This increase in the

level of parallelism gives the parallel simulator more opportunities to aggressively schedule

threads and minimize simulation run time.

Figure 3.2 illustrates the inception module, the main building block of GoogLeNet. The

inception module forms an unbalanced graph structure with four parallel tracks, each running

a different workload. Note that the four parallel tracks in each inception module contain (2,

4, 4, 3) modules to process, respectively. In the absence of a balanced graph topology, the

number of buffers in channels should address the imbalance to enable the maximum number

of modules to run in parallel.

A TLM-1 modeling diagram of the inception module with double buffering scheme is shown

in Figure 3.3. As shown, modules read/write data from/to channels via their input port(s)

and output port(s). Note that the output channels for relu 1x1 and relu pool proj keep

4 and 3 buffers, respectively, to compensate for the unbalanced graph structure.

In the case of non-blocking channels, the write access method does not incur any wait

statement. Therefore, the number of buffers in non-blocking channels needs to be increased

to avoid any buffer overflow.

Overall GoogLeNet forms a graph with a depth of 62 layers. In the worst case scenario, all
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Figure 3.2: Inception module in GoogLeNet

producer layers in each level of the graph write to the channel before consumer layers read

the data. To dimension the channel sizes for this worst case scenario, non-blocking channels

should have space for the maximum depth of the graph plus one for the stimulus module,

namely 63 buffer elements.
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Figure 3.3: TLM-1 model diagram of inception module in GoogLeNet
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3.3 Parallelism in TLM-2.0 Modeling

While TLM-1 gives early feedback on parallelism and local communication, it is not specif-

ically intended for bus modeling, interoperability and architectural exploration. SystemC

TLM-2.0 introduces generic payload and core transport interfaces for the abstract modeling

of memory-mapped buses. However, the notion of channels from TLM-1 has disappeared

from TLM-2.0 modeling and each module instead uses pointers to access memory locations

in other modules. The lack of an encapsulating channel construct allows simulation threads

to directly access data of other modules, making synchronization of such accesses a difficult

task for parallel simulators in a standard-compliant fashion [12] and has been identified as

an obstacle for safe and fast parallel simulation [15]. On the other hand, TLM-2.0 models

feature address-accurate memories.

In this section, we briefly describe the TLM-2.0 modeling of data processing applications

such as DNN. Later, we introduce a feed-forward events mechanism that can be used for

synchronous parallel simulation. Lastly, we propose the back-pressure events mechanism

devised for safe out-of-order parallel simulation.

3.3.1 TLM-2.0 Modeling of DNNs

TLM-2.0 introduces a generic payload and blocking/non-blocking transport interfaces for

the abstract modeling of memory-mapped buses. In TLM-2.0 modeling, a socket should

be instantiated within each initiator and each target for every transaction level connection.

Therefore, module input and output ports in TLM-1 models are replaced with an initiator

socket. The generic payload captures the information to pass with each bus transaction be-

tween initiator and target. The initiator module instantiates the generic payload transaction

object and sets its attributes before passing a reference to this object to a target module via
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its transport interface.

In our proposed TLM-2.0 models, the initiator sockets are connected to target sockets of a

shared memory. Figure 3.4 shows the connections of initiator sockets of layers in GoogLeNet

to target sockets of shared TLM-2.0 memory. Each module has a dedicated address space

in the memory to read and write its buffers. This model uses a blocking transport interface

(b transport) to pass transactions between initiator and target memory. The transaction

is a tlm generic payload object and its data pointer points to the start address of the

input/output buffer. The data length of the generic payload is set to the entire buffer

inside the shared memory. Since the model is untimed, the timing annotation argument of

b transport is set to a delta cycle.

Figure 3.4: TLM-2.0 model diagram of GoogLeNet

3.3.2 Feed-forward events mechanism

The communication mechanism in a feed-forward model is as follows: each producer places

its output into a buffer in the shared memory. Each consumer reads its input from the

same shared buffer. To avoid race conditions, each consumer waits for an event notification

from its producer. The arrows between the modules in Figure 3.5a illustrate this feed-

forward notification mechanism. Therefore, each module contains one sc event for each

input (start) and each output (done). For example, as seen in Figure 3.5a, the start

event of conv1/relu 7x7 is connected to done event of conv1 7x7 s2. Furthermore, since
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(a)

(b)

Figure 3.5: (a) TLM-2.0 feed-forward model connections (b) TLM-2.0 back-pressure events
connections

adjacent modules share a common buffer inside the memory, the memory footprint of the

model is minimized.

In the feed-forward model with only a single buffer between neighboring modules, modules

only accept and process data every other delta cycle. By increasing the number of buffers

between modules, modules can instead process data every delta cycle. This gives the parallel

simulator the opportunity to schedule more threads in each delta cycle, utilizing available

parallelism in the processor for minimizing the simulation run time. Moreover, such a model

achieves its maximum theoretical throughput, generating output every delta cycle.
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In the absence of a balanced graph topology, event synchronization for multiple produc-

ers or multiple consumers requires delta-cycle delay compensation. Such behavior can be

seen in every inception module in GoogeLeNet, as shown in Figure 3.2. Note that the four

parallel tracks contain 2, 4, 4, and 3 modules, respectively. Since events occur at precise

points in simulation time, our proposed untimed model compensates for these irregularities

to guarantee correct synchronization between the modules. To guarantee correct event syn-

chronizations, delay elements must be inserted in those tracks with less modules to form a

balanced graph structure. This means 2 delay elements in track 0 and 1 delay element in

track 3 are required. Furthermore, the output of the last modules in tracks with less modules

require extra buffers to store results generated during those delay cycles. This means for

supporting double buffering, the last module in track 0, relu 1x1, and the last module in

track 3, relu pool proj, require 4 and 3 output buffers, respectively. These extra buffers

ensure a continuous stream of data in every delta cycle into the design, increasing model

parallelism and maximizing model throughput. This forms the model E in Figure 3.6.

3.3.3 Back-pressure events mechanism

The model without back-pressure mechanism is not safe for aggressive out-of-order schedul-

ing. Only a conservative in-order scheduling approach will execute the feed-forward TLM-2.0

model correctly due to the missing back-pressure mechanism. Therefore, we devise a back-

pressure events mechanism to safely execute the TLM-2.0 model in the aggressive OoO

parallel simulation for maximum speedup.

Event connections for the first convolution and ReLU layers in GoogLeNet are depicted in

Figure 3.5b. Each module has a set of two sc events for each input and output. The

stb event is notified once a module has valid data inside the memory to be read and the

ready event signals a module is ready to read new data. By connecting events between all
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subsequent modules, the model forms a robust back-pressure mechanism that safely controls

the flow of data inside the pipeline.

Support for the back-pressure events mechanism is extended to all neighboring modules in

the TLM-2.0 model. The double-buffering scheme guarantees a continuous stream of data

inside the design pipeline, maximizing model parallelism and model throughput with the

minimum number of buffers in the memory. This forms the TLM-2.0 untimed model with

back-pressure events mechanism. This forms model the F in Figure 3.6.

3.4 Parallelism Direction

To demonstrate degrees of freedom for parallel simulators to find parallelism opportunities

in TLM-1 and TLM-2.0 models, we create an XY chart with communication mechanism

and buffering scheme on x- and y-axes, respectively. As depicted in Figure 3.6, we map

the number of buffers on the x-axis and communication mechanism on the y-axis. On

the x-axis, min refers to a single buffer, mul to double buffer taking into account that

certain layers requires multiple buffers due to the imbalanced graph structure, and max

refers to the total depth of TLM-1 model graph. On the y-axis, we map communication

mechanisms from the most restrictive type for parallel simulation, namely, TLM-1 blocking,

to the least restrictive type, namely, TLM-2.0 back-pressure. Increasing the number of

buffers and utilizing communication with less restrictive synchronization mechanisms creates

more freedom for out-of-order simulators to schedule threads in different delta cycles. This

maximizes multi-core utilization and hence results in shorter simulator run time.

Given the proposed communication mechanisms and buffering schemes, we have designed a

set of TLM-1 and TLM-2.0 models for GoogLeNet. As marked in Figure 3.6, the reference

Model A [1] uses blocking channels with only a single buffer in channels. We designed Model
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Figure 3.6: Communication mechanism versus number of available buffers in TLM models

B with a double-buffering scheme with blocking-channels. In Model C, we replaced blocking

channels with non-blocking channels with buffer size of 63 elements, the total depth of the

graph. We designed Model D using sc fifos with a double-buffering scheme. Model E is a

TLM-2.0 model that uses the feed-forward events mechanism as an inter-module communi-

cation and modules have double-buffers inside a shared memory. Finally, we designed Model

F using our back-pressure mechanism to guarantee safe communication between modules for

aggressive out-of-order scheduling with double buffers for maximum parallelism and maxi-

mum throughput. Table 3.1 summarizes the properties of all designed TLM-1 and TLM-2.0

models.

Table 3.1: TLM models summary

Model name Standard Communication Buffers

Model A [1] TLM-1 Blocking channels Single buffer
Model B TLM-1 Blocking channels Double buffers
Model C TLM-1 Non-blocking channels Buffer size of 63
Model D TLM-1 SystemC FIFO channels Double buffers
Model E TLM-2.0 Feed-forward Double buffers
Model F TLM-2.0 Back-pressure Double buffers
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Since each SystemC module has specific attributes based on its layer type and its correspond-

ing TLM modeling style, writing module definitions by hand is a tremendously error-prone

task. Furthermore, interconnecting all modules at the top level using either queues or events

is a tedious task. Therefore, we have extended the generator tool from Model A [1] to au-

tomatically generate all the other TLM-1 and TLM-2.0 models based on modeling style,

communication type and buffer architecture. In the case of TLM-2.0 models, the Python 3

generator automatically produces an address map file based on buffer architecture and sup-

ports memory address generation for multiple buffers for any layer in the network.

3.5 Experimental Measurements and Results

Parallelism opportunities introduced in transaction-level SystemC models can be quantified

and measured using a SystemC parallel simulator. To exploit the available parallelism in our

TLM-1 and TLM-2.0 models of GoogLeNet, we describe our extensive measurement results

using RISC and provide valuable insights gained from analyzing the results.

3.5.1 Simulation Setup

We use a 16-core host computer platform with hyper-threading technology (HTT) to bench-

mark the simulations. The specifications of the platform are shown in Table 3.2. To have

reproducible experiments, the Linux CPU scaling governor is set to ‘performance’ to run all

cores at the maximum frequency, and file I/O operations, i.e. cout, are minimized.
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Table 3.2: Platform specification

Platform name
16-core
(Phi)

32-core
(Phi HT)

OS CentOS 6.10 CentOS 6.10

CPU Model name
Intel Xeon
E5-2680

Intel Xeon
E5-2680

CPU frequency 2.7 GHz 2.7 GHz
#cores 8 8
#processors 2 2
#threads per cores 1 2

3.5.2 Simulation Results

For benchmarking, we measure simulator run time using Linux /usr/bin/time under Cen-

tOS 7. Measurements are reported for the sequential SystemC simulation using Accellera

SystemC and for the parallel simulations using RISC simulator V0.6.2 in three modes: syn-

chronous (SYN), non-prediction (NPD) and out-of-order (OOO) parallelism. For reliability

of the results, each measurement is performed three times. Later, if the distance of each

recorded value from its median is greater than ±2%, that entire measurement is ignored.

We analyze the measurement results obtained from the simulations of six TLM models.

We create various heat map tables to identify the relevant results regarding parallelism in

transaction types and transaction level modeling as follows:

(A) Less restrictive transaction types enable higher parallelism

Table 3.3 shows the elapsed time of the models in SYN, NPD and OOO simulation modes

using RISC V0.6.2.

Considering the 16-core machine (phi), model A uses blocking channels with a single buffer.

The elapsed time of Model A for the SYN mode is the highest. Model B uses multiple
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Phi
Elapsed time SYN NPD OOO
Model A 266.66 194.77 193.94
Model B 229.04 193.63 193.08
Model C 231.79 220.32 200.29
Model D 197.02 197.93 194.90
Model E 198.31
Model F 198.66 199.31 170.44

Phi HT
Elapsed time SYN NPD OOO
Model A 276.04 198.40 197.17
Model B 237.69 196.73 197.47
Model C 235.12 224.39 202.90
Model D 201.13 195.35 195.40
Model E 203.29
Model F 203.17 204.89 170.68

Table 3.3: Measurements of elapsed time for parallel simulations (color scale red-to-green
means slow-to-fast)

buffers to increase the potential for pipelining. Model C removes wait statements in the write

function to let the OOO scheduler schedule multiple threads together. Model D uses SystemC

FIFOs to implement channels. SystemC FIFO forces synchronous simulation. Hence, the

elapsed time of Model D for SYN, NPD and OOO are almost identical as reflected in the

fourth row. Model E and Model F are TLM-2.0 models without any usage of primitive

channels. As previously stated, Model E is not safe for out-of-order parallel simulation, so

elapsed time for NPD and OOO simulations are not reported for this model. As can be

seen in the second to six rows, the elapsed time for SYN simulation mode decreases steadily.

However, the aggressive OOO simulation exploits the maximum parallelism introduced in

each model and reports the shortest elapsed time for Model F. The exact same pattern

applies to the other TLM-1 and TLM-2.0 models on machines with a higher number of

logical cores.

Notably, our efforts on increasing the potential of parallelism in the models pay off with a
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significant simulation speedup. Comparing the synchronous reference TLM-1 model (276.04s

with hyper-threading enabled) with the OOO simulation of the TLM-2.0 model with safe

back-pressure (170.68s), shows the simulator run time reduced by 38%. Note that this applies

despite the higher workload the TLM-2.0 models carry, as we will show in the next section.

(B) Abstract TLM-1 models carry less workload than memory accurate TLM-2.0

models

Table 3.4 shows the heat map table for elapsed time of all six models in sequential simulation

mode. The last two rows for TLM-2.0 models indicate longer elapsed time than the first four

rows for TLM-1 models. This can be explained due to the difference in number of memory

copies in TLM-1 and TLM-2.0 models. TLM-1 models use shallow copy for storing/loading

items in/from channels. However, TLM-2.0 models use two memory copies to read and write

from/to the memory module. This distinction shows that the actual simulator workload for

the TLM-2.0 models has increased in comparison to the TLM-1 models.

Phi Phi HT
Elapsed time SEQ SEQ
Model A 949.02 949.56
Model B 940.12 939.61
Model C 941.93 940.93
Model D 945.24 943.98
Model E 956.28 955.81
Model F 956.28 956.01

Table 3.4: Measurements of elapsed time for SEQ execution (color scale green-to-red means
increasing workload)
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(C) Increased parallel simulation performance indicates better models with higher

amount of parallelism exposed

Figure 3.7 illustrates simulation speedups in different parallel simulation modes on our 16-

core host (phi). As shown, the maximum simulation speedup (5.6x) is achieved by model

F in out-of-order (OoO) parallel simulation mode. This indicates model F has the highest

level of parallelism available in comparison with other TLM models. Therefore, model F is

the right design candidate for further model refinements and lower-level implementation.

Figure 3.7: Simulation speedup for different parallel simulation modes on a 16-core host

3.6 Conclusion

In this chapter, the impact of synchronization and communication mechanisms on available

parallelism in transaction level modeling (TLM) has been studied. We have demonstrated the

impact of varying synchronization mechanisms on the exposed parallelism using six modeling

styles of a state-of-art deep neural network (DNN), GoogLeNet. We further have quanti-

46



fied the improved parallelism in the improved SystemC TLM-1 and TLM-2.0 models by

measuring the performance of aggressive out-of-order parallel simulation in the Recoding In-

frastructure of SystemC (RISC). The experimental results show that our standard-compliant

parallelization techniques result in a significantly increased simulation speed up to 5.6x on

a 16-core host machine. Notably, the results support the hypothesis that higher speed in

aggressive parallel simulation is a significant indicator of higher level of parallelism in design

models which enables better implementation at later stages in the design flow.

While this chapter has focused on communication and synchronization aspects, we explore

timed models at lower abstraction, and include a wider range of DNN applications in the

following chapters.
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Chapter 4

Fast Loosely-Timed System Models

with Accurate Memory Contention

Emerging computing applications create an ever-increasing demand for higher memory band-

width and lower access latency. While massively parallel processor arrays [48, 70] allow an

order-of-magnitude improvement in computational capacity, a severe performance gap exists

in the state-of-the-art memory architectures. Additionally, the low-power requirements of

embedded systems create extra design challenges to achieve on-par performance improve-

ments.

Advances in 3-D integration of memory-logic fabrics [56] and continuing trends towards data-

intensive applications necessitate new hardware-software codesign approaches with particular

emphasis on memory contention. A system-level memory-aware modeling framework is a

cornerstone to build the next generation system-on-chips, capable of addressing memory

bandwidth and latency issues. Such a modeling framework provides the means to identify

memory bottlenecks and explore new architectures prior to RTL implementation with a high

degree of accuracy and faster simulation speed [45].
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4.1 Introduction

In Chapter 3, we have studied the impact of communication mechanisms on the available

parallelism in transaction level modeling (TLM). Specifically, we have demonstrated the

impact of varying synchronization mechanisms and buffering schemes on the exposed paral-

lelism using different modeling styles of a deep neural network (DNN), GoogLeNet. In this

Phase I modeling, six untimed SystemC TLM-1 and TLM-2.0 models have been developed.

Figure 4.1 places the six models generated in this Phase I, model A to F (green nodes), in a

chart with the number of buffers indicated on the x-axis and the communication mechanism

on the y-axis. We have further quantified the improved parallelism in the above models by

measuring the performance of aggressive out-of-order parallel simulation in the Recoding In-

frastructure of SystemC (RISC) [43]. As a result, we have demonstrated that the design with

the highest amount of parallelism exposed, i.e. model F, is suited best for further refinement

in the system design flow [2].

Expanding on our prior chapter, this chapter explores the critical aspects of modeling and

analysis of timing accuracy and memory contention. In this Phase II modeling, we further re-

fine the untimed TLM-2.0 back-pressure model F with double-buffering to loosely-timed (G)

and approximately-timed (H) models. Moreover, we propose a new loosely-timed contention-

aware modeling style to expose memory contention in a fast and yet accurate manner (model

I).

Furthermore, we define a system-level exploration framework to automatically generate TLM

from an abstract DNN specification. As illustrated in Figure 4.2, the DNN specification

together with modeling parameters constitute the inputs to our proposed model generator,

netspec. Based on user-specified design metrics, netspec (green box) automatically creates

models at desired abstraction levels.

In general, TLM trades off timing accuracy for the sake of simulation speed. This allows
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Figure 4.1: Transaction Level Modeling (TLM) of GoogLeNet DNN with focus on exposing
parallelism (Phase I) and memory contention (Phase II)
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Figure 4.2: Deep neural network (DNN) transaction level modeling (TLM) exploration
framework

system designers and chip architects to rapidly prototype and verify their design candidates

before generating detailed RTL. RTL simulations tend to be orders of magnitude slower
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than SystemC TLM. Traditionally, higher-level abstractions of TLM (i.e. loosely-timed,

LT) mainly focus on functionality and define the programmer’s view of the design for early

software development. On the other hand, lower-level TLM (approximately-timed, AT) can

represent finer-grained timing details at the price of sacrificing simulation speed. However,

with the enormous increase in today’s design complexity, running lower-level models has

turned into a severe obstacle in agile hardware development. Accurate and fast high-level

TLM that can expose the critical aspect of memory contention without sacrificing simulation

performance is needed to efficiently build future computing platforms (orange box in Figure

4.2).

Having a fast and accurate contention model, design candidates can be rapidly evaluated

for metrics such as programmability, performance, power, etc. for a lower-level implementa-

tion, e.g. RTL (blue box in Figure 4.2). Here, a data visualization tool that can generate

transaction-level timing diagrams for early feedback to system designers is beneficial to an-

alyze and address any memory contention in the design.

To summarize, the key contributions in this chapter are the following:

(1) A novel system-level modeling framework and automatic SystemC model generator for

design space exploration (DSE) with focus on mitigating memory contention, lowering mem-

ory footprint, and increasing performance of DNNs (green box)

(2) Early contention modeling in SystemC loosely-timed (LT) models with high accuracy

and fast simulation speed (orange box)

(3) Extensive performance measurement results and data visualization to generate transaction-

level timing diagrams for memory contention analysis (blue box)

The rest of this chapter is organized as follows: In Section 4.2, we present the latency model

for memory, computation and interconnect following the LT coding style, model G in Figure
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4.1. In Section 4.3, we refine the entire model following the AT coding style to achieve higher

timing accuracy, model H in Figure 4.1. In Section 4.4, we describe our novel method for

loosely-timed interconnect and memory contention modeling that simulates as fast as a LT

model yet shows memory contention as accurate as an AT model, model I in Figure 4.1.

Section 4.5 describes the structure of our TLM generator for DSE. Finally, we present our

extensive results and analysis in Section 4.6 and conclude this study in Section 4.7.

Our previous study in Section 2.5.3 shows that the multi-threaded OpenCV library delivers

the highest level of parallelism for simulation speedup compared to existing thread-level

parallelism at SystemC level. Therefore, we rely on multi-threaded OpenCV with a sequential

SystemC simulator in this work instead of using a parallel simulator such as the Recoding

Infrastructure for SystemC (RISC) [43] for better simulation performance. Moreover, RISC

does not yet have the support for all language constructs needed for approximately-timed

modeling.

4.2 TLM-2.0 Loosely-timed (LT) Model

Given that the TLM-2.0 untimed model F provides only causal ordering between processes,

timing is introduced at the next lower abstraction level. Our LT approach models the

start and end times of a transaction using the blocking transport interface with a timing

annotation, providing a good trade-off between timing accuracy and simulation speed.

The LT model adds three sources of latency: (1) memory, (2) computation, and (3) intercon-

nect. Our step-wise approach incrementally refines the model, adding one source of latency

at each step.
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4.2.1 Memory

To add memory latency, the inter-module communication must be revisited. Since events

occur at precise points in simulation time, as soon as a consumer incurs a delay due to

a memory access, it would miss events from the producer. Therefore we replace the feed-

forward event notification with a pair of sc signals for each input and output in every

module (Figure 4.3). Once a producer fills the shared buffer, it increments the num sent

output signal to inform the waiting consumer that new data is available. When the consumer

finishes reading the buffer, it increments the num rcvd input signal. To implement a back-

pressure mechanism, the module waits with the new write transaction when the output buffer

is full.

Figure 4.3: TLM-2.0 LT model module connections

Algorithm 1 lists the pseudo-code used in our TLM-2.0 LT model. The initiator module

writes the layer output using b transport send transactions to the target memory. When

the memory serves the request, it updates the delay object inside the timing annotation

argument with the memory latency and returns immediately, because the simulation is faster

when b transport does not block. The memory latency value depends on the access type

and the data size of the transaction and is configurable for each LT memory module.
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Algorithm 1: Main thread in each module in a TLM-2.0 LT model

while (1) do
while (in num sent - in num rcvd == 0) do

wait(in num sent.value changed event()); // wait until there is a

buffer to read

end
read layer input via an initiator socket;
wait for read latency;
in num rcvd++; // signal producer that the buffer has been read

run layer computation;
wait for computation latency;
while (out num sent - out num rcvd >= num out buf) do

wait(out num rcvd.value changed event()); // wait until there is a

free slot to write

end
write layer output via an initiator socket;
wait for write latency;
out num sent++; // signal consumer that a new buffer is ready to be

read

end

4.2.2 Computation

To estimate the computational latency, we analyze the computational complexity of the

most common constituent layers in a DNN in terms of the number of multiplications (Nmul)

and the number of additions (Nadd). Given a 32-bit single-precision floating-point multiply-

accumulate (FP32-MAC) unit available, we assume the total computational latency of a layer

to be the product of the number of MAC operations and the inverse of the peak floating-point

operations per second (FLOPS): NMAC · s
flop

. Here, the peak FLOPS value is the maximum

number of single-precision floating-point MAC operations that a processing element (PE)

can perform per second. A PE is a basic arithmetic component that at least includes a

32-bit floating-point multiplier and an accumulator register. It is worth mentioning that the

maximum throughput of a PE is the main focus at this stage of modeling. In other words,

implementation details of the PE, such as its clock frequency, number of parallel MAC units,

and the amount of control logic and congestion overhead, are all abstracted away.

54



We describe the timing estimation separately for each layer type. The size of the input

volume to each layer is Wi ×Hi × Ci where Wi, Hi and Ci represent the width, height and

number of channels, respectively.

Convolution Convolution has the following hyper-parameters: number of filters K, kernel

size F , stride S and padding P . Convolution has also learned parameters, weights and

biases. The total number of weights is F · F · Ci · K and the total number of biases is K.

Convolution produces an output volume of size Wo ×Ho × Co where Wo = bWi−F+2·P
S

+ 1c,

Ho = bHi−F+2·P
S

+ 1c and Co = K. To compute one output element for one channel,

Nmulelem = F · F and Naddelem = F · F − 1. To compute one output element for all channels,

Nmulchans
= Ci · Nmulelem = Ci · F · F and Naddchans

= Ci · Naddelem + Ci − 1 + 1 = C · F · F

where the extra addition is for adding the bias value. To compute all output elements for one

filter, Nmulfilter = Wo ×Ho × Nmulchans
≈ Wi·Hi·Ci·F 2

S2 and Naddfilter = Wo ×Ho × Naddchans
≈

Wi·Hi·Ci·F 2

S2 . To compute all output elements for all K filters, Nmul ≈ Wi·Hi·Ci·F 2·K
S2 and

Nadd ≈ Wi·Hi·Ci·F 2·K
S2 .

Rectifier Linear Unit (ReLU) The ReLU is an activation function defined as the pos-

itive part of its argument (max(0, x)). This unit is implemented by a comparator that can

be simply modeled as an adder. Therefore, Nadd = Wi ·Hi · Ci.

Pooling To reduce the spatial size of volumes in the network, pooling down-samples the

input volume by choosing the maximum element inside the kernel. This unit has two hyper-

parameters: kernel size (F ) and stride (S). Pooling produces an output volume of size

Wo×Ho×Co where Wo = bWi−F
S

+ 1c, Ho = bHi−F
S

+ 1c and Co = Ci. To find the maximum

element inside a kernel, it requires Naddelem = F ·F . To compute the output for one channel,

Naddchan = Wo × Ho × Naddelem ≈ Wi·Hi·F 2

S2 . The total number of additions to compute the

output for all channels is Nadd ≈ Wi·Hi·Ci·F 2

S2 .
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Concat A concat layer concatenates two or more volumes and does not perform any com-

putation on the inputs. Hence, its computational complexity is zero.

Since the majority of layer types in our example has been considered as shown in Table 1.1,

the computational complexities of the remaining layers are deferred for now. Furthermore,

the peak computational capacity available in each layer is also configurable.

4.2.3 Interconnect

To refine a dedicated point-to-point communication between a layer and a memory, we

design a generic TLM-2.0 LT interconnect module. The interconnect module arbitrates

and forwards existing transaction objects from initiator layers to a target memory. The

interconnect can also model the latency to accept transaction objects before forwarding

them to the memory.

As an example depicted in Figure 4.4a, the interconnect is placed between the 142 initiator

layers and a single target memory. In this architecture, the interconnect has 142 target

sockets and one initiator socket. The thick double arrows represent the inter-module com-

munication mechanism supporting the timing in the model. Furthermore, the interconnect

supports the modeling of multiple memories. As another example illustrated in Figure 4.4b,

the interconnect is placed between four separate memories with segmented address space.

The main functionality of the interconnect is to route transactions from an incoming target

socket to an outgoing initiator socket. Since each memory has a dedicated address space, the

interconnect routes transactions to the correct memory depending on the address embedded

in the transaction. After address translation, the interconnect forwards the transaction via

the corresponding initiator socket connected to the memory.

To allow maximum flexibility in the interconnect, we design a programmable memory map.

56



(a)

(b)

Figure 4.4: (a) TLM-2.0 LT model with an interconnect (b) TLM-2.0 LT model with an
interconnect and multiple memories

Each address region has an entry in this table which contains the start address, size and

the index of the initiator socket to forward the transaction. To decode an address, the

interconnect inspects the address attribute in the generic payload and looks it up in the

memory map to determine which outgoing initiator socket to forward the transaction to.

If the address is found in the table, the interconnect overwrites the address attribute with

the decoded local address in the memory and forwards the transaction to the correct target

memory. Otherwise, it aborts the simulation with an error message.
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According to TLM-2.0 guidelines, an interconnect module is not allowed to change the data

length attribute of the generic payload. This means that if the data in a transaction is split

into two separate memories, the interconnect must act as the end point for that particular

transaction. Here, the interconnect forms two separate transactions to the memories. In that

respect, the role of the interconnect is dynamic. It functions as an interconnect component

for some transactions and as a target for other transactions.

Our interconnect module can model a wide range of on-chip interconnect topologies and

performance metrics. The choice of the interconnect architecture depends on its cost in

terms of area, power, bandwidth utilization, Quality-of-Service (QoS), etc. In this work,

our interconnect can be considered as a shared bus matrix in contrast to network-on-chip

(NoC) or mesh. However, with the interoperability mechanism offered by TLM-2.0, different

models of interconnect architecture can be easily instantiated and evaluated.

4.3 TLM-2.0 Approximately-timed (AT) Model

As described in Section 4.2, each transaction in a LT model has two timing points, the

start and the end of the transaction. It is possible to increase the number of timing points

for each transaction to have a higher degree of timing accuracy. More accurate timing can

help to better model basic communication aspects such as throughput, latency, bandwidth

utilization and transaction pipelining. However, it is more likely that processes run in lock

step with the SystemC scheduler with more timing points. Hence, it is generally expected

that AT models simulate significantly slower than the LT counterparts.

The AT coding style uses a non-blocking transport interface which in addition to the timing

annotation supports multiple phases within the lifetime of a transaction. The base protocol

for AT modeling defines four phases to represent four timing points for each transaction: the
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start and end of the request and the start and the end of the response. These four phases of

the base protocol can model three timing parameters: (1) the request accept delay, (2) the

latency of the target, and (3) the response accept delay [27, 30].

To build an AT model for a DNN, we first refine the communication part of the LT style

initiator. The blocking transport interface is replaced with an implementation of the nb -

transport fw and nb transport bw functions. Following TLM-2.0 guidelines with regards

to the usage of the generic payload in non-blocking interfaces, we instantiate a memory

manager to acquire a generic payload transaction from a pool of transaction objects and

release it to return to the same pool once the transaction is no longer in use. Furthermore,

the logic for handling the base protocol call sequence is also added with the help of a payload

event queue (PEQ) and its callback method.

Next, the LT interconnect is replaced with an interconnect that supports the handling of

non-blocking interfaces and the AT base protocol. The AT interconnect, unlike its LT

counterpart, can queue incoming requests if there is already a request in progress and the

interconnect has not completed the END REQ phase for that request. AT interconnect can

also queue up incoming responses from the memory to forward transactions later on the

backward path to initiators. The sequence of phase transitions for each transaction helps

to model the contention. The arbitration strategy implemented in our AT interconnect is

First Come First Serve (FCFS) policy. Finally, we reuse the logic for address mapping and

address translation from the LT interconnect.

As the final refinement step, we replace the LT memory with an AT counterpart. Our AT

memory model implements the base protocol with four phases to provide the proper timing

granularity for the AT coding style and accurate contention modeling. The bus width, size,

request and response delays for the AT memory are all configurable. To provide accurate

timing for comparative analysis, we devise an estimation for read and write request and
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response delays for each transaction as follows:

request accept delay = memory latency

response accept delay =
generic payload length

memory bus width
·memory latency

(4.1)

Given TLM-2.0 AT compliance, we connect the multi passthrough initiator socket of

the AT interconnect to the target socket of the AT memory module.

4.4 TLM-2.0 Loosely-timed Contention-aware (LT-CA)

Model

Transaction modeling using loosely-timed (LT) coding style simulates fast because trans-

actions complete in a single blocking transport method call, namely a b transport call.

For the same reason, LT models are usually not used for contention analysis which requires

a detailed sequence of interactions between the initiator and the target within the life of

a transaction. On the contrary, AT coding style uses a non-blocking transport interface

which supports multiple phases within the lifetime of a transaction. This enables resource

contention modeling to find performance bottlenecks in the design. However, an AT model

simulates slower than its LT counterpart because it can contain up to four function calls to

complete a transaction.

AT modeling is one of the more complex aspects of TLM-2.0 which makes AT model develop-

ment a non-trivial task. Therefore, the development of AT models is often postponed to later

stages of the design flow, typically only after the LT model is in place. Moreover, when AT

model development is disregarded as result of a tight project schedule, RTL simulations are

most likely used to find performance bottlenecks. However, chip-level RTL simulations suffer

from orders of magnitude slower simulation speed compared to system-level AT models.
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A cycle-accurate model is the closest abstraction to the final hardware and can exhibit

the most accurate estimation of memory contention in the design. However, as mentioned

earlier, simulation performance of cycle-accurate and even AT models are typically an order of

magnitude slower than a LT model. Importantly, techniques to tackle memory contention at

the lower levels of abstraction usually have a sub-optimal impact on the overall performance.

Hence, it is crucial that memory contention becomes visible already at the early stages of the

design flow. This enables system designers and chip architects to codesign both hardware

and software to optimally mitigate memory bottlenecks.

To have full visibility of memory contention early on with fast simulation, we propose to use

the timing annotation in the blocking transport interface to keep track of memory congestion.

By storing the memory-busy status in a state variable inside the interconnect, we can schedule

transactions to occur at the correct simulation time without the need to store pending

transactions in a PEQ.

As listed in Algorithm 2, we store a timestamp marking the end of memory occupation in

a state variable (busy until). Since the memory is not busy at the start of the simulation,

we initialize busy until to zero. Once a new transaction arrives at the interconnect, we

calculate the remaining time left until the memory becomes available again (busy). If busy is

less than zero, this indicates that the transaction has arrived after the point that the memory

was busy. Hence, the memory is available and busy until is reset to the current timestamp.

Before forwarding the transaction to the memory, the timing annotation of the transaction

is updated with the sum of busy and the interconnect latency. Once the transaction is

forwarded to the memory, the LT memory in turn updates the timing annotation with

its read or write latency and returns immediately. Before returning the transaction to the

initiator, the busy until variable is then incremented with the recorded time for the memory

latency (memory delay).

Note that this minimal change to the LT model of the interconnect is easy to add and does
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Algorithm 2: Maintaining busy state in b transport inside interconnect

initialization: busy until = 0;
busy = busy until − current timestamp;
if busy < 0 then

busy until = current timestamp;
busy = 0;

end
delay = interconnect delay + busy;
d1 = delay;
socket–>b transport(transaction, delay);
d2 = delay;
memory delay = d2 − d1;
busy until += memory delay;

not require any knowledge of AT modeling. Furthermore, any LT-memory type with an

arbitrary memory delay can be connected to the interconnect. We also devise an estimation

for the delay of each generic payload as follows:

payload delay =
generic payload length

memory bus width
·memory latency (4.2)

Given an interconnect that stores the busy state of the memory and the memory delay of

each payload, the model is contention-aware and reflects accurate simulation time. Most im-

portantly, our loosely-timed contention-aware (LT-CA) modeling uses the blocking transport

interface which simulates fast.

4.5 Transaction Level Model Generator

A model generator should be parameterizable, customizable and extensible so that it can be

flexibly utilized for wide design space exploration. The automatic generation of the aforemen-

tioned TLM models has two benefits: (a) it saves time for model development and manual

optimization, and (b) due to the absence of manual coding, it allows for easy verification
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and can minimize human errors. Based on the model generator initially developed in [1] and

[2], we design a significantly improved generator framework, called netspec (Figure 4.2),

to automatically generate customized SystemC TLM-1 and TLM-2.0 models with different

timing accuracy (untimed, LT, AT, and LT-CA) from an abstract DNN specification.

Figure 4.5 illustrates the internal structure of our automatic generator. First, netspec is

instrumented by a set of modeling parameters for design space exploration which describe

a wide range of modeling features, such as the desired TLM standard, coding style, inter-

module communication, and buffer architecture. Second, netspec extracts the network

architecture and network learned parameters by parsing the DNN textual protocol buffer

file (.prototxt) and a DNN binary protocol buffer file (.caffemodel). Third, netspec

constructs an internal graph data structure that stores each node’s inputs and outputs, the

input and output buffer shapes of each node, and the shapes of weights/biases for those

nodes with learned parameters. Fourth, based on the TLM parameters and network hyper-

parameters, netspec constructs a custom generator for each SystemC module. Each module

generator captures the attributes for a customized constructor, the specific method for TLM

communication, the support for temporal decoupling and the buffer addressing. Finally,

netspec generates SystemC code for all the modules in the network, as well as the top level

network module with all its connections.

Netspec is written in Python 3 and uses the Python interface to the Caffe library, pyCaffe,

in order to read the input files and construct its internal data representation of the DNN.

Following good practices of SystemC coding, netspec generates separate SystemC header

and implementation files to enable a modular file structure and build flow.

Netspec can generate both TLM-1 and TLM-2.0 untimed, LT, AT and LT-CA models

based on modeling type, coding style and contention configuration. In the case of TLM-

2.0, netspec automatically generates an address map file based on the buffer architecture

and supports memory address generation for multiple buffers for any layer in the network.
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Figure 4.5: Internal structure of the netspec TLM generator for transaction-level design
space exploration

For DSE, the latency of memory modules, the accept latency of the interconnect and the

peak computational performance available to each layer are all configurable. The global

interconnect supports multiple memories with arbitrary sizes. Table 4.1 summarizes the

features of netspec which provides a DNN system synthesis framework that automatically

generates SystemC models from an abstract specification.

4.6 Experiments and Results

Using our TLM model generator we have generated a set of TLM-1 and TLM-2.0 models of

GoogLeNet. In this section, we describe our experiments, obtained simulation results, and

some insights gained from analyzing the models.
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Table 4.1: Table of parameterized features for netspec model generation and component
customization

Feature Possible values Description

TLM standard TLM1/TLM2 Specify TLM standard
Coding style UT/LT/AT Specify model’s timing points: untimed,

loosely-timed and approximately-timed
Channel type BLK/NBLK/SC In case of TLM-1, user-defined blocking FIFO,

user-defined non-blocking FIFO and SystemC
FIFO

Inter-module communication FF/BP In case of TLM-2.0, feed forward and back-
pressure

Buffer architecture 1..N In case of TLM-1, number of buffers inside ar-
bitrary channels. In case of TLM-2.0, num-
ber of buffers allocated for each module inside
memory

Interconnect architecture 1..N In case of TLM-2.0, number of initiator sockets
connected to memory(ies) for multiple memo-
ries support

Global memory architecture (NumxSize) (in MiB) In case of TLM-2.0, number and size of mem-
ories connected to the interconnect

Computational capacity X (GFLOPS) In case of TLM-2.0, peak computational
capacity available to each layer (default 1
GFLOPS)

Memory latency X (ps) In case of TLM-2.0, word latency for read-
/write memory accesses (default 1ps)

Contention True/False In case of TLM-2.0, disable/enable modeling
of interconnect/memory contention in loosely-
timed model

4.6.1 Simulation setup

We use SystemC 2.3.1 and OpenCV 3.4.1 built in the default release mode settings for sim-

ulation. For benchmarking, we measure the simulator run-time using Linux /usr/bin/time

under CentOS 6.10. To have reproducible experiments, the Linux CPU scaling governor is

set to ‘performance’ mode to run all cores at the maximum frequency and file I/O operations

are minimized. An Intel Xeon E5-2680 CPU running at 2.7 GHz with 8 physical cores and 2

threads per core is used as our simulation platform1. Lastly, the stimulus module is config-

1We have also measured our simulator run-time using another simulation platform with only 4 physical
cores and 2 threads per core. The obtained simulation results confirm identical pattern in measured total
simulator run-time for the host with fewer number of available cores.
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ured to feed 100 images with size of 224x224 pixels to the model which results in reasonable

simulator run-times for our experiments.

4.6.2 Memory load estimation

For an estimation of the load on the memory from the DNN, we generate an untimed TLM-

2.0 model. The layers’ input and output data are stored in a single global memory and

each layer uses its own local storage to process its data. We use double-buffering in the

memory so that the producer layer can write to the front buffer and the consumer layer can

simultaneously read the data from the back buffer, and vice versa. Since the untimed model

runs on a delta-cycle basis, we devise a specific buffer architecture for the concat layers

at the bottom of the inception modules to compensate for the unbalanced graph topology.

The concat layers require 4, 2, 2, and 3 buffers in the tracks to synchronize correctly in the

double-buffering scheme. Figure 4.6 shows the total read and write memory accesses to the

single memory architecture using the model running the classification of 100 images. As

the figure shows, the memory accesses peak at over 90 million bytes per delta-cycle once

all layers are active and processing data. This confirms that GoogLeNet is a very memory

intensive application.

The TLM-2.0 untimed model also measures the memory usage of the DNN. For example,

Table 4.2 lists the memory requirements for each layer in the GoogLeNet. The total required

memory for each layer is the combination of its input buffers, output buffer and, in case of

learned parameters, its weights and biases. To reduce the memory footprint of the DNN,

adjacent modules can share their input/output buffers. Hence, a consumer module points

to the output of the corresponding producer module.

As described in Section 3.3.1, to implement a double-buffering scheme, extra filler buffers

are required to balance the graph architecture. Therefore, the total memory requirement
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Figure 4.6: Total memory accesses for pass of 100 images in GoogLeNet

of GoogLeNet in a double-buffering mode is double the size of the total output buffers:

40.02 × 2 = 80.04 MiB. It is also worth mentioning that with a smart addressing scheme,

the memory footprint can be further reduced. For example, the consumers of the concat

layers can simply point to the output buffers of the concat producers.

4.6.3 Comparison of LT, AT, and LT-CA models

Our proposed netspec can automatically generate TLM-2.0 models for early software per-

formance analysis and virtual prototyping. The generated LT models carry sufficient timing

information to provide a coarse-grain estimation of the application execution time. However,

the generic LT does not take into account any bus contention. In contrast, our proposed LT-

CA counterpart is developed to analyze the effect of interconnect and memory contention.

Additionally, AT models provide even better timing accuracy for memory contention analy-

sis. Therefore, we also generate AT models of our application for comparison.
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Table 4.2: GoogLeNet total memory footprint

Layer type Input [MiB] Output [MiB] Weights [MiB] Bias [MiB] Total memory [MiB]

Input 0.000 0.574 0.000 0.000 0.574
Convolution 17.78 12.30 22.75 0.027 52.87
ReLU 12.30 12.30 0.000 0.000 24.61
Pooling 11.16 5.411 0.000 0.000 16.57
LRN 3.062 3.062 0.000 0.000 6.125
Concat 4.713 4.713 0.000 0.000 9.426
Dropout 0.003 0.003 0.000 0.000 0.007
InnerProduct 0.003 0.003 3.906 0.003 3.917
Softmax 0.003 0.003 0.000 0.000 0.007
Extra Fillers 0.000 1.638 0.000 0.000 1.638

Total 49.04 40.02 26.66 0.030 115.76

By choosing four different memory latencies2 (1ns, 10ns, 100ns, 1000ns) and four different

computational capacities3 (1 GFLOPS, 10 GFLOPS, 100 GFLOPS, 1000 GFLOPS), net-

spec automatically generates 16 different LT models. We also instruct netspec to generate

16 LT-CA models and 16 AT models across the same parameters. The LT memory bus is

configured to have a 64-bit width and the interconnect is configured to avoid extra accep-

tance latency. Furthermore, we set the burst length to 8 and the size of the generic payload

for each transaction is configured to be the burst length multiplied by the memory data

width (8*8B = 64B). Since the AT memory can model both request and response accept

latencies, we configure the AT memory request accept delay equal to memory latency and

the response accept delay identical to LT-CA and LT memory delays. Finally, we set the

size of the generic payload for each transaction identical to LT-CA and LT models (64B).

Table 4.3 summarizes the total simulated time for all 48 models.

2Sweeping memory latency and computational capacity values are based on today’s technological candi-
dates to fulfill those requirements. For example, current memory technology to realize aforementioned access
delays includes static random-access memory (SRAM), high bandwidth on-chip memory, dynamic random
access memory (DRAM), and flash memory.

3A viable candidate to realize such computational capacities could be a massively parallel processor array.
For example, chips such as Epiphany-V [48] (2016) and Manticore [70] (2020) have already demonstrated
high performance and energy-efficient many-core architectures. Considering their competitive efficacy in
performance and energy metrics such as GFLOPS/mm2, GFLOPS/Watt and Watt/mm2, there are good
indications that with the increase in transistor density in the future, such computing power may be available.
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Table 4.3: Total simulated time of GoogLeNet for different computational capacities and
memory latencies (in seconds)

Loosely-timed Loosely-timed contention-aware Approximately-timed

comp
memory

1ns 10ns 100ns 1000ns 1ns 10ns 100ns 1000ns 1n 10ns 100ns 1000ns

1000 GFLOPS 0.088 0.877 8.763 87.62 1.161 11.61 116.1 1161 1.161 11.61 116.1 1161
100 GFLOPS 0.403 0.888 8.773 87.63 1.164 11.61 116.1 1161 1.164 11.61 116.1 1161
10 GFLOPS 3.603 4.034 8.888 87.73 3.618 11.64 116.1 1161 3.623 11.64 116.1 1161
1 GFLOPS 35.60 36.03 40.34 88.88 35.61 36.18 116.4 1161 35.62 36.23 116.4 1161

As shown in Table 4.3, the total simulated times of LT models (left box) are significantly

less than their LT-CA and AT counterparts. In generic LT modeling, transactions that

simultaneously access the shared memory, complete their accesses at the same simulated

time point. This lack of contention modeling incorrectly makes the total simulated time

shorter than with the other modeling styles that reflect contention. As shown in the middle

box of Table 4.3, the total simulated times of the LT-CA models show significant increase

compared to LT models by taking the effect of contention into account. Finally, the right

box shows the total simulated times of AT models that accurately model contention of both

memory requests and memory responses. Comparing LT-CA and AT simulated times shows

the high accuracy and high fidelity of our proposed LT-CA modeling.

Figures 4.7a and 4.7b visualize the total simulated time of LT and LT-CA models reported

in Table 4.3. As expected, both lower computational capacities and higher memory laten-

cies increase simulated time. However, the impact of memory with higher latencies on the

performance is more significant. For example, the memory with 1000ns latency performs

constantly over all computational capacities, indicating an increase in computational power

leaves no significant effect on simulated time. Moreover, the impact of memory with higher

latencies on the performance becomes more significant in higher computational powers. For

example, having 1000 GFLOPS computational capacity available, 10x increase in the mem-

ory latency from 10ns to 100ns leads to 10x decrease in performance. On the contrary, at

the same interval in 1 GFLOPS, performance only decreases 3x. This clearly shows the
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(a)

(b)

(c)

Figure 4.7: Simulated time of GoogLeNet for a pass of 100 images across 4 computational
capacities and 4 memory latencies (a) Loosely-timed (b) Loosely-timed contention-aware (c)
Contention ratio

application is heavily memory-bound, rather than compute-bound.

Figure 4.7c illustrates the impact of memory contention by showing the ratios of simulated

times for LT-CA models over simulated times for LT models. The negative effect of memory
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contention is visible in every computation/memory configuration. However, the contention

is more noticeable in higher computational capacities. For example for 1000 GFLOPS, the

contention reduces the performance by 13x. Meanwhile, the contention has a lower impact

on the lower computational capacities. For 1 GFLOPS, the decreasing memory latency by

10x from 10ns to 1ns (which is quite an expensive design decision), has only little effect on

the performance.

In contrast to the simulated execution times, Table 4.4 lists the total simulator run-time

for all LT, LT-CA and AT models. As shown, LT models simulate faster than their LT-CA

and AT counterparts, because they use only a single function call to complete a transaction.

LT-CA models simulate slightly slower than LT models (1.2x) by storing memory congestion

status inside the interconnect. AT models have much longer simulator run-times as each

transaction can have multiple phases and can use up to four function calls to complete a

transaction. In particular, the simulator speed of the LT-CA models is an order of magnitude

higher than their AT counterparts. Notably, the LT-CA models show an impressive total

speedup of 46x in simulation while providing the same accuracy.

Table 4.4: Total simulator run-time of GoogLeNet for different computational capacities and
memory latencies (in seconds) on a 32-core host

Loosely-timed Loosely-timed contention-aware Approximately-timed

comp
memory

1ns 10ns 100ns 1000ns 1ns 10ns 100ns 1000ns 1n 10ns 100ns 1000ns

1000 GFLOPS 124.4 121.6 120.4 119.8 141.3 140.0 139.0 137.9 6496 6594 6520 6473
100 GFLOPS 106.9 123.6 123.0 124.0 145.8 145.0 144.9 141.4 6476 6504 6569 6434
10 GFLOPS 105.0 108.5 123.4 131.8 126.5 146.2 142.9 142.7 6310 6669 6544 6529
1 GFLOPS 98.85 104.3 108.9 127.6 124.9 124.6 143.8 141.7 6493 6360 6621 6473

4.6.4 Contention visualization

By having the fast and accurate LT-CA models available, we can further analyze the memory

access patterns and the effect of the interconnect/memory contention in the network. We

71



simulate the application with 1000 GFLOPS computational capacity and 1ns memory latency

using the same setup in LT-CA modeling and the buffer size as the generic payload data

length. Figure 4.8 shows the transaction-level timing diagram of the first inception module,

inception 3a, in GoogLeNet. The left diagram shows the timing without contention (LT

model) and the right one with contention (LT-CA). The x- and y-axes represent the simulated

time and the names of the parallel tracks in the inception module, respectively. The elapsed

times for memory write, memory read, computation and contention are colored in blue, light

green, dark green and red, respectively.

Since the LT does not model contention, the layers in parallel tracks access memory without

blocking each other. However, when a layer accesses the memory in the LT-CA model,

the other layers are blocked and wait until access becomes available again (red areas). For

instance at the beginning of the contention diagram in Figure 4.8, once the first layer in the

1x1 track issues a read transaction, all layers in the other tracks are blocked until the read

transaction completes.
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3x3

5x5

pool
inception_3a
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Figure 4.8: Simulated time of the inception 3a module without (left) and with (right) con-
tention (1000 GFLOPS, 1ns memory latency)

It is clear from the visual charts in Figure 4.8 that the LT-CA model accurately reflects the

red idle waiting periods for the modules blocked by memory contention. For example, the

first layers in all four tracks of inception 3a simultaneously initiate read accesses to the

memory at 5.07ms with a payload size of 602,112 bytes. The layer in the 1x1 track grants

access and blocks the memory for approximately 0.07ms (total delay to access 602,112 bytes
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of data). Therefore, the read transaction of the layer in 3x3 track experiences a delay of

0.07ms. Subsequently, layers in 5x5 and pool tracks face contention of 0.15ms, and 0.23ms,

respectively. Later, as soon as the layer in the 1x1 track completes its computation at 5.15ms,

it sends a transaction to write its result to the memory. Since there are already pending

transactions, the layer in the 1x1 track must wait until the memory becomes available again

at 5.37ms once the layer in the pool track completes its read transaction. Hence, the timing

annotation of the write transaction for the layer in the 1x1 track is updated with the waiting

time for the next memory availability (5.37ms - 5.15ms = 0.22ms). This schedules the write

operation to start at 5.37ms precisely after the memory has become available (start of the

blue bar in the 1x1 track in Figure 4.8).

Figures 4.9 and 4.10 show the transaction-level timing diagrams for all inception modules in

the GoogLeNet for one pass of an image without and with contention, respectively. As seen

in Figure 4.10, layers in parallel tracks block each other and contention is high. Furthermore,

the track of 3x3 has the highest elapsed time in all inceptions, making it the critical path of

the execution. That is valuable feedback to system architects on how to allocate computation

resources.

The effect of contention becomes more significant once the DNN pipeline is full with images

to process and layers frequently access the shared memory. We simulate the LT-CA model of

GoogLeNet by feeding in 100 images to classify. Figure 4.11 shows the timing diagram for the

75th image. As clearly seen by the almost all red coloring in the figure, the layers are mostly

blocked due to contention. The effect of back-pressure is also quite visible especially in the

first inception module where all its layers are mostly blocked for the subsequent inceptions

to process.

The high amount of contention on the shared memory suggests new processor architectures

that place private local memories close to computing units. Memory architectures that rely

on fine-grained data localities of the given application, reduce the average bandwidth usage
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Figure 4.9: Simulated time of all 9 inception modules without contention (1000 GFLOPS,
1ns memory latency)
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Figure 4.10: Simulated time of all 9 inception modules with contention for image #0 (1000
GFLOPS, 1ns memory latency)

on the global shared memory. Such a memory architecture eliminates the performance over-

head of the memory contention and also complex cache coherency. However, new processor

architectures with private local memories close to the computing units require us to rethink
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Figure 4.11: Simulated time of all 9 inception modules with contention for image #75 (1000
GFLOPS, 1ns memory latency)

the conventional programming model, compilation flow and run-time system support. For

the exact same reason, TLM of architectures with local memories will also require fast yet

accurate estimation of the contention and our approach becomes attractive for enabling the

efficient codesign of both hardware and software solutions.

4.7 Conclusion

Interconnect and memory contention is a critical aspect in system-level models that requires

attention already at the early design stages. In this chapter, we have presented a SystemC

TLM framework that automatically generates a configurable set of TLM-1 and TLM-2.0

models from a high-level DNN specification. For efficient design space exploration and per-

formance optimization, our novel loosely-timed contention-aware (LT-CA) modeling breaks

the speed/accuracy trade-off and offers high simulation speed with accurate observation of

memory contention. We have demonstrated the effectiveness of this approach for represen-
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tative large DNN graph structures such as GoogLeNet. Our LT-CA modeling is an order

of magnitude faster than its equivalent approximately-timed model (46x) while maintaining

the same timing accuracy. Furthermore, we have been able to visualize memory contention

to a greater extent using transaction-level timing diagrams, enabling effortless detection of

excessive concurrent memory accesses.
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Chapter 5

Toward Cycle Accuracy in

System-Level Memory Modeling

A cycle-accurate model is the closest abstraction to the final hardware implementation and

can exhibit the most accurate estimation of memory contention in the design. However,

simulation performance of cycle-accurate models is typically orders of magnitude slower than

system-level models. Importantly, techniques to tackle memory contention at the lower levels

of abstraction usually have a sub-optimal impact on the overall performance. Therefore, it is

crucial that memory contention becomes visible already at the very early stages of the design

cycle. This enables system designers and chip architects to truly codesign both hardware

and software to optimally mitigate memory contention.

5.1 Introduction

To find the final optimal implementation candidate, TLM models are further refined down

to cycle-accurate models of the platform architecture. These cycle-accurate models can
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incorporate instruction set simulators (ISS), custom hardware components, and interface

components [20]. The ISS represents general-purpose processors that can execute a stream

of instructions. Custom hardware components are models of accelerator cores or intellectual

property cores (IP cores). Interface components are refinement of interconnection modules

which can consist of arbiters, interrupt controllers, bridges and transducers. In later stages of

refinement, ISS can be replaced with processor’s RTL and in case of a custom hardware and

interface components, synthesizable cycle-accurate models can be fed to high-level synthesis

(HLS) tools to generate RTL descriptions of the IP core and interface modules.

In this chapter, we primarily aim at the cycle-accuracy of the memory model which has a

significant impact on the performance of ISS, IP cores and interface components. First, we

further refine the TLM-2.0 approximately-timed model by adding a cycle-accurate model of

a shared memory subsystem. The cycle-accurate memory model provides a higher timing ac-

curacy for contention analysis. Hence it gives a more accurate estimation of the performance

of the model in terms of simulated time. However, the high temporal accuracy sacrifices the

simulation speed. Therefore, we revise our loosely-time contention aware (LT-CA) memory

delay modeling to estimate further accuracy comparable to the cycle-accurate TLM model

of the memory subsystem.

Observing the high amount of contention on the shared memory suggests new processor

architectures. To eliminate the performance overhead of the memory contention and also

complex cache coherency, we propose an alternative memory architecture that relies on fine-

grained data localities of the given application, hence reducing the average bandwidth usage

on the global shared memory.

To further evaluate our system-level modeling framework, we feed the specification of another

state-of-the-art DNN, Single Shot MultiBox Detector (SSD) network introduced in 1.4.2, to

our automatic SystemC model generator. Using the TLM-2.0 LT-CA of the SSD network,

we are able to find memory contention in a fast and accurate fashion.
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Our key contributions in this chapter are as follows:

(1) A proposal of an enhanced memory delay model for loosely-timed contention-aware mod-

eling to improve timing accuracy comparable to a cycle-accurate memory model

(2) A local memory architecture as an alternative to conventional approaches (i.e., globally

shared memory) to mitigate memory contention in DNNs

(3) Extensive experimental results with cycle-accurate memory models and accuracy analysis

The rest of this chapter is organized as follows: Section 5.2 describes the TLM-2.0 AT model

with a cycle-accurate memory subsystem. Section 5.3 presents our enhanced memory delay

model to show the accuracy and fidelity of the LT-CA modeling compared to a cycle-accurate

memory model. To mitigate memory contention, we introduce a new processor architecture

model with local memories in Section 5.4. We present our extensive results and analysis in

Section 5.5. Furthermore, we demonstrate the effectiveness of our modeling framework by

modeling the SSD network using its abstract DNN specification in Section 5.5.4. Finally,

Section 5.6 concludes and summarizes this chapter.

5.2 TLM-2.0 AT Model with Cycle-Accurate Memory

To provide accurate estimation of the performance, we refine the approximately-timed mem-

ory model with a cycle-accurate memory subsystem model. Towards this end, we make use of

the DRAMSys [60] framework that contains a TLM-based model of an accurately modeled

Dynamic Random Access Memory (DRAM) subsystem. Specifically, we rely on DRAM-

Sys4.0 [32] [31], a cycle-accurate DRAM subsystem design exploration framework based on

SystemC TLM-2.0 with AT coding style. Since the AT base protocol is not sufficient to model

the communication between memory controller and device with full accuracy, DRAMSys4.0
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relies on its own custom TLM AT protocol, called DRAM-AT, to model DRAM commands.

Moreover, DRAMSys reduces the number of simulated clock cycles by only simulating the

clock cycles in which DRAM device state changes occur. This approach results in high sim-

ulation speedup in comparison to RTL memory model simulations which require simulating

all clock cycles to model DRAM commands.

Figure 5.1: TLM-2.0 AT model with an interconnect and DRAM subsystem implemented
by DRAMSys4.0 [32] framework

To use DRAMSys memory models, we include the DRAMSys library header in our source

code and dynamically instantiate the DRAMSys module inside our AT model. Given TLM-

2.0 AT compliance, we connect the multi passthrough initiator socket of the AT in-

terconnect to the multi passthrough target socket of the DRAMSys module. The AT

models of computation and interconnect modules remain unchanged. Figure 5.1 shows the

TLM-2.0 AT model diagram of GoogLeNet with DRAMSys memory subsystem module con-
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nected to the AT interconnect.

As illustrated in Figure 5.1, DRAMSys module contains detailed models of memory con-

troller, channel controller and DRAM device. The frontend part of DRAMSys arbiters,

maps and forwards incoming transactions to different channel schedulers based on specific

mapping configuration and priority scheme. Since the single channel in the subsystem is

independent, each channel has its own scheduler and controller core. Once the scheduler col-

lects and reorders transactions, it forwards them to the backend with the channel controller

that handles the correct communication with the DRAM device.

DRAMSys4.0 framework supports different memory standards, addressing schemes, and

scheduling policies. These features allow us to experiment with different memory organi-

zations and memory timings for design space exploration. Furthermore, the DRAMSys4.0

framework is written in SystemC, which makes the integration of a TLM of a given DNN

application with DRAM models quite seamless. Finally, co-simulation of full SystemC TLM

models also offers the advanced analysis and debugging capabilities of the TLM standard.

The TLM-2.0 AT model with a cycle-accurate memory can accurately reflect the effect of

the memory contention. This means the performance of such a model would be the closest

estimation to the performance of the final implementation compared to pure AT, LT-CA

or LT models. However, the simulation speed of cycle-accurate models would be orders

of magnitude slower than models in higher levels of abstraction. In the next section, we

revise our delay estimation in LT-CA modeling to provide better accuracy in terms of model

performance without majorly sacrificing the simulation speed.
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5.3 Enhanced Delay Estimation in TLM-2.0 LT-CA

Model

As discussed in Section 4.4, TLM-2.0 LT-CA modeling approach makes contention an insep-

arable part of modeling even for designs at high levels of abstraction. In Section 4.6.3, we

also conducted a systematic and comparative analysis between three modeling approaches

i.e. LT, LT-CA and AT with respect to total simulated time. We showed the high accu-

racy and high fidelity of LT-CA modeling compared to the AT model. In this section, we

enhance the LT-CA delay modeling to provide high accuracy and high fidelity of simulated

time estimates comparable to cycle-accurate memory.

We are aware that simplified estimation models yield fast simulation but generally result in

lower accuracy. However, a high level of accuracy may not always be required as long as

the estimated value of the design quality metric allows the system designer to make proper

tradeoff decisions [21]. Therefore, we would revise our LT-CA delay estimation model that

yields estimates with high fidelity 1.

For reference, we repeat the original delay estimation equation used in LT-CA models here

(Equation 4.2):

payload delay =
generic payload length

memory bus width
·memory latency (5.1)

For brevity, we rewrite the above equation as follows:

delay =
gp len

bus width
·memory latency (5.2)

1Fidelity of an estimation method is defined as the percentage of correctly predicted comparisons between
design implementations [36].
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We factor in the memory clock frequency and its data rate in the delay estimation and revise

the memory latency:

memory latency =
memory clock period

data rate
(5.3)

Aside from the memory latency incurred by the data transfer, we also add an average access

time overhead factor Toverheadgp for each memory byte access in our delay model. Hence, we

revise the original delay model in Equation 5.2 as follows:

delay =
gp len

bus width
·memory latency + gp len · Toverheadgp (5.4)

The Toverheadgp can be estimated by the difference between the inverse of average memory

bandwidth and the maximum memory bandwidth. The overhead factor would be simply the

extra time required for each byte accessed in the memory and has the unit of seconds:

Toverheadgp = (
1

BW avg

− 1

BW max

) (5.5)

The maximum bandwidth can be calculated based on memory clock frequency, its data rate,

and memory bus width as follows:

BW max =
data rate

memory clock period
· bus width (5.6)

The average memory bandwidth is a fraction of the maximum memory bandwidth. There-

fore, we introduce a memory bandwidth utilization factor β to estimate the average memory
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bandwidth,

BW avg = β ·BW max where 0 < β <= 1 (5.7)

The accurate value of β can be only calculated using cycle-accurate model simulation. How-

ever, a nominal value of β can be selected for system-level modeling simulation and be

calibrated in later stages of refinements. Moreover, since LT-CA simulation is orders of

magnitude faster than AT or cycle-accurate simulation, different intervals of β values can be

selected and simulated for experimentation.

Finally, we simplify the delay estimation for each memory transaction as follows:

delay =
gp len

bus width
· memory clock period

data rate
+ gp len ·

1

BW max

· ( 1

β
− 1)

delay =
gp len

BW max

+
gp len

BW max · β
− gp len

BW max

delay =
gp len

BW max · β

(5.8)

This refined memory delay estimation provides an average delay for each memory access

based on the length of payload, maximum memory bandwidth, and bandwidth utilization.

Given the enhanced delay estimation and contention modeling inside the interconnect, LT-

CA provides more accurate total simulated time. This makes contention a visible part of

a model in early system development, benefiting system designers and system architects to

incorporate memory contention in loosely-timed models with minimum effort, acceptable

accuracy and high simulation speed.
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5.4 Processing-in-Memory (PIM) with Local Memo-

ries

LT-CA modeling enables exploration of alternative memory structures fast yet accurately.

To minimize contention and improve the locality of data, one proposal can be an architecture

with private local memories and interconnects adjacent to computing units. As illustrated in

Figure 5.2, we model each layer with two initiator sockets connected to two separate private

local memories which store layers’ input and output. The global interconnect is broken into

local interconnects which exclusively service two adjacent layers. In other words, the global

shared memory is transformed into many private local memories which store the intermediate

results.

Figure 5.2: TLM-2.0 LT-CA model with local interconnects and private memories

Since data is stored and processed locally in private memories, there is no need for any extra

logic to implement cache coherence protocols between multiple computing units. This also

eliminates the performance penalty for cache coherency, high congestion in the interconnect

and high contention in a global shared memory. Moreover, such a local memory architecture

makes programs data-race free as the data is only shared between two adjacent modules and

not concurrently accessed by other threads.
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As mentioned earlier, the data in the local memory architecture is stored and shared only

between adjacent layers. Therefore, layers with more than one input or output require

multiple private local memories for each of their input or output layers. Consequently,

multi-producer and multi-consumer layers impose an extra design challenge on the local

memory architecture. In the case of a multi-consumer layer, we partition the output data

into multiple smaller local memories and devise a static scheduling scheme between the

consumer layers to avoid contention in simultaneous read accesses. The sizes of these local

memories are equal to the output buffer size divided by the number of consumers. This

leaves the total memory requirement of the application unchanged.

Furthermore, the interconnect simple target socket which supports only one-to-one con-

nections is replaced with a multi passthrough target socket to support the one-to-many

connections. As an example illustrated in Figure 5.3a, the input data to the inception mod-

ule is partitioned into four segments and placed into four local memories. Each consumer

layer dispatches four sequential non-overlapping read transactions to read its input. Since

the accesses are non-overlapping, the input data for each track is fetched in parallel without

any contention.

In the case of a multi-producer layer, each producer owns a private local interconnect and

a private memory. The dedicated local memory and local interconnect for each input layer

prevents the possible competition between producers to access the single local memory placed

between all the producers. In this structure, the producers output their data to their own

local memory as soon as they complete their processing without any threat of contention

induced by the other producers. For example, such a structure is shown in Figure 5.3b for

the inception module output.

We build the LT-CA model of the proposed local memory architecture. Since all data is

stored close to the compute cores and the possibility for contention is carefully looked after,

memory contention is completely resolved. Therefore, the simulated time of the network
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Figure 5.3: (a) Inception module input local memory structure (multi-consumer) (b) Incep-
tion module output local memory structure (multi-producer)

matches exactly with the LT model with global shared memory that does not model con-

tention. The benefit of the local memory architecture becomes more significant when the

network is filled with images (Figure 4.11).

Last but not least, since von Neumann computing is implicitly based on accesses to globally

shared memory [46], von Neumann programming styles inherently concern themselves with
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the enormous traffic through the memory bottleneck [4]. Therefore, new processor archi-

tectures with private local memories close to the computing units require us to rethink the

conventional programming model, compilation flow and run-time system support. For the

exact same reason, TLM of the local memories architecture with fast yet accurate estima-

tion of the contention is an attractive approach that enables codesign of both hardware and

software solutions.

5.5 Experiments and Results

In this section, we describe our extensive cycle-accurate simulation results using DRAM-

Sys4.0. To show the accuracy of our enhanced LT-CA delay modeling, we compare simula-

tion results of DRAMSys with both LT and enhanced LT-CA models. Finally, we show how

the LT-CA model of SSD can be used also to effectively visualize memory contention.

5.5.1 Simulation setup

We use SystemC 2.3.4 with the DRAMSys4.0 framework for a cycle-accurate memory mod-

eling simulation. OpenCV 3.4.1 is built in the default release mode setting. We simulate the

GoogLeNet AT model with two different memory standards, DDR3 and DDR4. Table 5.1

shows the two DRAM memory specifications used for simulation. To benchmark simulation

execution performance, we measure simulator run-time using Linux /usr/bin/time under

CentOS 7. An Intel Xeon E3-1240 CPU running at 3.4 GHz with 4 physical cores and 2

threads per core is used as our simulation platform.

To generate the DNN model with cycle-accurate memory, we extend netspec to support

model generation with DRAMSys. Furthermore, we also add support for configurable band-

width utilization factors required for enhanced LT-CA modeling.
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Table 5.1: DRAM memory specifications

Parameter DDR3-1600 DDR4-1866

Address mapping 8x1Gbx8, 1KB page
(row, bank, column)

8x4Gbx8, 1KB page
(row, bank, column)

Scheduling policy FR-FCFS FR-FCFS
Specification MICRON DDR3-1600 JEDEC DDR4-1866
#Ranks 1 1
#Bank Groups 1 4
#Banks 8 16
#Rows 16384 32768
#Columns 1024 1024
#Devices on DIMM 8 8
#Channels 1 1
Chip data bus width 8 8
Burst length 8 8
Data rate 2 2
Clock frequency 800 MHz 933 MHz

5.5.2 DRAMSys

We build and simulate successfully the cycle-accurate model of the GoogLeNet with DRAM-

Sys4.0 using netspec. In order to show the memory access rates with different computa-

tional capacities, we run multiple simulations and list the reported bandwidth figures from

the DRAMSys framework. Table 5.2 shows the average and maximum bandwidth figures for

DDR3-1600 running at 800 MHz and DDR4-1866 running at 933 MHz with a burst length

of 8 and a total bus width of 8B. As shown in the first two rows, the average bandwidths do

not improve by increasing the computational capacity. This clearly shows the application is

heavily memory-bound, rather than compute-bound.

Figure 5.4 shows the strip plot of memory latencies for the AT model reported by DRAMSys

DDR3 for all 145 million transactions. Due to the complex and pipelined access behavior of

DRAM, it is not possible to predict an exact distribution of the delays. This phenomenon

is better highlighted by presenting memory latency histograms in different delay intervals as
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Table 5.2: GoogLeNet memory bandwidth figures on DDR3-1600 and DDR4-1866 (burst
length 8, memory bus width 8B)

DDR3-1600 DDR4-1866

computation
BW (Gb/s)

Avg BW Max BW Avg BW Max BW

1000 GFLOPS 65.72 102.4 94.02 119.4
100 GFLOPS 64.91 102.4 93.24 119.4
10 GFLOPS 20.29 102.4 20.22 119.4
1 GFLOPS 2.08 102.4 2.08 119.4

depicted in Figure 5.5.

Figure 5.4: Strip plot of memory transaction delays for GoogLeNet AT model with DRAM-
Sys DDR3-1600 (1000 GFLOPS)

Given the underlying distribution of delay is unknown but has finite mean and variance, the

sampling distribution of the average delay is approximately Gaussian by the central limit

theorem [40]. This allows us to compute the probability involving the average delay even

though we do not know the exact distribution of the delay. We will highlight this quality

by comparing the delay distributions generated by the cycle-accurate DRAMSys model and

the LT-CA model that estimates the average delay in the next section.
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Figure 5.5: Histograms of memory transaction delays for GoogLeNet AT model with DRAM-
Sys DDR3-1600 in partitions (1000 GFLOPS)

5.5.3 LT, LT-CA and DDR

To compare the accuracy of LT-CA modeling between the contention unaware LT model

and the cycle-accurate DRAM model, we instrument netspec to generate three sets of

GoogLeNet model as follows:

1. AT model of GoogLeNet with the cycle-accurate DRAMSys DDR3 model with speci-

fication outlined in Table 5.1. To provide accurate timing, the size of generic payload

for each transaction is configured to be the burst length multiplied by the memory

data width (8*8B = 64B)

2. LT-CA model of GoogLeNet with the LT interconnect with contention modeling and

the LT memory with the enhanced delay estimation matching DDR3 memory spec-

ification, namely memory latency of 0.625ns (1/(2*800MHz)), a nominal bandwidth

utilization factor of 66%, and generic payload size of 64B
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3. LT model of GoogLeNet with LT interconnect and LT memory with the enhanced delay

estimation matching DDR3 memory specification, namely memory latency of 0.625ns

(1/(2*800MHz)), a nominal bandwidth utilization factor of 66%, and generic payload

size of 64B

Table 5.3 shows total simulated times of GoogLeNet for LT, LT-CA and DDR3-1600 models.

As shown in Table 5.3, the performance of the LT-CA model with enhanced delay estimation

provides results comparable to cycle-accurate DDR3 model. However, the LT model without

any contention modeling estimates the performance of the design with a high error margin

e.g. over 12x less in 1000 GFLOPS.

Table 5.3: Total simulated time of GoogLeNet for LT, LT-CA, and DDR3-1600 models (in
milliseconds)

computation
model

LT LT-CA DDR3

1000 GFLOPS 84.067 1097.2 1130.7
100 GFLOPS 404.77 1100.3 1144.8
10 GFLOPS 3600.8 3614.8 3662.7
1 GFLOPS 35601 35612 35660

We repeat the same experiment with the DDR4 memory model. We again instrument

netspec to generate three sets of GoogLeNet model: AT model with cycle-accurate DRAM-

Sys DDR4-1866 specified in Table 5.1 with generic payload size of 64B (burst length ×

memory data width), LT-CA and LT models matching DDR4 memory specification, namely

memory latency of 0.536ns (1/(2*933MHz)), a nominal bandwidth utilization factor of 66%,

and generic payload size of 64B. Table 5.4 shows total simulated times of GoogLeNet for

the above models. It is evident that LT-CA models estimate total simulated times with ac-

ceptable accuracy and fidelity compared to LT models. As expected, LT-CA models are not

able to estimate the accurate total simulated times compared to the cycle-accurate DRAM

model. However, LT-CA models still provide better estimations compared to contention

92



unaware LT models used broadly in early system design and modeling.

Table 5.4: Total simulated time of GoogLeNet for LT, LT-CA, and DDR4-1866 models (in
milliseconds)

computation
model

LT LT-CA DDR4

1000 GFLOPS 74.214 938.15 790.28
100 GFLOPS 394.22 941.49 796.90
10 GFLOPS 3594.2 3632.3 3675.2
1 GFLOPS 35942 35604 35672

We also measure the simulator run-time of GoogLeNet for each of the modeling approaches

to evaluate their simulation execution performances. Table 5.5 summarizes simulator run-

time for DRAMsys DDR models together with their corresponding LT and LT-CA models.

LT contention unaware models have the fastest simulation execution time. LT-CA models

simulate slightly slower due to contention modeling overhead (1.2x). As expected, DDR

models have the slowest simulation execution time compared to LT (90x-100x) and LT-CA

models (75x-85x). Overall, LT-CA modeling shows a significant simulation speedup with an

impressive timing accuracy.

Table 5.5: Total simulator run-time of GoogLeNet for LT, LT-CA and DDR models (in
seconds) on a 8-core host

DDR3-1600 DDR4-1866

computation
model

LT LT-CA DDR3 LT LT-CA DDR4

1000 GFLOPS 72.38 84.36 7228 79.27 85.27 8310
100 GFLOPS 65.98 85.62 7168 66.02 84.98 8618
10 GFLOPS 64.33 76.56 5810 64.29 76.79 6495
1 GFLOPS 64.90 75.75 5724 64.72 78.15 6194

To signify the effect of memory bandwidth utilization factor, we instrument netspec to

generate GoogLeNet LT and LT-CA models by only sweeping β values for different com-

putational capacities. Table 5.6 shows total simulated times of GoogLeNet LT and LT-CA
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models for β values of 0.1 to 1 with an increasing step of 0.1. As seen in column 1 and 2,

LT-CA models estimate the total simulated times much higher than the corresponding LT

models. This stems from the contention modeling in LT-CA models and preventing con-

current memory accesses to finish early. Furthermore, comparing the simulated times for β

values of 0.6 and 0.7 for LT and LT-CA models, it confirms LT-CA estimations are closer to

the corresponding cycle-accurate DDR3 models.

Table 5.6: Total simulated time of GoogLeNet for different computational capacities and
bandwidth utilization factors β sweeping (0.1, 1) with a step of 0.1 (in milliseconds) for
memory running on 800MHz, burst length of 8 and data width of 8B

(a) LT

β 1000G 100G 10G 1G

0.1 548.7 654.5 3854.6 35855.4
0.2 275.4 505.3 3705.3 35706.1
0.3 183.6 455.1 3655.2 35655.9
0.4 138.0 430.2 3630.3 35631.1
0.5 110.7 415.3 3615.4 35616.1
0.6 92.5 405.4 3605.4 35606.2
0.7 79.2 398.1 3598.2 35598.9
0.8 73.1 393.1 3593.2 35593.9
0.9 68.9 388.9 3589.0 35589.7
1.0 65.5 385.5 3585.5 35586.3

(b) LT-CA

β 1000G 100G 10G 1G

0.1 7255.3 7255.9 7290.2 35950.9
0.2 3632.9 3634.3 3899.4 35746.8
0.3 2416.1 2418.3 3701.6 35681.4
0.4 1812.4 1814.9 3654.2 35650.4
0.5 1450.2 1453.0 3645.9 35631.6
0.6 1208.7 1211.7 3621.7 35618.8
0.7 1032.2 1035.5 3611.2 35609.7
0.8 911.5 914.8 3630.2 35603.5
0.9 809.3 812.7 3601.9 35598.1
1.0 725.7 729.1 3595.1 35593.8

Figure 5.6 illustrates the total simulated time of GoogLeNet LT and LT-CA models for

different β values extracted from Table 5.6 in logarithmic scale. As evident in both diagrams,

the change of memory bandwidth utilization factor has no impact on low computational

capacities. However, the performance of models is highly dependent on memory utilization

factors in high computational capacities. Furthermore, the rate of change in LT-CA models

is greater than LT models in higher computational capacities. This indicates that the effect

of memory contention is more visible in LT-CA models that consider contention.

Figure 5.7 shows the contention ratio of the TLM model of GoogLeNet for different com-

putational capacities. The contention ratio for each β is calculated based on the simulated
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Figure 5.6: Simulated time of GoogLeNet for a pass of 100 images across 4 computational
capacities and bandwidth utilization factors β sweeping (0.1, 1) with a step of 0.1 (a) LT (b)
LT-CA (in milliseconds) for memory running on 800MHz, burst length of 8 and data width
of 8B

time of the LT-CA model that allows contention modeling over the simulated time of the

LT model that ignores contention. As expected, there is a negligible level of contention in

the lower computational capacities. However, the effect of contention becomes significant

in higher computational capacities. For example, the effect of contention on model perfor-

mance is remarkable in 1000 GFLOPS. For example, the 10x increase in memory bandwidth

utilization factor has little to no effect on the contention. In contrast, the effect of contention

is flat in lower computational capacities. In specific, the improvement of the bandwidth uti-

lization factor has no impact on the contention in 1 GFLOPS or 10 GFLOPS. These useful

insights provide directions to system designers and architects on the allocations of memory

and computational resources for the next level of refinements.

Figure 5.8 illustrates the total simulated times for LT and LT-CA models of GoogLeNet for

a pass of 100 images across a range of bandwidth utilization factors in each computational

capacity extracted from Table 5.6 in log scale. As illustrated in Figures 5.8a and 5.8b,

the difference for reported simulated times between LT and LT-CA is significant for high

computational capacities. This clearly indicates that contention modeling has a considerable

95



0.2 0.4 0.6 0.8 1.0
Memory bandwidth utilization factor

2

4

6

8

10

12

Ra
tio

Contention

1000GFLOPS
100GFLOPS
10GFLOPS
1GFLOPS

Figure 5.7: Contention ratio of GoogLeNet for a pass of 100 images with memory bandwidth
utilization factor of 10%-100% across 4 computational capacities

impact on the quality of models used for early design space exploration.

Finally, we also compare the latency histograms of both AT DDR and LT-CA models at 1000

GFLOPS to further demonstrate our accurate estimation of total simulated time. Figure

5.9a (left) shows the latency histogram for the AT model reported by DRAMSys DDR3 for

all 145 million transactions. Due to the complex and pipelined access behavior of DRAM, it

is not possible to predict an exact distribution of the delays. Figure 5.9a (center) shows the

latency histogram measured by the LT-CA model. Since the LT-CA delay histogram shows

the average delay distribution, its probability density is approximately a normal distribution

even if the original delays themselves are not normally distributed according to the central

limit theorem as described in 5.5.2. The accuracy of the average delay estimation is evident

from the close mean delay values in the AT and LT-CA models (107.99ns vs. 118.04ns).

Figure 5.9a (right) compares the kernel density estimation (KDE) of the LT-CA delays and

a normal distribution with the mean and variance of the LT-CA delays. It is clear that the

KDE of the LT-CA and the reference normal distribution have similar shapes. The exact

same patterns can also be seen on DDR4-1866 delay histograms (5.9b).
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Figure 5.8: Simulated time of LT and LT-CA models of GoogLeNet for a pass of 100 images
across memory bandwidth utilization factor and categorized for each computational capacity
(a) 1000GFLOPS (b) 100GFLOPS (c) 10GFLOPS (d) 1GFLOPS (in milliseconds)

5.5.4 Single Shot MultiBox Detector (SSD)

We have primarily focused on GoogLeNet for modeling and simulation until now. In this

section, we demonstrate the generality and effectiveness of our modeling framework on a

second application, Single Shot Detector (SSD) network introduced in Section 1.4.2.

Given our automatic model-based design flow, the SSD TLM models can be quickly gener-

ated by simply feeding the abstract SSD specification to netspec. Then we simulate the
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Figure 5.9: From left: AT delay histogram, LT-CA delay histogram and kernel density
estimation of LT-CA delays versus a normal distribution N(LT-CA mean, LT-CA variance)
for (a) DDR3-1600 and (b) DDR4-1866

LT-CA model with similar simulation configurations as used for the GoogLeNet, namely

1000 GFLOPS computational capacity, memory latency of 0.625ns (1/(2*800MHz)), and a

98



nominal bandwidth utilization factor of 66%. For contention visualization, we set the generic

payload data length equal to the buffer size.

The LT-CA model of the SSD can easily demonstrate the memory bottlenecks in the network.

For example, Figure 5.10 shows the transaction-level timing diagram for the fc7 branch of

the SSD. The fc7 branch is composed of four parallel tracks, namely conv6, mbox loc,

mbox conf and mbox priorbox. As shown in Figure 5.10 (left), the four first layers start

a read transaction at 84.7ms with a payload size of 1,478,656 bytes. In the LT model, all

four layers are granted access to the memory and experience a memory delay of 0.189ms

(total delay of 1,478,656 bytes data). As illustrated in Figure 5.10 (right), the first layer in

mbox loc experiences a contention delay of 0.189ms. Subsequently, the first layers in mbox -

conf and mbox priorbox tracks experience a delay of 0.378ms and 0.576ms respectively. It

is evident from the visual representations in Figure 5.10 that the LT-CA model accurately

reflects the red idle waiting periods for the modules blocked by memory contention.
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Figure 5.10: Simulated time of fc7 branch without (left) and with (right) contention (1000
GFLOPS, 0.625ns memory latency)

5.6 Conclusion

Cycle-accurate models provide higher timing accuracy at the expense of simulation speed.

In this chapter, we presented a TLM-2.0 approximately-timed model with a cycle-accurate

shared memory subsystem for accurate memory contention analysis. To have fast yet ac-
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curate estimation of contention with high fidelity, we proposed an enhanced memory delay

estimation for our loosely-timed contention-aware modeling approach. We also proposed an

alternative local memory architecture to globally shared memory in order to eliminate the

performance overhead of memory contention. Finally, we performed a systematic analysis of

loosely-timed, loosely-timed contention-aware, and approximately-timed with cycle-accurate

memory models using GoogLeNet, and demonstrated the effectiveness of our modeling frame-

work for memory contention analysis on the SSD network.

100



Chapter 6

Conclusion

In this chapter, we briefly summarize the contributions of this dissertation. Additionally, we

discuss potential research topics for future work.

6.1 Contributions

In this dissertation, we made a number of key contributions:

1. Design of exploratory modeling framework for hardware-software codesign based on

IEEE SystemC TLM for DNN applications with focus on improving parallelism and

mitigating memory contention [1, 2, 3, 45]

2. Exploration of parallelism opportunities in TLM models and improvement of paral-

lelism by proposing less restrictive communication mechanisms and transaction types

for enhanced parallelism with out-of-order parallel simulation of TLM-1 and TLM-2.0

models [2, 3]
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3. Design of a loosely-timed modeling approach for early, fast and accurate memory con-

tention modeling [45]

4. Enhancement of memory delay estimates for loosely-timed modeling to improve timing

accuracy comparable to cycle-accurate memory model

6.1.1 DNN System Level Modeling with Exposed Parallelism

In Chapter 2, we proposed an untimed system-level model of a state-of-art deep neural

network, GoogLeNet, based on IEEE SystemC. To expose the system-level parallelism, we

separated the communication from computation in the design. We successfully validated

the functionality of the model using both sequential and parallel SystemC simulators. We

presented extensive experimental results to demonstrate the effect of multi-threaded and

thread-level parallelism on the simulation speedup using sequential Accellera SystemC 2.3.1

and parallel RISC V0.5.1. simulators.

6.1.2 Improvement of System Level Parallelism

In Chapter 3, we proposed a set of standard-compliant modeling techniques to increase

parallelism in IEEE SystemC TLM-1 and TLM-2.0 models. In particular, we demonstrated

the impact of varying synchronization mechanisms on the exposed parallelism using six

modeling styles of GoogLeNet. Later, we quantified the available parallelism in these six

improved SystemC models by measuring the performance of out-of-order PDES in RISC.

As a result, we suggested that the design with the highest amount of parallelism exposed is

suited best for further refinement in the system design flow.
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6.1.3 Fast Loosely-Timed System Models with Accurate Memory

Contention

In Chapter 4, we proposed a TLM-2.0 loosely-timed contention-aware modeling approach

which offers accurate observation of memory contention with high simulation speed. Fast

yet accurate contention modeling enables efficient early design space exploration which both

reduce the design time and cost of embedded systems. We also presented our TLM framework

based on the IEEE SystemC methodology to explore both parallelism and memory contention

early in the design cycle. Our automatic model generation dramatically reduces the burden

of constructing and debugging simulation models. We demonstrated the effectiveness of our

modeling approach for GoogLeNet which simulates 46x faster than equivalent approximately-

timed models with an average error of less than 1% in simulated time.

6.1.4 Cycle Accuracy in System-Level Memory Modeling

In Chapter 5, we extended our SystemC TLM framework to include cycle-accurate memory

models of DRAM subsystems for accurate analysis of memory contention. We proposed

an enhanced memory delay estimation for LT-CA modeling to improve both accuracy and

fidelity of the design models. The extensive amount of contention on the globally shared

memory hugely degrades the performance of data-intensive DNN applications. Therefore,

we presented an alternative processor architecture with private local memories to reduce

the average bandwidth on the shared memory. Finally, we analyzed the performance of LT,

LT-CA, and AT with cycle-accurate memory models using GoogLeNet and SSD to provide

early feedback to system designers for hardware implementation.
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6.2 Future Work

We are facing the outset of three significant advances in the semiconductor industry, (1)

readily fabrication of thousands of processing cores in a single chip (2) rapid innovations in

compute-memory integration (3) availability of open-source integrated circuit (IC) design

tools. We are also experiencing a boom in data-intensive applications ranging from artificial

intelligence (AI) and machine learning, through virtual reality and 5G/6G wireless commu-

nications to genome sequencing and drug discovery. These technological breakthroughs and

application trends require rethinking the conventional von Neumann computing paradigm.

Research opportunities in design, modeling and simulation of post von Neumann computer

systems that are capable of handling computationally expensive applications efficiently are

numerous.

Here, we list a few research areas that we think TLM simulation framework would be an

attractive approach to reduce both design time and cost of such future computer systems.

6.2.1 Extend the TLM Modeling Framework

We intend to apply our modeling framework to more DNNs and other memory-intensive

applications. We plan to examine different scheduling policies and investigate its effect on

simulation performance. Hence, we can enhance accuracy of LT-CA modeling in terms of

total simulated time.
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6.2.2 Explore Local Memory Topologies to Minimize Cost and

Contention

We plan to conduct a trade-off analysis with respect to the costs incurred by local inter-

connects and local memories in terms of area, bandwidth and latency. Therefore, we can

explore different local memory topologies to minimize both contention and chip cost.

6.2.3 Programming Models for Processing-In-Memory

Massively parallel processor arrays with tight compute-memory integration are a promis-

ing computer architecture to tackle the von Neumann memory bottleneck. However, the

software stack and the system support for such new emerging computer systems are imma-

ture. Investigation of programming models, compilation flows and run-time system based on

TLM simulation framework would help to increase the ease of programmability and reduce

development costs for such novel computer systems.

6.2.4 New Memories for Compute-Memory Integration

We plan to investigate potential candidates for local on-chip memory integration. Nonvolatile

memory devices such as Resistive switching Random Access Memory (RRAM), Ferroelectric

RAM (FeRAM), and Phase Change Memory (PCM) have shown promising results as future

new memories for compute-memory integration.
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[1] E. M. Arasteh and R. Dömer. An Untimed SystemC Model of GoogLeNet. Proceedings
of the International Embedded Systems Symposium, 2019.
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Event Simulation for Transaction Level Models. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 33(12):1859–1872, Dec. 2014.

106
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[45] E. Malekzadeh Arasteh and R. Dömer. Fast loosely-timed system models with accurate
memory contention. ACM Transactions on Embedded Computing Systems, under review.

[46] P. Marwedel. Embedded Systems Design. Springer International Publishing, 4th edition,
2021.

[47] M. Moy. Parallel programming with systemc for loosely timed models: A non-intrusive
approach. In Proceedings of the Conference on Design, Automation and Test in Europe,
DATE ’13, page 9–14, San Jose, CA, USA, 2013. EDA Consortium.

[48] A. Olofsson. Epiphany-v: A 1024 processor 64-bit risc system-on-chip, 2016.

[49] Accellera Systems Initiative, Core SystemC Language and Examples. http://

accellera.org/downloads/standards/systemc. Accessed: 2022-07-22.

[50] OpenCV Tutorials, Load Caffe framework models. https://docs.opencv.org/3.4/

d5/de7/tutorial_dnn_googlenet.html, 2018. Accessed: 2021-04-08.

[51] E. P, P. Chandran, J. Chandra, B. P. Simon, and D. Ravi. Parallelizing SystemC
Kernel for Fast Hardware Simulation on SMP Machines. In PADS ’09: Proceedings of
the 2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed
Simulation, pages 80–87, 2009.

[52] P. Panda, N. Dutt, and A. Nicolau. Efficient utilization of scratch-pad memory in
embedded processor applications. In Proceedings European Design and Test Conference.
ED & TC 97, pages 7–11, 1997.

109

http://accellera.org/downloads/standards/systemc
http://accellera.org/downloads/standards/systemc
https://docs.opencv.org/3.4/d5/de7/tutorial_dnn_googlenet.html
https://docs.opencv.org/3.4/d5/de7/tutorial_dnn_googlenet.html


[53] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

[54] L. Roeder. Netron, Visualizer for neural network, deep learning, and machine learning
models. https://github.com/lutzroeder/netron, 2017. Accessed: 2022-06-09.

[55] C. Roth, S. Reder, H. Bucher, O. Sander, and J. Becker. Adaptive algorithm and
tool flow for accelerating systemc on many-core architectures. In 2014 17th Euromicro
Conference on Digital System Design, pages 137–145, 2014.

[56] M. M. Sabry Aly, T. F. Wu, A. Bartolo, Y. H. Malviya, W. Hwang, G. Hills, I. Markov,
M. Wootters, M. M. Shulaker, H. . Philip Wong, and S. Mitra. The n3xt approach
to energy-efficient abundant-data computing. Proceedings of the IEEE, 107(1):19–48,
2019.
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