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Bridging molecular-scale interfacial science
with continuum-scale models

Anastasia G. Ilgen 1 , Eric Borguet 2, Franz M. Geiger 3,
Julianne M. Gibbs 4, Vicki H. Grassian 5, Young-Shin Jun 6,
Nadine Kabengi 7 & James D. Kubicki 8

Solid–water interfaces are crucial for clean water, conventional and renewable
energy, and effective nuclear waste management. However, reflecting the
complexity of reactive interfaces in continuum-scale models is a challenge,
leading to oversimplified representations that often fail to predict real-world
behavior. This is because these models use fixed parameters derived by
averaging across a wide physicochemical range observed at the molecular
scale. Recent studies have revealed the stochastic nature of molecular-level
surface sites that define a variety of reaction mechanisms, rates, and products
even across a single surface. To bridge the molecular knowledge and pre-
dictive continuum-scale models, we propose to represent surface properties
with probability distributions rather thanwith discrete constant values derived
by averaging across a heterogeneous surface. This conceptual shift in
continuum-scale modeling requires exponentially rising computational
power. By incorporating our molecular-scale understanding of solid–water
interfaces into continuum-scale models we can pave the way for next gen-
eration critical technologies and novel environmental solutions.

Solid–water interfaces play critical roles in engineered systems1–3 and
natural environments4. Communication among scientists and engi-
neers working at molecular, microscopic, field, and global scales
should be augmented via integrated collaborations that seek to add
chemical insights into large-scale problems where current assump-
tions and approximations lead to large uncertainties in predictive
models5. We lay out a perspective about how to establish such a col-
laboration that infuses molecular details into larger scale models,
including often-used surface complexation (SCM) and reactive trans-
port models (RTM). We propose the development of a new approach
for incorporating the vast database of molecular knowledge into
continuum-scale models by shifting the model parameterization
paradigm.We suggest a conceptual shift in how surface properties are

represented from the current state of using discrete values to prob-
ability distributions, allowing to reflect real heterogeneities of sur-
faces. Surface site acidities, charge densities, solvation energies,
reaction rates, and solubility constants should be described as prob-
ability curves to reflect the interfacial complexity.

Scientists who develop detailed molecular descriptions of
solid–water interfaces face a four-fold challenge: (1) interfacial chem-
istry evolves in complex ways as it is dynamically coupled to the
compositions of both the solid and the aqueous phases yet is distinct
from either; (2) the number of atoms present at the surface is dwarfed
by the number of atoms that compose the bulk phases, thus compli-
cating the deconvolutionof surface analytical signals from those of the
bulk; (3) real-world interfaces are inherently heterogeneous down to
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the micro-, nano-, and molecular-scales, making it difficult to build
continuum-scale predictive models that capture this complexity and
reconcile distinct surface structureswith observednet reactivities; and
(4) environmental processes span femtosecond to millennia time-
scales, not always accessible for experimental, analytical, and com-
putational inquiries. Despite these challenges, previously obscure
details of surface reactions are becoming increasingly understood.
However, the current numerical tools available for translating inter-
facial processes into continuum-scale models that describe mm- to
km-scale systems are lacking mathematical frameworks for incorpor-
ating the wealth of molecular details that have been discovered in the
last few decades.

Because of these limitations, scientists who construct SCMs and
RTMs often use “average” values to describe the structures and reac-
tivities of solid–water interfaces to reflect relevant molecular infor-
mation. SCMs are developed to specifically describe ion adsorption
behaviors at solid–water interfaces to match either adsorption iso-
therms or pH-dependent adsorption data (i.e., adsorption edges). The
basic schematic for three types of commonly used SCMs is shown in
Fig. 1 (reproduced from ref. 6). These SCMs are based on various

continuum-scale models of interfacial structure such as: (1) the con-
stant capacitancemodel (CCM), (2) the diffuse layermodel (DLM), and
(3) the triple layer model (TLM). Each of these SCMs assumes that the
total free energy of ion adsorption is a sum of chemical adsorption
energy (ΔGchem) and Coulomb static energy (ΔGcoul), where ΔGcoul is
directly proportional to the surface potential (ψ) and the charge of the
adsorbing ion6. In the sections below we illustrate that neither ΔGchem

nor ΔGcoul can be considered constants in any given interfacial system
because of the variability of surface structures that define local surface
charge or the reactivity of isolated surface groups, which should lead
to variability in the surface potential across the same surface causedby
intrinsic surface heterogeneity. Therefore, to reflect the true com-
plexity,ΔGchem and ΔGcoul would be best represented by a distribution
of values, rather than a fixed value.

To illustrate the sensitivity of a common SCM to input para-
meters, we calculated the Gouy-Chapman Stern (GCS) potential as a
function of Stern layer thickness, d (which varies due to spatial het-
erogeneity of a surface) and ionic strength (NaCl concentration)
(Fig. 2). A two-fold change indwould result in a factorof twodifference
in the potential drop across the Stern layer as ΔΦStern = σ/C, where σ is
the surface charge density and C is the capacitance equal to εrε0/d (εr
and ε0 are the permittivity of the solution and of the vacuum,
respectively). The resulting change in the electric field in the Stern
layer (-dΦ/dz) would then vary accordingly. Opening the expression
for the Stern layer potential drop to allow for spatial variations in all
three parameters (σ, εr, and d) will result in variations of the potential
across the electric double layer (EDL). It is reasonable to expect that
eachof theseparameters varies by up to a factor of two (for the surface
charge density and Stern layer thickness) and by ten (for the relative
permittivity). A sensitivity analysis of the ionic strength dependent
Gouy-Chapman Stern potential in terms of physically feasible varia-
tions in charge density and Stern layer relative permittivity shows that
variations of serval hundredmVoccur, owing, for instance, to doubling
the charge density and halving the Stern layer permittivity (Fig. 2). In
contrast, doubling both parameters results in only minor potential
differences (Fig. 2). We conclude that expected spatiotemporal varia-
tions in the surface charge density and the Stern layer relative per-
mittivity will result in spatiotemporal variations in the surface
potential, and the associated electric field, in the range up to several
hundred mV. This simple example is directly applicable to other
important parameters, including the Stern layer thickness, in mean
field or surface complexationmodels, as alluded to above, and further

Fig. 1 | Schematic representation of surface complexation modeling. Surface
complexation modeling based on a Constant capacitance model (CCM); b Diffuse
layermodel (DLM); and cTriple layermodel (TLM). A0-plane in thesemodels limits
the solid’s surface, a β-plane terminates the plane where counter-ions are tightly
boundat charged surfaces (Stern layer) and ad-plane cuts through the center of the
diffuse layer near surfaces. C, including C1 and C2, denote individual layer capaci-
tance values; ψ is the surface potential corresponding to one of the planes, and σ,
including σβ and σd, is charge of the corresponding layers, where σ0 is charge of the
0-plane (surface charge, or surface charge density); ε is the dielectric constant or
permittivity of the media. Figure adapted with permission from ref. 6.
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Fig. 2 | Calculated Gouy-Chapman Stern potential. Calculated variability in the
ionic strength dependent Gouy-ChapmanStern (GCS) potential due to variations in
charge density and Stern layer relative permittivity (εr) commonly observed across
surfaces. The resulting Gouy-Chapman Stern potential variations reach several
hundred mV when doubling the charge density and halving the Stern layer per-
mittivity. In contrast, doubling both parameters results in only minor potential
differences.
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justifies the proposed probabilistic approach to continuum-scale
modeling.

Furthermore, conventional SCMs describe surface properties and
reactivities with a single surface acidity constant and surface com-
plexation constant for a given surface and adsorbate (the more
advanced SCMs may go as far as to incorporate two- or three-site
models with distinct acidity and/or complexation constants). How-
ever, new experiments consistently show that nominally similar sur-
face sites (e.g., Si-OH, see ref. 7) have vastly different reactivities, which
aredefinedbymultiple factors: surface structure, hydrogenbonding in
adjacent solution, the surface neighbor species, and aqueous com-
position. Because continuum-scale simulations rely on empirically fit
coefficients to approximate parameter values, they often do not cap-
ture experimentally measured outcomes. As we will show below, the
mismatch in predicted vs. experimentally determined parameters can
span orders of magnitude.

The other types of continuum-scale reactive models, which are
often utilized in important applications such as nuclear waste storage,
are reactive transport models (RTMs) that couple transport equations
with chemical reactions, including equilibrium constants and kinetic
rate laws. Similar to SCMs, equilibrium constants used in RTMs do not
fully reflect the reality of a solid–water interface, where isolated sur-
face sites can have dramatically different reactivities. Furthermore, to
model the dissolution of solid phases in RTMs average rates or rate
constants are selected8,9, whereas experimental evidence indicates
that the effective dissolution rate consists of contributions from spe-
cific surface sites, where the rates are vastly different10. Because sur-
face structure is dynamic, ratesmay also vary with time11, with reaction
Gibbs free energy12, and with flow rate13. Accordingly, reaction rates
may vary several-fold for the same crystalline solid, depending on the
molecular, crystallographic, and topographic details of their surfaces
that change dynamically in time. Therefore, reaction rates are best
described by distributions of possible/probable values and not by a
singular discrete number.

This Perspective argues that, in place of ensemble averaged con-
stants as input parameters, probability distributions are needed to
formalize chemical phenomena at interfaces to reflect their hetero-
geneous nature in SCMs, RTMs, and other continuum-scale models.
Current state-of-the-art modeling approaches apply homogeneous
chemistry concepts to heterogeneous systems, limiting their applic-
ability and predictive power. A probabilistic approach that captures
the stochastic nature of surface sites offers a path forward to bridge
detailedmolecular-scale informationwith the continuum-scalemodels
of complex systems. We will show that using probability distributions
is appropriate for representing the “surface landscape”, (i.e., the stoi-
chiometry of surface sites, surface charge distributions, and surface
topologies), as well as equilibrium constant values and reaction rates.
This approach provides a new paradigm that we hypothesize will
create a more robust predictive power in continuum-scale models by
capturing the wealth of molecular-scale information that is available
for interfacial systems. Using molecular-scale information in
continuum-scale simulations will advance our capability to model
environmental fate and transport, soil systemevolution, and to elevate
the design and optimization of electrochemical and catalytic pro-
cesses, desalinationmembranes, and carbon- and ion-selective capture
materials. Achieving this probabilistic approach requires not just
advancements in the capabilities of SCMs and RTMs, but also the
continued efforts of experimentalists and computational chemists to
elucidate molecular details and reactivities of solid−water interfaces.

Molecular details matter
In this section we will illustrate that a surface is not one reactant but
instead a combination of different reactants that are distinct, inter-
dependent, and changing. Recent scientific advances have led to
molecular descriptions of interfaces of specific solid–water systems

that challenge traditional mean-field models of charged surfaces (see
Bañuelos et al. for a comprehensive review)7. These studies highlight
that molecular details matter as surfaces are heterogeneous at the
molecular-scale and cannot be conceptualized as a single “reactant” in
interfacial chemistry descriptions. The selected advances illustrated
here have been facilitated by new capabilities in scanning probe,
synchrotron-based X-ray, and nonlinear optical techniques that reveal
the different detailed aspects of the interface under in situ conditions
in real-time. Furthermore, computational simulations using density
functional theory (DFT) and ab initio and classicalmolecular dynamics
(MD) have been critical in uncovering reaction mechanisms at
solid–water interfaces, helping to interpret experimental observables
and distinguish the reactivities of different surface sites. These studies
have shown that surface sites can have stark differences in their
reactivities, such as acidity and surface complexation reactions.
Importantly, the surface site reactivity also depends on the local
environment, i.e., the reactivity of the same surface site differs
depending on the structure and identity of its immediate neighbors.

In the last decade, nonlinear optical methods have greatly
enhanced our ability to garner molecular information on buried
interfaces, i.e., those surfaces under aqueous solutions. Phase-sensitive
measurements have yielded complex spectra generated at solid–water
interfaces resolving the orientation of themolecules that contribute to
the measured response14,15. Moreover, theoretical frameworks used to
interpret these measurements now separate the contributions from
different regions of the interfacial solution layers and assign them to
molecules immediately at the buried surface and those at a distance
that are still structurally distinct from molecules in the bulk aqueous
phase (the diffuse layer)15,16. These methods and related approaches
have uncovered the details of hydrogen-bonding networks of water
immediately adjacent to a surface (in the Stern layer) and how they are
perturbed by changes in pH17 and the addition of aqueous ions18.
Phase-sensitivemeasurements have allowed also for the total potential
to be quantified directly at the surface19. This new capability is
important, because the surface potential (ψ) is one of those approxi-
mated quantities that must be incorporated into SCMs (Fig. 1). This
quantity is often calculated from mean-field models and rarely had
been measured experimentally. Now, the surface potential, which
differs from the more commonly measured zeta potential, can be
ascertained optically, and at arbitrary ionic strength, using hetero-
dyned second harmonic generation (SHG)19 as well as synchrotron-
based X-ray photoelectron spectroscopy (XPS) albeit under more
limited conditions20. This ability to measure the total surface potential
provides an important experimental benchmark for the widely used
mean-field models for calculating surface potentials and applying the
electrokinetic methods used to quantify interfacial potentials. Ulti-
mately, our ability to assess the electrostatics at the surface without
having to invoke classic mean-field models, which often rely on semi-
empirical parameters and primitive ion models that were put forth
based on less sensitive techniques decades ago, will be critical to
develop the next generation of surface models and extend them into
SCMs and RTMs.

Advanced techniques for measuring ψ at oxide surfaces still pro-
vide an average value for a given interface. However, we know that
charged sites on oxide surfaces are localized resulting from protona-
tion and deprotonation of surface hydroxyls. Whether charges are
localized or delocalized significantly impacts both the ion distribution
and the net water orientation in the interfacial region according to
simulations of charged solid–water interfaces21. Specifically, charge
localization results in ion accumulation at an interface and local re-
orientation of water molecules at interfaces compared with the delo-
calized charged aqueous interface. Furthermore, recent work using
Stark spectroscopy indicates that the local fields can vary significantly
across the solid–water interface and that interfacial molecules “sam-
ple” this heterogeneous, dynamic environment22.
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The interfacial charge structure can be changed drastically by
high salinity. Lee et al.23 observed the salinity-dependent electric
double layer (EDL) structure evolution in RbI or RbCl with negatively
charged mica surfaces using element-specific resonant anomalous
X-ray reflectivity. They found that cations and anions formed alter-
nating discrete layers, causing nonclassical charge overscreening (also
referred to as charge reversal) at high salinity. At the silica surface, the
impact of overscreening induced by divalent ions with increasing pH
on both the water structure and ion speciationwithin the EDL was also
recently observed by Rashwan et al. using vibrational SFG (vSFG) and
streaming current measurements24.

Experimental methods capable of mapping out the local struc-
ture with molecular-scale resolution are transformative tools for
characterizing the chemistry of solid–water interfaces7. Scanning
probe measurements over nearly atomically flat surfaces, such as
mica25, pairedwith finite-element analysis26 have yielded topographic
information on the molecular-scale of both the interfacial potential
and water structure. Such methods have been extended to mapping
of organic molecules deposited on metal surfaces27. Charge profiling
three-dimensional (3D) atomic forcemicroscopy has revealed charge
layering of ionic liquids on electrodes at Ångstrom depth
resolution28. 3D fast-force mapping can also estimate the position of
individual water molecules in the Stern layer although this emerging
method is complicated by data convolution concerns related to tip-
specific effects29. Other imaging methods such as transmission
electron microscopy (TEM), including scanning (STEM), high-
resolution (HRTEM), and liquid cell (in situ TEM), in combination
with electron energy loss spectroscopy can directly quantify surface
structures in dry, humid, or aqueous conditions. Because these
measurements are spatially resolved and have near-molecular-scale
resolution, they can map out the variety of reactive surface sites on

oxide surfaces allowing the abundance of a certain type of surface
site to be linked to observable macroscopic reactivities. A well-
studied example of this phenomenon is the uptake and release of O2

by ceria (CeO2) nanoparticles that are widely used in catalysis and
other applications. Combined TEM and modeling studies for CeO2

have shown that the energetics of O2 uptake/release is controlled by
(1) specific facets (crystallographic orientation), (2) oxygen site
vacancies produced during Ce3+/Ce4+ redox reaction, and (3) surface
hydration (Fig. 3, from ref. 30, and ref. 2). Because surface defects
often produce high energy reactive sites, the emerging research field
of defect engineering for nanomaterials is critically tied to these new
high-resolution measurements.

Inevitably, the observed heterogeneities of the surface structures
discussed above lead to variability in surface properties, such as
interfacial potentials, acidities of surface groups (pKa values)31–33, dis-
solution rates10, surface speciation, ion jamming with observed hys-
teresis in surface acid-base chemistry33,34, and heterogeneous
nucleation patterns across a single surface35,36 Further complicating
the situation is the recognition that the surfaces of some materials,
e.g., SiO2, can have localized hydrophilic and hydrophobic regions36–38

that have been proposed to produce different surface acidity
constants39 in concert with changes in hydrogen bonding effects on
the distribution of silanol site acidities40.

Capturing the acidity of surface groups is of specific interest to
SCM and RTM development because site charge influences surface
reactivity and may vary greatly on the same surface41–43. A recent sig-
nificant and surprising finding by ref. 41. who combined non-contact
AFMmeasurements and DFTmodeling indicates that surface hydroxyl
groups at an In2O3 (111) surface have pKa values varying several orders
of magnitude, based on the H-bond strength measurements at indi-
vidual surface sites (Fig. 4). Multiple distinct pKa values have also been

Fig. 3 | Surface structures of ceria (CeO2) nanoparticles. a Full atom level model
of CeO2 nanoparticle; b Schematic of CeO2 nanoparticle showing crystallographic
surfaces; c Enlarged view of the CeO2 (111) surface showing the presence of surface
steps and corners; d Perfect (111) surface of CeO2 crystal; e Nanostructured (110)
surface; f Perfect (110) surface; g Nanostructured (100) surface; h perfect (100)
surface. Ce = white, O = red; i Visualization of catalytic activity of a CeO2 nano-
particle surface, where oxygen atoms are colored by their lability—the energetic

cost of their removal from the surface. Red-white-blue gradient scale, where red
corresponds to labile oxygen (energetically easy to extract) and blue corresponds
to oxygen ions that are difficult to extract. The yellow spheres are Ce3+ species;
j Scanning tunneling microscopy image of CeO2 surface, a 6 by 6 nm2 square is
shown from reference105; k corresponding structural model. Adapted with per-
mission from ref. 2 and ref. 105.
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observed for silica in both theory and experiment under aqueous
conditions31,39,40. Therefore, the relative abundance of different sites
varies significantly, which we propose should be represented as a
probability curve in continuum models.

Although imaging surface structures, localized surface potentials,
local pKa values, and particle–particle interactions are paramount to
understanding these systems, it is equally crucial to capture time-
dependent fluctuations referred to as surface dynamics. Most envir-
onmental interfaces are intrinsically dynamic and sensitive to changes
in pH and the presence of ions as they consist of amphoteric sites that
become charged and interact, either in a specific or non-specific man-
ner. Generally, models consider that a given solid will exhibit a trend in
affinity towards ions basedon its composition. Yet, recent experimental
work for the planar44,45 and nanopore silica–water interfaces46 reveals
that such trends in ion affinity can be significantly altered as the pH is
changed. One hypothesis that can qualitatively explain a change in
relative ion affinity is that the ions can interact with at least two distinct
sites on the silica surface, one charged and one neutral, and as the
relative ratio of charged to neutral sites increases with pH so does the

affinity for ions in solution45. Current work aims to investigate whether
revising SCMs to include two-site binding of cations can capture such
pH-dependent trends in ion affinities. Furthermore, changes in pH, ion
concentrations, and solid chemistries might reveal that a probabilistic
approach capturing distributions of affinities, rather than two affinity
constants, can better predict such behavior.

Real-world solid–water interfaces must also contend with dynamic
chemical and geometric complexities: the composition of the aqueous
phase at the solid–water interface is multi-component where competi-
tive adsorption plays an important role in Stern and diffuse layer
structures47. Continuum-scale models must capture the dynamics and
coupled behavior between adsorbates, water, and surface site struc-
tures. Furthermore, nanoconfinement of surfaces often leads to anom-
alous chemistry where interfacial reactivity is dictated by the spatial
dimension of the reactive solid–water interface42,48,49. In particular, in
nanopores, the polarization force between ions and the solid surface at
an interface determines ion propensity toward nanoconfined spaces49.

Capturing interfacial reactivity is further complicated by the fact
that the speciationof adsorbed ions, and likelyof surface sites50, can vary

Fig. 4 | Probing individual hydroxyls on In2O3 surface with an Atomic Force
Microscopy tip. a Experimental short-range force–distance curves for the OH
groups; b Calculated short-range force–distance curves for the OH groups;
c Tip–sample configuration for various tip-surface separations. OW, yellow;

H, white; O, red; In, blue and green. Reprinted from reference41 with permission
from Springer Nature, © Wagner et al. under exclusive license to Springer Nature
Limited 2021.
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with ionic strength and surface coverage. For instance, several classic
linear and nonlinear optical measurements as well as atomistic simula-
tions have shown that surfaces functionalized with carboxylic acids
remain neutral (uncharged) even at highly basic pH values51–53. The
underlying mechanism is one in which Coulomb repulsion within the
surface plane is largely reduced when the carboxylate groups pick up a
proton from the aqueous solution to form carboxylic acid dimers,
similar to those found in glacial acidic acid (an insulating liquid). A
similar phenomenon might be occurring for bare oxides such as silica
where a bimodal distribution of acidities has been observed for silanol
sites above the point-of-zero-charge31–33. Likewise, Sr2+ as well as some
lanthanide cations (nominally 3+ in solution) exist as singly-charged
species when they are absorbed to certain surfaces54,55. In this case, the
underlying mechanism likely involves replacing a water molecule from
the ion’s hydration spherewith a counter-ion, such as chlorideor surface
deprotonation to create anOH- group56,57. Sr2+ then absorbs as the [SrCl]+

ion pair, which is subject to reduced lateral Coulomb repulsion. SCMs
should take this effect into account, but currently do not. This is a
problemof exponential sensitivity, as theBoltzmann termgoverning the
surface coverage is raised to the power of the charge of the adsorbed
ion. If this charge changes from 3 to 2 or from 2 to 1, the exponential
sensitivity indicates amuchdifferent surface coverage relative towhat is
expected from bulk thermodynamics. We note that such ion-pairing
effects are routinely observed in brine solutions (NaCl > 1M)58, but they
occur at surfaces when electrolyte concentrations are orders of magni-
tude smaller compared to brines, for example at the fused silica/water
interface Sr2+–Cl- ion pairing occurs once NaCl concentration reaches
only 10mM. The surface-promoted ion-pairing processes need to be
incorporated into new descriptions of Stern layer for ion speciation.
When RTMs solve for chemical speciation, they do not incorporate
surface-promoted shifts in speciation as described here.

The presence of salts (electrolytes) can influence solid–water
interactions, including surface complexation, dissolution, and pre-
cipitation reactions. Since the work of Dove59 and coworkers on silica
dissolution, researchers have attempted to further unravel the details
of salt effects on solid–water interfaces. For example, Icenhower and
Dove60 found that dissolution rates can increase by over 20 times in
0.05MNaCl solution compared to de-ionizedwater. Notably, the same
experiments show that the activation energy (74.5 ± 1.4 kJmol−1) in the
range of 25 to 250 °C does not change within experimental error with
this increase in rate constant. This suggests that the Arrhenius pre-
exponential factor (A) related to the activation entropy of the reaction
is changing rather than the activation enthalpy. Kubicki et al.61 hypo-
thesized, based onDFT-MD simulations, that the dissolution entropy is
made more favorable when salts are present at the interface due to
changing H-bonding that favors intra-surface H-bonds and thus H+-
transfer and hydrolysis of Si–O–Si linkages leading to dissolution. This
observation of H-bonding changes is consistent with vSFG experi-
ments by ref. 18, revealing the decrease in ordered water in the Stern
layer at the silica surface upon salt addition. Likewise, ref. 62. showed
that salt impacts structured interfacial water most significantly near
neutral pH where the effect of salt on accelerating silica dissociation is
greatest59,60. Other simulations and time-resolved vSFG (TR-vSFG)
spectroscopy have found similar behavior with addition of salts63,64.

In addition to dissolution, the salt concentrations and types can
affect the nucleation of metal (hydr)oxides and their subsequent
growth and Ostwald ripening. For example, Li and Jun examined the
effect of salinity on CaCO3 nucleation on quartz using grazing inci-
dence small angle X-ray scattering65. When salinity increased from0.15
to 0.85M NaCl, effective interfacial energies dropped from 47.1mJ/m2

to 36.4mJ/m2, thus decreasing the thermodynamic penalty of nuclea-
tion. However, the kinetic factor for nucleation (J0)—related to ion
diffusion and nuclei surface properties—reduced ~13 times. Lower J0
values resulted from slower CaCO3 monomers impingement rate
caused by decreased electrostatic attraction at high salinity, which is

also consistent with charge overscreening at high salinity. Based on
these thermodynamic and kinetic contributions to the CaCO3 nuclea-
tion, the net nucleation rates could increase an order of magnitude at
higher salinities. Furthermore, as shown in Fig. 5, the nucleation and
growth of iron (hydr)oxide nanoparticles are also controlled by many
aqueous solution variables, such as the salinity66, types of salt ions, co-
existing oxyanions67, and natural organic matter68. Even with this
known complexity, RTMs typically consider solid nucleation process
to be instantaneous or start as soon as solution reaches the saturation
index for a given phase, and do not count the nucleation step as a
discrete part of the process. This oversimplification of nucleation
processes can result in discrepancies between experimental findings
and RTM results69.

As shown above, the chemical complexity of even simple
oxide–water interfaces is daunting from a molecular perspective.
These surfaces become even more complicated in the presence of
organic and microbial communities. Grassian and co-workers have
shown thatdissolvedorganicmatter cancoat oxide surfaces at lowand
circumneutral pH70–74. Moreover, surface adsorption from complex
aqueous phase systems containing biomolecules, humic, and fulvic
substances show that larger complex macromolecules adsorb onto
mineral surfaces in a manner that depends on solution pH and ionic
strength. Similarly, biological components such as proteins adhere to
oxide surfaces to forman “eco-corona”75 and the protein-oxide surface
interactions depend on pH, the nature of the surface, and neighboring
oxyanions70–72. Environmental DNA (eDNA) can attach to oxide particle
surfaces, but little is known about these interactions and how they
impact the underlying surface structure and reactivity as well as the
stability of adsorbed eDNA76.

These cumulative findings further support two notions: (1)
interfacial water structure is a key player in interfacial reactivity and
(2) salt ions are not spectator species at solid–water interfaces. We
have shown how surfaces are heterogeneous on all scales of inter-
est, and how interactions with complex molecular species that are
typically present in the environment make these systems hard to
study. Additionally, in low humidity environments, such as Earth’s
atmosphere, the surface heterogeneity of single particles can con-
trol water adsorption on surfaces as a function of relative
humidity7,77. Specifically, edge and defect sites adsorb water pre-
ferentially from the gas phase as a function of increasing relative
humidity prior to the adsorption of water on planar surfaces. The
spatially resolved studies, including infrared nanospectroscopy77,
show how surfaces are heterogeneous andwater does not uniformly
coat the surface, meaning that only select surface sites can parti-
cipate in reactions.

A challenge, aswell as an opportunity,moving forward is to utilize
the state-of-the-art tools to examine more realistic, chemically/struc-
turally heterogeneous surfaces in complex environments that contain
ions, dissolved organic matter, and biological components to under-
standmainmolecular controls on surface reactivities.We can then test
the hypothesis proposed here that describing main reactivity para-
meters with probability curves leads to more accurate continuum-
scale models. Le Traon et al.78 highlights that reaction kinetics in por-
ous systems deviates from the batch experiments by orders of mag-
nitude, demanding that experiments and simulationsmore realistically
capture larger scale effects. This possibility raises several thought-
provoking questions such as: Do aqueous and solid phase complexities
produce a heterogeneous surface with different domains? Are the sur-
faces “patchy” with some hydrophilic and hydrophobic domains, and
some regions enriched with adsorbed species (or covered with organic
matter)? Can these complex surfaces be described by probabilistic
models to capture all types of reactive surface sites for all surface
domains? These are difficult yet important questions to resolve to
understand the full chemical complexity of solid–water interfaces in
the environment.
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In the following section “Rectifying the Molecular View with
Ensemble Models” we will discuss examples where interfacial pro-
cesseswere successfully incorporated into continuum-scalemodels, as
well as those cases where such models cannot be constructed without
a complete re-working of the mathematical and statistical approaches
on which they are built.

Rectifying the molecular view with
ensemble models
In this section we will show how mean-field models work in some
instances but not in others. To take the heterogeneity of reactive sites
during adsorption into account, a commonly used equilibrium
adsorptionmodel at a solid–water interface is the Freundlich isotherm,
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which theoretically accounts for heterogeneous surface sites. Yet only
one affinity constant describing bonding strength is derived from
adsorption data and this averages the enthalpy of adsorption ΔHads for
all sites. If the range ofΔHads is narrow, using one constant valuewould
not be a major issue; however, inverse adsorption chromatography79,
and operando flow microcalorimetry have demonstrated that the
range of ΔHads values for the same sorbent–sorbate (surface–ion) pair
canbeup to 200 kJmol−1! Thus, one can infer that the variation inΔHads

is not a simplematter of adsorption reactions at the same type of sites,
which is less favorable with increasing sorbate coverage (Fig. 6).
Instead, theΔHads variation reflects different types of surface sites with
distinct bonding mechanisms, consistent with the notions of local
spatial heterogeneity and stochastic distribution of surface reactivities
discussed earlier. Many adsorption isotherm studies report better fits
to the data at the mid-range of solution concentrations and are less
accurate at the low- and high-concentration tails80, which is indicative
that the values at the higher and lower tails of the probability curve are
ignored. Because surface defects likely have the most negative ΔHads

values and lowest surface site densities (representing tail ends of the
site probability curve), they have not been modeled accurately. Con-
sidering that in many real-world scenarios, the sorbates are present at
trace levels, the applicability of models based on ideal surfaces at
higher aqueous concentrations that are typically studied in a labora-
tory setting becomes questionable. There are also critical needs for
thermodynamic data and computational chemistry models that can
address the lower concentrations and reactions at surface defects81

and in nanopores46,49 to obtain predictable thermodynamics and
kinetics under realistic environmental conditions.

One promising example is the determination of Fe-oxy(hydr)
oxide reactive sites that has been translated into a SCM capable of
unifying adsorption equilibrium constants for the important con-
taminant chromate82. Bompoti et al.82 utilized theMUSE algorithm and

found that in SCMs it was easiest to keep the reactive site densities
fixed for each solid and vary the solid concentration and capacitance
until the model agreed with experimental data. High resolution data,
for example using STEM HAADF helps determine the crystal face
contributions for different surface sites, and the respective site den-
sities characteristic for each surface that can be incorporated in
SCMs83.

When considering larger scales in RTMs, the dynamic evolution of
solid–water interfaces can significantly alter the fate and transport
of ions, which is not fully captured in current models. Adsorption of
chemical species and temporal evolution of solid phases due to
dissolution-precipitation processes changes reactive site densities and
types. Until recently, RTM could not include solid nucleation due to
the lack of experimental information about nucleation. Instead, it
captures precipitation as a group term by assuming that nucleation is
instantaneous, and only includes the solid’s growth rate. RTMs also do
not capture pore-size effects on solubility and nucleation kinetics.
Recent advances have been made to incorporate experimentally
obtained kinetic and thermodynamic information (e.g., nucleation
rates, activation energies, and interfacial energies)65,84,85 of calcium
carbonate nucleation into an RTM code CrunchTope. The incorpora-
tion of nanoscale interfacial reactions into the RTM improved the
model accuracy of both the evolution of the Ca(OH)2-depleted zone
and the surface dissolution zone at supercritical CO2–brine–cement
interfaces (Fig. 7)69. Experimentally-obtained nucleation thermo-
dynamic and kinetic information are important in scaling up nanoscale
observations of chemical reactions to larger scale predictions. Simi-
larly, this improved RTM framework can be utilized to predict mana-
ged aquifer recharge (MAR)where reclaimedwater is used to replenish
underground reservoirs. The reclaimed water for MAR is rich in dis-
solved oxygen, which can alter the dissolution of minerals with toxic
components such as arsenic-bearing iron sulfides and lead to sub-
sequent iron (hydr)oxide nucleation and toxic species adsorption onto
the newly formed iron (hydr)oxides86–89. Understanding the nucleation
and dynamic interfacial chemical processes and incorporating them
into RTMs will significantly improve the predictions of pollutant
mobility, benefiting safer aquifer management to address water
shortage problems.

The way forward: towards predicting and
controlling interfacial behavior
A logical next step for improving the accuracy of continuum-scale
models is to increase the number of discrete parameters used in these
models (e.g., use twopKa values insteadof one). Such approaches have
already been explored and do indeed show increased accuracy90.
However, should the splitting of single variables into sets of discrete
values (multiple-parameter approach) be the way forward? We argue
that it should not be, and a paradigm shift is urgently needed. The
fundamental question remains—can we keep applying homogeneous
chemistry concepts to heterogeneous systems? The probabilistic
nature of chemical phenomena in homogeneous systems has been
addressed by statistical mechanics—e.g., the Boltzmann distribution
describes the physical nature of molecules in populations having dif-
ferent states, the likelihood of which changes based on the conditions
imposed on these populations. Because gaseous or aqueous systems

Fig. 5 | In situ observations of the nucleation and growth of iron (hydr)oxide
nanoparticles in varied aqueous environments with small angle X-ray scat-
tering. In situmeasurements of heterogeneous nucleationonquartz substrates in a
solution containing 10−4 MFe(NO3)3 at pH3.6 ± 0.2 by grazing incidence small angle
X-ray scattering (GISAXS), showing in-plane (qxy) 1D scattering. The shaded boxes
indicate the particle size evolution with reaction time. Adapted with permission
from ref. 36 (a)With 1mMNaNO3 ionic strength (IS), nucleation isdominant.bWith
100mM NaNO3 IS, particles grew from ~2 to 5.5 nm, with the formation of sec-
ondary ~1 nmparticles. Detailed discussion about images (a,b) is available in ref. 66

(c) With 10mMNaNO3, both nucleation and growth were observed. dWith 10mM
NaCl, although the particle size is comparable to the nitrate system, the total par-
ticle volume does not increase, indicating Ostwald ripening. Detailed discussion
about images (c, d) can be found in ref. 106 (e) In the presence of natural organic
matter (NOM), particles aggregate, as indicated by power law scattering at low q.
f In the presence of both arsenate and NOM, large particles are also observed.
Further discussion about images (e, f) is available in ref. 67. g, h The influence of
substrate chemistry is evaluated by coating the surface with hydrophobic poly-
aspartate. More information about images (g, h) can be found in ref. 68.

Fig. 6 | Heat of adsorption measurements using operando flow micro-
calorimetry. Differential molar enthalpies (δHads) measured by operando flow
microcalorimetry for the sorption of chromate on ferrihydrite, showing that the
values become less negative (less favorable) with increasing surface loading.
Adapted with permission from ref. 107.
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are well-mixed, the Boltzmann distribution is usually Gaussian. When
we consider solid surfaces involved in interfacial reactions, a “well-
mixed” state is fundamentally impossible for any realistic solid surface.
Current molecular models and spatially resolved measurements can
capture surface heterogeneity and characterize the localized reactive
domains on surfaces atmolecular-, nano-, andother scales discussed in
“Molecular details matter” section of this Perspective. The problem is
that the continuum-scale models, such as SCM and RTMs, are not
designed to incorporate spatially differing reactivities of surfaces. We
propose that probability distributions of surface descriptors instead of
average constant values should be used to formalize interfacial prop-
erties in continuum-scale models. Therefore, using probabilities to
describe surface properties is a more promising approach in com-
parison to the stepwise increase in the number of variable values used
in multi-parameter sets. Including probability distributions for the
variables of interest could result in efficient continuum-scale models
because localized effects will be incorporated within non-localized
parameterization schemes. Hence, this approach has the potential to
address surface heterogeneity at different scales. If successful, this
new paradigm will lead to scale-independent, universal models that
would allow for the prediction of interfacial reactivities in complex
chemical systems for the first time, a dream come true for scientists
and engineers in many research fields.

To begin, we need to develop newmathematical frameworks and
computational approaches to describe chemical parameters and
properties as probability distributions, instead of ensemble average
values, to reflect real-world complexity and to generate scaled-up
SCMs and RTMs. We propose that accounting for chemical and
structural complexity in such new generation SCM and RTM codes
requires re-writing them using a fundamentally new approach. As
shown in our examples above, reaction rates, equilibrium constants,
and surface acidity constants vary across a surface and correlate to
distinct structural characteristics (e.g., oxygen vacancies, crystal-
lographic orientation, local structure of amorphous phases, sorbates,
and “spectator” ions). We anticipate that normal, bell-shape curves
could sufficiently capture the relevant parameter space in some cases
where stochastic processes dominate, while in other cases where
surface reactivity is a sumof non-randomphenomena, theywill be best
described by more complex types of probability curves. We advocate
for appliedmathematicians and statisticians to becomemore involved
in interfacial chemistry research to develop rigorous descriptions of
interfacial processes for specific use in RTM and SCM codes. The
inspiration for such models can be drawn from molecular-scale prob-
abilistic algorithms, including Metropolis Monte Carlo (statistical

sampling of energetic states)91 and Kinetic Monte Carlo (sampling of
reaction rates)92. These models are currently limited to molecular-
scales. From the experimental side, approaches that can quantify the
spatiotemporal variation of heterogeneous rates, adsorption free
energies, as well as interfacial capacitance, relative permittivity in the
Stern layer, and distribution of electric fields are needed to inform
these models.

In the geoscience community, Lüttge and co-authors proposed
using stochastic models to capture mineral dissolution processes93–96.
This conceptual approach was motivated by high-resolution in situ
measurements on carbonate and silicate surfaces in aqueous solutions.
These measurements clearly indicate site-dependency and time-
dependency of the dissolution rates, where the probability distribu-
tions evolve in time (Fig. 8). For calcite surfaces in Fig. 8,we see that the
initial surface topography has a measurable impact on the mean rate
values (peaks in the distribution curves) and on the width of the dis-
tributions. In fact, a dissolution rate is more accurately represented by
a term “rate spectra,”given the variability and gradual changes across a
given crystalline surface10. Importantly, Lüttge et al. developed an
initial framework for treating dissolution phenomena using a prob-
abilistic approach with the dissolution probability defined as96:

Pi =
Yi

j = 1

Pj ð1Þ

Here, Pi is the dissolution probability for a molecule with i bonds
to the surfacewritten as the product of hydrolysis probabilities over all
bonds. Furthermore, the logarithm of probability for an individual
surface unit to be dissolved is proportional to the sum of activation
energies for bond hydrolysis ΔEij

93:

lnPi = �

Pi

j = i
ΔEij

kT

ð2Þ

where k is the Boltzmann constant, and T is temperature. Wemust note
that the variability in the measured dissolution rates shown in Fig. 8 is 2
to 3-fold, because these measurements were conducted on the same
crystallographic surface. For numerous solids, the difference in dissolu-
tion rates for different crystallographic terminationsmay reachorders of
magnitude. Therefore, for realistic solids the probability weighted
approach is crucial, because averaging and ignoring this variability may
result in model predictions that are “off” by orders of magnitude.

Fig. 7 | Incorporation of nanoscale interfacial reactions into a reactive
transport model. a Illustration of direction of CO2 attack into the cement matrix.
The cement samples were reacted in a CO2-saturated brine (0.5M NaCl) with a
solid-to-liquid volumetric ratio of 1/16. The solution was equilibrated at 95 oC under
100± 5 bar of CO2. A total alteration thickness of 1220± 90μm was observed,
including a 960μmCH (Ca(OH)2, portlandite)-depleted zone, a 100μmcarbonated
layer, and a 170μm surface region. Interfaces between zones are drawn to scale.

b, c Modeling results with and without sufficient consideration of nanoscale
mechanisms in comparison with experimental data. b Results with no considera-
tion of nanoscalemechanisms. c Results with consideration of incomplete filling of
pore space at nanoscale, nucleation kinetics, an enhanced solubility in confined
pores. By incorporating nanoscale evolution of interfacial chemistry into RTM can
generate a better match with experimental observations. Adapted with permission
from American Chemical Society from ref. 69.
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Guren et al.97 illustrate how to derive a set of dissolution rate
probabilities from Kinetic Monte Carlo simulations and then how to
use them as input into the macroscopic stochastic model. The result
of this rigorous procedure is an accurate representation of mineral
dissolution that takes place at different surfaces and surface sites of
the same material. Regarding RTM, an approach for parameterizing
heterogeneity in surface reactivity has been recently demonstrated
using nanotopographic images to generate a distribution of surface
slope factors that act as a correction factor for the RTM-calculated
rates. This approach led to much better agreement between the
simulated dissolution rate maps and rate spectra than the standard
RTM98,99. While these examples are extremely promising and repre-
sent an advance in the field of reaction modeling, the results are still
limited to simple systems. A major break-through is needed for
translating chemical knowledge from molecular-scale into
continuum-scale models.

In this Perspective we propose that an approach that captures
probability distributions must be applied in SCMs and RTMs to
encompass all relevant constants and surface properties, including
dissolution rates and nucleation and growth rates, when considering
chemistry of solid–water interfaces (Fig. 9).

Developing new methods for incorporating probability dis-
tributions into SCM and RTM codes for the numerous reactive sur-
faces present in the environment will be possible by utilizing new
computational approaches. A longstanding grand challenge in com-
putational science has been the seamless transfer of information
across scales from molecular to field-scales100. In practice, this ideal
has not been achieved because funding for multi-scale modeling
efforts have not been the norm and computational limits have not
allowed significant overlap in spatiotemporal scales among the var-
ious approaches. The latter obstacle can be overcome with the
advent of exascale computing and the development of codes that
incorporate machine learning (ML)-based interatomic potentials or
ML-IAPs101. Connecting atomistic and pore scale simulations through
advanced computational power can be achieved by systematic

development of interatomic potentials via machine-learning. Exas-
cale computing makes simulations of 107 atoms over durations of
microseconds possible, and the ML techniques allow for the devel-
opment of accurate, reactive IAPs based on experimental data and
quantum results. Thus, it would be possible to perform atomistic
simulations that overlap with the mesoscale and can more realisti-
cally represent solid–water interfaces. Exascale computers will allow
for accurate atomistic simulations of reactions and flow on scales
that overlap the micron-scale elemental volumes of lattice Boltz-
mann simulations102. Coarse-grained mesoscale simulations (i.e.,
mesoscale) allow for larger and longer spatiotemporal scales that
overlap finite element and continuum methods. This “bottom-up”
approach can provide parameters that are useful in larger scale
models such as SCM (e.g., ref. 103). Additionally, ML can be used to
identify feature importance, value clustering, and detecting anom-
alous values104, all of which can aid in the statistical descriptions of
interfacial reactivities. Smaller scale simulations can be used to test
assumptions and approximations made for larger scale simulations
while simultaneously providing chemical mechanism information
that could be incorporated into SCMs or RTMs. By incorporating
probability distributions and integrating across scales with experi-
ments and simulations, it will become possible to derive new mod-
eling paradigms that are consistent with field observations and
incorporate molecular-level information. This approach will enable
bridging of laboratory experiments with modeling efforts to predict
chemical transformation in complex industrial systems and natural
environments, including critical settings such as nuclear waste sites.
Similar approaches can be used for predicting catalyst performance
and to design fit-for-purpose materials for energy and the environ-
ment. With exponentially rising computational power, the advance-
ment in machine learning and artificial intelligence tools and the
increasing spatiotemporal resolution of laboratory measurements,
this perspective provides a conceptual framework that could enable
sustainable solutions to global problems including clean water,
renewable energy, and climate change.

Fig. 8 | Probability distributions of calcite dissolution rates measured in laboratory dissolution experiments. a Dissolution rate spectra for “striated” surface; and
b Dissolution rate spectra for “hill-and-valley” surface. Adapted with permission from Trindade Pedrosa et al.95.
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