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Testing “Native-State” Assumptions
in Ligand Binding and

Protein Structure Analysis

David Warren Miller

August 1997

Abstract

We use variations of the two-dimensional HP lattice model to test

several common paradigms – used in both protein structure analy
sis and the characterization of various protein processes – that tend

to overemphasize the influence of native, as opposed to non-native,

conformations. This thesis has three parts. In the first, we present

a model of amide hydrogen exchange (HX), and test the assumption
that exchange in the stable limit occurs by only small perturbations
of the native protein structure. We find that while this is sometimes

true, exchange can also occur from conformations close emergetically,

but dissimilar structurally, to the native state. We show that this re

sults from “bumpiness” of the HP model energy landscape, and that
the “funnel” landscape assumption of current HX analyses – namely,

t
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that native-like energies guarantee native-like structures – may lead to
an incorrect interpretation of HX data that is unfairly biased towards
the native structure. In the second part we model protein-ligand in
teractions. The model shows many familiar binding behaviors, but
also several which violate standard premises of ligand binding. These
include the continuity premise, that small changes to the ligand struc
ture result in Small changes to the bound complex; the native premise,
that ligand binds tightly only to native-like conformations of proteins;
and the stability premise, that specific, Michaelis-Menten binding al
ways increases protein global stability. We present experimental evi
dence that supports our model results. In the third part we present
a method for correcting free energy perturbation (FEP) calculations
of relative binding energies so that they include contributions from

“non-dominant” modes of binding, i.e., modes not observed by NMR
or x-ray crystallography. We show an HP model example in which
including only the dominant modes results in an incorrect rank or

dering of the binding energies of two ligands, and demonstrate how
a “multi-mode” approach using several FEP calculations recovers the
correct rank ordering and gives a more accurate estimation of the rel
ative binding energy.
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Protein molecules can adopt a large number of conformations in solution, some of

which must necessarily be very different from the native structure observed by x-ray

crystallography or NMR spectroscopy. Although there are in principal many experi

mental techniques capable of detecting these non-native conformations, very few can

do so under native conditions, because the ensemble-averaged structure, which most

techniques measure, will be dominated by the single native conformation. Hydrogen

exchange (HX), one of few techniques capable of assaying non-native structure even

under native conditions, is nevertheless limited in the structural detail it provides,

since the measured rates are influenced by local environment in a complex manner,

and have contributions from many potentially diverse structures. Other techniques,

such as CD spectroscopy, can probe non-native structures only when they represent

a significant fraction of the overall population. And even under such conditions,

these techniques are often limited by low resolution, providing only a measure of

secondary structure, for example, or the local environment of a single fluorescent

probe. A more detailed structural analysis of protein non-native states is therefore

beyond the capacity of current biochemical and biophysical techniques.

A central goal of this work has been to study through simple models the effects

of protein non-native states on experimental measurements, and to show that many

common assumptions used to interpret these experiments are fundamentally biased

by knowledge of the native, or ensemble-averaged, structure. We focus on two sets of

assumptions. The first – used in structure-analysis studies using hydrogen exchange

— are that HX rates can be used as a direct probe of native structure. Experiments

are of two types: (1) The first is HX under native conditions, and involves the

well-known debate over how solvent molecules are able to reach buried amide hy

drogens in the protein interior. Several different mechanisms have been proposed,

but an assumption inherent in each of them is that the pertinent fluctuations of



the protein must represent only small perturbations of the native structure. This

assumption – evident in the names of the mechanisms themselves (“local unfolding,”

for example) – is used to infer protein structure and stability information from HX

data. (2) The second type of HX experiment probes structure under non-native

conditions, and includes kinetic studies of folding pathways, the characterization of

stable intermediates, and the identification of folding subunits using curves of HX

rate versus denaturant. The assumption made in each of these is that for any par

ticular non-native conformation, the similarity or dissimilarity of HX rates to their

native-state equivalents is a direct measure of the conformation's structural simi

larity or dissimilarity to the native state. This assumption is evident in the model

“ribbon diagrams” drawn to represent the HX data from stable or folding-pathway

intermediates: typically these have essentially native folds, with perhaps somewhat

relaxed structure in the faster-exchanging regions.

The second set of assumptions pertain to protein-ligand interactions. We address

four premises in which the current paradigms of ligand binding are heavily rooted:

(1) steric fit: that binding is determined mainly by shape complementarity, (2) native

binding: that ligands mainly bind to native states, with an accompanying increase

in global stability, (3) locality: that ligands perturb protein structures mainly at the

binding site, and (4) continuity: that small changes in ligand or protein structure

lead to small changes in binding affinity. Underlying each of these assumptions is

the idea that only the native structures of proteins determine where and how tightly

a particular ligand will bind.

We examine, and ultimately question, the validity of these assumptions using a

simplified model of proteins. Though not structurally realistic, the model is advan

tageous in that it allows model protein molecules to explore all of conformational

space, including highly non-native structures, both folded and unfolded. Hence what



the model lacks in atomic detail, it gains in conformational diversity, an ingredient

missing both from all-atom models and from the familiar two-state (native versus

denatured) analyses of many protein processes. The model is described in detail

below. Though not the primary theme, an important goal of this work is to demon

strate how simple models based on a few, basic, physical concepts can be extremely

helpful in explaining unusual or perplexing behavior in complex systems.

This thesis is divided into three chapters. Chapter 1 describes a statistical me

chanical model for amide hydrogen exchange (HX) in proteins. Unlike the two-state

assumptions of other HX models, the HP model allows full enumeration of all non

native conformations, so we are able to determine exactly the types and magnitudes

of protein fluctuations that give rise to exchange under varying conditions of protein

stability. The model reproduces the familiar biphasic curves of HX rate versus ex

ternal conditions (temperature or denaturant concentration), and we find that the

two “regimes” of HX arise not from two separate mechanisms, but from a natural

shifting of the non-native ensemble: from a compact state under stabilizing con

ditions, to an unfolded state under denaturing conditions. We find that HX can

occur from protein conformations close emergetically to the native state, but very

distant structurally. This result has two implications. (1) It suggests that the HP

model energy landscape, and perhaps that of proteins as well, is very “bumpy,” since

conformations with highly non-native structures can have very native-like energies.

(2) It implies that current interpretations of HX data may be biased towards the

known native structure, that is, by a “funnel” landscape assumption. For example,

two prevalent assumptions in HX are (a) that fast HX rates measured under native

conditions imply that only small perturbations of the protein take place during ex

change, and (b) that under denaturing conditions, or during folding, the more that

HX rates resemble the native-state rates, the more native-like the local structure

-

% º*
4

º
*º

*- -



must be. Our model demonstrates that such assumptions may sometimes be in

correct, and that in general, inferring structural information from HX experiments

requires additional knowledge about the protein energy landscape. We propose a

hydrogen exchange experiment based on our model results which may help to reveal

certain properties of these landscapes.

Chapter 2 describes a statistical mechanical model of protein-ligand interactions.

Using the HP model we can go beyond the empirical methods of binding polynomials,

and instead can predict binding behavior a priori, from the ligand structure and

amino acid sequence of the protein. First we show how the model reproduces many

familiar binding behaviors, such as “lock and key” and “induced fit” types of specific

binding, characterized by Michaelis-Menten isotherms; ANS-like binding to compact

denatured states; binding and stabilizing a disordered structure, as heme stabilizes

apomyoglobin; weak binding to the protein surface, as observed for various non

perturbing dyes and organic solvents; cooperative binding between two identical

ligands; and ligand-induced denaturation. Next, we explore some interesting and

unconventional behaviors of the model that contradict standard premises of ligand

binding: (1) two ligands with identical shapes but slightly different energetics can

bind in two entirely different binding modes. This result, supported by experiment,

suggests both (a) that shape complementarity may not be as large a determinant of

the binding mode as is often assumed, and (b) that small changes in ligand structure

will not necessarily lead to only small changes in either the binding constant or the

lowest-energy configuration of the complex. (2) Ligands can bind with native-like

affinity to highly non-native, even unfolded, conformations of a protein, even when

binding follows a normal Michaelis-Menten isotherm. This is important not only

from a conceptual standpoint (i.e., the idea that tight binding doesn't always mean

high population), but also from the standpoint of theoretical drug-design efforts,

º .**
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since it suggests that modes of ligand binding other than the dominant x-ray mode

may sometimes contribute significantly to the binding energetics. We show that these

non-native binding interactions, as well as properties of the ligand-protein energy

landscape in general, can be detected and quantified using hydrogen exchange, and

we show experimental examples that support our model results. (3) Ligand binding

can induce global destabilization in proteins, even when the interaction is specific

and follows a Michaelis-Menten isotherm.

In chapter 3 we use the HP model of binding to examine the validity of an as

sumption commonly used in theoretical calculations of binding free energies, namely,

that only a single dominant binding mode contributes to the energetics. Free energy

perturbation (FEP) and other theoretical methods commonly base calculations on

only the single mode of binding observed by x-ray crystallography or NMR. We

explore this assumption with the HP model, using as a test case two structurally

similar ligands, both of which have the identical dominant mode of binding, but

one of which also binds in non-dominant modes. We find that assuming only the

single dominant mode leads to large errors, and even an incorrect rank ordering of

the predicted free energies of binding. We propose a method for incorporating non

dominant binding modes in FEP calculations, and for combining terms into a single,

rigorous expression for the true relative binding free energy. We demonstrate this

method for the HP model example, using Monte Carlo to simulate molecular dy

namics (MD) FEP calculations. Using this method, we are able to predict accurate

binding free energies for the two ligands, and to recover the correct rank ordering.
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Chapter 1

A Statistical Mechanical Model

for Hydrogen Exchange
in Globular Proteins

This chapter is taken from the following published article: Miller DW, Dill K.A.

1995. A statistical mechanical model for hydrogen exchange in globular proteins.

Prot Sci 4: 1860–1873.
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ABSTRACT

We develop a statistical mechanical theory for the mechanism of hydrogen ex

change in globular proteins. Using the HP lattice model, we explore how the solvent

accessibilities of chain monomers vary as proteins fluctuate from their stable native

conformations. The model explains why hydrogen exchange appears to involve two

mechanisms under different conditions of protein stability: (i) a “global unfolding”

mechanism by which all protons exchange at a similar rate, approaching that of the

denatured protein, and (ii) a “stable-state” mechanism by which protons exchange

at rates that can differ by many orders of magnitude. There has been some contro

versy about the stable-state mechanism: does exchange take place inside the protein

by solvent penetration, or outside the protein by the local unfolding of a subregion?

The present model indicates that the stable-state mechanism of exchange occurs

through an ensemble of conformations, some of which may bear very little resem

blance to the native structure. While most fluctuations are small-amplitude motions

involving solvent penetration or local unfolding, other fluctuations can involve much

larger transient excursions to completely different chain folds.

BACKGROUND

Hydrogen exchange (HX) is a powerful tool in protein research, most notably

in studies of structure, folding kinetics, folding intermediates, and ligand binding

(Roder et al., 1988; Roder, 1989; Udgaonkar & Baldwin, 1988; Hughson et al., 1990;

Englander et al., 1992). The chemical mechanism of exchange is well understood

from experiments with extended, unstructured peptides highly solvated in solution

(Berger & Linderstrom-Lang, 1957; Eigen, 1964). The reaction involves the acid



or base-catalyzed exchange of backbone amide-group hydrogens with deuterium or

tritium from bulk solvent. Studies of poly-DL-alanine and other polypeptides have

yielded a quantitative description of the effects of temperature, pH, and solvent

character on the exchange rates of solvent- exposed protons (Englander & Poulsen,

1969; Englander et al., 1972; Bai et al., 1993), and rules have been developed to

calculate the sequence-specific inductive effects of neighboring amino acid side chains

(Molday et al., 1972; Bai et al., 1993). These studies now make it possible to

accurately predict the exchange rates of amide protons in extended oligopeptides

(Molday et al., 1972; Bai et al., 1993) and in solvent-exposed, unstructured regions

of native proteins (Englander & Staley, 1969; Molday et al., 1972; Yee et al., 1974).

In contrast, the mechanism of exchange in folded proteins is complicated by the

inhomogeneous structural environments of core and surface protons. Factors such

as steric inaccessibility to solvent, local charge distributions, and internal hydrogen

bonding, which inhibits the chemical catalysis step, can slow the rate of amide pro

ton exchange considerably. Nevertheless, experiments show that most protons, even

those buried deep within the protein, exchange at measurable rates under physiolog

ical conditions (Hvidt & Linderstrom-Lang, 1954). How do catalysts from the bulk

solvent gain access to the hydrophobic core? The mechanism has been studied by

measuring amide proton HX rates for whole proteins and, using NMR, for individual

protons, under varying degrees of protein stability (Woodward & Rosenberg, 1971;

Woodward et al., 1975; Hilton & Woodward, 1979; Woodward & Hilton, 1980).

Two such experiments are shown in Figure 1. Figure 1A shows an Arrhenius plot

of the HX rate for several slowly-exchanging protons in the beta-sheet subregion of

BPTI. Figure 1B shows the exchange rate as a function of denaturant concentra

tion for several slowly-exchanging protons of cytochrome C. Both proteins are folded

over the ranges of temperature and denaturant concentration shown. The results

*º
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Figure 1: Experiments imply two exchange mechanisms. A: Temperature depen
dence of the normalized exchange-rate constants for beta-sheet protons of BPTI
(adapted from Kim & Woodward, 1993). B: Denaturant dependence of exchange
rate constants for protons of Cyt C (adapted from Bai et al., 1994). In B,
AG = -RT log(kobs/ko). Under destabilizing conditions, all rates become equal and
resemble those of the denatured state. Under stabilizing conditions, curve slopes are
smaller and rates differ by orders of magnitude.
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in Figure 1, which are typical of the slowly-exchanging protons of several proteins,

have led to the following conclusions regarding the mechanism of hydrogen exchange:

(1) The negative slopes indicate that exchange slows exponentially as the stabil

ity of the protein is increased via the removal of denaturants or the lowering of

temperature. This suggests that there are protons whose exchange from the native

conformation would be immeasurably slow in the absence of fluctuations, implying

that exchange takes place from conformations involving an opening of the native

structure. The native state is said to be “exchange incompetent” for these slow

exchanging protons.

(2) The different limiting behaviors in the low- and high-stability regions suggest that

two different types of fluctuations are responsible for exchange. In the high tem

perature (or high denaturant) limit, all of the buried protons exchange at roughly

the same rate, suggesting that a common type of fluctuation governs exchange when

protein stability is marginal. Conversely, at low temperature (or denaturant), the

curves have uniformly smaller slopes, and exchange rates become strongly depen

dent on spatial position: within a given protein they can differ by more than eight

orders of magnitude (Englander et al., 1972). This suggests that a different type

of fluctuation may be responsible for exchange under highly stabilizing conditions.

Clare Woodward and her colleagues were first to interpret the biphasic curves as

suggesting two distinct exchange mechanisms (the “two-process model”; see Wood

ward & Rosenberg, 1971).

Kinetic model of exchange and the two-process model

A simple kinetic model (Hvidt, 1964; Hvidt & Nielsen, 1966) has been helpful

.
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in analyzing HX data from folded proteins under the various conditions of stability.

The model involves two components: (i) a structural factor accounting for the rate at

which the protein becomes “exchange competent” by losing any structural barriers

to exchange, and (ii) a chemical factor accounting for the exchange rate of protons

that are fully exposed and unstructured; these are known from reference data in well

characterized systems (see references above). According to this model, the exchange

rate of a proton that is intrinsically incompetent to exchange from the native state

is described by:

kop ko
HX incompetent = HX competent – exchanged (1)

kel

where kop and kel are the rate constants for opening and closing of the native confor

mation respectively, and ko is the rate constant for exchange from a solvent-exposed,

unstructured peptide. Under steady-state conditions, the overall rate constant for

(1) is:

kop kokobs =* † II, (2)

Exchange generally follows one of two types of kinetics, referred to as EX1 and EX2

(Hvidt & Nielsen, 1966). Under EX2 conditions, kei X. ko, meaning that exchange

competent and incompetent structures reach a fast equilibrium prior to the slower

exchange step. EX2 exchange is characterized by a linear dependence on the pH.

Under EX1 conditions, kei & ko. Here exchange depends only on kop and is pH

independent. Most experimentally-measured rates show EX2 behavior (Segal &

Harrington, 1967; Roder et al., 1985), for which the rate constant in Equation (2)

reduces to:

º
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kop
kekoºs - ko = Kop ko (3)

where Kop = kop/kel describes the equilibrium between the native state and the

exchange-competent state. Thus the exchange rate is the product of the extended

peptide rate multiplied by the fraction of time the protein is transiently unfolded.

Measurement of the ratio of exchange rates, kob, /ko, which is the reciprocal of

the protection factor, has been used to determine Kop, the stability and relative

population of the exchange-competent conformations, through Equation (3). Addi

tional information is gained from the Arrhenius plot slopes, which are obtained by

expressing Equation (3) in terms of energies:

kobs — C1 e-AGop/kT e-E/kT (4)

where AG, is the free energy of opening the native-state, E4 is the activation

energy for exchange from a solvent- exposed, unstructured peptide, and C1 is a

constant. The activation energy, E*, of ko is observed to be temperature independent

(Englander et al., 1979), and the free energy, AGop = AHop – TASop, is often

assumed to have temperature-independent values of AHop and AS.p. Thus the

slope, m, of the Arrhenius plot for a given proton is obtained by differentiating

log kob, with respect to 1/T:

m = –C. (AH., + E*) (5)

where C2 is assumed to be temperature independent. Hence the slope is proportional

to the enthalpy difference between the native state and the most highly populated

exchange-competent structure. Comparisons of these rate-based enthalpies with

experimentally-measured unfolding enthalpies have been used to infer the types and

13



magnitudes of the fluctuations responsible for exchange.

On this basis, it has been possible to provide a structural interpretation for the

two different exchange mechanisms proposed by Woodward et al. to occur in the

limits of high and low stability (e.g. Ellis et al., 1975; Woodward et al., 1982; Eng

lander & Kallenbach, 1984). (1) Under destabilizing conditions, it has been proposed

that exchange occurs by “global unfolding”. That is, since the rate-based enthalpies

coincide with equilibrium unfolding enthalpies (Woodward et al., 1975), it has been

concluded that the exchange-competent states are the denatured conformations.

This is consistent with the observation that all protons exchange at roughly the

same rate under these conditions. (2) Under stabilizing conditions (low temperature

or low denaturant), exchange rates are slower, and rate-based enthalpies are smaller

than for global unfolding. This has been taken as evidence that the conformational

fluctuations from the native state are correspondingly smaller, and HX sites more

protected, than in denatured states. In this limit, protection is highly site-specific,

and HX rates vary with the amide proton environment. This second mechanism of

exchange has alternately been called “exchange from the folded state” (Woodward

& Rosenberg, 1971), the “low activation energy” process (Woodward et al., 1975),

and “process b” (Hilton & Woodward, 1979). We refer to it as the “stable-state”

mechanism.

Models for the stable-state mechanism

Two types of structural models have been developed to describe the stable-state

mechanism: “solvent penetration” models (e.g. Woodward & Rosenberg, 1971;

Lumry & Rosenberg, 1975; Richards, 1979) and the “local unfolding” model (Hvidt

& Nielsen, 1966; Englander, 1975). The models are reviewed fully in Englander &

Englander, 1978; Gurd & Rothgeb, 1979; Hilton et al., 1981; Woodward et al., 1982;

14



and Englander & Kallenbach, 1984, and are discussed briefly below.

A: Solvent penetration models

In penetration models, protons exchange within the protein interior: catalysts

enter the protein core through transiently-formed channels and cavities. One pen

etration model proposes that such channels arise from small, rapid fluctuations of

tenths to several angstroms of interior atoms. Other penetration models have pro

posed that the channels arise from the redistribution of interior hydrogen bonds

(Lumry & Rosenberg, 1975; Nakanishi et al., 1973), or from the random associa

tion of pre-existing interior cavities (Richards, 1979). In penetration models, the

exchange rate of a proton depends both on its average accessibility to solvent, which

is a function of its depth of burial and the local mobility of the protein in its vicinity,

and on its reactivity with the catalyst, which is affected by local structural features

such as packing density and hydrogen bonding. Some penetration models postulate

that exchange is highly localized; i.e., protons on adjacent amino acids exchange

independently rather than in a correlated way.

B: Local unfolding models

In the local unfolding model, exchange occurs outside the protein when a sub

region, such as an alpha-helix, transiently unfolds into the bulk solvent. Protein

segments of no more that about ten residues are expected to unfold at one time

(the unfolding region is “local”), consistent with the small enthalpies observed for

exchange under stable conditions. In this model, the main barrier to exchange is

considered to be the interior hydrogen-bonding of amide protons, rather than their

depth of burial. Adjacent protons within subregions are predicted to exchange at

roughly the same rate, since protons belonging to the same structural unit are un

*
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folded simultaneously. Such correlated exchange behavior has sometimes been called

“cooperativity.”

Experimental evidence

Evidence that has been taken as support for solvent penetration models includes

the following:

(a) The magnitudes of fluctuations inferred from X-ray crystallography and NMR

spectroscopy under native conditions are thought to be large enough to form the

solvent channels envisioned by the penetration model (Wuthrich & Wagner, 1978;

Frauenfelder et al., 1979).

(b) Molecular dynamics (MD) calculations suggest that small, picosecond atomic

fluctuations provide penetration pathways for O2 in myoglobin (Karplus & McCam

mon, 1981).

(c) Proton NMR studies in BPTI show that exchange of water molecules between

the protein core and bulk solvent can occur on a sub-second time scale under phys

iological conditions (Tuchsen et al., 1987; Otting et al., 1991).

(d) The pKa’s of two histidine residues in ribonuclease S during C-2 proton exchange

are more characteristic of a buried than exposed environment (Bradbury et al., 1977,

1980).

(e) Denaturants at low concentrations do not accelerate stable-mechanism HX rates,

implying that regional unfolding is not required for exchange (Woodward et al., 1975;

16



Woodward & Hilton, 1979; Hilton et al., 1981; Mayo & Baldwin, 1993).

(f) Roughly 95% of amide protons in myoglobin crystals exchange with deuterium

after perfusion with deuterium solvent (Schoenborn et al., 1978), suggesting that
exchange does not require unfolding.

(g) The exchange kinetics in lysozyme is identical in solution and in the crystal,

where it is presumed that local unfolding should not occur (Tuchsen & Ottesen,

1979; Tuchsen et al., 1980).

(h) Protons at the interface between trypsin and trypsin inhibitor exchange without

dimer dissociation, implying an absence of local unfolding, and the pH and temper

ature dependence of exchange is characteristic of buried protons in globular proteins

(Pershina & Hvidt, 1974; Woodward, 1977).

(i) For the slowest exchanging amides in BPTI, next-neighbor residues can have very

different exchange rates, implying a lack of correlation (Hilton & Woodward, 1979).

(j) For the fifteen slow-exchanging amides in BPTI, there is no obvious correlation

between H-bond length and the rates of exchange by the stable- state mechanism

(Levitt, 1981a; Woodward et al., 1982).

(k) In lysozyme (Radford et al., 1992; Pedersen et al., 1993) and leucine zipper pep

tides (Goodman & Kim, 1991) there are helices in which buried protons exchange

more slowly than solvent-exposed protons.
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(1) Studies of the effects of local structure on tyrosine ring flips in folded proteins

suggest that the formation of solvent channels, as envisioned by the penetration

model, could give rise to the large range of enthalpies observed for the stable-state

mechanism of exchange (Karplus & McCammon, 1981).

Evidence taken as support for the local unfolding model includes the following:

(a) In support of neighbor correlations, like-exchanging sets of protons in hemoglobin

undergo uniform rate shifts upon the allosteric structural change from deoxy-Hb to

oxy-Hb (Englander & Mauel, 1972; Englander, 1975) and these sets are localized

within regions of secondary structure (Englander et al., 1983).

(b) As an indication that HX rates depend not only on the degree of burial, but also

on hydrogen bonding, small molecules that form intramolecular hydrogen bonds,

such as salicylate, exchange up to six orders of magnitude slower than their diffusion

limited rates, even though they have otherwise good solvent accessibility (Haslam &

Eyring, 1967; Rose & Stuehr, 1968).

(c) For intermediate and fast (non-beta-sheet) protons in BPTI, trypsin, and ri

bonuclease, there is no correlation between crystallographic B factors and exchange

rates, suggesting that small internal fluctuations are not the primary mechanism of

exchange (Levitt, 1981b; Kossiakoff, 1982; Wlodawer & Sjolin, 1982).

(d) There is no obvious correlation between exchange rate and depth of burial in

trypsin and ribonuclease (Kossiakoff, 1982; Wlodawer & Sjolin, 1982).
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(e) Englander and Kallenbach (1984) have argued that the free energies would be

too high for the catalytic OHT ions to penetrate a protein core.

(f) The observed shift in pHrmin for exchange by the stable-state mechanism is ar

gued to be caused by the separation of interior charged groups, which requires a

structural change greater in magnitude than the small fluctuations envisioned by

the penetration model (Englander & Kallenbach, 1984).

(g) In alpha-helical segments of ribonuclease S (Kuwajima & Baldwin, 1983), BPTI

(Wagner & Wuthrich, 1982), and apamin (Wemmer & Kallenbach, 1983), amides

exchange at similar rates despite very different solvent accessibilities in the native

protein.

(h) Amides in alpha-helical and beta-sheet regions of both synthetic polypeptides

and native proteins exchange slowly despite being solvent accessible (Leichtling &

Klotz, 1966; Ikegami & Kono, 1967; Nakanishi et al., 1972; Welch & Fasman, 1974;

Rohl et al., 1992; Bai et al., 1994).

Both penetration and local unfolding models view the exchange competent con

formations as being small excursions from the native state since the rate-based en

thalpies are smaller than those for unfolding the protein. The main distinctions

between the two mechanisms are: (i) whether the exchange reaction is erternal

in bulk solvent (local unfolding model) or internal within the protein interior (sol

vent penetration model), and (ii) whether exchange involves neighbor correlations or

whether neighboring residues can exchange independently. Neither model attempts

* * *
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to make quantitative predictions for individual proton exchange rates.

Our aim here is to avoid making assumptions about the various mechanisms of

exchange and to see instead if a unified viewpoint can be derived from an underlying

statistical mechanical theory of how amino acids develop access to solvent through

conformational fluctuations from native states. Using a simple lattice representa

tion of proteins, we model the non-chemical part of the hydrogen exchange process

and explore the mechanism by which buried monomers gain access to solvent under

varying conditions of chain stability. Our model involves two components: a general

statistical mechanical treatment of monomer accessibility, and a simple lattice model

to relate structure to accessibility. While the lattice representation of structure is

very simple, our statistical mechanical treatment is more complete and has fewer

approximations than previous models. We make no assumptions about mechanisms

of fluctuations, about whether the equilibrium is 2-state or 3- state, about the rates

of exchange from compact or unfolded conformations, or about how different con

formations are affected by external conditions. Rather, these properties are derived

from the theory.

We find that the two limiting mechanisms of exchange, under stable and unstable

conditions respectively, arise as a natural consequence of different limiting behav

iors of native fluctuations. Exchange by the stable- state mechanism is found to

resemble both solvent penetration and local unfolding models in some respects, but

there are also novel aspects, namely that: (i) fluctuations are usually ensembles of

many different conformations, and (ii) the exchange competent conformations under

stable conditions can occasionally involve large conformational deviations from the

native structure. We explain these results in terms of the shape of the folding energy

landscape, and discuss possible implications for biological proteins.
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Figure 2: Sample conformation for the two-dimensional HP lattice model. Black
and white beads represent H (hydrophobic) and P (polar) monomers, respectively.
Non-covalent HH contacts are favored by a free energy, e (€ 30). This conformation
has 8 HH contacts, so the free energy is 86.

THE LATTICE MODEL

We model proteins using the 2-dimensional HP lattice model (Lau & Dill, 1989,

1990; Chan & Dill, 1991; Dill et al., 1995). A protein is represented by a sequence of

H (hydrophobic) and P (other) monomers configured on a two-dimensional lattice

(Figure 2). Amino acids are represented by beads, and the protein backbone by lines

connecting the beads. The background lattice serves to divide space into amino

acid-sized units. Lattice sites may be either empty or filled by a single bead (the

excluded-volume constraint), and empty lattice sites are assumed to contain a solvent

molecule. In the HP model, each HH contact, formed when two non-sequential

H monomers occupy adjacent lattice sites, is favored by a contact free energy e

(€ 3 0). This energy is a simple way of capturing the importance of hydrophobic

interactions, whatever their underlying atomic origins in hydrogen bonding, van der

Waals interactions, and solvent ordering (Dill, 1990; Chan & Dill, 1991). HP and

PP contacts are neither favored nor disfavored energetically. Hence the free energy

of a conformation is he, where h is the number of HH contacts. The conformation in

*

:
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Figure 2 has 8 HH contacts, and therefore has a free energy of 86. The magnitude of e

determines the degree of stability imparted by external conditions; large and negative

e is more stabilizing. Conformational entropy, the driving force for unfolding, enters

the model through the exhaustive enumeration of all the possible chain configurations

(see discussion below).

The disadvantages of the model are clear: atomic resolution is lost; conformations

are restricted to a lattice; it is in 2 dimensions; the energy function is simplified;

and chains are unrealistically short. Yet despite these disadvantages, the model has

been found useful for modeling protein properties (Lau & Dill, 1989, 1990; Chan &

Dill, 1989, 1990, 1994; Shortle et al., 1991; Dill et al., 1995) because it shows several

protein-like features, including cooperative collapse, a nonpolar core, secondary and

tertiary structures, and multi-stage folding kinetics. And because it characterizes the

full conformational space in an exact and unbiased way, we are able to consider all

fluctuations of all sizes, without being restricted to small- amplitude motions, short

time scales, or mathematical approximations. Most importantly, we believe the

model captures the main physics of protein folding—the hydrophobic interactions,

conformational freedom of the chain, and the steric restrictions imposed by excluded

volume.

This model does not include explicit hydrogen bonding, but we believe this is not

a serious limitation. There are three possible roles of hydrogen bonding in hydrogen

exchange. First, hydrogen bonding is required to catalyze the exchange reaction, but

as in past literature on exchange mechanisms, we calculate ratios (observed rates

divided by rates for solvent-exposed, unstructured sites), and thus avoid the need

to consider the chemical details of the exchange process. Second, to the extent that

hydrogen bonding contributes to protein stability, it is an implicit component of

the HH, HP, and PP interactions of the HP model. Because the model produces

º
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hydrophobic cores, and monomer burial, we consider it a simplest model of how the

accessibilities of amino acids in proteins depend on stability. Third, inter-residue

hydrogen bonds present a structural barrier to exchange because they must be broken

before the exchange process can be initiated. The breaking of these bonds can also

give rise to correlated exchange, as in the local unfolding model. In the present

model the proximity of an amino acid to solvent determines its ability to exchange,

as described below. In this regard, all microscopic barriers to exchange, including

hydrogen bonding, are treated as a single factor implicitly accounted for by monomer

burial. However, neighbor correlations can occur naturally in a sequence-specific way

without introducing the additional energy parameter a hydrogen bond would require.

We study HP sequences of 16 monomers. For any 16-mer chain there are ex

actly 802,075 possible conformations that can be configured on a two- dimensional

lattice. These conformations are generated by computer, and each is weighted by a

Boltzmann factor according to the number of HH contacts made. Figure 3 shows an

energy diagram for a sample sequence. The native structure (ground state) is the

conformation with the largest possible number of HH contacts, and thus the lowest

contact free energy. We study only those sequences (“non-degenerate”)that have a

single native conformation, since we believe that they best represent biological pro

teins, which fold to unique structures. All higher-energy conformations comprise the

“denatured” states, and are grouped by energy into “first-excited” states, “second

excited” states, etc., corresponding to successively fewer HH contacts (see Figure 3).

Figure 3C shows the density of states, g(h), the distribution of conformations having

h HH contacts. For all HP sequences, g(h) diminishes rapidly as h increases. That

is, there are far more open, high-energy conformations than compact, low-energy

conformations.

Our treatment of hydrogen exchange is divided into two parts. First we develop
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Figure 3: The “energy ladder” diagram for the 16-mer HP sequence in Figure 2.
The native conformation is at the bottom of the ladder; this single lowest-energy
conformation has 8 HH contacts. Increasing steps up the energy ladder represent suc
cessively fewer HH contacts; these levels are the first-excited states, second-excited,
etc. Sample conformations of each energy level are shown in A. C: Density of states
distribution, g(h), the number of conformations of this HP sequence that have the
given number, h, of HH contacts.
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a statistical mechanical theory to describe how monomer sites that are exchange

incompetent in the native state become competent to exchange through Boltzmann

populations of non-native conformations. This theory is completely general and does

not depend on lattices or on any other particular model. Second, we introduce the

HP model to give a concrete basis for relating protein structure and stability to

exchange competence.

Statistical mechanical model of exchange competence

At a temperature T, any conformation, c, of a protein will be populated according

to its Boltzmann probability, P.:

e–E./kT
P = − (6)

XD e-E./kT
c=1

where E. is the free energy of conformation c, k is Boltzmann's constant, and N is the

number of conformations available to the protein. Equation (6) is a general, model

independent equation for any equilibrium system. At low temperatures, only the

native conformation will be populated since its Boltzmann factor will be dominant.

At high temperatures, the denatured conformations will be populated because there

are so many more non-native than native conformations, and the entropically-favored

states will dominate.

The average value of any observable conformational property Ac can be computed

as a sum over Boltzmann probabilities:

N ¥4. –Ec/kT

(A) = XD A. P. = = <= (7)
c=1 X-e-E■ t

In particular, the observable property of interest here is the exchange competence of

"as
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an individual proton site. If Ac characterizes the exchange competence of proton

i in conformation c, Equation (7) gives the average exchange-competence of that

proton as a function of temperature.

Equation (7) is completely general and model independent. Now we introduce

the HP model. The conformational energy depends only on the number of HH

contacts: E = he, where h is the number of HH contacts in conformation c, and

e is the HH contact free energy. Written in terms of h, Equation (7) becomes (see

appendix):

h N

XD Ah, g(h) e-he/kT
h–0(A) = (8)hN

XL g(h) e-"■ º
h–0

where h N is the number of HH contacts in the native conformation, g(h) is the

density of states, and Ahi is the average value of Ac.; for the g(h) conformations

having h HH contacts.

In the present model, the exchange competence of a monomer is given by its

accessibility to solvent: we define Act = 0 if monomer i is completely surrounded

by four other monomers in conformation c, and Aci = 1 if monomer i is adjacent

to a lattice site containing a solvent molecule. The model is illustrated in Figure 4,

which shows the native and three first- excited states of the sequence in Figure 3.

The five monomers buried in the native state are exchange incompetent, and four

of them become competent to exchange in at least one of the first-excited states.

In the present model, buried monomers do not exchange, while those adjacent to a

solvent- occupied lattice site exchange at a generalized rate, ko, corresponding to a

solvated, unstructured peptide. Therefore the exchange rate of any monomer, i, is:
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Figure 4: Native and fluctuational conformations. A: Native state of the sequence
in Figure 3. Monomers 8, 11, 14, 15, and 16 are each surrounded by four other
monomers and so are “buried,” and hence exchange incompetent, in the native state.
B–D: The three first-excited states. Monomers 8, 11, 14, and 16 become exchange
competent in the first-excited states because each of those monomers makes a contact
with a solvent lattice site in at least one of the three conformations. Monomer 15
cannot exchange in any of the three first excited states, but can exchange in the
second-excited states (not shown). Boxed regions represent the smallest section
of chain that must reconfigure to reach the native state. Dissimilarities (see text)
between the first-excited states in B–D and the native state are 0.275, 0.274, and
0.219, respectively.
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k; = (A), koi (9)

where koi is the extended-peptide exchange rate for monomer i. Equation (9), which

can be determined by exact enumeration for monomers of any short HP sequence,

is analogous to Equation (3) of the Hvidt model for EX2-type exchange, and gives

the exchange rate in terms of average monomer solvent accessibility.

Since (A); of Equation (8) depends on 6, monomer exchange rates can be deter

mined under various conditions of chain stability. We use the single parameter |é/kT

as a measure of the degree of stabilization due to external conditions. When |é/kT

is large (corresponding to strongly stabilizing conditions such as low temperatures

or denaturants), only the native state is populated to any appreciable degree, so the

accessibilities of monomers, and their corresponding exchange rates, can be deter

mined directly from the native structure. In the other limit, when |é/kT is small

(high temperature or denaturants), most molecules are denatured, and the average

solvent accessibility and exchange rate of a monomer will reflect the distribution

of accessibilities in the ensemble of denatured conformations. Thus for a monomer

buried in the native state, average solvent accessibility and the exchange rate in

crease as le/kT becomes smaller, because the Boltzmann populations of non-native

exchange-competent states increase.

Below we show results of calculations of the ratio ki/koi, the reciprocal of the

protection factor, as a function of 6/kT, for monomers of the sample 16-mer Se

quence shown in Figures 3 and 4.
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RESULTS

Model exchange curves

Figure 5 shows the predicted exchange rate, ki/koº versus le/kT for the five

monomers buried in the native conformation of Figure 4A. These five monomers

are exchange incompetent in the native state, so this calculation corresponds to

the experiments shown in Figure 1. Since the parameter |e/kT is equivalent to

1/T for fixed e, the plot in Figure 5A is analogous to Arrhenius plots of the type

shown in Figure 1A. Figure 5B shows the same curves with both axes reversed, so

that it corresponds to the denaturant plot of Figure 1B. The theoretical results in

Figure 5 show the same general features as the experimental results in Figure 1,

with exchange rates that converge to a single value under destabilizing conditions

and diverge under stabilizing conditions, and a transition region suggestive of the

two limiting exchange mechanisms proposed by Woodward.

The basis for these results is illustrated in Figure 6, which shows how the pop

ulations of different conformations of the 16-mer change with temperature. Under

destabilizing conditions (6A and B), the chain populates an ensemble of confor

mations having large energies and correspondingly unfolded structures. Exchange

under these conditions occurs from the denatured states, i.e., by global unfolding.

Since solvent exposure is high in these unfolded conformations, exchange rates are

similar and converge toward the maximum rate as native stability is decreased.

Conversely, under stabilizing conditions (6C and D), only the lowest-energy excited

states contribute to the fluctuations. Exchange of buried monomers therefore occurs

from a restricted set of conformations with native-like energy and compactness. For

monomers 8, 11, 14, and 16, stable-state exchange is from the first-excited states,

since exchange competence is achieved in these conformations (see Figure 4). For
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Figure 5: HX curves computed from the model, vs. HH-contact energy, e, for the five
buried monomers of Figure 4A. Curves correspond to monomers 8(V), 11(A), 14(3),
15(D), and 16(x). A: Analog of the Arrhenius plots of Figure 1A. B: Analog of the
denaturant curves of Figure 1B. Both figures show converging exchange rates under
destabilizing conditions, diverging rates under stable conditions, and a transition
region suggesting two exchange mechanisms.
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monomer 15, which is buried in all three first-excited states, exchange first occurs
only when the chain fluctuates to the second-excited states.

The two apparent exchange mechanisms in Figures 1 and 5 are explained as a

shift in the class of conformations from which exchange occurs: from the broad set

of unfolded conformations to a much smaller set of highly compact conformations.

This result is consistent with the “global unfolding” and “stable state” mechanisms

of Woodward's two-process model, and supports the belief that the shift in mecha

nisms results from changes in protein structure rather than from complex exchange

chemistry or a shift from EX2- to EX1-type exchange. The slopes of the curves are

obtained from Equation (8) (see appendix), and are proportional to the energy re

quired for a fluctuation from the native state to the most highly-populated exchange

competent conformation: m (6), = (h)acci – hy, where (h)acci is the weighted average

of h for all conformations in which monomer i is solvent accessible. Under destabi

lizing conditions, the most highly populated exchange-competent conformations are

unfolded, and are the h = 6 conformations (Figure 6A) for the sample 16-mer of

Figure 4. Hence (h)accº = 6 in the limit of small values of 6/kT, and the limiting

slope is -2. Under these conditions monomer exchange rates are similar and approach

the maximum value, koi, as in the global unfolding model. Conversely, under stable

conditions only the exchange conformations of lowest energy contribute to exchange,

so (h)accº is equal to h;, the number of HH contacts in the lowest-energy exchange

conformations of monomer i (see appendix). For monomers 8, 10, 14, and 16, which

can exchange from the first-excited states (Figure 4), h = 7, and the limiting slope

for large |6/kT is -1. For monomer 15, h; = 6, so the limiting slope is -2. The

diversity of monomer exchange rates in this stable limit arises from differences in

the energy required for the minimum fluctuation to an exchange-competent struc

ture. This result is evident from Equation (8) in the limit of large le/kT, where the
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average solvent accessibility becomes:

g(h;) --0-1
A i A * , i. t (h?–h N)6/kT

( ) —3. h;, g(hN) 6 (10)

Equation (10) is a single exponential, so the exchange curve of a given monomer is a

straight line with slope m(e), – h; – hy. Monomer 15 requires greater fluctuational

energy to exchange (26 vs. 6), so as stability is increased its exchange rate decreases

more rapidly than the other buried monomers.

The approximate linearity of the curves in the two regions arises from the tem

perature independence of (h)acci in the limits of large and small |é/kT. For large

|é/kT, this result follows directly from equation (10). For small le/kT, conforma

tions from many energy levels contribute to exchange, so a constant slope is not

necessarily expected. Whether or not conformations of a single energy level will

dominate exchange, as is the case with the sequence shown here, depends on the

density of states, g(h), which is highly sequence specific. The density of states also

affects the curve shapes.

Although the model denaturant curves in Figure 5B do not become as flat as

the experimental curves of Figure 1B, this is undoubtedly due to the relatively large

size of the energy spacing in our short-chain model compared to real proteins, which

have many more monomer contacts. Short chains also restrict the possible range

of stable-limit HX rates among monomers. The extent of rate diversity observed

in experiments (Figures 1A and B) would be obtained in our model if more energy

levels were available, as is the case for real proteins.

Structures of exchange-competent states

Figures 4B-D show the three first-excited states of the given 16-mer sequence.

Under stable conditions, these are the predominant exchange-competent conforma
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tions for four of the five buried monomers. The structural fluctuations from the

native state represented by these conformations are consistent with both solvent

penetration and local unfolding models. In Figure 4B for example, monomer 8 has

become solvent accessible by a small shift in its local subregion (monomers 7–13) that

has forced monomer 8 out into the solvent, much like a local unfolding event. And in

Figure 4D, monomers 14 and 16 have both become accessible by the movement of a

sequentially-distant chain region (monomers 1–5), resulting in the exposure of both

monomers to bulk solvent. This latter example could be considered consistent with

solvent penetration, since monomers 14 and 16 are part of an intact core of residues

that become exposed by removal of some chain surface. In our model examples, the

chains are too short to have enough “core” for us to interpret either penetration

or local unfolding unambiguously. Nevertheless, from this and other examples, we

believe this model supports the general types of protein motions characteristic of

both solvent penetration and local unfolding mechanisms. As for neighbor correla

tions, the sequence in Figure 3 shows independent, rather than correlated exchange;

monomers 14, 15, and 16 form a buried subregion in the native conformations, but

monomer 15 exchanges at much slower rate. In general, both correlated and inde

pendent exchange are possible depending on the monomer sequence.

“Conformational Distant Relatives”

How different are the hydrogen-exchanging conformations compared to the native

state in the stable limit? To answer this question, we must explore the relatedness

of native and first-excited conformations. Figures 4B–D show examples of relatively

small fluctuations in which the native chain fold and hydrophobic core are largely

preserved in the first-excited conformations. At the other extreme, Figure 7 shows

an example of a native state (7A) and one of its first excited-states (7B) that are
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Figure 7: Example of conformational distant relatives. A: Sample 16-mer native
state (h = 6). B: One of its first-excited states. No native contacts are conserved.
The dissimilarity is 0.809.

Completely different, sharing no common residue contacts. This is an example of a

fluctuation in which a very small change in energy corresponds to a very large change
in structure.

Are such large structural fluctuations rare or common? Figure 8A shows the

average magnitude of structural change under stable-state conditions, obtained by

Comparing all possible 16-mer native states to their first- excited states and measur

ing structural differences between them. We use the dissimilarity measure of Yee &

Dill (1993), which scores the conformational relatedness of two structures: 0 means

two structures are identical. Figure 8A shows that fluctuations from native to first

excited states display a wide range of magnitudes. For comparison, Figure 8B shows

*
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Figure 8: Dissimilarity distributions. A: Comparison of each non- degenerate 16
mer native state with each of its first-excited states. B: Pairwise comparison of
all non-degenerate 16-mer native states. Horizontal axis shows the dissimilarity
measure of Yee & Dill (1993). The average dissimilarities for A and B are 0.50
and 0.65 respectively. This figure shows that first-excited states can have a broad
distribution of structures, including very non-native ones.
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Figure 9: Average dissimilarities between native and their first-excited states for all
non-degenerate 16-mers, vs. the number of first-excited states, g(hn – 1). Fluctua
tions are more distant from the native structure for HP sequences that have higher
numbers of first-excited conformations.

a similar distribution in which each of the possible 16-mer native states is compared

to each other native state rather than to its first-excited states. This second distri

bution involves unrelated conformations, and so should represent approximately the

complete range of dissimilarity that is possible for compact 16-mer structures. The

significant overlap of the two distributions shows that although most first-excited

states represent small structural excursions from the native state, occasional low

energy fluctuations result in conformations that show near-maximal dissimilarity

from the native. We call such states “conformational distant relatives” (CDR) of

the native structure, being only slightly higher in free energy, but very different in

conformation. Although the percentage of CDRs among first-excited states is small

and highly sequence dependent (data not shown), we find that their relative popu

lation increases with the number of first-excited states, g(h N – 1) (Figure 9). That

is, proteins that have a greater number of first-excited states also have more CDRs.
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Figure 10: HX rates for monomers that are solvent accessible in the native state of
Figure 4A. Curves are for monomers 2(E), 5(x), 6(3), 7(V), and 12(A). As le/kT
decreases towards the denaturation midpoint, HX rates first decrease due to burial
in compact denatured conformations, then increase as the chain becomes unfolded.

This result is to be expected, since typically only a few first-excited states can be

configured by small-amplitude fluctuations of the native state.

Figure 10 shows an unexpected prediction from the model. In the studies de

scribed above, we have considered protons that are exchange incompetent in the

native state: for example, they may be interior protons buried within the core or

surface protons that are involved in amide hydrogen bonds. As conditions become

increasingly denaturing, such protons become increasingly competent to exchange,

and their HX rates increase. Now what happens to protons that are exchange com

petent in the native state, such as those in exposed loop regions where hydrogen

bonding is absent? In our lattice model of HX, such protons are represented by the

monomers that are solvent accessible in the native state. Figure 10 indicates the

interesting possibility that while such protons should exchange at the maximum rate

under both stabilizing and destabilizing conditions, under intermediate conditions
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of stability, they may exchange at a slightly slower rate. This is because surface

protons that are locked into an exposed and unstructured position in the native

state can become buried (or H-bonded) in the compact non-native states that are

increasingly populated as native stability is slightly decreased. As stability is de

creased further, all proton sites eventually become fully exposed and unstructured,

and exchange rates increase towards the maximum. Hence just as small amounts of

denaturing agents tend to expose hydrophobic residues, they may also tend to bury

polar monomers. Figure 10 shows that such effects correspond only to small rate

differences, perhaps accounting for why they have not been previously reported, as

far as we know.

DISCUSSION

One of the main issues addressed in the present study concerns the magnitude

of protein fluctuations. A common assumption, implicit in both solvent penetration

and local unfolding models is: (1) that such fluctuations must, under stable condi

tions, involve only small changes in energy relative to the native state, and (2) that

conformations similar in energy to the native state must also be similar in structure.

We agree with (1), but the present study suggests that (2), while true most of the

time, may not be required. The fluctuations observed in our model can involve small

changes in energy relative to the native state but large changes in conformation.

Are conformational distant relatives important for biological proteins? Two fun

damental issues are: (1) whether low-energy states can be structurally dissimilar

to the native state, and (2) whether such non-native structures, if they exist, can

be visited on the time scales relevant to hydrogen exchange. We contend that (1)
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is not an artifact of the lattice model, but follows from any model based on the

idea that proteins have “rugged” energy landscapes (Bryngelson & Wolynes, 1989;

Frauenfelder et al., 1991; Bryngelson et al., 1995; Dill et al., 1995; Wolynes et al.,

1995), i.e., that very non-native structures can have very low energies (Figure 11A).

The HP lattice model has such ruggedness. At the other extreme, protein folding

might be guided by a smooth “funnel-like” energy landscape (Fig. 11B), whereby

conformational dissimilarity with the native state implies a large difference in free

energy. In that case, fluctuations involving small differences in energy relative to

the native state must involve small conformational changes. This is the implicit

assumption in existing local unfolding and solvent penetration models.

There is considerable experimental evidence that some proteins have energy land

scapes that involve at least some degree of ruggedness. Some proteins fold on time

scales of seconds and longer, rather than the much shorter time scales (perhaps

nanoseconds to microseconds) that might be expected for smooth funnels. Both

prion protein PrPC (Pan et al., 1993; Huang et al., 1994; Cohen et al., 1994) and

alpha-lytic protease (Baker & Agard, 1994) have been found to exist in both a na

tive and highly non-native conformation under physiological conditions, separated

by a large kinetic barrier. Computer threading experiments (Novotny et al., 1984)

have found that a single amino-acid sequence can be constrained to form two en

tirely different structures (one alpha-helix and the other beta-sheet) with negligible

differences in the in vacuo CHARMM free energy.

While protein landscapes are not fully understood, they can be studied to some

degree by kinetic refolding experiments, since it is the shape of the landscape that

determines folding rates under native conditions. On this basis, evidence suggests

that small, single-domain proteins, which typically show relatively simple kinetics,

may have landscapes that look more like funnels. Proteins with more complex
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Figure 11: Two possible landscapes for protein folding. The y-axis is conformational
free energy, and a is one “reaction coordinate” for folding. N denotes the native
state. A: On rugged landscapes, there are multiple minima in free energy, so a small
energy difference can correspond to a large conformational change. This is just a
schematic to emphasize this point, and is not meant to imply that helical and sheet
structures interconvert. B: On funnel-like landscapes, large distances from the native
state imply a large increase in free energy.
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folding kinetics, such as large, multi-domain proteins, probably have more rugged
landscapes. It is not clear whether any biological protein has as much ruggedness

as the HP lattice model. However, if the amount of ruggedness is significant (i.e., if

there are multiple deep minima in free energy), then it follows, irrespective of the

model used to describe it, that some fluctuations may bear little resemblance to the

native structure.

The second issue is kinetic accessibility. Can the native structure of a protein

fluctuate to very non-native low-energy conformations on the time scale of HX?

The time scales of experiments dictate the heights of kinetic barriers that can be

crossed. The large range of time scales observed for EX2 exchange—picoseconds to

several months at low pH-suggests that some non-native conformations could be

kinetically accessible, although the evidence is currently limited.

How can we determine if native protein fluctuations involve distant relatives?

Such fluctuations are probably very difficult to observe experimentally because the

native structure is so dominant under stabilizing conditions, and the denatured

conformations are so dominant under unfolding conditions. Moreover these confor

mations need not be on the kinetic folding pathway, and so may be undetectable in

refolding experiments. HX in the high-stability limit can detect native fluctuations,

but as we noted before, slopes of Arrhenius plots tell us only that the energy changes

(from the native state) are small; they cannot tell us how big the structural changes

are. Native fluctuations can also be studied by NMR or by X-ray crystallographic B

factors, but in both cases the measured fluctuations involve averages over multiple

non-native states, so no one such conformation can be studied in isolation.

The present model appears consistent with data cited as support for local unfold

ing and solvent penetration models, because each of these models describes a subset

of the fluctuations indicated by the present model. A main point of our study is
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that local unfolding and solvent penetration may not be mutually exclusive: the

native structures in our model show fluctuations of both types. At the same time,

we find that structural fluctuations may sometimes be to conformations that differ

considerably from the native state. Our model also predicts that knowledge of the

native structure is not sufficient in itself to predict monomer exchange rates; these

rates are strongly affected by the structures of the first-excited states, which cannot

be predicted in a simple way from knowledge of the native structure. This result

seems consistent with previously- reported difficulties in correlating HX rates with

features of native structures.

An interesting question raised by these results is whether molecular dynamics

calculations, which sample only small excursions from native structures, could de

tect CDR conformations.
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APPENDIX

Accessibilities and Arrhenius slopes in the HP Model

In this appendix, we first convert Equation (7) into a form more convenient for

the HP model. Equation (7) gives the Boltzmann-averaged solvent accessibility,

43



(A), of monomer i, for a set of N conformations, c, of free energy E. It is more

convenient to group the N conformations by their numbers of HH contacts, h. Since

the number of conformations with h HH contacts is the density of states, g(h), we

can express Equation (7) as:

hN g(h)
XD XD A., e-hº■ kT
h=0 c=1

(A) = hN g(h) (11)
XD XD e-he/kT
h–0 c=1

where h N is the number of HH contacts in the native conformation. Since the Boltz

mann exponential factors depend only on h, and not on particular conformations, c,

Equation (11) becomes:

g(h)hSºº-ººr XD Ac,
h =0 c=1

h N

XD g(h) e-he/kT
h–0

Equation (12) can be further simplified by defining a quantity, Ahi, which is the

(A) = (12)

average solvent accessibility of monomer i for all g(h) conformations having h HH

contacts:

1 g(h)
A i = − Aci 13* = º(I) 2. (13)

For example, Figures 4B–D show that monomer 14 has solvent accessibilities of 1,

0, and 1 in the three conformations with h = 7, so its average solvent accessibility

at this energy level is A714 = 2/3. Substituting Equation (13) into Equation (12)

the average solvent accessibility becomes:
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h N

XL AA. g(h) e-he/kT
h–0

h N

XD g(h) e-he/kT
h–0

which is the result given in Equation (8). Since some monomers are solvent-in

(A) = (14)

accessible in the native (Ah, j = 0) and other compact states, we define h; as the

largest value of h for which Ahi #0. Thus for any monomer, i, buried in the native

state, h = h N–1 if it becomes solvent accessible in any of the first-excited states,

h; = h N_2 if it is remains buried until the second-excited states, and so on. Figure 4

shows that h; = 7 for monomers 8, 11, 14, and 16, all of which are buried in the

native state but solvent accessible in the first-excited states. For monomer 15, which

is buried in the native state and all three first- excited states, h; = 6. Since Ahi = 0

for h > h;, the upper summation limit in the numerator becomes h;, and Equation

(14) becomes:

h;
XD And g(h) e-hº■ kT
h–0(A) = +

XL g(h) e-"/*
(15)

The slope of the temperature plot in Figure 5A is obtained by differentiating

log (A), with respect to le/kT. From Equation (15):

h: hN

XD h Ah, g(h) e-he/kT XD h g(h) e-he/kT
m() = } – H. (16)

XD Ah, g(h) e-he/kT XD g(h) e-he/kT
h–0 h-0

The second term in Equation (16) is simply the average number of HH contacts

for the chain, (h). To first approximation, (h) = h N under native conditions, since
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Figure 6 shows that the native population dominates over the experimental range in

|é/kT. The first term in Equation (16) can be simplified by assuming that solvent

accessibility is two-state for each free energy level, i.e., that Ahi must equal 0 or 1.

In other words, once a buried monomer becomes solvent accessible (in one or more

of the h = h; conformations), it is assumed to be completely solvent accessible in

every conformation of equal or more positive contact energy. This approximation

does not significantly affect the slope of the exchange curve, although it does have

a small effect on the two-slope transition temperature (data not shown). With the

approximations given above, Equation (16) becomes:

h:
XD h g(h) e-he/kT

m (6), F
*::=

-
hN - (h)ace.

-

hN (17)
XD g(h) e-he/kT
h–0

where (h)accº is the average value of h for only those conformations that are solvent

accessible for monomer i, i.e., those for which h s h . Many exchange-competent

conformations can contribute to exchange, so (h)acci is determined by those that

are most highly populated for a given |6/kT. Since the contact free energy is he,

Equation (17) shows that to first approximation, the slope of the exchange curve is

proportional to the free energy difference between the native state and predominant

exchange- competent state.
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Chapter 2

Ligand Binding To Proteins:
The Binding Landscape Model

This chapter is taken from the following published article: Miller DW, Dill KA.

1997. Ligand binding to proteins: the binding landscape model. Prot Sci (in press).
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ABSTRACT

Models of ligand binding are often based on four assumptions: (1) steric fit:

that binding is determined mainly by shape complementarity, (2) native binding:

that ligands mainly bind to native states, (3) locality: that ligands perturb protein

structures mainly at the binding site, and (4) continuity: that small changes in

ligand or protein structure lead to small changes in binding affinity. Using a gen

eralization of the 2D HP lattice model, we study ligand binding and explore these

assumptions. We first validate the model by showing that it reproduces typical

binding behaviors. We observe ligand-induced denaturation, ANS and heme-like

binding, and “lock-and-key” and “induced-fit” specific binding behaviors charac

terized by Michaelis-Menten or more cooperative types of binding isotherms. We

then explore cases where the model predicts violations of the standard assumptions.

For example, very different binding modes can result from two ligands of identical

shape. Ligands can bind highly denatured states more tightly than native states

and yet have Michaelis-Menten isotherms. Even low-population binding to dena

tured states can cause changes in global stability, hydrogen-exchange rates, and

thermal B-factors, contrary to expectations, but in agreement with experiment. We

conclude that ligand binding, like protein folding, may be better described in terms

of energy landscapes than in terms of simpler mass-action models.

STANDARD ASSUMPTIONS IN BINDING MODELS

Ligand binding is important for protein function. A quantitative understand

ing of many biological binding processes has been gained through binding polyno

mial models (Wyman & Gill, 1990; Di Cera, 1995; Ackers et al., 1992), empirical
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equations which relate the fractional occupation of binding sites to free ligand con

centration. This approach underlies Michaelis-Menten kinetics, Hill and Scatchard

plots, and cooperativity and allostery as embodied in the MWC (Monod et al., 1965)

and KNF (Koshland et al., 1966) models, for example. Despite the great power and

widespread usage of binding polynomial models in biochemistry, they are incomplete

and phenomenological. For a given protein and ligand, binding polynomial models

do not tell us where or how tightly the ligand will bind, whether or not binding will

induce a conformational change, or whether the ligand will denature the protein, for

example. Binding polynomial models begin by assuming some mass-action scheme

for the binding process, and the binding and cooperativity constants are then deter

mined by curve-fitting to experimental data. Finding the right binding model for a

given ligand/protein system is a matter of trial and error.

A more complete binding model would predict the binding sites, the binding con

stants and cooperativity, and the perturbations of the protein, based on knowledge

of the ligand structure and the amino acid sequence of the protein. Such models

are far beyond the current scope of computational biochemistry. Nevertheless we

take a step in that direction by using a simplified statistical mechanical model of

protein/ligand interactions, for which we can exactly enumerate all possible protein

conformations and binding modes. Our aim here is to describe such a model and its

predictions for binding.

First we show that the model leads to many of the familiar types of protein/ligand

binding, including “lock and key” and “induced fit” specific binding, ANS binding to

molten globules, and ligand-induced denaturation, among others. We then explore

some interesting and unconventional behaviors predicted by the model, many of

which are not readily interpreted using simpler mass-action models. In particular,

we address four premises in which the current paradigm of ligand binding is heavily
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rooted: (1) Binding is largely shape-determined, as embodied in the terms “lock-and

key” and “induced fit”. (2) Ligands bind principally to the native states of proteins

with little or no interaction with the unfolded states. Here is a typical description:

“A general consequence of ligand binding is that the protein is stabilized against

unfolding and is less flexible .... [This is] a consequence of the ligand binding more

tightly to the fully folded conformation (N) than to the fully unfolded state (U) and

any distorted or partially unfolded forms that result from flexibility of the structure

(Creighton, 1993).” (3) Binding is highly localized. The main perturbations of the

protein structure are assumed to be near the binding site. (4) Small changes in the

structure of a ligand or protein lead to only small changes in the bound complex.

These premises are usually supported by x-ray and NMR structures of unbound

and complexed proteins, and by the successes of structure-based drug design meth

ods (Kuntz, 1992; Shoichet et al., 1993; Bohacek & McMartin, 1994; Strynadka et

al., 1996). Nevertheless a few recent experimental results, particularly from hydro

gen exchange, are puzzling when interpreted using these premises. Here we develop

a model that, unlike binding polynomial models, aims to connect structure to ther

modynamics. Although the physical model is simple, the statistical mechanics is

rigorous so we can test such premises, rather than assume them. For reasons that

will become clear below, we call ours the Binding Landscape Model, to contrast it

to those based on the premises above, such as the Lock-and-Key and Induced Fit

models. The groundwork for connecting ligand binding to energy landscapes has

been described in theoretical and experimental work on small molecule binding to

globins by Frauenfelder, Wolynes and others (Frauenfelder et al., 1991).

Modeling proteins using the HP lattice model.

We model proteins using the 2-dimensional HP lattice model (Lau & Dill, 1989,
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1990; Chan & Dill, 1991; Dill et al., 1995). A protein is represented as a sequence
of H (hydrophobic) and P (other) monomers on a two-dimensional lattice. Lattice

sites may be either empty or filled by a single monomer, and empty lattice sites

are assumed to contain a solvent molecule. Each HH contact, formed when two

non-sequential H monomers occupy adjacent lattice sites, is favored by a free energy

é (e > 0), which is meant to capture the importance of hydrophobic interactions

in protein collapse and global stability (Dill, 1990). Hence the free energy of a

conformation is he, where h is the number of HH contacts. The magnitude of e

determines the stability imparted by external conditions: large and negative e reflects

conditions that are more stabilizing, such as lower temperature or lower denaturant

concentrations. Conformational entropy, the driving force for unfolding, enters the

model through the exhaustive enumeration of all the possible chain configurations

(see below).

The disadvantages of the model are clear: atomic resolution is lost; conformations

are restricted to a lattice; it is in 2 dimensions; the energy function is simplified;

and chains are unrealistically short. Yet despite these disadvantages, the model

has been found useful for modeling protein properties (Lau & Dill, 1989, 1990;

Chan & Dill, 1989, 1990, 1994; Shortle et al., 1991; Dill et al., 1995; Miller & Dill,

1995) because it shows several protein-like features, including cooperative collapse,

native structures having a nonpolar core and definable secondary structures, multi

stage folding kinetics, and molten globule states. Most importantly, we believe the

model captures the main physics of protein folding—the hydrophobic interactions,

conformational freedom of the chain, and the steric restrictions imposed by excluded

volume.

We study HP sequences having 16 monomers. For any 16-mer chain there are

exactly 802,075 possible conformations that can be configured on a two-dimensional
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square lattice. These conformations are generated by computer, and each is weighted
by a Boltzmann factor according to the number of HH contacts made. Figure 1A

shows an energy diagram for a sample HP sequence (called “sequence A"). The na
tive structure (ground state) is the conformation with the largest possible number

of HH contacts, and thus the lowest free energy at low temperatures. We study

only non-degenerate sequences, i.e., those having a single native conformation, since

we believe they best represent biological proteins, which fold to unique structures.

All higher-energy conformations comprise the non-native, or “denatured” states,

and are grouped by energy into “first-excited” states, “second-excited” states, etc.,

corresponding to successively fewer HH contacts. For any HP sequence, there are

far more open, high-energy conformations than compact, low-energy conformations

(see Figure 1B).

Modeling the ligand and its interactions with the protein.

We model ligands as single, monomer-sized beads (Figure 1C). A protein-ligand

contact occurs when the ligand occupies a lattice site adjacent to a chain monomer.

Here we consider only nonpolar ligands: a contact between a ligand and an H

monomer (LH contact) is favored by a free energy be, where e is the HH contact

energy, and b is a positive constant (0 < b 3 1). In order to have the simplest

possible model of binding, we assume the interaction energy is zero between a ligand

and a P monomer, and zero between ligands. The total contact energy, E., for any

protein-ligand configuration (“ligation state”), s, is therefore

E. = he + m be (1)

where m is the total number of LH contacts. The ligation state in Figure 1C has 3

HH contacts and 6 LH contacts, so the total energy is 3e -- 6be.

59



Energy/18] | A

fifth–excited
State

d—excit 0 1 2 3 4 5º:
3 - seconºc ed h

O :
6 7

1B
first—excited

State

5 m ground state

Figure 1: Energy ladder diagram for 16-mer HP sequence A. Each hydrophobic
(HH) contacts is favored by a free energy e. The native conformation, with 5 HH
contacts, is at the bottom, and each step up the ladder represents the loss of one
HH contact. B: Density of states, g(h): the numbers of conformations of sequence A
having h HH contacts. C. A particular ligation state with 3 ligands bound (protein
monomers are numbered). Ligands are highlighted “beads.” Contacts between a
ligand and H monomer (LH contacts) are favored by a free energy be, where b is a
constant. This ligation state makes 6 LH contacts and 3 HH contacts, so the energy
is 36 + 6be (Equation 1).
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Below we show how average properties of protein-ligand complexes are derived

through exact enumeration of all the possible protein-ligand configurations. First,

we present the general statistical mechanical theory, which is independent of the

lattice or any other specific model. Then we introduce the HP lattice model to re

late the binding thermodynamics to the corresponding structures. A more detailed

derivation of the theory is given in the appendix.

Statistical mechanics of ligand binding.

The probability, P., of any protein-ligand ligation state, s, is given by the grand

canonical distribution function:

–Es/kTeu Ns/kTe 6.

P. = -F— (2)
XC-E■ ºte, Nºt
s=1

where T is absolute temperature, p. is the ligand chemical potential, E, is the total

energy of the ligation state (i.e. due to intrachain contacts plus ligand contacts),

N, is the number of ligands bound, k is Boltzmann's constant, and T is the total

number of ligation states available to the protein-ligand complex.

Equation 2 gives the probability of a specific ligation state as a function of tem

perature and ligand concentration (related to the ligand’s chemical potential; see the

appendix). In broad terms, this equation predicts the following behaviors. At low

temperature and low ligand concentration (large negative pl), proteins are folded and

have few ligands bound. Increasing the ligand concentration lowers the unfavorable

translational entropy of binding, and more ligands bind. Increasing the temperature

denatures the protein. It is the interplay of these behaviors, for different ligands and

different proteins, that we explore more fully below.

Equation 2 is general and model-independent. It permits the calculation of var
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ious average protein properties (see appendix), provided that all possible ligation
states can be enumerated. The HP model permits this, and thus provides a way

to relate the binding thermodynamics to the structure and stability of the protein.

Using Equation 1 for the ligation-state energy, E., of the HP model protein-ligand
complex, Equation 2 becomes

—he/kT 2–mbe/kT 2/1 Ns/kTP = * /kTeu N./ (3)
XD e-hº■ kTe-mbº■ kTel N./kT
s=1

Equation 3 can be computed exactly by exhaustive enumeration for any short

HP sequence, thus providing average properties of model proteins as a function of

temperature, ligand concentration, binding constants, and monomer sequence.

Despite its simplicity, the HP model offers several advantages for studying princi

ples of protein-ligand interactions. (1) We can consider all model protein conforma

tions, so there is no approximation or partial sampling of the protein conformational

space, allowing a complete study of the effects of binding on protein structure. (2)

We can compute all possible ligation states, for every possible chain conformation,

so we are not limited to one or a few ligands bound at a time. We can explore a

full range of ligand concentrations, from zero to denaturing. (3) The model has only

two energy parameters, so we can explore the physics in a complete way. We make

no assumptions about the locations or numbers of binding sites, about the mech

anisms of ligand-induced conformational changes, or about how binding is affected

by external conditions. Rather, these properties are derived from the theory.

Our aim is not to describe the biology of the various interactions, which may be

quite complex, but rather to show how a diverse collection of binding phenomena

can be understood through a simple unified picture that relies on only a few basic,

physical concepts.

**
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(1) VALIDATION OF THE MODEL: PROTEIN-LIKE BINDING

The model shows a range of behaviors that mimic real protein-ligand interac

tions. These can be divided into two classes, which we call specific and non-specific

binding. We refer to binding as specific when a ligand binds to high-affinity (2

or more LH contact) sites on the protein, and when binding follows a site-specific

(Michaelis-Menten) isotherm as described below. We call binding non-specific when

many ligands bind, either to the native or denatured states of the protein, and when

the binding isotherms do not show site-specific thermodynamics.

Non-specific binding behaviors of the model

Denaturation.

High-affinity ligands (roughly 0.5 × b & 1.0) at high concentration can induce

unfolding in model proteins (see Figure 2). As ligand concentration increases, the

translational entropy of binding becomes more favorable, so LH contacts are favored

at the expense of HH contacts, driving the protein to unfold. This model result

is similar to protein denaturation by urea and guanidinium chloride. Other simple

models of denaturation have been explored previously (Alonso & Dill, 1991; Thomas

& Dill, 1993).

Dyes and weak solvents.

Low-affinity ligands (b 3 0.2) have little effect on model protein structure, even

at high ligand concentrations. For these ligands, binding is sufficiently weak that
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Figure 2: Denaturation by ligand. The fractional population of native proteins,
fy, vs. ligand concentration. High-affinity ligands at high concentrations denature
model proteins. (b = 0.50, e = −10). Inset: A sample ligation state from the
ensemble of denatured conformations.

breaking HH contacts to make LH contacts is always unfavorable. Thus at high

ligand concentrations all hydrophobic sites on the protein surface become saturated,

but the native structure remains intact. This model mimics the behavior of certain

dyes and organic solvents (Allen et al., 1996; Mattos & Ringe, 1996) which bind,

but do not perturb the native structure.

ANS-like ligands.

For an intermediate range of affinities in our model (0.2 < b 3 0.5), ligands

are too weak to induce full denaturation, but are strong enough to shift the native

denatured equilibrium. This class of ligands binds preferentially to the compact

denatured states of the model proteins. As a result, the average number of bound

ligands follows a bell-shaped curve (Figure 3A) as external conditions are changed

from native to denaturing. The maximum in the number of bound ligands occurs

under the intermediate solvent conditions at which the compact denatured states
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Figure 3: Model of ANS binding. Ligands with intermediate affinities bind
preferentially to compact-denatured states, much like ANS binds to molten globules.
A: Average number of bound ligands vs. external conditions é/kT (native stabilizing
conditions to the left; denaturing conditions to the right) with L = 0.15 and b = 0.50.
B: Corresponding experiment: fluorescence-intensity changes from ANS binding to
bovine carbonic anhydrase B, vs. Gu-HCl concentration (adapted from Semisotnov
et al., 1991). C: Energy-ladder histograms for the protein conformations, showing
that under conditions where binding is greatest (e/kT = 2.5 in A), the molecules
have intermediate compactness (h as 3 – –4, middle of C).
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are most stable. This behavior resembles that of ANS, a hydrophobic dye that

binds preferentially to the molten globule states of proteins (Semisotnov et al., 1987;

Semisotnov et al., 1991; Shi et al., 1994) (see Figure 3B).

Figure 3C explains this behavior. The number of ligands bound depends on a

product of two factors: the number of accessible hydrophobic sites on the protein,

and the strength of the binding interaction under the given conditions. Under native

conditions (i.e., large le/KTI), binding is strong (see Equation 1), but there are few

available hydrophobic sites on the predominantly native protein, so there is little

binding. Under denaturing conditions, the protein is unfolded and there are many

exposed H sites, but binding is limited by the weak LH attraction. The number of

bound ligands per protein is highest between these extremes, where the compact

denatured states are highly populated.

Semisotnov et al. (1987; 1991) have interpreted ANS binding as requiring “hy

drophobic clustering” in the protein. In our model, hydrophobic clustering happens

too, but clustering is a consequence of the balance between binding strength and

number of binding sites, not a special mechanism of binding. In our model, there is

nothing different about binding to a cluster than to any other arrangement of the

same number of hydrophobic monomers.

Specific binding behaviors of the model

To define site-specific binding, we begin with the traditional mass-action descrip

tion. Equation 4 illustrates the equilibrium between a native conformation, N, and

its bound state, NL.
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Kºw
N + L → NL (4)

where Kºn is the binding equilibrium constant and L represents free ligand.

The fraction, f, of bound N molecules is (see appendix)

Kºn L
■ = Tiº I (5)

which approaches unity as ligand concentration increases. We refer to behavior de

scribed by Equation 5 as site-specific, or “Michaelis-Menten” binding.

Lock-and-key and induced-fit binding.

For some HP model proteins, and for high-affinity ligands (0.5 × b 3 1.0),

binding is localized to a single site on the protein and follows a Michaelis-Menten

binding isotherm. Figure 4 shows a “lock and key” example of specific binding, in

which the protein binds in its native conformation. The computed binding isotherm

closely follows the Michaelis-Menten binding of Equation 5.

Site-specific binding might be considered surprising in this model, for two rea

sons. First, the model allows large numbers of alternate sites among the non-native

and native states, since each H monomer is a potential contact. Second, the model

protein/ligand interactions are orientationally non-specific, lacking the geometric re

quirements of hydrogen bonding, for example. The specificity in our model arises

instead from the ability of the protein to configure in a specific way, namely with

a compatible pocket: the protein and ligand cannot mutually find any lower-energy

configuration. While real proteins often take advantage of chemically specific in

teractions such as hydrogen bonds or salt bridges, our minimal model shows that

binding specificity does not require it.
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Figure 4: Lock-and-key binding. The average number of bound ligands, (N)
(diamonds), vs. ligand concentration closely follows the theoretical curve (dashed
line) expected for site-specific (Michaelis-Menten) binding. (€ = –10 and b = 0.6).
Inset: The ligand binds at a single site on the native protein, without perturbing
its structure.
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What is the basis for the specific binding in the model? There are two reasons

the protein has relatively few binding options under native conditions. First, if a

ligand is to bind a non-native conformation, the system must pay an energetic price

to “excite” the protein from the native state to the non-native state. Even though

the numbers of protein conformations and potential binding sites grow dramatically

with increasing steps up the energy ladder, Boltzmann's law dictates that the ligand

prefers to choose from the relatively few ligation states low on the energy ladder.

Second, the binding of more than one ligand is disfavored by the high price in trans

lational entropy at low ligand concentrations. We observe lock-and-key binding for

approximately 11% of unique-folding 16-mer HP sequences. These are all sequences

in which there are at least 2 H monomers exposed in the native state in the form of

a model “binding pocket.”

Our model also shows induced-fit binding, in which a ligand specifically binds a

low energy, but non-native, conformation of the protein. In these cases, the energy

price in inducing the conformational change is more than compensated by the energy

gain upon ligand binding. We observe induced fit in roughly 17% of HP sequences.

Modeling hemes and cofactors.

For some HP sequences that do not fold to unique structures by themselves, a

ligand can induce the “selection” of single conformation (see Figure 5). This is a

model for proteins that populate a small conformational ensemble in the absence of

cofactor, substrate, or prosthetic group, but which become structured in the bound

complex. The heme-induced shift from apomyoglobin to myoglobin is an example.

Cooperative binding.

Figure 6 shows an example of binding cooperativity between two identical lig

, -º
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Figure 5: Model heme binding. An HP sequence having 14 lowest-energy confor
mations (only three are shown) is locked into a single lowest-energy structure when
the ligand binds.

ands. Binding of the first ligand enhances the binding of the second, resulting in a

cooperative binding isotherm. Depending on the HP sequence, binding can have dif

ferent degrees of cooperativity and may or may not progress through a singly-bound

intermediate state.

(2) UNCONVENTIONAL BINDING BEHAVIOR IN THE MODEL

Identically-shaped ligands can bind in different modes.

Figure 7 shows one of the most interesting results of the model. It bears on two

standard premises: (1) the steric premise, that the binding mode is predominantly

determined by the shape of the ligand, and (2) the continuity premise, that a small

change in the structure of a ligand should lead to a small change in the structure

of the bound complex. Figure 7 shows a case in which both of these premises are

º
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Figure 6: Binding cooperativity. Average number of bound ligands, (N), vs.
ligand concentration. Binding of one ligand facilitates binding of the second. Inset:
unbound native state and unique excited state with two ligands bound.

violated. Two identically-shaped ligands bind in different locations depending on

whether the binding is tight or weak. The tight-binder (b = 1) binds to a second

excited state while the lower-affinity ligand (b = 0.6) binds to the native state in a

lock-and-key fashion.

Since the two ligands have identical shapes, the choice of binding mode in this

case is not based on shape complementarity alone, but also on the balance between

the energy lost in inducing fit, and the energy gained in the binding. The tighter

binder overcomes an unfavorable distortion of the protein since the resulting binding

complex has a lower overall energy. This result resembles a recent experiment by

Morton & Matthews (1995), which showed that ligands of very similar shape but

different hydrophobicities can change the protein structure in different ways.

We believe there are two implications for drug design. First, even small structural

differences between ligands could lead to large differences in the binding mode or

A
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Figure 7: Binding modes depend on more than ligand shape. Identically
shaped ligands with different binding constants, b, cause different structural changes
upon binding. When b = 0.6, binding favors the native-state complex, NL (lock
and key), while b = 1 favors an induced-fit complex, d L, where d is a second-excited
state. The low-energy complex is determined not by shape complementarity alone,
since the two ligands have identical shapes, but by a balance between free energy lost
in induced-fit structural changes, and free energy gained through the protein-ligand
interaction.
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binding site. This could make the prediction of relative binding affinities sometimes

difficult. Second, it implies that one possibly underappreciated determinant of the

binding mode of a ligand is not structural. In Figure 7, the change in binding mode
can be driven by temperature, or more generally with solvent conditions, both of

which regulate the binding strength. A ligand may choose its binding mode based

on external conditions rather than on the shapes of the ligand or receptor, and might

hop from one site to another when the solvent is changed.

Ligands can bind tightly to non-native states

Equation 4 describes Michaelis-Menten binding of a ligand to the native con

formation, N. Now suppose a ligand may interact with either the native state or

a particular non-native conformation, d. The corresponding mass-action equation

becomes

N + L → NL

| K. l (6)

d + L —3. dL

where Kid is the equilibrium binding constant for the non-native conformation, and

K. is the equilibrium constant for N unfolding to d. We use the symbols d and D

to represent non-native states: d is one particular non-native conformation (a mi

croscopic state), and D represents the full ensemble of all non- native conformations

(the macroscopic denatured state). The native state, too, in reality is an ensemble

of microstates, but in the lattice model, we approximate N as a single microscopic

conformation.

The fractional population of native conformations bound to ligand, fº, is

-*
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fº =

When a ligand can bind d, the native state can never be fully saturated, since

some ligand molecules bind to non-native conformations (NL and dL are assumed

to be experimentally distinguishable). However, Equation 7 also shows that even if

a ligand binds the non-native state more tightly than it binds the native state (i.e.,
Kba Kºw), the effect on the binding curve, f, can be vanishingly small, provided

that the non-native state has a very small population, K. « 1. Thus tight binding

doesn’t necessarily imply high populations.

Two common objections to the notion of tight binding to non-native states are

readily addressed: (1) How could a non-native conformation form a tighter binding

site than the active site? The chain could “envelop” the ligand more completely than

the native structure does, creating more LH contacts. (2) How could denatured-state

binding overcome the unfavorable entropy required to restrict the presumably flex

ible unfolded conformation to a single, rigid structure in the bound complex? We

distinguish between the macroscopic denatured state, D, and the large number of

individual microscopic conformations, d, which comprise it. Any given denatured

conformation d requires no more or less conformational entropy of binding than the

native state does, because each is a single conformation. Hence ligand binding to

individual non-native conformations need not be intrinsically opposed by conforma

tional entropy.

While Equation 7 gives the mass-action scheme for non-native state binding, it

gives no insight into the structural basis for this behavior. Figure 8A illustrates the

structural basis using the HP model. The figure shows one example of a non-native

state, d, of sequence A that binds ligand more tightly than the native state does,

forming 3 LH contacts as opposed to only 2 for the native. Yet as shown in Fig

()
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Figure 8: Denatured-state binding. A: The ligand binds more tightly to a
denatured (second-excited) state, d, than to N, since there are 3 LH contacts in the
dL complex vs. only 2 in the NL complex. But NL remains the dominant complex,
and binding is Michaelis-Menten, because the cost of unfolding to d is large compared
to the binding energy (see Figure 4). B: Protein energy ladder, no ligand. C: Ligand
binds only to the native state; the free energy of binding is AG.N. D: Ligand binds
d more tightly than N (AGºd P AGN), as in A. Since the dL complex remains high
in energy, it does not affect the binding isotherm.
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ure 4, the calculated binding curve indicates binding to only the native conformation.

Why?

The reason is illustrated in Figures 8B-D, which show the corresponding free
energy diagrams. Figure 8B shows the energy ladder of the protein conformations

alone, in the absence of ligand. Figure 8C shows conventional binding, in which

the ligand stabilizes the protein by binding the native state. Figure 8D shows the

unconventional behavior represented in A: ligand stabilizes the native state, but it

stabilizes a particular non-native conformation, d, even more. In this case, binding

increases the population of d, but because the dL conformation is so low in popula

tion relative to NL, the binding isotherm is insensitive to this non-native binding.

Under the Michaelis-Menten conditions of Figure 4, all of the possible dL complexes

of sequence A have a combined population of only 1 × 107° at saturating ligand
concentration.

Hydrogen exchange can detect non-native binding

How can tight binding to low-population conformations be detected? Hydrogen

exchange (HX) is a technique capable of detecting events of extremely low probabil

ities in proteins (Woodward & Hilton, 1979; Englander & Kallenbach, 1984; Miller

& Dill, 1995; see appendix for brief description). While most experimental measure

ments of proteins give only ensemble averages, and are therefore overwhelmed by

the native signal under native conditions, HX sees no contribution from the native

state for protected hydrogens in the cores of proteins. In hydrogen exchange, the

detection limit for low-population states is set by the longest exchange time that can

be measured, which can be thousands of hours. Hence HX routinely detects struc

tures that are only sparsely populated and cannot be observed by other experimental

methods.

sº
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When a ligand binds a protein, there are two ways it might affect the exchange
rates of amide hydrogens from the hydrophobic core. (1) Erchange from the un

bound state. If the ligand binds to only the native state (Figure 8C), or at most to
only a small number of non-native states, then then there will exist other non-native

conformations which cannot be populated while the ligand is bound. For the amide

hydrogens whose exchange is predominantly from these conformations, the ligand

must transiently dissociate from the protein before exchange can occur. The free

energy cost for this dissociation is equal to the binding free energy, so the result

ing increase in HX rate is AAGhr = −AGb (see appendix). For a typical protein

this represents an increase of several kcal/mol. (2) Erchange from the bound state.

If the ligand can bind non-native conformations (Figure 8D), there will be some

amide hydrogens in the protein core that can exchange from bound protein struc

tures. Since ligand binding will affect the population of these non-native “exchange”

conformations, the corresponding HX rates will also change, by an amount equal to

AAGhr = —kT log # (8)bN

(see appendix) where Kia and KN are the binding constants for the non-native

and native states, respectively (note that Kºw approximates the experimentally

measured binding constant, K., if D is low in population). Equation 8 can therefore

be used to calculate the non-native state binding free energy for a given change in

the HX rate.

Can HX detect strong interactions between a ligand and a highly non-native

protein conformation? Our model predicts three experimental conditions which must

be satisfied. (1) Exchange must be slow in the absence of ligand, i.e., AGh, 8: AG,

(see appendix). This suggests that the exchange conformation is significantly non

native in structure. (2) Exchange must occur from the bound state, not the unbound
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state. This occurs when the change in HX rate is less than the binding energy,

that is, when AAGh, º –AG. (3) The interaction of ligand with the exchange
conformation must be strong. This is evidenced, through Equation 8, by a change

in HX rate that is either negative or near zero, the former suggesting even tighter

binding to the non-native than to the native state.

We use the HP model to simulate the effects of ligand binding on protein HX

rates. In this model, the HX rate is proportional to the Boltzmann-averaged solvent

accessibility of an amino acid over all possible protein conformations (Miller & Dill,

1995; see appendix). In any one particular protein structure, a monomer is consid

ered to exchange fully with solvent if it is adjacent to a solvent site. It is considered

fully protected if it is surrounded on all four sides either by protein monomers or

by ligand. Model HX rates are equal to the conformational ensemble average of this

solvent accessibility quantity (either 0 or 1). For example, in Figure 8A, monomers 5

and 10 are buried in the native structure, and thus have much slower HX rates than

the monomers exposed on the surface. But while monomer 5 is able to exchange from

a first-excited state (see Figure 1A), monomer 10 is buried in all of the first-excited

states (not shown), and so can exchange only from a second- or higher-excited state.

Hence it exchanges much more slowly than monomer 5.

Figure 9A shows how ligand binding affects HX rates in the model. For monomer 5,

the HX rate is decreased when the ligand binds, and the curve of HX rate versus

ligand concentration indicates that exchange occurs predominantly from unbound

conformations. This is because the first-excited states, the most important exchange

conformations for monomer 5, do not bind the ligand as tightly as the native state

does, making only 1 LH contact, on average, versus 2 for the native state. Hence for

this monomer the fastest route to exchange is by dissociation of the ligand, followed

by unfolding of the protein. In contrast, the HX rate of monomer 10 increases upon

78

C

C

º,

C.



i
T

**
• *

• *
**

-
• *

->-
-

-
--

-
-

,”
-

* 1.5-
E.sºs =

mon 10

I

0 1 2 3 4 5
L (10-5)

Figure 9: (caption on the following page)
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ligand binding. As indicated in Figure 8A, this is due to tight binding to non-native

states, in particular a small group of second-excited states. Using Equation 8, we

find that the average binding constant, Kid, for these second-excited state conforma

tions is roughly 40 times that of the native state. Hence we can predict the binding

constants for extremely low-population d states using the measured change in HX

rate. (See further discussion in the appendix).

Figure 9: Effects of binding on HX rates, stability, and flexibility. A: Bind
ing increases the HX rate of monomer 10 by stabilizing second-excited states (one
shown), which are the fastest-exchanging states for this monomer. Binding decreases
the HX rate of monomer 5 by stabilizing the native state relative to the weak
binding first-excited states (one shown), which are the fastest-exchanging states for
monomer 5. The HX rate of monomer 5 is close to the theoretical rate (dashed line)
corresponding to HX from only the unbound states. B: Binding stabilizes the na
tive state (increases AG.) because binding is weaker to the full denatured ensemble
than to the native state. The dashed line is the expected stability change when only
the native state is bound. The actual stabilization is smaller because of binding to
denatured states. C: Average thermal factors, (B), decrease with ligand binding
for both monomers 5 and 10. The thermal motions depend mainly on first-excited
states, which bind ligand weakly, while the HX of monomer 10 depends on second
excited states. For A–C, the model parameters are identical to Figure 4.

Experimental results from hydrogen exchange

There is experimental evidence from hydrogen exchange that ligands can bind

tightly to highly non-native conformations. The HX technique has been used to

study the effects of ligand binding on the structure and dynamics of cytochrome c

(Paterson et al., 1990), lysozyme (Benjamin et al., 1992), serine-protease inhibitor

(Werner & Wemmer, 1992), staph nuclease (Loh et al., 1993), barnase (Meiering

et al., 1993), protein G (Orban et al., 1994), and acyl coenzyme A binding protein

(ACBP) (Kragelund et al., 1995). In all of these proteins, the general effect of ligand

binding is to decrease the HX rates of the majority of amide hydrogens. For many of

these hydrogens, binding decreases the HX rate by the maximum amount, indicating

s
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that exchange occurs from the unbound states. Monomer 10 in Figure 9A shows
this behavior.

However, the HX rates of many hydrogens either increase in the bound confor

mation, with a typical range in AAGh, of roughly -0.5 to -2.0 kcal/mol, or else they
decrease by significantly less than the maximum amount. Either of these observa

tions indicates that exchange takes place from bound conformations. Among such

hydrogens, many are among the slowest exchanging in the protein (AGh, as AG.),

suggesting that exchange may take place from very non-native, highly unfolded con

formations. We believe these hydrogens are analogous to monomer 10 in Figures 8

and 9, and may be examples in which the ligand binds a largely unfolded protein

conformation with at least as high an affinity as the native state.

Are there other explanations for this data? Several possible explanations have

been ruled out. First, it is generally found that the increases in HX rate are not due

to large structural changes upon binding. In all the examples cited above, there are

only very small differences between the bound and unbound structures (from NMR

or X-ray crystallography) near the relevant hydrogens. Second, there is no evidence

that exchange is increased by bound water molecules trapped at the protein-ligand

interface. Third, Benjamin et al. (1992) have argued on the basis of electrostatic

calculations that ligand binding does not significantly affect the intrinsic chemical

rate, kr, of the exchange process (see appendix). Finally, while it has been argued

that HX might occur by “solvent penetration”, rather than by structural unfolding

(e.g. Woodward & Rosenberg, 1971; Lumry & Rosenberg, 1975; Richards, 1979),

and thus that slow exchange might not imply highly-unfolded exchange structures,

HX experiments in urea (e.g., Hilton et al., 1981; Bai et al., 1994) suggest that for the

slowest-erchanging hydrogens in the protein core, exchange does involve considerable

unfolding of the protein.
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Other explanations for increased HX rates upon ligand binding can be found

in the hydrogen exchange literature. These involve either: (1) changes in protein

structure too subtle to be detected with the measurement techniques used (NMR

and X-ray crystallography); (2) a ligand-induced decrease in the “regional stability”

of the protein (Kragelund et al., 1995); or (3) an increase in protein dynamics

(Benjamin et al., 1992; Kragelund et al., 1995). But there are problems with each of

these explanations. For (1), rate increases may be due to subtle changes in structure

(Equation 7), but they cannot be due to subtle changes in the binding energetics.

Our model predicts that in order for hydrogens to undergo even a small increase

in HX rate, the ligand must bind the non-native exchange conformation at least

as tightly as it binds the native state. The problem with explanation (2) is only

that “regional stability” is not very clearly defined. Moreover, global stability has

been observed to increase even when the HX rates of some hydrogens also increase

(Loh et al., 1993; Kragelund et al., 1995). Similar behavior arises from our model,

as shown below. Explanation (3) appears inconsistent with the poor correlation

between changes in HX rates and changes in protein flexibility (Kragelund et al.,

1995, using T times). As shown below, our model too, predicts a poor correlation.

Our model results are fundamentally different from the previous proposals listed

above. Our explanation puts less emphasis on the native state alone, and more em

phasis on ligand binding to non-native conformations. Non-native state binding can

account for affects on HX rates even when there is little or no detectable change in

the protein's native structure.

How can ligand binding stabilize the native state while increasing the HX

rate?

Figure 9B shows that ligand binding stabilizes the native state of sequence A,

()
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while at the same time increasing the HX rate of monomer 10 (Figure 9A). This sur
prising result has a simple explanation: the ligand affects some few non-native con

formations, d1 d2, d3, ..., differently than it affects the overall denatured ensemble,

D. In particular, the non-native conformations contributing most to the D ensemble,

and thus to protein stability, are the first-excited states, which for this HP sequence

bind the ligand less favorably than the native state does. On the other hand, the

most important conformations for the HX of monomer 10 are second-excited states,

many of which bind ligand more tightly than the native state does (Figure 8A).

These results are in agreement with experiments from ACBP (Kragelund et al.,

1995), which show that both global stability and HX rates can be simultaneously

increased by ligand binding, and from early experiments by Woodward (Hilton et

al., 1981) showing that HX rates and global stability can be poorly correlated.

Michaelis-Menten binding can sometimes be destabilizing

Figure 10 illustrates another unexpected result: that favorable ligand binding

can be globally destabilizing. Figure 10A shows the binding curve of a particular HP

sequence that appears to bind in a lock-and-key fashion to only the native conforma

tion. Figure 10B shows that the same binding event decreases the global stability.

The reason is that ligand interacts strongly with conformations of the denatured

ensemble, thereby increasing the denatured-state population relative to the native.

The difference between this and the previous example, where binding increased sta

bility, is that here the individual dB conformations are highly representative of the

full D ensemble, because they are among the first-excited states. Nevertheless, their

population relative to the native state remains very small. Thus while the fraction

of molecules that are denatured changes several fold upon binding, causing a signif

icant decrease in global stability, the fraction itself remains too small to affect the

º,
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Figure 10: Michaelis-Menten binding can be globally destabilizing. A: A
sample HP sequence shows lock-and-key, Michaelis-Menten binding (same as Fig
ure 4). B Ligand binding decreases the the free energy of unfolding, AG, by
stabilizing first-excited states (not shown), and thus increasing the D population
relative to N. However, since the overall D population remains small (less than 1%
in this example), binding to d states has only a small effect on the binding curve.
(b = 0.35 and e = –10).
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binding isotherm (i.e., K. « 1 in Equation 7). This result suggests that observing
Michaelis-Menten binding does not necessarily rule out the possibility of highly non

native protein configurations in the complex. A possible example of this behavior

is the protein ACBP (Kragelund et al., 1995), which shows an increase in stability

much smaller than expected given the strength of the interaction with its inhibitor

(see appendix).

HX rates do not always correlate with protein flexibility

Figure 9C shows that ligand binding can restrict the thermal motions of two

residues, even though one residue has an increased HX rate and the other has a

decreased HX rate. We calculate the thermal motion in the model as the Boltzmann

average of the fluctuations over all the intra-monomer distances, resembling a B

factor in x-ray crystallography (see appendix). B factors are often taken as a measure

of the flexibility of the protein, and our model, like experiments, shows a general

correlation between thermal motions and HX rates. However, this is not true of the

changes that occur in these measurements as result of ligand binding. Figure 9C

shows that while binding increases the HX rate of monomer 10, it decreases the B

factor. This result has the same explanation as above: B factors reflect ensemble

averages over the first-excited states, while the HX of monomer 10 reflects binding

to the small subpopulation of second-excited states. While there is often at least

some correlation observed between absolute HX rates and protein dynamics, such

as in BPTI (Levitt, 1981), ribonuclease A (Wlodawer & Sjolin, 1982), and trypsin

(Kossiakoff, 1982), there is at least one observation in which ligand binding increases

the HX rate while simultaneously decreasing flexibility (Kragelund et al., 1995, with

ACBP using Ti times), consistent with the model result shown in Figure 9C.

We conclude that HX rates and thermal B factors may not always reflect the
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same property of a protein. For the slowest-exchanging hydrogens in particular,

the structures that determine HX rates are higher up the energy ladder, while the

structures that determine the flexibility are on the first rung. If the ligand can inter

act differently with the two classes of conformations, then our model suggests that

changes in HX rates will not correlate well with changes in flexibility.

DISCUSSION

Proteins are flexible and only marginally stable. But current models of lig

and/protein interactions often assume that proteins are rigid and unperturbable,

and that there is a single dominant mode of binding to the native structure. To

test the validity of these ideas requires models that go beyond binding polynomials,

so that structural consequences of binding are derived from principles and struc

tures, rather than assumed. Here we present a first step in this direction. Using

the 2-dimensional HP lattice model, we search exhaustively through all of protein

conformational space, and exhaustively through all possible ligation states of each

conformation, to find the global free-energy minimum. In this way, we compute the

structures and thermodynamics of binding from the protein sequence and the ligand

structure, rather than postulating them.

Despite the simplicity of this model, it shows a wide range of protein/ligand

binding behaviors. Very hydrophobic ligands at high concentrations denature model

proteins, much like urea and guanidine hydrochloride. Weaker ligands bind to com

pact denatured states, modeling the behavior of ANS. Even weaker ligands bind

native states, as dyes and probes do, without perturbing the protein structure.

Model ligands can also bind specifically, that is, at single specific sites, and with

~).
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Michaelis-Menten (Langmuir) isotherms. Such binding specificity does not require

chemical specificity of the underlying interactions, such as hydrogen bonding or ion

pairing. The model shows that such binding can be lock-and-key, to a preformed

site on the native structure, or induced fit, to an excited-state conformation having

a higher energy than the native state. We also find examples of a ligand stabilizing

a disordered ensemble, much like heme stabilizes apomyoglobin, as well as examples

of binding cooperativity between two ligands.

The model is useful for explaining non-traditional binding behaviors, many of

which have been observed experimentally. Two ligands of identical shape can bind

in very different binding modes. Ligands can bind denatured states more tightly

than the native state and still show Michaelis-Menten binding isotherms. Binding

that appears to be “lock and key” may actually destabilize the native structure.

Binding may cause model HX rates to increase, while at the same time increasing

global stability and decreasing thermal B factors. The model suggests that many

of these non-traditional behaviors may have the same physical origin, namely that

a ligand can interact differently with a few non-native states than it does with the

vast sea of other denatured conformations in general. Experimental evidence of

denatured-state binding is found in HX data from barnase, lysozyme, and ACBP.

There are two broader implications for understanding protein/ligand interactions.

First, this model suggests that the premise of structure-based drug design—that

knowledge of the native structure of a protein is sufficient to rationalize a binding

interaction—may not always be true. Knowledge of non-native structures may some

times be necessary. It suggests that certain information about ligand binding may

be hidden and unavailable for structural interpretation by x-ray crystallography and

NMR spectroscopy. Second, in the same way that the modeling of protein folding

has moved from simple macroscopic mass-action models to more microscopic models
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that are rooted in the language of ensembles, energy ladders and energy landscapes
(Dill & Chan, 1997), ligand binding too can benefit from more microscopic models

and from the language of energy landscapes. Most importantly, proteins are not

single conformations. Even under native conditions, proteins populate a broad en

semble of structures. Some of these fluctuations may be important for binding, and

may not be well represented by the average properties of the denatured ensemble.
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APPENDIX

Derivation of the partition function

Here we calculate the total partition function for our model of ligand binding,

given by the denominator of Equation 3. This requires summing the individual

Boltzmann factors for all possible combinations of ligand and model protein. We use

“ligation state” to denote a particular combination of ligand and model protein, and

“conformation” to denote the HP chain structure alone. Each chain conformation

has many ligation states. A “binding site” is any vacant site adjacent to an H

monomer. For a given HP sequence in a given conformation, the total number of

ligation states is found by counting the number of ways that indistinguishable ligands

can be distributed among the binding sites, beginning with zero ligands and ending

with the number that fills all of the sites of the particular conformation.

First we calculate the number of ways that ligands can bind to one particular
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conformation, c. We define four numbers, M, i = 1,2,3,4, equal to the numbers

of binding sites that contact i monomers of type H. The chain conformation in

Figure 1C, for example, has M1 = 2, M2 = 1, M3 = 1, and M4 = 0. Now for a

particular ligation state, s, the number of ligands bound to each of the four types

of sites is denoted by ni, and can vary from 0 to M. The particular ligation state

in Figure 1C has n1 = 1, n2 = 1, m3 = 1, and na = 0. The total number of bound

ligands, N., in the ligation state is obtained by adding the four n, values:

4

N, F
XD n, (9)
i–1

There is more than one way that n, ligands can be distributed among the Mi

sites. The total number of combinations, gi, is given by the expression:

M. M.'* - (*) - Tºm (10)

Similarly, the number of ways that all N, ligands can be arranged such that ni

of them bind among the M1 single-contact sites, n2 of them bind among the M2

two-contact sites, and so on, is given by the product of four terms:

* - ()()()()- H() an
The partial partition function, E., for the given HP conformation, c, is obtained

by summing the Boltzmann factors for each possible ligation state, over all values

of ni:

== i < *■ (■ i■
n1 =0 n2 =0 n3 =0 ná =0 i-1

'') cº-wºº) (12)ni

where h is the number of HH contacts for the conformation; N, is the total number

of ligands bound in ligation states (Equation 9); and m is the total number of ligand
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contacts in the ligation state:

4

777 - n1 + 2n.2 + 3n2 + 4n+ –
XD in, (13)
i-1

The total partition function, E, is found by adding up the partial partition func

tions for all Q possible HP chain conformations:

E = XC E. (14)
c=1

where Q = 802,075 in the case of a 16-mer.

Comparison with the binding polynomial

Our microscopic binding partition function (Equation 14) can be related directly

to the thermodynamic binding polynomial, Q. The binding polynomial is related to

the free energy of binding, AG, by (Schellman, 1975):

AG = —kT log Q (15)

To compare the partition function with the binding polynomial, it is useful to ex

press Equation 14 in a different form. Written as a product of four sums, Equation 14

becomes

B

=

**i. | § ()º (16)1
-

ni =0

The analogous binding polynomial, Q, for macromolecular binding has been de

rived by Schellman (1975) and is given by

M.
-o-Yº Hº ()ºr) ºn
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where Q is the number of molecular conformations, c, K. are the equilibrium con

stants with respect to the c = 1 conformation (Ki = 1); Ki are the binding constants

describing the four types, i, of binding site; M, are the number of each type of site;

n; are the number of ligands bound to each type, and L is free ligand concentration.

Comparison of Equations 16 and 17 show the relationships between the micro

scopic Boltzmann factors and the corresponding thermodynamic quantities:

Ke = e-Ahe/kT (18)

Kh; F e-ibe/kT (19)

L = ei/*T (20)

Hydrogen Exchange

We assume that HX of amide hydrogens from the protein interior is governed by

the equilibrium unfolding of the native structure (Englander & Kallenbach, 1984):

ku kr
N(H) = d(H) → d(D) (21)

k;

where N(H) is the native structure; d(H) and d(D) describe an individual denatured

conformation prior to and after the exchange of a hydrogen for a deuterium; k, and

k; are the rate constants for partial unfolding and folding of the native structure; and

k, is the exchange rate for a non-bonded, solvent-exposed hydrogen. The observed

rate constant, kobs, for this process is (Segal & Harrington, 1967; Roder et al., 1985;

Hvidt & Nielsen, 1966)

kobs = K kr (22)

),

Y
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where K = k1/k■ is the equilibrium constant for the unfolding process. The observed

rate is the product of the “maximum” rate, k, with K, the fraction of time the

protein is in the exchanging conformation, d. Equation 22 can also be expressed as

AGhr, the free energy required for the protein to undergo the transition from the

native to the exchanging conformation:

AGhr = —k'T log K = —kT log º (23)
ac

This free energy is close to zero for surface hydrogens exchanging near the theo

retical limit, k, and reaches a maximum roughly equal to the free energy of global

unfolding, AG, for those hydrogens in the hydrophobic core which require complete

unfolding for exchange.

In the HP lattice model, HX rates are calculated from Boltzmann-averaged sol

vent accessibilities, A. A = 0 if a monomer is fully protected, i.e., completely

surrounded by other monomers or ligands, and A = 1 if the monomer is solvent

accessible, i.e., is adjacent to an empty lattice site. The HX rate from the monomer

is

k = (A) k, (24)

which is identical to Equation 22 except that the two-state equilibrium constant is

replaced by the ensemble-averaged accessibility, (A).

Binding to non-native states

The effects of non-native state binding on global stability, hydrogen exchange,

and the binding isotherm can be considered using the simple thermodynamic binding

equilibrium:
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Kºw
N + L → NL

| K. l (25)
Kha

d + L → d L

where N and d represent the native state and a particular denatured conformation,

respectively; Ki N and Kid are the binding constants for N and d, and K! is the

equilibrium constant for N unfolding to d.

If the ligand can bind to the native state, N, but not to d (i.e., if Ka = 0), it
follows that:

(1) The fractional population of bound native-state molecules, f, as a function

of ligand concentration is

NL _ Khn L.
N + d + NL 1 + K.NLfº = (26)

where we have assumed K. < 1 in the last step. This is the equation for Michaelis

Menten binding, and the denominator is equal to the Michaelis-Menten binding

polynomial, Q.

(2) The corresponding change in global stability upon ligand binding, i.e., the

change in the free energy, AAG, is

AAG. =
d

+ kT logy = (27)
d 1

—kT log — —kT log —kTiog VTNF Tlog TT.I.
which is simply the free energy of binding, —AG, from Equation 15, since Q =

1 + KuM L is the binding polynomial for Michaelis-Menten binding. Thus if ligand

binds to only the native state, all of the binding energy contributes toward stabilizing

the native relative to the unfolded states.
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(3) The change in HX rate, AAGh, of a hydrogen whose fastest route to HX is

through conformation d is given by an expression identical to Equation 27:

1

b

Hence if ligand binds only the native state, the HX rate is expected to decrease by

an amount equal to the binding energy, -AG, which is typically several kcal/mol.

This is true for all hydrogens, regardless of the particular fluctuation d required for

exchange.

Conversely, if the ligand can bind to the unfolded state, d, with a binding constant

Kid, it follows that:

(1) The fractional population of bound native molecules, f, becomes

NL
-

KSNL
N + d + NL + dL T 1 + K. 4 Kºw L + K. Kla Lfº = (29)

Although fi in Equation 29 is less than for the Michaelis-Menten case, it reduces

to normal Michaelis-Menten binding when the unfolded-state population is very

small (K. « 1), even when binding is stronger to d than to N (Kia P. K.N).

(2) The change in global stability will deviate from the Michaelis-Menten case

above only if the single bound conformation d represents a significant population of

the full denatured ensemble, D. In this case the change in stability is

kT log — = —k
+ kT log Tiog Hºi (30)

Equation 30 implies the well-known result that ligands that prefer to bind the

native state will stabilize the protein, while ligands that prefer to bind D will desta

bilize the protein.
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(3) If hydrogens can exchange from the bound state, dL, then the change in HX

rate is given by

d + d L d 1 + Kid L→ + kT log – = —kT log —WTWE + 84 logy Toº Hº; (3)
This is equal to the stability change of Equation 30, but Equation 31 is valid

AAGhr = -kT log

for any denatured conformation, d, no matter how low in population. At saturating
ligand concentration, Equation 31 becomes

Kba
AAGhr = —k'Tlog K bN

(32)

which is the result given in Equation 8. If AAGhr is known, Equation 32 can be

used to estimate Kid, the binding affinity of the ligand for the particular denatured

state, d. This estimate will be less than the marimum dI, affinity because Equa

tion 32 assumes that every exchanging d state binds ligand equally. For monomer 10

of sequence A, only 3% of the exchanging second-excited states binds ligand with

the 3-LH contact affinity shown in Figure 8A, so the estimated affinity represents

an average that is less than this maximum 3-contact affinity.

HP model of protein flexibility

Here we describe our measure of thermal motion, B in the model proteins. For

any monomer, i, of an HP sequence we can derive a flexibility parameter, B., by tak

ing all possible conformations and calculating the average deviation of the monomer

from its position in the native state, N. To illustrate, consider a single non-native

conformation, X. The “position” of monomer i in this conformation is given by its

distance matrix, d;(X), i.e., the sum of its intra-monomer distances:

*
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-
2d;(X) = XXrº,(X) (33)

j#i

where j is the monomer index and rij(X) is the distance between monomers i and

j, in arbitrary lattice units.

The difference in position of monomer i in conformation X and in the native

state, N, is calculated from a relative distance matrix, B,(X):

|rº,(X) — rº, (N)|B,(X) = Y →
(X) }. (ri,(X) + rj (N))/2

where the denominator of Equation 34 is a normalization factor. The flexibility,

(34)

B, of monomer i is then calculated from the Boltzmann average of B;(X) over all

possible conformations, X.

The quantity B, represents an equilibrium measure of flexibility rather than a

dynamic one, i.e., flexibility is determined by the populations of low-energy non

native states, not by the heights of kinetic barriers that separate them, which we do

not treat here. However, since HX is shown to be an equilibrium process for many

proteins, B, captures the component of flexibility most relevant to HX measurements.

96



REFERENCES

Ackers GK, Doyle ML, Myers D, Daugherty MA. 1992. Molecular code for cooperativity in

hemoglobin. Science 255: 54–63.

Allen KN, Bellamacina CR, Ding X, Jeffery CJ, Mattos C, Petsko GA, Ringe D. 1996. An exper

imental approach to mapping the binding surfaces of crystalline proteins. J Phys Chem 100:

2605–2611.

Alonso DOV, Dill KA. 1991. Solvent denaturation and stabilization of globular proteins. Biochem

istry 30: 5974–5985.

Bai Y, Milne JS, Mayne L, Englander SW, 1994. Protein stability parameters measured by hydro

gen exchange. Proteins Struct Funct Genet 20: 4–14.

Benjamin DC, Williams DC, Smith-Gill SJ, Rule GS. 1992. Long-range * in a protein antigen

due to antigen-antibody interaction. Biochemistry 31: 9539–9545.

Bohacek RS, McMartin C. 1994. Multiple highly diverse structures complementary to enzyme

binding sites: results of extensive application of a de novo design method incorporating

combinatorial growth. J Am Chem Soc 116. 5560–5571.

Chan HS, Dill KA. 1989. Compact polymers. Macromolecules 22 4559–4573.

Chan HS, Dill KA. 1990. Origins of structure in globular proteins. Proc Natl Acad Sci USA 87.

6388–6392.

Chan HS, Dill KA. 1991. “Sequence space soup” of proteins and copolymers. J Chem Phys 95.

3775–3787.

Chan HS, Dill KA 1994. Transition states and folding dynamics of proteins and heteropolymers.

J Chem Phys 100: 9238–9257.

Creighton T.J. 1993. Proteins: structures and molecular properties. 2nd ed., pp. 339. New York,

New York: W.H. Freeman and Company.

Di Cera, Enrico. 1995. Thermodynamic theory of site-specific binding processes in biological macro

97



molecules. Cambridge, England: Cambridge University Press.

Dill KA. 1990. Dominant forces in protein folding. Biochemistry 29, 7133–7155.

Dill KA, Bromberg S, Yue K, Fiebig KM, Yee DP, Thomas PD, Chan HS. 1995. Principles of

protein folding-A perspective from simple exact models. Protein Sci 4: 561–602.

Dill KA, Chan HS. 1997. From Levinthal to pathways to funnels. Nature Struct Biol 4: 10–19.

Englander SW, Kallenbach NR. 1984. Structural dynamics of proteins and nucleic acids. Q Rev

Biophys 16: 521–655.

Frauenfelder H, Sligar SG, Wolynes PG. 1991. The energy landscapes and motions of proteins.

Science 254: 1598–1603.

Hilton BD, Trudeau K, Woodward CK. 1981. Hydrogen exchange rates in pancreatic trypsin

inhibitor are not correlated to thermal stability in urea. Biochemistry 20:4697–4703.

Hvidt A, Nielsen SO. 1966. Hydrogen exchange in proteins. Adv Protein Chem 21: 287–386.

Koshland DE, Nemethy G, Filmer D. 1966. Comparison of experimental binding data and theo

retical models in proteins containing subunits. Biochemistry 5: 365–385.

Kossiakoff AA. 1982. Protein dynamics investigated by the neutron diffraction-hydrogen exchange

technique. Nature 296: 713–721.

Kragelund BB, Knudsen J, Poulsen FM. 1995. Local perturbations by ligand binding of hydrogen

deuterium exchange kinetics in a four-helix bundle protein, acyl coenzyme A binding protein

(ACBP). J Mol Biol 250; 695–706.

Kuntz, ID. 1992. Structure-based strategies for drug design and discovery. Science 257: 1078–1082.

Lau KF, Dill KA. 1989. A lattice statistical mechanics model of the conformational and sequence

spaces of proteins. Macromolecules 22: 3986–3997.

Lau KF, Dill KA. 1990. Theory for protein mutability and biogenesis. Proc Natl Acad Sci USA

87. 638–642.

Levitt M. 1981. Molecular dynamics of hydrogen bonds in bovine pancreatic trypsin inhibitor

protein. Nature 294; 379–380.

)-

98



Loh SN, Prehoda KE, Wang J, Markley J.L. 1993. Hydrogen exchange in unligated and ligated

staphylococcal nuclease. Biochemistry 32: 11022–11028.

Lumry R, Rosenberg A. 1975. The mobile defect hypothesis of protein function. Colloq Int CNRS

246: 55–63.

Mattos C, Ringe D. 1996. Locating and characterizing binding sites on proteins. Nature Biotech

14: 595-599.

Meiering EM, Bycroft M, Lubienski M.J, Fersht AR. 1993. Structure and dynamics of barnase

complexed with 3’-GMP studied by NMR spectroscopy. Biochemistry 32: 10975–10987.

Miller DW, Dill KA. 1995. A statistical mechanical model for hydrogen exchange in globular

proteins. Protein Sci 4: 1860–1873.

Monod J, Wyman J, Changeux JP. 1965. On the nature of allosteric transitions: A plausible

model. J Mol Biol 12: 88–118.

Morton A, Matthews BW. 1995. Specificity of ligand binding in a buried nonpolar cavity of T4

lysozyme: Linkage of dynamics and structural plasticity. Biochemistry 34: 8576–8588.

Orban J, Alexander P, Bryan P. 1994. Hydrogen-deuterium exchange in the free and immunoglob

ulin G-bound protein G B domain. Biochemistry 33: 5702–5710.

Paterson Y, Englander SW, Roder H. 1990. An antibody binding site on cytochrome c defined by

hydrogen exchange and two-dimensional NMR. Science 249: 755–759.

Richards FM. 1979. Packing defects, cavities, volume fluctuations, and access to the interior of

proteins. Carlsberg Res Commun 44; 47–63.

Roder H, Wagner G, Wuthrich K, 1985. Amide proton exchange in proteins by EX1 kinetics: Stud

ies of the basic pancreatic trypsin inhibitor at variable p2H and temperature. Biochemistry

24; 7396–7407.

Schellman J.A. 1975. Macromolecular binding. Biopolymers 14: 999–1018.

Segal DM, Harrington WF, 1967. The tritium-hydrogen exchange of myosin and its proteolytic

fragments. Biochemistry 6, 768–787.

99



Semisotnov GV, Rodionova NA, Kutyshenko VP, Elbert B, Blank J, Ptitsyn OB. 1987. Sequential

mechanism of refolding of carbonic anhydrase B. FEBS lett 224: 9–13.

Semisotnov GV, Rodionova NA, Razgulyaev OI, Uversky VN, Gripas AF, Gilmanshin RI. 1991.

Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluores

cent probe. Biopolymers 31: 119–128.

Shi L, Palleros DR, Fink AL, 1994. Protein conformational change induced by 1, 1'-Bis(4-anilino-5-

naphthalenesulfonic acid): Preferential binding to the molten globule of DnaK. Biochemistry

33: 7536–7546.

Shoichet BK, Stroud RM, Santi DV, Kuntz ID, Perry KM. 1993. Structure-based discovery of

inhibitors of thymidylate synthase. Science 259: 1445–1450.

Shortle D, Chan HS, Dill KA. 1991. Modeling the effects of mutations on the denatured states of

proteins. Protein Science 1: 201–215.

Strynadka NC, Eisenstein M, Katchalski-Katzir E, Shoichet BK, Kuntz ID, Abagyan R, Totrov

M, Janin J, Cherfils J, Zimmerman F, Olson A, Duncan B, Rao M, Jackson R, Sternberg

M, James MNG. 1996. Molecular docking programs successfully predict the binding of a

beta-lactamase inhibitory protein to TEM-1 beta-lactamase. Nature Struct Biol 3: 233–239.

Thomas PD, Dill KA. 1993. Local and nonlocal interactions in globular proteins and mechanisms

of alcohol denaturation. Protein Sci 2: 2050–2065.

Werner MH, Wemmer DE. 1992. Identification of a protein-binding surface by differential amide

hydrogen-exchange measurements. Application to bowman-birk serine-protease inhibitor. J

Mol Biol 925: 873–889.

Wlodawer A, Sjolin L. 1982. Hydrogen exchange in ribonuclease A: neutron diffraction study. Proc

Natl Acad Sci USA 79: 1418–1422.

Woodward CK, Hilton BD. 1979. Hydrogen exchange kinetics and internal motions in proteins

and nucleic acids. Ann Rev Biophys Bioeng 8: 99–127.

Woodward CK, Rosenberg A. 1971. Studies of hydrogen exchange in proteins. VI. Urea effects on

100



RNase hydrogen exchange kinetics leading to a general model for hydrogen exchange from

folded proteins. J Biol Chem 246; 4114–4121.

Wyman J, Gill SJ. 1990. Binding and linkage. Functional chemistry of biological macromolecules.

Mill Valley, California: University Science Books.

º

101



Chapter 3

Computer Simulations of Ligand Binding:
Are Non-Dominant Binding Modes Important?

This chapter is taken from the following article: Miller DW, Dill KA. 1997. Com

puter simulations of ligand binding: are non-dominant binding modes important?

Prot Sci (submitted).

>
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ABSTRACT

In computer simulations of protein-ligand interactions, it is common to assume

that ligands bind in only a single dominant binding mode. We call this the single

mode assumption, and it is the basis for molecular dynamics (MD) simulations of

protein-ligand complexes, and for free energy perturbation (FEP) calculations of lig

and binding free energies. All-atom models cannot rigorously test this assumption,

because they sample conformational space too sparsely. We test the single-mode

assumption using the HP lattice model, for which we can explore the full space of

protein conformations and ligand binding modes by exact enumeration. We find that

even when a wild-type ligand Lu, binds in a single mode, a mutant ligand Lim with

very similar structure may sometimes require the addition of several non-dominant

modes to properly account for its binding energetics, even when its dominant mode

of binding is the same as the wild type's. In such cases FEP theory can sometimes

fail to compute the correct difference in binding free energy for the two ligands, and

sometimes even the correct rank ordering. We develop a multi-mode FEP theory

that may be useful for improving the accuracies of computer simulations of binding

energetics.

THE SINGLE-MODE ASSUMPTION IN LIGAND BINDING

How should computer simulations be used to determine free energies of ligand

binding? Following theories of binding and linkage (Cantor & Schimmel, 1980;

Wyman & Gill, 1990; Ackers et al., 1992), the rigorous approach would be to deter

mine all possible configurations, free and bound, of the protein and ligand, determine

the energy of each configuration, and weight them properly according to Boltzmann's

1.

5
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law. Such an approach should accurately predict equilibrium binding constants.

But given current limitations in computational resources, it is impossible to sam

ple the configurational space of protein-ligand complexes exhaustively. Instead, it is

common to make what we call the “single-mode” binding assumption, namely that

ligands bind to proteins in only a single dominant mode, such as those observed

in x-ray crystallography or NMR experiments. (Here the term “mode” denotes a

collection of protein-ligand configurations of highly similar structure. This is dis

cussed in more detail below and in the appendix.) According to the single-mode

assumption, any “non-dominant” binding modes can be assumed to make negligible

contributions to the binding energetics. Hence in order to achieve adequate con

formational sampling of a protein-ligand complex, it is assumed necessary only to

perform a sufficient search within the dominant mode, while all other weak binding

modes can be neglected.

The single-mode assumption is the basis for both structure-based drug design

methods and free energy perturbation (FEP) calculations. To illustrate the former,

we consider a ligand L, that binds with high affinity to a protein P. Suppose that

in the atomic structure of the complex, L., P, the ligand is found to bind in a single

conformation at a single site. Often such information is then used to design a second

ligand, Lin, that is similar in structure to Lw. The underlying assumption is that

Lin (the “mutant” ligand) will bind in a single mode that is identical to the mode

of the “wild-type” ligand L. The binding energetics of the two ligands are thus

presumed to be very similar.

The free energy perturbation (FEP) method is then often used to calculate the

relative binding free energies of the two structurally similar ligands (see Postma et

al., 1982; Tembe & McCammon, 1984; Bash et al., 1987; Singh et al., 1987; Kollman,

1993). Calculations are based on the following thermodynamic binding cycle:
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AG,(w)
P + L, —%. PL,

AGL | | AGPL (1)
AG,(m)

P + Ln, —3. PL,

where P is protein, and Lu, and Ln are two structurally similar ligands. The free

energies of binding for the two ligands are AG,(w) and AG,(m), while AGL and

AGPL are the free energies of mutating the ligand, free and bound to the protein,

respectively, from the wild-type to the mutant structures. The difference in binding

free energy for the two ligands, AAG, can be calculated using Equation 1:

AAG, F. AG,(m)
-

AG,(w) F AGPL
-

AGL (2)

The “mutation” free energies AGPL and AGL, though corresponding to non

physical phenomena, can be calculated using FEP. This requires two molecular dy

namics (MD) simulations on the wild-type ligand: one on the ligand bound to the

protein and one on the ligand free in solution. For each time frame of the simulation,

the coordinates and energy parameters are changed to those of the mutant ligand,

and the difference in energy, AU, is calculated. The mutation free energy, either

AGPL or AGL, is then readily calculated using:

AG = —kT log(e-*/**) (3)

where the brackets indicate a Boltzmann average over the full simulation. Equa

tions 2–3 are then used to calculate the relative binding free energy.

The FEP method, like structure-based design, assumes that the mutant ligand

binds in a single mode, and that the wild-type and mutant modes are identical. On

105



this basis, it is assumed that an MD simulation of the wild-type complex will sample
all configurations important to the mutant complex, and will therefore give an accu

rate prediction of the relative binding free energies for the two ligands. Simulations

are therefore restricted to the crystallographic binding mode, that is, to conforma

tions representing only small perturbations from the known crystal structure of the

wild-type complex. And although considerable effort is made to sample sufficiently

within the dominant mode — such as by making the ligand mutation in several

small steps (see Pearlman & Kollman, 1989; Kollman, 1993) — this is done only

to improve the convergence of the simulation, and not to explore the possibility of

other important modes of binding.

Is the single-mode assumption valid? To test the assumption requires a model

in which the full space of ligand and protein conformations can be explored exhaus

tively. Otherwise, errors due to the single-mode assumption cannot be unambigu

ously distinguished from those due to incomplete conformational sampling. For this

reason, we use the HP lattice model of proteins, rather than all-atom simulations or

other more detailed models. The virtue of the simplifications is that we can explore

all conformations of the model protein and all possible binding modes with rigor

and completeness, so we can determine the validity of the single-mode assumption

unambiguously. Moreover, the simplifications are not limitations. The lattice model

is simply an illustration of principle, and the issues it raises pertain to real pro

teins, irrespective of the geometric simplifications the model entails. A benefit of

the present study is that it points the way to practical fixes for problems in more

realistic model simulations.

From the lattice model simulations presented here, we observe the following

principle. Even when a mutant ligand has the same dominant binding mode as

a wild-type ligand (so that the bound complexes may be very similar), the weaker,
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non-dominant modes of the mutant ligand can still be a major determinant of the

differences in binding energetics between the two ligands. Thus calculations that

neglect non-dominant binding modes can predict incorrect free energy differences

for the two ligands, and in some cases even an incorrect rank ordering of the binding

constants. Using the HP model to simulate FEP experiments, we show a way to

repair these problems in all-atom simulations.

HP MODEL EXAMPLE

We model ligand binding using a variation of the two-dimensional HP lattice

model of proteins. The binding model is described in Miller & Dill (1997). The

HP model is described in (Lau & Dill, 1989, 1990; Chan & Dill, 1991; Dill et al.,

1995). A protein is represented as a sequence of H (hydrophobic) and P (other)

monomers on a two-dimensional lattice. Lattice sites may be either empty or filled by

a single monomer, and empty lattice sites are assumed to contain a solvent molecule.

Each HH contact, formed when two non-sequential H monomers occupy adjacent

lattice sites, is favored by a contact free energy e (€ 30), meant to capture the

importance of hydrophobic interactions in protein collapse and global stability (Dill,

1990). Hence the free energy of a conformation is he, where h is the number of HH

contacts. The magnitude of e determines the degree of stability imparted by external

conditions: large and negative e reflects conditions that are more stabilizing, such as

lower temperature or lower denaturant concentrations. Conformational entropy, the

driving force for unfolding, enters the model through the exhaustive enumeration of

all the possible chain configurations (see below).

The disadvantages of the model are clear: atomic resolution is lost; conformations
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are restricted to a lattice; it is in 2 dimensions; the energy function is simplified;

and chains are unrealistically short. Yet despite these disadvantages, the model has

been found useful for modeling protein properties (Lau & Dill, 1989, 1990; Chan

& Dill, 1989, 1990, 1994; Shortle et al., 1991; Dill et al., 1995; Miller & Dill, 1995,

1997) because it shows several protein-like features, including cooperative collapse,

native structures having a nonpolar core and definable secondary structures, multi

stage folding kinetics, and molten globule states. Most importantly, we believe the

model captures the main physics of protein folding—the hydrophobic interactions,

conformational freedom of the chain, and the steric restrictions imposed by excluded

volume.

We study HP sequences having 16 monomers. For any 16-mer chain there are

exactly 802,075 possible conformations that can be configured on a two-dimensional

lattice. These conformations are generated by computer, and each is weighted by a

Boltzmann factor according to the number of HH contacts made. Figure 1A shows

an energy diagram for a sample HP sequence (called “sequence A”). The native

structure (ground state) is the conformation with the largest possible number of HH

contacts, and thus the lowest contact free energy. We study only non-degenerate

sequences, i.e., those having a single native conformation, since we believe they best

represent biological proteins, which fold to unique structures. All higher-energy

conformations comprise the non-native, or denatured states, and are grouped by

energy into “first-excited” states, “second-excited” states, etc., corresponding to

successively fewer HH contacts. For any HP sequence, there are far more open,

high-energy conformations than compact, low-energy conformations (see Figure 1B).

Modeling protein-ligand interactions

We model ligands as single, monomer-sized beads (Figure 1C) (Miller & Dill,
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Figure 1: Energy ladder representation of protein conformations. Energy
ladder diagram for the 16-mer HP sequence A, shown in its single native confor
mation at the bottom. The native conformation has 6 HH contacts (H monomers
are colored black), while each step up the ladder represents one fewer HH contact.
Example conformations are shown. B: Density of states, g(h): the numbers of
conformations of this HP sequence that have h HH contacts. C: Sequence A in a
given ligation state, having 2 ligands bound. Each contact between a ligand and H
monomer (LH contact) is favored by a free energy be, where b is a positive constant,
and e is the HH contact energy. Each LP contact is favored by a free energy Ep. In
this ligation state, 2 ligands make 3 LH contacts and 3 LP contacts. Since h = 5,
the energy is 56 + 3be + 3E, (Equation 4).
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1997). A protein-ligand contact occurs when the ligand occupies a lattice site adja
cent to a chain monomer. Ligands may interact with both hydrophobic and polar

groups: a contact between a ligand and H monomer (LH contact) is favored by a

free energy be, where b is a positive constant (0 < b : 1) and e is the HH contact

energy. Polar (LP) contacts are favored by a free energy E, (Ep & 0). In order to

have the simplest possible model of binding, we assume the interaction energy is zero

between ligands. The total contact energy, E., for any protein-ligand configuration

(“ligation state”), s, is therefore

E. = he + m, be + mp E, (4)

where mi, and mp are the total numbers of LH and LP contacts, respectively. The

ligation state shown in Figure 1C represents 5 HH contacts, 3 LH contacts, and 3

LP contacts, so the total energy is 56 + 3be + 3E,.

The fractional population, P., of any protein-ligand ligation state is given by the

grand canonical distribution function:

e-E./kTeu N./kT
P. = (5)T

XD e-E./kTen N./kT
s=1

where T is absolute temperature, p is the ligand chemical potential (related to ligand

concentration by L = e”/"), E, is the total energy of the ligation state (structural

energy plus binding energy), N, is the number of ligands bound to the protein, k

is Boltzmann's constant, and T is the total number of ligation states available to

the protein-ligand complex. By exact enumeration of all possible ligation states

(also referred to as “binding modes”), Equation 5 can be used to calculate average

properties of protein-ligand complexes, as well as absolute free energies of binding.

This is described in the appendix.
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Figure 2: Lock-and-key binding. For the wild-type ligand (b = 0.8, Er – 0),
the average number of bound ligands, (N) (diamonds), vs. ligand concentration,
L = e”/", closely follows the theoretical curve (dashed line) expected for Michaelis
Menten (lock-and-key) binding to the single site shown. In this example e = –10.

For varying binding strengths, ligand concentrations, and temperatures, the

model shows a range of behaviors that mimic real protein-ligand interactions, in

cluding lock-and-key and induced-fit mechanisms of specific binding, ligand-induced

denaturation, ANS and heme-like binding, and cooperative binding between several

ligands. Details are given in Miller & Dill (1997).

Examples of non-dominant binding modes

Figure 2 shows the interaction between an HP sequence, which we call se

quence A, and a wild-type ligand, Lu,. In this example the wild-type ligand is

hydrophobic: LH interactions are favorable (b = 0.8), while LP interactions have

zero energy (Ep = 0). The protein-ligand complex shown in the figure is at the

global minimum in free energy relative to all possible conformations of the protein

and all possible binding configurations. We call this two-state lock-and-key binding

because: (1) it involves a specific geometric site on the unperturbed native structure

s

A

lº),
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of the protein, (2) the binding isotherm closely follows the theoretical curve describ

ing pure Michaelis-Menten binding to a single site, and (3) the population of all

other binding modes is negligible throughout the binding isotherm (see Figure 3B).
Figure 3 shows how changing the chemistry of the ligand can change its binding

energetics via the population of non-dominant binding modes. Figure 3A shows the

dominant (native) binding mode, Po, and two of the many non-dominant modes, P.

and P., for HP sequence A complexed with ligand. For the wild-type ligand, the

fractional populations of these non-dominant modes are negligible (Figure 3B); each

contributes only 4.45 × 10^* of the total population at saturating ligand concentra

tions. But Figure 3C shows that for a mutant ligand that differs only slightly from

the wild type, the non-dominant modes can become very important. In this exam

ple the mutant ligand is defined as having a slightly weaker hydrophobic interaction

(b = 0.79 compared to b = 0.8 for the wild type) but a strong polar interaction

(E, = −4.5 compared to E = 0 for the wild type). For the mutant ligand, the

non-dominant modes comprise roughly 40% of the total population, while the na

tive contributes 56%. In fact, summed over all possible binding configurations, the

mutant ligand binds the protein more tightly than the wild-type ligand does, with a

free energy difference AAG = –0.37kT (see appendix). Thus even though the mu

tant ligand binds the native conformation Po less favorably (since b has decreased),

it binds more tightly overall, via interactions with the non-native conformations Pl

and P.

Single-mode FEP can yield errors in predicted binding constants

If an FEP calculation begins in the dominant wild-type configuration Po Lw, it

may sample configurations P, and P, too sparsely to correctly predict the relative

binding constants of the two ligands. To test this assertion, we mimic MD FEP
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Figure 3: The mutant ligand binds in non-dominant modes. A: The dominant
binding mode, Po, of sequence A with ligand, and two of the many possible “non
dominant” modes (P, and P2). B: Fractional populations of Po, Pi, and P. for the
wild-type ligand (b = 0.8, E, = 0). C. Populations for the mutant ligand (b = 0.79,
E = −4.5). The non-dominant modes P, and P. are negligibly populated for the
wild-type ligand, but have high populations for the mutant ligand, due to its polar
interactions.
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Figure 4: Relative free energy calculation by traditional FEP. Free energy
difference AAGho of binding to HP sequence A (wild-type versus the mutant lig
and), versus number of Monte Carlo time steps. The curve shows an average of 10
simulations, each calculated using the HP model of free energy perturbation (FEP)
according to Equation 3. The actual free energy difference is -0.37kT. Despite the
obvious convergence of the simulation, sampling within only the native mode leads
to an incorrect rank ordering of the binding free energies.

simulations using Monte Carlo, as described in the appendix. Simulations are begun

with the HP protein and wild-type ligand bound in the native configuration (Po),

and small, random movements of the chain are either accepted or rejected based on

the resulting changes in energy. For each structure along the simulation trajectory,

we mutate the ligand, calculate the resulting change in energy, and compute a free

energy using Equation 3.

Figure 4 shows the time course (in Monte Carlo steps) for an HP model FEP

calculation. We chose the number of steps to be large enough that the simulation

would converge, but small enough that it would mimic the incomplete sampling of

conformational space by MD methods. For the wild-type/mutant ligand pair Lu,

and Lin, the converged free energy difference is AAG = 0.203kT, an excellent
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approximation to 0.2kT, the value that would be expected if only the dominant

mode Po were important (since from Equation 4, AE, = m, Abe, with m, = 2,

Ab = -0.01, and e = −10). In fact, the non-native structures P, and P, are never

sampled in the simulation, and only very small perturbations around the native

configuration are explored. As a result, the predicted free energy difference is wrong,

as is the rank ordering of the binding constants: the wild-type ligand is incorrectly

predicted to bind more tightly than the mutant.

Hence this example illustrates a failure of the single-mode assumption, and shows

that traditional FEP simulations may give significant errors by insufficiently sam

pling non-dominant modes that are crucial for an accurate representation of the

mutant complex. Moreover, this example shows that the convergence of an FEP

simulation — ordinarily taken as a sign that equilibrium has been reached — does

not guarantee that the single-mode assumption is valid. In this example the simu

lation clearly converges, but to an incorrect value of the free energy.

THE MULTI-MODE THEORY FOR LIGAND BINDING

Since the HP lattice model can unambiguously identify failures of the single

mode binding assumption, it is also a testing ground for proposed fixes. Clearly,

the problem with the single-mode assumption is its neglect of binding modes other

than the dominant one. We propose a way to compute more accurate differences

in binding free energies, in two steps. First, a rapid simulation is performed to

identify potentially important binding modes, for example by taking several possible

conformations from a DOCK algorithm search (Kuntz et al., 1982). Second, binding

free energies are computed using these few sampled binding modes, in conjunction
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with the multi-mode FEP theory described below. If the sampling is very poor or

incomplete, this will lead, at worst, to the usual single-mode model of binding, but

if any important modes are sampled, then the binding free energies should be more

accurate than those resulting from traditional FEP methods.

One such fast search strategy (step 1) has been described by Wilson et al. (1991)

for ligands of alpha-lytic protease. To identify non-dominant binding modes, Wilson

et al. systematically rotated each side chain in the binding site through its lowest

energy rotomers, and calculated a binding free energy for each conformation using

an empirical free energy function. In this case the terms were combined to give an

overall binding energy, but they could also be evaluated separately to identify which

binding modes make the largest contributions.

Here we derive the multi-mode binding theory (step 2). For a protein-ligand

interaction involving several independent binding modes, 0, 1, ..., where 0 is the

dominant binding mode and 1 is the first non-dominant mode, etc., the free energy

of binding is given by

AG, - – Tlog (e-º/* +e-º/* +...) (6)

where AGlo, AGF1, ..., represent free energies of binding in the individual modes

(see appendix).

The difference in binding energies, AAG, for two different ligands is then

1 + e-AA1Gb (m)/kT + ...
AAG, F AAGlo

-

kT log TT.EXAG.I.W.T.I.+e-AA1Gb (w)/kT + . . . (7)

where AAGho is the difference in the free energy of binding in the dominant mode,

0, and

AA1G,(w) - AG,1(w)
-

AGo(w) (8)

*
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AA1Gb (m) F AG,1(m)
-

AGºo■ m) (9)

are the free energy differences for the wild-type and mutant ligands, respectively, for

binding in mode 1 versus mode 0. The first term in Equation 7 can be calculated

by FEP using the traditional binding cycle in Equation 1. Likewise, the two terms

in Equations 8–9 can be calculated by FEP using the following cycle (shown for

wild-type only):

AGho(w)
Po + Lw —3. Po Lu,

AGP l | AGPL (10)
AG;1(w)

P + Lu, —). Pi Lu,

where there are now two binding modes represented in Equation 10 by the two pro

tein structures, Pb and P. (The different modes could also be different orientations

of the ligand within a fired binding site). Since Po represents the dominant, lowest

energy mode, the total free energy of binding, AGºl, in the non-dominant mode Pi

is the free energy for the transition from Po to P, in the absence of ligand, plus the

free energy of binding to P, after the transition has occurred. In Equation 10 these

free energies are AGP and AG;1, respectively. Thus the free energy difference in

binding the wild-type ligand to P. versus Pois, according to Equation 10

AA1Gb (w) = AGPL (11)

The free energy AGPL can be calculated using FEP, where the mutation now

involves not a chemical change, but rather a change in protein structure – such as

the rotation of a side chain – from one binding mode structure to another, while the

ligand remains bound in the site. Hence one additional MD simulation is required
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Number of non- AAGb (est)|AAGb (true) | error
dominant modes (kT) (kT) (%)

0 0.203 –0.367 155.3

1 –0.110 –0.367 70.0

2 –0.348 –0.367 5.1

Table 1: Correction using multi-mode FEP theory. Results of HP model
FEP calculations when: only the dominant mode (Po), the dominant and one non
dominant mode (P), and the dominant and both non-dominant modes (P, and P.),
are used in the calculation. Contributions from non-dominant modes are calculated
using Equation 10. Including one non-dominant mode recovers the correct rank
ordering of the wild-type and mutant binding constants; including both gives the
correct prediction of the relative binding energies to within 5% error.

for each non-dominant binding mode. Below we illustrate this method using the HP

model example.

Illustration of the multi-mode FEP approach in the HP model.

We now repeat the HP model FEP calculation already described, but we include

contributions from non-dominant modes. Now at least two simulations are required,

each starting with the native configuration, but each now involving a different type of

mutation. In the first simulation, used to calculate the dominant-mode contribution

AAGho, the mutation is from the wild-type ligand to the mutant ligand, as shown

in Equation 1 and Figure 4. To compute the AAG term for each non-dominant

mode (Equations 8–11), a separate simulation is run in which the mutation is from

the native protein structure to the structure that represents non-dominant mode i.

The total free energy difference is then obtained using Equation 7.

Table 1 shows the results of including the non-dominant modes P, and P2 (from

Figure 3) in the FEP calculation. Table 1 shows that when both modes are included,

the predicted free energy difference improves dramatically, to within roughly 5% of
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the correct value, and that the proper rank ordering of the two binding constants is
recovered. Though not shown in the table, the inclusion of additional non-dominant

modes makes a negligible difference in the free energy calculations, as expected,

since only the three modes shown in Figure 3 make a detectable contribution to the

Boltzmann ensembles of the wild-type and mutant ligand complexes.

DISCUSSION

In modeling protein-ligand interactions by computer, it is common to assume that

ligands bind in only a single most important mode. We call this the single-mode

binding assumption, and it is the basis for rational drug-design efforts and free energy

perturbation (FEP) calculations of relative free energies of binding. According to

the single-mode assumption, if a wild-type ligand binds in a single dominant mode

(as evidenced by x-ray crystallography or NMR), then a mutant ligand of similar

structure will also bind in a single mode, and the mutant and wild-type modes should

be identical.

The single-mode assumption neglects other “non-dominant” binding modes that

may contribute substantially to the binding energetics of the mutant ligand, even

if the dominant binding mode of the two ligands is the same. Examples of non

dominant modes may include different positions or conformations of the ligand

within the same rigid binding site, or different configurations or locations of the

site itself. Traditional FEP methods may be unable to predict accurate free ener

gies in cases where non-dominant modes are important. Although MD simulations

do sample a range of configurations, it is a very narrow range, typically involving

deviations from the native complex of only fractions of an angstrom. Even small
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perturbations, such as the rotations of protein side chains within the binding site,
may not be well sampled during the course of an FEP calculation. And the artificial

constraints that are often imposed in computer simulations even further reduce the

sampling of non-dominant binding modes.

We describe a lattice model test that indicates how non-dominant binding modes

can contribute significantly to the binding energetics. Even when a mutant ligand

has the same dominant binding mode as a wild-type ligand, the proper signs and

magnitudes of the relative binding energies may require accounting for multiple non

dominant modes that would not be sampled using traditional FEP methods. This

is not an issue of convergence or sampling hysteresis. A perfectly converged sim

ulation can converge to the wrong free energy if all of the relevant binding modes

are not properly sampled. To correct these errors, we present a method to search

for putative non-dominant modes, and to account for them in a multi-mode FEP

approach. We show that including these modes may lead to improved estimates of

binding free energies by computer simulation.
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APPENDIX

Derivation of Binding Free Energies

Schellman (1975) has derived the free energy of ligand binding to a protein having

independent, non-interacting sites labelled 0, 1, ... :
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where the individual equilibrium binding constants, K, capture both the energetics

of the protein-ligand interaction and any change in protein conformation caused by

ligand binding. When the ligand is at saturating concentrations (this is normally

the case in experiments, and is implicit in MD simulations), Equation 12 becomes

AG = -k'T log (Ko L + K1 L + . . .) (13)

or, at L = 1 M standard state,

AG, = —kT log (Ko + K1 + . . ..) (14)

Equation 14 can also be written

AG = —k'Tlog (-ºrwººt + e-(kT los K■ )/kT +.. .) (15)

or, in terms of free energies,

AG, --'Tiog (e-ºw" re-º/* +...) (16)

where AGuo and AGL1 represent the free energies of binding in the individual modes.

Although Equation 15 is rigorous, the log K terms can be written as free energies

only if the set of microscopic states that defines each binding mode is independent of

every other mode on the experimental time scale, i.e., if the rate of transition between

modes is slow. In this case the individual binding modes are distinct “binding sites,”

insofar as they are independent and non-interacting.

However, whether or not the AG, terms in Equation 16 represent true free ener

gies or are fictitious is irrelevant here. The method we propose requires only that the

5

".
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-kT log K terms of Equation 15 be fully independent, that is, that the dominant

mode MD simulation does not sample non-dominant modes, however the latter are

defined. In other words, if binding modes are defined as distinct rotomer confor

mations for side chains within the binding site, then such rotations must not occur

during the simulation unless it is by deliberate structural mutation, as required by

our multi-mode method (Equations 10–11). Structural changes of this magnitude

are not normally observed in MD simulations, so this definition of binding modes

may serve for practical purposes.

The difference in binding free energy, AAG, for a wild-type and mutant ligand is

found by taking the difference of the individual free energies, AG,(w) and AG,(m).

Assuming the same modes 0, 1, ... are considered for each ligand (e.g., 0 is the

dominant mode and 1 is a non-dominant mode), the free energy difference is

(17)
—AGbo (m)/kT –AGb1 (m)/kT L . . .

AAG = —k'T log (; + e + )e-AGuo (w)/kT + e-AGS1 (w)/kT + ...

Factoring out the native-state mode (0), Equation 17 becomes

(18)
1 + e4A1Gb (m)/kT + . . .

AAG = AAGo-Tºs■ + e + )TI.A.A.G.I.V.T.I.

where AAGho is the relative free energy of binding of the two ligands to the dom

inant mode, and where the two AA1Gb terms, defined in Equations 8–9, represent

for each ligand the difference in binding free energy between the dominant mode and

the non-dominant mode 1. An analogous term is added for each new non-dominant

mode. Each of these terms can be calculated from a single MD simulation, as shown

in Equations 8–11.
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Free energies in the HP model

In the HP model, free energies of binding are calculated from the analog of

Equation 12. For saturating ligand concentration the standard state free energy is

AG, - -kTiog (e-ºw" re-º/* +...) (19)

where E, is the interaction free energy for a single binding mode (see Equation 4):

E = Ahe + m, be + mp E, (20)

Here Ah, the change in the number of HH contacts, accounts for the free energy of

any structural change from the native state caused by ligand binding.

FEP in the HP model

We use Monte Carlo simulations for our FEP calculations. Allowed moves for

as described elsewherethe HP chain are the standard “end flips” and “corner flips,”

(Miller et al., 1992; Camacho & Thirumalai, 1993). For simplicity, ligand movements

are not included in the move set. Rather, for each protein conformation, the ligand

is forced to bind in the most energetically favorable site. This is assumed when

evaluating the change in energy.

All moves resulting in a lower-energy complex are accepted automatically. Those

resulting in higher energy are accepted conditionally according to the Boltzmann

distribution. The number of steps is kept small (between 1 × 10° and 1 × 10°) so

that only a fraction of the full configurational space is explored, as is true in MD

simulations.

In all calculations, we make the approximation that no more than one ligand

can bind at any time. This is done to make our simulations resemble typical MD

trajectories, which involve single ligand interactions. For the particular HP sequence
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and conditions used in this paper, this approximation introduces only small errors

(less than 5%).

Other approaches for correcting the single-mode assumption

Our multi-mode theory requires several MD simulations to calculate the binding

free energy. It would be advantageous to use a single simulation able to sample

many non-dominant modes. Monte Carlo may be one such approach, since it can

sample conformations farther away from the native structure (Horiuchi & Go, 1991;

Hao & Scheraga, 1994; Kidera, 1995). MD may be another approach, provided that

activation barriers between modes could be reduced, for example by increased tem

perature. These and other approaches may merit further study.
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