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ABSTRACT OF THE DISSERTATION

Using Multi-Camera and Radar Trajectory Data to Learn and Predict Performance in
Baseball

By

Shiyuan Zhao

Doctor of Philosophy in Electrical Engineering

University of California, Irvine, 2021

Professor Glenn Healey, Chair

Sensor systems that acquire large sets of data have been deployed to document sporting

events at unprecedented levels of detail. Machine learning techniques have been applied to

these sensor measurements to discover new skills, quantify known skills with greater accuracy,

and understand biomechanical principles to improve performance and prevent injury. The

use of learning methods to support the generation of predictive models has revolutionized

decision making as teams search for an advantage in a highly competitive industry. Machine

learning methods are particularly well suited for baseball due to the discrete structure of the

sport.

We develop and apply learning methods to large sets of sensor data to address several of

the most important and challenging problems in baseball analytics. We introduce a method

for learning a function over distributions that generalizes nonparametric kernel regression by

using the Wasserstein metric for distribution space. The technique is applied to the problem

of learning the dependence of pitcher performance on multidimensional pitch distributions

that are derived from sensor measurements which capture physical properties of each pitch.

We also develop a method for estimation and prediction called measurement space partition-

ing. The method is applied to the problem of estimating batted-ball talent by using large

xi



sets of trajectory measurements acquired by in-game sensors to show that the predictive

value of a batted ball depends on its physical properties. This knowledge is exploited to

estimate batted-ball distributions defined over a multidimensional measurement space by

using regression parameters that adapt to batted ball properties. This process is central to a

new method for quantifying batted-ball skill. We present examples illustrating facets of the

approach and use a set of experiments to show that the new methods generate predictions

that are significantly more accurate than those generated using current methods.
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Chapter 1

Introduction

An important use of machine learning techniques is the recovery of a model from observed

data. The development of learning methods for the recovery of three-dimensional shape from

image data, for example, has been a topic of recent interest in computer vision [7] [44]. The

proliferation of sensor systems at sporting events has provided large data sets that support

the generation of predictive models using machine learning algorithms. These models are

playing an increasingly prominent role in the operational activities of professional sports

teams. In an industry where the difference between success and failure is often small, models

derived from sensor data can be used to gain an edge over the competition. In this work, we

extend and apply learning techniques to multiple problems in baseball analytics.

In Chapter 2 we review the Wasserstein metric or Earth Mover’s Distance (EMD) which can

be used to compare distributions and has been applied to many problems in signal processing

and machine learning [35]. We show how this metric can be configured to compare pitch and

batted ball distributions derived from sensor measurements. The EMD is used in Chapter 3

to develop a method for measuring player similarity and we show how this method can

be used for forecasting. In Chapter 4 we present a method for learning a function over

1



distributions. This method is based on generalizing nonparametric kernel regression by

using the EMD as a metric for distribution space. The technique is applied to the problem

of learning the dependence of pitcher performance in baseball on multidimensional pitch

distributions that are controlled by the pitcher. The distributions are derived from sensor

measurements that capture the physical properties of each pitch. Finding this dependence

allows the recovery of optimal pitch frequencies for individual pitchers. This application

is amenable to the use of signatures to represent the distributions and a whitening step is

employed to account for the correlations and variances of the pitch variables. Cross validation

is used to optimize the kernel smoothing parameter. A set of experiments demonstrates that

the new method accurately predicts changes in pitcher performance in response to changes

in pitch distribution and also outperforms an existing technique for this application.

An important and challenging problem in the evaluation of baseball players is the quan-

tification of batted-ball talent. This problem has traditionally been addressed using linear

regression on the value of a statistic derived from a set of observations. In Chapter 5 we use

large sets of trajectory measurements acquired by in-game sensors to show that the predic-

tive value of a batted ball depends on its physical properties. This knowledge is exploited to

estimate batted-ball distributions defined over a multidimensional measurement space from

observed distributions by using regression parameters that adapt to batted ball properties.

This process is central to a new method for estimating batted-ball talent. The domain of the

batted-ball distributions is defined by a partition of measurement space that is selected to

optimize the accuracy of the estimates. We present examples illustrating facets of the new

approach and use a set of experiments to show that the new method generates estimates

that are significantly more accurate than those generated using current methods. The new

methodology supports the use of fine-grained contextual adjustments and we show that this

process further improves the accuracy of the technique.

2



Chapter 2

The Earth Mover’s Distance

2.1 Overview

The EMD is a standard method for computing the distance between distributions. The

method utilizes a ground distance between individual points to determine the minimum

amount of work that is required to transform one full distribution into the other. Small

values of the EMD correspond to similar distributions while larger values correspond to less

similar distributions.

For many applications [50], a distribution can be accurately represented as a signature S

defined by a set of m clusters

S = {(µ1, w1), . . . , (µm, wm)} (2.1)

where µi is the mean vector for cluster i and wi is the fraction of the distribution represented

by cluster i. Thus, the signature S approximates a distribution by a set of m point masses

at the locations µi with the weights wi where m depends on the distribution.

3



An established algorithm [50] for finding the EMD using signatures is based on the solution

of the transportation problem [28] for finding the minimum cost to move product from a set

of producers to a set of consumers with each having a known demand. For the transportation

problem, the ground distance is the cost to move one unit of product from a given producer to

a given consumer. The computation of the EMD can be formulated as a linear programming

problem for which efficient solutions [27] and software [61] exist.

2.2 Sensor Data

A baseball game is defined by a set of one-on-one matchups between a pitcher and a batter.

The pitcher throws a ball which the batter attempts to hit with a bat. Each throw is called

a pitch and each matchup consists of one or more pitches. The pitcher’s goal is to make it

difficult for the batter to make solid contact with a pitch.

The PITCHf/x optical video and TrackMan(TM) phased-array Doppler radar sensors [22]

capture data that is exploited to recover information about pitches and batted balls [14] [32].

Let s represent the initial speed of a pitch in three dimensions and let the pair (x, z) specify

the pitch’s movement as reported by Brooks Baseball (www.brooksbaseball.net). Let sl

represent the initial speed and v represent the launch angle of a batted ball hit by a batter

as reported by Baseball Savant (baseballsavant.mlb.com). The parameter x is an estimate

of the pitch horizontal movement between the release point and home plate relative to a

theoretical pitch thrown at the same speed with no spin-induced movement and z is the

corresponding estimate of vertical movement [46]. The coordinate system is arranged so

that positive x is to the right from the catcher’s perspective and positive z is up. The speed

s is typically reported in miles per hour while x and z are reported in inches. The pitcher

starts the process of throwing each pitch from a location that is 60.5 feet from home plate.

By convention, Brooks Baseball reports s for y = 55 feet and (x, z) from y = 40 feet to

4



home plate. The batted ball exit speed sl is reported in miles per hour. Launch angle v

represents the vertical angle at which the ball leaves a batter’s bat in degrees relative to the

ground plane. A ground ball has a v less than 10 degrees and a pop-up has a v greater than

50 degrees.

Major League Baseball Advanced Media (MLBAM) uses the GameDay application to dis-

tribute pitch information in real-time and also provides a classification label such as “four-

seam fastball” or “slider” for each pitch. Brooks Baseball makes small adjustments to the

calculations and uses manually-reviewed pitch classification results provided by Pitch Info

(www.pitchinfo.com) to improve on the accuracy of the MLBAM reported data.

2.3 Signature Model

For the purpose of comparing players, the EMD has the advantage of allowing the comparison

of all pitches thrown by a pair of pitchers regardless of pitch type, or all batted balls hit

by a pair of batters regardless of the observed outcome. The EMD is also not sensitive to

the vagaries of classification algorithms since clusters with similar properties will be seen as

similar even if they have been assigned different labels.

Pitchers tend to throw a small number of distinct pitch types which allows the pitch distribu-

tion for a pitcher for a given year and one of the four possible platoon configurations (RHP

vs. RHB, RHP vs. LHB, LHP vs. RHB, LHP vs. LHB) to be accurately modeled using the

signature representation of Equation (2.1) where each pitch type corresponds to a cluster.

The number of clusters m corresponds to the number of distinct pitch types as identified by

the Pitch Info classifier where m can depend on both the specific pitcher and the platoon

configuration. For each pitch type i, µi is the pitch parameter mean vector (si, xi, zi) and

wi is the fraction of pitches of that type for the pitcher and platoon configuration.

5



Batters are represented by distributions in the batted-ball parameter space. Separate distri-

butions are used to capture information about batted ball initial speed sl and vertical launch

angle v against left-handed and right-handed pitchers.

2.4 Ground Distance

The computation of the EMD requires the specification of a ground distance between the

µi mean vectors that define the point masses for each distribution. The use of a Euclidean

distance between mean vectors is problematic because the component variables in the vectors

can have different variances and these variables may also have significant correlations. We

will illustrate the problems in Section 2.4.1 and Section 2.4.2.

We define the ground distance G(i, j) between µi and µj as the Mahalanobis distance [11]

G(i, j) =
[
(µi − µj)Σ−1(µi − µj)T

] 1
2 (2.2)

where the covariance matrix Σ for the population of mean vectors µi serves to correct for

differences in the variances of the vector components and also for their correlation structure.

This distance is equivalent to a Euclidean distance after a whitening transform [11] has been

applied to transform the original variables to a new set of variables which are uncorrelated

and have unit variance.

6



2.4.1 Ground Distance for Pitch Distributions

The signatures are used to compute the distance between distributions using the EMD as

described in Section 2.1 with the whitened ground distance defined by Equation (2.2). As

a two-dimensional example of this process, Figure 2.1 is a scatterplot of the mean (si, zi)

values for each pitch cluster in a signature for the right-handed pitcher versus right-handed

batter platoon configuration in 2016. We see that si and zi have a large positive correlation

so that a pitch thrown with a higher speed will tend to have a larger vertical movement.

The variance of the si values is also larger than the variance of the zi values. These effects

are addressed by using the Mahalanobis ground distance defined by Equation (2.2).

−15
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10

15

65 70 75 80 85 90 95 100
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z

Figure 2.1: Cluster means (si, zi) for RHP versus RHB configuration, 2016

The impact of the correlation between the two variables can be seen by considering the

orange, green, and red points in Figure 2.1 which correspond to the (si, zi) values for three

specific pitch clusters in the figure as detailed in Table 2.1. The Euclidean distance of 6.10

between the green point (Latos cutter) and the red point (Chacin four-seam) is significantly

7



larger than the Euclidean distance of 3.49 between the green point (Latos cutter) and the

orange point (Kennedy changeup). Since the vector difference between the green point and

the red point is aligned with the direction of correlation of the variables, however, a significant

portion of the separation between these points is due to the correlation between s and z.

On the other hand, the vector difference between the green point and the orange point is

approximately orthogonal to the direction of correlation. If we compute the Mahalanobis

distance using the s and z variables shown in Table 2.1, the distance of 0.81 between the

green point and the red point is now significantly less than the distance of 1.32 between the

green point and the orange point.

Table 2.1: Three (si, zi) pitch cluster means in Figure 2.1

Point color Pitcher Pitch type (si, zi)
Orange Ian Kennedy Changeup (84.51, 6.01)
Green Mat Latos Cutter (87.22, 3.81)
Red Jhoulys Chacin Four-seam (91.71, 7.94)

2.4.2 Ground Distance for Batted Ball Distributions

As we mentioned in Section 2.4, the use of a standard Euclidean distance between vectors is

problematic because the speed variable sl corresponds to a different physical quantity that

has a smaller variance than the launch angle variable v
l

and also because the variables are

correlated. Figure 2.2, for example, is a scatterplot of the (sl, v) values for for the right-

handed batter versus right-handed pitcher configuration in 2017. We see from the figure

that sl and v have different variances and a positive correlation. The covariance matrix Σ

for the population of (sl, v) vectors for a platoon configuration captures information about

both the variance of the variables and their correlation. Using this information, the ground

distance defined by Equation (2.2) can compensate for the correlation structure and the

variance of the sl and v variables.

8



Figure 2.2: (sl, v) for RHP versus RHB configuration, 2017
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Chapter 3

Measuring Player Similarity

3.1 Measuring Pitcher Similarity

3.1.1 Overview

Sensors have recorded information about the speed and movement of pitches thrown in

major league ballparks since 2006. This data can be used to develop pitcher similarity

measures that are based on pitch physical properties. These measures are valuable not only

for comparing major league pitchers but also for allowing the direct comparison of pitchers

in other leagues (minor, amateur, and foreign) that deploy these sensors to their major

league counterparts. The identification of groups of similar pitchers can be used by analysts

to generate optimized projection models [55] or to generate larger samples for predicting

the outcome of batter/pitcher matchups [18] [60]. A similarity measure can also be used

to help quantify the relationship between pitch distributions and pitcher performance. In

addition, such a measure allows individual pitchers to be monitored over time to detect

possible changes in pitch characteristics, health, or throwing mechanics.
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Previous methods for quantifying pitcher similarity have been limited to the comparison of

pitches of the same type which makes these methods highly dependent on the outcome of

pitch classification algorithms. Kalk [30] [31] developed a similarity measure that compared

pitches of the same type using variables that included pitch frequency, speed, and movement.

Loftus [39] [40] [41] improved on Kalk’s approach by separating pitchers by handedness

while using the Kolmogorov-Smirnov distance to compare distributions. Like Kalk’s method,

however, this approach only considers comparisons between pitches of the same type. A

difficulty for these methods is that different pitch types for a single pitcher or across multiple

pitchers can have similar properties. This causes the pitch frequency statistics used by

similarity algorithms to depend heavily on the classification process and also prevents the

comparison of similar pitches that are assigned different labels. Due to these complications,

Loftus conceded [41] that his method is best suited for comparing individual pitches as

opposed to comparing pitchers based on their entire arsenal. Gennaro [18] has proposed a

more qualitative approach to measuring pitcher similarity by applying a cosine measure to

a hand-selected vector of features and weightings. The features used by this method include

a pitcher’s two most common pitch types and his most common two-pitch sequence.

In this section we develop a pitcher similarity measure that is based on the comparison of

multidimensional distributions that represent the collection of pitches thrown by a pitcher.

The similarity measure separately considers the full pitch distributions used against right-

handed and left-handed batters where each distribution captures information about pitch

speed and movement. The distributions are modeled using signatures which enables the

EMD [50] to efficiently measure the amount of work that is required to transform one dis-

tribution into another. A whitening transform [11] is used by the EMD to account for the

variances and correlation structure of the pitch speed and movement variables when com-

paring individual elements of the distributions. The algorithm is structured to allow the

incorporation of additional pitch descriptors as they become available. Since this approach

compares full distributions instead of individual pitch types, the resulting similarity measure
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is relatively insensitive to the results of pitch classification. We demonstrate the similarity

measure for several applications including the identification of similar and dissimilar pitchers,

the identification of unique pitchers, the quantification of year-to-year pitcher stability, and

the quantification of pitcher variation with batter handedness and the count. We also use

non-metric multidimensional scaling (NMDS) [36] to visualize properties of the new measure.

3.1.2 Representing Pitch Distributions

Our pitcher similarity measure will consider the estimated s, x, and z parameters for each

pitch, and we will represent pitchers by their distribution of (s, x, z) pitch vectors. We note

that other factors such as pitch location [20], sequencing [25], and deception [42] also play

a role in determining pitcher performance. Figure 3.1, for example, plots the distribution of

pitches thrown by left-hander Jon Lester in 2016 and Figure 3.2 plots the distribution for

left-hander Chris Sale. In each figure, different pitch types are labeled with different colors.

Given that pitchers typically throw a small number of different pitches as we mentioned

in Section 2.1, their pitch distributions can be efficiently encoded as signatures defined by

clusters of different pitch types. Suppose, for example, that a pitcher threw m different pitch

types against RHB during 2016. Then his signature against RHB is given by the set of m

clusters

P
R

= {(µ1, w1), . . . , (µm, wm)} (3.1)

where µi is his mean vector (si, xi, zi) for (s, x, z) for pitch type i against RHB and wi is his

fraction of pitches of type i against RHB. Thus, the signature P
R

approximates a pitcher’s

distribution of pitches against right-handed batters by a distribution defined by a set of point
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Figure 3.1: Jon Lester pitches in 2016
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Figure 3.2: Chris Sale pitches in 2016
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masses at the locations µi with the weights wi. In a similar way, we can define his signature

P
L

against LHB. Note that the number of clusters m depends on both the specific pitcher

and the batter handedness.

3.1.3 Pitcher Similarity Measure

We can assess the similarity of distributions that are represented by signatures using the

Earth Mover’s Distance [50]. Given the ground distance defined by Equation (2.2) and the

signatures P
R

for two right-handed pitchers A and B, we can compute the EMD D
R

(A,B)

to measure the similarity of the pitchers against right-handed batters. We can also use the

P
L

signatures to compute the EMD D
L
(A,B) to measure their similarity against left-handed

batters. The distances D
R

(A,B) and D
L
(A,B) can be combined into an overall measure of

similarity using

D(A,B) = f
RR
D

R
(A,B) + f

RL
D

L
(A,B) (3.2)

where f
RR

and f
RL

represent the league average fraction of pitches that right-handed pitchers

throw to right-handed and left-handed batters respectively. We use the league average

fractions so that D(A,B) does not depend on the actual fraction of pitches that a particular

pitcher threw to a given handedness of batter. In the same way, we can define the overall

similarity score for a pair of left-handed pitchers Y and Z by

D(Y, Z) = f
LR
DR(Y, Z) + f

LL
DL(Y, Z) (3.3)
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where f
LR

and f
LL

are the league average fractions of pitches thrown by left-handed pitchers

to right-handed and left-handed batters respectively. A small distance D between a pair of

pitchers indicates a high degree of similarity while larger distances indicate that a pair of

pitchers is less similar.

3.1.4 Data Analysis

All data analysis in Section 3.1 uses the Brooks Baseball adjustments to the PITCHf/x

measurements and the Pitch Info classifications. Our 2016 data analysis considers the 196

right-handed pitchers and the 63 left-handed pitchers who threw at least 1000 pitches during

the regular season.

Similar Pitchers

For each of these pitchers, Tables A.1 and A.2 in Appendix A present the most similar pitcher

and the corresponding distance using the metric defined in Section 3.1.3. The most similar

pair of right-handed pitchers in 2016 was Matt Harvey and Shelby Miller. Harvey and Miller

each threw four-seam fastballs with similar (s, x, z) parameters at similar frequencies. In par-

ticular, each pitcher threw between 59 and 60 percent four-seamers to right-handed batters

and between 56 and 57 percent four-seamers to left-handed batters with Harvey averaging

95.39 mph and Miller averaging 94.15 mph on these pitches. We also note that Harvey’s

slider (s, x, z) = (89.51, 0.90, 4.28) was similar to Miller’s cutter (s, x, z) = (89.41, 1.17, 3.89)

and each pitcher used this respective pitch between 25 and 26 percent of the time against

right-handed batters. Similarity metrics that do not compare pitches of different type would

be unaware of the similarity of these pitches.

The most similar pair of left-handed pitchers in 2016 was Jon Niese and Chris Rusin. The
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most frequent pitches for each left-hander against right-handed batters were their sinker and

cutter which they threw at similar frequencies and with similar properties. For their sinkers

against RHB, we had (s, x, z, w) vectors of (89.52, 9.63, 4.30, .272) for Niese and of (90.32,

9.74, 4.88, .244) for Rusin. For their cutters against RHB, we had vectors of (86.74, -0.30,

3.86, .272) for Niese and of (87.49, 1.62, 3.78, .299) for Rusin. Each pitcher’s most frequent

pitch to left-handed batters was their sinker which Niese threw 40.7 percent of the time and

Rusin threw 38.8 percent of the time.

Dissimilar Pitchers

The most dissimilar pair of right-handed pitchers was Brad Ziegler and Marco Estrada with

a distance of 5.688. The difference was largely due to an extreme difference in the vertical

movement on their pitches. Ziegler threw 57.7 percent sinkers in 2016 with an average z of

-6.72 while Estrada threw 50.1 percent 4-seam fastballs with an average z of 13.01. In 2016,

Ziegler had the smallest average vertical movement z = −5.33 over all of his pitches while

Estrada had the highest z = 9.64.

The most dissimilar pair of left-handed pitchers was Zach Britton and Tommy Milone with

a distance of 4.238. Britton threw more than 90 percent sinkers in 2016 with an average s

of over 97 mph and an average z of 3.70. Milone averaged only 88.19 mph on his hardest

and most frequent pitch, a four-seam fastball, which he threw 45.5 percent of the time with

an average vertical movement of 11.45.

Unique Pitchers

The similarity measure can also be used to find the most unique major league pitchers.

Table 3.1 lists the right-handed pitchers with the greatest distance to their most similar

match in 2016 and Table 3.2 lists the left-handed pitchers with the greatest distance to
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their most similar match in 2016. Hard-throwing left-hander Aroldis Chapman fell short

of the 1000 pitch threshold in 2016, but would rank as the second most unique pitcher

behind Britton in Table 3.2 with a distance of 1.5495 to the nearest left-handed pitcher

Tony Cingrani.

Table 3.1: Most unique right-handed pitchers, 2016

Pitcher Distance to nearest pitcher
Brad Ziegler 2.8651
Jered Weaver 1.7653
Chris Young 1.4429
Steve Cishek 1.3934

Marco Estrada 1.3896
Lance McCullers 1.3648
Fernando Rodney 1.2610

Tyler Clippard 1.2232
Aaron Nola 1.1660
Bryan Shaw 1.1258

Table 3.2: Most unique left-handed pitchers, 2016

Pitcher Distance to nearest pitcher
Zach Britton 1.7251

Rich Hill 1.4946
Clayton Kershaw 1.4912

Zach Duke 1.4223
Andrew Miller 1.3264

Drew Pomeranz 1.2464
Tommy Milone 1.1309

Clayton Richard 1.0658
Julio Urias 0.9960
John Lamb 0.9782

Visualizing Similarity

The similarity structure for a group of pitchers can be visualized using non-metric multidi-

mensional scaling (NMDS) [36] [37]. This technique maps a set of objects and the distances
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Figure 3.3: NMDS Result for Unique Right-handed Pitchers, 2016

between them to a low-dimensional space for visualization while attempting to preserve the

rank ordering of the inter-object distances. We use NMDS to visualize properties of the

similarity measure for the most unique right-handed and left-handed pitchers.

Figure 3.3 is the two-dimensional NMDS result for the ten most unique right-handed pitchers

in Table 3.1 plus the two most prominent knuckleballers R.A. Dickey and Steven Wright.

The most unique right-hander, Brad Ziegler, is located in the far upper right in Figure 3.3.

Ziegler’s uniqueness is largely due to throwing a large percentage (w = 57.7%) of sinkers

in 2016 with a low velocity (s = 84.74) and heavy sink (z = −7.28). The closest pitchers

to Ziegler in the plot are Steve Cishek and Aaron Nola who each threw between 40 and

44 percent sinkers but at a higher velocity than Ziegler. The pitchers in the plot with the

highest average velocity over their pitches (Rodney, McCullers, Shaw) are located in the

lower right quadrant. In this group, Rodney appears closest to Cishek and Nola due to also

throwing a high percentage of sinkers (w = 39.1%), but the high vertical movement on his
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Figure 3.4: NMDS Result for Unique Left-handed Pitchers, 2016

pitches, particularly his four-seam fastball, pulls him to the left of these two. Bryan Shaw

has the highest average velocity among pitchers in Figure 3.3 and appears at the lowest point

in the plot. To the left of Rodney is a group of three pitchers (Estrada, Young, Clippard)

who displayed the highest average vertical movement on their pitches among the pitchers in

the figure. This high vertical movement was largely achieved by throwing between 45 and

51 percent four-seam fastballs. Above this group is Jered Weaver who also threw pitches

with a high average vertical movement but who had the lowest average pitch velocity in the

plot among the non-knuckleballers. Dickey and Wright appear together above Weaver and,

as shown in Table A.1, the two knuckleballers are the best match for each other over the 196

right-handed pitchers in the 2016 data set. We see that the most dissimilar right-handed

pitchers in the entire data set, Ziegler and Estrada, are also the most separated in Figure 3.3.

Figure 3.4 is the NMDS result for the ten most unique left-handed pitchers in Table 3.2
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plus the hard-throwing Aroldis Chapman. The most unique left-hander, Zach Britton, is

located on the far right edge of the plot. Britton achieved his uniqueness by throwing a high

percentage (w = 92.0%) of very hard (s = 97.44) sinkers. The closest left-hander to Britton

in the figure is Clayton Richard who also threw a high percentage of sinkers (w = 65.0%)

but at a lower velocity (s = 91.59). To the left of Richard and farther removed from Britton

is Zach Duke who also threw a large number of sinkers but at an even lower frequency

(w = 50.4%) and velocity (s = 90.13). The second most unique left-hander in the group,

Aroldis Chapman, who threw a high percentage (w = 81.1%) of very hard (s = 101.32)

four-seam fastballs appears at the lowest point on the plot. On the left side of the figure

are four left-handers (Milone, Lamb, Urias, Kershaw) who all favored the four-seam fastball

with frequencies varying between 45.5 percent for Milone and 55.3 percent for Urias. The

average four-seam velocity for the pitchers increases from top to bottom with values of 88.19,

90.49, 93.32, and 93.74 for Milone, Lamb, Urias, and Kershaw respectively. To the right of

these four pitchers are Drew Pomeranz and Rich Hill who complemented their four-seam

fastball with a large percentage of curves with sharp downward movement. Hill is the closest

pitcher to Andrew Miller in the plot. Since Miller’s four-seam fastball is harder than Hill’s

and Miller’s most frequent off-speed pitch is a slider which is thrown substantially harder

than’s Hill’s curve, Miller appears lower than Hill. We see that the most dissimilar left-

handed pitchers in the full data set, Britton and Milone, are also the most separated in

Figure 3.4. In Appendix B we use the pitcher similarity measure to examine several pitcher

characteristics.

3.1.5 Summary

We have developed a new tool that analysts can exploit to study a range of application ar-

eas. The similarity measure allows the direct comparison of pitchers across various contexts

including MLB, MiLB, amateur, and foreign leagues which can improve predictions for how
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a pitcher will perform in a new environment. The identification of similar pitchers increases

the sample sizes that can be used to forecast the outcome of batter/pitcher matchups and

supports regression to more appropriate population means by projection models. The mea-

sure can also be used to monitor pitchers over time and to develop improved models for

the health risk and aging characteristics associated with different pitcher classes. For fans

the new tool reveals similarities that we didn’t know existed and shows us, once again, that

there’s more than one way to find success as a major league pitcher.

3.2 Measuring Batter Similarity

Traditional methods that are used to compare and forecast the performance of batters are

based on observed outcomes. These measures are influenced by a number of variables that

are beyond the control of the batter such as the defense, the ballpark, and the weather.

Radar and optical sensors [22] have been installed in MLB stadiums that measure parame-

ters of batted balls including their initial speed and direction. Previous work [21] [49] has

used these measurements to build models for batted ball distributions and to derive map-

pings from batted ball parameters to intrinsic values which leads to more reliable batted-ball

statistics for batters and pitchers. In this work, we use distributions defined over batted-ball

parameters to develop a new approach for characterizing hitters using a similarity measure

based on physical measurements. Similarity measures have been developed for pitchers using

pitch trajectory parameters [18, 26, 30, 31, 39, 40, 41] but previous work has not consid-

ered the use of ball-tracking data to develop such metrics for batters. The new approach

enables the generation of sets of similar and dissimilar batters as well as the identification of

unique batters. The metric also allows the rendering of visualizations which illustrate batter

characteristics.

The batter similarity measure supports several important applications. The measure can be
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used not only for comparing major league batters but also for comparing batters in other

leagues (minor, amateur, and foreign) to their major league counterparts. The identifica-

tion of groups of similar batters can be used to define optimized population models [55]

for forecasting or to generate larger samples for predicting the outcome of batter/pitcher

matchups [18] [60]. The metric can also be used to increase sample sizes for learning the

strengths and weaknesses of sets of batters with similar swing characteristics as a function

of pitch speed, location, and movement. In addition, a similarity measure allows individual

batters to be monitored over time to detect possible changes in swing mechanics or health.

As additional hit-tracking data becomes available, the measure can also be used to model

the aging characteristics associated with different batter classes.

3.2.1 Representing Batted Ball Distributions

Batters are represented by distributions in the batted-ball parameter space. Separate dis-

tributions are used to capture information about batted ball initial speed sl and vertical

launch angle v against left-handed and right-handed pitchers. Figure 3.5, for example, plots

the (sl, v) distribution of batted balls for right-handed batters Aaron Judge and Ronald

Torreyes against right-handed pitchers in 2017. We see that Judge has a higher average exit

speed and vertical launch angle than Torreyes. For a pair of batters, the similarity of (sl, v)

distributions is evaluated against each pitcher handedness and the two values are combined

into a single measure of similarity. The result is a metric that can be used to compare and

group batters based on batted ball characteristics.

3.2.2 Batter Similarity Measure

Given the ground distance defined by Equation (2.2) and the (sl, v) distributions for two

right-handed batters A and B against right-handed pitchers, we can compute the EMD
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Figure 3.5: (sl, v) for Aaron Judge and Ronald Torreyes vs. RHP, 2017

D
R

(A,B) to measure the similarity of the batters against right-handed pitchers. We can also

use the (sl, v) distributions against left-handed pitchers to compute the EMD D
L
(A,B) to

measure their similarity against left-handed pitchers. The distances D
R

(A,B) and D
L
(A,B)

can be combined into an overall measure of similarity using

D(A,B) = f
RR
D

R
(A,B) + f

RL
D

L
(A,B) (3.4)

where f
RR

and f
RL

represent the league average fraction of batted balls from right-handed

batters that occur against right-handed and left-handed pitchers respectively. We use the

league average fractions so thatD(A,B) does not depend on the number of opportunities that

a particular batter had against a given handedness of pitcher. Using the same approach, we
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can define an overall measure of similarity between pairs of left-handed batters and between

pairs of switch-hitters. A small distance D(A,B) between a pair of batters indicates a high

degree of similarity while larger distances indicate that a pair of batters is less similar.

3.2.3 Data Analysis

We will demonstrate the similarity measure for several applications including the identifi-

cation of similar and dissimilar batters, the identification of unique batters, and the quan-

tification of year-to-year batter stability. Leaderboards and visualizations generated using

non-metric multidimensional scaling are presented to illustrate the new approach. We will

also use similarity groups derived from the metric to provide population models for batter

classes that can be used for forecasting. All analysis uses Statcast batted ball data from

Baseball Savant with bunts and foul balls removed. For 2017 we consider the 112 right-

handed batters, the 71 left-handed batters, and the 29 switch-hitters who hit at least 250

batted balls during the regular season.

Similar Batters

For each of these batters, we used the method described in sections 3.2.1 and 3.2.2 to find

the most similar batter and the corresponding distance. Smaller values of the distance

correspond to more similar batters. The most similar pair of right-handed batters in 2017

was Andrew McCutchen and Nolan Arenado with a distance of 0.2099. The players had a

similar average exit speed and launch angle with (sl, v) = (89.2, 14.0) for McCutchen and

(sl, v) = (89.5, 15.0) for Arenado. The most similar pair of left-handed batters was Mitch

Moreland and Shin-Soo Choo with a larger distance of 0.2359. The average exit speed and

launch angle for these players was (sl, v) = (89.6, 10.3) for Moreland and (sl, v) = (88.8, 7.8)

for Choo. The most similar pair of switch-hitters was Jose Ramirez and Francisco Lindor
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with a distance of 0.2166. The average exit speed and launch angle for these players was

(sl, v) = (88.4, 13.6) for Ramirez and (sl, v) = (89.0, 13.4) for Lindor.

Dissimilar Batters

The most dissimilar pair of right-handed batters in 2017 was Aaron Judge and Ronald

Torreyes with a distance of 1.0053. These players had large differences in average exit velocity

and launch angle with (sl, v) = (95.6, 15.4) for Judge and (sl, v) = (81.9, 7.1) for Torreyes.

The most dissimilar pair of left-handed batters was Dee Gordon and Matt Carpenter with

a distance of 0.9581. These players also had large differences in average exit velocity and

launch angle with (sl, v) = (81.8, 2.0) for Gordon and (sl, v) = (90.0, 22.6) for Carpenter. In

particular, Gordon had the highest ground ball rate in MLB in 2017 at 57.6% while Carpenter

had the lowest at 26.9%. The most dissimilar pair of switch-hitters was Billy Hamilton and

Kendrys Morales with a distance of 0.8061. These players had a large difference in average

exit velocity with Hamilton at 80.8 mph and Morales at 91.1 mph.

Unique Batters

The similarity measure can also be used to find the most unique major league batters. The

right-handed batters with the greatest distance to their most similar match in 2017 are

shown in Table 3.3. The most unique left-handed batters and switch-hitters are shown in

Tables 3.4 and 3.5 respectively.

Visualizing Similarity

The similarity structure for a group of batters can be visualized using non-metric multi-

dimensional scaling (NMDS) [36]. We use NMDS to visualize properties of the similarity
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Unique RHB Distance to nearest RHB
Aaron Judge 0.3286

Giancarlo Stanton 0.3282
Jose Iglesias 0.3038

Willson Contreras 0.3013
Hunter Renfroe 0.2987
Ronald Torreyes 0.2964

Paul DeJong 0.2915
Guillermo Heredia 0.2904

Jose Peraza 0.2904
Jorge Bonifacio 0.2871

Table 3.3: Most unique right-handed batters, 2017

Unique LHB Distance to nearest LHB
Jarrod Dyson 0.3352
Didi Gregorius 0.3207
Norichika Aoki 0.3134

Lucas Duda 0.3057
Kyle Schwarber 0.3035

Ben Revere 0.3034
Dee Gordon 0.3034

Bryce Harper 0.3022
Ender Inciarte 0.2993

Carlos Gonzalez 0.2956

Table 3.4: Most unique left-handed batters, 2017

Unique Switch-Hitter Distance to nearest Switch-Hitter
Kendrys Morales 0.3271
Billy Hamilton 0.3186

Erick Aybar 0.3186
Carlos Santana 0.3184

Cesar Hernandez 0.3055
Jose Reyes 0.2993

Yangervis Solarte 0.2964
Tucker Barnhart 0.2931
Melky Cabrera 0.2904
Matt Wieters 0.2835

Table 3.5: Most unique switch-hitters, 2017
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measure for the unique batters described in section 3.2.3. In each plot, average exit speed

sl tends to increase as we move to the right while average launch angle v tends to increase

as we move up.

The NMDS result for the ten most unique right-handed batters is shown in Figure 3.6. The

most unique right-handed batter, Aaron Judge, appears on the far right side of the plot

due to his high average exit velocity with Giancarlo Stanton located below and to the left

due to a smaller average exit velocity and launch angle. On the far left are four players

(Torreyes, Peraza, Iglesias, Heredia) with the smallest average exit velocity on the plot.

Near the middle of Figure 3.6 are four players (DeJong, Bonifacio, Renfroe, Contreras) with

intermediate average exit velocities and average launch angles that range from 7.0 degrees

for Contreras near the bottom of the plot to 17.5 degrees for DeJong near the top of the

plot. We see that the most dissimilar right-handed batters in the entire data set, Judge and

Torreyes, are also the most separated in the plot.
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Figure 3.6: NMDS Result for Unique Right-handed Batters, 2017
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The NMDS result for the ten most unique left-handed batters is shown in Figure 3.7. The

three batters on the right side of the Figure (Schwarber, Duda, Harper) have the highest

average exit velocity on the plot. The three players on the left side of the figure (Revere,

Dyson, Gordon) have a low average exit velocity and a small average launch angle. To the

right and below this group are Norichika Aoki and Carlos Gonzalez with a higher average

exit velocity and small average launch angles while to the right and above this group are

Ender Inciarte and Didi Gregorius with a higher average exit velocity and larger average

launch angles.
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Figure 3.7: NMDS Result for Unique Left-handed Batters, 2017

The NMDS result for the ten most unique switch-hitters is shown in Figure 3.8. The most

unique switch-hitter, Kendrys Morales, has the highest average exit velocity in the plot and

appears to the far right. Carlos Santana appears above and to the left due to his lower

average exit velocity and a higher average launch angle while Melky Cabrera appears below

and to the left due to his lower average exit velocity and smaller average launch angle. Billy

Hamilton appears to the far left due to the lowest average exit velocity in the plot. Below
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Hamilton and to the right is Erick Aybar with the next lowest average exit velocity and a

smaller average launch angle. Five players (Solarte, Reyes, Wieters, Barnhart, Hernandez)

appear near the middle of the plot with intermediate average exit velocities and an average

launch angle that is smallest for Hernandez at the bottom of the plot and largest for Reyes

and Solarte near the top of the plot. We see that the most dissimilar switch hitters in

the entire data set, Morales and Hamilton, are also the most separated in the plot. In

Appendix C we use the batter similarity measure to examine several batter characteristics.
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Figure 3.8: NMDS Result for Unique Switch-Hitters, 2017
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3.2.4 Summary

We have developed a metric for comparing batters using hit-tracking data. The new metric

can be exploited to advance a range of application areas. The measure allows the direct

comparison of batter swing characteristics across various contexts including MLB, MiLB,

amateur, and foreign leagues. The identification of similar batters increases the sample sizes

that can be used to forecast the outcome of batter/pitcher matchups and supports regression

to more appropriate population means by projection models. The measure can also be used

to monitor batters over time and to develop improved models for the aging characteristics

associated with different swing types. The new approach also allows teams to optimize

pitch selection strategy according to batter strengths and weaknesses recovered by applying

machine learning techniques [20] to groups of similar batters.
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Chapter 4

Learning a Function over

Distributions

4.1 Overview

Nonparametric methods [3] are a powerful tool for model recovery and continue to support a

variety of applications [33] [63]. Nonparametric kernel regression can be used to estimate a

function of unknown form and has been applied in a wide range of settings [34]. Generalizing

this approach to learn a function over distributions requires a suitable metric for distribution

space for which we use the Wasserstein metric or Earth Mover’s Distance (EMD). The EMD

uses a cost function called the ground distance to determine the minimum amount of work

that is needed to transform one distribution into the other. The computational cost of

finding the EMD can be expensive which leads to the use of signatures to approximate the

distributions thereby enabling the use of efficient linear programming methods [50].

This methodology is used to learn a function over distributions to address the problem of

optimizing pitch distributions in baseball. A nonparametric learning method is appropriate
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for this application because the effectiveness of a pitch distribution has a complicated depen-

dence on the quality, frequency, and interaction of a pitcher’s set of pitches. We represent a

collection of pitches using a multidimensional distribution that is derived from sensor mea-

surements that capture the physical properties of each pitch. These properties have been

shown to have a strong effect on pitch value [23]. Pitchers typically use a small number of

different pitch types which allows these distributions to be accurately encoded using signa-

tures. A whitening transform [11] is used by the EMD ground distance to account for the

variances and correlation structure of the component variables that define the distributions.

A method that is similar to leave-one-out cross validation [54] is used to optimize the kernel

smoothing parameter. After recovering the function over pitch distributions, an efficient

low-dimensional search can be used to find the optimal frequencies for a pitcher’s various

pitch types. We show that the new model accurately predicts the dependence of pitcher

performance on changes in pitch distribution and significantly outperforms an alternative

approach based on game theory.

4.2 Method

We develop a method for learning a function over distributions when the underlying structure

of the function is unknown. The method is based on generalizing nonparametric kernel

regression using a whitened Earth Mover’s Distance as the metric for distribution space. We

will illustrate properties of the algorithm with a set of experiments in Section 4.3.
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4.2.1 Nonparametric Kernel Regression

Let (xi, yi) for i = 1, 2, . . . , n be a set of observations where x is the explanatory variable

and y is the response variable. The data can be modeled by

y = f(x) + ε (4.1)

where ε is an error term. Kernel regression [45] [64] is a nonparametric method that con-

structs an estimate for f(x) using the weighted average

f̂(x) =

∑n
i=1 k(di)yi∑n
i=1 k(di)

(4.2)

where di = x−xi and k(·) is a kernel probability density function that is typically maximum

at zero and decreases with |di| so that the largest weights k(di) are given to the yi associated

with the xi that are closest to x. A popular kernel function is the zero-mean Gaussian

k(di) = g(di, σ) =
1√

2πσ2
e−

1
2
(di/σ)

2

(4.3)

which depends on the smoothing parameter σ.

Given a set of observations (Xi, yi) where each Xi is a multidimensional distribution, we

can generalize Equations (4.2) and (4.3) to approximate a function over distributions by
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replacing di with a distance Di between the distributions X and Xi

f̂(X, σ) =

∑n
i=1 g(Di, σ)yi∑n
i=1 g(Di, σ)

· (4.4)

4.2.2 Finding the Smoothing Parameter Using Cross Validation

The accuracy of kernel regression has a strong dependence on the smoothing parameter σ [11].

Let (Xi, yi) for i = 1, 2, . . . , n be a set of observations that associate distributions Xi with

responses yi. For the distribution Xj we can use Equation (4.4) to compute

f̂(X = Xj, σ) =

∑
1≤i≤n
i 6=j

g(Dij, σ)yi

∑
1≤i≤n
i6=j

g(Dij, σ)
(4.5)

where Dij is the whitened EMD between Xi and Xj as described in Chapter 2 and the

(Xj, yj) observation is excluded from the sums. The error in the approximation is given by

Ej(σ) = yj − f̂(Xj, σ). (4.6)

We define the optimal smoothing parameter σ∗ as the value of σ that minimizes the total
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absolute error in the approximation over the observations

σ∗ = arg min
σ

n∑
j=1

|Ej(σ)| . (4.7)

Note that if we include the (Xj, yj) observation in the sums in Equation (4.5), then as

σ approaches zero the approximation f̂(X, σ) approaches a sum of Dirac delta functions

centered at the observation points causing each Ej(σ) and the sum in Equation (4.7) to

approach zero. This yields a poor approximation to the underlying f(X) function everywhere

except at the observation points. The method described in this section for finding σ∗ is similar

to leave-one-out cross validation methods that are used for density estimation [54].

4.3 Experimental Results

4.3.1 Optimizing the Pitch Distribution

A pitcher’s success is highly dependent on the characteristics of his pitch distribution. A

larger speed s for an individual pitch reduces the batter’s available reaction time while greater

movement (x, z) makes it more difficult for the batter to determine the optimal contact point.

In addition, the diversity of a pitcher’s distribution of pitches affects the batter’s ability to

anticipate the speed and movement of the next pitch. A pitcher can benefit from having

pitches with large differences in speed [19] or from having pitches with similar speed that

move in different directions [42].

The best result of a matchup for a pitcher is a strikeout which means that the batter was

unable to hit the ball successfully given multiple opportunities. A pitcher’s strikeout rate is
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the fraction of his matchups that result in a strikeout. This rate is a repeatable pitcher skill [6]

and is a strong determinant of a pitcher’s success [15]. We can use the algorithm described in

Section 4.2 to learn the dependence of pitcher strikeout rate on the pitch distribution defined

over the s, x, and z variables. Since a given pitcher can throw several different pitch types,

he can adjust his pitch distribution and expected strikeout rate by changing the frequency of

each pitch type. Using the learned relationship between strikeout rate and pitch distribution,

we can therefore find the pitch frequencies that optimize a pitcher’s strikeout rate. We will

evaluate this approach in the following sections.

Previous work on optimizing the pitch distribution has been based on game theory. Using

this approach, Paine [47] has suggested that a pitcher’s optimal pitch distribution occurs

at Nash equilibrium where the pitcher’s effectiveness is equal for each of his pitch types.

This principle is used to derive the Nash score which is a measure of how close a pitch

distribution is to Nash equilibrium. One difficulty with this method is that it requires the

use of effectiveness values for each pitch type which are known to have a low reliability [1].

We will evaluate the use of the Nash score for assessing pitch distributions in Section 4.3.5.

4.3.2 Data Processing

We built the strikeout rate model described in Section 4.3.1 using 2016 sensor data for each

MLB pitcher who threw at least 1500 pitches during the season. This threshold ensures the

use of a reasonably large sample for generating the pitch distributions and strikeout rates

and also removes pitchers who were used purely as relievers which often results in a different

style of pitching. There were 108 right-handed pitchers and 41 left-handed pitchers who

threw at least 1500 pitches in 2016.

The effectiveness of a given pitch depends on the handedness (left or right) of the batter and

pitcher. Thus, we separately consider the dependence of strikeout rate on pitch distribution
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for each of the four possible platoon configurations (RHP vs. RHB, RHP vs. LHB, LHP

vs. RHB, LHP vs. LHB). A pitcher’s strikeout rate for a platoon configuration and year is

defined as the ratio of strikeouts to the number of batters faced after removing all matchups

with a pitcher as a batter and also removing all matchups that resulted in a bunt or an

intentional walk. Using the 2016 constant of 4.262 batters per inning, the FIP equation [15]

predicts that an increase of 0.03 in strikeout rate leads to 0.26 fewer runs allowed per game

which is a significant improvement in pitcher performance.

The process of learning and applying a function over distributions can be summarized by

the following steps. Training data is first partitioned by platoon configuration and each step

is carried out separately for each configuration. The training data provides a set of pitch

distributions specified by signatures Si as defined in Section 2.1 and associated strikeout

rates yi. The covariance matrix Σ in Equation (2.2) is computed for the population of mean

vectors specified by the Si signatures. The smoothing parameter σ is found using cross

validation as described in Section 4.2.2. The learned model can then be applied to a pitch

distribution X described by a signature S to compute the expected strikeout rate by using

Equation (4.4). This process is summarized by Figure 4.1 where application of the model

will be described in more detail in Section 4.3.4.

Figure 4.1: Process of learning and applying a function over distributions
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4.3.3 Cross Validation

The cross validation process described in Section 4.2.2 is used to find optimized values for

the smoothing parameter σ for each platoon configuration using the total absolute error

ET (σ) =
n∑
j=1

|Ej(σ)| (4.8)

defined in Equation (4.7). In cases where ET (σ) is near its minimum value over a range

of σ, we prefer smaller values of σ over the range since these yield more small values of

g(Di, σ) in Equation (4.4) and therefore more terms in the sums that can be neglected

without significantly affecting the approximation. Thus, we select the optimal value σ∗ of

the smoothing parameter as the smallest value of σ for which

ET (σ) ≤ 1.001 ∗min [ET(σ)] . (4.9)

The use of this equation to favor smaller values of σ has little effect on the accuracy of the

model in Equation (4.4) but can improve the efficiency of the computation.

Figures 4.2 to 4.5 plot ET (σ) for each of the four platoon configurations. The resulting

values of σ∗ are shown in Table 4.1. For small values of σ, the g(Dij, σ) in Equation (4.5)

are approximately Dirac delta functions and f̂(Xj, σ) is approximately a sum of Dirac delta

functions centered at the observations (Xi, yi) for i 6= j. This results in a relatively large

error Ej(σ) for small σ in Equation (4.6) and a relatively large error in ET (σ) for small σ in

Equation (4.8). As σ increases, the approximation in Equation (4.6) improves and the error
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decreases as shown in the figures.
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Figure 4.2: ET (σ) for RHP versus RHB configuration, 2016
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Figure 4.3: ET (σ) for RHP versus LHB configuration, 2016
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Figure 4.4: ET (σ) for LHP versus RHB configuration, 2016
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Figure 4.5: ET (σ) for LHP versus LHB configuration, 2016

Table 4.1: Optimized σ∗ values found using cross validation

pitcher batter σ∗

RHP RHB 0.48
RHP LHB 0.34
LHP RHB 0.48
LHP LHB 0.39

4.3.4 Finding Optimized Pitch Frequencies

The goal for a pitcher is to maximize his future strikeout rate. This can be accomplished by

using the estimated f̂(X, σ∗) function which represents strikeout rate as a function of the

pitch distribution X. Suppose that a pitcher has a pitch distribution X which is represented

by a signature with m pitch types as in Equation (2.1). Each pitch type i has a pitch

parameter vector µi = (si, xi, zi) and a frequency wi. For a given pitcher, the pitch parameter

vector µi for each pitch type is characteristic of his ability and typically does not change.

Each frequency wi, however, can be easily changed by varying how often pitch type i is

thrown. Thus, a pitcher can endeavor to maximize future strikeout rate by finding the

values of wi that maximize f̂(X, σ∗) subject to the constraints w1 + w2 + · · ·+ wm = 1 and
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wi ≥ 0. Since the number of pitch types m is typically small, the optimal wi values can be

found efficiently using an exhaustive search over combinations of the frequencies wi.

We illustrate this process for left-handed pitcher Danny Duffy for the LHP vs. LHB platoon

configuration using his 2016 signature as shown in Table 4.2. We note that the signature

model S in Equation (2.1) is general and can accommodate any number of different pitch

types. Individual pitchers, however, typically are not able to throw every pitch type effec-

tively. As reported by Brooks Baseball, Danny Duffy only used the five pitch types listed in

Table 4.2 during 2016. Other pitchers use other pitch types such as the cutter and the split

which are represented in their signatures. Figure 4.6 is a visualization of f̂(X, σ∗) for pitch

distributions X formed by varying the frequency w1 of his fourseam and w2 of his slider.

In order to limit the plot to two dimensions, the wi for his two least frequent pitches are

set to their 2016 values so that w4 = 0.0252, w5 = 0.0069, and w3 is then constrained to

w3 = 1−(w1+w2+w4+w5). The red point in the figure indicates the location of Duffy’s 2016

signature and corresponds to an actual strikeout rate of 0.330 and an estimated strikeout

rate using f̂(X, σ∗) of 0.317. We see that the model predicts that the pitcher could improve

his strikeout rate by increasing w1 (fourseam frequency) and reducing w2 (slider frequency).

In 2017, Duffy’s w1 and w2 frequencies for this configuration moved in the opposite direc-

tion to the point shown in black in the figure. This resulted in a reduced strikeout rate of

0.245 in 2017 which is consistent with a reduced strikeout rate model prediction as shown

in Figure 4.6.

Table 4.2: Pitch signature for LHP Danny Duffy versus LHB for 2016

Pitch type index w s x z
Fourseam 1 0.6156 95.96 4.72 11.73

Slider 2 0.2357 84.43 -2.24 -0.85
Sinker 3 0.1167 95.39 8.02 9.21

Change 4 0.0252 86.21 9.79 8.08
Curve 5 0.0069 80.26 -4.26 -5.52
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Figure 4.6: Danny Duffy f̂(X, σ∗) for LHP versus LHB configuration, 2016

4.3.5 Predicting Strikeout Rate Changes

We can examine the ability of the f̂(X, σ∗) model estimated from 2016 sensor data to predict

pitcher strikeout rate changes as pitch distributions change from 2016 to out-of-sample data

in 2017. For this purpose, we considered the 72 right-handed pitchers and 27 left-handed

pitchers who threw at least 1500 pitches in both 2016 and 2017. We define a pitcher’s

actual change in strikeout rate ∆ and his predicted change in strikeout rate ∆̂ for a platoon

configuration by

∆ = (2017 rate)− (2016 rate) (4.10)

∆̂ = (2017 predicted rate)− (2016 rate) (4.11)
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where 2017 predicted strikeout rate is computed by evaluating f̂(X, σ∗) using Equation (4.4)

for the pitcher’s 2017 pitch distribution with σ∗ computed as described in Section 4.3.3.

Figure 4.7 is a scatterplot with 198 points that represent (∆̂,∆) for each of the 72 right-

handed and 27 left-handed pitchers against each handedness of batter. We see that the points

have a positive correlation. In particular, for the 25 points with strong positive predictions

∆̂ > 0.03 we have 21 points (84.0%) with a positive ∆ in actual strikeout rate. For the

39 points with strong negative predictions ∆̂ < −0.03 we have 24 points (61.5%) with a

negative ∆ in actual strikeout rate. Thus, the model is useful for predicting the dependence

of changes in strikeout rate on changes in pitch distribution.
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Figure 4.7: Predicting strikeout rate changes using f̂(X, σ∗)

For comparison, Figure 4.8 is a scatterplot of the actual change in strikeout rate from 2016

to 2017 for each of the 99 pitchers versus each pitcher’s Nash score difference [47]

∆N = 2016 Nash score− 2017 Nash score (4.12)

As described in Section 4.3.1, a low Nash score indicates that a pitcher is close to Nash

equilibrium while a higher Nash score indicates that a pitcher is farther from equilibrium.

Thus, for ∆N positive we would expect a pitcher to improve from 2016 to 2017 and for ∆N
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negative we would expect a pitcher to get worse from 2016 to 2017. In Figure 4.8, however,

we see that the points in the scatterplot do not have an increasing trend and, in fact, the

points have a small negative correlation. We believe that this is due to the low reliability

for the pitch values [1] on which the Nash score is based.
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Figure 4.8: Predicting strikeout rate changes using Nash score changes

We can assess the statistical significance of the difference between the correlation coeffi-

cients of r1 = 0.320 in Figure 4.7 and r2 = −0.081 in Figure 4.8 using the Fisher z-

transformation [16]. Even if we disregard the negative sign on r2, this method yields a

zobserved test statistic of 2.01 and a corresponding p-value of 0.044 which supports the con-

clusion that r1 is significantly larger than r2. Thus, the function f̂(X, σ∗) has value for

predicting future strikeout rate and can be used to find optimized pitch frequencies wi using

the approach described in Section 4.3.4.

4.4 Summary

We have developed and evaluated an algorithm for learning a function over distributions.

The algorithm employs the earth mover’s distance as a metric for distribution space within

a nonparametric kernel regression scheme. We have demonstrated the algorithm for the task
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of learning a pitcher’s strikeout rate as a function of a multidimensional pitch distribution

that is generated from pitch trajectory measurements. The algorithm efficiently represents

the pitch distributions using signatures and compensates for the correlation of the trajectory

variables with a whitening step. The smoothing parameter for the regression kernel is learned

using cross validation. We have assessed the algorithm for the prediction of strikeout rate

from pitch distributions on out-of-sample data and have demonstrated that it performs better

than an alternative algorithm based on game theory principles.
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Chapter 5

Measurement Space Partitioning for

Estimation and Prediction

5.1 Overview

Player talent level on batted balls is defined as the expected value of a statistic which can be

estimated from a sample of observations. The utility of an estimate is often evaluated by its

ability to predict player performance on unobserved data. An intuitively appealing estimate

of talent level is simply the computed value of the statistic over a player’s observed sample.

But paradoxically this method is less accurate than estimators [12] [29] [57] that are defined

by a weighted average of this computed value and the mean of the statistic over a group of

players. An example of these estimators is linear regression (LR) for which the weighting

depends on the correlation of the value of the statistic across samples. LR estimates have

been used by several systems to predict player performance [55][60].

In recent years radar and optical sensors have been used in MLB stadiums to measure

characteristics of batted balls such as speed, direction, and spin [22]. We use these sensor
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measurements to develop a new method for estimating talent level called measurement space

partitioning (MSP). After constructing a discrete batted-ball distribution defined over a

partition of the multidimensional measurement space for samples from a group of players,

we use Cronbach’s alpha to show that the expected correlation of distribution values across

samples has a strong dependence on location in measurement space. This allows a player’s

underlying batted-ball distribution and the corresponding talent level to be estimated using

regression parameters that adapt to his specific batted-ball distribution. The accuracy of the

talent level estimate depends on the partition which leads to the derivation of a method for

partition optimization. A set of experiments is used to show that the MSP method improves

on the accuracy of linear regression for estimating batted-ball talent level.

Another advantage of the MSP approach is the ability to incorporate fine-grained contextual

information into estimates. Contextual information includes a range of variables that can

affect batted-ball value. The weather conditions and elevation, for example, will affect how

far a batted ball will carry in the air [2]. Batted balls that follow similar trajectories can have

different outcomes due to differences in outfield geometry from ballpark to ballpark [17]. A

player’s running speed [24] and variables that include the height of the infield grass and the

composition of the infield surface [4] can affect the value of batted balls hit on the ground.

The fate of batted balls also depends on the quality of the defenders in the field. Contextual

factors are typically accounted for by a coarse adjustment that compensates for the average

effect of the environment [48]. Since the MSP method computes talent level estimates from

regressed batted ball distributions defined over physical parameters, contextual adjustments

can be employed that depend on the characteristics of individual batted balls. A ball hit

in the air at high speed, for example, can be adjusted differently from a ball hit softly on

the ground. We will show that the use of fine-grained contextual adjustments improves the

accuracy of predictions made by the MSP method.
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5.2 Estimation and Prediction

5.2.1 Talent Level

Talent for a skill varies from player to player and can be represented by a statistic that is

derived from a set of observations. The computed value of such a statistic equals talent level

T (j), which is the expected value of the statistic for player j, plus estimation error. In this

work, we examine the problem of estimating player talent level on batted balls. Consider a

dataset that contains information on 2N batted balls for each of P players where the data

is arranged so that the first N batted balls for each player are observed and the second N

batted balls for each player are unobserved. Let R(i, j) represent the numerical value of

batted ball i for player j and define the observed performance statistic for player j as the

average over the first N batted balls

x(j) =
1

N

N∑
i=1

R(i, j) (5.1)

and define the unobserved performance for player j as the average over the second N batted

balls

y(j) =
1

N

2N∑
i=N+1

R(i, j). (5.2)

We consider the task of using the observed batted ball data to estimate talent level T (j) for

the x(j) statistic for each player j. The estimated T (j) can be used to predict the unobserved

performance y(j).
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5.2.2 Linear Regression

One estimate of T (j) is the observed performance x(j) for player j. However, the James-Stein

paradox [29] [57] as illustrated by Effron and Morris [12] shows that a more accurate estimate

of T (j) is obtained by adjusting the x(j) using an average of the observed R(i, j) values over

multiple players. Since an estimate for talent level can be assessed by its ability to predict

the unobserved performance y(j), we can define an estimate ŷ(j) for T (j) by minimizing the

sum of the square errors

E =
P∑
j=1

(y(j)− ŷ(j))2 (5.3)

using the linear regression model

ŷ(j) = a+ bx(j). (5.4)

The values of a and b that minimize E are

a = µy −
rµxσy
σx

(5.5)

b =
rσy
σx

(5.6)

where µx and σx are the mean and standard deviation for the x(j), µy and σy are the mean

and standard deviation for the y(j), and r is the correlation coefficient for the set of P points

(x(j), y(j)) [10].

Since the data used to generate the y(j) are unobserved, the parameters µy, σy, and r in

equations (5.5) and (5.6) cannot be computed directly. The y(j), however, are generated in

the same way for the same players as the x(j) which allows us to use the approximations
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µy = µx and σy = σx. The remaining unknown parameter, the correlation coefficient r, can

be approximated from the observed R(i, j) values using Cronbach’s alpha [9]

α(N) =
N

N − 1

(
1−

∑N
i=1 σ

2
Ri

σ2
RT

)
(5.7)

where σ2
Ri

is the variance of the observed R(i, j) values over players j for batted ball i and

σ2
RT

is the variance of

RT (j) =
N∑
i=1

R(i, j) (5.8)

over players j. Using these approximations, equation (5.4) becomes

ŷ(j) = α(N)x(j) + (1− α(N))µx (5.9)

which can be computed using the observed data. ŷ(j) in equation (5.9) is consistent with

the James-Stein result that an improved estimate for T (j) can be obtained by adjusting x(j)

using the overall mean µx.

5.2.3 Varying Observed Sample Size

The α(N) that is used to compute the estimate ŷ(j) in equation (5.9) is derived using a

dataset of N observed batted balls for each of P players using equation (5.7). The utility of

the method is enhanced if we can use this dataset to compute the estimate ŷ(j) using a sample

of N ′ batted balls for player j where N ′ 6= N. The value of α(N) tends to increase with N due

to a decrease in the variance of the random error in the observed performance x(j) [67]. The

Spearman-Brown prophecy formula [5] [56] allows us to predict α(N ′) from the estimated
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α(N) using

α(N ′) =
Cα(N)

1 + (C − 1)α(N)
(5.10)

where C = N ′/N. This α(N ′) can be used in equation (5.9) to compute ŷ(j) using an

observed performance x(j) computed using any number of samples N ′.

5.3 Exploiting Sensor Measurements

5.3.1 Partitioning the Measurement Space

Sensors allow batted balls to be represented by a point in a measurement space with dimen-

sions defined by properties such as speed, direction, and spin. The measurement space can

be partitioned into B disjoint subsets. For the dataset described in Sec. 5.2.1 let M(i, j, k)

be a binary-valued function which is one if batted ball i for player j is in subset k and zero

otherwise. Define the observed batted ball distribution for player j over the subsets k by

px(j, k) =
1

N

N∑
i=1

M(i, j, k) (5.11)

and define the unobserved batted ball distribution for player j over the subsets k by

py(j, k) =
1

N

2N∑
i=N+1

M(i, j, k). (5.12)

We will show that an estimate for py(j, k) can be used to generate an estimate for the talent

level T (j).
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5.3.2 Estimating Measurement Space Distributions

For a given subset k we can use a linear regression model and approximations similar to

those described in Sec. 5.2 to estimate py(j, k) from the observed data according to

p̂y(j, k) = α(N, k)px(j, k) + (1− α(N, k))µ(k) (5.13)

where µ(k) is the average

µ(k) =
1

P

P∑
j=1

px(j, k) (5.14)

and α(N, k) is the Cronbach approximation to the correlation coefficient for the set of P

points (px(j, k), py(j, k)) for subset k. Specifically, α(N, k) is computed using

α(N, k) =
N

N − 1

(
1−

∑N
i=1 σ

2
Mi

σ2
MT

)
(5.15)

where σ2
Mi

is the variance of the observed M(i, j, k) values over players j for batted ball i

and subset k and σ2
MT

is the variance of

MT (j) =
N∑
i=1

M(i, j, k) (5.16)

over players j for subset k. α(N, k) can then be used in equation (5.13) to compute the

regressed distribution p̂y(j, k) using only the observed data. We note that the calculation in

equation (5.15) can yield α(N, k) values that are negative [67] and in these cases α(N, k) is

set to zero for the calculation of p̂y(j, k).
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5.3.3 Estimating Talent Using Measurement Space Partitioning

The batted ball distribution estimate p̂y(j, k) for player j can be used to estimate the player’s

talent level T (j). If R(j, k) is an estimate of the expected value of batted balls for player j

in subset k then T (j) can be estimated by

ŷs(j) =
B∑
k=1

p̂y(j, k)R(j, k). (5.17)

For cases where we would like to estimate ŷs(j) using a sample of N ′ batted balls for player j,

the values α(N ′, k) for each k in equation (5.13) can be computed using the Spearman-Brown

formula as described in Sec. 5.2.3.

The ŷs(j) estimate in equation (5.17) is equivalent to the linear regression estimate ŷ(j) in

equation (5.9) if α(N, k) has the same value α(N) for all subsets k and the average value of

the observed batted balls in any subset k is the same for all players j. For this special case,

if we let R(j, k) equal the overall mean of the observed R(i, j) for subset k

R(k) =

N∑
i=1

P∑
j=1

M(i, j, k)R(i, j)

N∑
i=1

P∑
j=1

M(i, j, k)

(5.18)

then equation (5.17) can be written

ŷs(j) =
B∑
k=1

[α(N)px(j, k) + (1− α(N))µ(k)]R(k)

=

[
α(N)

B∑
k=1

px(j, k)R(k)

]
+

[
(1− α(N))

B∑
k=1

µ(k)R(k)

]
(5.19)
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where the first sum in equation (5.19) equals x(j) and the second sum equals µx which

demonstrates the equivalence to equation (5.9). We will see that by allowing α(N, k) to vary

over subsets k and by allowing R(j, k) to vary over players j, the model in equation (5.17)

can generate estimates that are more accurate than the linear regression estimate in equa-

tion (5.9).

5.4 Experimental Results

5.4.1 Sensor Data

The TM radar has been used by MLB’s Statcast system [22] since 2017 to track and charac-

terize batted balls. The TM radar operates in the X-band at approximately 10.5 GHz and is

positioned high behind home plate. The measured initial speed sl and vertical launch angle

v (Figure 5.1) for batted balls play an important role in determining batted ball value [21].

In particular, batters tend to achieve the best results for batted balls with an initial speed

of greater than 90 miles per hour and a vertical launch angle between 10 and 30 degrees.

Figure 5.1: Vertical launch angle v
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5.4.2 Representing Batted Ball Value

Many statistics [48] can be used to quantify a batter’s performance on batted balls. Batting

average, for example, is the fraction of batted balls that result in a hit but has the deficiency

that all hits are given equal value. Slugging percentage allocates different weights to different

kinds of hits, e.g. single or double, but has been shown to overweight doubles, triples, and

home runs. Weighted on base average (wOBA) [60] uses weights for each batted ball outcome

that are proportional to run value and, for this reason, we use wOBA to represent batted

ball value R(i, j).

5.4.3 Contextual Information

A batted ball with a given set of physical parameters such as sl and v occurs in a context that

can affect its value. Variation in the outfield geometry across stadiums [17] and variation in

the ambient weather conditions [2] can affect the value of a ball hit in the air. The batter’s

running speed [24] plays a role in determining batted ball value especially for balls hit on

the ground. The quality of defenders can also affect the value of a batted ball hit to a given

region of the field. These factors cause the batted ball value R(j, k) for subset k to vary

depending on the distribution of contextual variables for player j. We will show later in

this section how contextual information can be combined with the batted ball distribution

estimates p̂y(j, k) to improve the accuracy of the ŷs(j) predictions.

5.4.4 Assessing Prediction Accuracy

Statcast data from MLB games in 2019 was employed to evaluate methods for using observed

data to predict player performance in unobserved data. After removing bunts from the

dataset, each of the P = 159 players with at least 300 batted balls during the 2019 season
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was considered. Switch-hitters who bat both right-handed and left-handed were regarded

as a different batter for each handedness. The first 300 batted balls for each player were

divided into an observed set of N = 150 batted balls and an unobserved set of N = 150

batted balls. The odd batted balls in chronological order for each player defined the observed

set and the even batted balls defined the unobserved set. The batted ball value R(i, j)

for batted ball i and player j was defined by the wOBA weight for the batted ball result

as described in Sec. 5.4.2. For the 2019 MLB season the wOBA weights are out=0.000,

single=0.870, double=1.217, triple=1.529, homerun=1.940, and batter reaches on error=

0.920 [65]. The observed batted ball data was used to generate predictions for the unobserved

performance y(j). The accuracy of a set of predictions ŷ(j) is evaluated using the sum of

squared errors (SSE)

SSE =
P∑
j=1

(y(j)− ŷ(j))2 (5.20)

between the unobserved performance and its prediction.

5.4.5 Linear Regression

The linear regression model defined by equation (5.9) was used to generate the ŷ(j) predic-

tions for the data described in Sec. 5.4.4. The resulting model is

ŷ(j) = 0.294x(j) + (1− 0.294) · 0.402 = 0.294x(j) + 0.284 (5.21)

where the observed batted ball data was used to compute α(150) = 0.294 and µx = 0.402

as described in Sec. 5.2.2. This model gives an SSE of 0.647 using equation (5.20). Two

boundary instances of the linear regression model are the naive prediction ŷ(j) = x(j) for
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α(N) = 1 and the baseline prediction ŷ(j) = µx for α(N) = 0. For this dataset, the naive

prediction gives an SSE of 0.780 and the baseline prediction gives an SSE of 0.743 which are

both larger than the SSE obtained using the linear regression model in equation (5.21). The

ŷ(j) prediction lines for the linear regression model and the naive and baseline predictions

are shown in Figure 5.2 along with the (x(j), y(j)) points for each of the 159 players.
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Figure 5.2: (x(j), y(j)) points with naive, regression, and baseline predictions

5.4.6 Measurement Space Partitioning

The measured initial speed and launch angle can be used to represent a batted ball as a

point in a two-dimensional (sl, v) measurement space. This space can be partitioned into B

disjoint subsets as described in Sec. 5.3.1. In Appendix D, we show that the accuracy of the

57



prediction in equation (5.17) depends on the partition. In this section we define different

ways to partition the (sl, v) measurement space and show how training data can be used to

optimize partition selection.

Partition Definition

The (sl, v) space can be divided into an internal region defined by

(sl,min ≤ sl < sl,max) and (vmin ≤ v < vmax)

which includes the large majority of batted balls and four boundary regions B1, B2, B3, B4

defined by

B1 : sl < sl,min

B2 : sl ≥ sl,max

B3 : (sl,min ≤ sl < sl,max) and (v < vmin)

B4 : (sl,min ≤ sl < sl,max) and (v ≥ vmax).

The internal region can be further divided into rectangular subregions b(i, j) of dimension

sl,width × vwidth which are defined by

b(i, j) : (sl,min + (i− 1) ∗ sl,width) ≤ sl < (sl,min + i ∗ sl,width) and

(vmin + (j − 1) ∗ vwidth) ≤ v < (vmin + j ∗ vwidth)
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so that there are a total of

(sl,max − sl,min)(vmax − vmin)

sl,width ∗ vwidth

b(i, j) subregions.

We defined the internal and boundary regions for the 2019 data using sl,min = 37.5 mph,

sl,max = 117.5 mph, vmin = −75◦, and vmax = 85◦ which yields an internal region that

includes 99.5 percent of all batted balls. The internal region was partitioned into different

configurations of fixed-size rectangular subregions b(i, j) where the subregion widths were

allowed to vary over the values

sl,width = 2.5, 5, 10, 20, 40, 80 mph

vwidth = 2.5, 5, 10, 20, 40, 80, 160 degrees

By considering all combinations of the six sl,width values and the seven vwidth values we can

define 42 partitions with each denoted Psl,width,vwidth
where the boundary regionsB1, B2, B3, B4

are the same for each partition. Figure 5.3, for example, depicts the P10,40 partition with

the four boundary regions and thirty-two internal subregions b(i, j) where b(2, 3) is explicitly

labeled.
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Figure 5.3: The P10,40 partition of measurement space

The prediction method described in Sec. 5.3.3 was used to process the observed and unob-

served data described in Sec. 5.4.4 using each of the 42 partitions. For the finer partitions the

observed data does not contain enough samples to reliably estimate R(j, k) for each (j, k).

Therefore, the mean R(k) in equation (5.18) was used to approximate R(j, k) for each j. The

smallest SSE of 0.532 was obtained for P2.5,40 while the largest SSE of 0.743 was obtained

for P80,160 . If we neglect the effect of the boundary regions, the use of P80,160 is equivalent to

the baseline prediction ŷ(j) = µx for which we also reported an SSE of 0.743 in Sec. 5.4.4.

Partition Selection

Partition selection is an important issue since there are large differences in the SSE for

different partitions. To address this issue, we examine whether the analysis of previous year

data can be used to optimize partition selection for current year data. To this end, we

computed the SSE for each of the 42 partitions defined in Sec. 5.4.6 using 2018 batted ball
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data arranged as described in Sec. 5.4.4 for the 2019 data. There were P = 158 players

with at least 300 batted balls in 2018 that were considered for analysis. Figure 5.4 plots the

(SSE 2018, SSE 2019) point for each of the 42 partitions and we see that there is a strong

correlation between the SSE values for the two years. In particular, the partitions that

give the smallest SSE values in 2018 also give the smallest SSE values in 2019. This result

suggests that we can use previous year data to select an optimized partition for current year

data. The P5,10 partition gives the smallest SSE of .419 on 2018 data. Using this partition

for the 2019 data gives an SSE of 0.546 which is close to the smallest value of 0.532 and

significantly better than the linear regression SSE of 0.647 reported in Sec. 5.4.5.
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Figure 5.4: Prediction SSE in 2018 and 2019 for 42 partitions

Example

In this section we illustrate the mechanics of the MSP method using the 2019 batted ball data.

The example considers the P5,10 partition defined in Sec. 5.4.6 that was selected using prior

61



year data as described in Sec. 5.4.6. Figure 5.5 plots the α(150, k) function and Figure 5.6

plots the mean µ(k) function over the subregions k for this partition. The α(150, k) function

is approximately in the shape of a rotated V with most of the larger values occurring for sl

greater than 95 mph. Figures 5.7 and 5.8 demonstrate properties of α(150, k) and µ(k) for

specific subregions S1 and S2 of P5,10 defined by

S1 : (87.5 mph ≤ sl < 92.5 mph) and (5◦ ≤ v < 15◦)

S2 : (107.5 mph ≤ sl < 112.5 mph) and (15◦ ≤ v < 25◦)

which correspond respectively to b(11, 9) and b(15, 10) using the notation in Sec. 5.4.6. The

observed data described in Sec. 5.4.4 gives values of

α(150, S1) = 0.01, µ(S1) = 0.017,

α(150, S2) = 0.61, µ(S2) = 0.011

which predict little correlation between the fraction of batted balls in the observed and

unobserved data for S1 and a larger correlation between the fraction of batted balls in the

observed and unobserved data for S2. Figure 5.7 plots the P = 159 points (px(j, S1), py(j, S1))

as defined by equations (5.11) and (5.12) along with the prediction line from equation (5.13)

where each point in the figure has been moved by a small random amount to increase the

visibility of the points. There is little correlation between the px(j, S1) and the py(j, S1) as

predicted by the small estimated value of α(150, S1). Figure 5.8 is the same plot for S2 where

the points have a larger positive correlation as predicted by α(150, S2). In each figure the

red prediction line agrees reasonably well with the structure of the data.

Figure 5.9 displays the full observed distribution px(j, k) for player j = Jorge Polanco as
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left-handed batter using P5,10 . Figure 5.10 is the corresponding regressed distribution p̂y(j, k)

computed using equation (5.13). We see that the regressed distribution captures the overall

structure of px(j, k) but is substantially smoother. The regressed distribution results in

a talent level estimate ŷs(j) in equation (5.17) of .397. This ŷs(j) is much closer to the

unobserved performance y(j) of 0.386 than the LR prediction ŷ(j) = .424 or the naive

prediction of x(j) = .475 which corresponds to the observed distribution shown in Figure 5.9.

Figure 5.5: α(150, k) for P5,10 partition
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Figure 5.6: µ(k) for P5,10 partition
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Figure 5.7: py(j, S1) versus px(j, S1) with α(150, S1) = 0.01
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Figure 5.8: py(j, S2) versus px(j, S2) with α(150, S2) = 0.61
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Figure 5.9: Observed distribution px(j, k) for Jorge Polanco as left-handed batter
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Figure 5.10: Regressed distribution p̂y(j, k) for Jorge Polanco as left-handed batter
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Comparison with Linear Regression

In this section we compare properties of the LR and MSP predictions. For the data described

in Sec. 5.4.4 the LR prediction is defined by the line (equation (5.21)) plotted in Figure 5.11.

This figure also plots the 159 ŷs(j) predictions for the same data using the P5,10 partition. We

see that players j1 and j2 with the same observed performance x(j1) = x(j2) and therefore the

same LR prediction ŷ(j1) = ŷ(j2) can be assigned different MSP predictions ŷs(j1) 6= ŷs(j2).
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Figure 5.11: ŷs(j) predictions for 159 batters using P5,10 partition and LR line

In Sec. 5.3.3 we showed that an important difference between ŷ(j) and ŷs(j) is that the

former is defined using a single α(N) while the latter employs a separate α(N, k) for each

subset k. Players with an observed batted ball distribution px(j, k) that includes a large

fraction of batted balls in subsets k with large values of α(N, k) will have less regression to
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the mean in the calculation of ŷs(j) than players with a batted ball distribution that has

smaller values of α(N, k). This allows the ŷs(j) prediction to adapt the amount of regression

to a player’s collection of batted balls. By comparing equations (5.13) and (5.17) with the

LR model of equation (5.9) we see that the correlation-weighted expected wOBA

C(j) =
B∑
k=1

α(N, k)px(j, k)R(k) (5.22)

should capture a large fraction of the variance in the difference ŷs(j)− ŷ(j). Figure 5.12 is a

scatterplot of ŷs(j) − ŷ(j) versus C(j) for the P5,10 partition of the 2019 data which shows

that the variables have a strong relationship as expressed by a correlation coefficient of 0.87.

Thus, C(j) is a batter-controlled component of ŷs(j) that measures the combined value and

α-correlation of a player’s batted balls and is strongly related to the deviation of a player’s

ŷs(j) prediction from the LR prediction ŷ(j).

Table 5.1 considers four players with similar ŷ(j) LR predictions. The table also shows that

several of the players have significant differences in correlation-weighted expected wOBA C.

The players (Hernandez, DeJong) with below average values of C have negative ŷs − ŷ

differences while the players (Acuna, Donaldson) with above average values of C have positive

ŷs− ŷ differences as predicted by Figure 5.12. We see from the last two columns of the table

that these differences benefit the MSP prediction as the LR prediction error ŷ − y is larger

in absolute value than the MSP prediction error ŷs − y in each case.

Table 5.1: Players with similar ŷ, 2019

Player Hand ŷ C ŷs − ŷ ŷ − y ŷs − y
Cesar Hernandez Left .410 .054 -.049 .106 .057

Paul DeJong Right .410 .082 -.021 .067 .047
Ronald Acuna Jr. Right .411 .144 .040 -.077 -.036
Josh Donaldson Right .411 .146 .042 -.081 -.039
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Figure 5.12: Prediction difference ŷs(j) − ŷ(j) versus correlation-weighted expected wOBA
C

Incorporating Contextual Information

In Sec. 5.4.3 we described several contextual factors that can affect the value of a batted ball

with parameters (sl, v). Accounting for each of these factors can improve the accuracy of the

MSP predictions. In this section we describe a method that can be used to estimate R(j, k)

in equation (5.17) to account for the effects of varying outfield geometry and atmospheric

conditions across ballparks. Since a player j typically plays about half of his games in a single

home park these effects can have a significant impact on R(j, k). As an example, Figure 5.13

plots the outfield boundaries for Fenway Park in Boston and Yankee Stadium in New York

where the batter’s location is at home plate in the lower left corner. A shorter distance from

home plate to the outfield boundary typically improves the batter’s likelihood of a home
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run for a batted ball hit in the air. In addition, the altitude of the ballpark affects the air

density which plays an important role in determining how far a batted ball will carry [2]. The

outfield geometry can affect players differently depending on whether they bat right-handed

or left-handed since right-handed batters tend to hit most of their home runs to left field

while left-handed batters tend to hit most of their home runs to right field.

Figure 5.13: Outfield geometry for Fenway Park and Yankee Stadium

We will learn ballpark-dependent batted ball values from 2018 data and use these values to

process the 2019 data described in Sec. 5.4.4. The value of batted balls in a subset k will

depend on the quality of the fielders that defend against these batted balls. The home team

defenders are on the field about half of the time for games played in park p which can cause

bias in batted ball values for a given (k, p). Define Rh(k, p) as the average wOBA value for

batted balls hit by batters of hand h in subset k and park p with the visiting team on defense

in 2018. Let Rh(k) be the average wOBA value for batted balls hit by all batters of hand h

in subset k in all parks in 2018.

For (h, k, p) groups that correspond to vertical launch angles v ≥ 15◦ and include at least
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ten batted balls in the calculation of Rh(k, p) we compute the factor

Fh(k, p) =
Rh(k, p)

Rh(k)
(5.23)

where otherwise Fh(k, p) is set to 1. For a player j of hand h with home park p in 2019 we

define

R(j, k) = 0.5
[
R(k) +R(k)Fh(k, p)

]
(5.24)

where R(k) is defined in equation (5.18) and the 0.5 accounts for the fact that a player plays

approximately half of his games in the same home ballpark. The R(j, k) can be used to

improve the accuracy of the prediction in equation (5.17).

To illustrate this process we consider the b(13, 12) subregion of the P5,10 partition which is

defined by

(97.5 mph ≤ sl < 102.5 mph) and (35◦ ≤ v < 45◦).

For this subregion we have the R(j, k) values shown in Table 5.2 which demonstrate that

right-handed batters have an advantage in Fenway Park and left-handed batters have an

advantage in Yankee Stadium. These observations are consistent with the outfield geometries

shown in Fig. 5.13.

Table 5.2: R(j, k) for player j of hand h with home park p for b(13, 12)

Hand (h) Ballpark (p) R(j, k)
Right Fenway Park .557
Left Fenway Park .381

Right Yankee Stadium .378
Left Yankee Stadium .490
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Let ŷs1(j) be the prediction of equation (5.17) using R(j, k) = R(k) and let ŷs2(j) be the

prediction using R(j, k) as defined by equation (5.24). As reported in Sec. 5.4.6, ŷs1(j)

produces an SSE of 0.546 for partition P5,10 on the data described in Sec. 5.4.4. The use of

ŷs2(j) reduces the SSE to 0.526.

Table 5.3: Players with largest ŷs2 − ŷs1, 2019

Player Hand Home Ballpark ŷs2 − ŷs1 E1 E2

Trevor Story Right Coors Field .020 -.080 -.061
Nolan Arenado Right Coors Field .019 -.071 -.052
Ian Desmond Right Coors Field .018 -.016 .001
Rhys Hoskins Right Citizens Bank Park .017 -.060 -.042
Scott Kingery Right Citizens Bank Park .016 -.029 -.013

Table 5.4: Players with smallest ŷs2 − ŷs1, 2019

Player Hand Home Ballpark ŷs2 − ŷs1 E1 E2

Marcell Ozuna Right Busch Stadium -.026 .088 .062
Paul Goldschmidt Right Busch Stadium -.023 -.020 -.043

Paul DeJong Right Busch Stadium -.021 .047 .025
Yadier Molina Right Busch Stadium -.020 .080 .060

Brian Anderson Right Marlins Park -.012 .045 .033

Table 5.3 presents the five players j with the largest differences ŷs2(j)− ŷs1(j) and Table 5.4

presents the five players with the smallest differences ŷs2(j) − ŷs1(j). Thus, the players in

Table 5.3 are expected to benefit from their home ballpark while the players in Table 5.4

are expected to be hindered by their home ballpark. The parks represented in Table 5.3

are known to benefit batters. Coors Field in Denver has an altitude of 5197 feet which

enables batted balls to carry longer distances and Citizens Bank Park in Philadelphia has an

outfield geometry which is beneficial to right-handed batters. Similarly, both Busch Stadium

in St. Louis and Marlins Park in Miami which appear in Table 5.4 have outfield geometries

that are detrimental to right-handed batters. The last two columns in each table give the

prediction errors E1(j) = ŷs1(j)−y(j) and E2(j) = ŷs2(j)−y(j) where y(j) is the unobserved

performance. E1(j) is negative for each of the players in Table 5.3 which is consistent with

the expectation that these players should benefit from their home ballpark while E1(j) is
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positive for four of the five players in Table 5.4 which is consistent with the expectation

that these players should be hindered by their home ballpark. We see that for nine of the

ten players in the two tables we have |E1| > |E2| so that the use of home park information

reduces the prediction error.

5.5 Summary

We have used ball-tracking radar data to show that the predictive value of a batted ball

in baseball depends on its speed and vertical launch angle. This constraint enables a bat-

ted ball distribution to be estimated from a set of observations using a regression process

that adapts to a player’s particular collection of batted balls. We showed that these esti-

mated distributions can be used to make improved predictions about unobserved data. The

methodology can be adapted to include additional sensor measurements for properties such

as spin and horizontal angle as they become available. Since the approach is based on esti-

mating distributions defined over a partition of measurement space, fine-grained contextual

adjustments can be included to improve the accuracy of the predictions. The measurement

space partitioning process can be used for several applications in baseball including perfor-

mance forecasting and defensive positioning as well as for a range of other estimation and

prediction tasks involving large sets of multidimensional sensor data. In Appendix E we

apply this method to 2021 MLB batted ball data.
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Chapter 6

Conclusion

The ability to quantify player skill and team performance in sports has been revolutionized

by the deployment of sensors that collect large amounts of data for athletic events including

baseball [22], basketball [66], football [8], and golf [62]. This has led to the use of machine

learning algorithms by teams to exploit this data to gain a competitive advantage. The

assessment of player skills in baseball is increasingly dependent on data-driven models rather

than subjective evaluation. The accuracy of these models is critical to a team’s success

as executives attempt to maximize performance while abiding by organizational financial

constraints. While there are large disparities in the financial resources available to teams,

the use of data-driven models has enabled small market franchises to compete successfully

against their more affluent opponents [53].

We have applied learning methods to sensor data acquired at baseball games to develop new

techniques for comparing players, optimizing pitch distributions, and quantifying batted

ball talent. These techniques can be used for a number of applications in the areas of

strategy [60], player development [38], and player evaluation [53] in baseball. By utilizing

physical measurements, the methods have the advantage of allowing the direct comparison
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of players across environments. This enables, for example, predictions about how a college

pitcher would perform in major league baseball after optimizing his pitch distribution. The

use of physical models also enables isolation of the effect of contextual variables so that we

can predict how a batter might perform in a different home ballpark. The framework can also

be applied outside of the baseball domain. We could, for example, use a similar approach

to build a model for the dependence of a football team’s performance on the distribution of

offensive play types, e.g. run or pass, that are used [43]. This model could then be utilized

to determine the play distribution that a given offense should use to maximize success.
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Appendix A

Most Similar Match Tables

Table A.1: Most similar match for each right-handed pitcher, 2016

Pitcher Most Similar Distance
Tim Adleman Aaron Blair 0.7218
Cody Allen Bud Norris 0.8042

Chase Anderson James Shields 0.9830
Matt Andriese Tom Koehler 0.7128
Chris Archer Bud Norris 0.6269
Jake Arrieta Anthony DeSclafani 0.7607
John Axford Pedro Baez 0.7929
Pedro Baez Carlos Estevez 0.6584
Matt Barnes Joseph Biagini 0.8833

Kyle Barraclough Luis Severino 0.7116
Trevor Bauer Joseph Biagini 0.7694
Jose Berrios Jacob deGrom 0.7022

Dellin Betances Kyle Barraclough 0.9871
Chad Bettis Jacob deGrom 0.6492

Joseph Biagini Matt Harvey 0.6086
Aaron Blair Tim Adleman 0.7218
Joe Blanton Jason Hammel 0.7675

Matthew Bowman Kendall Graveman 0.7262
Blaine Boyer Eddie Butler 0.7772
Brad Brach Stephen Strasburg 0.8760

Archie Bradley Tom Koehler 0.6737
Clay Buchholz Colin Rea 0.7716
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Table A.1: Most similar match for each right-handed pitcher, 2016

Pitcher Most Similar Distance
Eddie Butler Anthony DeSclafani 0.5195
Trevor Cahill Edinson Volquez 0.7771

Matt Cain Ryan Dull 0.7166
Arquimedes Caminero Hunter Strickland 0.7853

Carlos Carrasco Michael Tonkin 0.6712
Andrew Cashner Eddie Butler 0.5688

Luis Cessa Brandon Maurer 0.6567
Jhoulys Chacin Matt Wisler 0.7896
Tyler Chatwood Andrew Cashner 0.7007

Jesse Chavez Taijuan Walker 0.6910
Steve Cishek Aaron Nola 1.3934
Paul Clemens Michael Tonkin 1.0845
Tyler Clippard Chase Anderson 1.2232

Gerrit Cole Hansel Robles 0.6407
Bartolo Colon Matt Shoemaker 0.9140
Jarred Cosart Mark Melancon 0.9734

Nathan Eovaldi Blake Wood 0.8319
Carlos Estevez Pedro Baez 0.6584
Marco Estrada Tyler Clippard 1.3896
Jeurys Familia Luis Perdomo 0.7828
Scott Feldman Adam Wainwright 0.6295
Michael Feliz Roberto Osuna 0.7367

Jose Fernandez Stephen Strasburg 0.7496
Mike Fiers Ross Stripling 1.0287

Doug Fister Zach Davies 0.9606
Mike Foltynewicz Mike Wright 0.6340
Michael Fulmer Jacob deGrom 0.7391
Yovani Gallardo Anibal Sanchez 0.7852

Matt Garza Colin Rea 0.6525
Kevin Gausman Hansel Robles 0.7074

Dillon Gee Rick Porcello 0.5729
Kyle Gibson Johnny Cueto 0.6648

Ken Giles Michael Pineda 0.7047
Mychal Givens Hunter Strickland 0.8286
Zachary Godley Jameson Taillon 0.8506
Jeanmar Gomez Mike Pelfrey 0.6568
Miguel Gonzalez James Shields 0.6537

Kendall Graveman Chad Kuhl 0.7052
Jon Gray Shelby Miller 0.5269
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Table A.1: Most similar match for each right-handed pitcher, 2016

Pitcher Most Similar Distance
Sonny Gray Tyler Chatwood 0.7848

Zack Greinke Matt Andriese 0.8323
A.J. Griffin Colby Lewis 1.0014
Jason Grilli David Hernandez 0.5254

Junior Guerra Edwin Jackson 0.6731
Jason Hammel Anthony DeSclafani 0.6111

Will Harris David Robertson 0.6966
Matt Harvey Shelby Miller 0.4067

Jeremy Hellickson Zach Davies 0.9729
Kyle Hendricks Rick Porcello 0.9840
Liam Hendriks Tyler Chatwood 0.7218

David Hernandez Jason Grilli 0.5254
Felix Hernandez Tyler Duffey 0.9634
Kelvin Herrera Carlos Estevez 0.8335
Daniel Hudson Hansel Robles 0.8475
Raisel Iglesias Blaine Boyer 0.8108

Hisashi Iwakuma Dillon Gee 0.8792
Edwin Jackson Junior Guerra 0.6731
Ubaldo Jimenez Kyle Gibson 0.7786

Jim Johnson Luis Perdomo 0.6994
Nate Karns Archie Bradley 0.8307

Ian Kennedy Justin Verlander 0.6537
Corey Kluber Anthony DeSclafani 0.7820
Tom Koehler Archie Bradley 0.6737
Chad Kuhl Eddie Butler 0.6009

John Lackey Jason Hammel 0.7547
Mat Latos Anibal Sanchez 0.7750
Mike Leake Kendall Graveman 0.9115
Colby Lewis Carlos Villanueva 0.6744
Kenta Maeda Jerad Eickhoff 0.7885

Carlos Martinez Jeff Samardzija 1.0176
Brandon Maurer Hansel Robles 0.6522
Lance McCullers Mychal Givens 1.3648
Dustin McGowan Blake Wood 0.8407
Collin McHugh Adam Wainwright 0.7693
Mark Melancon Jarred Cosart 0.9734
Daniel Mengden Adam Warren 0.7971

Shelby Miller Matt Harvey 0.4067
Jimmy Nelson Marcus Stroman 0.8117
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Table A.1: Most similar match for each right-handed pitcher, 2016

Pitcher Most Similar Distance
Hector Neris Carlos Carrasco 1.1101
Juan Nicasio Shelby Miller 0.4577
Aaron Nola Mike Leake 1.1660

Ricky Nolasco Rick Porcello 0.8955
Bud Norris Chris Archer 0.6269
Ivan Nova Luis Perdomo 0.6706

Jake Odorizzi Fernando Salas 0.6412
Seung-hwan Oh Ryan Dull 0.4963
Ross Ohlendorf Randall Delgado 0.5353
Roberto Osuna Michael Feliz 0.7367

Jake Peavy Ryan Vogelsong 0.8515
Mike Pelfrey Jeanmar Gomez 0.6568
Wily Peralta Mike Foltynewicz 0.6618
Luis Perdomo Ivan Nova 0.6706
David Phelps Shelby Miller 0.7011

Michael Pineda Luis Cessa 0.6873
Rick Porcello Dillon Gee 0.5729
Ryan Pressly Chris Archer 0.7838

Kevin Quackenbush Ross Stripling 0.8533
J.C. Ramirez Hunter Strickland 0.7793

Erasmo Ramirez Joel De La Cruz 0.7726
A.J. Ramos Zack Greinke 0.8865
Colin Rea Justin Verlander 0.6452

Addison Reed Liam Hendriks 0.7261
Tanner Roark Kyle Gibson 0.6736

David Robertson Will Harris 0.6966
Hansel Robles Gerrit Cole 0.6407

Fernando Rodney Alfredo Simon 1.2610
Joe Ross Matthew Bowman 0.7748

Fernando Salas Jake Odorizzi 0.6412
Danny Salazar Andrew Cashner 0.6537
Jeff Samardzija Mike Foltynewicz 0.7275
Aaron Sanchez Jim Johnson 0.7179
Anibal Sanchez Fernando Salas 0.7685
Ervin Santana Alex Wilson 0.6934
Max Scherzer Chad Kuhl 0.6324
Luis Severino Chris Archer 0.6592
Bryan Shaw Carlos Torres 1.1258

James Shields Miguel Gonzalez 0.6537
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Table A.1: Most similar match for each right-handed pitcher, 2016

Pitcher Most Similar Distance
Braden Shipley Ian Kennedy 0.8771

Matt Shoemaker Kyle Gibson 0.7481
Alfredo Simon Tanner Roark 0.7760

Josh Smith Matt Cain 0.7414
Joakim Soria Taijuan Walker 0.7564
Dan Straily Colby Lewis 0.7449

Stephen Strasburg Matt Harvey 0.6034
Hunter Strickland J.C. Ramirez 0.7793

Ross Stripling Chris Tillman 0.8369
Marcus Stroman Jimmy Nelson 0.8117

Albert Suarez Aaron Blair 0.7603
Noah Syndergaard Luis Severino 0.7567
Jameson Taillon Zachary Godley 0.8506
Masahiro Tanaka Dillon Gee 0.6355

Julio Teheran Aaron Blair 0.7555
Tyler Thornburg Archie Bradley 0.8752

Chris Tillman Ross Stripling 0.8369
Josh Tomlin Yovani Gallardo 0.8051

Michael Tonkin Chad Kuhl 0.6546
Carlos Torres Edwin Jackson 0.8924
Nick Tropeano Randall Delgado 0.9390

Jose Urena Jeff Samardzija 0.7994
Vincent Velasquez Taijuan Walker 0.5854
Yordano Ventura Jameson Taillon 0.9287
Justin Verlander Colin Rea 0.6452

Logan Verrett Ryan Vogelsong 0.7547
Carlos Villanueva Colby Lewis 0.6744
Ryan Vogelsong Logan Verrett 0.7547
Edinson Volquez Jim Johnson 0.7348
Michael Wacha Jake Odorizzi 0.8036

Adam Wainwright Scott Feldman 0.6295
Taijuan Walker Shelby Miller 0.5741
Adam Warren Daniel Mengden 0.7971
Jered Weaver A.J. Griffin 1.7653
Tyler Wilson Ervin Santana 0.9275
Alex Wilson Jordan Zimmermann 0.6897
Matt Wisler David Hernandez 0.7196
Blake Wood Nathan Eovaldi 0.8319

Vance Worley Miguel Gonzalez 0.6543
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Table A.1: Most similar match for each right-handed pitcher, 2016

Pitcher Most Similar Distance
Mike Wright Mike Foltynewicz 0.6340

Steven Wright R.A. Dickey 0.6293
Chris Young Colby Lewis 1.4429
Brad Ziegler Jeanmar Gomez 2.8651

Jordan Zimmermann Ryan Dull 0.6001

Table A.2: Most similar match for each left-handed pitcher, 2016

Pitcher Most Similar Distance
Tyler Anderson Scott Kazmir 0.7733

Antonio Bastardo Travis Wood 0.7434
Matt Boyd Adam Morgan 0.6427

Zach Britton James Paxton 1.7251
Ryan Buchter Travis Wood 0.7584

Madison Bumgarner Jon Lester 0.6813
Wei-Yin Chen Scott Kazmir 0.7659
Tony Cingrani Robbie Ray 0.8608
Adam Conley Justin Nicolino 0.7754
Patrick Corbin Robbie Ray 0.7337

Pat Dean Justin Nicolino 0.6367
Danny Duffy Brandon Finnegan 0.8069
Zach Duke Chris Sale 1.4223

Brandon Finnegan Jose Quintana 0.6112
Christian Friedrich Wade Miley 0.7675

Jaime Garcia Martin Perez 0.8442
Gio Gonzalez Mike Montgomery 0.8350
Cole Hamels David Price 0.7686
Brad Hand Dan Jennings 0.9119
J.A. Happ Wei-Yin Chen 0.7908
Rich Hill Christian Friedrich 1.4946

Derek Holland Jeff Locke 0.7053
Dan Jennings Brad Hand 0.9119
Scott Kazmir Hector Santiago 0.6513

Clayton Kershaw Travis Wood 1.4912
Dallas Keuchel CC Sabathia 0.8611

John Lamb Matt Boyd 0.9782
Jon Lester Madison Bumgarner 0.6813
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Table A.2: Most similar match for each left-handed pitcher, 2016

Pitcher Most Similar Distance
Francisco Liriano Martin Perez 0.6337

Jeff Locke Derek Holland 0.7053
Sean Manaea Tony Watson 0.8821
Steven Matz Mike Montgomery 0.7764
Wade Miley Christian Friedrich 0.7675

Andrew Miller Dan Jennings 1.3264
Tommy Milone Drew Smyly 1.1309

Mike Montgomery Steven Matz 0.7764
Matt Moore Mike Montgomery 0.8197

Adam Morgan Matt Boyd 0.6427
Justin Nicolino Pat Dean 0.6367

Jon Niese Chris Rusin 0.5540
Daniel Norris Danny Duffy 0.9015

Brett Oberholtzer Hector Santiago 0.6770
James Paxton Felipe Rivero 0.9400
Martin Perez Francisco Liriano 0.6337

Drew Pomeranz Christian Friedrich 1.2464
David Price Justin Nicolino 0.7498

Jose Quintana Brandon Finnegan 0.6112
Robbie Ray Eduardo Rodriguez 0.6191

Clayton Richard Tony Watson 1.0658
Felipe Rivero James Paxton 0.9400
Carlos Rodon Eduardo Rodriguez 0.7011

Eduardo Rodriguez Robbie Ray 0.6191
Jorge De La Rosa Chris Rusin 0.7605

Chris Rusin Jon Niese 0.5540
CC Sabathia Jon Niese 0.8586

Chris Sale Sean Manaea 0.9701
Hector Santiago Scott Kazmir 0.6513
Kevin Siegrist Hector Santiago 0.8364
Drew Smyly Antonio Bastardo 0.9342
Blake Snell Daniel Norris 0.9331
Julio Urias Blake Snell 0.9960

Tony Watson Sean Manaea 0.8821
Travis Wood Antonio Bastardo 0.7434
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Appendix B

Pitcher Characteristics Examined by

the Pitcher Similarity Measure

B.1 Pitchers with Small Year-to-Year Variation

We can use the similarity measure defined in Section 3.1.3 to compare pitchers to themselves

over time. For this purpose we computed the similarity measure between 2015 and 2016 for

each pitcher who threw at least 1000 pitches in each regular season. The covariance matrix

Σ for each platoon configuration in Equation (2.2) and the fractions f
RR
, f

RL
, f

LR
, f

LL
in

Equations (3.2) and (3.3) were computed using the combined data from both seasons.

Tables B.1 and B.2 list the right-handed and left-handed pitchers who changed the least

between 2015 and 2016 along with their age on 30 June 2016. Many of the smallest changers

are veterans with 13 of the 20 pitchers in the tables being at least 30 years old at midseason

2016 and with all pitchers except Carlos Rodon being at least 26. Two of the smallest

changers are the knuckleballers R.A. Dickey and Steven Wright. Unsurprisingly, Bartolo

Colon is also one of the least-changing right-handers.
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Table B.1: Right-handed pitchers who changed the least between 2015 and 2016

Pitcher Distance Age
R.A. Dickey 0.1280 41

Fernando Salas 0.2584 31
Steven Wright 0.2654 31
Bartolo Colon 0.2801 43

Arquimedes Caminero 0.2881 29
Corey Kluber 0.2995 30
Adam Warren 0.3040 28
Jered Weaver 0.3062 33
Max Scherzer 0.3107 31
Scott Feldman 0.3215 33

Table B.2: Left-handed pitchers who changed the least between 2015 and 2016

Pitcher Distance Age
Jon Lester 0.2581 32

Carlos Rodon 0.3056 23
Jorge De La Rosa 0.3357 35
Francisco Liriano 0.3572 32

Drew Smyly 0.3922 27
Adam Conley 0.3963 26
Patrick Corbin 0.4007 26
Tony Watson 0.4147 31
Gio Gonzalez 0.4150 30
Chris Rusin 0.4169 29

B.2 Pitchers with Large Year-to-Year Variation

Tables B.3 and B.4 list the right-handed and left-handed pitchers who changed the most

between 2015 and 2016 along with their age on 30 June 2016 and their ERA for the two

seasons. We see that these pitchers are younger than their more stable counterparts with

only 3 of the 20 pitchers being at least 30 years old at midseason 2016. Six of the ten right-

handers in Table B.3 and eight of the ten left-handers in Table B.4 improved their ERA from

2015 to 2016. Several of the pitchers in these tables (Phelps, Chavez, Montgomery, Hand,
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Pomeranz) changed from starting in 2015 to relieving in 2016. Others near the top of the

lists include Trevor Bauer and Kelvin Herrera who made significant changes to their pitch

mix [13] [59] and James Paxton who made a significant change to his pitching mechanics

[51].

Table B.3: Right-handed pitchers who changed the most between 2015 and 2016

Pitcher Distance Age 2015 ERA 2016 ERA
David Phelps 1.1081 29 4.50 2.28
Trevor Bauer 0.9869 25 4.55 4.26

Kelvin Herrera 0.9639 26 2.71 2.75
Jesse Chavez 0.9227 32 4.18 4.43

Matt Shoemaker 0.9156 29 4.46 3.88
Joe Blanton 0.9063 35 2.84 2.48
Will Harris 0.8785 31 1.90 2.25

Lance McCullers 0.8329 22 3.22 3.22
Noah Syndergaard 0.8240 23 3.24 2.60

Aaron Nola 0.8150 23 3.59 4.78

Table B.4: Left-handed pitchers who changed the most between 2015 and 2016

Pitcher Distance Age 2015 ERA 2016 ERA
James Paxton 1.4217 27 3.90 3.79

Mike Montgomery 1.0952 26 4.60 2.52
Brad Hand 1.0056 26 5.30 2.92
Matt Boyd 0.9570 25 7.53 4.53

Adam Morgan 0.9151 26 4.48 6.04
Daniel Norris 0.8312 23 3.75 3.38

Drew Pomeranz 0.8008 27 3.66 3.32
Danny Duffy 0.7765 27 4.08 3.51

Jeff Locke 0.7258 28 4.49 5.44
Chris Sale 0.6737 27 3.41 3.34
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B.3 Pitchers with Small Platoon Distances

We can use the EMD to measure the difference between a pitcher’s distribution of pitches

against right-handed and left-handed batters. We considered all pitchers who threw at least

1000 pitches during the 2016 regular season. For this computation, the covariance matrix

Σ for the ground distance in Equation (2.2) was generated for right-handed pitchers using

all clusters of pitches thrown by right-handers to either right-handed or left-handed batters.

Similarly, a covariance matrix Σ was computed for left-handed pitchers using all clusters of

pitches thrown by left-handers to either right-handed or left-handed batters.

Tables B.5 and B.6 list the right-handed and left-handed pitchers with the smallest platoon

distance along with each pitcher’s 2016 wOBA allowed to right-handed and left-handed

batters. A number of these pitchers relied heavily on a single pitch type. Reed (w = 72.2%),

Allen (w = 63.3%), and Conley (w = 65.5%) all threw a large fraction of four-seam fastballs

in 2016. Dickey (w = 87.6%) and Wright (w = 83.1%) each threw a large fraction of

knuckleballs while Harris (w = 66.4% cutter), Britton (w = 92.0% sinker), and Miller

(w = 60.7% slider) also threw a large fraction of a single pitch type in 2016.

Throwing a similar distribution of pitches to right-handed and left-handed batters is a char-

acteristic of a pitcher’s approach, but is not necessarily indicative of his platoon results.

While several of the pitchers (Reed, McCullers, Dickey, Happ) in Tables B.5 and B.6 had a

very small wOBA platoon split, others (Young, DeSclafani) had large wOBA platoon splits.

B.4 Pitchers with Large Platoon Distances

Tables B.7 and B.8 list the right-handed and left-handed pitchers with the largest platoon

distances in 2016 along with each pitcher’s 2016 wOBA allowed to right-handed and left-
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Table B.5: Right-handed pitchers with the smallest platoon distances in 2016

Pitcher Distance wOBA vs. R wOBA vs. L
Addison Reed 0.0781 .229 .228

Cody Allen 0.0970 .222 .292
Will Harris 0.1592 .263 .229

Lance McCullers 0.1780 .324 .327
Chris Young 0.2242 .320 .476

Adam Warren 0.2338 .343 .258
Vance Worley 0.2352 .318 .333
R.A. Dickey 0.2400 .337 .339

Anthony DeSclafani 0.2486 .260 .353
Steven Wright 0.2517 .303 .271

Table B.6: Left-handed pitchers with the smallest platoon distances in 2016

Pitcher Distance wOBA vs. R wOBA vs L
Adam Conley 0.2157 .316 .334
Dan Jennings 0.2538 .310 .290

Pat Dean 0.2632 .395 .356
J.A. Happ 0.2781 .292 .287

Madison Bumgarner 0.2919 .279 .223
Drew Smyly 0.3004 .328 .305
Steven Matz 0.3076 .296 .307

Tyler Anderson 0.3166 .333 .270
Zach Britton 0.3253 .180 .226

Andrew Miller 0.3339 .207 .220

handed batters. We see that by using very different distributions of pitches to right-handed

and left-handed batters, several of these pitchers (Weaver, Milone, Pomeranz) had very small

wOBA platoon splits while others (Iglesias, McGowan, Duffy) had large wOBA platoon

splits.

None of the right-handers and only two of the left-handers (Rivero and Siegrist) in Tables B.7

and B.8 threw a single pitch type at least 60% of the time in 2016. Seven of the right-handers

in Table B.7 (Ziegler, Weaver, Iglesias, McGowan, Herrera, Ramos, Chacin) contributed

to their platoon variation by throwing a significantly higher fraction of sliders to right-
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handed batters and a significantly higher fraction of changeups to left-handed batters. For

the purposes of this analysis, significantly refers to a fraction that is at least 0.10 higher.

Similarly, four of the left-handers in Table B.8 (Rivero, Watson, Manaea, Corbin) threw a

significantly higher fraction of sliders to left-handed batters and a significantly higher fraction

of changeups to right-handed batters.

Another popular strategy which was used by six of the pitchers in Tables B.7 and B.8

(Weaver, McGowan, Hand, Duffy, Siegrist, Corbin) was to throw a significantly higher frac-

tion of four-seam fastballs to same-side batters and a significantly higher fraction of sinkers

to opposite-side batters. Right-hander Kyle Hendricks employed the opposite approach by

throwing a significantly higher fraction of sinkers to right-handed batters and a significantly

higher fraction of four-seam fastballs to left-handed batters. Left-handers Milone and Hill

enhanced their platoon variation by throwing a significantly higher fraction of curveballs to

left-handed batters.

Table B.7: Right-handed pitchers with the largest platoon distances in 2016

Pitcher Distance wOBA vs. R wOBA vs. L
Brad Ziegler 1.8874 .278 .306
Jered Weaver 1.1993 .365 .365
Raisel Iglesias 1.0970 .224 .332

Dustin McGowan 1.0896 .212 .375
Kelvin Herrera 1.0802 .268 .246
Kyle Hendricks 0.9924 .243 .269

Matt Wisler 0.9723 .313 .334
A.J. Ramos 0.9458 .287 .262

Jhoulys Chacin 0.9152 .317 .327
Alfredo Simon 0.8719 .412 .454
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Table B.8: Left-handed pitchers with the largest platoon distances in 2016

Pitcher Distance wOBA vs. R wOBA vs. L
Brad Hand 1.1295 .297 .194

Felipe Rivero 1.0366 .272 .343
Tony Watson 0.9595 .302 .253

Tommy Milone 0.9032 .362 .357
Sean Manaea 0.8817 .322 .231
Danny Duffy 0.8480 .325 .201
Kevin Siegrist 0.8313 .269 .302

Rich Hill 0.8279 .244 .232
Patrick Corbin 0.7693 .363 .324
Drew Pomeranz 0.7610 .287 .284

B.5 Pitchers with Small Changes after Two Strikes

We can use the similarity measure defined by Equations (3.2) and (3.3) to measure how

much a pitcher changes his distribution of pitches as the count changes. For each pitcher

who threw at least 1000 pitches in 2016, we computed the distance described in Section 3.1.3

between the pitcher’s distributions of pitches thrown before two strikes and his distributions

of pitches thrown after two strikes. For each platoon configuration, the covariance matrix

for the ground distance in Equation (2.2) was generated using all pitch clusters associated

with pitches thrown before two strikes and all pitch clusters thrown after two strikes.

Tables B.9 and B.10 list the right-handed and left-handed pitchers who changed the least

after reaching two strikes in 2016. The two right-handers who changed the least (Grilli 62.4%

four-seam, Reed 72.2% four-seam) and the two left-handers who changed the least (Britton

92.0% sinker, Buchter 84.7% four-seam) each threw a large fraction of a single pitch type in

2016. In addition, several of the other pitchers in the two tables (Wright 83.1% knuckler,

Quackenbush 63.2% four-seam, Oh 60.6% four-seam, Cingrani 87.4% four-seam, Bastardo

65.5% four-seam) each threw over 60% of a single pitch type in 2016.
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Table B.9: Right-handed pitchers who changed the least with two strikes in 2016

Pitcher Distance
Jason Grilli 0.2231

Addison Reed 0.2744
Chris Young 0.2877
Jered Weaver 0.2944

Fernando Salas 0.3022
Alex Wilson 0.3100

Steven Wright 0.3101
Kevin Quackenbush 0.3113

Seung-hwan Oh 0.3137
Jesse Chavez 0.3192

Table B.10: Left-handed pitchers who changed the least with two strikes in 2016

Pitcher Distance
Zach Britton 0.2108
Ryan Buchter 0.2379

Brett Oberholtzer 0.3354
Tony Cingrani 0.3404

Chris Rusin 0.3549
Tyler Anderson 0.3730

Jeff Locke 0.3734
Eduardo Rodriguez 0.3756
Antonio Bastardo 0.3857

Steven Matz 0.4018

B.6 Pitchers with Large Changes after Two Strikes

Tables B.11 and B.12 list the right-handed and left-handed pitchers who changed the most

after reaching two strikes in 2016. Each of these pitchers threw a significantly higher fraction

of a particular breaking ball with two strikes. The pitch with the largest increase in frequency

after two strikes over all batters faced is referred to as the Delta Pitch in the two tables.

The ∆w column in Tables B.11 and B.12 indicates how much more frequently a pitcher

threw the Delta Pitch after two strikes as compared to before two strikes. Brad Ziegler, for
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example, threw his slider 10.16% of the time before two strikes and 40.45% of the time after

two strikes for a ∆w of 0.4045 - 0.1016 = 0.3029.

Among the pitchers in Tables B.11 and B.12 with smaller values of ∆w for their Delta Pitch,

Fiers (6 pitch types) and Darvish (7 pitch types) had a large set of possible pitch types with

which to adjust frequencies and left-handers Kershaw and Snell used a higher fraction of

sliders with two strikes in addition to a higher fraction of their Delta Pitch curve balls.

Table B.11: Right-handed pitchers who changed the most with two strikes in 2016

Pitcher Distance Delta Pitch ∆w
Brad Ziegler 2.4306 slider 0.3029

Dellin Betances 1.4501 curve 0.2086
Paul Clemens 1.3814 curve 0.2617

Carlos Martinez 1.2009 slider 0.2565
Jerad Eickhoff 1.1797 curve 0.2998

Mike Fiers 1.0923 curve 0.1828
Lance McCullers 1.0913 curve 0.3183

Raisel Iglesias 1.0753 slider 0.2601
Yu Darvish 1.0514 slider 0.1219
Aaron Nola 1.0365 curve 0.2094

Table B.12: Left-handed pitchers who changed the most with two strikes in 2016

Pitcher Distance Delta Pitch ∆w
Zach Duke 1.3792 curve 0.2997

Clayton Kershaw 1.3174 curve 0.1731
Jaime Garcia 1.1124 slider 0.3410
Brad Hand 1.0659 slider 0.2561

Carlos Rodon 1.0431 slider 0.2430
Chris Sale 1.0141 slider 0.2279

Patrick Corbin 0.9607 slider 0.3372
Gio Gonzalez 0.9532 curve 0.1923

Francisco Liriano 0.9263 slider 0.3101
Blake Snell 0.8758 curve 0.1426
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Appendix C

Batter Characteristics Examined by

the Batter Similarity Measure

C.1 Batters with Large Year-to-Year Variation

We can use the similarity measure to compare batters to themselves over time. For this

purpose we computed the similarity measure between 2016 and 2017 for each of the 79 right-

handed batters who hit at least 250 batted balls in each regular season. The right-handed

batters who changed the most between 2016 and 2017 along with their age on 30 June 2017

and their wOBA for the two seasons are given in Table C.1. The left-handed batters who

changed the most between 2016 and 2017 among the 53 left-handed batters with at least

250 batted balls in each season are given in Table C.2. The switch-hitters who changed the

most between 2016 and 2017 among the 23 switch-hitters with at least 250 batted balls in

each season are given in Table C.3.

Twelve players among the biggest changers in Tables C.1 to C.3 had a wOBA difference of
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RHB Distance Age 2016 wOBA 2017 wOBA
Matt Holliday 0.4165 37 .335 .320

Giancarlo Stanton 0.4120 27 .344 .410
Hernan Perez 0.3926 26 .312 .298

Jonathan Lucroy 0.3903 31 .362 .311
Evan Longoria 0.3809 31 .350 .312
Mark Trumbo 0.3566 31 .358 .295

Mike Trout 0.3543 25 .418 .437
Jose Bautista 0.3533 36 .355 .295
Marcell Ozuna 0.3493 26 .330 .388

Hanley Ramirez 0.3444 33 .367 .318

Table C.1: Right-handed batters who changed the most between 2016 and 2017

LHB Distance Age 2016 wOBA 2017 wOBA
Yonder Alonso 0.4027 30 .299 .366
Logan Morrison 0.3751 29 .318 .363

Jackie Bradley Jr. 0.3596 27 .354 .313
Scooter Gennett 0.3569 27 .315 .367

Jake Lamb 0.3535 26 .352 .353
Jason Kipnis 0.3528 30 .347 .300
Dee Gordon 0.3504 29 .280 .312

Gerardo Parra 0.3456 30 .284 .337
Matt Carpenter 0.3442 31 .375 .361
Bryce Harper 0.3434 24 .343 .416

Table C.2: Left-handed batters who changed the most between 2016 and 2017

Switch-Hitter Distance Age 2016 wOBA 2017 wOBA
Erick Aybar 0.3853 33 .271 .282

Yasmani Grandal 0.3809 28 .350 .325
Jed Lowrie 0.3782 33 .282 .347

Yangervis Solarte 0.3704 29 .346 .311
Eduardo Escobar 0.3532 28 .269 .320

Carlos Beltran 0.3421 40 .358 .283
Francisco Lindor 0.3405 23 .340 .353
Kendrys Morales 0.3291 34 .339 .320

Matt Wieters 0.3253 31 .307 .273
Neil Walker 0.3238 31 .351 .346

Table C.3: Switch-Hitters who changed the most between 2016 and 2017
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at least 50 points between the seasons with eight players (Stanton, Ozuna, Alonso, Gennett,

Parra, Harper, Lowrie, Escobar) improving and four players (Lucroy, Trumbo, Bautista,

Beltran) declining. The only player in the tables of biggest changers who had at least a

3 mph increase in average exit velocity between 2016 and 2017 was switch-hitter Jed Lowrie

who also enjoyed a 65 point gain in wOBA between the two seasons. Lowrie’s success was

fueled in part by achieving the largest improvement in difference between in-zone swing rate

and out-of-zone swing rate between the two seasons [58]. Seven of the players in the tables

(Holliday, Perez, Longoria, Trumbo, Bautista, Kipnis, Grandal) had at least a 3 mph decline

in average exit velocity between 2016 and 2017 with five of these players being at least 30

years old at midseason 2017. All seven of these players had a lower wOBA in 2017 than in

2016.

Seven of the players in the tables (Trout, Alonso, Morrison, Parra, Carpenter, Lowrie, Lin-

dor) increased their average launch angle by at least four degrees and all but Carpenter, who

finished with the highest average launch angle in the NL in 2017, increased their wOBA from

2016 and 2017. Three of these players (Alonso, Morrison, Lindor) set new career highs in

home runs with at least 15 more than their previous best and Alsonso admitted to making

a conscious effort to hit more balls in the air in 2017 [52]. Two of the players in the tables

(Longoria, Lucroy) had at least a four degree decrease in average launch angle. These play-

ers are both over 30 and also experienced decreases in average exit velocity and substantial

declines in wOBA across the two seasons.

C.2 Batters with Small Year-to-Year Variation

The right-handed batters who changed the least between 2016 and 2017 according to the

similarity measure along with their age on 30 June 2017 and their wOBA for the two seasons

are given in Table C.4. The left-handed batters who changed the least between 2016 and 2017
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are given in Table C.5 and the switch-hitters who changed the least are given in Table C.6.

While 12 players among the biggest changers in section C.1 had a wOBA change of at least

50 points between 2016 and 2017, only Ben Zobrist among the least-changers in Tables C.4

through C.6 had a wOBA difference of at least 50 points between the two seasons.

RHB Distance Age 2016 wOBA 2017 wOBA
Nolan Arenado 0.2268 26 .386 .395

Ian Kinsler 0.2291 35 .356 .313
Maikel Franco 0.2312 24 .311 .292

Brandon Phillips 0.2378 36 .315 .316
Josh Donaldson 0.2417 31 .403 .396

Jose Altuve 0.2477 27 .391 .405
Khris Davis 0.2478 29 .349 .361

Mookie Betts 0.2484 24 .379 .339
Brandon Drury 0.2522 24 .335 .325

Jose Abreu 0.2556 30 .349 .377

Table C.4: Right-handed batters who changed the least between 2016 and 2017

LHB Distance Age 2016 wOBA 2017 wOBA
Jay Bruce 0.2343 30 .340 .350

Corey Seager 0.2410 23 .372 .364
Daniel Murphy 0.2430 32 .408 .385

Joe Panik 0.2435 26 .300 .329
Curtis Granderson 0.2448 36 .339 .330
Freddie Freeman 0.2480 27 .402 .407

Joe Mauer 0.2487 34 .327 .349
Nick Markakis 0.2497 33 .321 .321
Brett Gardner 0.2511 33 .317 .336
Jason Heyward 0.2544 27 .282 .311

Table C.5: Left-handed batters who changed the least between 2016 and 2017
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Switch-Hitter Distance Age 2016 wOBA 2017 wOBA
Freddy Galvis 0.2414 27 .284 .298
Chase Headley 0.2423 33 .311 .329

Tucker Barnhart 0.2451 26 .300 .317
Asdrubal Cabrera 0.2551 31 .345 .338

Ben Zobrist 0.2628 36 .360 .302
Melky Cabrera 0.2642 32 .342 .319

Cesar Hernandez 0.2762 27 .335 .346
Victor Martinez 0.2868 38 .351 .303

Jose Ramirez 0.2911 24 .355 .396
Carlos Santana 0.2957 31 .370 .350

Table C.6: Switch-Hitters who changed the least between 2016 and 2017
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Appendix D

Dependence of Prediction Accuracy

on the Partition

The error in a prediction generated using the MSP approach depends on the partition of

measurement space. Using equation (5.17), we can write the unobserved performance for

player j as

y(j) =
B∑
k=1

(p̂y(j, k) + εp(j, k))
(
R(j, k) + εR(j, k)

)
. (D.1)

The error terms are defined by εp(j, k) = py(j, k)− p̂y(j, k) and εR(j, k) = Ry(j, k)−R(j, k)

where Ry(j, k) is the average value of the unobserved batted balls in subset k for player j.
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The prediction error is given by

y(j)− ŷs(j) =
B∑
k=1

[
p̂y(j, k)εR(j, k) +R(j, k)εp(j, k) + εp(j, k)εR(j, k)

]
(D.2)

where each term in the sum depends on the subset k.

The error terms have a complex dependence on the group of subsets that define the partition.

Reducing the size of the εR(j, k) error depends on balancing the competing goals of using

subsets k that include enough data to estimate R(j, k) accurately but which also allow a

single R(j, k) to be representative of any particular sample within a subset that might occur

in y(j). The variance of the εp(j, k) error is given by [10]

VAR [εp(j, k)] = σ2
p(k)

(
1− α2(N, k)

)
(D.3)

where σ2
p(k) is the variance of px(j, k) over batters j for subset k. Thus, VAR [εp(j, k)] depends

on both the distribution of the px(j, k) and the α(N, k). Since the error terms and the

prediction error in equation (D.2) have a complex dependence on the interaction between

the measurement space partition and the structure of the data we use a learning process for

partition selection as described in Sec. 5.4.6.
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Appendix E

Applying MSP to First-Half 2021

Data

In this Appendix we apply the MSP approach to batted ball data collected before the All-

Star break during the 2021 MLB season. The study considers the 185 batters with at least

150 batted balls during this period. The P5,10 partition was used and the α(150, k) values

were estimated using the first 150 batted balls for each of the 185 batters. The subset means

R(k) were used to approximate R(j, k) for each player j. The full set of first half batted

balls for each player was used to compute ŷs(j) where the α(150, k) values were adjusted

to α(N ′(j), k) using the Spearman-Brown formula to regress each distribution according to

each individual player’s batted ball distribution and number of batted balls N ′(j). The result

is an estimate of true talent wOBA on contact (wOBAcon) that has removed all contextual

information (ballpark, batter running speed, atmospheric conditions, defense, etc.). The

accuracy of wOBAcon predictions can be improved by incorporating context into the R(j, k)

for each player j as demonstrated in Sec. 5.4.6. Table E.1 presents the context-invariant true

talent wOBAcon leaders based on first-half 2021 data.
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Table E.1: Context-invariant ŷs(j) estimate of wOBAcon using first-half 2021 data

Player True Talent wOBAcon
Shohei Ohtani .556

Fernando Tatis Jr. .518
Giancarlo Stanton .515

Vladimir Guerrero Jr. .506
Ronald Acuna Jr. .506

Aaron Judge .500
Kyle Schwarber .493

Joey Gallo .488
Tyler O’Neill .480
Nelson Cruz .474

Yordan Alvarez .470
Bryce Harper .470
Rafael Devers .469
Pete Alonso .460
Matt Olson .460
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