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Microbial metal resistance and metabolism across dynamic
 landscapes: high-throughput environmental microbiology

[version 1; referees: 2 approved]
Hans Carlson ,   Adam Deutschbauer , John Coates 2

Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, Berkeley, CA, USA
Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA

Abstract
Multidimensional gradients of inorganic compounds influence microbial activity
in diverse pristine and anthropogenically perturbed environments. Here, we
suggest that high-throughput cultivation and genetics can be systematically
applied to generate quantitative models linking gene function, microbial
community activity, and geochemical parameters. Metal resistance
determinants represent a uniquely universal set of parameters around which to
study and evaluate microbial fitness because they represent a record of the
environment in which all microbial life evolved. By cultivating microbial isolates
and enrichments in laboratory gradients of inorganic ions, we can generate
quantitative predictions of limits on microbial range in the environment, obtain
more accurate gene annotations, and identify useful strategies for predicting
and engineering the trajectory of natural ecosystems.
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Life, the universe and everything
In the book, The Hitchhiker’s Guide to the Galaxy, the Earth is 
described as “a computer of such infinite and subtle complexity 
that organic life itself shall form part of its operational matrix”1. 
Understanding the workings of the Earth as a deterministic compu-
tational entity remains a tantalizing object, and characterizing the  
relationship between organic life and the rest of the “operational 
matrix” (that is, inorganic geochemistry) is a central theme in the 
environmental sciences. Although careful studies have yielded 
insights into how physical and chemical laws influence microbial 
fitness and function in response to some environmental parameters,  
a major challenge lies in scaling laboratory experiments to  
landscape-wide predictions of gene and microbial fitness (Figure 1).

Recontextualizing environmental isolates through 
high-throughput microbial physiology and genetics
Great strides have been made in our ability to characterize the 
molecular composition of matter on Earth—from elemental 
analyses of sediments2,3 and structural characterization of natural  
organics4 to 'omics measurements of gene and protein content of 
natural environmental communities5,6. Technological advances 
in computation, data storage, and analytical tools enable this  
revolution. Alongside these advances is a similar, though often 
overlooked, revolution in robotics and laboratory automation.  
High-throughput cultivation in microtiter plates is possible both  
aerobically and anaerobically, and plate readers can be used to 
monitor optical density or metabolites using colorimetric assays7,8. 
It is also possible to fill microplates with arrays of compounds 
or serially diluted solutions to simultaneously evaluate the influ-
ence of hundreds to tens of thousands of parameters (for example,  
small-molecule libraries, inorganic ions, carbon sources, or 

other nutrients) on microbial growth kinetics and metabolism7.  
Additionally, recent advances in high-throughput genetics can 
be leveraged (in microbial isolates) to rapidly identify genetic 
determinants important for fitness in a given growth condition9–11  
(Figure 2). Importantly, high-throughput assays can be used 
to quantitatively measure growth and respiratory activity of 
microbial cultures to define the fitness of a given microbial res-
piratory metabolism to defined gradients of compounds. Mass  
spectrometry–based metabolite analysis can give further insights 
into important metabolic signatures of this activity, and 16S  
amplicon sequencing can be used to monitor changes in the  
microbial community in response to these parameters. Subse-
quent growth-based assays with isolates from a given microbial  
enrichment culture can be used to measure isolate fitness and isolate  
gene fitness in response to the same gradients of compounds 
in which the enrichment was cultivated. Through measuring  
metabolic activity, microbial community structure, isolate fitness, 
and gene fitness in the context of gradients of environmentally  
relevant parameters, we can build models that link gene-,  
microbe-, and metabolism-specific fitness to environmental  
context (Figure 2). Through such workflows, environmental micro-
biologists now are able to re-array and reconstitute the purified 
organic and inorganic components of microbial ecosystems at an  
unprecedented scale and speed.

Toward multidimensional measurements
Microbes rely on both organic and inorganic cofactors and nutrients 
and live in complex multidimensional gradients of beneficial, neu-
tral, and toxic compounds12,13. Microbial niche space is often viewed 
as an n-dimensional matrix in which antimetabolites, carbon sources, 
and essential nutrients influence the ability of a microorganism  

Figure 1. Understanding mechanisms whereby microorganisms survive in geochemical gradients is a central goal of environmental 
microbiology. Understanding mechanisms whereby microorganisms survive in geochemical gradients is a central goal of environmental 
microbiology.
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or microbial community to grow and survive13,14. Thus, only by  
altering the concentrations of multiple inorganic or organic 
compounds in a massively parallel, high-throughput cultiva-
tion platform can we gain a quantitative bottom-up picture of  
gene-microbe-metabolism-environment interactions. Several high-
throughput approaches developed in the biomedical sciences can 
be applied to problems in environmental microbiology, includ-
ing high-throughput screens to identify inhibitory compounds,  
dose-response microplate assays to quantify the inhibitory 
potency of compounds, checkerboard synergy assays to evaluate 
non-linear interactions between compounds, and leave-one-out 
assays to evaluate formulation potencies8,15. However, most of the  
compounds used in the biomedical industry (for example, drugs) 
are not environmentally relevant. To address this shortfall, we 
have begun to array metals and other inorganic compounds such 
as in an “80 metals plate” (Table 1) to create compound collec-
tions that more accurately capture the microbial stressors present  
in the environment. This arrayed compound collection can be  
serially diluted and added to microbial cultures to determine 
inhibitory concentrations such as minimal inhibitory concentra-
tion (MIC) or the concentration required to inhibit 50% of control 
growth (IC

50
). By varying the inoculum, respiratory substrates, and 

other parameters, experimentalists can gain insights into how other 
dimensions of the environment influence the inhibitory potency of 
these inorganic ions on gene-microbe-metabolism fitness.

Microbes know bioinorganic chemistry better than chemists 
do
Organic life exists and evolves in a matrix of both organic and inor-
ganic compounds. One indelible mark of this evolutionary history 
consists of the diverse metallocofactors incorporated into enzymes 
that enable chemistry impossible for catalysts composed solely 
of C, H, N, O, P, and S16. High concentrations of metals are toxic 
to cells, and many metals also serve no catalytic role. Therefore, 
resistance mechanisms to metals have evolved. Metals are toxic 
to microorganisms because of their redox activity and because 
antimetabolic metals can compete with cofactor metals for binding 
to biological ligands and proteins17. Not surprisingly, microorgan-
isms have evolved mechanisms for coping with metal stress, and 
these mechanisms vary by microorganism, metabolic state, or metal 
and are different depending on the metal concentration16,18. As an 
example, iron and its interactions with other transition metals and 
microbial cells are fairly well studied. Iron is an essential metal 
for a variety of metalloproteins. Under limiting concentrations of 
iron, other transition metals can interfere with high-affinity iron 
uptake systems and metalloregulatory proteins19, but at higher con-
centrations, some transition metals are toxic because of their ability 
to catalyze the production of reactive oxygen species20. Thus, the 
mechanism of toxicity and the mechanisms of resistance will be 
different depending on the concentrations of the metals. Very few 
studies systematically evaluate metal toxicity under both excess and 

Figure 2. High-throughput cultivation pipelines can be used to evaluate gene-microbe-metabolism fitness in response to gradients 
of naturally occurring inorganic compounds. Measurements of metal content across rock, soil, and water samples can be obtained, 
and landscape-scale elemental maps can be constructed. Mineral samples and metal ions can be arrayed in microplates, and tagged-
transposon pool assays, 16S amplicon sequencing, and metabolism-specific colorimetric assays can be employed to quantify the influence 
of concentrations of various metals on gene-microbe-metabolism fitness. Linking landscape-scale measurements of geochemistry to high-
throughput laboratory measurements of microbial activity in response to geochemistry will enable higher-resolution biogeochemical models.

Page 4 of 8

F1000Research 2017, 6(F1000 Faculty Rev):1026 Last updated: 29 JUN 2017



Table 1. 80 metals plate.

Compound name Stock 
concentration, mM

Sodium sulfate 1,000

Sodium sulfite 1,000

Sodium selenate 1,000

Sodium selenite 1,000

Sodium perchlorate 1,000

Sodium chlorate 1,000

Sodium silicate 1,000

Sodium nitrate 1,000

Sodium nitrite 100

Sodium phosphate 1,000

Sodium phosphite 1,000

Sodium hypophosphite 1,000

Sodium fluorophosphate 1,000

Sodium arsenate 1,000

Sodium m-arsenite 1,000

Ferric-nitrilotriacetic 
acid (Ferric-NTA)

10

Zinc-NTA 10

Copper-NTA 10

Potassium chromate 1,000

Sodium molybdate 1,000

Sodium tungstate 1,000

Sodium bromate 1,000

Sodium thiosulfate 1,000

Sodium chloride 2000

Sodium bromide 1,000

Sodium iodide 1,000

Sodium fluoride 1,000

Lithium chloride 1,000

Potassium chloride 1,000

Rubidium chloride 1,000

Cesium chloride 1,000

Magnesium chloride 1,000

Calcium chloride 1,000

Strontium chloride 1,000

Barium chloride 
dihydrate

10

Chromium(III) chloride 10

Manganese(II) chloride 10

Ferric chloride 100

Cobalt chloride 10

Nickel(II) chloride 10

Copper(II) chloride 10

Compound name Stock 
concentration, mM

Zinc chloride 10

Aluminum chloride 10

Cadmium chloride 10

Thallium(I) acetate 10

Cerium(III) chloride 1,000

Europium(III) chloride 100

Ethylenediamine-N,N′-
disuccinic acid (EDTA)

500

NTA 500

Chromium-NTA 10

Nickel-NTA 10

Ammonium chloride 1,000

Hydroxylamine 
hydrochloride

1,000

Vanadium chloride 10

Ferrous ammonium 
sulfate

10

Beryllium sulfate 1,000

Gallium(III) chloride 100

Lead(II) chloride 10

Sodium cyanide 100

Sodium pyrophosphate 100

Sodium metavanadate 100

Sodium periodate 100

Sodium iodate 100

Sodium thiophosphate 100

Sodium chlorite 100

Sodium hypochlorite 10

Potassium tellurate 1

Silver chloride 1

Potassium 
hexahydroxoantimonate

10

Gold chloride 1

Mercury chloride 10

Platinum(IV) chloride 10

Palladium(II) chloride 10

Potassium tellurite 10

Boric acid 10

Bismuth chloride 1

Cobalt-NTA 10

Manganese-NTA 10

Cadmium-NTA 10

Aluminum-NTA 10

These compounds are arrayed in a 96-well 
microplate format that can be serially diluted 
into other microplate formats for high-throughput 
cultivation of microbial cultures.
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limiting concentrations of essential metals, but by quantifying the 
toxicity of larger panels of metals under these conditions, we can 
obtain “structure-activity” information for inorganic compounds 
and their toxicity against, for example, uptake and efflux systems 
(Figure 3). A microplate array involving compounds such as the 
“80 metals plate” described in Table 1 could be serially diluted and 
used to evaluate the toxicity of many metals simultaneously against 
microbial isolates, enrichments, and pooled transposon mutants. 
Metal cations and oxyanions with varying ionic radii, charge, and 
electron affinity will vary in their interaction with different cellular 
systems. Only by quantifying the inhibitory potency of these metals 
under the various conditions under which these different cellular 
systems are important can we gain insights into how these systems 
have or have not evolved resistance to various metals. Ultimately, 
the data obtained through such studies will help geomicrobiologists 
to infer which metals may have been present in the environment 
in which a microbe evolved and to quantify the geochemical and 
genetic parameters that limit the growth of a microbial isolate or 
community in the environment.

Metal-metabolism interactions
Metal requirements and toxicity are influenced by the meta-
bolic state of a microorganism. Microorganisms can grow with a 
range of electron donors, carbon sources, and electron acceptors. 
All of these metabolisms have unique metal requirements and  
sensitivities to inorganic antimetabolites and toxins. As such, met-
als can be selective inhibitors or promoters of different metabo-
lisms. For example, zinc can be more inhibitory of bacteria  
growing under glucose catabolic conditions versus other carbon 
sources because zinc inhibits key enzymes in glycolysis21. Against 
respiratory sulfate reduction, monofluorophosphate, molybdate, 
and perchlorate are all selective inhibitors with varying selec-
tivities, potencies, and modes of inhibition against the central  
enzymes in the sulfate reduction pathway22. Some redox-active 
metals are more inhibitory of aerobically growing cells than  
anaerobic cells because they can reduce oxygen to superoxide 
and catalyze Fenton chemistry. By quantifying the inhibitory or  
stimulatory potencies of large panels of inorganic compounds 
against microbial isolates and enrichments carrying out various 

Figure 3. Toxic metals (Mtox.) interfere with the metabolism of essential, nutrient metals (Mnut.). The influence of a toxic metal will vary 
depending on the metabolism. For example, metabolism 1 and metabolism 2 could be aerobic respiration, nitrate reduction, sulfate reduction, 
and photosynthesis. Similarly, other metals (I) can serve as antimetabolic inhibitors of respiratory enzymes, competing with substrate (Sred) for 
binding and turnover to product (Sox). Depending on the inhibitory potency of the toxic metal (Mtox.), the requirements of the essential metal 
(Mnut.), and the inhibitory potency of a respiratory inhibitor (I), different metabolisms will have different environmental ranges in response to 
metal gradients.
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metabolic activities selective compounds can be identified and 
the degree of their selectivity quantified. Quantification of these 
tipping points will improve biogeochemical reactive transport  
models that incorporate predictions of microbial metabolic  
activities.

Optimism for the future: identifying novel antimetabolites 
as predictors of ecosystem function and environmental 
engineering strategies
Multidimensional microbiology is poised to become the norm in 
the 21st century. Alongside rapidly improving computational and 
analytical tools, high-throughput microbial physiology will enable 
massively parallel measurements of microbial fitness in complex 
gradients of environmentally relevant conditions. Rarefaction 
curves from genome sequencing datasets imply that the genetic 
diversity of life is not infinite23, nor is the elemental composition  
of biosphere. From this perspective, the “infinite and subtle  
complexity”1 of the natural world has more to do with the fractal  
complexity of natural gradients, heterogeneous mixtures in soil, 
complex water currents, and the corresponding conglomerate of  
microbial activity in this geochemical milieu. Thus, although 

we may not reach a comprehensive and flawless model of  
biogeochemical processes on Earth from bottom-up measurements 
of microbial fitness and physiology, we are likely to greatly increase 
the resolution of our models through careful, high-throughput  
experimentation.
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