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Abstract

Recent evidence suggests that many economic time series are subject to
structural breaks. In the presence of breaks, including historical data prior to
the most recent break to estimate a forecasting model will lead to prediction
errors that are biased but also may have a smaller variance. This paper
examines the trade-off between the bias and variance of forecast errors and
proposes a new set of reversed Cusum procedures to determine the window
size that minimizes mean squared forecast error. This window size varies over
time and depends on the size of the break, the distance to the break and the
squared correlation coefficient between predicted and realized values. The
forecasting performances of several procedures for determination of window
size are compared in a simulation experiment and in a recursive prediction
exercise using data on US stock returns. We find evidence that out-of-sample
forecasting performance can be improved by explicitly accounting for breaks
and adopting the proposed method for optimally determining the window
size.

JEL Classifications: C22, Ch3, G10.

Key Words: Parameter instability, forecasting, expanding and rolling
windows, reversed Cusum or Cusum squared tests, multiple breaks, choice

of observation window, predictability of US stock returns.



1. Introduction

Structural breaks have been an important preoccupation of economists for a long
time. In the context of linear regression models Chow (1960) derived an F-test for
a structural break when the point of the break is given, while Brown, Durbin and
Evans (1975) derive Cusum and Cusum Squared tests that are also applicable when
the time of the break is unknown. More recently, the literature has extended the
earlier tests to dynamic models with unit roots and tests for consistent estimation of
the size and timing of multiple break points have also been developed.! Following
these developments, applied studies have reported evidence of breaks in several
economic time series.?

If structural breaks characterize a particular time series, using the full historical
data series to estimate a forecasting model will lead to forecast errors that are
no longer unbiased, although they may also have a lower variance. Given this
trade-off, it is far from clear how much of the data should be used to estimate a
prediction model that minimizes out-of-sample mean squared forecast errors. This
question, which we address in the current paper, is clearly an important issue. In
the context of forecasting performance, Clements and Hendry (1999) go as far as
stating that “deterministic shifts are a primary source of serious forecast failure”
(p. 28) and that other problems related to model misspecification, failure to impose
true restrictions, measurement errors etc are of relatively less significance.

Several informal procedures have been developed to handle non-stationarities
in time series analysis. Most widespread is perhaps the approaches of using a
rolling window of fixed size or to apply exponentially declining weights to past
observations. Neither of these methods is likely to work well if the underlying time
series undergoes sudden breaks in its conditional mean. Using a short fixed window
size or a small degree of smoothing may work well immediately after a break but
will discard valuable information as the distance to the break grows. Similarly, if
a large fixed window size or a large degree of smoothing is used, it will take longer

for the estimated model to recognize that a break has occurred, producing biased

1See, for example, Ploberger, Kramer and Kontrus (1989), Hansen (1992), Andrews (1993),
Inclan and Tiao (1994), Andrews and Ploberger (1996), Chu, Stinchcombe and White (1996) and

Bai and Perron (1998a).
2See, for example, Alogoskoufis and Smith (1991), Garcia and Perron (1996), Bai and Perron

(1998a,b), Clements and Hendry (1998, 1999) and Timmermann (1998).



forecasts in the interim. Considerations such as these suggest that a time-varying
window size is called for. Ideally, the window size should be large far away from
the most recent break to allow for efficient estimation of the forecasting model.
Closer to the most recent break the window size should be short to avoid using too
much data prior to the occurrence of the break which will bias the estimates of the
forecasting model.

In this paper we compare the forecasting performance of unconditional and
conditional approaches to determination of window size. Unconditional methods
such as a rolling or an expanding window at most let the window size vary as a de-
terministic function of time. In contrast, conditional approaches treat the window
size as a parameter and attempt to estimate the point of the most recent break as
well as its size. Based on these parameter estimates, the possible trade-off between
bias and variance of the forecast error is next explored in selecting an appropriate
window size. A particularly simple approach to the estimation of the window size
is to apply the Cusum or Cusum squared procedures to observations reversed in
time so that the last observation is placed first, the penultimate observation second
and so on. We refer to this as the “reversed” Cusum or Cusum squared tests. As
we shall argue below, some of the undesirable properties of the standard Cusum
type tests in identifying break points now to some extent become strengths when
the test is applied to observations reversed in time to select an observation window
for forecasting purposes.

The plan of the paper is as follows. Section 2 derives formal results on the
optimal choice of observation window in the presence of a structural break when
the objective is to minimize the mean squared forecast error. Section 3 considers
the case where the objective is to maximize the market timing value of the forecast.
Section 4 presents further theoretical results demonstrating that the basic trade-off
involved in determining the optimal window size is not confined to a “rare structural
break” model but holds more generally for models with time-varying parameters.
Section 5 discusses several approaches to determination of the observation window
when breaks are present in the data generating process and develops the reversed
Cusum procedures for real time forecasting. Section 6 conducts a Monte Carlo
experiment on the performance of the alternative methods. Section 7 presents em-
pirical evidence on structural breaks in a model for US stock returns and examines

the empirical performance of the procedures in a recursive prediction experiment.



Section & concludes.

2. Optimal Window Size under a Single Structural Break

Consider the simple linear regression model subject to a single structural break

ye = Bix +uy, uy ~ I1D(0,0%), t=12..1T,

1
,BIQXt+Ut, UtNIID(O,O'%)’ t:T1+1,,T+1, ( )

where y; is some univariate stochastic process, x; is a p X 1 vector of known regres-

sors, B; (i = 1,2) are p x 1 vectors of regression coefficients, and u; is a serially

uncorrelated error term that is independently distributed of x; for all ¢ and s,
possibly with a shift in its variance from % to o2 at the time of the break point.
Assuming that B, # B3, or 02 # o2, it follows that there is a structural break in the
data generating process at time 77. Suppose that we know that 3 has changed at
T and our interest lies in forecasting yr.; given the observations {y;,t = 1,...,T}
and {x;, t =1,...,T,T + 1}. Which fraction of the observations should we use to
estimate a model that, when used to generate forecasts, will minimize the expected
mean squared forecast error? Here we are not concerned with the classical problem
of identifying the exact point of the break, but rather the fraction of the sample
information that it is optimal to use in order to forecast out of sample on the as-
sumption that a structural break has in fact occurred. The standard solution is to
only use observations over the post-break period (t =77 +1,...,T) to estimate the
model. For the purpose of forecasting, we shall see that this will not necessarily be
optimal.

Let A denote the fraction of sample observations to be used in estimation for
the purpose of forecasting yr, 1, and denote by m = T — [T'A] + 1, where [T'A]
stands for the integer part of T'A. Naturally we assume that the most recent
fraction of observations is used for forecasting. Let X, r be the (T'—m + 1) x p
matrix of observations on the z-variables, while Y,, s is the (T"— m + 1) vector
of observations on the dependent variable whose value for period T'+ 1 we are
interested in forecasting. Defining the quadratic form Q,r, = X;’,T¢X77Ti so that
Q. 1, = 0if 7 > T, the OLS estimator of 3 based on using the fraction A of the

observations is given by



Br(m) = Q;&TXIm,TmeT' (2)
The forecast error in the prediction of y;,1 will be a function of the data sample

used to estimate ( and is given by

ers1(m) = yYry1 — Yry1 = (ﬁz - BT(m)>/XT+1 + Uty (3)

Notice that we implicitly assume that it is known that there is no break in the
regression model in period T+ 1. Otherwise the best forecast would need to
consider the distribution from which new regression parameters are drawn after a
break. Since typically there are relatively few breaks in most economic time series,
we do not believe that information is readily available on the meta distribution

determining the size and frequency of the breaks.

2.1. Conditional MSFE results

We first consider the case where the prediction can be conditioned on the sequence
of z; values. Taking expectations conditional on Xy = {x1,X9, ..., X741}, we get

the conditional bias in the forecast error:

bias(m|Xr 1) = Blera(m)[Xea] = (B, Brm)) xr . (4)

Furthermore, it can be shown that

ers1(m|Xep) = (By= Y0 XmrQplr) Xrg1 + urga (5)
= (By— B) Qun Q. rx%r1 — W, 1 X0 rQ,,p X011 + ury,

where W, 7 = (U, Umt1, .-, ur)'. Squaring this expression and taking expectations,

the conditional mean squared forecast error (MSFE) can be computed as follows:

MSFE(m|Xri1) = E [eq,(m)[Xeri] (6)
= O-g + Jg“/Qm,Tl Q;:TXT-&-IX{]U,_lQ;;TQm,Tlp’

7 (X 7 QX1 41X 11 Q7 X 0 B 1),



where p = (8,—8;)/02, tr(.) is the trace operator and X, = E[umyTu;n,T] is a
(T—m+1) x (T —m+1) diagonal matrix with ¢7 in the first 7} —m+ 1 diagonal
places and o3 in the remaining 7' — T} places.

Intuition is gained by considering the case with a single regressor (p = 1):

ery1(m) = ury1 + 05, (By — B1)xre1 — vo(m) o, (7)
where
Ty
> a7
em = me ) UT(m) =

>
t=m

and where 6, = 0,,(T1,T) = &1 Hence the conditional MSFE becomes

Qm
VO, + 1
E [62T+1( )|XT+1] = 02 +02$T+1 { 292 ZT 2 (" (8)

where 1) = (02 — 02)/03 is the proportional decline in the variance after the break.
Since m = (T' + 1) — [T'A], the MSFE is clearly a function of A and need not be
monotonic in m. Suppose A is increased (m is decreased), so that a larger fraction
of the recent observations is used for forecasting. The result is a higher 6,,, leading
to an increased squared bias. However, (Zf:mxf)fl decreases and the total effect
on the MSFE depends on the balance between these two factors as well as on
the extent of the squared structural break in the regression parameters (u) and
in the variances (). Clearly there is a trade-off between using a biased estimate,
which results from including observations from the first regime, and getting lower
variability of the forecast error by including observations from the first regime.

The optimal window size can be determined from the value of m that minimizes
the conditional MSFE:

m* = argmin {E [e},,(m)|Xr41]}. (9)

m=1,..,Ti+1
The fraction of observations from the first regime used in forecasting depends

in a complicated manner on the degree of the structural change, as measured by
= (B85 — ,)?/03 and ¢ = (0% — 03)/03, and the relative sample variation in z;

durlng the second as compared to the first regime.



A simple recursive decision rule can be developed to determine the window size
that minimizes the conditional MSFE. The choice between whether to start with

observation ¢ = m + 1 rather than ¢t = m, depends on whether

E [62T+1(m)|XT+1} >FE [€2T+1(m + 1)|XT+1] , m=T,T7 —1,..., L (10)

This condition is satisfied if

2 —1 —1 ! —1 —1
oot (Qun Qur = Qi Qi 1r) Xr11%r 41 (Quur Qe + Qul i 7 Qi) 1

> tT (X.m,TQ;:TXTJ,_lefJ'_l QT_r:TX;n,TZm,T) (11)

-1 / -1 I
—tr (Xm+17TQm+1,TXT+1XT+1Qm—l—l,TXerl,TEerlvT) :

Again the expression simplifies somewhat in the case with a single regressor (p = 1):

Ops +1 06, +1
. ( " m—i—l) Qm+1,T Qm,T

To enhance the intuition from this expression, we initially analyze whether it is

(12)

optimal to include in the estimation of 3 only observations from the second regime.

This will be the case if the following condition holds:

B [e1.(T)[Xri] > E (71 (Th 4+ 1)[Xpi] - (13)

T
Setting m = Ty we see that 6, = 27,/ > 27, and Quy1,, = 0,41 = 0. Since zq,
t=T,
is the last observation in the first regime, only observations after the break point

will be used if

Qmn.r
i +op > L (14)
Qri1,1

or, equivalently, if

2 d 2
02/ Z Tt

t=T1+1

=
o3/ 3 ai

t=T1

prag, + 1 > (15)



This last form has a particularly intuitive interpretation. The first term on the
left hand side is the squared bias in the estimate of yr induced by including the
extra information from the first regime, while the second term is the proportional
decrease in volatility after the break. The term on the right hand side is the ratio
of the efficiency of the parameter estimates, as measured by the two variances of (3,
based on the longer sample [T7,T] and the smaller sample [T} + 1, T, respectively.

Some special cases are of immediate interest. It is not optimal to include pre-
break observations when either u? is very large or o2 is much larger than o2 so that
1 is large. Hence if the break in the mean parameters is high or the pre-break error
variance is much higher than the post-break error variance, then only post-break
observations should be used in the estimation. However, even if a sizeable break in
the mean has occurred, it may still be optimal to include pre-break data provided
that the variance of the regression equation is smaller before the break occurred.

More generally, from (15) the following comparative statics results can be obtained:

Proposition 1 Suppose the objective is to minimize mean squared forecast error.
Then 1t is more likely that it is optimal to include observations prior to the break
to estimate the parameters of the regression model if

(i) the break in the mean parameters (u) is small

(ii) the variance parameter increases at the point of the break (o3 < o3)

(111) the post-break window size (vo =T — T} ) is small.

Provided it is optimal to use pre-break observations to estimate 3, the next issue
that naturally arises is how many pre-break observations to use. In the following
proposition we establish conditions under which a recursive stopping rule can be

used to determine the optimal window size.

Proposition 2 Consider the univariate regression model with a single break point
occurring in the regression coefficient (B, # (5). Then there exists an optimal
stopping rule for determining the window size that minimizes the MSFE conditional
on Xpyq. This rule is to choose a window of observations [m*, ..., T| where m* is

the largest value of m for which the following condition holds
MSFE(m—1) > MSFE(m)
form="1Ty,T) — 1,.....1 arranged in declining order.
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This proposition, which is proved in the Appendix, suggests that even if we knew
the point at which a structural break has taken place, it may still be worthwhile
to utilize information before the break to forecast in the second regime.

A key property of the expression for the MSFE is the difference in the rates of
dependence of the squared bias and the variance of the forecast error with respect
to the window size (T' — m + 1). This suggests that, as one moves further away
from the break point, the optimal window size need not expand uniformly, but may
initially decline. Hence the optimal window, when plotted against the post-break
window size (T' — T7) may be U-shaped. It also means that a rolling window is

likely to be suboptimal.

Proposition 3 Suppose a break has occurred in the conditional mean (B, # ().
Then the optimal window size conditional on Xry1 never expands by more than
a single observation as the sample size, T', increases. Furthermore, the optimal
window size need not be a monotonically increasing function of (T — T1), but may

wiatially decrease before it eventually increases.

2.2. Unconditional MSFFE results

The decision rule developed above conditions the optimal window size on the se-
quence of realizations of x;. However, it is also of interest to investigate which
factors determine the optimal window size on average, i.e. across the possible re-
alizations of z;. Provided a process is postulated for {x;} one can integrate out
X1 in the expression for the optimal window size and the resulting MSFE. In
general this can be done through Monte Carlo simulation. However, if the joint
process generating {u;,x;} is sufficiently simple, analytical results can also be ob-
tained. Considering once again the case with a single regressor, from (7) the first

two unconditional moments of e 1(m) are

Eler(m)] = (8) — By) E[bmzri1], (16)
2 2 em
E[e%ﬂ(m)] = (61— ﬁQ)QE[H?nxQTH] +o05+03E Z?Tﬂfg xZT? ;;

In the interesting special case where u; and z; are i.i.d. and normally distributed




we have
E[l’%”rle?n] = E[552T+1]E[972n]

Furthermore,

N X5, (M)
X2, (A1) +x3, (A2)’
where we have split the total window size v =T — m + 1 into a pre-break window

O, (17)

size v1 = 11 — m + 1, and a post-break window size vy = T — T;. X?jl()\l) is a
non-central chi-squared distribution with non-centrality parameter A\; = v;u2 and
vy degrees of freedom. Likewise, x2, (X2) is a non-central chi-squared distribution
(independent of x2 (A1)) with non-centrality parameter Ay = vopu2 and v, degrees of
freedom. Hence 6,, follows a doubly non-central beta distribution with parameters
v1/2 and v5/2 and non-centrality parameters A; and Ao. We show in the appendix

that approximately we have

B0, = —— =<1, (18)
V1 + ve v
1 + k’l/l)
) = () A+ kv
[ m] U (1 n ICI/) )
where k = (1+242)%/(2+8u2). Assuming that ¢ = 0, so that there is only a break

in the conditional mean (0 = 02 = 0?) we also show that the expected value of

) exp(—

(3N T(3(v —2) + )
4! L(3v+j)

the last term in (16) is given by

E (%) - A)(1+ 62) x (19)

N —

™

?

o

.

where A = vp? and § = p, /w. This expression, which we denote by »(), §,v), can
easily be evaluated numerically. Hence the unconditional MSFE is approximately

given by



Bl (m)] = o*+ (B — B + 122) (ﬂ>%

P I oo S VTG0 2 13
+<7) p(—gNI+0) <D ) -

j=0

Tractable exact analytical results can be obtained when p, = v = 0. In this

case it readily follows from (17) that the non-centrality parameters are zero so
V1 Vo
0, ~ Beta(—, —),
(5 35)

and the first two moments of 6,, are now given exactly by

Blon) = =,
oy vi(v1 +2)
Elb..] v(iv+2)

Also,

and, unconditionally,
E[OmxT+1] = E[.I'T+1]E[9m] =0.
In total, we obtain the following expression for the unconditional MSFE:

Zv1(v1 + 2) o2

Elé2 ,(m)] = 0> + (B, — B,) w12 v-2

(20)

One measure of the standardized decrease in the unconditional MSFE as pre-break
information is used is suggested by comparing the case with vy =0 and m =T;+1

(i.e. use no pre-break information) to the case where vy > 0 so that m < T} +1:

V = E[€%+1(T1 + 1)] - E[e%ﬂ(m)]

: r{(&—mﬁﬁmﬁ“ - }

(2
= (74 v(v+2) v—2

1/2—2

10



or

1 1 5 ov1(v1+2)
-2 v—2 MY w2

— 1/1{ ! PR +2)}
(v —2)(vy—2) v(v+2)

Qw|<

2
Noting that p*w? = 1 f; (%) , where R is the regressions’s population corre-

lation coefficient after the break, i.e. R? =1 — 02/ (02 + ﬂ§w2), we have

K—y 1 _(V1+2) R? 61_62 ?
o2 1{(V—2)(V2—2) 1/(1/+2)1—R2( By )} (21)

We summarize these findings and state the obvious comparative statics results

in the following proposition:

Proposition 4 Consider the structural break data generating process (1) and sup-
pose that p, = 1 = 0. Then the unconditional MSFE is given by

(1/1+2)+ o?
(v+2) v-—2

Blehoa (m)] = 0 + (8 = B, "=

and the optimal pre-break window that minimizes the MSFE (vy) is larger, the
(i) smaller the regression R? (i.e. the lower the w? and the higher the o?)
(ii) smaller the break (3, — [(35)°.

To demonstrate the magnitude of some of these effects in the iid case, we plot
in Figure 1 the unconditional MSFE as a function of the break size y = (5, — ;) /0
and the pre-break window size (v1). To construct this graph we have set o2 = 9
and w? =1 (i.e. R? = 0.1) and vy = 4.3 When the break is small, the MSFE
declines uniformly as v; increases and more information prior to the break is used
to estimate 3. However, for larger break sizes and larger biases, it is optimal to
only use very few observations prior to the break. Conditional on a given value of
i and vs, Figure 1 can be used to determine the optimal value of the pre-break

window (v}). Figure 2 shows how the optimal pre-break window (v}) depends

3We only plot the MSFE for positive values of the break since the MSFE is symmetric around
zero as a function of the break size.
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more generally on the break size () and post-break window (v3). Independent
of the post-break sample size, it is always optimal to use the full set of pre-break
information (limited to at most 25 observations) when the break is small. However,
as the break gets larger or the post-break window size increases, the optimal pre-

break window size rapidly declines and the MSFE evaluated at v} increases.

3. Window Size and Market Timing Skills

In many applications in economics and finance, interest lies in market timing skills
where the primary aim is to correctly predict turning points or sign of some variable
such as asset returns. For example, market timing attempts by fund managers
depend on their prediction of the direction of the market. Confirming the value
to investment strategies of the proportion of correctly predicted signs, Leitch and
Tanner (1991) find that the correlation between this statistic and the profits made
from following investment advice dominates the correlation between profits and
standard statistical measures of prediction such as MSFE. In this section we derive
some results on the optimal window size when the objective is to maximize the
(unconditional) probability of correctly predicting the sign of y;y1. As one would
expect, the decision rule is quite different from the stopping rule derived with the
objective of minimizing MSFE.

Again let the forecast of yr,1 be given by y7,.1 = E;XTH. The unconditional
probability of correctly predicting the sign of y;,1 depends on the product of two

random variables

Pr(yri1yri1 > 0). (22)

To simplify the exposition, let p = 1, and recall that these variables have the

following representation

yr41 = BoTry1 + Uy,
T
Zt:m LUy
b

Yry1 = Borryr + (81 — B2)0mTrir + 21 T
Zt:m T

T1 2
x
em t=m "t

=T 5
Zt:m .’E?

12



To derive an expression for the market timing test of Pesaran and Timmermann
(1992), we proceed as follows. Granger and Pesaran (1999) show that this market

timing test can be rewritten as

pr— _VAKS
(ﬁw(l—ﬁw)> /
Z(1-2)

where n is the number of observations in the forecast period, KS = H — F', the

(23)

hit rate minus the false alarm rate which are defined as*

Ho_ Pr(yrs1 > 0,yri1 > 0)7 (24)
Pr(yri1 > 0)
Pr(yry1 > 0,yr1 <0)

Pr(yry1 < 0)

F : (25)

and Z = Pr(yry1 > 0), and p, = Pr(yri1 > 0) are the probabilities that the
realization and predicted values are positive, respectively.

In this simple example, the sign test is not interesting if it is computed condi-
tional on X7.;. The reason is easy to see. Conditional on X1, and assuming
that ¥ = 0, we have

( gTH |XT+1> ~ IIN(dri1, Qria),
Yr+1

where

d o /82'/17T+1
T+1 = ,
BoTry1 + (51 - 52)9m$T+1

o? 0
Qry = 0 2% 0> .
OHINES

Conditional on X1, y7+1 and gy, are independent, therefore using (24) and (25)
the sign test will take a value of zero as H = F = Pr(yry; > 0) and KS = 0.

Hence we concentrate on the unconditional results.

4The K S statistic is known by the Kuipers score in the meteorology literature. See Granger

and Pesaran (1999) for the references to the relevant literature.

13



In general it is complicated to derive an analytical expression for the probability
of correctly predicting the sign. However, in the simple case where u; and z; are
serially uncorrelated and normally distributed we can derive an expression that
demonstrates how the probability of correctly predicting the sign of y; depends

on the window size. To state the result we first introduce some notations. Let

:ul = /82/“’L.TJ
:um(ﬁlyl —|—521/2)

Mo = y : (26)

5 §w2+02 q
g ht )’

be a 2 x 2 covariance matrix, where g and h are constants defined by

Also let

W= V(ira) = oA 8,v) + foo” + (27)
(B = Bo) e ()5 + 2656 — Bo)*(22),
and
g = Cov(yri1,Yry1) = 53012 + Ba(8y — 52)012(”1/”)’ (28)

() (5).

where (), 8§, v) is defined by (19), and

1+ kvy 2 Vo
_ o 72 ). 2
° <1+ku)+w2 v(l+kv) (29)

We have the following result:

Proposition 5 Suppose that u; and x; are serially uncorrelated and normally dis-

tributed
2
Ut ~ IIN 0 7 g 0 '
Ty oy 0 w?

Then the Kuipers Score (KS) associated with the realizations and forecasts (yr41, Yr+1)

18 given by N N
KS=-—-2 _ L 30
) T () (30)




where fiy = /7?1 B,

B() = [ n) P ew(Gatda

—0o0

AH = Pr(yT+1 > O,@\T+1 > O) = / / f(al, ag)daldag,
A2=—Hg v A1=—H1

oo —H1
Ap =Pr(yr41 < 0,yr1 > 0) = / / f(ai, az)da,das,
ag=—p9 J a1=—00

. ~ 1
flar,a2) = (2m) ' |2 v eXP(_ﬁalz_la)a

a = (ay,as), and py and p, are defined by (26). In the case where p, =0, we have

The more familiar measure of association between forecasts (yr.1)and realiza-
tions (yr41), namely their correlation coefficient, p, is given by:
. 7 " 1+ ¢(v1/v) (31)
VIFP [N 8,0) + 92+ 420% + 2920(m /v)] 2
where ¢ = (B3, — 5)/3,, is the rate of change in 8, and v?> = w?B%/0? is the
signal-to-noise ratio. The expressions for (), §,r) and ¢ are defined by (19) and
(29), respectively. Notice also that v* = R?/(1 — R?), where as before R is the

regression population correlation coefficient after the break.

Using the above results, and setting 0? = 3, w? = 1, u, = 2, Figure 3 plots the
optimal window size determined by the unconditional MSFE and market timing
criteria. If the objective is to minimize MSFE, it is optimal to use the full sample of
pre-break observations only when vy and p are small. In contrast, to maximize the
K S statistic, no pre-break observations are used except for when the break is large.
This example demonstrates that the window sizes determined to be optimal under
the MSFE and sign criteria can be very different. To underline this point, the
right-most window of Figure 3 plots the difference between the optimal window
sizes chosen under the MSFE and K.S criteria. For this particular parameter
configuration the window size under the market timing criterion is almost always
smaller than that selected under the MSFE criterion. The intuition for this finding
is as follows. Under the MSFE criterion, smoothness of the forecast matters in

determining the forecast and this is obtained by adopting a large window size.
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In contrast, all that matters for the sign criterion is whether the prediction has
the right sign and so a shorter window that quickly picks up a change may be
chosen. These findings should be treated as preliminary and could be sensitive to
the underlying parameter values.

Finally, to demonstrate how the market timing value of a prediction depends on
the post-break information and the break size, Figure 4 shows the resulting values
of the K'S statistic evaluated at the optimal choice of v;. Not surprisingly, the K'S

statistic is larger, the longer the post-break window (v3) and the smaller the break

(1)-

4. Further Theoretical Results

The above results, and particularly the trade-off between the squared bias and
variance of the forecasting error, may appear to be specific to the structural break
model considered so far. However, as we show in this section, this is far from the
case. To demonstrate this point, we first relate our earlier results to the stan-
dard weighted least squares approach that is often adopted to regressions with
heteroskedastic errors and then consider an alternative time-varying coefficients

model in which the regression parameters change every period.

4.1. Optimal weights under a single structural break

Suppose again that data is being generated by the linear regression model (1) with a
single structural break, but now consider the weighted least-squares estimator that

uses constant weights w; and ws on the pre-break and post-break observations:

T
br = TF 35 Where (32)
/\t = W, t:1,2,...,T1
)\t = ’LUQ,t:Tl—I—l,Q,...,T.

Using this estimator, the prediction error (yri1 — yry1) becomes

rra (B = B) S0 Naf . >y At

T 2 9 T+1 T 2 2 °
Zt:l ATy Zt:l AT

(33)

€r+1 = Ur41 —
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From (32), and defining £ = w; /wy and @*(T}, Ty) = ¢* = S a2/ S0 71 Tt

we have

2 Th T
ers1 = upy1 — Tr1(8y — Bs) ( 5 > o <§ Yot + Y, i1 Itut> ‘

2
o +1 §Zt1xt+2t T1+1m%

The first two conditional moments of e, thus become
X
Eler|Xr] = —zr11(8) — B2) (m) :
54‘7% Zt 155:: + 03 Zt Ti+1 7
2
(5 Zt 1 t+Zt T1+155%>

Letting ¥ = 0 /09,° we can obtain the conditional MSFE:

Viers1|Xri1) = o3 +ah,,

MSFE(|Xiy1) = Vierua|Xrp) +(E [€T+1’XT+1 )2 (34)
2 ( ) N O'QZET_H ( eM9%? + 1 >
“p?+1 Zt T1+1It (590 +1)
B ) 1+ 9%
= 02““/(52) T+1{d <1+§S0) t =y 1+ &2) }

where V(3,) = 03/ Y t_p 1 27, and % = (8, ,)?/V(B,). The part of MSFE(¢|Xr-1)
that depends on £ is given by

2 2 2 1+ 92¢to?
1) = (i) * en )

The familiar weighted least squares result is obtained when 3, = 3,, namely when

2 2
= 03+t 5'7T+1(51

there is no break in the mean and d = 0. For this case we have
1+ 792§4g02
(1+&%p2)2’

which is minimized with respect to &* for £ = 1/19, namely for

f(€h) =

’LI)T/’LU;< = 0’2/0’1.

5Notice that in terms of the notations of the previous sections, ¥ = /I + .
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When d # 0, there is a trade-off between squared bias and volatility of the
forecast error. Differentiating f(£?) with respect to &2, we obtain the following
first-order condition:

Of(€%) 20 ((dP* + 7)€ — 1
f(g):w((so : )¢ ):0, (36)
¢ (1+&¢?)?

which means that the optimal value of £ is

1
CVeme 7

The larger the break in the mean parameters, the higher the pre-break variance

relative to the post-break variance, and the larger the pre-break window size relative
to the post-break window size, the lower the weight on the pre-break observations
will be. Notice that the solution for £* does not depend on the distance to the
break point, so this procedure is not capable of exploiting the time-varying nature

of the bias-forecast error variance tradeoff.

4.2. Time-varying Coefficient Model

An alternative approach to dealing with structural change is to consider regression
models where the coefficients are time-varying:

Y = By + uy, ug ~ 14d(0, 03), (38)

for t = 1,..,,T. This literature, generally assumes that the regression coefficient,

B,, follows a mean reverting process:

By — B = e(ﬁt—l - B) g My iid((), U?;) (39)

where —1 < 0 < 0 and Efwn,] = 0, for all ¢,s. Following Cooley and Prescott

(1976), it is also common to set 6 = 0, so shocks to the coefficients are permanent:5

By = By g+

6This model and various extensions of it has been studied under the heading ’structural time
series’ by Harvey (1989).
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In this section we briefly examine the implication of this time-varying model for the
trade-off between bias and squared forecast error involved in choosing m. Notice
that

ﬁt = ﬁm + St,m;

where S; m = 1,01 + Ngo + -+ Ny 1s @ partial sum and Sy, = 0.

Once again we assume that the investigator is interested in forecasting yr.q
by some weighted least squares procedure, using the last v observations (v < 7)),
where v is the size of the observation window and applying the smoothing weights

{A¢} to past observations. The estimator thus becomes
2 ZrtT:m A?‘r?(ﬁm + St,m) + Z?:m )\?mtut

v T 2 9
Zt:m ATy

Defining the regression weights
i}

ST N2

i=m ‘11

Wt =

we can write the forecast error as follows

d ST Nz
—m At TtUt
ery1 = Urs1 — Tre1 | ST1m — Zwtst,m — T4 t}—tQQ . (40)
Dt AL

It is easily seen that Eler,1|Xr.1] = 0 so that E[er,1] = 0. Hence the conditional
MSFE given Xy is

t=m

T o272 ZT A2
MSFE(wma“awT’XTJrl):03+$%+1V(ST+1,m—Zthtvm)_I_ u”T+1 t=m "\t 't

= (sh,a)
(a1)

Notice that

T
STJrl,m_ E tht,m

t=m
= (1 — Wmi1 — Wmga — - — wT)UmH
‘I‘(l — Wint2 — Wiptd — oo — WT)nm—i-Z
+(1 _ wm+3 — u)m+4... - WT)nerEI

+(1 — wT)Um+T + D141+
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Hence

T
V(Srsim — D wiSm) = 021+ (1 —wr)*+ (1 —wr 1 —wr)*+

t=m
e (1 — Wmtl — Wmpmt2 — . — wT)Q}
T-m T 2
= a’f] 1+ Z [1 - Z wj]
t=1 j=T—t+1

JFrom this we get the standardized conditional MSFE:

MSFE o2 (o} e . Pt N7
MmiXea) = o= (B S0 Y 1o Y | e
ulT41 u t=1 J=T—t+1 > t=m Afxr?)

(42)
Clearly x(m|Xr41) provides a trade-off across the two terms in (42). Allowing m
to go to one, i.e. increasing v to T, causes the second term in (42) to decrease,
but at the same time can cause the first term to increase. The optimal value of
m depends on the variance ratio o7 /o7 and the {x;} process. Under parameter
stability, 0727 = 0, and the optimal value for m (say m*) is m* = 1. However,
when o2 > 0 and {\u,} is a stationary process the first term in (42) is of order
v =T —m+ 1, while the second term is of order !, and depending on the value

of the ratio 0727 /o?, and the weights w;, m* could be much larger than 1.

5. Determining the Observation Window

Several methods have been proposed for selecting a sample period, or an obser-
vation window, for estimation and forecasting. If parameter breaks are thought
either to be very rare or of a very small magnitude, the usual method is to use
an expanding window, by augmenting an already selected sample period with new
observations. The aim here is to obtain a more efficient estimate of the same
fixed coefficients by using more information as they become available. However, if
the parameters of the regression model are not believed to be constant over time,
frequently a rolling window of observations with a fixed size is used to generate

forecasts. Weighted regressions are also often employed by professional economists
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where exponentially declining weights are applied to the full set of observations,
assigning smaller weights to observations further away from the point of prediction.

None of these methods attempts to explicitly detect and condition on the pa-
rameters of one or several break points. The second set of methods we explore
estimates the time and size of a break. Bai and Perron (1998a) propose a method
that consistently estimates the number of breaks (as well as their size) in the con-
text of a linear regression model. While this method can handle multiple breaks,
the standard Cusum tests are only designed to detect a single break. For this reason
we propose a new reversed Cusum test for detection of the most recent break point.
Having obtained an estimate of the time of the most recent break, the methods
derived in the previous section are then used to determine the window size and
estimate a forecasting model.

In all cases we consider simple OLS estimators of the form

Br(r) = Q.1 X, 7Y, (43)
where Q. 7, X, 7 and Y, r are as defined in section 2, and T"— 7 + 1 is the chosen

window size for estimation. The forecast of yr,; conditional on information at

time 7" is then computed as

U1 = Xy Pr(7). (44)

The objective of the exercise is to provide a plausible procedure for choosing 7.

5.1. Expanding Window

In the absence of breaks in the data generating process, B can be consistently
estimated by OLS. If interest lies in computing recursive forecasts of y;, it is,
subject to standard assumptions, efficient to use an expanding window of the data
and ignoring parts of the data will lead to efficiency losses. The regression model

used to forecast yr.; is hence based on the following data

Yl,T = (ylayQJ""yT), (45)
Xl,T = (xl,l'g,...,l'T)/.

If breaks in the data generating process are a possibility but no information

is available about the time of the last break point, breaks have to be treated as
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a possible source of misspecification. Two approaches are popular, namely using
a fixed window size of the data (‘rolling window’) or exponentially smoothing the

data. We briefly describe these approaches.

5.2. Rolling Window

Let ¢ be the window size. Then the rolling window regressions used to forecast

yr1 is based on the following data

YT—c—i—l,T = (yT—c+1’ YT —c+25 - ?JT)/ (46)

/
Xch+1,T = (93ch+1,33ch+2,---7$T)

There are several problems with this approach if the regression vector follows a
step function. Immediately after a break the window will tend to be too long,
while further away from the break the window will be too short. The problem is
of course that no further information is used to determine possible time variation

in the optimal window size.

5.3. Exponential Weighting

Another ad-hoc approach to account for nonstationarities often used by practition-
ers assigns exponentially declining weights to past observations. This is an special
case of the weighted regression method discussed in section 4.2 where \; is chosen
tobe A" fort = 1,2,...,T, and A € [0, 1] is the smoothing parameter, c.f. Harvey
(1989, Section 2.2). If A = 1, an expanding window is obtained. Values of X further
away from one will put less weight on the earlier observations. The more frequent
breaks are believed to occur in a given time-series, the lower the value of A should

be chosen.

Y, = ATy, AT 20, Ayr) (47)
Xip = A, AT 20y, M)
Again the problem with this discounted least squares approach is that it ignores
possible information about the time of the break. Immediately after a break, too

much weight is likely to be put on observations prior to the break, while the opposite

will be true further away from the most recent break point.
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5.4. Reversed Cusum and Cusum Squared

The above window size selection procedures are based on ad hoc rules and need
not be efficient. What we need is an optimal stopping rule. Such a rule is, for
example, embodied in the Cusum or Cusum squared procedures proposed by Brown
et al. (1975) as a recursive structural stability test. The test is usually applied to
observations running forward from start to finish of a given time interval.” However,
the application of such a forward Cusum or Cusum squared test to our problem will
not be appropriate for two reasons. First, even if the test is successful at identifying
the time of the first break it will not be effective when there are multiple breaks.
Also because it takes some time before the test can confidently identify a break its
forward application will result in smaller than optimal window sizes for forecasting
purposes even if it is known that the model is at most subject to a single break
over the entire sample under investigation. Both of these shortcomings can to some
extent be alleviated by simply reversing the observations in time before proceeding
with the application of the Cusum testing procedures. We refer to this use of
the test as the “reversed” Cusum or Cusum squared tests. In fact the known
undesirable property of the Cusum type tests in identifying break points with long
delays now becomes an advantage when the test is applied to observations reversed
in time. The end break point identified by the reversed Cusum or Cusum squared
tests will tend to be biased upward, viewed from the point of the forecast, but as
the above discussion shows this is likely to be often desirable if one is interested
in forecasting. Finally, although it may appear that important information is lost
by not attempting to use the full available information set at a given point in time
to identify all possible breaks, methods that attempt to identify multiple break
points often lead to very imprecise estimates of break points and can be prone to
problems with over-fitting.

We use the following notation to denote the observation matrices with the orders
of the observations reversed in time, starting from the mth observation (so that

the observation window is given by T'— m + 1):

Yim = (U, Yr—1s o Ymit, Ym)' (48)

"Typically, a few observations are dropped from the start date to ensure that the regressions

can be computed and very uncertain results can be avoided.
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v !
XT,m = (XT;XTfla--“?Xerl;Xm)

and define the (backward) recursive least squares estimates as

B, = (X, Xry) Xy, Yrp, r=T,T —1,..,2,1.

The choice of the shortest observation window selected, namely T — T+1, is

arbitrary but one would expect it be set around 2 to 3 times the dimension of 3.
The standardized recursive residuals from the regression that is reversed in time

are

~/

vr = (Yr — Bo_1Xy) /dp, 7 = T,T -1,...,2,1,

where
d = (1 +x.(Xp, X)) 7'%,), r=T,T—1,...,2,1,

and the reversed Cusum and Cusum Squared tests can be based on

1
WT = 5 Z ’Uj,
WW,r = Z UJQ/ Z v,

j=p+1 J=p+1
Critical values from Brown et al. (1975) can be used to decide if a break has

occurred.

6. Monte Carlo Simulations

This section demonstrates the use of our recursive stopping rule for selection of the
optimal window size in estimating a forecasting model. Our simulation assumes
a break occurs in a regression model after 100 periods and we track the one-step
ahead forecasting performance during 50 periods after the break. To demostrate
the factors determining the optimal window size, we consider a simple model with a
single regressor (x;) which we assume follows a persistent first order autoregressive
process. The break takes the form of a shift in the linear regression coefficient
that relates x; to y;. All shocks in the system are identically and independently,
normally distributed:
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Yo = B+ uy,
r; = 0.95x,_1 + e,
e. ~ IIN(0,1),u; ~IIN(0,1), (49)
Cov(ug, ;) = 0,
B, = 1fort <100,
= 1-—146, for 101 <t < 200.

Simulations are carried out under three different values of the change in the regres-
sion parameter {6 = 0.1,0.5,2.0}. Since 02 = 1, u = (B — B1) /o2 = 6. Although
the break sizes may seem large, they are quite small when compared to the uncon-
ditional variability in x;. One thousand simulations were conducted and we report

the forecasting performance averaged across simulations.®

6.1. Known Size and Time of the Break

To demonstrate the trade-off between bias and efficiency in the choice of window
size, we first simulate the case where 8, 02,7} are assumed to be known. Figure
5 shows the average value of the optimal pre-break window size (7j) computed
over 1000 replications as determined by our stopping rule’ while Figure 6 plots the
average full window size (7). Finally, Figure 7 plots the resulting MSFE for the
stopping rule and for the expanding and rolling window procedures. The rolling
window has a fixed size of 50 observations.

First consider the case where the break is small (z = 0.1). In this case the
bias arising from including observations prior to 7] to estimate 3 is very small.
Consequently it is optimal to use most of the pre-break data to estimate 3 and the
pre-break window size only declines very slowly as a function of vy (the post-break
window size). Although the reversed window stopping rule produces lower MSFE
values than when expanding and rolling windows are used, the difference between

MSFEs is quite small and declines as the distance to the break point increases.

8Values of the MSFE are computed based on the expressions derived in section 2.
9The average value of the optimal pre-break window size is determined as follows. Let Vi
be the optimal window size for the i’th Monte Carlo simulation, and let n be the number of

simulations. Then 7} = (1/n) .1, v} ;. Other statistics are calculated in a similar way.
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Turning to the case with a medium-sized break (1 = 0.5), the second graph in
Figure 5 shows that the optimal window includes up to 26 pre-break observations
immediately after the break. At this point, the trade-off between efficiency gains
and squared bias is high. However, as v, increases, the trade-off worsens and the
number of observations from the first regime used in estimating (3 rapidly declines.
Now that the bias is larger, the stopping rule produces a substantially lower MSFE
than the rolling or expanding window procedures.

Finally, in the case where the break is very large (u = 2), both the expanding
window and the rolling window methods do very poorly and generate values of the
MSFE that are orders of magnitude higher than those produced by the stopping
rule. Interestingly, Figure 5 shows that even for this case it is still optimal in the
first three or so periods after the break to include a small number of pre-break
observations to estimate [3.

These figures do not show the MSFE generated by the procedure that only uses
observations after the break. This procedure generates a far higher MSFE than
the other three methods whenever the break is small (u = 0.1 or x = 0.5). Only
when the break is very large (@ = 2) does this procedure generate MSFEs that
are comparable to the reversed window method. However, even in this case the
method that only uses data after the break generates far higher MSFEs than the
reversed method during the first couple of observations after the break.

All diagrams in Figure 6 demonstrate the features identified in Proposition 2.
When the break is small (the first graph), the optimal window size declines very
gradually as a function of the distance to the break point and pre-break observations
are only dropped very gradually. When the break is relatively large (the second
graph), the optimal window size is 30 right after the break, but decreases rapidly to
a minimum of less than 10 observations five periods after the break. From this point
onwards, the window size increases in proportion with the distance to the time of
the break. Finally, when the break is very large, a non-increasing relation between
optimal window size and distance to the break is only observed immediately after
the break.

6.2. Unknown Size of the Break

In many situations the time of a possible break will be known while its size is

unknown. For example, knowledge of institutional shifts (such as the change in the
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Federal Reserve Bank’s operating procedures from 1979 to 1982) can help identify
the date, though not the size of a break. In these situations 77 will be known, while
1 is unknown and has to be estimated.

To investigate the performance of our stopping rule in the presence of uncer-
tainty about p, we repeated our simulation experiments. The parameters of the
data generating process are the same as above, but now the choice of m is based
on the least-squares estimate of yu, 1. First consider the window size (v) shown
in Figure 8. Comparing Figure 6 (1 known) and Figure 8 (4 unknown) it is clear
that, when g is small, the average optimal window size based on 1 tends to be
much smaller than the optimal window that assumes p to be known. This effect
disappears for larger values of the break: when p = 0.5 or p = 2, the average
optimal window sizes are very similar independently of whether p is known.

Figure 9 plots the MSFE generated by the optimal window sizes determined
conditional on p. Interestingly, when p and vy are small and after introducing
estimation uncertainty in determining p, the average MSFE is now larger under the
optimal stopping rule than under the expanding or rolling window methods. This
results from the simulations in which p is overestimated which leads to too short a
window that does not correctly exploit the bias-variance trade-off. However, once
the break gets larger, as in the second and third windows, the MSFE determined

under the optimal stopping rule is much lower than under the two alternatives.

6.3. Unknown Size and Time of the Break

Finally, in some cases both the time of the break and its size are unknown to the
researcher. This raises the issue of whether our stopping rule is of any use when
all parameters characterizing the breaks are unknown. To investigate the effects of
introducing estimation uncertainty into our decision rule, we adopt the stopping
rule from section 2, now using estimated parameters and an estimate of the time

of the break point. Our procedure is as follows:

1. Use the reversed Cusum Squared procedure to determine an estimate of 77,

say j—\’l-
. . ~ Ty T N R . R
2. Based on this estimate, let 0,, = > 22/ > 2? and i = (8, — 3,)/0, where
t=m t=m
o -1
/61 - (Xll,'fl lefl) Xll,j—\'l Yl,?l ?
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3, = (X, X S O (50)

T1+1,T T1+1,T) T1+1,TYT1,T
2
g

- (ell,ﬁel,ﬁ + e/TAl_s-l,TeﬁH,T)/(T —2),

and e, - is the ﬁ vector comprising the residuals from the first regression,

LT
while ez |, is a T — T; vector comprising the residuals from the second

regression. The estimated MSFE is now

T
— N ~2
MSFE(m) = 5* <1 + 0, 0+ IQTH/Zm?) :

t=m
3. Choose m as the largest value, m*, for which

MSFE(m — 1) > MSFE(m)

Of course, the performance of this procedure depends on how precisely the first
step determines the time and size of the break.

We consider the same parameter values as in the first simulation experiment.
Figure 10 provides a plot of the estimated break points (ﬁ) averaged across 1000
simulations. Recall that the true value of 77 is 100. When ﬁ = 1, no break is
identified by the Cusum procedure. The reversed Cusum test has a particularly
low power against small breaks. As the break gets larger, the last two graphs in
Figure 10 show that the Cusum squared method gets a little better at identifying
that a break has occurred. When p = 0.5, the break is estimated to have occurred
around observation 30 while when p = 2, the estimated break point is between
observation 70 and 100, depending on the distance to the break. As a result of the
delay in identifying a break, the average optimal window size (7*) plotted in Figure
11 tends to be higher than the optimal size under no estimation uncertainty. For
example, the reversed Cusum squared method effectively uses most of the pre-break
data and hence closely resembles an expanding window when p = 0.1.

The tendency to use too long a window of data means that the reversed Cusum
Squared procedure performs as well as or marginally better (according to the MSFE
criterion) than the expanding window method when the break size is small or
moderate, c.f. Figure 12. In these cases, the rolling window method performs the
best. But in the case of large breaks, the reversed Cusum Squared rule nevertheless

outperforms both the expanding and rolling window methods.
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These findings suggest that our reversed Cusum squared procedure performs
relatively well even when there is substantial uncertainty about the time of the
break. However, comparing the MSFE plots in Figures 7, 9 and 12, our findings
also demonstrate the importance of correctly identifying the time of the break
point in order to successfully exploit the potential gains from using a time-varying

window size.

7. Structural Breaks in US Stock Returns

In this section we consider a recursive prediction experiment for monthly stock
returns in the US. US stock prices have been the subject of numerous studies and,
with very few exceptions, these assume that the same data generating process
stays in effect over the sample.!’ In this section we use full-sample information
to investigate the extent to which structural breaks have been a problem over
our sample period. The next section studies the performance of the recursive
forecasting procedures discussed above.

Our data set consists of monthly returns on the equal-weighted NYSE price
indices reported by the Center for Research in Securities Prices (CRSP). The equal-
weighted index is dominated by small firms which have been found to be more
susceptible to changes in the underlying economic state and hence are particularly
suited for this type of study. As the dependent variable we use excess returns
(EXR,), defined as the difference between monthly stock returns and the one-
month T-bill rate calculated at a monthly rate.

As forecasting variables we include a constant, the dividend-price ratio (Yield; 1),
the one-month T-bill rate (I; ;) and the default premium (Def; 1) defined as the
yield spread of Baa-rated bonds over Aaa rated bonds. All of these regressors are
standard forecasting variables from the empirical finance literature. The dividend
yield is computed from the CRSP data and is defined as dividends over the previ-
ous twelve months divided by the stock price index at the end of the month. The
T-bill rate is obtained from the Fama-Bliss files on the CRSP tapes. Yields on the
Baa and Aaa rated bonds as well as data on the money stock are obtained from

Citibase. We follow studies in the literature and model the excess return on stocks

10Gee, e.g., Campbell (1987), Breen, Glosten and Jagannathan (1989) and Whitelaw (1994).
Studies that allow the regression model to change over time include Pesaran and Timmermann
(1995) and Perez-Quiros and Timmermann (1999).
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defined as the difference between the monthly stock returns and the risk-free rate

(I;_1), both continuously compounded.

7.1. Full Sample Estimation Results

An alternative to the reversed Cusum and Cusum Squared tests that attempt to
identify only the most recent break point is to adopt the Bai-Perron (1998a,1998b)
procedure for estimation of multiple break points. Suppose the full data set up to

time T is used to estimate up to ¢ regression models.

yr = By%r + 0,  T=1,2,.. T,

?Jr :ﬂQXT—i_aT ?—:T1+17"'7T27 (51)

Yy = E;_HXT +h, T=T,+1,..,T.
Bai and Perron (1998a,1998b) develop tests for the consistent estimation of the
number and location of break points (71, ...., T;) and the parameters (31, ....,0,,1). "
Using data from the full sample, the AIC and sequential break procedure proposed
by Bai and Perron (1998a) select three breaks, while the BIC and the information
criterion proposed by Liu, Wu and Zidek (1997), denoted by LWZ, identify a single
break point. Assuming a single break point (estimated to have occurred at 1962:10),

the following estimates were obtained for the sample period 1954:1 to 1962:10

EXR,= 0016  +0.468Yield, , -22.171, ; +26.29Def, 1,

(52)
(0.048) (0.972) (8.21) (36.70)
while for 1962:11 to 1997:12 the model is
EXR, = -0.020 +1.635Yield,_; -10.56I,_, +26.63Def,_,. (53)

(0.011)  (0.471) (1.63) (8.72)

The 90 percent confidence interval for the time of occurrence of this break point
goes from 1962:04 to 1963:04.

1 Baj and Perron consider two separate break point specifications. If lagged dependent variables
are included as regressors, then u; must be a martingale difference sequence and hence cannot be
autocorrelated. However, if no lagged dependent variables are included as regressors u; can be

serially correlated and heteroskedastic.
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The parameter estimates corresponding to the model with three break points
are as follows. From 1954:1 to 1962:10 (with a 90 % confidence interval for the
second date given by [1962:07;1963:01]) the following model is estimated

EXR,= 0016  +0.468Yield, , -22.171, ; +26.29Def, 1,

(54)
(0.046)  (0.947) (7.99) (35.72)

while from 1962:11 to 1969:01 ([1967:12; 1970:02]) the parameters change to the
following:

EXR, = -0.014 +0.586Yield,_; -6.72I,_1 +76.29Def,_;.

5}
(0.096) (2.95) (9.75)  (47.23) (55)
¢From 1969:02 to 1990:12 ([1990:01;1991:11]) the parameters are
EXR, = -0.085 +3.066Yield,_; -11.441,_, +35.25Def, . (56)
(0.016) (0.555) (1.80) (9.48)
Finally, from 1991:01 to 1997:12 we obtain
EXR,= -0022 -1.196Yield, ; -1.20I, ; -+100.39Def, ;. 57

(0.042) (1.498) (6.54)  (48.29)

These results point to the following conclusions. First, and most importantly,
there is little doubt that there has been at least one break in the model for stock
returns during the sample period under consideration. Even criteria as conserva-
tive as BIC and LWZ identify at least one break and less conservative procedures
select three breaks. Second, at least in this application there seems to be some un-
certainty about the number of break points, although conditional on having chosen
the number of breaks, their time of occurrence is reasonably precisely estimated.
Third, the size of the parameter variation between the break points is very large.
For example, the coefficient on the interest rate is around twice as high in the
sample prior to 1962:10 as in any subsequent sample. Also, the coefficient of the
dividend yield which have been positive and highly significant before 1991, has

become negative and statistically significant since 1991.
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7.2. Recursive Forecasting Results

The recursive forecasting experiment begins in 1970:1 and extends to 1997:12.
Initially there are 192 monthly observations. As explained in section 2, the key
distinction between the approaches to determining window size lies in how much
data they use to estimate the prediction model. Hence it is natural to begin our
empirical analysis by showing time-series plots of the window length determined
recursively through time.

Figure 13 converts the time series for the recursive estimates of the break
point (T\l) identified by the reversed Cusum, Cusum Squared and recursive Bai-
Perron procedures into calendar time. The breaks identified by the reversed Cusum
method change very erratically and it is only up to around 1982 that it manages to
identify any breaks. This finding is not surprising since it is well known that the
Cusum test loses power very rapidly as the distance to a break point increases. The
main breaks identified by the Cusum Squared method occur in 1968/69, 1974 and
1988. Accounting for the delays in the break point detection, the last two breaks
thus correspond to the oil price shocks and the October 1987 stock market crash.
The recursively identified break point series selected by the Bai Perron method is
somewhat less stable than that produced by the reversed Cusum Squared method.
While 1969 is identified as the break point for most of the sample, 1974 also gets
selected during a five year spell from 1977 to 1982 and 1963 is chosen during three
separate blocks of time from 1970 to 1972, from 1975 to 1977 and again from 1995
to 1997.12

Figure 14 plots the sequence of optimal window sizes determined by the three
procedures conditional on the parameter estimates. For reference we also show
the expanding window which gets selected if no break is identified. A sharp break
in the regression model should show up as a drop in the window size, followed
by a smoothly increasing window size until a subsequent break. First consider the

reversed Cusum Squared criterion. Initially a small window of 20 or so observations

12PJots of recursive parameter estimates also indicated that there are breaks around 1974, 1979
and after 1994. These plots demonstrate the trade-off between bias and efficiency implied by
the estimation methods. Methods that attempt to identify break dates and condition on this
information pick up breaks quickly. However, they also produce very volatile regression estimates
and forecasts as a result of only using a small window size immediately after a break is perceived

to have occurred.
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is adopted by this method rather than the full window of 192 observations which
would be chosen in the absence of a break. The window then expands up to around
1975 at which point it again drops to 20 or so observations. From this point the
window increases more or less in line with the data set up to 1994 when another
sharp drop is registered. A somewhat smaller decline in the window size also
occurs around 1997. Fairly long windows of the data are thus selected for most
of the sample. On average the window size chosen by the Bai-Perron method is
slightly longer than the corresponding window for the Cusum Squared method.

Our interest lies of course in the precision of the recursive forecasts produced
by the alternative methods and plots of which are provided in Figure 15. Sample
correlations between the forecasts vary between 0.69 and 0.85. Interestingly, the
methods that do not put full weight on the earliest data points generate higher
predictions than the expanding window method towards the end of the sample.
This finding sheds light on some problems recently debated by economists. At
the end of the sample the dividend yield was at a historical low and economists
were speculating whether the relationship between the yield and stock returns had
broken down. Indeed, the expanding window estimates suggest that the dividend
yield coefficient has been in a systematic decline since 1994. This is picked up
dramatically by the Cusum Squared, exponential smoothing and fixed window size
methods all of which give a negative regression coefficient on the dividend yield
towards the end of the sample and is also confirmed by the full-sample Bai-Perron
estimates that allow for three breaks.

Basic performance results for the recursive forecasts generated by the six proce-
dures are presented in the following table.!®> We measure forecasting performance
in two ways. First we adopt the mean squared forecast error (MSFE) criterion.
Secondly, since the proportion of correctly predicted signs of the 'market direc-
tion’ is important for market timing purposes, we also report this statistic and the

market timing test proposed by Pesaran and Timmermann (1992).

13In the exponential smoothing we set A = 0.95. The fixed window size (¢) equals sixty and
thus uses data over the most recent five years. These are not arbitrarily chosen values and reflect
common industry practice. Furthermore, the relative performances of the methods were found to

be quite robust to varying these parameters.
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Method MSFE correct signs (%) PT test

Reversed Cusum 324 60.11 3.53
Reversed Cusum (+stopping rule) .323 59.27 3.16
Reversed Cusum Squared .340 64.29 5.23
Reversed Cusum Squared (+stopping rule) .333 62.20 4.52
Exponential smoothing (A = 0.95) 395 59.52 3.22
Fixed window (¢ = 60) .339 61.31 3.77
Expanding window 307 60.11 3.59
Recursive Bai-Perron .352 57.44 2.91
Recursive Bai-Perron (+stopping rule) 348 58.33 3.21

First consider the predictions generated by the expanding window method. We
would expect these to deliver the best performance if there are no breaks. Certainly,
this procedure generates the lowest values of the MSFE reflecting the stability of
the parameter estimates computed using an expanding window of data. However,
the proportion of correctly predicted signs of excess returns and the value of the
market timing test obtained from this procedure are relatively low.

The exponential smoothing, reversed Cusum squared and recursive Bai-Perron
methods generate the highest mean squared forecast errors and the lowest pro-
portion of correct signs. Low MSFE values and high values of the sign test are

generated by the fixed window size and the reversed Cusum Squared approaches.!4

8. Conclusion

This paper has derived new results on determination of the optimal window of
the most recent data that should be used in out-of-sample forecasting based on

linear regression models. A number of new and, perhaps, surprising, results are

Notice that for this data the reversed Cusum rules with optimally determined window size
tend to perform better on the MSFE criterion but worse on the sign criterion than when the
window simply goes back to ﬁ, the most recent break point. This is because the stopping rule
conditions on ﬁ and hence ignores the upward bias in estimating the distance to the most recent
break. The Bai-Perron method for determining break points estimates 77 consistently and for

this method the stopping rule does improve both the MSFE and sign criterion.
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reported. First of all, there exists a recursive stopping rule for determination of
the window size that minimizes the mean squared prediction error. Second, this
window size does not grow monotonically as more data arrives immediately after a
break. Compared to both fixed window size and expanding window size approaches,
important gains in forecast accuracy can be obtained by attempting to identify the
most recent break and applying our stopping rule to select the optimal window

size.
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Appendix

Proof of Proposition 2
For different values of m, the relative value of MSFE(m) depends on 62 u? +
(0¥ + 1)/Qmr. Hence the change in MSFE resulting from using observations

back to period m instead of period m + 1 is

A(m) = (G?n - 072n+1) N2 + (O + 1)/Qm,T — (O + 1>/Qm+1,T- (58)

To evaluate this expression, first notice that

2 2
92 . 62 . m, Ty . m~+1,T1
m m+1 2 Q2 :
m, T’ m~+1,T

_ 2 2 _ 2 4 2
where Q7 = Qmi17 + Ty, S0 that Q5 7 = Qy, 1 1 + 77, + 225, Qi 1,7 Hence

Qi1 + T + 220, Q1) Qi1 0 — Qi1+ T, + 220,Qr1 1) Qi1 1y
2 2
Qm,TQerl,T
T Q10 — Qi) +205,Q Q (Q —Q )
m m+1,T m~+1,T mm+1,T1 ' ¢m+1,T m+1,T m+1,T,
2 2

Qm,TQm—l—l,T

227 0m i1 (L = Omi1) | Tp(l = Onya)?

Qm,T %n,T

2 2 .
em - 0m+1 -

(59)

Furthermore, the second term in (58) becomes

Ot +1  bpp+1 " Qmr  Qmiin n ( 1 )
Qm,T Qerl,T Qm,T Qm+1,T

2 2

m, T’ m~+1,T
2 2

= 9 Qm:TlQerl,T _ QmHleQm,T i Qumirr — Qmr
Q?’n,TanJrl,T QmrQm+1,1
(0 ((Qerl,Tl + x?n) 72n+1,T - QerLTl (Q72n+1,T + xﬁl + 21'727LQm+1,T))
2 2
Qm,TQm+1,T

2

Im
 QuaQmirr
Yz (1 — 205m11) _ Vi1 _ T (60)
72717T Q?n,TQm—&-l,T Qm,TQm—H,T ‘
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Combining (59) and (60) and setting ¢ = 0, we have

A( ) Qx?nemﬂ(l — 9m+1) xﬁl(l — 9m+1)2 237271
m) = B
Qm,1 7211,T QmrQmy1,1
T 12 (Qmirr — Qmirr) }
— m m ) m ,11 2 - o + xzn . B N _ 1
meTQm+17T { Qm,TQmJ,-l’T ( Q 7TQ +1,71 (Q +1,7 Q +17T1))
x; QT 11,1 }
= m 1+1, 20m m + xfn 14 61
QmrQm+1,1 {Qm,TQmH,T (2Qm r@mi1m Qri1,1) (61)

To prove that an optimal stopping rule exists, it is sufficient to show that, for
a given value of 7', A(m) > 0 implies that A(m — 1) > 0. Now A(m) > 0 if

/1'2QT1+17T
Qm,TQm+1,T

Hence the result follows if the left hand side of (62), evaluated one period earlier,

(2QmrQmirr, + 22,Qr417) > 1. (62)

increases. This is easily demonstrated to hold:

2 2
pQr +1,T wQr: +1,T
— (QQm,TQmH,Tl + 3772nQT1+1,T) - (QQmA,TQm,Tl + 33,27%1QT1+1,T)
Qm,TQerl,T mel,TQm,T
MQQT1+1,T

2Qm1Qm 17Qmirr, + 72Qum 1.7Q71 117
mel,TQm,TQerl,T

—2Qm—1,TQm,T1 Qm+1,T - UU?n_l Qm+1,TQT1+1,T}

Using that Q1 = Qm_1.1 + 22, the term inside the curly bracket simplifies to

2Qm-11 ((Qm+1,T + %Qn)QmH,Tl — (Qmi1,m + JU?n)QmH,T)
+Qr4+1.7(22,Qm-1.1 — Ty 1 Qmir1)
= —Qnir@Qm-1r+ 75 Qi) <O0.
Hence we have shown that if A(m) > 0 (so that MSFE increases by starting the
window at t = m, rather than at £ = m + 1, then the MSFE will also increase by
starting the window at observation ¢ = m — 1 rather than at observation ¢t = m.

By induction, the optimal window size will be the largest value ¢ = m, for which
A(m) > 0.

Proof of Proposition 3
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Suppose the sample is extended from 7" to T'+ 1. Recall that the stopping rule
determining m* is the first value of m (arranged in decreasing order) for which
A(m—1) > 0. Hence we need to show that if A(m*(T')) > 0, then A(m*(T+1)) > 0.
By assumption (and using (62)),

:U'QQTH-LT

Qm,TQm+1,T

so we need to show that this implies that

(2Qum1Qmirn + 22,Qm1,r) > 1,

M2QT1+1,T+1
Qm,T+1 Qm+1,T+1

(2Qmr1Qmirn, + 70 Qr1141) > 1. (63)

This is easily demonstrated. A sufficient condition for the difference between the
left hand sides of (62) and (63) to be positive is that

Qr+1,711@ms1,m Q1 +1,7Qm+1,1y and

>
Qmi1,111 Qmirr
2 2
QT 1741 QT 11
Qm,r+1Qmi1,711 QmrQmi1,r

The first condition holds if

(Qriiir +25.1)Qmirr > Qniir(Qmerr + T5.,), ie. if

2
71 (Qmirr — Qnisrr) > 0,

which holds as m < T; + 1. The second condition holds if

2 4 2 2 2 2
Qm1Qumi1,7(Q7 41 7271 +227 1 Q1 11,7) > (Qmr+77, 1) Qi 7 +27,1) Q7,41 7, OF

4 2 2 4 2 2
Qm,1Qm1,7(Tr 1 + 227, Qrvar) > Q10 (X711 + QT + Qi 17741)-

This in turn is satisfied provided that

4 2 2
11 (QmarQmirr — Qrp17) + QmrQn 11,7771 (Qmir,r — Qria,r)

+Qm+1,TQT1+1,Tx%+1(Qm,T — Qr+1,7) >0
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which is easily seen to hold as each term is positive.
To prove that A(m,T) > 0, does not rule out that A(m+ 2,7+ 1) > 0, notice
that A(m,T") > 0 holds provided that

1 1
— (2Qum1Qmirr +22.Qr, > 64
Qm,TQm+1,T ( Q ,TQ T QT +17T) /’LQQT1+1,T ( )
while the second condition holds if
1 \ 1
(2Qmi27+1Qmism + Tos sQriv1r41) > (65)

Qmi2,7+1Qm+31+1 P2Qr 41,041

It is easily seen that (64) does not rule out (65).

Proof of proposition 5

To derive the moments of 6,, we first note that

Ty 2
9 _ t=m Ly
mo T 2 T 2’
t=m Tf + Zt:TH—l Ty
2
d Xv, (/\1)

T2 ) (M)

where x2 ();) is distributed as a non-central chi-squared with v; degrees of freedom
and the non-centrality parameter )\; = yz-,ui. Recall that vy = 177 — m + 1 and
vy =T —T;. Hence 6, has a doubly non-central beta distribution with parameters
v1/2 and v5/2 and non-centrality parameters \; and X;.'> Approximating each
of the non-central x? variables in 6,, and using Patnaik’s approximation (Patnaik
(1949)), we have

appr ﬂ‘I'Q)\l &+)\2
9m R = = Bet ) >
<%+)\1) <%+2)\2) etalf1, f2)

where

(5 +0)° _ w1+ 22)°
Lion | 218
and k = (1 + 2u2)?/(2 + 8u2). Noting that since \; = ;2 then

2+ 2+ 2\ ’

15See, for example, Johnson and Kotz (1970) pages 197-198.

fi=

= I/ik,
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then 6,, ‘K" Beta(fy, f2) and E[f,,] and E[#?] can be directly calculated from the
moments of the (central) beta distribution:

~ J1 L _n
E{0m] fitfo vitrve v’
21 filfi+1)
B~ GG Ry

kv (1 + kvy)
k(v 4+ ve) [k(vy +va) + 1]
(ﬂ) (14 kvy)
v/) (1+kv)’

To derive the MSFE, notice that, under the assumptions stated in Proposition 3,

the conditional distribution of ¥, given the sequence of x’s {z1, ..., zpy1} is

Elyrii|oy, xa, . wria] = Bz + (81 — B2)0mTrya, (66)
or, unconditionally,
Eyri] = Bopry + (81 — B2) El0mar1].

Since #,, only depends on z, .., xr, it is independent of x7,; and we have by the
law of iterated expectations

E[Z//\T+1] = 52/% (ﬁl ﬁQ)E[ [mxTJrl‘xl?"'xTHa
= Bopty + (By = Bo) El0mElwria|z1, . 2],
= Bop+ (B~ @)”7%
_— (51V1+52V2>‘
1%
Hence
Yr+1 Botty
(@T+1> ”N{(ﬂwﬁ(ﬂ — ) (E2) )2}
where

> ﬁQw +0? g ,
g h?
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and h? = V(yry1) and g = Cov(yri1,Yre1). First consider the unconditional

variance of yr1:

h? =V (yri1) = E[V(@raa|ze, 2, 2040)] + V [E @raa |z, o 20, 21041)] -

Using the assumption that 1) = 0, the conditional variance of yr, is given by

2,.2

V(yriile, .o xr, or41) = —
Zt:m ‘rt2

Therefore, using (66) we have
2 2 Tiy
h*=0°E ST + V [Bozri1 + (81 — B)0maria] .
t=m 1
The second term in this expression is given by
. v

V(Egraley, . ern]) = w4+ (8 — Bo)*El(Omaria — /%71)2]
"

+2062(81 = B2) E[(v141 — t1y) (OmPri1 — ,uxj)]

1+ k
= B’ + (B —@)2(%) (w2 ( 1++ 5) *“3%(%2@)))
+28,(81 — B) ()

To evaluate E (xQT YD xf), we first note that

Trp (@, /w)? (1) ((fv%ﬂ/w))Q

ST 22 vyl (wwrifv \v) \EW/v

and hence )
VI
> O
where ¢,(6,\) = (x711/w)/(x,(N\)/+/v) is distributed as a double non-central ¢-

distribution with v degrees of freedom and the non-centrality parameters § = u, /w

= [t (6, V)]*,

and A\ = vp?. Using results in Johnson and Kotz (1970, p. 214, equation (25)) we

now have
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Using this expression the total variance of yr,; can be written as:

W = V(ira) =0"a()\6,v) + f0° +

(8, By () { (ﬂj’;”;) + i (V(%“‘ky)) } (68)
+28,(81 - Br)u(22).

Also

g = Cov(yri1,yr+1) = E[(Ba(@r11 — po) + urs1) (Bo(Tri1 — 1)
1 Z?zm Lyy
+(B1 = Ba) (Omzri1 — Mm?) +rr =), (69)

>t 7
= f3w’ + By(B) — By)w’ (v1/v).

Using this result and noting that

Babts
Pr(yrs1 > 0)=2@ (W) ;

(Biv1 + Byva)
vh ’

~ Hy
Pr(yTH > 0) = (
it is easy to compute the joint probability that y7.1 > 0 and yryq > 0:

Ap = Pr(yT+1 > O,Q\Tﬂ > 0) = / / f(al, GQ)daldCLz;
A2=—Hg v a1=—H1

where

py = peBa, o = iy (Bivn + Bava) /v,
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_ _ 1 B
flar,az) = (2m) 8] exp(— 52/ a).

and a = (ay, az)’. Similarly,

oo —H1
Ap =Pr(yrs1 <0,y > 0) = / / flay, az)da,das.
ag=—y Ja;=—00

Using the above results in (24) and (25) we have:
AH AF

T o/ 1 0?) 1 (/B +o?)

In the case where u, = 0, ®(j1,/\/Fow? + 02) = 1/2, and KS = 2(Ay — Ap).
Under joint normality of yr,1 and yry1, a sufficient statistic that characterizes

KS

(70)

their distribution is the correlation coefficient, p given by

g g
p= = :
hy/0% 4 B3w?  ohy/1+ 2
where 7% = w?(35/0? is the signal-to-noise ratio. When p = 0, we have f(a;,ay) =
f(a1)f(az) so KS = Pr(yry1 > 0) — Pr(yry1 > 0) = 0. In general, however, using
(68) and (69) we have

2
— /7 % ]' + ¢(V1/V> 1/27 (71)
VIFY? [ 6,0) +92 +2¢% + 292¢(11 /v)]
where ¢ = (8, — (35) /0, is the rate of change in 3, (A, 6, v) is defined by (67) and

~O{Ew) ) ™

In the case where i, = 0, then £ = 1/2 and the expression for p simplifies and we

have (exactly):

p= ( 72 ) 1+¢(V1/V) (73)
VITT)\ {402+ 02 (Gl ) + 27205(1/1/1/)}1/2
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Figure 3:
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Figure 4:
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Figure 8



(Zn) »pBig JeuD Spousd

sz 0z SL oL S

mapuim Bujiioy
mepuim Bupuodxy  —
ins Buiddays

34sh

34SW

o4

og

ve

Figure 9:

— —
—
~
—
(¢ = 1) ezis 3peiq umousun
(Za) >paig seyo spousd
Sz 0z Gl oL g
mopuim Bujoy
mopuim Bupupdxy  ——
sina buddals ——
- -
—
(G0 = ) 8zIs AD8IQ UMOUAUN
(%n) >pBig Jeup SpoLed
cz 0z cL oL <
mapuim Buijioy
J— . mopuim Bujpuodxy

= 6N Buddaly —— |,

(L°0 = 1) 8zis »psiq uMOLAUN

34SN

S¥'LDY'L BEL OS ST'L 0Z'L SL'L DL'L SO'L DO'L



(Zn) »pBig JeyD Spousd
oS S sid Ly g ST 0Z

SL

8jna buiddayg —

oL 06 0%

oLl
('1) yulod spaiq pajowinsa

ozt

(z = ™) Apeuq jo ezis PUD S UMOLNUN

(Za) >paig seyo spousd

0y ov 4 5§ ol az 0z

gL

sjna Bujddols —

(c’0 = 1) »D3JQ JO 3Z|S PUD JWL UMOLMUN

(%) spBIg 4eD SpoLed
oc CY o¥ ce ag l°r4 0z

SL

ainJ Buddals —

(1°0 = ™) >{paiq 4o 8z|S puUD BWI} UMOLNUN

ocL

9L

0z

ze
(*1) yuiod >paiq payouinsa

o

R N Y ov

(*1) yulod spaiq pejownse

95

Figure 10
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Figure 11
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Figure 15:





