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ABSTRACT OF THE THESIS 

 

Web-Tapered Steel Beam-Column Elements  

for Nonlinear Analysis with Cyclic Loading 

 

by 

Brighton Laiman 

Master of Science in Structural Engineering 

University of California, San Diego, 2014 

Professor Chia-Ming Uang, Chair 

 

Many of today’s low-rise building structures consist of thin-walled metal members 

that form Metal Building Frames (MBFs).  Members associated with MBFs typically 

involve tapered webs.   Although use of web-tapered members for MBFs are driven by 

economical efficiency, understanding on how these type of members respond under 

seismic loading is limited.  Design of web-tapered members generally is governed by 

lateral-torsional buckling (LTB) and local buckling.  To better understand the seismic 

response of MBFs that buckle, use of numerical methods that can simulate buckling and 

post-buckling behavior are desirable.  Since it is not inefficient to use elements such as 

shells or solids for extensive seismic analyses, development of a one-dimensional beam-



 

xvi 

column element is researched and incorporated to the software OpenSees in order to 

capture warping and non-prismatic effects.   

In addition to monotonic correlations,  six full-scale web-tapered members 

cyclically tested at UCSD were analyzed using this proposed beam-column element.  

Parametric studies associated with these analyses were also performed and included 

variation of axial loads, initial imperfections, and residual stresses.  Based on the predicted 

analyses, events of initial LTB were captured reasonably well.  However, it was observed 

that the proposed element is limited in its capabilities by events of local buckling.   

Because of local buckling limitation, attempt to expand the proposed element by 

introducing combined flange-web displacements was pursued.  Although formulation of 

the updated element was successfully implemented, issues associated with initiating local 

buckling were observed during preliminary verification.  Further development of 

incorporating initial displacements to the flanges is thus required. 
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1 INTRODUCTION 

1.1 General 

Metal buildings are typically designed to resist lateral loads, in their transverse 

direction (see Figure 1.1), through steel moment resisting frames composed of web-tapered 

I-shaped beams (i.e., rafters and columns), herein called metal building frames (MBF).  

The use of MBF is commonly seen in industrial, retail, office, educational, athletic, 

agricultural, arenas, storage, and other applications (Newman 2004).  Because these 

structural systems under design loads experience moment gradients throughout each 

member, non-prismatic members are commonly used in order to be economically efficient.   

Compared to a prismatic hot-rolled, wide-flange member, with compact sections, a 

web-tapered, built-up, I-shaped member with slender and noncompact sections is more 

complicated in behavior, analysis, and design (AISC 2010).  The latter are prone to lateral-

torsional buckling (LTB) and local buckling (LB), including flange local buckling (FLB) 

and web local buckling (WLB). 

For seismic design, current design codes like Minimum Design Loads for Buildings 

and Other Structures ASCE 7-10 (ASCE 2010) and Seismic Design Manual AISC 341 

(AISC 2010) assume that a MBF, thus designed, will go beyond elastic behavior and 

experience inelastic action, including yielding and buckling.  To refine or develop a rational 

seismic design procedure, which recognizes the unique structural characteristics of the 

MBF, it is essential that the inelastic response at both the member and the system levels 

are readily and reliably simulated.   
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Numerical modeling for thin-walled metal members has become valuable and 

commonly used throughout structural analysis.  Although the use of computer software for 

analyses may be appealing to the common user, poor choice of an element formulation can 

lead to high computational expense and unreliable results.  Commercial software, such as 

ABAQUS (SIMULIA Inc. 2013), possess attributes which allow simulations of LTB and 

LB to occur given proper modeling and parameters.  However, computational effort 

required by such software may be time consuming and inefficient in cases like a P695 study 

(FEMA 2009), when extensive nonlinear time-history analyses of frames involving 

yielding and buckling, under a suite of earthquake ground motions are required.  Due to 

this inconvenience, alternative methods that can yield comparable results with less 

computational effort are highly desired.  

The Open System for Earthquake Engineering System (OpenSees) is an open 

source software package in which the use of nonlinear elements, material models, and 

many other libraries can be formulated for numerical modeling (McKenna et al. 2000).  

Due to the nature of open source software, researchers globally are able to access, utilize, 

and modify the package for their particular needs.  

OpenSees is written in C++ and each finite element module needed for an analysis 

is implemented as a class.  Due to the framework and structure of OpenSees, addition and 

modifications of entities such as elements or material models can be done without prior 

knowledge of how the overall program functions globally.  Since the formulation of new 

elements can be done through inheritance from existing elements, a developer can focus 

their efforts on their elements only.  
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Existing implementation of beam-column elements in OpenSees allows occurrence 

of Euler-type flexural buckling at the member level.  But steel flexural members, especially 

those used in metal building construction, are also prone to LTB, which cannot be 

simulated by the existing beam-column elements.  However, previous works, Alemdar 

(2001) and Chang (2006) for instance, have numerically shown that sophisticated beam-

column element formulations can work exceptionally well at simulating this buckling 

mode.  Kitipornchai and Trahair (1975) adapted differential equations for inelastic 

buckling of tapered monosymmetric I-beams under moment gradients and expanded them 

using the finite-integral method.  Yang and McGuire (1986) developed an updated 

Lagrangian procedure for nonlinear analysis that included nonuniform torsion and the 

incorporation of a warping degree of freedom (DOF) at each node of a beam element.  Yang 

and Yau (1987) derived the differential equations of equilibrium for tapered I-beams and 

developed a finite element formulation for beams taking into account geometric 

nonlinearities.  Bradford et al. (1987) developed a geometrically nonlinear finite-element 

method applicable for inelastic lateral buckling of I-section beams and beam-columns 

based on a reference axis arbitrary passing a point along the midheight of the web.  Ronagh 

et al. (2000) presented a finite element formulation through nonlinear Green-Lagrange 

axial strains and Kirchoff stress-resultants of beams with general variable cross-sections.  

Zhang et al. (2011) presented a nonlinear beam-column derivation for doubly symmetric 

members using linear and second order approximations of the Green-Lagrange strain 

equation and incorporated it into OpenSees.  Based on these findings, it is desirable that a 

modified formulation that accounts for warping, non-prismatic web-taper, and Wagner 

effects (Alemdar 2001) are incorporated for studies of metal building applications.  
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In addition to LTB phenomenon, LB occurrence is also of concern in MBFs, 

because noncompact or slender sections are commonly used.  Although design procedures 

handle these two phenomena as independent limit states, experimental cyclic testing (Smith 

et al. 2013) has shown that LTB and LB are quite often coupled together.  Such an instance 

is seen in Figure 1.2, where a physical test beam specimen undergoes an initial event of 

LTB as well as FLB during cyclic testing.  For this reason, it is desirable to develop a beam-

column element that can simulate not only LTB but also FLB. 

1.2 Objective 

The objective of this research was to develop, in the framework of OpenSees, a 

three-dimensional, inelastic, beam-column element to simulate the cyclic response of web-

tapered steel members.  The element, termed Tapered Element A in this research, 

incorporates the warping and Wagner effects in order to simulate flexural buckling as well 

as lateral-torsional buckling.  Tapered Element B is built on Tapered Element A, but with 

additional features included to simulate the local buckling effects as well. 

 Development and use of these two elements is limited to thin-walled members of 

singly-symmetric I-shaped sections.  Furthermore, capabilities of these elements only 

accommodate non-prismatic features of tapered webs, but not tapered flanges.  Capabilities 

of modeling members with singly-symmetric or doubly-symmetric I-shape geometries 

have shown to work well.  Although the proposed elements do not consider tapered flange 

geometry, derivation techniques can include flange-taper in addition to the incorporated 

web-taper.  Thorough modeling of the proposed elements are compared to published work 

to verify their diverse capability with varying boundary conditions, loading conditions, 
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geometric configurations, material properties, use of residual stresses, and member 

imperfections.  

1.3 Organization of Thesis 

Chapter 2 presents the development of Tapered Element A which incorporates 

warping and non-prismatic web-taper effects.  Chapter 3 presents implementation of 

Tapered Element A into the OpenSees framework based on the work presented in Chapter 

2.  Chapter 4 documents correlation studies using Tapered Element A for members that are 

monotonically loaded.  Chapter 5 documents analysis and correlation studies of six full-

scale specimens that are cyclically loaded.   Chapter 6 presents the development of Tapered 

Element B in order to include effects of LB.  Finally, Chapter 7 provides a summary and 

conclusions from this research as well as suggestions for continued development of 

Tapered Element B. 
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Figure 1.1 Metal Building Components (Newman 2004) 

 

  

Figure 1.2 Global and Local Buckling Interaction with LTB (Smith et al. 2013)
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2 DEVELOPMENT OF TAPERED ELEMENT A 

2.1 General 

LTB causes or results in large displacements and rotations experienced throughout 

the member.  To handle these large deformations, the use of a corotational approach 

(Alemdar 2001) is typically involved in order to extract corresponding strain values from 

a deformed configuration.  Constitutive relations allow the retrieval of the corresponding 

stresses as well as the tangent modulus of the material model.  In addition, an element 

tangent stiffness matrix is developed for the proposed beam-column element, which is 

dependent on the cross-sectional properties as well as geometrical nonlinearities.   

2.2 Three-Dimensional Geometrical Reference Frames 

Applications of open thin-walled members that undergo large displacements and 

rotations throughout nonlinear analysis is commonly encountered in engineering practice.  

The capability of allowing such large displacements and rotations enables proper analytical 

buckling predictions as well as handling of post-buckling trajectories.  Assessment of such 

situations can be done through use of a corotational approach (Crisfield 1990), which 

allows treatment of removing rigid body displacement modes (RBMs) in order to 

determine strain deformations from a corotational, or natural, reference frame.  This 

corotational approach allows the behavior of a beam-column element to be represented in 

three related reference frames: the global frame, the local frame, and the natural frame.  By 

removing RBMs from the global and local frames, the natural strain deformations for an 

element can be determined.   
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Corotational transformations are commonly used in nonlinear analyses.  Thorough 

development and discussion of this geometrical transformation are described through 

works of Crisfield (1990), Alemdar (2001), Chang (2006), and by many others.  

Incorporation of the corotational approach in OpenSees is implemented and developed 

through the foundation of Crisfield’s formulation. However, modification is necessary to 

extend the existing coordinate transformation class to allow for the extra warping DOFs.   

In a typical 3-D beam-column element, the global and local frames each consists of 

six degrees-of-freedom (DOFs) at an element end node: three displacements and three 

rotations.  Thus, a typical beam-column element consist of 12 DOFs.  With the removal of 

RBMs, the same element has only seven DOFs in the natural frame: three local rotations 

at each end and an element axial elongation.   

In addition to the DOFs seen in a typical beam-column element, the proposed 

element considers an additional DOF that represents warping at each end node.  A physical 

depiction of this phenomenon is visualized in Figure 2.1.  An undeformed state shows that 

the member segment has a perfectly plane cross-section.  Once warping occurs, the top and 

bottom flanges of the cross-section twist in opposing directions with respect to the 

undeformed section as seen with the dashed segments.  This event where the cross-section 

no longer remains plane is referred to as warping and is directly related to 𝜙, the torsional 

(or twist) angle throughout the member (AISC 2003).      

Within the proposed element, this additional DOF is added at each node to represent 

warping, such that the beam-column element has 14 DOFs total.  Correspondingly, the 

element consists of 9 DOFs in the natural frame when warping contributions are 

considered.  A representative depiction of the proposed element reference frames and  
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(a) Top Flange 

 
(b) Bottom Flange 

Figure 2.1 Plan View of Cross-Sectional Warping 

 

 

 

Figure 2.2 Element DOFs in Proposed Beam-Column Element 

DOFs are seen in Figure 2.2.  Throughout the discussion of this work, the DOF ordering 

for the natural frame is as follows: 

 

 

𝒒𝒏 = [𝜃1𝑥
𝑛 𝜃1𝑧

𝑛 𝜃1𝑦
𝑛 𝜙1

′ 𝜃2𝑥
𝑛 𝜃2𝑧

𝑛 𝜃2𝑦
𝑛 𝜙2

′ 𝑒]𝑇 (2.1) 

(𝑎) Global Frame 

(b) Element Frame  (c) Natural Frame 

𝑢2
𝑒 

Y 

X 

Z 𝑤1
𝑔

 
𝑢1

𝑔
 

𝑣1
𝑔

 

𝜃1𝑥
𝑔

 

𝜃1𝑦
𝑔

 

𝜃1𝑧
𝑔

 
𝜙1

′  

𝑢2
𝑔

 𝑣2
𝑔

 

𝑤2
𝑔

 
𝜃2𝑥

𝑔
 

𝜃2𝑦
𝑔

 

𝜃2𝑧
𝑔

 

𝜙2
′  

𝑢1
𝑒 

𝑣1
𝑒  

𝑤1
𝑒  

𝜃1𝑥
𝑒  

𝜃1𝑦
𝑒  

𝜃1𝑧
𝑒  

𝜙1
′  

𝑣2
𝑒 

𝑤2
𝑒  

𝜃2𝑥
𝑒  

𝜃2𝑦
𝑒  

𝜃2𝑧
𝑒  

𝜙2
′  

𝜙1
′  

𝜃1𝑥
𝑛  

𝜃1𝑧
𝑒  

𝜃1𝑦
𝑒  

𝜙2
′  

𝜃2𝑥
𝑛  

𝜃2𝑦
𝑒  

𝜃2𝑧
𝑒  

e 

x 
y 

z 
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2.3 Uniaxial Green-Lagrange Strain and Torsional Shear Strain 

Figure 2.3 shows a representation of an arbitrary cross-section with the centroid 

(C), shear center (S) of the cross-section, and location of an arbitrary reference axis (O) 

passing through the cross-section, where origin of the cross-sectional coordinates begin.  

Additionally, an arbitrary point, P, that coincides with a plate’s (flange or web) mid-

thickness with coordinates (y, z) is seen in the figure. 

Typical beam-column derivations are more commonly seen to use either a cross-

section’s centroid or shear center as the nodal reference axis.  To generalize and 

accommodate user preference, the proposed beam-column element was derived so that the 

reference axis may pass through any arbitrary point of a cross-section, a feature which is 

convenient for modeling MBFs.  As a result, the reference axis may be defined through the 

mid-height of the web plate, for simplicity.   

Formulation of the existing OpenSees beam-column element uses a uniaxial Green-

Lagrange strain assumption (Chang 2006):  

 

Figure 2.3 Coordinate System of a Singly-Symmetric I-Section 

O (reference axis)
C (centroid)
S (shear center)

z

y
P (y,z)

s
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𝜀𝑥 = 𝑢′ + 𝑣′𝑦′ + 𝑤′𝑧′ +
1

2
(𝑢′2 + 𝑣′2 + 𝑤′2) (2.2) 

where u is the longitudinal displacement along the x-axis, v the transverse displacement in 

the y-axis, and w the transverse displacement in the z-axis of the arbitrary point P.  The 

derivatives are with respect to x.  Note that the second and third terms on the right-hand 

side of Eq. (2.2) account for the non-prismatic effect of the section for the web and flanges, 

respectively.  The displacement components are obtained and elaborated through Ronagh 

(2000) as follows: 

 𝑣 = 𝑣0 − 𝑧 𝑠𝑖𝑛 𝜙 − 𝑦(1 − 𝑐𝑜𝑠 𝜙)  

  𝑤 = 𝑤0 + 𝑦 𝑠𝑖𝑛 𝜙 − 𝑧(1 − 𝑐𝑜𝑠 𝜙)  

 𝑢 = 𝑢0 − 𝑦𝛼𝑧 − 𝑧𝛼𝑦 − 𝜔𝜙′ (2.3) 

 𝛼𝑦 = 𝑤0
′  𝑐𝑜𝑠 𝜙 − 𝑣0

′  𝑠𝑖𝑛 𝜙  

 𝛼𝑧 = 𝑣0
′  𝑐𝑜𝑠 𝜙 + 𝑤0

′  𝑠𝑖𝑛 𝜙  

where 𝑢0 is the longitudinal displacement along the x-axis, v0 the transverse displacement 

in the y-axis, and w0 the transverse longitudinal displacement in the z-axis located at the 

reference axis of the cross-section.  The cross-sectional twist, 𝜙, is the counter-clockwise 

rotation relative to the y-axis about the shear center, and the warping function of the cross-

section, 𝜔, is defined by Ronagh (2000): 

𝜔(𝑥, 𝑦, 𝑧) = ∫(𝑧,𝑠 𝑦 − 𝑦,𝑠 𝑧)𝑑𝑠
𝑠

 (2.4) 

where s is a coordinate tangent to the wall of the cross-section of each flange and web plate 

seen in Figure 2.3. 
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Taking the derivatives of u, v, and w in Eq. (2.3) and utilizing small angle theory 

(i.e., sin(𝜙) ≈ 𝜙 and cos(𝜙) ≈ 1), the displacements of a point P in Eq. (2.3) become: 

𝑢′ = 𝑢0
′ − (𝑦′ − 𝑧′𝜙 − 𝑧𝜙′)𝑣0

′ − (𝑦 − 𝑧𝜙)𝑣0
′′ − (𝑦′𝜙 + 𝑦𝜙′ + 𝑧′)𝑤0

′  

−(𝑦𝜙 + 𝑧)𝑤0
′′ − 𝜔′𝜙′ − 𝜔𝜙′′ 

𝑣′ = 𝑣0
′ − 𝑧′𝜙 − 𝑧𝜙′ 

𝑤′ = 𝑤′0 + 𝑦′𝜙 + 𝑦𝜙′ 

 

 

(2.5) 

 Note that terms involving 𝑧′ are kept for a general case of non-prismatic members 

consisting of both web-taper and flange-taper.  Equivalent results are obtained through 

derivations done by Alemdar (2001) and Chang (2006), where the former is limited to 

prismatic members and the latter considers non-prismatic effects of both web-taper and 

flange-taper.  Upon substituting Eq. (2.5) into Eq. (2.2), the expanded uniaxial Green-

Lagrange strain equation becomes:  

𝜀𝑥 = 𝑢0
′ − (𝑦𝑣0

′′ + 𝑧𝑤0
′′) − 𝜔𝜙′′ − (𝜔′ + 𝑦′𝑧 − 𝑧′𝑦)𝜙′ +

1

2
(𝑣0

′2 + 𝑤0
′2) 

 

(2.6)                 +(𝑧𝑣0
′′ − 𝑦𝑤0

′′)𝜙 +
1

2
(𝑦2 + 𝑧2)𝜙′2 

Interpretation of the terms follow (Chang 2006): 

 𝑢0
′  axial strain due to elongation at origin O, 

 −(𝑦𝑣0
′′ + 𝑧𝑤0

′′) axial strain due to bending about both axes, 

 𝜔𝜙′′ axial strain due to warping, 

 (𝜔′ + 𝑦′𝑧 − 𝑧′𝑦)𝜙′ axial strain due to non-prismatic member effects with 

warping, 

 
1

2
(𝑣0

′2 + 𝑤0
′2) axial strain and bending coupling effects, 
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 (𝑧𝑣0
′′ − 𝑦𝑤0

′′)𝜙 axial strain, combined bending, and torsional coupling 

effects, and 

 
1

2
(𝑦2 + 𝑧2)𝜙′2 Wagner effect (coupling between axial strain and torsion). 

This result shows that nonlinear second-order terms produces twisting and warping effects 

which are not seen when only linear terms of Eq. (2.6) are kept.   

As a special case, neglecting the nonlinear terms in Eq. (2.6) results in a simplified 

version of the Green-Lagrage strain that solely considers axial strains due to elongation 

and bending about both axes:  

𝜀𝑥 = 𝑢0
′ − 𝑦𝑣0

′′ − 𝑧𝑤0
′′ (2.7) 

This simplified form currently forms the basis for the existing beam-column element in 

OpenSees.  As will be shown later, this simplified form lacks key attributes compared to 

the proposed element. 

Although derivation of the proposed beam-column element neglects shear strains 

caused by bending and warping based on Vlasov’s theory of thin-walled members, shear 

from the torsional effects of three-dimensional analyses and mechanics must still be 

accounted for.  To consider this phenomenon, it is assumed that the shear strain due to 

torsional effects varies linearly throughout the thickness of the cross-section and that it has 

a zero value at the mid-thickness of a member’s plate.  Inclusion of this shear strain is 

treated separately from the axial strain and taken to be:  

𝛾 = −2𝑟̂𝜙′ (2.8) 

in which 𝑟̂ represents the distance of a point measured normal to the mid-surface of a plate.  

The stress vector corresponding to the strain vector, 𝛆 = [𝜀𝑥 𝛾]𝑇, is 𝛔 = [𝜎𝑥 𝜏]𝑇. 
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Taking the variation of both the uniaxial strain and shear strain in Eq. (2.6) and Eq. (2.8) 

yields: 

𝛿𝜀𝑥 = 𝛿𝑢0
′ + 𝑣0

′𝛿𝑣0
′ + 𝑤0

′𝛿𝑤0
′ − 𝑦(𝛿𝑣0

′′ + 𝜙𝛿𝑤0
′′ + 𝑤0

′′𝛿𝜙) 

                              +𝑧(𝜙𝛿𝑣0
′′ − 𝛿𝑤0

′′ + 𝑣0
′′𝛿𝜙) + (𝑦2 + 𝑧2)𝜙′𝛿𝜙′ − 𝜔𝛿𝜙′′ 

                             −(𝜔′ + 𝑦′𝑧 − 𝑧′𝑦)𝛿𝜙′ 

 

 

(2.9) 

𝛿𝛾 = −2𝑟̂𝛿𝜙′ (2.10) 

where 𝜓 is a warping effect due to a tapered web and tapered flanges:  

𝜓 = 𝜔′ + 𝑦′𝑧 − 𝑧′𝑦 (2.11) 

Combining the strain variations into vector form and corresponding relations from Eqs. 

(2.9) and (2.10) into matrix form yields:  

𝛿𝛆 = [
𝛿𝜀𝑥

𝛿𝛾
] = [

1 −𝑦 𝑧
0 0 0

     
(𝑦2 + 𝑧2) −𝜔 −𝜓

0 0 −2𝑟̂
]

[
 
 
 
 
 
1 𝑣0

′ 𝑤0
′ 0 0 0 0 0

0 0 0 1 𝜙 𝑤0
′′ 0 0

0 0 0 𝜙 −1 𝑣0
′′ 0 0

0 0 0 0 0 0 𝜙′ 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0]

 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝛿𝑢0

′

𝛿𝑣0
′

𝛿𝑤0
′

𝛿𝑣0
′′

𝛿𝑤0
′′

𝛿𝜙

𝛿𝜙′

𝛿𝜙′′]
 
 
 
 
 
 
 
 

 

or 

δ𝛆 = 𝐒 ∙ 𝐐 ∙ δ𝐯 (2.12) 

2.4 Theoretical Element Tangent Stiffness Matrix  

Previous researchers (e.g., Alemdar (2001), Chang (2006), Zhang et al. (2011), and 

many others) have shown that  incorporating warping to the Green-Lagrange strain 

equation capture effects of LTB very well.  Dependent on their research, various 

simplifications or generalizations were taken into account through their efforts in the 

expansion of the Green-Lagrange equation discussed in the previous section.  Although the 
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axial strain equation derived in Eq. (2.6) is a generalized case for non-prismatic members 

consisting of web and flange taper, the focus of research work is on web-tapered members.  

Therefore, 𝑧′ may be neglected and Eq. (2.6) becomes: 

𝜀𝑥 = 𝑢0
′ − (𝑦𝑣0

′′ + 𝑧𝑤0
′′) − 𝜔𝜙′′ − (𝜔′ + 𝑦′𝑧)𝜙′ +

1

2
(𝑣0

′2 + 𝑤0
′2) 

                     +(𝑧𝑣0
′′ − 𝑦𝑤0

′′)𝜙 +
1

2
(𝑦2 + 𝑧2)𝜙′2 

 

 

(2.13) 

The University of Sydney, Australia has previously shown implementation of 

warping effects into OpenSees (Zhang et al. 2011).  Although benchmark results with their 

element correlated well with published work and alternative finite element analysis (FEA) 

software, their formulation was for prismatic doubly-symmetric members only.  However, 

the incorporations done by Zhang et al. (2011) served as a foundation for implementing 

the proposed element into OpenSees.   

As mentioned in Section 2.2, the proposed element has a total of 9 DOFs in the 

natural reference frame.  These deformations are due to the axial deformation as well as 

three local rotations and one warping rotation relative to the undeformed element at each 

end.  Interpolation (shape) functions are used to assume the displacement fields along the 

x-axis by using a linear function for the axial displacement as well as cubic Hermitian 

functions for the transverse displacements and torsional angle, 𝜙, relation: 

𝑢0(𝑥) = 𝐍𝑢
𝑇𝐪𝑛  

(2.14) 

𝑣0(𝑥) = 𝐍𝑣
𝑇𝐪𝑛 

𝑤0(𝑥) = 𝐍𝑤
𝑇 𝐪𝑛 

 𝜙(𝑥) = 𝐍𝜙
𝑇𝐪𝑛 
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where 𝒒𝑛 is the element displacement vector defined in Eq. (2.1) based on the natural 

reference frame.  The interpolating functions are: 

𝐍𝑢
𝑇 = [0 0 0 0 0 0 0 0 𝑁𝑢]  

 

 

(2.15) 

𝐍𝑣
𝑇 = [0 𝑁𝑣1 0 0 0 𝑁𝑣2 0 0 0] 

𝐍𝑤
𝑇 = [0 0 −𝑁𝑤1 0 0 0 −𝑁𝑤2 0 0] 

𝐍𝜙
𝑇 = [𝑁𝜙1 0 0 𝑁𝜙2 𝑁𝜙3 0 0 𝑁𝜙4 0] 

where 

𝑁𝑢  =
𝑥

𝐿
 (2.16) 

𝑁𝑣1 = 𝑁𝑤1 = 𝑁𝜙2 = 𝑥 (1 −
𝑥

𝐿
)
2

 (2.17) 

𝑁𝑣2 = 𝑁𝑤2 = 𝑁𝜙4 = −𝑥 (
𝑥

𝐿
) + 𝑥 (

𝑥

𝐿
)
2

 (2.18) 

𝑁𝜙1 = 1 − 3(
𝑥

𝐿
)
2

+ 2(
𝑥

𝐿
)
3

 (2.19) 

𝑁𝜙3 = 3(
𝑥

𝐿
)
2

− 2(
𝑥

𝐿
)
3

 (2.20) 

With the aid of Eq. (2.15), 𝛿𝒗 from Eq. (2.12) can be re-written as: 

δ𝐯 = 𝐁δ𝐪𝐧 (2.21) 

or 
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[
 
 
 
 
 
 
 
 
𝛿𝑢0

′

𝛿𝑣0
′

𝛿𝑤0
′

𝛿𝑣0
′′

𝛿𝑤0
′′

𝛿𝜙

𝛿𝜙′

𝛿𝜙′′]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

0 0 0 0 0 0 0 0 𝑁𝑢
′

0 𝑁𝑣1
′ 0 0 0 𝑁𝑣2

′ 0 0 0

0 0 −𝑁𝑤1
′ 0 0 0 −𝑁𝑤2

′ 0 0

0 𝑁𝑣1
′′ 0 0 0 𝑁𝑣2

′′ 0 0 0

0 0 −𝑁𝑤1
′′ 0 0 0 −𝑁𝑤2

′′ 0 0
𝑁𝜙1 0 0 𝑁𝜙2 𝑁𝜙3 0 0 𝑁𝜙4 0

𝑁𝜙1
′ 0 0 𝑁𝜙2

′ 𝑁𝜙3
′ 0 0 𝑁𝜙4

′ 0

𝑁𝜙1
′′ 0 0 𝑁𝜙2

′′ 𝑁𝜙3
′′ 0 0 𝑁𝜙4

′′ 0 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
𝛿𝜃1𝑥

𝑛

𝛿𝜃1𝑧
𝑛

𝛿𝜃1𝑦
𝑛

𝛿𝜙1
′

𝛿𝜃2𝑥
𝑛

𝛿𝜃2𝑧
𝑛

𝛿𝜃2𝑦
𝑛

𝛿𝜙2
′

𝛿𝑒 ]
 
 
 
 
 
 
 
 
 

 

 

 

 

 

(2.22) 

 

Therefore, Eq. (2.12) becomes: 

δ𝛆 = 𝐒 ∙ 𝐐 ∙ 𝐁 ∙ δ𝐪𝐧 (2.23) 

The element tangent stiffness matrix of the proposed beam-column element can be 

obtained through the principle of virtual work: 

∫ (δ𝛆T𝛔)
𝑉0

dV0 − δ𝐪n
T𝐅ext = 0 (2.24) 

where 𝐅𝑒𝑥𝑡 is an external force vector in the natural coordinate reference frame.  

Substituting Eq. (2.23) into Eq. (2.24), the following equation is obtained: 

δ𝐪𝐧
T (∫ (𝐁T𝐐T𝐒T𝛔)dV0

𝑉0

− 𝐅ext) = 0 (2.25) 

The first term inside the parentheses is the internal force vector based on the volume of an 

element, 𝑉0, and cross-sectional area, 𝐴0: 

𝐩 = ∫ (𝐁T𝐐T𝐒T𝛔)dV0
𝑉0

= ∫ [𝐁T𝐐T ∫ (𝐒T𝛔)
𝐴0

d𝐴0] dx
𝐿

0

 (2.26) 

where the section stress-resultant vector, 𝐃 = [𝑃 𝑀𝑧 𝑀𝑦 𝑊 𝐵 𝑇𝑠𝑣]𝑇, is 

𝐃 = ∫ 𝐒T𝛔
𝐴0

d𝐴0 (2.27) 

And 𝛔 = [𝜎𝑥 𝜏]𝑇 is the section stress.   Discussion of the section stress-resultant vector 

components will be presented in the following section.  
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 Based on the constitutive relation between stress and strain, the variation of the 

stress can be directly related to the variation of the natural nodal displacements as follows: 

δ𝛔 = 𝐂δ𝛆 = 𝐂 ∙ 𝐒 ∙ 𝐐 ∙ 𝐁 ∙ δ𝐪𝐧 (2.28) 

where 𝑪 is a matrix consisting of the tangent Young’s modulus, 𝐸𝑇, and the shear modulus, 

𝐺, which is discussed in Section 2.5. 

Therefore, taking the variation of Eq. (2.26) directly results into the formation of 

the element tangent local stiffness matrix as: 

δ𝐩 = δ [∫ (𝐁T𝐐T𝐃)𝑑x
𝐿

0

] 

= ∫ (𝐁Tδ𝐐T𝐃)𝑑𝑥
𝐿

0

+ ∫ (𝐁T𝐐Tδ𝐃)𝑑𝑥
𝐿

0

 

= ∫ (𝐁Tδ𝐐T𝐃)𝑑𝑥
𝐿

0

+ ∫ (𝐁T𝐐T ∫ 𝐒Tδ𝛔
𝐴0

d𝐴0)𝑑x
𝐿

0

 

= ∫ (𝐁T𝐆𝐁)𝑑𝑥 δ𝐪𝐧

𝐿

0

+ ∫ (𝐁T𝐐T ∫ 𝐒T𝐂𝐒𝐐𝐁d𝐴0
𝐴0

)𝑑𝑥 δ𝐪𝐧

𝐿

0

 

= [∫ (𝐁T𝐆𝐁)𝑑𝑥
𝐿

0

+ ∫ (𝐁T𝐐T𝐤𝐬𝐐𝐁)𝑑𝑥
𝐿

0

] δ𝐪𝐧 

= [𝐊𝐆 + 𝐊𝐌]δ𝐪𝐧 = 𝐊𝐭𝐚𝐧 δ𝐪𝐧 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.29) 

where the internal geometric stiffness matrix, 𝐆, is obtained through: 

δ𝐐T𝐃 = 𝐆δ𝐯 =  𝐆𝐁δ𝐪𝐧 (2.30) 

In Eq. (2.29), 𝐊𝒕𝒂𝒏 is the element tangent stiffness matrix in the natural reference frame, 

𝐤𝐬 is the section tangent stiffness matrix to be discussed in more detail in Section 2.5, and 

𝐆 is taken to be: 
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𝐆 =

[
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0
0 𝑃 0 0 0 0 0 0
0 0 𝑃 0 0 0 0 0
0 0 0 0 0 𝑀𝑦 0 0

0 0 0 0 0 𝑀𝑧 0 0
0 0 0 𝑀𝑦 𝑀𝑧 0 0 0

0 0 0 0 0 0 𝑊 0
0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 

 

 

 

 

(2.31) 

2.5 Theoretical Section Tangent Stiffness Matrix 

The section stiffness matrix previously mentioned and described in Eq. (2.29) is: 

𝐤𝐬 = ∫ 𝐒𝑻𝐂𝐒
𝐴0

𝑑𝐴0 (2.32) 

where C is a matrix that contains the constitutive relations of the tangent Young’s modulus, 

𝐸𝑇, and  shear modulus, 𝐺, between the section stresses and section strains.  This term takes 

the form of: 

𝐂 = [
𝐸𝑇 0
0 𝐺

] (2.33) 

Substitution and manipulation of Eq. (2.32) yields the final form of the section tangent 

stiffness matrix: 

𝐤𝐬 = 𝐸𝑇 ∫

[
 
 
 
 
 
 

1
−𝑦 𝑦2 𝑠𝑦𝑚.

𝑧 −𝑦𝑧 𝑧2

𝜒 −𝑦𝜒 𝑧𝜒 𝜒2

−𝜔 𝑦𝜔 −𝑧𝜔 −𝜒𝜔 𝜔2

−𝜓 𝑦𝜓 −𝑧𝜓 −𝜒𝜓 𝜔𝜓 𝜓2 + 4𝐺𝑟̂2/𝐸𝑇]
 
 
 
 
 
 

𝐴0

𝑑𝐴0 

 

 

(2.34) 

where 𝜒 = 𝑦2 + 𝑧2 and the terms 𝜔 (Eq. (2.4)) and 𝜓 (Eq. (2.11)) are functions of warping 

and non-prismatic effects, respectively.  

It is important to note that formulation of the section tangent stiffness matrix in Eq. 

(2.34) is a general result of an arbitrary longitudinal reference axis located on the cross-
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section (see Figure 2.3).  Simplification of the result can be obtained if the reference axis 

coincides with the cross-sectional shear center.  Although having this configuration is 

convenient for members with doubly symmetric and prismatic geometry, use of a cross-

section’s shear center as the reference axis poses issues when dealing with non-prismatic 

and singly symmetric thin-walled members.  For instance, a cross-section’s shear center 

for such a member is not consistent along its length.  Therefore, computational effort would 

be required to determine the shear center location of each integration point used throughout 

each element of a member.   Due to the generalized result of the section stiffness matrix in 

Eq. (2.34), the reference frame can be conveniently placed at the cross-section’s web plate 

mid-height.  Through this, the extra effort of computing and determining each element’s 

shear center at an integration point is unnecessary.   

 The section tangent stiffness matrix for the existing beam-column element model 

implemented in OpenSees only contains the first three rows and columns of Eq. (2.34): 

𝐤𝐬 = 𝐸𝑇 ∫ [

1 𝑠𝑦𝑚.

−𝑦 𝑦2

𝑧 −𝑦𝑧 𝑧2

]
𝐴0

𝑑𝐴0 

 

(2.35) 

While the existing OpenSees implementation only takes into consideration bi-axial 

bending, the proposed element includes Wagner, warping, and non-prismatic effects.  

Wagner effects result in either an increase or decrease in torsional stiffness based on how 

the normal stress is acting on the cross-section.  Further discussion of this effect is 

discussed in detail in Kitipornchai and Trahair (1975).  Contributions of these Wagner 

effects are seen through the fourth row and column of Eq. (2.34), while warping 

contributions correspond with the fifth row and column, and non-prismatic member 

contributions correspond with the sixth row and column.  Specifically, the variable 𝜓 seen 
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in the sixth row and column denotes the non-prismatic consideration through warping 

effects due to a tapered web.   

2.6  Discretization for Finite Element Implementation 

As previously mentioned, the corresponding section stress-resultant vector from 

Eq. (2.27) is explicitly stated as (Chang 2006): 

𝐃 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 ∫ 𝜎𝑥

𝐴0

𝑑𝐴0

∫ −𝑦𝜎𝑥
𝐴0

𝑑𝐴0

∫ 𝑧𝜎𝑥
𝐴0

𝑑𝐴0

∫ (𝑦2 + 𝑧2)
𝐴0

𝜎𝑥𝑑𝐴0

∫ −𝜔
𝐴0

𝜎𝑥𝑑𝐴0

∫ (−𝜓𝜎𝑥 + 4𝑟̂2𝐺𝜙′)𝑑𝐴0
𝐴0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
𝑃
𝑀𝑧

𝑀𝑦

𝑊
𝐵
𝑇𝑠𝑣]

 
 
 
 
 

 

 

 

 

 

 

 

(2.36) 

where the terms of this vector are referred to as: 

  𝑃 =  axial force,  

 𝑀𝑧  = bending moment about the z-axis, 

 𝑀𝑦   = bending moment about the y-axis, 

 𝑊    = Wagner force, 

 𝐵  = Bi-moment force about the y-axis, and 

  𝑇𝑠𝑣  = St. Venant torsion.  

          Both the expressions for the section tangent stiffness matrix and section stress-

resultant vector are based on the exact integral and analytical form.  However, results in 

these forms are impractical for computer software implementation.  Thus, each cross-
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section must be discretized into a finite number of square fibers.  By doing so, substitution 

of the integration in the analytical solution is achieved through summation of all the cross-

sectional fibers.  The discretized forms of the section tangent stiffness matrix and section 

stress-resultant vector are: 

𝐤𝐬 = ∑𝐸𝑇𝑖𝐴𝑖

[
 
 
 
 
 
 
 

1
−𝑦𝑖 𝑦𝑖

2 𝑠𝑦𝑚.

𝑧𝑖 −𝑦𝑖𝑧𝑖 𝑧𝑖
2

𝜒𝑖 −𝑦𝑖𝜒𝑖 𝑧𝑖𝜒𝑖 𝜒𝑖
2

−𝜔𝑖 𝑦𝑖𝜔𝑖 −𝑧𝑖𝜔𝑖 −𝜒𝑖𝜔𝑖 𝜔𝑖
2

−𝜓𝑖 𝑦𝑖𝜓𝑖 −𝑧𝑖𝜓𝑖 −𝜒𝑖𝜓𝑖 𝜔𝑖𝜓𝑖 𝜓𝑖
2 + 𝐺

𝑡𝑝𝑖
2

𝐸𝑇𝑖]
 
 
 
 
 
 
 

𝑛

𝑖=1

 

 

 

 

(2.37) 

𝐃 = ∑𝐴𝑖

[
 
 
 
 
 
 

𝜎𝑖

−𝑦𝑖𝜎𝑖

𝑧𝑖𝜎𝑖

(𝑦𝑖
2 + 𝑧𝑖

2)𝜎𝑖

−𝜔𝑖𝜎𝑖

(−𝜓𝑖𝜎𝑖 −
𝑡𝑝𝑖𝜏𝑖

3
)]
 
 
 
 
 
 

𝑛

𝑖=1

 

 

 

 

(2.38) 

where 𝑛 is the total number of fibers discretized throughout the cross-section.   

Through the use of fiber discretization, individual fibers of a cross-section requires 

key attributes such that correct numerical solutions are computed.  Thus, each fiber is 

required to have its own 𝑦𝑖 and 𝑧𝑖 coordinate, fiber area (𝐴𝑖), tangent modulus (𝐸𝑡𝑖), stress 

value (𝜎𝑖), strain value (𝜀𝑖), and torsion coefficient (𝐽𝑖).  Because this research deals with 

thin-walled members, each plate is discretized through a single row of fibers as shown in 

Figure 2.4.  Because the single layer of fibers, torsional effects being treated as linearly 

elastic, simplification of the torsional coefficient of each plate fiber, 𝐽𝑖, is taken to be: 

𝐽𝑖 =
𝑏𝑝𝑖𝑡𝑝𝑖

3

3
=

𝑡𝑝𝑖
4

3
=

𝑡𝑝𝑖
2 𝐴𝑖

2

3
 (2.39) 
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Figure 2.4 Fiber Discretization of Cross-Section 

Each fiber is capable of possessing its own tangent modulus value.  This is essential 

in cases where inelastic material models are used and especially important when residual 

stresses are considered and allows the non-uniform section yield patterns to occur 

throughout the flanges and web.  Similarly, each fiber throughout a given cross-section 

also has a shear modulus value.  But, because torsional shear strain is treated to remain 

consistently linear-elastic, this parameter, 𝐺, is taken to be constant throughout analysis.   

Typically, coupling between normal stresses and shear stresses are needed to 

consider a yielding criterion of inelastic response.  This would, therefore, require utilization 

of a stress resultant-based material model (e.g., Von Mises yield criterion) in order to 

satisfy such a criterion as done by Alemdar (2001).  Although this routine is commonly 

seen through use of continua formulations, model simplification can also be achieved 

through a uniaxial approach.   

Simplification of Eq. (2.37) is seen when dealing with cases pertaining specifically 

to prismatic members.  All terms which correspond with 𝜓 result to a zero value due to the 

constant web-height, resulting in a pure torsional stiffness in the last row and column of 

y

z

(𝑦𝑖, 𝑧𝑖) 

𝐴𝑖 



24 

 

the matrix.  For a prismatic, linear-elastic, doubly-symmetric member is simplified and in 

the form of: 

𝐤𝐬 = ∑𝐸𝑡𝑖𝐴𝑖

𝑛

𝑖=1

[
 
 
 
 
 
 
 
 

1 𝑠𝑦𝑚.

0 𝑦𝑖
2

0 0 𝑧𝑖
2

(𝑦𝑖
2 + 𝑧𝑖

2) 0 0 (𝑦𝑖
2 + 𝑧𝑖

2)2

0 0 0 0 𝜔𝑖
2

0 0 0 0 0 (𝐺
𝑡𝑝𝑖
2

𝐸𝑡𝑖
)
]
 
 
 
 
 
 
 
 

 

 

 

 

 

(2.40) 

 

2.7  Element Tangent Stiffness Matrix with Smoothing  

The proposed beam-column element, as derived above, cannot exhibit inextensible 

bending, as described by Crisfield (1991).  Within modeling of buckling analyses, many 

buckling modes are observed to nearly, if not completely, omit any form of axial extension 

(Belytschko 2000).  Crisfield (1991) discussed this issue, stating that use of a linear 

function to represent axial deformations is insufficient when cubic functions are used to 

interpolate transverse displacements.  He suggested the use of a quintic function to account 

for the axial components to omit cases of membrane locking.  However, formulation of 

such a function can be long and cumbersome as it is pointed out by Chang (2006) and 

Alemdar (2001).  Alternatively, Crisfield (1990) proposed an ad-hoc method in which 

smoothing incorporations of the axial strain may be used within the previously discussed 

formulation.  Incorporation of the smoothing effects discussed in this section are used 

throughout the finite element implementation into OpenSees.  The existing beam-column 

element currently implemented in OpenSees neglects the problem of inextensible bending.   
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 Earlier equation derivations remain unaltered from the smoothing effects except the 

uniaxial Green-Lagrange strain seen in Eq. (2.6).  After incorporation of smoothing effects, 

the new form of the strain equation becomes:  

𝜀𝑥 = 𝑢0
′ − (𝑦𝑣0

′′ + 𝑧𝑤0
′′) − 𝜔𝜙′′ − 𝜓𝜙′ +

1

60
𝚯𝑛

𝑇𝐗𝚯𝑛 + (𝑧𝑣0
′′ − 𝑦𝑤0

′′)𝜙 

+
1

2
(𝑦2 + 𝑧2)𝜙′2 

 

(2.41) 

where 𝚯𝑛 represents a vector containing the element nodal rotations in the natural reference 

frame defined through Eq. (2.1) and 𝑿 is defined to be: 

𝐗 =

[
 
 
 
 
 
0 0 0 0 0 0
0 4 0 0 −1 0
0 0 4 0 0 −1
0 0 0 0 0 0
0 −1 0 0 4 0
0 0 −1 0 0 4 ]

 
 
 
 
 

 

 

 

(2.42) 

Thus, the variation of Eq. (2.41) is: 

𝛿𝜀𝑥 = 𝛿𝑢0
′ +

1

30
𝚯𝑛

𝑇𝐗𝛿𝚯𝑛 − 𝑦(𝛿𝑣0
′′ + 𝜙𝛿𝑤0

′′ + 𝑤0
′′𝛿𝜙) 

+𝑧(𝜙𝛿𝑣0
′′ − 𝛿𝑤0

′′ + 𝑣0
′′𝛿𝜙) + (𝑦2 + 𝑧2)𝜙′𝛿𝜙′ − 𝜔𝛿𝜙′′ − 𝜓𝛿𝜙′ 

 

(2.43) 

 Therefore, the corresponding form of the Q matrix from Eq. (2.12) is: 

𝐐 =

[
 
 
 
 
 
 1

1

30
𝚯𝑛

𝑇𝐗 0 0 0 0 0 0

0 0 0 1 𝜙 𝑤0
′′ 0 0

0 0 0 𝜙 −1 𝑣0
′′ 0 0

0 0 0 0 0 0 𝜙′ 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0]

 
 
 
 
 
 

 

 

 

 

(2.44) 

 

and the B matrix in Eq. (2.21) becomes: 
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𝐁 =

[
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0 0 0 𝑁𝑢
′

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 𝑁𝑣1

′′ 0 0 0 𝑁𝑣2
′′ 0 0 0

0 0 −𝑁𝑤1
′′ 0 0 0 −𝑁𝑤2

′′ 0 0
𝑁𝜙1 0 0 𝑁𝜙2 𝑁𝜙3 0 0 𝑁𝜙4 0

𝑁𝜙1
′ 0 0 𝑁𝜙2

′ 𝑁𝜙3
′ 0 0 𝑁𝜙4

′ 0

𝑁𝜙1
′′ 0 0 𝑁𝜙2

′′ 𝑁𝜙3
′′ 0 0 𝑁𝜙4

′′ 0 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

(2.45) 

Subsequent procedures for the element formulation remain the same as the previous 

formulation from Eqs. (2.23) through (2.29).  With smoothing effects, the geometric 

stiffness matrix, 𝐆, is updated to give the form: 

𝐆 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
0 0

0 0
4

30
𝑃 𝑠𝑦𝑚.

0 0 0
4

30
𝑃

0 0 0 0 0

0 0 −
1

30
𝑃 0 0

4

30
𝑃

0 0 0 −
1

30
𝑃 0 0

4

30
𝑃

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 𝑀𝑦 𝑀𝑧 0

0 0 0 0 0 0 0 0 0 0 𝑊
0 0 0 0 0 0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

(2.46) 
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3 OPENSEES IMPLEMENTATION AND INCORPORATION 

3.1 General 

OpenSees is an open source object oriented program which is commonly used by 

researchers and practicing engineers throughout the world (McKenna et al. 2000).  

Although its main goal is for numerical simulations of structural and geotechnical systems 

subjected to earthquakes,  the software also offers other capability and functionality for 

various types of analysis.  For instance, such applications involve non-seismic analyses 

including pseudo-static pushovers and modal analysis.  Due to its open source nature, 

OpenSees continues to progress with new development as researchers contribute their own 

studies and work into the software through future packages.  

With numerous utilities constantly being updated throughout its library, the 

functionality of OpenSees as an analysis tool shows great appeal and potential.  Among 

the various element formulations that are accessible within the library, a category of beam-

column elements can be found.  In its current form, however, the existing beam-column 

element neglect consideration of non-uniform warping torsion and non-prismatic effects.  

Because thin-walled open section members are commonly used in metal building industry, 

the functionality and usability of adding a beam-column element which incorporates such 

warping effects, to capture cases of buckling, would be highly desirable.  

3.2 Current OpenSees Framework 

Foundation of the OpenSees framework relies on the concept of classes and objects.  

Objects can be thought of as a final product and representation of a certain entity.  However, 

in order for that entity to be complete, certain aspects and variables which distinguish it 
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from any other type of entity must be defined.  The need for these entity definitions result 

in the topic of a class, which is essentially a building block and blueprint for an object.   

The purpose of a class is to capture characteristics of the object and its behavior.  

For example, an instance of an element can show the simplicity of the relations of objects 

and classes.  A single element by itself would be considered to be the object.  However, 

this generalization does not yield much meaning as it stands by itself.  In order to 

distinguish what type of element is being referred to is based on the class which defines 

the element.  A class for a truss element, for instance, will require attributes such as the 

element length, cross-sectional area, and modulus of elasticity. 

Additionally, object oriented software utilizes the idea of modular programming.  

In essence, this technique allows the separation of various functions and tasks into different 

categories known as modules.  A module can be thought of as a collection of functions 

which accomplish a certain purpose.  As a result of this configuration, researchers and 

developers are able to incorporate and modify their studies without the need to understand 

the package as a whole.   

Although each module in OpenSees is essential in ensuring proper finite element 

procedures, knowledge of how each module functions and interacts with one another is 

unnecessary.  Because of this loose coupling of modules, researchers and developers are 

able to put emphasis and focus on incorporating their particular studies.  

Within OpenSees, there are four main modules which are essential for any type of 

analysis being modeled: ModelBuilder, Domain, Analysis, and Recorder.  Visualization of 

how these various modules are interlaced with one another is depicted through the tree 

diagram in Figure 3.1.  The ModelBuilder module is responsible for handling and 
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processing necessary inputs of the finite element model which includes, but is not limited 

to, objects such as nodes, material models, and elements.  The Domain and Analysis 

modules work together once a model is established.  The Analysis module updates the 

model from a converged state to a new one.  At the same time the Domain module updates 

and stores all necessary stresses and constitutive relations.  As a model converges to a state 

of equilibrium, the Recorder module is then called to gather and save information from the 

Domain such that data post-processing can be done once the analysis is finished.  

Among the various classes found within the Domain module, the Element class is 

of main focus when implementing a new element.  Throughout this Element class, the 

existing beam-column element as well as other formulations are collected together for use 

in an analysis.  Depiction of this hierarchy is shown in a tree diagram in Figure 3.2.   

The beam-column element also relies on another object class which deals with the 

element’s cross-sectional attributes and is referred to as FiberSection3d.  Through the use 

of this class, a cross-sectional fiber’s strain, stress, tangent modulus, and stiffness 

contribution can be determined. 
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Figure 3.1 High Level Tree Diagram of OpenSees Modules (Fenves 2004) 

 

 

Figure 3.2 Tree Diagram of Domain Module in OpenSees (Fenves 2004) 

3.3 Incorporation of Beam-Column Element With Warping Effects 

Unlike commercial finite element software, OpenSees is limited in aspects of a 

graphical user interface (GUI) which allows a user to create a model.  Instead, the string-

based Tool Command Language (Tcl) acts as an interpreter for input files containing 

keywords, which are then read and processed by the ModelBuilder module of OpenSees.  

ModelBuilder Domain Analysis

Recorder

Tcl

Records specified information at 

each converged state

Creates the model
Updates the model from current 

converged state to new one
Stores last converged state and 

current trial state of model

Interpreter for user input and 

analysis procedure

Domain

Element Node MP-constraint SP-constraint LoadPattern

dispBeamColumn Shell Solid...
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Tcl has full scripting capability and can handle variable substitutions and manipulation.  

Because of this, configurations of large repetitive systems and convergence studies of a 

structure are easily managed and executed.   

3.3.1 Framework Modification 

Prior to the incorporation of the proposed beam-column element into OpenSees, 

adjustments to the Tcl interpreter were required.  In a typical three-dimensional analysis 

consisting of conventional beam-column elements, nodal displacement is defined by six 

DOFs.  Since warping was added as a seventh DOF in the proposed beam-column element, 

the interpreter was altered to allow the seventh DOF value within a three-dimensional 

analysis.   

Due to the use of a single layer of fibers for each plate, formulation of the proposed 

element relies on plate thicknesses throughout the cross-sectional discretization process.  

Incorporation of additional keywords and parameters for plate thicknesses, shear modulus, 

and rate of web-taper was handled in a similar manner to accommodation of the extra DOF 

and will be described more in depth in the following sections. 

3.3.2 Incorporating Tapered Element A into OpenSees Modification 

The displacement-based beam-column element is a subclass of the Element class 

in OpenSees.  The proposed displacement-based beam-column element will carry similar 

attributes and definitions as the existing implementation. 

Within an analysis, strains and stresses are constantly updated to account for 

plasticity.  The Element class and subclass FiberSection3D have to interact with one 

another so that necessary constitutive relations are updated and stored.  A fiber’s Young’s 
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modulus is updated to take the tangent value of a stress-strain relation from the material 

model assigned by the user based on an updated fibers strain from the analysis.  Once fiber 

stresses are updated, cross-sectional forces are computed at selected numerical integration 

points along the element’s length.  Numerical integration is performed using Gauss-

Lobatto weights with a maximum of 10 integration points along the element.  

The existing displacement-based beam-column element in OpenSees is formulated 

simply on linear strains.  Because of this, axial strains are obtained solely based on 

elongation and bending.  Consideration of torsional shear strain is based on uniform torsion 

and handled separately as mentioned in Section 2.3.  Throughout the implementation of 

the proposed element, nonlinear terms of the Green-Lagrange strain are used to yield the 

strain in Eq. (2.6).  These nonlinear second-order terms lead to the derivation of the updated 

element tangent stiffness matrix in Eq. (2.29). 

In order to avoid overwriting the existing displacement-based beam-column 

element (dispBeamColumn3d), the Tapered Element A is defined under the class name 

TaperedDispBeamColumnSmoothing3d to denote the capability of web-taper effects as 

well as incorporation of the ad-hoc smoothing effects discussed in Section 2.7.  Since the 

OpenSees library provides utilities for vector and matrix manipulation, computation of 

expressions similar to Eq. (2.29) can easily be performed.    

3.3.3 Fiber Section Class Modification 

To account for distributed plasticity of nonlinear material response, force-

deformation responses of the cross-sections are required.  From constitutive relations, 

internal section forces (or stress resultants) may be determined given the section’s 
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corresponding deformations.  The existing beam-column element implemented in 

OpenSees computes a section’s uniaxial strain from: 

𝜀𝑥 = 𝑢0
′ − 𝑦𝑣0

′′ − 𝑧𝑤0
′′ (3.1) 

Due to the simplicity of this equation, insufficient results for cases involving LTB will 

result.  These insufficiencies arise because other terms in Eq. (2.6), which contribute to 

warping effects, are neglected.  

As previously stated, the fiber discretization process (Figure 2.4) was used to 

evaluate the integration of a given cross-section.  Since the main focus of the proposed 

beam-column element was on thin walled open section members, use of a single row of 

fibers for a given plate was judged to be sufficient.  Each fiber’s strain is computed and 

used to obtain the corresponding uniaxial stress and torsional stress.   

In order to obtain the uniaxial strain and stress of a cross-section, certain attributes 

of the section level were defined.  Since a section was discretized through finite amount of 

fibers, these fibers must contain information which will collectively hold true for the whole 

cross-section.  Such attributes involved the fiber’s area, coordinates, and material 

properties.  Additionally, the cross-sectional parameters require an additional attribute 

which took into consideration a fiber’s plate thickness.  

Handling updates through the fiber discretization method and use of constitutive 

relations were processed within the class FiberSection3d.  Similar to the alterations made 

to the dispBeamColumn3D class, the fiber class was also modified to accommodate a plate 

thickness, updated uniaxial strain equation, stress resultant vector, and section stiffness 

matrix.  Therefore, a new class called TaperedFiberSection3D was incorporated to 

compliment the proposed displacement-based beam-column element.    
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4 CORRELATION STUDIES: MONOTONIC LOADING 

4.1 General  

In order to validate the beam-column element presented in Chapter 2 (Tapered 

Element A), numerous monotonic pushover analyses were modeled and compared to 

published results.  These simulations involved varying parameters including web-taper, 

cross-sectional symmetry, boundary conditions, and material properties, both elastic and 

inelastic cases were included.  Based on the results of these simulations, it was concluded 

that the buckling loads obtained from the use of the proposed beam-column element shows 

great promise for analysis of flexural and beam-column members involving lateral-

torsional buckling. 

4.2 Flexural Members with Elastic Lateral-Torsional Buckling 

4.2.1 Member Imperfections 

In any numerical modeling case involving buckling, instances of imperfections 

need to be incorporated to trigger a buckling effect.  Although geometrical imperfections 

were not imposed in the following, alternative use of load imperfections were applied.  

With cases involving elastic buckling, a force-displacement plot yields a typical bifurcation 

figure.  Bifurcation results show a constant increase in applied force up to the event where 

a critical load is reached.  However, introduction of any type of imperfection applied to the 

model of a structure will induce a pure bifurcation result.  Due to this, minimization of the 

imperfection is highly desirable in order to initiate buckling and at the same time preserve 

as much of a bifurcation trend as possible. 
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Alemdar’s (2001) study of a simply supported prismatic beam consisted of a 

moment load imperfection which was applied at the roller boundary condition along the 

minor axis.  This imperfection was established to be a hundredth of the moment magnitude 

applied about the major axis at the beam ends.   

Unlike the Alemdar benchmark, Andrade’s (2007) set of cases showed no 

implication of geometrical or load imperfections.  Due to this, in this research the numerical 

modeling implemented in OpenSees for the following models were applied with a torsional 

load imperfection with magnitude of one thousandth of the applied member load.  

However, several cases showed that this load imperfection was insufficient.  Therefore, for 

these particular instances, one hundredth of the applied load was used instead.  

4.2.2 Alemdar (2001) Benchmark Configuration 

Alemdar (2001) had several numerical examples which were used to validate his 

displacement-based element in the FEA framework of FE++.  Among these examples, a 

simulation of LTB of a prismatic I-beam was performed.  This benchmark problem  helps 

in the verification of the validity of the OpenSees proposed element implementation for an 

elastic model.  The cross-sectional dimensions are of a W10×100 beam with member 

length of 240 in. and is configured as a simply supported beam.  The Young’s modulus (E) 

was 29,000 ksi with a Poisson ration (v) of 0.3.   

Configuration of the model problem is seen in Figure 4.1.  As seen in the figure, all 

lateral displacements of the pin-end are restrained while the lateral displacements, except 

along the x-axis, is restrained of the roller-end.  In addition to these boundary conditions, 

the twist about the x-axis is prevented at both ends.  In order to study the behavior of how  
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Figure 4.1 Simply Supported Prismatic Beam Model 

warping affects overall critical buckling loads, both cases where warping is restrained and 

unrestrained were modeled using Tapered Element A.    

The beam was loaded by concentrated moments about the major axis of the beam 

such that a uniform moment diagram is obtained.  Additionally, a moment load 

imperfection about the minor axis of the roller end was applied with a hundredth magnitude 

to the applied moment about the major axis.   

Modeling of the benchmark problem through OpenSees using Tapered Element A 

was easily achieved due to the prismatic geometry of the member.  Origin of the x-axis 

coincided at the web mid-height of the pin boundary condition and continued along the 

member to the roller boundary condition.  Cross-section discretization using fibers is 

similar to that shown in Figure 2.4 with a row of 20 fibers along the flange width and a row 

of 20 fibers along the web-height.  Meshing of the member span using Tapered Element A 

consisted of 6 equal length beam-column elements from the pin-end to roller-end of the 

model.  Both concentrated moments and the moment imperfection were simultaneously 
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applied to the OpenSees analysis using a total of 500 load control steps until a total 

concentrated moment of 25,000 kip-in at each member end was reached. 

Closed-form solution of the critical moment for prismatic members under uniform 

moment is provided through AISC-360 Sect. F2.2 (AISC 2010a) of the user note as: 

𝑀𝑐𝑟 =
𝜋

𝐿𝑏

√𝐸𝐼𝑦𝐺𝐽 + (
𝜋𝐸

𝐿𝑏
)
2

𝐼𝑦𝐶𝑤 

 

(4.1) 

However, application of Eq. (4.1) is strictly limited to situations where boundary conditions 

of the member ends allow warping to occur.  An alternative and more general form of Eq. 

(4.1) is required when boundary conditions vary, such as restrained warping, at a member’s 

ends (Chen and Lui 1987).  This alternative equation for beams under uniform moment is: 

𝑀𝑐𝑟 = (
𝜋

𝐾𝑏𝐿𝑏
)√𝐸𝐼𝑦𝐺𝐽 (1 +

𝜋2𝐸𝐶𝑤

(𝐾𝑡𝐿𝑏)2𝐺𝐽
) 

 

(4.2) 

where 𝐾𝑏 is the effective length factor of the beam that corresponds to lateral bending, and 

𝐾𝑡 is the effective length factor of the beam that corresponds to twisting.  The values for 

the factors 𝐾𝑏 and 𝐾𝑡 when warping is restrained at the beam ends are 0.883 and 0.492, 

respectively (Chen and Lui 1987).  Analytical results of critical moments for the model 

problem when warping boundary conditions are varied are tabulated in Table 4.1. 

Results of the force-displacement plots of the OpenSees analyses with warping 

unrestrained and warping restrained are seen in Figure 4.2 and Figure 4.3, respectively.  

Responses of both applied moment against in-plane rotation at the end and applied moment 

against midspan out-of-plane displacement are shown for both cases.  Based on these 

results using Tapered Element A, it can be seen that buckling takes place relatively close 

to the calculated analytical solutions. 
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Table 4.1 Analytical Critical Moments of Model Problem 

Warping Boundary Condition 𝑀𝑐𝑟 
(kip-in.) 

Unrestrained 12,303 

Restrained 17,316 

 

 
(a) In-Plane Response 

 
(b) Out-of-Plane Response 

Figure 4.2 Lateral Buckling of W10×100 I-beam with Unrestrained Warping 

 

 
(a) In-Plane Response 

 
(b) Out-of-Plane Response 

Figure 4.3 Lateral Buckling of W10×100 I-beam with Restrained Warping 
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4.2.3 Andrade et al. (2007) Benchmark Configurations 

 A significant amount of numerical modeling problems published by Andrade et al. 

(2007) focused on elastic buckling using FEA software, ABAQUS.  These benchmark 

problems are seen in Figure 4.4 where the total set of test cases are broken into three subset 

categories.  As seen from the figure, these benchmark cases consists of many variations of 

configurations and parameters.  Because of this, Tapered Element A underwent thorough 

analyses and investigation which produced results that were comparable to those obtained 

with shell elements used by Andrade et al. in ABAQUS software.  Modeling these 

problems through OpenSees consisted of element nodes passing through the mid-height of 

the member's cross-section  as well as selected convergence studies of element meshing to 

ensure accurate solutions.   

In order to ensure proper simulation of top flange and bottom flange loading, a rigid 

element was used to ensure correct load transfer from either the top or bottom flange to the 

mid-height of the cross section where an element node is located.  Point loads which were 

loaded directly at the cross-sections mid-height required no use of such element as it could 

be applied directly to the node.  

As seen in Figure 4.4, the configurations used throughout the benchmark problems 

consist of cantilever and simply supported boundary conditions.  Although lateral bracings 

were not imposed on the cantilever simulations, the warping DOF at the fixed end was also 

restrained.  In cases of simply supported beam simulations, lateral bracings as well as twist 

restraints were imposed at the beam ends but no restraints were imposed for warping.  Due 

to member symmetry about the longitudinal axis, applying these constraints at the cross-

sectional mid-height where the element nodes lay was sufficient.   
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Length variation for all the benchmark sets were analyzed in order to determine the 

versatility of Tapered Element A.  Although it is rather difficult to determine analytical 

elastic buckling values of a non-prismatic member, results of OpenSees numerical 

modeling can be used to establish force-displacement relations which gives a relative idea 

of the load range when elastic buckling occurs.  These results were compared to elastic 

buckling loads Andrade et al. determined using shell elements in ABAQUS.  Thorough 

configuration and description of each member’s modeling is detailed in subsequent 

sections for each of the three sets.  
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Figure 4.4 Configurations and Material Properties (Andrade et al. 2007) 

t
f

t
f

hmin=0.5hmax

h h
tw

b
bf

=b
tf

=180mm b
bf

=180mm

b
tf

=100mm

hmin=0.5hmaxt
f

x
hmax

L

y

Q

x
hmax

t
f

t
f

L

y
Q

x

hmax

t
f

L

y

tw

E=210 GPa

v=0.3

hmax=600 mm

t
f
=10 mm

tw=8 mm

L=2.0 - 10.0 m

Q

O
O

O

O
Ox

hmax

L=6.0 m

y

t
f

t
f

hmin=0.2hmax

h
tw

b
f

E=210 GPa v=0.3

hmax=600 mm b
f
=150 mm

t
f
=10 mm tw=8 mm

Q

L=6.0 m; 9.0 m; 12.0 m =1.0-0.4

x
y

L/2 L/2

hmax

Q

hmin= hmax

x
hmax

L

y

t
f

t
f

hmin= hmax

h
tw

b
f

E=210 GPa

v=0.3

hmax=300 mm

b
f
=150 mm

t
f
=10 mm

tw=6 mm

L=4.0 - 8.0 m

Q

=1.0; 0.5

O

(1a) (1b) 

(1c) 

(2a) 
(2b) 

(3a) 



42 

 

4.2.3.1 Set 1 Models and Results 

The first set of models are depicted through Figure 4.4: (1a), (1b), and (1c).  In 

addition to consistent material properties of 𝐸 = 210 GPa and 𝜈 = 0.3, variables of Set 1 

which remained constant were: 

 maximum web-height: ℎ𝑚𝑎𝑥 = 600 mm  

 flange thickness: 𝑡𝑓 = 10 mm 

 web thickness: 𝑡𝑤 = 8 mm 

 loading location: top flange 

Parameter variation for Set 1 involved: 

 web-taper: prismatic, single web-taper, double web-taper 

 member length: 𝐿 = 2.0 − 10.0 m 

 cross-section geometry:  

o doubly-symmetric: 𝑏𝑏𝑓 = 𝑏𝑡𝑓 = 180 mm 

o singly-symmetric: 𝑏𝑏𝑓 = 180 mm, 𝑏𝑡𝑓 = 100 mm 

Numerical modeling of the configurations described for Set 1 involved fiber 

discretization, element meshing, and torsional load imperfections.  Cross-section 

discretization using fibers is similar to that shown in Figure 2.4 with a row of 10 fibers 

along the flange width and a row of 20 fibers along the web-height.  Each member modeled 

from Set 1 had a consistent element meshing using Tapered Element A of 10 elements 

along the member span.  Load imperfections were imposed on the models such that 

members could numerically buckle under LTB.  These load imperfections were imposed 

at the free end of the cantilevers with a torsional force magnitude of a thousandth of the 
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reported critical load obtained by Andrade et al.  These load imperfections were applied to 

the members prior to beginning the analysis involving the transverse load. 

Location of element nodes for the models of Set 1 coincide along a member’s web 

mid-height throughout the member length.  For cases such as (1a) and (1c), these nodal 

locations coincide along the x-axis due to the member geometry about this axis.  Cases 

relating to (1b) required a shift of the x-axis to coincide with the top flange and web plate 

intersection due to the single web-taper of the member.  Reference of node locations for 

these models were based off this new axis to the web’s mid-height (depicted as the dashed 

lines in Figure 4.4 (1b)).  Element meshing with Tapered Element A spanned from the 

fixed boundary condition to the free end using consistent element lengths throughout the 

member. 

Models associated with Set 1 involved transverse loading applied at the top flange 

of a cantilever’s free end.  In order to simulate this type of loading in OpenSees, use of a 

rigid element is needed.  The rigid element is connected from the node located at the free 

end to a node designated at the top flange directly vertical of the previously mentioned 

node.   

Force-displacement plots corresponding to the results of both doubly symmetric 

sections and singly symmetric sections of models in case (1a) are seen in Figure 4.6 and 

Figure 4.7, respectively.  Responses of these force-displacement plots are based off the end 

node of each cantilever beam’s free end.  Overall assessment of the models results suggest 

that Tapered Element A captures effects of critical buckling very well in both types of 

cross-sections with the exception where the member length of L = 2.0 m.  Models 

corresponding with these member lengths are shown to be substantially stronger than those 
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reported by ABAQUS analysis of shell elements.  Explanation of this high discrepancy is 

due to other effects of member buckling which is able to be captured with shell elements 

but not beam-column elements.  Specifically, it was reported by Andrade that the governing 

failure mode of these shorter beams involve a localized buckling of the web due to the large 

h/L ratio (Andrade et al. 2007).  Results associated with member lengths greater than 2.0 

m showed to match very close to the critical load reported from shell models.  

Force-displacement plots corresponding to the results of both doubly symmetric 

sections and singly symmetric sections of models in case (1b) are seen in Figure 4.8 and 

Figure 4.9, respectively.  Responses of these force-displacement plots are based off the end 

node of each cantilever beam’s free end.  Similar to results seen from case (1a), models 

with member lengths 𝐿 ≤ 4.0 m showed to have a higher critical load to that obtained from 

the shell elements in ABAQUS.  Although web buckling was not observed within the cases 

of shorter member lengths as it was in (1a), Andrade reported an increase of web distortion 

at the free end of the cantilever beam as the length decreased (Andrade et al. 2007).  

Prevention of web local buckling in these cases are most likely due to a 50% decrease in 

web height at the free end to that of models in (1.a). 

Nodal displacement response of model (1b) with member length L = 8.0 m is seen 

in Figure 4.5.  Figure 4.5 (a) shows the out-of-plane displacement response of the member 

at critical load as well as the undeformed state.  The response seen in Figure 4.5 (b) gives 

the corresponding twists along the member at critical load.  Response of the cross-sectional 

twist throughout the member span shows a clear representation of non-uniform torsion as 

the model experiences LTB.  Although it is ideal to clearly see a three-dimensional buckled 

response of the cantilever beam after LTB, graphically rendering a 3-D model of the 
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member’s buckled geometry is difficult with beam-column elements than it is with shell 

elements.  

Force-displacement plots corresponding to the results of both doubly symmetric 

sections and singly symmetric sections of models in case (1c) are seen in Figure 4.10 and 

Figure 4.11, respectively.  Responses of these force-displacement plots are based off the 

end node of each cantilever beam’s free end.  Similar conclusions for models of (1c) are 

made to those mentioned in models of case (1b).  Although case (1c) models have the same 

decrease of web height at the member’s free end by 50% like in case (1b), double web-

taper spans along the member length of (1c).  Effects of this model configuration resulted 

in a less substantial over-strength of critical load to the counterpart models of (1b).   

 
(a) Top View Profile of Model 

 
(b) Twist Response of Element Nodes 

Figure 4.5 Case 1b Doubly Symmetric Deformations at Critical Load (L = 8.0 m) 
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(a) L = 2.0 m 

 
(b) L = 4.0 m 

 
(c) L = 6.0 m 

 
(d) L = 8.0 m 

 
(e) L = 10.0 m 

Figure 4.6 Set 1: Doubly Symmetric Prismatic Cantilever Beam 

(See Figure 4.4 (1a)) 
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(a) L = 2.0 m 

 
(b) L = 4.0 m 

 
(c) L = 6.0 m 

 
(d) L = 8.0 m 

 
(e) L = 10.0 m 

Figure 4.7 Set 1: Singly Symmetric Prismatic Cantilever Beam 

(See Figure 4.4 (1a)) 

0 10 20 30 40 50
0

20

40

60

80

100

120

Out-of-Plane Displacement (mm)

A
p

p
li

e
d

 L
o

a
d

 (
k

N
)

 

 

Tapered Element A

Abaqus (Andrade et al.)

0 10 20 30 40
0

5

10

15

20

25

Out-of-Plane Displacement (mm)

A
p

p
li

e
d

 L
o

a
d

 (
k

N
)

 

 

Tapered Element A

Abaqus (Andrade et al.)

0 5 10 15 20
0

2

4

6

8

10

12

Out-of-Plane Displacement (mm)

A
p

p
li

e
d

 L
o

a
d

 (
k

N
)

 

 

Tapered Element A

Abaqus (Andrade et al.)

0 20 40 60 80 100
0

2

4

6

8

Out-of-Plane Displacement (mm)

A
p

p
li

e
d

 L
o

a
d

 (
k

N
)

 

 

Tapered Element A

Abaqus (Andrade et al.)

0 20 40 60 80 100
0

1

2

3

4

5

Out-of-Plane Displacement (mm)

A
p

p
li

e
d

 L
o

a
d

 (
k

N
)

 

 

Tapered Element A

Abaqus (Andrade et al.)



48 

 

 
(a) L = 2.0 m 

 
(b) L = 4.0 m 

 
(c) L = 6.0 m 

 
(d) L = 8.0 m 

 
(e) L = 10.0 m 

Figure 4.8 Set 1: Doubly Symmetric Single Web-Tapered Cantilever Beam 

(See Figure 4.4 (1b)) 
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(a) L = 2.0 m 

 
(b) L = 4.0 m 

 
(c) L = 6.0 m 

 
(d) L = 8.0 m 

 
(e) L = 10.0 m 

Figure 4.9 Set 1: Singly Symmetric Single Web-Tapered Cantilever Beam 

(See Figure 4.4 (1b)) 
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(a) L = 2.0 m 

 
(b) L = 4.0 m 

 
(c) L = 6.0 m 

 
(d) L = 8.0 m 

 
(e) L = 10.0 m 

Figure 4.10 Set 1: Doubly Symmetric Double Web-Tapered Cantilever Beam 

(See Figure 4.4 (1c)) 
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(a) L = 2.0 m 

 
(b) L = 4.0 m 

 
(c) L = 6.0 m 

 
(d) L = 8.0 m 

 
(e) L = 10.0 m 

Figure 4.11 Set 1: Singly Symmetric Double Web-Tapered Cantilever Beam 

(See Figure 4.4 (1c)) 
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4.2.3.2 Set 2 Models and Results 

The second set of models consist of cantilever members and simply supported 

members and are referred through Figure 4.4: (2a) and (2b).  Models referred to (2a) 

involve cantilever members while models referred to Figure 4.4(2.b) involve models of 

simply supported beams.  Both cases of (2a) and (2b) have consistent material properties 

of 𝐸 = 210 GPa and 𝜈 = 0.3 as well as constant variables of: 

 maximum web-height: ℎ𝑚𝑎𝑥 = 600 mm  

 flange thickness: 𝑡𝑓 = 10 mm 

 web thickness: 𝑡𝑤 = 8 mm 

 cross-section geometry: 𝑏𝑏𝑓 = 𝑏𝑡𝑓 = 150 mm 

In addition to these variables, models of (2a) also have a fixed member length of 𝐿 = 6.0 

m and fixed web-taper such that ℎ𝑚𝑖𝑛 = 0.2ℎ𝑚𝑎𝑥.   

Parameter variation of models of Set 2 are as follow: 

 (2a) models: 

o loading location: top flange, web mid-height, bottom flange 

 (2b) models: 

o member length: 𝐿 = 6.0 m, 9.0 m, 12.0 m 

o web-taper from midspan to B.C.: ℎ𝑚𝑖𝑛 = 𝛼ℎ𝑚𝑎𝑥 where 𝛼 = 1.0 − 0.4 

o loading location: top flange, web mid-height 

Numerical modeling of the configurations described for Set 2 involved fiber 

discretization, element meshing, and torsional load imperfections.  Cross-section 

discretization using fibers is similar to that shown in Figure 2.4 with a row of 10 fibers 
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along the flange width and a row of 20 fibers along the web-height.  Each member modeled 

from Set 2 had a consistent element meshing using Tapered Element A of 10 elements 

along the member span.  Load imperfections were imposed on the models such that 

members could numerically buckle under LTB.  These load imperfections were imposed 

at the free end of the cantilevers and at the midspan of the simply supported beams with a 

torsional force magnitude of a thousandth of the reported critical load obtained by Andrade 

et al.  These load imperfections were applied to the members prior to beginning the analysis 

involving the transverse load. 

Location of element nodes for the models of Set 2 coincide along a member’s web 

mid-height throughout the member length.  Due to member symmetry about the x-axis, 

node locations for models relating to (2a) and (2b) coincide directly along the x-axis.  

Element meshing with Tapered Element A spanned from the fixed boundary condition to 

the free end using consistent element lengths throughout the member. 

Models associated with Set 2 involved transverse loading applied at either the top 

flange, web mid-height, or bottom flange dependent of the case being modeled.  Unlike top 

flange or bottom flange loading, transverse loads being applied at the web mid-height can 

be directly applied to the element end node of the free end of a cantilever or midspan of a 

simply supported beam.  In order to simulate top flange or bottom flange loading, use of a 

rigid element is needed.  For cases of (2a), the rigid element is connected from the node 

located at the free end to a node designated at either the top flange or bottom flange directly 

vertical of the previously mentioned node.  Application of a rigid element to the simply 

supported beams of (2b) require a similar method to that mentioned of (2a) except the top 

flange node is located directly vertical to the node at the midspan of the member. 
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Force-displacement plots corresponding to the results of models in case (2a) are 

seen in Figure 4.13.  Responses of these force-displacement plots are based off the end 

node of each cantilever beam’s free end.  Models of case (2a) involved a very sharp web-

taper which involved a 80% web height decrease at the free end with respect to the fixed 

end’s web height.  The overall force-displacement responses of transverse loading applied 

at the top flange, mid-height of the web, and bottom flange show a very nice correlation to 

the ABAQUS critical load using shell elements.  Conclusions made from the results of (2a) 

show great promise for Tapered Element A in use of models involving any rate of web-

taper. 

Nodal displacement response of model (2a) with mid-height loading is seen in 

Figure 4.12.  Figure 4.12(a) shows the out-of-plane displacement response of the member 

at critical load as well as the undeformed state.  The response seen in Figure 4.12(b) gives 

the corresponding twists along the member at critical load.  Response of the cross-sectional 

twist along the member span shows clear non-uniform torsion as the model undergoes 

LTB.   

Force-displacement plots corresponding to the results of models in case (2b) are 

seen in Figure 4.14 through Figure 4.17.  Responses of these force-displacement plots are 

based off the midspan node of each simply supported beam.  Overall responses of the force-

displacement plots for models of case (2b) show to yield similar critical loads to the FEA 

analysis using shell elements.  It is seen that responses for both mid-height loading and top 

flange loading for the prismatic beams show the least deviation of critical loads compared 

to the counterparts involving web-taper from the midspan to the pin and roller boundary 
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conditions.  As the taper ratio, α, is decreased, results obtained from Tapered Element A 

generally show a lower critical load to the shell FEA counterpart. 

 
(a) Top View Profile of Model 

 
(b) Twist Response of Element Nodes 

Figure 4.12 Case 2a Member Deformations at Critical Load (Mid-Height Loading) 

  

0 1 2 3 4 5 6
0

5

10

15

20

25

30

Member Length (m)

O
u

t-
o

f-
P

la
n

e
 D

is
p

la
c
e
m

e
n

t 
(m

m
)

 

 

Undeformed Member

Buckled Member

0 1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Member Length (m)

N
o

d
a
l 

T
w

is
t 

o
f 

C
ro

ss
-S

e
c
ti

o
n

 (
ra

d
)

 

 



56 

 

 
(a) Top Flange Loading 

 
(b) Bottom Flange Loading 

 
(c) Mid-Height Loading 

Figure 4.13 Set 2: Double Web-Tapered Cantilever Beam (L = 6.0 m) 

(See Figure 4.4 (2a))  
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(a) L = 6.0 m, Mid-Height Loading 

 
(b) L = 6.0 m, Top Flange Loading 

 
(c) L = 9.0 m, Mid-Height Loading 

 
(d) L = 9.0 m, Top Flange Loading 

 
(e) L = 12.0 m, Mid-Height Loading 

 
(f) L = 12.0 m, Top Flange Loading 

Figure 4.14 Set 2: Simply Supported Double Web-Tapered Beam (α = 0.4) 

(See Figure 4.4 (2b)) 
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(a) L = 6.0 m, Mid-Height Loading 

 
(b) L = 6.0 m, Top Flange Loading 

 
(c) L = 9.0 m, Mid-Height Loading 

 
(d) L = 9.0 m, Top Flange Loading 

 
(e) L = 12.0 m, Mid-Height Loading 

 
(f) L = 12.0 m, Top Flange Loading 

Figure 4.15 Set 2: Simply Supported Double Web-Tapered Beam (α = 0.6) 

(See Figure 4.4 (2b)) 
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(a) L = 6.0 m, Mid-Height Loading 

 
(b) L = 6.0 m, Top Flange Loading 

 
(c) L = 9.0 m, Mid-Height Loading 

 
(d) L = 9.0 m, Top Flange Loading 

 
(e) L = 12.0 m, Mid-Height Loading 

 
(f) L = 12.0 m, Top Flange Loading 

Figure 4.16 Set 2: Simply Supported Double Web-Tapered Beam (α = 0.8) 

(See Figure 4.4 (2b)) 
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(a) L = 6.0 m, Mid-Height Loading 

 
(b) L = 6.0 m, Top Flange Loading 

 
(c) L = 9.0 m, Mid-Height Loading 

 
(d) L = 9.0 m, Top Flange Loading 

 
(e) L = 12.0 m, Mid-Height Loading 

 
(f) L = 12.0 m, Top Flange Loading 

Figure 4.17 Set 2: Prismatic Simply Supported Beam 

(See Figure 4.4 (2b)) 
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4.2.3.3 Set 3 Models and Results 

The third set of models are depicted through Figure 4.4: (3a).  In addition to 

consistent material properties of 𝐸 = 210 GPa and 𝜈 = 0.3, variables of Set 3 which 

remained constant were: 

 maximum web-height: ℎ𝑚𝑎𝑥 = 300 mm  

 flange thickness: 𝑡𝑓 = 10 mm 

 web thickness: 𝑡𝑤 = 6 mm 

Parameter variation for Set 3 involved: 

 web-taper: ℎ𝑚𝑖𝑛 = 𝛼ℎ𝑚𝑎𝑥 where 𝛼 = 1.0; 0.5 

 member length: 𝐿 = 3.0 − 8.0 m 

 loading location: top flange, web mid-height, bottom flange 

Numerical modeling of the configurations described for Set 3 involved fiber 

discretization, element meshing, and torsional load imperfections.  Cross-section 

discretization using fibers is similar to that shown in Figure 2.4 with a row of 10 fibers 

along the flange width and a row of 20 fibers along the web-height.  Each member modeled 

from Set 3 had a consistent element meshing using Tapered Element A of 10 elements 

along the member span.  Load imperfections were imposed on the models such that 

members could numerically buckle under LTB.  These load imperfections were imposed 

at the free end of the cantilevers with a torsional force magnitude of a thousandth of the 

reported critical load obtained by Andrade et al.  These load imperfections were applied to 

the members prior to beginning the analysis involving the transverse load. 

Location of element nodes for the models of Set 3 coincide along a member’s web 

mid-height throughout the member length.  These nodal locations coincide along the x-axis 
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due to the member symmetry about this axis.  Element meshing with Tapered Element A 

spanned from the fixed boundary condition to the free end using consistent element lengths 

throughout the member. 

Models associated with Set 3 involved transverse loading applied at either the top 

flange, web mid-height, or bottom flange of a cantilever’s free end.  Transverse loads being 

applied at the web mid-height can be directly applied to the element end node of the free 

end of the cantilever.  To simulate top flange or bottom flange loading, use of a rigid 

element is needed.  The rigid element is connected from the node located at the free end to 

a node designated at either the top flange or bottom flange directly vertical of the previously 

mentioned node.   

Force-displacement plots corresponding to the results of models in case (3a) are 

seen in Figure 4.18 through Figure 4.23.  Responses of these force-displacement plots are 

based off the end node of each cantilever beam’s free end.  Overview and comparison of 

the responses suggest that Tapered Element A slightly under predicts the critical load to 

the shell FEA.  Loading applied at the web mid-height of the prismatic cantilever beam 

with L = 4.0 m shows to have a substantial amount of overstrength prior to buckling with 

Tapered Element A with respect to the corresponding member with double web-taper.  

Although it is not mentioned in the Andrade text, this explanation of load overstrength is 

most likely due to web buckling at the section of the free end which Tapered Element A is 

unable to capture.
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(a) Top Flange Loading 

 
(b) Bottom Flange Loading 

 
(c) Mid-Height Loading 

Figure 4.18 Set 3: Double Web-Tapered Cantilever Beam (L = 4.0 m, α = 0.5) 

(See Figure 4.4 (3a)) 
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(a) Top Flange Loading 

 
(b) Bottom Flange Loading 

 
(c) Mid-Height Loading 

Figure 4.19 Set 3: Double Web-Tapered Cantilever Beam (L = 6.0 m, α = 0.5) 

(See Figure 4.4 (3a)) 
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(a) Top Flange Loading 

 
(b) Bottom Flange Loading 

 
(c) Mid-Height Loading 

Figure 4.20 Set 3: Double Web-Tapered Cantilever Beam (L = 8.0 m, α = 0.5) 

(See Figure 4.4 (3a)) 
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Figure 4.21 Set 3: Prismatic Cantilever Beam (L = 4.0 m) 

(See Figure 4.4 (3a)) 
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(a) Top Flange Loading 

 
(b) Bottom Flange Loading 

 
(b) Mid-Height Loading 

Figure 4.22 Set 3: Prismatic Cantilever Beam (L = 6.0 m) 

(See Figure 4.4 (3a)) 
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(a) Top Flange Loading 

 
(b) Bottom Flange Loading 

 
(b) Mid-Height Loading 

Figure 4.23 Set 3: Prismatic Cantilever Beam (L = 8.0 m) 

(See Figure 4.4 (3a)) 
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4.2.4 Andrade et al. (2007) Convergence Studies 

The analyses modeled in the previous section underwent various mesh sizes using 

Tapered Element A.  Although mesh generation varies with each model due to boundary 

conditions and test configurations, a general idea of elements needed for web-tapered 

analyses can be determined.  Use of insufficient number of elements to model a web-

tapered member results in inaccurate displacement fields while an excessive amount of 

elements can lead into unnecessary computation effort.  In order to avoid these issues, 

several convergence studies on selected models were performed in order to obtain the least 

residual to the shell element results documented from Andrade’s ABAQUS studies.  

Results of these selected studies are seen in Figure 4.24 through Figure 4.27.   

Overall errors seen from these convergence studies suggest reasonable 

discrepancies that are 10% of the critical load from shell elements modeled in ABAQUS.  

The cases used for these convergence studies consisted of variation of member lengths, 

boundary conditions, and loading conditions.  It is seen that members of the longest 

member span of L = 12.0 m yield exceptional results with a meshing of 10 Tapered Element 

A beam-columns.  In cases of mid-height loading, meshing of 8 elements yield discrepancy 

that is about 2.6% while use of 6 elements of the same model with top flange loading yield 

3.2% discrepancy.  From these results, conclusion can be made that using 10 Tapered 

Element A beam-columns is sufficient in capturing elastic LTB response in cases where 

the member span does not exceed 12.0 m.    
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Figure 4.24 Convergence Plot of Case (1b): L = 4.0 m Single Symmetry 

 

Figure 4.25 Convergence Plot of Case (2a): Top Flange Loading 
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Figure 4.26 Convergence Study of Case (2a): Mid-Height Loading 

 

Figure 4.27 Convergence Study of Case (2b): Mid-Height Loading (L = 12m, α = 0.4) 
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4.3 Members with Inelastic Lateral-Torsional Buckling 

In order to establish that Tapered Element A works sufficiently for web-tapered 

members beyond yield, inelastic models and analyses were carried out.  Kim (2010) 

referenced several web-tapered experimental studies which were compared with her 

numerical results obtained from ABAQUS.  A selection of these studies were chosen in 

this research as a set of benchmark cases.  The models consisted of variations of parameters 

such as use of residual stresses, inelastic material, initial imperfections, and boundary 

conditions.  Throughout the discussion of this section, reference to the total section depth 

at the shallow and deep ends of a member are ds and dL, respectively. 

4.3.1 Prawel et al. (1974) 

4.3.1.1 Test Configuration  

 Prawel et al. (1974) executed experimental testing of a total of 15 specimens: three 

being web-tapered simply supported beams and twelve being web-tapered beam-columns.  

It was determined that all three beams were slender members while the beam-columns had 

a variety of slender, noncompact, and compact members.  Assembly of the specimens 

discussed in the Prawel et al. studies involved built-up I-sections of either shear cut plate 

and oxygen cut plates.  These plates were then assembled to form the web-tapered members 

through a continuous fillet weld applied only on one side of the web-flange plate 

intersection.   

 All members of the beam and beam-column specimens consisted of a single web-

taper geometry along the longitudinal span.  This single web-taper was fabricated such that 

the top flange of a beam would run parallel to the longitudinal axis.  Same fabrication was 
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done for the beam-column specimens with the varying incline angle (or pitch), 𝛼, of the 

specimen  is varied with respect to the top flange.  The web-taper rate, 𝛽, is varied with 

each specimens and is referenced from the bottom flange to the longitudinal axis for both 

beams and beam-columns.  Dimensions of the flange plate’s width and thickness and web 

plate’s thickness remained constant throughout the entire length of the specimens.  Testing 

configuration of the beams and beam-columns are seen in Figure 4.28 and Figure 4.29, 

respectively.   

For the beam specimens, member loads consisted of two transverse concentrated 

loads applied at the top flange of locations B and C such that the load at C is either 28% of 

the load at B or non-existent.  In the former case, the loading, in the elastic range, created 

a uniform stress distribution across the flange between the unbraced segment BC.  By 

neglecting a vertical load at location C, a more significant flange stress gradient between 

the unbraced segment BD would be observed (Prawel et al. 1974).  Web-taper angle for 

the beam specimens, 𝛽, was measured as the angle from the horizontal plane to the bottom 

flange of the beam as seen in Figure 4.28.   

 Beam-column specimens also consisted of linearly web-tapered members with 

prismatic flanges and doubly symmetric I-sections.  Variation of the angle, 𝛼, designates 

the orientation of how the cantilever is inclined with respect from the horizontal to the top 

flange as depicted in Figure 4.29.  The web-taper angle for the cantilever beams were 

measured in the same way as the simply supported beams mentioned previously.  Loading 

sequence of the beam-column specimens consisted of both axial and moment loads applied 

to the system simultaneously and equivalently as seen in Figure 4.29. 
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Figure 4.28 Beam Test Configuration of Prawel et al. (1974) 

 

 

Figure 4.29 Beam-Column Test Configuration of Prawel et al. (1974) 
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4.3.1.2 Boundary Conditions 

The simply supported beams of the test configurations consisted of lateral bracings 

provided at the supports as well as the quarter points.  These lateral restraints were placed 

at each of the four flange tips of location.  Due to the configuration of these lateral bracings, 

the possibility of twisting at these locations are also constrained while warping could still 

occur. 

In addition to the typical constraints imposed at the fixed end of a cantilever beam, 

the beam-column specimens had lateral bracings similar to that described for the simply 

supported beams.  Lateral bracings imposed on the free-end consequently prevents any 

twisting which may incur during the testing.   

4.3.1.3 Material Properties 

Material properties used for the following inelastic models are based on a true 

stress-strain curve discussed by Kim (2010) and depicted in Figure 4.30 for a yield stress 

of 55 ksi and an ultimate strength of 70 ksi of A572 Gr. 55 steel as an example.  The true 

stress-strain relation is derived from the engineering stress-strain points as follows (Ugural 

and Fenster 2012): 

𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑒𝑛𝑔(1 + 𝜀𝑒𝑛𝑔) (4.3) 

𝜀𝑡𝑟𝑢𝑒 = 𝑙𝑛(1 + 𝜀𝑒𝑛𝑔) (4.4) 

As stated by Kim, an assumption is made for the strain hardening strain, 𝜀𝑠𝑡, to be ten times 

the yield strain, 𝜀𝑦, with a corresponding strain hardening modulus, 𝐸𝑠𝑡, of 700 ksi.  The 

strain hardening stress, 𝜎𝑠𝑡, is assumed as:  
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𝜎𝑠𝑡 = 𝜎𝑦 +
2

3
(𝜎𝑢 − 𝜎𝑦) (4.5) 

The corresponding engineering strain at this material’s ultimate strength, 𝜀𝑢, is assumed as 

(see the dashed stress-strain curve in Figure 4.30): 

𝜀𝑢 = 70𝜀𝑦 (4.6) 

Based on the previous relations, the true stress-strain relations is shown as the solid 

line in Figure 4.30 and is tabulated in Table 4.2.  Any strain value exceeding the ultimate 

strain is assumed to be limited by the ultimate stress value (Kim 2010).  

Table 4.2 Engineering and True Stress-Strain Data for A572 Grade 55 Steel 

Engineering True 

Stress 

(ksi) 

Strain 

(in./in.) 

Stress 

(ksi) 

Strain 

(in./in.) 

55.0 0.0019 55.1 0.0019 

55.0 0.0190 56.0 0.0188 

65.0 0.0333 67.1 0.0327 

70.0 0.1328 79.2 0.1247 

 

Figure 4.30 Typical Stress-Strain Curve for Fy = 55 ksi 
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Specimens tested by Prawel et al. were fabricated from ASTM A242 steel with 

nominal yield strength of 42 ksi and had reported measured yield stress being 52 ksi.  

Corresponding specified minimum ultimate tensile strength is 70 ksi.  As the stress-strain 

relationship was not provided in Prawel et al., similar methods mentioned in this section 

was applied in order to determine the true stress-strain relation that is seen in Figure 4.31.  

A tabulated summary of the key points are referred to in Table 4.3. 

Table 4.3 Stress-Strain Values for Prawel et al. (1974) Models 

Engineering True 

Stress 

(ksi) 

Strain 

(in./in) 

Stress 

(ksi) 

Strain 

(in./in) 

52.0 0.0018 52.0 0.0018 

52.0 0.0179 52.9 0.0178 

59.3 0.0284 61.0 0.0280 

63.0 0.1255 70.9 0.1182 

 

Figure 4.31 Steel Stress-Strain Curve for Fy = 52 ksi 
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(a) Flange Distribution 

 

(b) Web Distribution 

Figure 4.32 Residual Stress Pattern (Prawel et al. 1974) 
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stresses for the specimens tested by Prawel et al. would vary.  Plates involved with oxygen 

cutting resulted with tension at the flange tips while plates involved with shear cutting 

resulted with compression at the flange tips.  Because the specimens tested by Prawel et al. 

consisted of the web and flange welded longitudinally on only one side of each specimen, 

measured residual stresses showed to be un-symmetric about the web height.  Residual 

stress patterns based off shear cuts were made to be symmetric for the purpose of numerical 

studies and seen in Figure 4.32.   
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of the roller end excluded, as well as fixing the twist displacement field.  All models 

consisted of 20 proposed beam-column elements spanning the member length which ran 

along the web mid-height.  Because the test protocol involved top flange loading, rigid 

beam-beam column elements were integrated with the proposed elements in a similar 

fashion to that describe with the Andrade et al. (2007) sets.   

Beam-column specimens involved with shear cut edge preparation were selected for 

the second set of numerical models using the proposed element.  Geometry of these 

selected specimens are tabulated in Table 4.5.  Nodal configuration was established in a 

similar fashion to the simply supported beams by running along the web mid-height along 

the span.  All DOFs associated with the fixed end were constrained whereas the node 

associated at the free end had constraints from lateral displacements and twisting while  

warping remained unrestrained.  Each model consisted of 20 beam-column elements that 

were connected through the nodal configuration which was mentioned.  Loading of each 

specimen was taken to be a downward vertical force applied at the free end of the specimen 

in order to simulate a simultaneous axial and flexural force. 

Cross-section discretization of each integration point along a proposed element for 

both sets consisted of 21 fibers across each flange and 21 fibers along the web height.  Use 

of a trilinear material model described in Section 4.3.1.3 was applied to each fiber of the 

cross-sections based off Fy = 52 ksi and Fu = 70 ksi.  Residual stress patterns based off the 

shear cut method (see Figure 4.32) were also considered in each model.  Because initial 

imperfections were not reported by Prawel et al., all models were treated to have an out-

of-plane initial imperfection along each specimen with a peak value of Lb/1000 at a 

specimen’s mid-span length.  
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Table 4.4 Prawel et al. (1974) Beam Test Properties and Configurations 

Specimen 

No. 

ds 

(in.) 

dL 

(in.) 

tw 

(in.) 

bf 

(in.) 

tf 

(in.) 

L 

(in.) 
ξ hL/tw bf /2tf Compactness 

LB-3 6.0 16.0 0.105 4.0 0.25 144.0 0.28 147.6 8.0 slender 

LB-5 6.0 16.0 0.105 4.0 0.25 96.0 0.28 147.6 8.0 slender 

LB-6 6.0 16.0 0.105 4.0 0.25 96.0 0.0 147.6 8.0 slender 

 

Table 4.5 Prawel et al. (1974) Beam-Column Test Configurations 

Specimen 

No. 

ds 

(in.) 

dL 

(in.) 

L 

(in.) 
α 
(º) 

β 

(º) 

hL/tw bf /2tf Compactness 

LB-C-5 6.0 16.0 112.8 30 5.72 
161.9 12.0 slender 

LB-C-10 6.0 18.0 114.0 20 5.71 

LB-C-1 6.0 12.0 120.0 0 2.77 
107.6 12.0 noncompact 

LB-C-9 6.0 12.0 115.4 20 2.83 

LB-C-3 6.0 6.0 116.5 30 0.0 
52.4 12.0 compact 

LB-C-7 6.0 6.0 116.5 20 0.0 

 

4.3.1.6 Assessment of Results 

Numerical modeling of the simply supported beams showed to correlate fairly well 

to the results documented by Prawel et al.  Comparison of total loads applied to the 

specimens based off testing and the proposed element are referred to Table 4.6.  With the 

exception of LB-3, the other two beams (LB-5 and LB-6) were governed by local buckling 

in the flange.  Because effects of local buckling are neglected in the proposed element, 

maximum strength observed from analyses will deviate.  Specimen LB-5, for instance, 

shows a stronger predicted total load than testing by almost 8%.  Although Specimen LB-

6 invovled local buckling, analysis suggests the total load prior to global buckling is 

slightly less than observed by Prawel et al.  This under predicted value is possibly related 

to the moment gradient between segment BD since lateral bracing is omitted at location C 

and the only load applied was at location B. 
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Specimen LB-3 was observed to be the only specimen out of all the beams and 

beam-columns where lateral buckling was the governing mode.  Soon after this buckling 

mode, it was reported that buckling of the flange soon followed.  Prawel et al. observed 

lateral buckling occurred when the total load on the system was 32 kips (Ptotal = 32 kips) 

whereas the analysis predicted a maximum strength of 29.8 kips (Ptotal = 29.8 kips).  In 

addition to the reported maximum load, Prawel et al. provided a force-displacement plot 

of the test data for LB-3 for the midspan in-plane deflection.  A composite plot of the 

analysis and test results are seen in Figure 4.3.  Comparison of the two data sets show a 

very well defined correlation between numerical simulation and experimental testing. 

Table 4.6 Experimental and Simulated Beam Results for Prawel et al. (1974) 

Specimen 

No. 

Ptotal (kips) Error 

(%) Test OpenSees 

LB-3 32.0 29.8 6.8 

LB-5 50.0 53.9 7.8 

LB-6 46.0 45.3 1.5 

 

 
(a) In-Plane Response 

 
(b) Out-of-Plane Response 

Figure 4.33 Specimen LB-3 Analysis Response 
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(a) In-Plane Response 

 
(b) Out-of-Plane Response 

Figure 4.34 Analysis of LB-3 with True and Engineering Stress-Strain 

In addition to the analyses of the simply supported beam specimens, behavior 

response of using true stress-strain opposed to engineering stress-strain relations was 

assessed.  Specifically, analysis of specimen LB-3 was modeled with the engineering 

stress-strain relation and compared to the results obtained using the true stress-strain points.  

Response of out-of-plane and in-plane displacements of the member midspan is seen in 

Figure 4.34.  Comparison of using the two stress-strain sets show responses prior to 

buckling match exactly with one another.  Peak load of the specimen yields the same value 

of Ptotal = 29.7 kips.  Deviation of results become apparent during the post-buckling 

response of the two sets as the model using the engineering stress-strain relations yield less 

strength than when using the true stress-strain material relation.  This suggests that analysis 

obtained using material models based on engineering stress-strain relations yield slightly 

more conservative results than the true engineering stress-strain model.  Because use of 

beam-column elements assume constant cross-sectional area in an analysis, it is highly 

recommended that the engineering stress-strain relation be used for these elements. 
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Table 4.7 Comparison of Beam-Column Results for Prawel et al. (1974) 

Specimen 

No. 

Pmax (kips) Error 

(%) Test OpenSees 

LB-C-1 8.7 8.2 5.7 

LB-C-3 4.3 5.0 16.2 

LB-C-5 15.0 14.6 2.6 

LB-C-7 4.1 4.8 17.0 

LB-C-9 9.3 9.0 3.2 

LB-C-10 14.3 13.4 6.2 

 

Results of beam-column analyses involved with shear cuts are compared to reported 

test data in Table 4.7.  The set of specimens consisted of various parameters involving 

angle orientation of the cantilever, member web-taper, and compactness classification.   

Similar to LB-5 and LB-6, all beam-column specimens tested by Prawel et al. were 

limited by an occurrence of flange buckling.  Because the proposed element is unable to 

capture this local buckling mode, most, if not all, of the analysis results should show higher 

strength capacities than their tested counterparts.  However, all but two specimens (i.e., 

LB-C-3 and LB-C-7) show to underestimate the maximum strength from analyses opposed 

to overestimating. 

Out of the six selected beam-column specimens, LB-C-3 and LB-C-7 were 

classified as compact.  These specimens also were prismatic members whereas the 

remaining specimens had various web-tapers.  Both of these compact members predicted 

peak load strengths higher than the experimental results, albeit they were not significantly 

higher.  An overview of the three classifications suggest that analyses involving compact 

sections will overestimate peak strength compared to those of slender and noncompact 

specimens.    
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4.3.2 Shiomi and Kurata (1984) 

4.3.2.1 Test Configuration 

 Shiomi and Kurata (1984) tested a total of 24 full-scale, simply supported beam-

column specimens.  As Figure 4.35 shows, each specimen is laterally braced at both the 

top and bottom flanges and tapers throughout the web such that the neutral axis of any 

given cross section is located at the web’s center.  Rate of the web-taper is determined by 

the angle, 0.5𝛽, with reference between the horizontal plane and the bottom flange.  

Additional lateral bracing at the one-third location was provided to 5 specimens only.  

Fabrication of each specimen was done using double fillet welds to the web and flange 

connections along the longitudinal member span. 

 Specimens tested consisted of both axial loads and flexural loads being applied at 

the roller support as seen in Figure 4.35.  Application of these loads were applied 

simultaneously throughout the tests opposed applying a constant axial load prior to 

applying the end-moment at the support.   

4.3.2.2 Boundary Conditions 

Configuration of each test specimen was established such that the section mid-

height of the member ends correspond with the supports.  The shorter end, ds, of the 

specimen was braced by a pin support while the longer end, dL, was constrained by a roller 

support.  Constraints relating to twisting and warping at the ends of each specimen were 

not explicitly stated through the test arrangement.  Based on the schematic test setup 

documented by Shiomi and Kurata, it was assumed that both of these displacements were 

restrained at both ends.  
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Figure 4.35 Schematic of Shiomi and Kurata Test Setup 

4.3.2.3 Material Properties 

Specimens tested by Shiomi and Kurata were fabricated from SS-41 grade 

(Japanese grade) steel with a specified yield stress of 34.1 ksi.  Although measured material 

properties were not explicitly stated, ratio of the applied axial force to the yield force of 

the shorter cross-section and ratio of applied end-moment to the yield moment of the longer 

cross-section were provided.  From these values, actual yield stresses of the web and flange 

plates can be determined through back calculation (Kim 2010).   

Calculated yield stress values of the flange and web plates for two specimens (OT-

1.6-1 and OT-2.0-3) are shown in Table 4.8.  Although yield stress varied between the 

flange and web plates for each specimen, it was assumed that yielding of the flange plates 

would be predominant than that of the web for the numerical models.  Yield strength of the 

flanges for each specimen are stated in Table 4.8.  True stress-strain relation of the two 

specimens are obtained in a similar fashion described in Section 4.3.1.3.  The determined 

stress-strain relations are found in Table 4.9 and represented in Figure 4.34. 
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Table 4.8 Yield Stresses of Specimens OT-1.6-1 and OT-2.0-3 

Specimen Yield Stress (ksi) 

flange web 

OT-1.6-1 40.4 41.2 

OT-2.0-3 42.6 40.1 

 

Table 4.9 True Stress-Strain Values for Shiomi and Kurata (1984) Models 

Specimen OT-1.6-1 Specimen OT-2.0-3 

Fy = 40.4 ksi Fy = 42.6 ksi 

Stress 

(ksi) 

Strain 

(in./in) 

Stress 

(ksi) 

Strain 

(in./in) 

40.4 0.00139 42.5 0.00146 

40.9 0.01339 43.1 0.01446 

52.7 0.02839 55.5 0.03046 

62.1 0.09239 65.7 0.09746 

 

 

(a) Fy = 40.4 ksi 

 

(b) Fy = 42.6 ksi 

Figure 4.36 Steel True Stress-Strain Curves 
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4.3.2.4 Residual Stresses 

Residual stress patterns were also incorporated to the numerical models of the 

selected specimens.  Although Shiomi and Kurata discussed and showed stress patterns of 

sections associated to one of the specimens, measured residual stress data were not 

provided.  Residual stress patterns based on Prawel et al. (1974) residual stresses (see 

Figure 4.32) were used instead.  However, Kim (2010) suggests modification to these 

residual stresses in order to avoid significant conservative.  The modified residual stresses 

used was therefore taken to be 80% of that seen in Figure 4.32. 

4.3.2.5 Numerical Modeling in OpenSees 

Two of the 24 specimens were selected and modeled using the proposed beam 

element.  The two specimens selected were OT-1.6-1 and OT-2.0-3, both of which are 

laterally braced at the supports only.  A tabulated summary of essential properties for these 

two specimens are provided in Table 4.10.  Like the remaining 22 specimens tested by 

Shiomi and Kurata, the two used for numerical modeling were classified as compact.  Both 

models used 20 proposed beam-column elements which spanned the member length.  Since 

the web mid-height was collinear to the longitudinal axis, equivalent spacing of the element 

nodes were placed along this axis.   

Each cross-section associated with the integration points of the element used a 

discretization of 21 fibers across the flanges as well as along the web height.  A trilinear 

material model based off the stress-strain relations from Table 4.9 were used for the 

corresponding specimen.  In addition, use of the modified residual stress pattern discussed 

in Section 4.3.2.4 was integrated into the numerical models.   
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Table 4.10 Shiomi and Kurata (1984) Test Properties and Configurations 

Specimen 

No. 

ds 

(in.) 

dL 

(in.) 

tw 

(in.) 

bf 

(in.) 

tf 

(in.) 

L 

(in.) 

hL/tw bf /2tf 

OT-1.6-1 6.57 10.13 0.24 3.20 0.32 118.11 39.5 5.0 

OT-2.0-3 5.88 10.87 0.24 3.95 0.31 98.43 42.7 6.3 

 

Measured initial imperfections were determined from Shiomi and Kurata and were 

measured to be Lb/2000 and Lb/5000 for specimens OT-1.6-1 and OT-2.0-3, respectively.  

These initial imperfections were imposed at the out-of-plane direction along the specimen 

length using half a sinusoidal wave pattern.  

Loading protocol used during the experimental testing consisted of an axial load 

being simultaneously applied with an end-moment applied at the roller support.  Reported 

ultimate axial load, P, and ultimate bending moment, M, for each specimen was as follows: 

 OT-1.6-1: P = 17.9 kips and M = 415.9 kip-in. 

 OT-2.0-3: P = 50.5 kips and M = 399.1 kip-in. 

Because analyses of inelastic models are prone to having great difficulty solving for a 

corresponding displacement with a load control integrator near critical buckling loads, a 

displacement control method was used.   

4.3.2.6 Assessment of Results 

Experimental data obtained by Shiomi and Kurata reported peak axial load as well 

as corresponding end moment of each specimen.  Peak moments for Specimens OT-1.6-1 

and OT-2.0-3 are reported and compared to the experimental counterparts in Table 4.11.  

Both of the specimens were classified compact but had different lengths and web-tapers as 

noted in Table 4.10.  Specimen OT-1.6-1 had the longer span of the two members and 
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yielded a significant discrepancy compared to the peak moment seen from testing.  

Specimen OT-2.0-3 was 10 in. shorter than the former member but involved a steeper web-

taper.  Peak moment determined from analysis for OT-2.0-3 was slightly less than the 

testing equivalent.   

Pushover responses from analysis of both specimens were produced to assess the 

predicted post-buckling path.  Force-displacement plots of both in-plane and out-of-plane 

displacements at the midspan of each specimen are seen in Figure 4.37 and Figure 4.38 for 

OT-1.6-1 and OT-2.0-3, respectively.   Comparison of the post-buckling responses of these 

two specimens show significant differences.  Specimen OT-1.6-1, for instance, experiences 

an instant loss of strength soon after buckling occurs while OT-2.0-3 has a gradual loss of 

strength as loading is increased.  Similar conclusions are made when comparing the out-

of-plane displacements of OT-1.6-1 and OT-2.0-3.   

Although beam-columns occasionally experience varying axial forces dependent 

on certain loading schemes, common occurrences of beam-column members experience 

constant axial loads.  Column members, for example, experience gravity loads from a 

structure’s dead weight and HVAC systems.  Since this constant axial pattern is very 

common, it is beneficial to assess behavior and response of the proposed element with an 

end moment and constant axial load.   

Peak moments determined from analysis for specimens OT-1.6-1 and OT-2.0-3 

with incremental and constant axial loads is reported in Table 4.12.  Both specimens show 

to have a noticeable decrease of moment capacity when loading scheme of the axial load 

was applied prior to the concentrated end moment.  Peak moment prior to buckling with  
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Table 4.11 Experimental and Simulated Results for Shiomi and Kurata (1984) 

Specimen 

No. 

Maximum Moment (kip-in.) Error 

(%) 
Test Analysis 

OT-1.6-1 416.0 361.4 13.1 

OT-2.0-3 399.0 388.1 2.7 

Table 4.12 Analysis Results of Alternative Axial Load Application 

Specimen 

No. 

Maximum Moment (kip-in.) Difference in Mu 

(%) Incremental 

Axial Load 

Constant 

Axial Load 

OT-1.6-1 361.4 343.5 5.0 

OT-2.0-3 388.1 375.0 3.4 

 

 
(a) Out-of-Plane Response 

 
(b) In-Plane Response 

Figure 4.37 Specimen OT-1.6-1 Analysis Response  

the constant axial load resulted in a 5% strength loss for OT-1.6-1 and a 3.4% strength loss 

for OT-2.0-3.   

Response plots of the vertical displacements occurring at specimen midspan with 

the both cases of axial load application is seen in Figure 4.39.  Elastic and post-buckling 

response for both specimens show to match up in a similar trend for both type of loading 

schemes.   
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(a) Out-of-Plane Response 

 

 
(b) In-Plane Response 

Figure 4.38 Specimen OT-2.0-3 Analysis Response 

 

 
(a) OT-1.6-1 

 
(b) OT-2.0-3 

Figure 4.39 Response of Axial Load Application
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5 CORRELATION STUDIES: CYCLIC LOADING 

5.1 General  

Validation of the proposed beam-column element with cyclic test data of Smith et 

al. (2013) is presented in this chapter.  A total of ten rafter specimens underwent 

experimental testing through cyclic loading (see Table 5.1).  These specimens varied in 

geometries including, but not limited, to web-taper, unbraced Controlling Segmentsa (CS), 

and plate thickness variations.  Although ten specimens were tested, only six of these ten 

were modeled and simulated using the proposed beam-column element.  The remaining 

three specimens (PF1, CS2, CS3, and CS4) were omitted.  Reasons for this omission were 

due to the fact that Specimen PF1 was the first one tested and determined that lateral 

bracing was not effective.  The remaining three specimens consisted of variation of plate 

thicknesses throughout the flanges and webs and requires elaborate modeling to those of 

the selected six.  

Experimental configuration and system loading are depicted in Figure 5.1.  Each 

rafter specimen was tested in an upside-down position such that the top flange, which was 

laterally more closely braced by simulated purlins, represented the outer flange in a real 

building.  By adjusting the bracing locations of the inner flange, a controlling segment 

resulted.  Each rafter was bolted to a reusable loading column through an end-plate moment 

connection.  OpenSees simulation with the proposed beam-column element was based on 

the same configuration.  The corresponding elevation views and geometry for the 

                                                 
a Controlling segment refers to the unbraced segment which is intentionally designed to experience lateral-

torsional buckling in seismic design. 
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specimens are seen in Figure 5.2 through Figure 5.2  along with their specimen designation.  

It is seen that Specimens  CF1, CF2, and CF2-A have CS within the first unbraced length 

from the loading column, while Specimens CS1, CS1-A, and CS2 have CS within the 

second unbraced length from the end-plate moment connection. 

Each specimen was built up from three separate plates, each of which carried 

individual material properties (see Table 5.2  & Table 5.3).  For simplicity, modeling of 

these varying material properties were not taken into consideration in the OpenSees 

modeling.  Since these specimens were designed to experience LTB in the controlling 

segment of the inner flange, properties corresponding to the inner flange of the rafters were 

assumed for all three plates of each specimen.  Yielding and ultimate strengths obtained 

through tensile testing of steel coupons were then used to form a bilinear material model 

required for the OpenSees simulations.  Values of yielding and ultimate strength of each 

specimen’s inner flange plate is tabulated on Table 5.2.   

Initial out-of-plane geometric imperfections were incorporated for the numerical 

models which were obtained through measurements prior to experimental testing.  Half of 

a sine wave pattern was assumed throughout the CS of a rafter such that the maximum 

imperfection value would be located at the mid-span of the CS.  Values of these 

imperfections are tabulated in Table 5.4.  Additional to imperfections, residual stresses 

were also incorporated to the numerical models.  Although true residual stress patterns 

were unknown for the specimens, residual stress patterns found in Prawel et al. (1974) were 

assumed.  Representation of this stress pattern is seen in Figure 4.32.  
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Testing consisted of cyclic loading up to and beyond buckling and often until 

rupture or tearing of the rafter through the loading sequence found in Section K2.4b of 

AISC-341 (AISC 2010b) as a base template.  Each test began with a series of introductory 

loading cycles categorized by the displacement ratio: 

DR =
∆

120 in.
 (5.1) 

where ∆ was the displacement measurement of D1.  The beginning portion of the loading 

protocol consisted of: 

 6 cycles at ±0.375% DR 

 6 cycles at ±0.5% DR 

 6 cycles at ±0.75% DR 

 4 cycles at ±1.0% DR 

 2 cycles at ±1.5% DR 
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Table 5.1 Test Matrix 

Specimen 
Taper 

Angle 

CSa,b 

Notes:  
Flange Web 

CF1 4.60° C S constant taper, no transitions, full CS 2-sided weld, 

CS = 1st unbraced length, welded brace clips 

CF2 4.60° C S 
constant taper, no transitions, CS = 1st unbraced 

length,   welded brace clips, slot in web 

CF2-A 4.60° C S 
constant taper, no transitions, axial load, CS = 1st 

unbraced length, welded brace clips, slot in web 

PF1 9.59° C S 
pinch point at end of CS, CS = 1st unbraced length, 

welded brace clips 

PF2 14.48° C/N S 
pinch point within CS, CS = 1st unbraced length, 

welded brace clips 

CS1 5.62° N N 
constant taper, no transitions, CS = 2nd unbraced 

length, bolted brace clips 

CS1-A 5.62° N N 
constant taper, no transitions, axial load, CS = 2nd 

unbraced length, bolted brace clips 

CS2 4.60° N S 
constant taper, flange splice, CS = 2nd unbraced 

length, bolted brace clips 

CS3 4.60° C/N S 
constant taper, flange splice and thickness change,   

CS = 2nd unbraced length, welded brace clips 

CS4 4.60° N S 
constant taper, shear stiffeners, CS = 2nd unbraced 

length, welded brace clips 

 a CS = Controlling Segment 

 b C = Compact, N = Non-Compact, S = Slender 
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Table 5.2 Mechanical Characteristic of Steel 

Coupon ID Specification Thickness (in.) Fy (ksi) Fu (ksi) Elong. (%) 

A A529 Gr. 55 0.498 (0.500)a 60.0 (62.5)b 87.3 (87.3) 31.5c 

B A529 Gr. 55 0.318 (0.313) 69.7 (72.4) 94.4 (94.3) 27.4 

C A529 Gr. 55 0.257 (0.250) 69.8 (75.0) 98.3 (97.8) 23.4 

D A529 Gr. 55 0.370 (0.375) 57.6 (62.7) 86.0 (84.9) 29.0 

E A1018 HSLAS Gr. 55 0.307 (0.313) 54.5 (60.0) 80.8 (75.9) 30.4 

F A529 Gr. 55 0.254 (0.250) 61.6 (66.2) 87.8 (86.0) 27.7 

G A529 Gr. 55 0.318 (0.313) 67.0 (72.4) 95.4 (94.3) 26.1 

H A529 Gr. 55 0.244 (0.250) 67.9 (70.6) 95.1 (91.7) 23.3 

I A529 Gr. 55 0.310 (0.313) 55.6 (59.3) 83.6 (91.6) 28.0 

J A529 Gr. 55 0.369 (0.375) 62.5 (64.0) 88.9 (85.0) 28.6 

K A1011SS Gr. 55 0.186 (0.188) 71.9 (58.2) 80.7 (87.0) 26.8 

L A1011SS Gr. 55 0.185 (0.188) 61.9 (59.5) 87.8 (89.5) 24.8 

M Not Specified 0.166 (0.164) 66.7 81.2 24.8 

N A1011SS Gr. 55 0.150 (0.150) 58.1 (59.0) 85.0 (87.8) 23.3 

O A572/A1018 HSLAS Gr. 55 0.245 (0.250) 62.1 (62.7) 73.4 (76.0) 31.2 

P A1011SS Gr. 55 0.184 (0.188) 57.4 (62.4) 85.9 (91.0) 25.5 

a Values in parentheses are nominal plate thicknesses from design drawings 

b Values in parentheses are based on mill certified test reports. 

c Elongation values are based on test results of coupons with 2 in. gage length. 

 

Table 5.3 Rafter Material Index 

Rafter ID 

Inner 

Flange 1 

Inner 

Flange 2 

Outer 

Flange 1 

Outer 

Flange 2 Web 1 Web 2 

CF1 J - A - L - 

CF2 D - D - K - 

CF2-A D - D - K - 

PF1 J - J - L - 

PF2 I H H - P N 

CS1 F - F - O - 

CS1-A F - F - O - 

CS2 C - C - L - 

CS3 J B J G L - 

CS4 E - E - K M 
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(a) Isometric View 

 

 
(b) Elevation 

Figure 5.1 Test Setup Configuration 

 

 

Actuator 

2nd Actuator 

(CF1 Only) 
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(a) Specimen CF1 

 

 

(b) Specimens CF2 & CF2-A 

 

 

(c) Specimens CS1 and CS1-A 

Figure 5.2 Specimen Geometry of CF1, CF2, CF2-A, CS1, CS1-A, and CS2 
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(d) Specimen CS2 

Figure 5.2 Specimen Geometry of CF1, CF2, CF2-A, CS1, CS1-A, and CS2, 

continued 

 

Table 5.4 Specimen Peak Imperfection Values  

Specimen ∆0 (in.) ∆0/𝐿𝐶𝑆
∗  

CF1 0.028 1/1024 

CF2 0.064 1/1312 

CF2-A 0.028 1/3000 

CS1 0.060 1/2000 

CS1-A 0.060 1/2000 

CS2 0.075 1/1600 

*𝐿𝐶𝑆
∗  = length of controlling segment 
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5.2 Specimen CF1 

This specimen had the CS next to the column.  The flanges and web were classified 

as compact and slender, respectively, in accordance with AISC 360 (AISC 2010a).  The 

inner flange of the CS first experienced LTB during the +3.6 in. excursion.  Flange local 

buckling (FLB) was visible during the +4.8 in. excursion (see Figure 5.5).  upon load 

reversal, high-strength bolts connecting the rafter end-plate to the loading column ruptured 

during the -4.8 in. excursion.  Figure 5.3(a) shows the measured response.  

The global response predicted by using the proposed beam-column element is 

shown in Figure 5.3(b), and a composite plot showing the correlation to the experimental 

data is shown in Figure 5.3(c).  It was observed that the elastic stiffness correlated very 

well with the test data.  First LTB was observed to occur in testing during the +3.6 in. 

excursion, but such phenomenon was not predicted in the analysis.  LTB was well predicted 

during the +4.8 in. excursion.  The composite plot in Figure 5.3(c) shows a more significant 

strength degradation in the post-buckling region, probably due to the FLB which was not 

considered in the proposed element.  

The same cyclic analysis for CF1 was simulated using the existing beam-column 

element implemented in OpenSees.  Comparison of the load-displacement plots of these 

two elements are shown in Figure 5.4.  Once LTB occurs, the existing element buckles pre-

maturely with respect to the proposed element and experimental data.  This is due to the 

lack of supplementary effects, such as the Wagner effect mentioned in Chapter 2.  Thus, 

conclusion can be made that incorporation of the extra warping DOF is essential for 

instances of lateral-torsional buckling.  
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(a) Test Data 

 
(b) Predicted Response 

 
(c) Composite Plot 

Figure 5.3 Specimen CF1: Load vs. Column End Horizontal Displacement 
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(a) Based on Existing Element 

 
(b) Predicted Response 

Figure 5.4 Specimen CF1: 6 DOF vs. 7 DOF Beam-Column Element 

 

 

 

(a) LTB 

 

 

 

 

 

 

 

(b) FLB 

Figure 5.5 CF1 Post-LTB Flange Local Buckle in CS (+4.8 in.) 
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5.3  Specimen CF2 

Geometry and configuration of Specimen CF2 was almost identical to that of 

Specimen CF1.  Difference between the two specimens are seen in the use of plates for the 

outer flange as CF2 uses a thinner (3/8 in.) plate thickness opposed to 1/2 in.  All except 

Specimen CF1 used one-sided fillet weld to connect the web to the flanges.  Therefore, it 

was expected that the residual stress distribution and initial geometric imperfection would 

also be different (Prawel et al. 1974), although in the analysis the same residual stress 

pattern was used for the models. 

A comparison of the experimental and predicted responses is presented in Figure 

5.6b.  The specimen experienced LTB during the first excursion to +4.8 in., which was 

predicted by the analysis.  However, the strength degraded much faster upon the first LTB 

during the test, probably because of FLB which accompanied LTB (see Figure 5.8), yet 

FLB was not considered in the analysis.  During the three excursions to +4.8 in., however, 

the analysis did reflect progressive strength degradation due to residual out-of-plane 

deformations from prior LTB. 

A pushover analysis was also conducted, and the predicted response curve would 

overpredict response envelope of the cyclic response in the post-buckling region (see 

Figure 5.7).  The specimen also experienced FLB when excursing to -3.6 in. and -4.8 in 

and caused a degradation in strength, which again was not reflected in the analysis. 

                                                 
b Additional loading which caused the web to separate from the inner flange at the first welded location was 

not included in the comparison. 
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(a) Test Data 

 
(b) Predicted Response 

Figure 5.6 Specimen CF2: Load vs. Column End Horizontal Displacement 

 

 

Figure 5.7 Predicted Responses of Cyclic and Pushover Analyses 
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(a) LTB 

 

(b) FLB 

Figure 5.8 CF2 Initial Buckling of Inner Flange (+4.8 in., 1st Cycle) 
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5.4 Specimen CF2-A 

Specimen CF2-A was nominally identical to CF2, except that a constant axial load 

of 28.4 kips was applied collinear to the centroidal axis of the rafter prior to cyclic loading.  

The CS for this specimen was located at the first unbraced segment from the end-plate 

connection.  

 A comparison of the experimental and predicted responses is presented in Figure 

5.9c.  The specimen experienced LTB during the first excursion to +3.5 in.  During the 

excursion of initial LTB, the CS displaced laterally by 1.4 in. at the midspan and also 

experienced two cases of FLB (see Figure 5.11).  Event of this combined buckling mode 

resulted into a significant degradation in strength.  Analysis results was able to capture 

occurrence of LTB during the first excursion of +3.5 in., although peak strength of the 

cycle yields less than that of the test.  The analysis was unable to capture the loss of strength 

once LTB occurs since effects of local buckling are neglected.  The second cycle of 3.5 in. 

is seen in the test to have a significant strength degradation compared to the first cycle, 

whereas analysis shows a small loss of strength after the first cycle.  

During the excursion to -3.5 in. of the first cycle, occurrence of FLB at the outer 

flange took place during the test.  Results obtained from analysis with the proposed element 

was unable to capture this mode of buckling.    

A comparison of the test response of Specimen CF2 in Figure 5.6(a) and that of 

Specimen CF2-A in Figure 5.9(a) shows that the presence of an axial load produced a much 

                                                 
c Response after the second ±3.5 in. was excluded due to FLB rupture occurring at the outer flange of the 

specimen.  
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rapid strength degradation upon buckling; such degradation was caused by not only LTB 

but also simultaneous FLB.  Although the proposed Tapered Element A cannot consider 

FLB, the effect of axial load on the global response was studied by comparing the predicted 

responses of three cases: 

 Case 1: P = 0 kips (similar to CF2) 

 Case 2: P = 28.4 kips (similar to CF2-A) 

 Case 3: P = 56.8 kips  

The response comparison of all these cases are seen in Figure 5.10.  Global response 

of all three cases show that strength degradation after buckling becomes more significant 

as the axial load is increased.  Although buckling is observed to occur even in the case of 

no axial load (Case 1), strength degradation does not show to be significant within the two 

cycles of 3.5 in.  Analysis of CF2-A with the tested axial load (Case 2) is seen to have less 

peak strength during the second cycle of 3.5 in. on the positive excursion compared to Case 

1.  Although strength degradation is more apparent in this case, significant loss of strength 

is not established until the first excursion of +4.5 in.     

When the axial load was doubled from that of Case 2, Specimen CF2-A showed a 

clear sign of buckling occurring within the first excursion of +3.5 in.  The second cycle of 

3.5 in. of Case 3 resulted in a significant drop of strength which is clearly distinguishes 

itself from the other two cases.  Subsequent cycles of 4.5 in. displacement showed peak 

loads of these cycles were much lower after the second cycle of +3.5 in.  Member strength 

at the second +4.5 in. excursion suggests minimal strength degradation, especially when 

compared to Case 2 where a substantial loss of strength is seen at this displacement. 
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Although both results of Case 2 and Case 3 show initial LTB occurring during the 

first excursion of +3.5 in., post-buckling responses throughout the remaining cycles show 

significant differences.  The response behavior seen by Case 3 show to resemble similar 

trend of strength degradation as the first excursion of +3.5 in. of testing. 

 
(a) Test Data 

 
(b) Predicted Response 

Figure 5.9 Specimen CF2-A: Load vs. Column End Horizontal Displacement 
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(a) Case 1: P = 0 kips 

 
(b) Case 2: P = 28.4 kips 

 
(c) Case 3: P = 56.8 kips 

Figure 5.10 CF2-A Analysis Response of Varying Axial Loads 
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(a) LTB 

 

(b) FLB 

Figure 5.11 CF2-A Initial LTB (+3.5 in., 1st Cycle) 
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5.5 Specimen CS1 

Specimen CS1, consisted of a larger web-taper [Figure 5.2(c)] than any of the other 

five specimens.  Unlike the previous specimens, the CS of this specimen began at the 

second unbraced segment (i.e., 24 in. away from the end-plate connection).  This specimen, 

as well as the remaining two, had the longest unbraced length (𝐿𝐶𝑆 = 120 in.) for the CS.  

Both the flanges and web of the specimen were classified as noncompact. 

A comparison of the experimental and predicted responses is presented in Figure 

5.12d.  The specimen experienced LTB during the first excursion to +3.6 in.  Figure 5.14 

shows that the CS displaced laterally by 4 in. at the midspan, which also triggered FLB.  

This combined buckling mode resulted in a significant degradation in strength.  The 

analysis showed that LTB occurred during the second, not first cycle.  The load at which 

LTB developed was similar (30.6 kips from testing versus 32.2 kips from analysis).  The 

specimen experienced combined FLB and WLB (web local buckling) modes during the 

excursion to -4.78 in (see Figure 5.15), which could not be simulated by the proposed 

element.   

Although separation of the web from the flanges at the severely buckled location 

occurred after completing one cycle at 4.8 in. test, the analysis continued to ±6.0 in.  Figure 

5.13 shows that, in the post-buckling region, for each of the 4.8 in. and 6.0 in. cycles, the 

strength degraded only slightly from the first to the second cycles for this long CS. 

                                                 
d Response after the first cycle at ±4.8 in. was excluded due to the separation of web from the flanges at the 

severely local buckled region. 
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(a) Test Data 

 
(b) Predicted Response 

Figure 5.12 Specimen CS1: Load vs. Column End Horizontal Displacement 

 

 

Figure 5.13 Predicted Analysis of Full Cyclic Behavior of CS1 
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(a) LTB 

 

 

 

 

(b) Inner Flange FLB at Mid-Length of CS 

Figure 5.14 CS1 Initial LTB in CS (+3.6 in., 1st Cycle) 

 

 

Figure 5.15 CS1 Outer Flange FLB and WLB (-4.8 in., 1st Cycle) 
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5.6 Specimen CS1-A 

Geometry of CS1-A was nominally identical to CS1, except that a constant axial 

load of 41.7 kips was applied collinear to the centroidal axis of the rafter prior to cyclic 

loading.  The test response in Figure 5.16(a) shows that the specimen experienced buckling 

during the first cycle at ±3.5 in.  The specimen first experienced LTB during the positive 

excursion.  Figure 5.17 (a) shows the LTB as well as the accompanying FLB at the midspan 

of the CS.  In addition, another FLB also occurred near the bracing point nearest to the end-

plate connection as shown in Figure 5.17(b).  Once the loading direction was reversed, the 

outer flange also buckled (see Figure 5.18).  Once both the inner and outer flanges 

experienced LTB and FLB, the presence of an axial load triggered global flexural-type 

buckling during the second cycle (see Figure 5.19). 

The analysis result in Figure 5.16(b) shows that LTB during the first excursion to 

+3.5 in. was simulated, but the amount of strength degradation, probably due to FLB at 

two locations, was significantly under-estimated.  However, LTB that was observed during 

the -3.5 in. excursion was not predicted in the analysis.  Also, the global flexural-type 

buckling observed during the second cycle at 3.5 in. was not predicted by the analysis. 
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(a) Test Data 

 
(b) Predicted Response 

Figure 5.16 Specimen CS1-A: Load vs. Column End Horizontal Displacement 

 

 

(a) LTB 

 

 

 

 

 

 

 

(b) Initial FLB at Mid-Length of CS 

Figure 5.17 CS1-A Initial LTB (+3.5 in., 1st Cycle) 
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(a) LTB 

 

(b) FLB at Mid-Length 

Figure 5.18 CS1-A Outer Flange Buckling (-3.5 in, 1st Cycle) 

 

 

(a) Inner Flange LTB 

 

(b) Outer Flange LTB 

Figure 5.19 CS1-A LTB (3.5 in., 2nd Cycle) 
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5.7 Specimen CS2 

Specimen CS2 has the same web-taper characteristics as the previously mentioned 

specimens, with the exception of CS1 and CS1-A.  Construction of the specimen, however, 

involved an inner flange splice located at the mid-length of the CS and a web splice located 

at the small end of the CS.  In addition to the CJP welds used for these splices, fillet welds 

were used on both sides of the web within the vicinity of the splice, while the rest of the 

specimen consisted of one-sided fillet weld between the web and flanges.  The flanges and 

web of the rafter were classified to be noncompact and slender, respectively.   

 A comparison of the experimental and predicted responses is presented in Figure 

5.20e.  The specimen experienced LTB during the first excursion to +3.5 in.  Along with 

initial LTB, formation of FLB at the mid-length of the CS was noticed.  Figure 5.21 shows 

the out-of-plane displacement at the end of the first +3.5 in. excursion was 5 in.  Soon after 

LTB occurred, significant strength degradation was noticed during the test.  Response from 

the analysis overpredicted the initial LTB strength slightly (23.1 kips in test versus 25.3 

kips in analysis).  But it failed to capture the same rate of strength degradation, again 

because local buckling was not considered in the analysis.   

During the first negative excursion of -3.5 in., combined WLB and FLB occurred 

in the outer flange at the second brace point (see Figure 5.22).  This occurrence of local 

buckling caused a significant loss of strength, which was not captured by the proposed 

beam-column element in the analysis.    

                                                 
e Response after the second ±3.5 in. cycle was excluded due to bolt hole rupture of the inner flange brace 

point at 4.8 in. cycle and a longitudinal separation of the inner flange at the brace later. 
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(a) Test Data 

 
(b) Predicted Response 

Figure 5.20 Specimen CS2: Load vs. Column End Horizontal Displacement 

 

 

Figure 5.21 CS2 Initial Buckling of Inner Flange (+3.5 in., 1st Cycle) 
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Figure 5.22 CS2 Outer Flange FLB (-3.5 in., 1st Cycle) 

5.8 Assessment of Results 

Results for all six specimens showed that numerical studies with the proposed 

beam-column element in OpenSees is limited.  With the exception of Specimen CF1, 

events of initial LTB for the tested specimens showed simultaneous buckling modes of 

FLB taking place along the CS.  Combined  modes of LTB and FLB during the occurrence 

of initial LTB subsequently resulted to an immediate loss of strength during the remaining 

portion of that excursion.  Analysis response of the specimens showed to capture initial 

LTB similar to testing.  Strength degradation of these analyses, however, show to be 

decrease gradually to the equivalent counterpart from testing.  These results suggest that 

effects of strength degradation, seen in testing, are dependent on LTB as well as FLB.   

Because of this, assessment of results prior to initial LTB are focused on.  

Comparison of peak loads observed at initial LTB of both testing and analysis are 

reported in Table 5.5.  Overall assessment of these loads obtained from analysis show to 

match up with testing within a tolerable discrepancy to that of testing.  With the Exception 

of specimens CS1 and CS2, initial LTB captured by the proposed element are conservative 
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to the experimental counterpart.  Specimen CS1-A is seen to have the highest error to the 

cyclic testing causing nearly a 22% under-predicted peak load while CS1 (equivalent 

specimen to CS1-A with no axial load) only yielded just over 5% over-predicted peak load.  

Possible explanation to such an error may be from the high web-taper, relative to all other 

specimens, that CS1-A had in addition to the axial load applied.      

Pushover analyses were modeled using the proposed beam element and compared 

to the cyclic analyses counterparts.  Results of peak loads obtained from both cyclic and 

pushover analysis at the occurrence of LTB is reported in  Table 5.6.  Critical values seen 

between the two data sets are seen to yield no more than 10% difference of peak load.  

Similar to the post-buckling response of the cyclic analyses in OpenSees, pushover 

response did not capture the rapid strength loss after initial LTB as seen for Specimen CF2 

in Figure 5.7. 

It is also observed that CS2 consists of a flange splice as well as two-sided welds 

throughout the CS.  It is not entirely clear on how the changes of welding effect residual 

stresses, hence possibly leading to the simulated response.  Due to the stiffer responses, the 

critical load that initiates LTB is over predicted and occurs at a smaller displacement 

compared to testing.  Similar to Group 1, the rapid strength degradation due to combined 

FLB and LTB are not represented within the numerical results. 

A study of initial imperfection implications was done through Specimen CS2.  In 

addition to the initial imperfection used from measurements reported in testing, two more 

analyses consisting different imperfections along the CS were modeled.  Classification of 

these three studies based on the initial imperfection values of: 

 



121 

 

 Case 1: ∆0 = 0.14 in. (similar to measured initial imperfection of CS2) 

 Case 2: ∆0 = 0.07 in. (half the initial imperfection of Case 1) 

 Case 3: ∆0 = 0.28 in. (double the initial imperfection of Case 1) 

Complete response for each case of varying initial imperfections are seen in Figure 

5.23.  Assessment of the overall cyclic analyses suggest that variation of the initial 

imperfection imposed along the CS does not yield significant, or any, differences in initial 

buckling and post-buckling response.  Observed peak load at initial buckling for both case 

2 and case 3 showed to be very minimal in difference compared to that of Case 1.  Observed 

loads at initial LTB for Case 2 and Case 3 are compared to Case 1 and reported in Table 

5.7.  Conclusion of these results suggest variation in initial imperfections along the CS does 

not play a significant role in overall cyclic response behavior.  

Additional studies for Specimen CS2 were done to better understand cyclic 

behavior undergoing different residual stresses.  Prawel et al. (1974) tested web-tapered 

specimens which were assembled by using one-sided fillet welds at the web and flange 

connections.  A suggested self-equilibrating residual stress pattern was provided by Prawel 

et al. and is seen in Figure 4.32.  Because the cyclic tested specimens performed in this 

study also involved one-sided fillet welds at the web and flange connections, similar use 

of this residual stress pattern was used for analysis.  Variation of this pattern was done by 

using 50% and 80% of the suggested residual stresses by Prawel et al. for Specimen CS2.  

Different cases of varying residual stress patterns are classified as: 

 Case 1: original residual stresses suggested by Prawel et al. (1974) 

 Case 2: 80% of the residual stresses of Case 1 

 Case 3: 50% of the residual stresses of Case 2 
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Complete analysis response of all three cases are seen in Figure 5.24.  Unlike the 

case studies done with initial imperfections, cyclic response is significantly affected 

through use of different residual stresses.  Initial observations show that decreased residual 

stresses (i.e., Case 2 and Case 3) show greater member strength prior to initial LTB.  

Additionally,  strength degradation of the latter cases are seen to be more apparent 

throughout the remaining portion of the +3.5 in. excursion.  A similar increased strength is 

seen in the negative excursion to -3.5 in. of the first cycle as residual stresses are decreased.  

Post-buckling behavior of the remaining cycles following initial LTB show little to no 

difference throughout all three cases.  Peak loads for Case 2 and Case 3 during initial LTB 

are reported in Table 5.8.  Comparison of these values to Case 1 show the significant 

strength gained as residual stresses are decreased.      

Kim (2010) ran simulations of buckling analyses involving various residual stress 

patterns through ABAQUS.  These models were simulated to run analyses up to the 

buckling load of a system with no results of post-buckling response.  Same use of the 

Prawel et al. (1974) residual stresses were one of the residual stresses tested in her models.  

Similar conclusions are made with the three cases of residual patterns used for specimen 

CS2.  Use of the pure self-equilibrating stress patterns suggested by Prawel et al. have 

shown to yield conservative buckling loads to the tested specimens as mentioned by Kim.  

Alteration of these patterns though show an increase of strength as well as altered strength 

degradation response following initial LTB.  Overall post-buckling behavior remains 

unaffected by the use of residual stresses as seen from the case study of CS2.  

Although the proposed element shows to capture initial LTB fairly well relative to 

testing, it was observed that significant strength degradation is also contributed to FLB in 
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addition to LTB.  Because the current proposed element is unable to capture local buckling 

effects, correlation between testing and the predicted analyses show significant deviation 

throughout the remaining cyclic response.  Studies to assess the effects and implications of 

initial imperfections and residual stresses were performed.  Conclusions from these studies 

show that imperfections take no part in overall cyclic behavior while residual stresses affect 

initial and post-buckling behavior of an analysis.  Remaining cycles subsequent to initial 

LTB,  however, are minimally, if at all, affected by these residual stresses.  Even though 

these residual stresses show to play a significant part in strength degradation following 

initial LTB, consideration of local buckling effects must be studied and incorporated to the 

proposed element.  
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Table 5.5 Peak Force at Initial LTB for Experimental and Numerical Results  

Specimen 𝑃𝑚𝑎𝑥 (kips) Error 

(%) Test OpenSees 

CF1 40.8 38.6 -5.3 

CF2 41.2 35.9 -12.7 

CF2-A 39.4 34.5 -12.3 

CS1 30.6 32.2 +5.2 

CS1-A 31.6 24.2 -21.8 

CS2 23.1 25.4 +10.1 

 

Table 5.6 Peak Force at Buckling for Cyclic and Pushover Simulations 

Specimen 𝑃𝑚𝑎𝑥(kips) Error 

(%) Cyclic Pushover 

CF1 38.6 37.3 -3.3 

CF2 35.9 34.8 -3.0 

CF2-A 34.5 33.1 -4.0 

CS1 32.2 28.9 -10.1 

CS1-A 24.2 24.3 +0.1 

CS2 25.4 23.2 -8.8 

 

Table 5.7 Peak Loads at LTB of CS2 with Modified Initial imperfections 

Amplification Factor of 

Measured Initial Imperfection 

Pmax 

(kips) 

Error 

(%) 

0.5 24.7 -3.0 

2.0 25.9 +1.8 

 

Table 5.8 Peak Loads at LTB of CS2 with Modified Residual Stresses 

Modification Factor  

(%) 

Pmax 

(kips) 

Error 

(%) 

80 28.3 +11.3 

50 30.8 +20.9 
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(a) Case 1: ∆0 = 0.14 in. 

 
(b) Case 2: ∆0 = 0.07 in. 

 
(c) Case 3: ∆0 = 0.28 in. 

Figure 5.23 Response of Initial Imperfection along Controlling Segment of CS2

-4 -2 0 2 4 6 8
-40

-30

-20

-10

0

10

20

30

Column End Horizontal Displacement (in.)

A
c
tu

a
to

r 
L

o
a
d
 (

k
ip

s)

-4 -2 0 2 4 6 8
-40

-30

-20

-10

0

10

20

30

Column End Horizontal Displacement (in.)

A
c
tu

a
to

r 
L

o
a
d
 (

k
ip

s)

-4 -2 0 2 4 6 8
-40

-30

-20

-10

0

10

20

30

Column End Horizontal Displacement (in.)

A
c
tu

a
to

r 
L

o
a
d
 (

k
ip

s)



126 

 

 
(a) Case 1: Original Residual Stress 

 
(b) Case 2: 80% of Original Residual Stress 

 
(c) Case 3: 50% of Original Residual Stress 

Figure 5.24 Analysis Response of Residual Stresses on CS2
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6 DEVELOPMENT OF TAPERED ELEMENT B 

6.1 General 

 Although incorporation of a warping DOF shows reasonable correlation to 

experimental data, especially for members under monotonic loading, further development 

must be ensured in order to fully capture other buckling modes such as local buckling.  

Member buckling and local buckling are commonly handled to be independent of one 

another in design procedures.  However, experimental testing, cyclic testing as presented 

in Chapter 5 in particular, has shown that the interaction between these buckling modes 

quite often occur simultaneously. 

 Utilization of the beam-column element (Tapered Element A presented in Chapter 

2) is elaborated and expanded on in order to include local buckling effects in this chapter.  

Consideration of these effects requires additional DOFs that represent the top and bottom 

flange's rotations and curvatures.  The proposed element, therefore, increases from 7 DOFs 

to 11 DOFs per element end node.  Due to these additions, a single beam-column element 

consists of 22 DOFs in total.  This concept of expanding Tapered Element A with additional 

DOFs are based off the work of Rajasekaran and Murray (1973).  Throughout their work, 

it was shown that incorporation of plate theory concepts with the beam theory, discussed 

in Chapter 2, is able to couple local buckling with global buckling.  

 A physical representation of the proposed element with incorporation of the new 

DOFs is seen through Figure 6.1.  As seen from the figure, the displacements are obtained 

and dependent on the flange's rotation about the longitudinal axis of the beam-column 

element.  Correspondingly, the first derivative of the flange rotation, with respect to the  
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Figure 6.1 Incorporation of Rotation DOFs for Tapered Element B 

beam-column longitudinal axis, represents the rate of change of this rotation along the 

member length.  Analogously, this is similar conceptually to a beam with respect to its 

transverse displacement and corresponding slope.  Because FLB is only represented at the 

end nodes of the proposed beam-column element, it is important to incorporate a sufficient 

number of elements to capture these events representatively. 

The proposed element carries the assumption that the angle between adjacent 

component plates of the section remain perpendicular at the common edge during 

deformations.  Hence, rotation of a flange carries the same rotation with the corresponding 

web plate edge as seen in Figure 6.1.  Since rotation of the end of a web plate shares the 

same rotation with a corresponding flange, displacements of an arbitrary point on the web 

plate can be determined.  From these relations, deformations of the web plate are dependent 

on flange deformation and considered to be coupled (i.e., WLB is coupled with FLB).  
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6.2 Element Tangent Stiffness Matrix 

 Development of the proposed beam-column element relies on the continuation of 

the beam theory discussed in Chapter 2.  Since member global buckling is already taken 

into consideration through inclusion of the warping DOF, it stands to show that the 

additional four new DOFs will capture an element's local buckling.  From these DOFs, a 

representation of each flange's rotation (Ѳ) and curvature (Ѳ′) are to be captured at each 

element node (Rajasekaran and Murray 1973).  Superimposing both beam theory 

displacements and the small deflections based on Kirchhoff's plate theory, displacements 

of a point on a cross-section can be determined. 

In order to incorporate plate theory to the proposed element formulation, each 

flange and web plate are treated to have their own coordinate system.  Hence, each plate 

has a displacement component of u, v, and w which can be determined through 

conventional plate theory.  Convention used for a plate's rotation about its centroid for the 

top flange and bottom flange are 𝛼(𝑥) and 𝛽(𝑥), respectively.  Note that the positive 

rotation convention is based on a counter-clockwise direction for these DOFs.  Due to the 

incorporation of the plate deformations, the displacement vector 𝒒𝑛 previously defined in 

Eq. (2.1) is expanded to be:    

𝐪n = [Ѳ1𝑥 Ѳ1𝑧 Ѳ1𝑦 𝜙1
′ Ѳ𝟏

∗ Ѳ2𝑥 Ѳ2𝑧 Ѳ2𝑦 𝜙2
′ Ѳ𝟐

∗ 𝑒]𝑇 (6.1a) 

Ѳ𝟏
∗ = [𝛼1 𝛼1

′ 𝛽1 𝛽1
′] (6.1b) 

Ѳ𝟐
∗ = [𝛼2 𝛼2

′ 𝛽2 𝛽2
′ ] (6.1c) 

Use of interpolation functions are again incorporated for the proposed element and 

utilize cubic Hermitian functions to determine the plate deformations.  Therefore the flange 

rotations along an element's longitudinal axis can be determined through: 
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𝛼(𝑥) = 𝑁1 𝛼1 + 𝑁2 𝛼′1 + 𝑁3 𝛼2 + 𝑁4 𝛼′2 (6.2) 

𝛽(𝑥) = 𝑁1 𝛽1 + 𝑁2 𝛽′1 + 𝑁3 𝛽2 + 𝑁4 𝛽′2 (6.3) 

Subsequent derivatives of Eqs. (6.2) and (6.3) are: 

𝛼′(𝑥) = 𝑁1
′ 𝛼1 + 𝑁2

′  𝛼′1 + 𝑁3
′  𝛼2 + 𝑁4

′  𝛼′2 (6.4) 

𝛽′(𝑥) = 𝑁1
′ 𝛽1 + 𝑁2

′  𝛽′1 + 𝑁3
′  𝛽2 + 𝑁4

′  𝛽′2 (6.5) 

𝛼′′(𝑥) = 𝑁1
′′ 𝛼1 + 𝑁2

′′ 𝛼′1 + 𝑁3
′′ 𝛼2 + 𝑁4

′′ 𝛼′2 (6.6) 

𝛽′′(𝑥) = 𝑁1
′′ 𝛽1 + 𝑁2

′′ 𝛽′1 + 𝑁3
′′ 𝛽2 + 𝑁4

′′ 𝛽′2 (6.7) 

where 

𝑁1 = 1 − 3(
𝑥

𝐿
)
2

+ 2(
𝑥

𝐿
)
3

 (6.8) 

 

𝑁2  = 𝑥 (1 −
𝑥

𝐿
)
2

 (6.9) 

 𝑁3  = 3 (
𝑥

𝐿
)
2

− 2(
𝑥

𝐿
)
3

 (6.10) 

𝑁4 = −𝑥 (
𝑥

𝐿
) + 𝑥 (

𝑥

𝐿
)
2

 (6.11) 

In matrix form, Eqs. (6.2) through (6.7) result into: 

[
 
 
 
 
 
 
𝛿𝛼(𝑥)

𝛿𝛼′(𝑥)

𝛿𝛼′′(𝑥)

𝛿𝛽(𝑥)

𝛿𝛽′(𝑥)

𝛿𝛽′′(𝑥)]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝑁1 𝑁2 𝑁3 𝑁4 0 0 0 0

𝑁1
′ 𝑁2

′ 𝑁3
′ 𝑁4

′ 0 0 0 0

𝑁1
′′ 𝑁2

′′ 𝑁3
′′ 𝑁4

′′ 0 0 0 0
0 0 0 0 𝑁1 𝑁2 𝑁3 𝑁4

0 0 0 0 𝑁1
′ 𝑁2

′ 𝑁3
′ 𝑁4

′

0 0 0 0 𝑁1
′′ 𝑁2

′′ 𝑁3
′′ 𝑁4

′′]
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝛿𝛼1

𝛿𝛼′1
𝛿𝛼2

𝛿𝛼′2
𝛿𝛽1

𝛿𝛽′1
𝛿𝛽2

𝛿𝛽′2]
 
 
 
 
 
 
 
 

 (6.12) 

or 

δ𝐯P = 𝐁Pδ𝐪n
P (6.13) 
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where  𝐁P are the interpolation functions for the local buckling DOFs and 𝐪n
P is a subset of 

𝐪n in Eq. (6.1a) that holds the flange rotations and curvatures. 

Taking the rotations for each flange plate and using the following relationship based 

on plate theory (Hughes 1987),  

𝑣𝑃(𝑥, 𝑦, 𝑧) = −𝑧 Ѳ𝑃(𝑥, 𝑦) (6.14) 

the beam displacements for the top and bottom plates are: 

𝑢𝑡𝑜𝑝
𝑃 (𝑥) = 𝑧 𝛼′(𝑥) 

𝑣𝑡𝑜𝑝
𝑃 (𝑥)  = −𝑧 𝛼(𝑥) 

𝑤𝑡𝑜𝑝
𝑃 (𝑥) = 𝛼(𝑥) 

 

 

 

 

 

(6.15) 

 

 

 

𝑢𝑏𝑜𝑡
𝑃 (𝑥) = 𝑧 𝛽′(𝑥) 

𝑣𝑏𝑜𝑡
𝑃 (𝑥) = −𝑧 𝛽(𝑥) 

𝑤𝑏𝑜𝑡
𝑃 (𝑥) = 𝛽(𝑥) 

Consideration of web plate displacements require more elaborate set of 

interpolation functions if the y-z plane origin is shifted from the top (or bottom) of the web 

plate to the web mid-height.  A shift of the coordinate system results to the boundaries of 

the web-height changing from 0 ≤ 𝑦∗ ≤ ℎ0 to −
ℎ0

2
≤ 𝑦 ≤

ℎ0

2
, where 𝑦∗ is the range of the 

original frame, 𝑦 is the range of the shifted frame, and ℎ0 is the total web plate height.  The 

web plate’s displacements are dependent on each flange’s deformations and is represented 

with cubic functions.  Because of the web plate’s shift of reference axis, the cubic 

Hermitian shape functions are adjusted from those seen in Eqs. (6.8) and (6.10).  The 

adjusted shape functions required for the web plate displacements are: 
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𝑁2
∗(𝑦) =

ℎ0

8
−

𝑦

4
−

𝑦2

2ℎ0
+

𝑦3

ℎ0
2 (6.16) 

𝑁4
∗(𝑦) = −

ℎ0

8
−

𝑦

4
+

𝑦2

2ℎ0
+

𝑦3

ℎ0
2 (6.17) 

A web plate fiber that exists in a linearly web-tapered member has a constant ratio of 𝜉 =

𝑦/ℎ0 when the reference axis is located at the mid-height.  Therefore, Eqs. (6.16) and (6.17) 

yield: 

𝑁2
∗(𝑦) = ℎ0 (

1

8
−

𝜉

4
−

𝜉2

2
+ 𝜉3) (6.18) 

𝑁4
∗(𝑦) = ℎ0 (−

1

8
−

𝜉

4
+

𝜉2

2
+ 𝜉3) (6.19) 

The following equations are used to obtain the displacements of the web plate: 

𝑤𝑤𝑒𝑏
𝑃 (𝑥) = 𝑁2

∗(𝑦) 𝛽(𝑥) + 𝑁4
∗(𝑦) 𝛼(𝑥) 

𝑢𝑤𝑒𝑏
𝑃 (𝑥) = −𝑤,𝑥 

𝑣𝑤𝑒𝑏
𝑃 (𝑥) = −𝑤,𝑦 

 

 

(6.20) 

Taking the necessary derivatives, the forms for the web displacements are: 

𝑢𝑤𝑒𝑏
𝑃 (𝑥)  = −[ℎ0

′  𝐶1 𝛽(𝑥) + ℎ0 𝐶1 𝛽
′(𝑥) + ℎ0

′  𝐶2 𝛼(𝑥) + ℎ0 𝐶2 𝛼
′(𝑥)] 

𝑣𝑤𝑒𝑏
𝑃 (𝑥)  = −[𝐶3 𝛽(𝑥) + 𝐶4 𝛼(𝑥)] 

𝑤𝑤𝑒𝑏
𝑃 (𝑥) = ℎ0 𝐶1 𝛽(𝑥) + ℎ0 𝐶2 𝛼(𝑥) 

 

 

(6.21) 

where 

𝐶1 =
1

8
−

𝜉

4
−

𝜉2

2
+ 𝜉3 (6.22) 

𝐶2 = −
1

8
−

𝜉

4
+

𝜉2

2
+ 𝜉3 (6.23) 
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𝐶3 = −
1

4
− 𝜉 + 3𝜉2 (6.24) 

𝐶4 = −
1

4
+ 𝜉 + 3𝜉2 (6.25) 

Strains obtained from plate theory are based on the curvatures involved.  Thus, the second 

derivatives of the member’s displacements referred to in Eqs. (6.15) and (6.21) are taken 

in order to obtain these strain relations.  The proposed beam-column element is assumed 

to have no curvature at the flange plates along the z-axis.  Therefore, the curvatures for 

each plate are: 

𝜅𝑥
𝑡𝑜𝑝 = 𝑣′′𝑡𝑜𝑝

𝑃 (𝑥) = −𝑧 𝛼′′(𝑥) 

𝜅𝑧
𝑡𝑜𝑝 = 0 

𝜅𝑥𝑧
𝑡𝑜𝑝 = −𝛼′(𝑥) 

for the top flange, 

 

 

(6.26) 

𝜅𝑥
𝑏𝑜𝑡 = 𝑣′′𝑏𝑜𝑡

𝑃 (𝑥) = −𝑧 𝛽′′(𝑥) 

𝜅𝑧
𝑏𝑜𝑡 = 0 

𝜅𝑥𝑧
𝑏𝑜𝑡 = −𝛽′(𝑥) 

for the bottom flange, and 

 

 

(6.27) 

𝜅𝑥
𝑤𝑒𝑏 = 2ℎ0

′  𝐶1 𝛽
′(𝑥) + ℎ0 𝐶1 𝛽

′′(𝑥) + 2ℎ0
′  𝐶2 𝛼

′(𝑥) + ℎ0 𝐶2 𝛼
′′(𝑥) 

𝜅𝑦
𝑤𝑒𝑏 = 𝑤(𝑥),𝑦𝑦 =

𝐶3,𝑦

ℎ0
 𝛽(𝑥) +

𝐶4,𝑦

ℎ0
 𝛼(𝑥) 

𝜅𝑥𝑦
𝑤𝑒𝑏 = 𝑤(𝑥),𝑦𝑥 = 𝐶3 𝛽

′(𝑥) + 𝐶4 𝛼′(𝑥) 

for the web. 

 

 

 

(6.28) 

The variation of these equations combined into matrix form results in the following: 
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[
 
 
 
 
 
 
 
 𝛿𝜅𝑥

𝑡𝑜𝑝

𝛿𝜅𝑥𝑧
𝑡𝑜𝑝

𝛿𝜅𝑥
𝑏𝑜𝑡

𝛿𝜅𝑥𝑧
𝑏𝑜𝑡

𝛿𝜅𝑥
𝑤𝑒𝑏

𝛿𝜅𝑦
𝑤𝑒𝑏

𝛿𝜅𝑥𝑦
𝑤𝑒𝑏]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

0 0 −𝑧 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 −𝑧
0 0 0 0 −1 0
0 2ℎ0

′  𝐶2 ℎ0 𝐶2 0 2ℎ0
′  𝐶1 ℎ0 𝐶1

𝐶4,𝑦

ℎ0
0 0

𝐶3,𝑦

ℎ0
0 0

0 𝐶4 0 0 𝐶3 0 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝛿𝛼(𝑥)

𝛿𝛼′(𝑥)

𝛿𝛼′′(𝑥)

𝛿𝛽(𝑥)

𝛿𝛽′(𝑥)

𝛿𝛽′′(𝑥)]
 
 
 
 
 
 

 

 

 

 

 

(6.29) 

or 

δ𝛋 = 𝐒P ∙ δ𝐯P (6.30) 

where 𝛿𝒗𝑃 is a sub-vector of δ𝐝 = [𝛿𝒗𝑇 𝛿𝒗𝑃𝑇]𝑇 and 𝐯 is the vector defined in Eq. (2.12). 

 As mentioned by Rajasekaran and Murray (1973), the variational form of the virtual 

work incremental equilibrium equation is expressed as:  

1

2
∫𝛔̅𝑖𝑗  δ(𝐮𝑘,𝑖 𝐮𝑘,𝑗)
𝑉

𝑑𝑉 +
1

2
∫𝛔𝑖𝑗  δ(𝐮𝑖,𝑗 𝐮𝑗,𝑖)
𝑉

𝑑𝑉 = ∫𝐭𝑖  δ𝐮𝑖
𝑆

𝑑𝑆 (6.31) 

where 

 𝛔̅𝑖𝑗 =   the stress tensor prior to the increment, 

 𝐭𝑖 = the increment in the surface traction vector, 

 𝐮𝑖 = the increment in the displacement vector, 

 𝛔𝑖𝑗  = the increment in the stress tensor, 

 𝑉 = the volume of the member, and 

 𝑆 = the surface of the member. 

Re-written, Eq. (6.31) can symbolically be represented by: 

δ(𝐈1 + 𝐈2 − 𝐈3) = 0 (6.32) 
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such that 

δ𝐈1 = ∫𝛔𝑖𝑗  δ𝐮𝑖,𝑗
𝑉

𝑑𝑉 (6.33) 

δ𝐈2 =
1

2
∫𝛔̅𝑖𝑗 δ(𝐮𝑘,𝑖 𝐮𝑘,𝑗)
𝑉

𝑑𝑉 (6.34) 

δ𝐈3 = ∫𝐭𝑖 δ𝐮𝑖
𝑆

𝑑𝑆 (6.35) 

Superposition is imposed in order to obtain the total displacement and total stress 

increments by summing the beam and plate components together (Rajasekaran and Murray 

1973): 

𝐮𝑖 = 𝐮𝑖
B + 𝐮𝑖

P (6.36) 

𝛔𝑖𝑗 = 𝛔𝑖𝑗
B + 𝛔𝑖𝑗

P  (6.37) 

Because the beam component for the proposed element uses a single layer of fibers 

in each plate and the stresses are taken to be uniform through the plate thickness, the 

coupling terms obtained by substituting Eqs. (6.36) and (6.37) into Eq. (6.33) may be 

neglected.  Therefore, δ𝐈1 can be re-written as: 

δ𝐈1 = ∫𝛔𝑖𝑗
B  δ𝐮𝑖,𝑗

B  
𝑉

dV + ∫𝛔𝑖𝑗
P  δ𝐮𝑖,𝑗

P  
𝑉

dV (6.38) 

Substitution of Eq. (6.36) into Eq. (6.34) yields: 

δ𝐈2 = δ [
1

2
∫𝛔̅𝑖𝑗  𝐮𝑘,𝑖

B  𝐮𝑘,𝑗
B

𝑉

dV +
1

2
∫𝛔̅𝑖𝑗  𝐮𝑘,𝑖

P  𝐮𝑘,𝑗
P

𝑉

dV + ∫𝛔̅𝑖𝑗  𝐮𝑘,𝑖
B  𝐮𝑘,𝑗

P

𝑉

dV] (6.39) 

Both Eqs. (6.38) and (6.39) are then simplified symbolically: 

δ𝐈1 = δ𝐈1
B + δ𝐈1

P (6.40) 

δ𝐈2 = δ𝐈2
B + δ𝐈2

P + δ𝐈2
BP (6.41) 
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δ𝐈1
B and δ𝐈2

B come directly from the linear and geometric stiffness matrices previously 

mentioned in Chapter 2 for Tapered Element A, respectively.  Because of this, more focus 

will cover the plate’s linear components, geometric components, and coupling between 

beam and plate theory seen through the terms 𝛿𝑰1
𝑃, 𝛿𝑰2

𝑃, and 𝛿𝑰2
𝐵𝑃, respectively.  

Using virtual displacements, the following derivation of the element tangent 

stiffness matrix for the proposed beam-column element is formed: 

δ𝐈3 = δ𝐈1 + δ𝐈2 

δ𝐪n
T𝐏 = ∫ δ𝐪n

T𝐍2
T𝐍1

T𝐤s𝐍1𝐍2𝐪n

𝐿

0

𝑑𝑥 + ∫ δ𝐪n
T𝐍4

T𝐆𝐍4𝐪n

𝐿

0

𝑑𝑥 

𝐏 = [∫ 𝐍2
T𝐍1

T𝐤s𝐍1𝐍2

𝐿

0

𝑑𝑥 + ∫ 𝐍4
T𝐆𝐍4

𝐿

0

𝑑𝑥] 𝐪n 

 = [𝐊𝐌 + 𝐊𝐆]𝐪n = 𝐊𝐭𝐚𝐧 𝐪n 

 

 

 

 

 

 

 

 

 

(6.42) 

where 𝐊𝐌 is referred to as the linear stiffness matrix, and 𝐊𝐆 is the geometric stiffness 

matrix.  The section tangent stiffness matrix, 𝐤s, will be discussed in Section 6.3.  𝐍2 is 

the shape function matrix composed of the beam and plate interpolation functions and 

structured such that the proper conversions from 𝐪n to 𝐝 are ensured.  The matrix 𝐍4 

represents the matrix of shape functions structured such that the displacement field is 

converted to the deformation vector: 

𝐳 = [𝑣0
′ Ѳ1𝑧 Ѳ1𝑦 𝑤0

′ Ѳ2𝑧 Ѳ2𝑦 𝑣0
′′ 𝑤0

′′ 𝜙 𝜙′ 𝛼 𝛼′ 𝛽 𝛽′]𝑇 (6.43) 

Full matrix form of 𝐍1, 𝐍2, and 𝐍4 can be referred to in the Appendix.       

 To obtain the new geometric stiffness matrix, Eq. (6.41) is decomposed and 

restructured, per assumptions made by Rajasekaran and Murray, to: 
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δ𝐈2 = δ𝐈2
B + (δ𝐈2

topP
+ δ𝐈2

botP + δ𝐈2
webP) + (δ𝐈2

topBP
+ δ𝐈2

botBP + δ𝐈2
webBP) (6.44) 

where δ𝐈2
B is identical to Eq. (2.46).  Contributions based on plate flexure and the coupling 

terms are separated by each plate of a cross-section as seen in Eq. (6.44).  Thus, the 

geometric stiffness matrix can be obtained analogously through: 

𝐆 = 𝐆B + (𝐆topP + 𝐆botP + 𝐆webP) + (𝐆topBP + 𝐆botBP + 𝐆webBP) (6.45) 

where 

𝐆B = [
𝐆10×10

1 𝟎10×4

𝟎4×10 𝟎4×4
] (6.46) 

𝐆1 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0

0
4

30
𝑃 𝑠𝑦𝑚.

0 0
4

30
𝑃

0 0 0 0

0 −
1

30
𝑃 0 0

4

30
𝑃

0 0 −
1

30
𝑃 0 0

4

30
𝑃

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 𝑀𝑦 𝑀𝑧 0

0 0 0 0 0 0 0 0 0 𝑊]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (6.47) 

 

𝐆topP = ∫ 𝜎𝑥 [
𝟎10×10 𝟎10×4

𝟎4×10 𝐆4×4
2 ]

𝐴𝑡𝑜𝑝

𝑑𝐴𝑡𝑜𝑝 (6.48) 

 

𝐆2  = [

0 𝑠𝑦𝑚.

0 𝑧2

0 0 0
0 0 0 0

] 

 

(6.49) 

 

𝐆botP  = ∫ 𝜎𝑥 [
𝟎10×10 𝟎10×4

𝟎4×10 𝐆4×4
3 ]

𝐴𝑏𝑜𝑡

𝑑𝐴𝑏𝑜𝑡 (6.50) 
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𝐆3 = [

0 𝑠𝑦𝑚.

0 0
0 0 0
0 0 0 𝑧2

] 

 

(6.51) 

𝐆webP = ∫ 𝜎𝑥 [
𝟎10×10 𝟎10×4

𝟎4×10 𝐆4×4
4 ]

𝐴𝑤𝑒𝑏

𝑑𝐴𝑤𝑒𝑏 (6.52) 

𝐆4  =

[
 
 
 
 ℎ0

′ 2
𝐶2

2 𝑠𝑦𝑚.

ℎ ℎ0
′ 𝐶2

2 ℎ2𝐶2
2

ℎ0
′ 2

 𝐶1𝐶2 ℎ0 ℎ0
′  𝐶1𝐶2 ℎ0

′ 2
𝐶1

2

ℎ0 ℎ0
′  𝐶1𝐶2 ℎ0

2 𝐶1𝐶2 ℎ0 ℎ0
′  𝐶1

2 ℎ0
2𝐶1

2]
 
 
 
 

 

 

 

(6.53) 

 

𝐆topBP = ∫ 𝜎𝑥 [
𝟎10×10 𝑠𝑦𝑚.

𝐆4×10
5 𝟎4×4

]
𝐴𝑡𝑜𝑝

𝑑𝐴𝑡𝑜𝑝 (6.54) 

𝑮5  = [

0 0 0 0 0 0 0 0 0 0
−𝑧 0 0 0 0 0 0 0 0 𝑧2

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

] (6.55) 

𝐆botBP = ∫ 𝜎𝑥 [
𝟎10𝑥10 𝑠𝑦𝑚.

𝐆4x10
6 𝟎4𝑥4

]
𝐴𝑏𝑜𝑡

𝑑𝐴𝑏𝑜𝑡 (6.56) 

𝐆6  = [

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−𝑧 0 0 0 0 0 0 0 0 𝑧2

] (6.57) 

𝐆webBP  = ∫ 𝜎𝑥 [
𝟎10×10 𝑠𝑦𝑚.

𝐆4×10
7 𝟎4×4

]
𝐴𝑤𝑒𝑏

𝑑𝐴𝑤𝑒𝑏 (6.58) 

𝐆7  =

[
 
 
 
0 0 0 ℎ0

′  𝐶2 0 0 0 0 ℎ0
′  𝑦′ 𝐶2 𝑦 ℎ0

′  𝐶2

0 0 0 ℎ0 𝐶2 0 0 0 0 ℎ0 𝑦
′ 𝐶2 𝑦 ℎ0 𝐶2

0 0 0 ℎ0
′  𝐶1 0 0 0 0 ℎ0

′  𝑦′ 𝐶1 𝑦 ℎ0
′  𝐶1

0 0 0 ℎ0
′  𝐶1 0 0 0 0 ℎ0 𝑦

′ 𝐶1 𝑦 ℎ0 𝐶1]
 
 
 

 (6.59) 
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6.3 Section Tangent Stiffness Matrix 

Derivation of the section stiffness matrix in Eq. (6.42) is obtained through the same 

process as in Eq. (2.32).  Final form of the updated section stiffness matrix is composed of 

both beam and plate components such that: 

𝐤s = [
𝐤s

B 𝟎6×6

𝟎6×6 𝐤s
P ] (6.60) 

where 𝐤s
B is the matrix formed in Eq. (2.34) and 𝒌𝑠

𝑃 is obtained through: 

𝐤s
P = 𝐤s

Top
+ 𝐤s

Bot + 𝐤s
Web (6.61) 

Prior to using Eq. (2.32) to determine the section stiffness matrix for the section plate 

contributions, the constitutive matrix for the flexural rigidity modulus of the plates, 𝐂P, 

must be established.  

 Similar relations can be made between moments and curvatures for plate theory as 

were done for stress and strains for beam theory.  Rajasekaran and Murray (1973) 

suggested these relations are established through: 

𝑀𝛼 = −𝐷(𝜅𝛼 + 𝜈 𝜅𝛽)  

𝑀𝛽 = −𝐷(𝜅𝛽 + 𝜈 𝜅𝛼) (6.62) 

𝑀𝛼𝛽 = −𝐷(1 − 𝜈)𝜅𝛼𝛽  

where 𝜈 is the Poisson's ratio.  The aggregation of all incremental plate moments, 

incremental curvatures, and flexural rigidity modulus yield: 
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[
 
 
 
 
 
 
 
∆𝑀𝑥

𝑇

∆𝑀𝑥𝑧
𝑇

∆𝑀𝑥
𝐵

∆𝑀𝑥𝑧
𝐵

∆𝑀𝑥
𝑊

∆𝑀𝑦
𝑊

∆𝑀𝑥𝑦
𝑊 ]

 
 
 
 
 
 
 

= −

[
 
 
 
 
 
 
 
𝐷𝑥

𝑇

𝐷𝑥𝑧
𝑇 (1 − 𝜈)

𝐷𝑥
𝐵

𝐷𝑥𝑧
𝐵 (1 − 𝜈)

𝐷𝑥
𝑊 𝐷𝑦

𝑊𝜈

𝐷𝑥
𝑊𝜈 𝐷𝑦

𝑊

𝐷𝑥𝑦
𝑊 (1 − 𝜈)]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
∆𝜅𝑥

𝑇

∆𝜅𝑥𝑧
𝑇

∆𝜅𝑥
𝐵

∆𝜅𝑥𝑧
𝐵

∆𝜅𝑥
𝑊

∆𝜅𝑦
𝑊

∆𝜅𝑥𝑦
𝑊 ]

 
 
 
 
 
 
 

 

or 

∆𝐌 = 𝐂P ∙ ∆𝛋 (6.63) 

Although Eq. (6.63) states the full constitutive relation between incremental 

moments and curvatures of the plates, the proposed element constrains a certain limitation.  

Ideally, treatment of the biaxial plate bending would be handled with a proper 2-D plate 

bending material model.  However, the proposed element is currently only limited to use 

of uniaxial material models which only take in a single strain.  Due to this limitation, each 

curvature must be treated independent of one another and thus results into various uses of 

uniaxial materials.  But since the moment capacity is limited by the plastic moment, MP, 

utilizing multiple uniaxial materials and treating them to be additive, as seen in the case of 

∆𝑀𝑥
𝑊, can potentially result into exceeding MP.    

Based on these constraints, an alternative form of Eq. (6.63) is suggested for the 

proposed element utilizing uniaxial material models.  In order to avoid exceedance of the 

MP value, bending about each plate axis is treated completely independent of the 

orthogonal axis.  Due to this assumption, the coupled bending moments and off-diagonal 

constitutive modulus in Eq. (6.63) are omitted: 
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[
 
 
 
 
∆𝑀𝑥

𝑇

∆𝑀𝑥
𝐵

∆𝑀𝑥
𝑊

∆𝑀𝑦
𝑊]

 
 
 
 

=

[
 
 
 
 
−𝐷𝑥

𝑇

−𝐷𝑥
𝐵

−𝐷𝑥
𝑊

−𝐷𝑦
𝑊]

 
 
 
 

[
 
 
 
 
∆𝜅𝑥

𝑇

∆𝜅𝑥
𝐵

∆𝜅𝑥
𝑊

∆𝜅𝑦
𝑊]

 
 
 
 

 

 

 

(6.64) 

 The components that constitute Eq. (6.61) are therefore: 

𝐤s
Top

 = ∫

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0

0 0 −𝐷𝑥
𝑡𝑜𝑝𝑧2 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

𝑑𝐴𝑇𝑜𝑝

𝐴𝑇𝑜𝑝

 (6.65) 

𝐤s
Bot  = ∫

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −𝐷𝑥

𝑏𝑜𝑡𝑧2]
 
 
 
 
 

𝑑𝐴𝐵𝑜

𝐴𝐵𝑜𝑡

 (6.66) 

𝐤s
Web   = ∫ [

𝒌𝑠
𝑊𝑒𝑏,1 𝑠𝑦𝑚.

𝒌𝑠
𝑊𝑒𝑏,2 𝒌𝑠

𝑊𝑒𝑏,3]
𝐴𝑤𝑒𝑏

𝑑𝐴𝑊𝑒𝑏 (6.67) 

𝐤s
Web,1 =

[
 
 
 
 
 −𝐷𝑦

𝑤𝑒𝑏  𝐶4,𝑦
2

ℎ0
2 𝑠𝑦𝑚.

0 −𝐷𝑥
𝑤𝑒𝑏(2 ℎ0

′  𝐶2)
2

0 −2𝐷𝑥
𝑤𝑒𝑏 ℎ0 ℎ0

′  𝐶2
2 −𝐷𝑥

𝑤𝑒𝑏(ℎ0 𝐶2)
2
]
 
 
 
 
 

 

 

 

(6.68) 

𝐤s
Web,2 =

[
 
 
 
 
 −𝐷𝑦

𝑤𝑒𝑏  𝐶3,𝑦 𝐶4,𝑦

ℎ0
2 0 0

0 −𝐷𝑥
𝑤𝑒𝑏(2 ℎ0

′ )
2
𝐶1𝐶2 −2𝐷𝑥

𝑤𝑒𝑏 ℎ0 ℎ0
′  𝐶1𝐶2

0 −2𝐷𝑥
𝑤𝑒𝑏 ℎ0 ℎ0
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Corresponding section stresses are obtained through the relation: 

𝐃P = ∫𝐒PT
𝐌

𝐴

𝑑𝐴 (6.71) 

Since the moments are taken to be per unit width of a plate, the integration boundaries are 

changed: 

𝐃P = ∫ 𝐒PT
𝐌

𝑤

𝑑𝑤 (6.72) 

and thus resulting the section stresses due to the plate contributions: 

𝐃P =

[
 
 
 
 
 
 
 
 
 
 
 
 
 ∫ (

1

ℎ0
𝐶4,𝑦∆𝑀𝑦

𝑊)
𝑤

𝑑𝑤

∫ (2ℎ0
′ 𝐶2∆𝑀𝑥

𝑊)𝑑𝑤
𝑤
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𝑤

𝑑𝑤 + ∫ (ℎ0𝐶2∆𝑀𝑥
𝑊)

𝑤

𝑑𝑤

∫ (
1

ℎ0
𝐶3,𝑦∆𝑀𝑦

𝑊)
𝑤

𝑑𝑤

∫ (2ℎ0
′ 𝐶1∆𝑀𝑥

𝑊)𝑑𝑤
𝑤

∫ (−𝑧∆𝑀𝑥
𝐵)

𝑤

𝑑𝑤 + ∫ (ℎ0𝐶1∆𝑀𝑥
𝑊)

𝑤

𝑑𝑤
]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (6.73) 

Unlike the section stresses obtained in Tapered Element A, the section stresses seen in Eq. 

(6.73) do not have a significant physical interpretation (i.e., axial force, bending moment, 

etc.).   

6.4 Discretization for Finite Element Implementation 

Conversion of the closed form solutions, seen in Sections 6.2 and 6.3, are necessary 

prior to implementing Tapered Element B into OpenSees.  Use of fiber discretization is 

used, as discussed in 2.6, in order to transform the integral form of the section stiffness 

matrix and stress resultant vector.  Similar to Tapered Element A, each plate of a member’s 
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cross-section is assumed to only have a single row of fibers along the plate width (see 

Figure 2.4).   Therefore, the form of Eqs. (6.65) through (6.67) and Eq. (6.73) are replaced 

with: 

𝐤s
Top

 = ∑

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0

0 0 −𝐷𝑥
𝑡𝑜𝑝𝑧2 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

𝑛𝑡𝑜𝑝

𝑖=1

𝐴𝑖

𝑡𝑝𝑖
𝑡𝑜𝑝 (6.74) 

𝐤s
Bot  = ∑

[
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0 0 0 0 0 0
0 0 0 0 0 0
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0 0 0 0 0 0
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𝑛𝑏𝑜𝑡

𝑖=1

𝐴𝑖
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𝑏𝑜𝑡 (6.75) 

𝐤s
Web = ∑ [
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 (6.76) 

𝐃P =
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where 𝐴𝑖 is the area of a plate fiber and 𝑡𝑝𝑖 is the corresponding plate thickness. 

6.5 Incorporating Tapered Element B into OpenSees  

Incorporation of Tapered Element B into OpenSees follows a similar procedure 

described in Chapter 3.  Tapered Element B is a more elaborate form of Tapered Element 

A which incorporates the plate theory discussed in Sections 6.2 and 6.3.  These features 

are added to the implemented files of Tapered Element A and renamed such that both 

elements are available to the OpenSees users.  The necessary files added to OpenSees for 

Tapered Element B relate to the Element class and Fiber Section class.  Corresponding 

class calls for the new element formulation are distinguished through 

TaperedDispBeamColumnB3D and TaperedFiberSectionB3D. 

Since each plate is treated to have its own section stiffness contribution,  a fiber 

associated with the cross-section requires an additional parameter for the plate bending 

modulus, D.  This additional material model for a plate fiber is associated with  𝐷𝑥
𝑡𝑜𝑝

 for 

the top flange, 𝐷𝑥
𝑏𝑜𝑡 for the bottom flange, and 𝐷𝑥

𝑤𝑒𝑏 and 𝐷𝑦
𝑤𝑒𝑏 for the web plate.  Because 

Tapered Element B is simplified to neglect biaxial plate bending, uniaxial materials are 

used in determining the plate moduli previously mentioned.  In the case of the web plate, 

the plate moduli for both the x and y bending use the same reference of the additional 

material call added for Tapered Element B.   

6.6 Tapered Element B Preliminary Verification 

Proceeding implementation of the 22-DOF Tapered Element B into OpenSees, 

verification was needed prior to re-assessing the response of cyclically tested specimens 

presented in Chapter 5.  Because Tapered Element B, in a special case by excluding the 
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local buckling DOFs, has the same capabilities of Tapered Element A, it should be capable 

of replicating results of benchmark cases seen in Chapter 4.   

This verification process included cases discussed by Andrade et al. (2007) which 

were modeled using Tapered Element B.  Consistent modeling of these cases were done in 

the same fashion when using Tapered Element A.  Difference of these models involved the 

incorporation of four DOFs per node.  The nodes associated with member supports (i.e., 

fixed ends) were treated to have all the DOFs, including flange rotation and curvature, 

constrained.  Varying use of element meshing was carried out with each case in Section 

4.2.3 in order to be able to capture local buckling effects since these buckling modes are 

more concentrated in location compared to LTB modes.  Element meshing for Case 1.b 

(see Figure 4.4), for instance, had a range of elements from 4 up to 20 along the cantilever 

beam. 

It was observed that in cases where members were loaded directly at the node (web 

mid-height), exact results were obtained from that of Tapered Element A.  However, 

difficulties occurred with cases involving cases of top flange or bottom flange loading with 

Tapered Element B involving abrupt termination mid-analysis or failure to start analyses 

in certain cases.   

In addition to the monotonic pushover analyses in Chapter 4, test cases with local 

buckling were attempted based on the work of Rajasekaran and Murray (1973).  Their 

documented cases involving elastic prismatic wide-flange members were modeled using 

Tapered Element B based on the stated boundary condition and geometrical properties.     

In particular, the case of an axially load column was modeled with the dimensions and 

finite element meshing stated by the authors.  Although simulation of this case ran 
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successfully using Tapered Element B, results obtained showed no implication of local 

buckling and could not be compared to the results obtained by Rajasekaran and Murray.  

Because of these difficulties, further research and development of Tapered Element B is 

necessary.      

6.7 Issues with Tapered Element B 

6.7.1 Incorporation of Initial Imperfections 

In order to initiate any form of buckling in numerical models, some form of 

imperfection must be imposed to the system.  With beam-column elements, imperfections 

are typically imposed on a member through an initial out-of-plane displacement or even 

initial twist or bending.  Application of such initial imperfection can easily be done through 

the nodal coordinates which connect the elements of a member.   

In addition to initial lateral displacements, however, occurrences of imperfection 

throughout the web and flanges of built-up I-sections have also been reported from testing 

(see Figure 6.2).  Unlike out-of-straightness imperfections, imposing flange imperfections 

cannot be easily handled through manipulation of a element’s nodal coordinates.  Because 

of this, initial displacements for the flanges must be imposed to the local buckling DOFs 

at each node.  Although OpenSees has the option and capability of applying DOF initial 

displacements at the node, it is currently limited for use on the axial, transverse, and lateral 

DOFs (i.e., u, v, and w displacements).  Further research is needed in order to incorporate 

imperfections in a similar fashion for the remaining DOFs such that local buckling can be 

captured with Tapered Element B.      
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Figure 6.2 Web Geometric Imperfection (Smith et al. 2013) 

6.7.2 Corresponding Material Model For Tapered Element B 

Formulation of Tapered Element B causes flange and web bending about axes both 

parallel and perpendicular to an element axis.  This phenomenon is referred to as biaxial 

bending.  Since biaxial bending of plates typically use two-dimensional plasticity models, 

assumptions of uniaxial material models to decouple plate bending may cause highly 

inaccurate results.   

 Alternatives such as stress-resultant models have promising potential for the 

Tapered Element B.  With uniaxial materials, limitation is met when a fiber's stress state is 

solely dependent on the corresponding strain which is normal to the cross section.  

However, plate bending behavior is highly dependent on its curvatures more so than normal 

axial strains dealt with in cases of beams.  Hence, a two-dimensional stress-resultant model 

would take into account multiple directions of a cross-section's stress state and then be 

compared to a yield surface criterion which determines occurrences of yielding.  Examples 
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of such stress-resultant models are seen in a Von Mises model (SIMULIA Inc. 2013) which 

incorporate a yield surface as well as hardening flow rules to allow contributions of 

yielding from both member overall buckling, such as LTB, and local buckling.   
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7 SUMMARY AND CONCLUSIONS 

7.1 Summary 

Thin-walled metal members are typically seen in metal building frames (MBFs) 

which are commonly used throughout many of today’s structures.  To be economical, 

MBFs commonly utilize web-tapered members that correspond to the moment gradient 

along a member of the system; noncompact or slender sections are commonly used for this 

type of construction.   

Generally, design of members in MBF systems is governed by lateral-torsional 

buckling (LTB) and local buckling.  In order to better understand and study the behavior 

of these systems under earthquake excitations, numerical methods utilizing the finite 

element method can be useful in accomplishing these goals.  Although various methods of 

modeling MBF systems can be done through various software, computational time and 

effort can be very exhausting for studies requiring extensive nonlinear time-history 

analyses of a suite of earthquake ground motions.  Unlike shells or solids, one-dimensional 

line elements, when properly formulated, are efficient and easier to use in research that 

aims to develop a rational seismic design procedure for MBFs.   

Use of beam-column line elements has been used by previous researchers to capture 

LTB phenomenon fairly well, such as Alemdar (2001), Chang (2006), and Zhang et al. 

(2011) to name a few.  Such elements currently exist in the open source software OpenSees 

and is used by researchers and developers worldwide (McKenna et al. 2000).  However, as 

it is, the current displacement-based beam-column element offered in OpenSees is unable 

to capture the effects of member global buckling, not to mention local buckling.  Because 
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of this limitation, an alternative beam-column element formulation was needed in order to 

handle nonlinear analysis of systems involving events of member global buckling, 

especially LTB for MBFs. 

 The proposed element developed in this research introduced a new degree of 

freedom (DOF) in addition to the typical displacements and rotations seen at each node of 

a beam-column element.  The additional DOF depicts a warping deformation which is 

shown to be crucial in analysis involving LTB.  This nonlinear 14-DOF beam-column 

element has been implemented into OpenSees and is designated as Tapered Element A.  

Subsequent thorough verification with monotonic pushover models, correlation studies 

were done and compared to cyclic test data.  Based on the observations from cyclic 

correlation study, an effort was also made to incorporate additional four DOFs at each node 

to simulate the local buckling effects.  This 22-DOF beam-column is designated as Tapered 

Element B for OpenSees implementation.   

7.2 Conclusions 

Extensive testing and verification of Tapered Element A was carried out through 

numerous cases from previous works and experiments (Alemdar 2001, Andrade et al. 2007, 

Prawel et al. 1974, Shiomi and Kurata 1984).  Variations of parameters such as elastic and 

inelastic materials were considered, various web-tapers, boundary conditions, loading 

locations (i.e., top or bottom flange loading), and residual stresses were considered.  

Correlation studies of experimental testing of web-tapered members under both monotonic 

and cyclic loadings were also carried out.  
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Correlation and observations of the monotonic analyses established in Chapter 4 

showed that the predicted analyses are comparable to documented test data with small 

discrepancies.  The following conclusions based on the results of these models are made: 

 Flexural members involving elastic LTB compare well to results of more sophisticated 

elements, such as shells (Andrade et al. 2007). 

 Different loading cases involving top flange and bottom flange loading can be done 

using rigid connecting elements (see Section 4.2.3) and are capable of yielding 

reasonable results. 

 Materials based on true stress-strain relations and engineering stress-strain relations 

showed little to no difference of buckling load predictions.  Post-buckling responses of 

these two models deviate and response of engineering stress-strain yields conservative 

results to that of true stress-strain results (see Figure 4.34).   

 Application of constant axial load yields less strength capacity to results of 

incrementally increased axial load during an analysis.  Post-buckling strength 

degradation is seen to show similar behavior in either case (see Figure 4.39).  

Cyclic analysis of six full-scale specimens tested at UCSD (Smith et al. 2013) was 

conducted using Tapered Element A and correlated to test data.  Predicted analysis results 

for all six specimens showed to correlate fairly well up to initial LTB.  Upon initial LTB, 

however, test data showed significant strength degradation in the remaining excursion of 

current cycle, while the proposed element was unable to replicate.  It was observed from 

testing that LTB almost always triggered simultaneous events of local buckling, especially 

flange local buckling (FLB), at the kink location(s) with the highest out-of-plane 
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curvatures.    Since Tapered Element A could not simulate local buckling, similar behavior 

of strength degradation was not replicated.   

In addition to cyclic correlation, several parametric studies were pursued to better 

understand the behavior and implications of varying axial load, initial imperfections, and 

residual stresses.  The following conclusions were made: 

 Response of cyclic behavior from constant axial compression showed significant 

differences of initial LTB and strength degradation than that without an axial 

compression (see Figure 5.10). 

 Initial imperfections along the controlling unbraced segment involving LTB played 

little or no role in affecting cyclic results and behavior (see Figure 5.23). 

 Residual stresses had a significant effect in responses of initial LTB and post-buckling 

behavior (see Figure 5.24).  But response of subsequent cycles after initial LTB was 

unaffected for all variations of residual stresses.  

7.3 Future Work 

Based on the results observed from cyclic analyses, it was apparent that local 

buckling effects have a significant role in strength degradation.  In attempt to capture these 

effects, Tapered Element B was developed (see Chapter 6) to incorporate DOFs associated 

with local buckling.  Preliminary tests were done for this new element to compare its 

validity with LTB cases as well as  local buckling cases.  However, difficulties arose 

throughout this verification stage and prevented any further progress of using the element 

to re-evaluate the specimens of cyclic testing.  Further research and development for 
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Tapered Element B is, therefore, needed to overcome these issues and limitations.  The 

following issues need to be addressed: 

 Incorporating a means of imposing initial displacements corresponding to the local 

buckling DOFs is needed to numerically trigger local buckling to occur in an analysis. 

 Because Tapered Element B incorporates plate theory, development of a two-

dimensional stress-resultant material model is ideal in order to handle bi-axial bending.  

 Determine a consistent method and approach of using sufficient elements to ensure 

effects of local buckling are captured. 
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APPENDIX: DEFINITION OF N1, N2, AND N4 

Discussion of the element stiffness matrix for Tapered Element B was formulated 

in Chapter 6.  It was shown that derivation of the element stiffness matrix involved using 

matrices defined as  𝑵1, 𝑵2, and 𝑵4.  These matrices are defined in their entirety 

throughout this section.    

The 𝑵1 matrix is: 

𝑵1 = [
𝑸 𝟎7×5

𝟎6×12 𝑰6×6
] (A.1) 

where 𝟎𝑚×𝑛 is a zero matrix that has a size of m by n, 𝑰𝑛×𝑛 an identity matrix with a size 

of n by n, and 𝑸 defined in Eq. (2.44) as 

𝑸 =

[
 
 
 
 
 
 1

1

30
Ѳ𝑛

𝑇𝑿 0 0 0 0 0 0

0 0 0 1 𝜙 𝑤0
′′ 0 0

0 0 0 𝜙 −1 𝑣0
′′ 0 0

0 0 0 0 0 0 𝜙′ 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0]

 
 
 
 
 
 

 

 

 

 

(A.2) 

𝑿 =

[
 
 
 
 
 
0 0 0 0 0 0
0 4 0 0 −1 0
0 0 4 0 0 −1
0 0 0 0 0 0
0 −1 0 0 4 0
0 0 −1 0 0 4 ]

 
 
 
 
 

 

 

(A.3) 

The 𝑵2 matrix is: 

𝑵2 = [

𝑩1 𝑩2 𝑩3

𝑩4 𝑩5 𝟎5×1

𝑩6 𝑩7 𝟎6×1

] 
 

(A.4) 
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𝑩1 =

[
 
 
 
 
 
 
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0]

 
 
 
 
 
 

 

 

 

 

(A.5) 

𝑩2 =

[
 
 
 
 
 
 
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0]

 
 
 
 
 
 

 

 

 

 

(A.6) 

𝑩3 =

[
 
 
 
 
 
 
𝑁𝑢

′

0
0
0
0
0
0 ]

 
 
 
 
 
 

 

 

 

 

(A.7) 

𝑩4 =

[
 
 
 
 
 

0 𝑁𝑣1
′′ 0 0 0 0 0 0

0 0 −𝑁𝑤1
′′ 0 0 0 0 0

𝑁𝜙1 0 0 𝑁𝜙2 0 0 0 0

𝑁𝜙1
′ 0 0 𝑁𝜙2

′ 0 0 0 0

𝑁𝜙1
′′ 0 0 𝑁𝜙2

′′ 0 0 0 0]
 
 
 
 
 

 

 

 

(A.8) 

𝑩5 =

[
 
 
 
 
 

0 𝑁𝑣2
′′ 0 0 0 0 0 0

0 0 −𝑁𝑤2
′′ 0 0 0 0 0

𝑁𝜙3 0 0 𝑁𝜙4 0 0 0 0

𝑁𝜙3
′ 0 0 𝑁𝜙4

′ 0 0 0 0

𝑁𝜙3
′′ 0 0 𝑁𝜙4

′′ 0 0 0 0]
 
 
 
 
 

 

 

 

(A.9) 

𝑩6 =

[
 
 
 
 
 
0 0 0 0 𝑁1 𝑁2 0 0

0 0 0 0 𝑁1
′ 𝑁2

′ 0 0

0 0 0 0 𝑁1
′′ 𝑁2

′′ 0 0
0 0 0 0 0 0 𝑁1 𝑁2

0 0 0 0 0 0 𝑁1
′ 𝑁2

′

0 0 0 0 0 0 𝑁1
′′ 𝑁2

′′]
 
 
 
 
 

 

 

 

 

(A.10) 
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𝑩7 =

[
 
 
 
 
 
0 0 0 0 𝑁3 𝑁4 0 0

0 0 0 0 𝑁3
′ 𝑁4

′ 0 0

0 0 0 0 𝑁3
′′ 𝑁4

′′ 0 0
0 0 0 0 0 0 𝑁3 𝑁4

0 0 0 0 0 0 𝑁3
′ 𝑁4

′

0 0 0 0 0 0 𝑁3
′′ 𝑁4

′′]
 
 
 
 
 

 

 

 

 

(A.11) 

The 𝑵4 matrix is: 

𝑵4 = [
𝑩8 𝑩9 𝟎7×1

𝑩10 𝑩11 𝟎7×1
] (A.12) 

𝑩8 =

[
 
 
 
 
 
 
0 𝑁𝑣1

′ 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 −𝑁𝑤1

′ 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 𝑁𝑣1

′′ 0 0 0 0 0 0]
 
 
 
 
 
 

 

 

 

 

(A.13) 

𝑩9 =

[
 
 
 
 
 
 
0 𝑁𝑣2

′ 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −𝑁𝑤2

′ 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0]

 
 
 
 
 
 

 

 

 

 

(A.14) 

𝑩10 =

[
 
 
 
 
 
 
 

0 0 −𝑁𝑤1
′′ 0 0 0 0 0

𝑁𝜙1 0 0 𝑁𝜙2 0 0 0 0

𝑁𝜙1
′ 0 0 𝑁𝜙2

′ 0 0 0 0

0 0 0 0 𝑁1 𝑁2 0 0

0 0 0 0 𝑁1
′ 𝑁2

′ 0 0
0 0 0 0 0 0 𝑁1 𝑁2

0 0 0 0 0 0 𝑁1
′ 𝑁2

′]
 
 
 
 
 
 
 

 

 

 

 

(A.15) 
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𝑩11 =

[
 
 
 
 
 
 
 

0 0 −𝑁𝑤2
′′ 0 0 0 0 0

𝑁𝜙3 0 0 𝑁𝜙4 0 0 0 0

𝑁𝜙3
′ 0 0 𝑁𝜙4

′ 0 0 0 0

0 0 0 0 𝑁3 𝑁4 0 0

0 0 0 0 𝑁3
′ 𝑁4

′ 0 0
0 0 0 0 0 0 𝑁3 𝑁4

0 0 0 0 0 0 𝑁3
′ 𝑁4

′]
 
 
 
 
 
 
 

 

 

 

 

 

(A.16) 

 




