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Spectrum sensing is essential for enabling optimal spectrum usage and ensuring data

security, especially with the proliferation of IoT devices. Spectrum sensing involves detecting

and characterizing intentional RF emissions called overt, and unintentional RF emissions called

emanations. The thesis focuses on two pivotal aspects of spectrum sensing: characterization of

overt specifically modulation classification and characterization of emanations.

Three distinct works are presented on modulation classification. DL has been successfully

used recently. The focus, however, has been model-centric, with attempts to improve performance

on the standard synthetic dataset RML16. The quality of the training dataset impacts model

performance on real data. A hybrid approach is taken by leveraging wireless domain knowledge
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to improve dataset quality. The first two works respectively leverage domain knowledge of

wireless channel conditions and SNR to improve dataset quality. Over-the-air (OTA) data

captured using USRP radios are used in these works.

In the first work, studies are done to understand the performance impact due to the

disparity of probability distribution between training and test data within the context of channel

conditions. This is studied for OTA data collected in channels emulating LOS, NLOS, and

AWGN. In the second work, signal processing advances in blind SNR estimation are leveraged to

improve DL performance on modulation classification. A training methodology is introduced that

partitions OTA data into subsets of different SNR levels. For the third work, shortcomings such

as errors and ad-hoc choice of parameters are identified in RML16. A new realistic benchmark

dataset RML22 is provided with the errors corrected and the choice of parameters justified.

Thorough mathematical derivations are provided for the wireless models used to generate data.

Performance impact due to artifacts and model parameterization is studied using the RML22

data generation framework.

For the second paradigm of detection and characterization of emanations, an HW agnostic

solution is proposed. Prior work focussed on profiling specific HW but scalability led to the need

for a HW-agnostic solution. Emanations are detected by scanning for the signature of harmonics

from leakages of clock signals. A signal processing algorithm is provided to remove artifacts and

estimate the pitch of harmonics that characterizes the emanation. IQ data is collected from the

source of emanations placed inside a sanitized shield room using Signal Hound SDR. Results for

anomaly detection using emanation patterns are presented for the use cases compromising data

security: damaged electronic peripherals, and illegal copying of data to external storage devices.
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Chapter 1

Introduction

Spectrum sensing refers to the detection and characterization of all RF signals. Detection

refers to the ability to sense that there is an RF signal that is not noise. Characterization refers

to finding metadata about the detected signal such as protocol, and modulation type. This is

essential in enabling optimal spectral usage and detecting anomalous signals. Spectrum is a

critical resource due to the increasing number of devices and data rate requirements. Developing

intelligence in devices enables optimal spectral usage and thereby meets increasing spectral

demands. It is also of interest for cellular carriers and defense organizations to police the

spectrum. This helps detect illegal and malicious spectrum usage thereby ensuring robust

communication links for critical applications.

Spectrum sensing typically refers to the detection of intentionally transmitted signals,

called overt signals. Overt signals include cellular signals 4G, 5G, Wi-Fi, Bluetooth, GNSS, etc.,

that are transmitted for applications such as communication, and sensing. Another class of signals

is unintentionally emitted RF signals, called emanations. Activity within electronic systems

results in emanations [1]. Prior work [2, 3, 4, 5, 6, 7, 8] is focused on decoding information

stealthily from emanations. This is done by mapping emanations to the data processed within

the electronic system. Emanations are a risk for data security especially in sensitive military

and civilian establishments. The IARPA developed the SCISRS program [9] to detect and

characterize emanations.
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The thesis focuses on two important cogs of spectrum sensing: modulation classification,

detection, and characterization of emanations.

1.1 Dissertation overview

Chapter 2 presents the work on the detection and characterization of emanations. Sensing

and understanding all signals in an RF-secure military or civilian setup is important, this includes

unintended RF emissions called emanations. Prior work provide citations for prior work in

detecting emanations involves profiling, which is hardware (HW) specific and hence not a

scalable approach. Our technique looks for a generic signature of harmonics in the frequency

domain without knowledge of HW. It detects emanation and characterizes it by estimating

the pitch frequency of harmonic. Results are shown for detection of anomalous activity using

emanation patterns for use cases emulating wear and tear of HW, and illegal data transfer to

external storage devices.

Modulation classification has been an active area of research for the last few decades.

Traditional approaches to modulation classification are broadly classified as likelihood-based

and feature-based [10]. They typically work well for only a small subset of modulation types. In

the last few years, researchers have borrowed tools from DL and applied them to the problem

of modulation classification, demonstrating tremendous potential for universal success across

a wide range of modulation types and wireless technologies. The focus, however, has been

model-centric. Numerous architectures [11, 12, 13, 14, 15, 16] such as CNN, recurrent neural

networks, generative adversarial networks and auto-encoders have been attempted on benchmark

datasets RADIOML.2016.10A (RML16) [11] and RADIOML.2018.01A (RML18) [13]. Wire-

less communications and signal processing are mature fields. In this thesis, a hybrid approach is

taken to leverage the efforts from these fields to improve the performance of deep learning on

modulation classification.

Three distinct works are presented under modulation classification covered in Chapters 3,
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4 and 5. In Chapter 3 provide citation for both journal and conference, we use a data-centric DL

approach where the focus is on improving training dataset quality. Wireless systems knowledge

is used to generate synthetic datasets such as RML16. However, DL model performance is

only as good as dataset quality. RML16 has shortcomings such as errors and ad-hoc choices

of parameters. We build upon RML16 and provide a realistic and correct methodology for

generating datasets. A new benchmark dataset RML22 is generated. Going forward, we envision

researchers improving model quality on RML22.

The work presented in Chapter 4 provide citation leverages work done in blind SNR

estimation provide citation to improve modulation classification performance. A novel training

methodology is introduced where different models are trained on signals belonging to specific

subsets of SNRs. At inference, signals with specific SNRs are passed onto appropriate models

showing performance improvement.

The work presented in Chapter 5 provide citation empirically studies the performance

impact due to the disparity in probability distributions between training and test data. Software-

defined radios (SDR) collect training and test data under channel conditions of additive white

Gaussian noise (AWGN), line-of-sight (LOS), and non-line-of-sight (NLOS). Models are trained

and tested on data collected in the three different channel conditions of AWGN, LOS, and NLOS.

Results show that train and test data should belong to the same channel conditions for best

performance.

1.2 Basics overview

1.2.1 Wireless signal representation

Wireless signals are transmitted on orthogonal carrier waves. The magnitudes of the

orthogonal carrier waves are referred to as In phase and Quadrature phase (IQ) in baseband.

IQ samples are the basic signal representation of a wireless signal. A single IQ sample can be

represented as a two-dimensional real signal or a single complex number. An IQ sample s is
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Figure 1.1. A homodyne architecture of the TX and RX HW. The HW model used follows the
architecture presented.

represented as real numbers sI and sQ.

s[n] = sI[n]+ sQ[n], (1.1a)

sp[n] = ℜ(s[n]e j2π fcnTs), (1.1b)

where s is baseband signal, sp passband signal with center frequency fc, sI and sQ are in phase

and quadrature phase parts of an IQ sample, Ts is the sampling interval.

An IQ sample is a digital representation of a baseband signal. Baseband signal is typically

shifted to a higher frequency before transmission by TX HW and is then referred to as a passband

signal.

1.2.2 Transmit and receive hardware architecture

A TX and RX HW based on a homodyne architecture [17, pg. 337] is illustrated in

Fig. 1.1. The HW artifacts models used in the thesis follow this architecture. The digital IQ

stream is converted into an analog signal by the digital-to-analog converter (DAC). Further, it

is shifted from baseband to a carrier frequency, boosted by a power amplifier and transmitted

OTA via antennae. This signal undergoes channel effects also referred to as radio propagation

effects, before reaching the RX. At RX, the antenna senses the electromagnetic energy, converts

into an electric voltage. This electrical signal is amplified by a low-noise amplifier, shifted to

baseband from a higher center frequency. It is then converted into a digital IQ stream by the

analog-to-digital converter (ADC). A clock crystal is an important part of wireless system. It
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provides tone at requisite frequency via a phase-locked-loop (PLL) for the frequency shifting

operations in the TX and RX systems. It also provides reference frequencies for generating

sample timing to the ADC and DAC components.

1.2.3 Model of Channel and Hardware artifacts

The input-output model is presented where an input signal s is impacted by the transfer

function constituted by channel and HW artifacts. The resulting signal is sensed by a spectrum-

sensing HW as receive signal y. This model is used in Chapter 2 for the mathematical derivations

demonstrating the emanation selection algorithm. This is also used in Chapter 3 for generating

the RML22 dataset for modulation classification. The received IQ signal y for a wireless signal

affected by channel and HW effects is [18, pg. 16]:

y[n] = e j2π ferrnTs+θerr ∑
l

h[l]s[n− l −ζerr]+ z[n], (1.2)

where h is the channel impulse response, s is the modulated symbol that is up-sampled and pulse

shaped by a RRC filter, Ts sampling rate, ferr frequency error, θerr phase error, ζerr timing error, z

Additive White Gaussian Noise (AWGN). Note that y,s,h are the digital baseband equivalent

terms.

The random variables ζerr,θerr, ferr,z,h represent the set of artifacts that is imposed upon

the clean transmit IQ stream.
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Thermal Noise model

The thermal noise is modeled as follows in RML22.

SNR = 10log10
[
E(|s|2)/E(|z|2)

]
, (1.3a)

y[n] = s[n]+ z[n], (1.3b)

z[n] = zI[n]+ jzQ[n]∼ C N (0,σ2
z ),∀n, (1.3c)

zI[n],zQ[n]∼ N (0,σ2
z /2),∀n, (1.3d)

E(z(t)z∗(t + τ)) = δ (τ)σ2
z , E(zIzQ) = E(zI)E(zQ) (1.3e)

where z[n] is the nth sample of complex thermal noise, zI and zQ are the real and imaginary parts,

σz is the standard deviation of thermal noise.

Thermal noise z is modeled as zero mean AWGN, see (1.3c) and (1.3e), with the real and

imaginary parts independently zero-mean AWGN random process[19, p 29], see (1.3d). SNR is

calculated using (1.3a). The dominant source of thermal noise is assumed to be at the receiver,

thus the additive assumption. In simulations, thermal noise z is assumed ergodic, and expectation

calculated averaging samples over time. Although thermal noise simulated in baseband is a

filtered and sampled version, the properties mentioned above are assumed to hold. The GNU

radio block simulating thermal noise is in [20].

Phase, Frequency and Timing error

A model for simulating clock effects is presented, following the homodyne architecture

in Fig. 1.1. The errors in the clock in TX and RX HW manifest as CFO, SRO and phase offset.
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The cumulative CFO effects are:

f T X

LO
[n] = ( f̂XO +∆ f T X

XO
[n])LLO, (1.4a)

f RX

LO
[n] = ( f̂XO +∆ f RX

XO
[n])LLO, (1.4b)

f XO

err
[n] = ∆ f T X

XO
[n]−∆ f RX

XO
[n], (1.4c)

f LO

err
[n] = f T X

LO
[n]− f RX

LO
[n] = f XO

err
[n]LLO, (1.4d)

s′[n] = s[n]e j2π f LO

err
nTs, (1.4e)

where ∆ f T X

XO
[n],∆ f RX

XO
[n] are crystal oscillator (XO) errors in TX and RX, f̂XO is the needed reference

tone frequency from XO, LLO is the scaling factor to shift tone from XO frequency to center

frequency, f T X

LO
and f RX

LO
are the LO signals in TX and RX, f XO

err
and f LO

err
are the XO and LO frequency

errors in combined TX-RX system, s is the clean baseband signal, s′ is the baseband signal with

CFO.

The XO crystal of an RF system is prone to errors that manifest as CFO and SRO.

Frequency source from XO feed the LO via a phase locked loop (PLL). This in turn is used for

providing center frequencies for up-conversion and down-conversion in TX and RX systems,

respectively. XO frequency errors cause a mismatch in the LO frequencies of TX and RX that

manifests as CFO ferr, see (1.4) [21, pg. 360]. XO crystal is also used to generate accurate time

ticks for the digital-to-analog-converter and analog-to-digital-converter via a timing PLL. XO

frequency errors cause a mismatch in the sampling instants of DAC and ADC in TX and RX

systems thereby causing SRO ζerr, see (1.6) [21, pg. 436]. XO is assumed the only common

source of errors for both CFO and SRO. In practice, the PLL leading into LO, DAC, ADC etc.,
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also contribute to minor errors.

t̂ = 1/( f̂XOLt) = 1/ fCR, (1.5a)

tDAC =
1

( f̂XO+∆ f TX

XO
[n])Lt

, (1.5b)

tADC =
1

( f̂XO+∆ f RX

XO
[n])Lt

, (1.5c)

ζTX[n] = tDAC − t̂ ≈ ∆ f TX

XO
[n]Lt/ f 2

CR
, (1.6a)

ζRX[n] = tADC − t̂ ≈ ∆ f RX

XO
[n]Lt/ f 2

CR
, (1.6b)

ζerr[n] =
n

∑
i=1

(ζTX[i]−ζRX[i]) =
n

∑
i=1

f XO

err
[i]Lt

f 2
CR

, (1.6c)

where t̂ is the requisite time tick interval to DAC and ADC, fCR is the clock rate for DAC and

ADC (equal to the analog bandwidth), Lt is the scaling factor in timing PLL, tDAC and tADC are real

time tick intervals going to DAC and ADC, ζTX and ζRX are the SRO in TX and RX, ζerr is the

cumulative SRO in combined TX-RX system. The scaling factor Lt in timing PLL is assumed

the same for both DAC and ADC.

Phase changes occur due to factors such as frequency errors, Doppler, sampling errors,

distance traveled and non-synchronous TX and RX LO. Artifacts as ferr, ζerr, h(.) capture these

phase changes, except non-synchronous TX and RX LO. This is captured by θerr:

xTX

LO
[n] = e j2π f TX

LO nTs+θ TX
err , (1.7a)

xRX

LO
[n] = e j2π f RX

LO nTs+θ
RX
err, (1.7b)

xTX

LO
(xRX

LO
)∗ = e j2π f LO

err nTs+(θ TX
err−θ

RX
err), (1.7c)

where xTX

LO
and xRX

LO
are the TX and RX LO signals, θ TX

err and θ RX

err are the phase errors in the TX and
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RX respectively, θerr is the net phase error from the combined TX and RX systems. The TX and

RX LO signals used to upconvert and downconvert signals in TX and RX respectively. The net

effect of TX and RX LO after downconversion at RX is in (1.7c).

The methodology to simulate ferr, ζerr and θerr is in (1.8). CFO is a clipped Gaussian

process (1.8b). SRO is simulated via re-sampling through interpolation at time instants specified

by t ′ (1.8e). Phase error θerr is from a uniform distribution (1.8f).

fbias ∼U(− fmax, fmax), (1.8a)

f XO

err
[n]∼ N( fbias,nσ

2), | f XO

err
[n]| ≤ fmax (1.8b)

s′[n] = s[n]e j2π f XO

err [n]LLOnTs (1.8c)

T DAC

s [n] = nt̂, T ADC

s [n] = nt̂ +ζerr[n], (1.8d)

t ′[n] =
fCR

fs
T ADC

s [n] =
n
fs
+

1
fs fCR

n

∑
i=1

f XO

err
[i]Lt , (1.8e)

θerr ∼U(0,2π), s′[n] = s[n]e j2πθerr , (1.8f)

where fbias is the CFO at the start of frame, σ standard deviation per sample, fmax maximum

frequency error bound, T DAC

s and T ADC

s sampling instants, t ′ new sampling instant.

Channel model

Channel effects are classified under small-scale and large-scale fading. Large-scale fading

effect is due to path losses as a function of distance, shadowing effects, etc., and is considered

stationary in time scales of a frame duration. It thus manifests as reduction in signal power at

receiver, as captured by thermal noise model in Sec. 1.2.3. Small-scale fading occurs in the

distance scale of carrier wavelengths, that cause rapid changes in phase and amplitude of received

signal. The channel model considered here represents small-scale fading.

A wireless signal encounters numerous objects from TX to RX. The resultant signal at

the RX is the sum of multiple reflected, scattered signal copies with delay. The magnitude of
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each multipath depends on path loss and material properties of reflector and scatters. The delay

depends on path length of the multipath. Modeling the effect along each path via ray tracing

needs complete knowledge of the channel, and not feasible. Instead, modeling via an input-output

relation is used [19, pg. 26], where y is the output signal, h channel impulse response, x input

signal. The passband is represented as:

yp(t) =
∫

hp(τ, t)xp(t − τ)dτ,

= ∑
i

ap(i, t)xp(t − τ(i, t)), (1.9a)

hp(λ , t) = ∑
i

ap(i, t)δ (λ − τ(i, t)), (1.9b)

and baseband represented as:

y[m] = ∑
l

h[l,m]x[m− l] (1.10a)

= ∑
l

x[m− l]∑
i

a[i,m]sinc[l − τ[i,m]

Ts
], (1.10b)

h[l,m] = ∑
i

ap[i,m]e− j2π fcτ[i,m]sinc[l − τ[i,m]

Ts
], (1.10c)

where ap(i, t) is the passband magnitude response of ith path at time t, a[i,m] baseband magnitude

response of ith path at time mTs, τ(i, t) is the delay of ith path at time t, δ (.) is an impulse signal.

The channel hp(λ , t) is represented as a slow, time varying system with memory. Most

significant reflected and scattered paths are only considered and represented in the equation with

an index i. The channel is assumed to be underspread where the timescale of channel variations

is significantly longer than the delay spread of the channel. The continuous time passband

representation of the input output relation and channel impulse response is presented in (1.9).

The equivalent discrete baseband representation is in (1.10).

The radio propagation channel could be an office space, city downtown etc. To capture the

propagation effects, detailed knowledge of the objects in the signal path and large computational
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resources are needed. An alternate approach is using statistical parametric model representing

the channel.

fX(x;σl) =
2x
σ2

l
exp
{
−x2

σ2
l

}
, (1.11a)

fX(x;K,σl)=
x

σ2
l

exp
{
−(x2 +K2)

σ2
l

}
I0

[
Kx
λ 2

]
, (1.11b)

R[l,n] = Em {h∗[l,m]h[l,m+n]} , (1.11c)

S[v] = ∑
l

∑
n

R[l,n]e− j2πvn, (1.11d)

SJakes[v] =
1

π fd

√
1− (v/ fd)

2
, |v| ≤ fd =

vmax

λ
, (1.11e)

where f is a probability distribution, x and σl are the magnitude and standard deviation of

the lth tap or path depending upon whether the channel taps h[l,m] or path magnitudes a[l,m]

are modeled, K referred as K-factor is ratio of energies in direct and reflected paths, I0 is the

zeroth order modified Bessel function of the first kind, R is the auto-correlation function of

channel impulse response, S is the Doppler spectrum, v Doppler frequency, fd maximum Doppler

frequency, vmax maximum relative speed between TX and RX, λ carrier frequency wavelength.

In the statistical model, the magnitude of each path is assumed an aggregate of numerous

paths of similar delay. By the central limit theorem, the real and imaginary components of

the magnitudes a(l, t) are zero-mean Gaussian. The amplitude of each path is thus a Rayleigh

distribution, see (1.11a). An alternate model used is the Rician distribution, see (1.11b). Due

to the independence between paths, the phase is uniformly [0, 2π] distributed. The channel tap

magnitudes are equivalently modeled as a Rayleigh or Rician distribution.

The time varying nature of the channel is modeled via a tap gain auto-correlation function,

see (1.11c). A measure of variance of channel in time for each tap l is conveniently captured

by auto-correlation function, upon using the wide-sense stationarity assumption. The tap gain

auto-correlation function is averaged across channel taps l and a Fourier transform in time is

11



taken to obtain the Doppler spectrum, see (1.11d). The Doppler spectrum indicates the amount

of spread in frequency due to time variation of the channel. Jakes model (1.11e) is commonly

used to simulate the Doppler spread due to time varying nature of the channel.
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Chapter 2

Anomalous Activity Detection using RF
Emanations

Data security is important in corporate and military establishments. It is important to

find anomalous activities that compromise data security. This is done by studying patterns

in unintended radio frequency (RF) emissions called emanations. Prior work on emanation

detection uses profiling on specific hardware (HW), however, this is not scalable across all types

of HW. We propose a HW-agnostic solution for finding anomalous activity using emanations.

Emanations are detected by scanning the signature of harmonics from leakages of clock signals.

Harmonics undergo random modulation, channel and HW artifacts, and thermal noise. A signal

processing algorithm is proposed to detect and characterize emanations, by estimating the pitch of

harmonics. A preprocessing technique removes the effect of modulation and artifacts. Thorough

mathematical derivations demonstrate the algorithm theoretically. In-phase and Quadrature-

phase (IQ) data is collected from emanation sources placed in a shielded room from 0.1–1.1 GHz

using a software-defined radio (SDR). Results are presented for use cases emulating anomalous

activity such as a damaged mouse and keyboard, data transfer between a laptop, and external

data storage peripherals.
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2.1 Introduction

Digital data safety involves the protection of digital data stored and processed by elec-

tronic systems, against unauthorized access. Increasing digitization of daily life activities has

increased the volume of data and thus complicated the life cycle of data. This complexity has

increased the challenges of data security. Activities that compromise data security are termed

anomalous. The focus of this work is detecting anomalous activities using unintended RF

emissions called emanations.

Activity within electronic systems results in electromagnetic radiation [1]. If a mapping

is found between the radiations and data processed within the electronic system, it makes

digital data vulnerable to side-channel attacks. An unintentional medium of data leakage

existing in electronic devices is called a side channel [2]. The technology related to these

vulnerabilities, attacks, and protection against attacks is popularly called TEMPEST [3]. Other

types of emanation signals include power consumption pattern [4], acoustic signals [5], and

optical signals [6].

In any RF environment, ambient emanations from numerous sources form the baseline of

the emanation pattern. It is essential to detect and characterize the emanation patterns across a

wide bandwidth to learn this baseline. A change in the baseline is identified as a new emanation

pattern symptomatic of anomalous activity.

Prior work [7, 8, 9, 10, 11, 12, 13] is focused on decoding information from side-

channels. They profile a specific make and model of HW to learn emanation patterns. They

assume knowledge of the specific device under question. The profiling uses traditional and deep

learning approaches to map specific types of software activities to received emanations. This

knowledge gained through profiling for a specific device is used to detect emanations and decode

information surreptitiously. The profiling approach for anomalous activity detection requires

learning patterns from all types of HW make and models, which is not feasible.

We propose to scan for a generic signature symptomatic of emanations. Intentionally
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Figure 2.1. System block diagram illustrating the high-level modules of data collection setup
and proposed algorithm.

transmitted signals such as Wi-Fi, Bluetooth, 4G, and 5G cellular signals, are human-constructed,

with a regular structure. Spectrum sensing applications exploit this structure to detect and classify

signals with known templates [14, 15]. Motivated by this, a profiling-free approach is approached

by scanning for a template of harmonics due to leakages from clock signals, they are an essential

component of electronic systems [16, 17, 18]. The generic HW-agnostic signature proposed is a

harmonic series in the frequency domain at pitch frequencies spread across wide bandwidths,

that are affected by artifacts.

The system block diagram in Fig. 2.1 summarizes the emanation detection algorithm and

data collection. Emanations are transmitted from the source, where harmonic series at different

pitch and center frequencies are obfuscated by modulation. They further undergo channel and

HW artifacts, and thermal noise before being sensed by SDR and converted into IQ samples.

Since this is the first work to showcase profiling-free emanation detection, the objective is to

showcase performance on data collected in a controlled environment such as a shielded room for

a limited set of use cases, backing the theoretical exposition.

An important preprocessing is developed to deal with the random frequency shifts at

the source of emanation, channel, and HW artifacts. Derivations are presented describing the

removal of artifacts, harmonic structure extraction, finding peaks, and estimating the pitch of

harmonics. This is shown for single-harmonic, and multi-harmonic cases in the presence of
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interferences.

Detection of anomalous activity is shown for the following use cases. Due to wear and

tear of electronic equipment such as a mouse or keyboard, there could be leakages compromising

data security [18]. This is emulated by exposing a portion of the cable from a mouse and

keyboard connected to a laptop and collecting IQ data from resulting emanations. The 0.1–1.1

GHz data is split into 25 MHz slices processed separately. The resulting emanation pattern

consists of emanations detected in each frequency slice across. Emanation patterns for IQ from

damaged peripherals are compared with the baseline of an idle laptop only, to detect anomalous

activity.

Data security is compromised by copying data without permission onto external storage

peripherals, these data transfer results in emanations [19]. An organization could use the proposed

algorithm to detect these anomalous activities.

The major contributions of this paper are as follows:

• Profiling-free emanation detection is provided by scanning for a harmonic signature. Prior

work did profiling of specific HW make and model that is not a feasible solution.

• Thorough mathematical derivations are provided showcasing the theoretical performance

of the proposed algorithm - removal of artifacts using the preprocessing technique, finding

peaks, and estimating pitch frequency.

• A preprocessing technique is introduced that removes modulation, channel, and HW

artifacts, and retains harmonic structure.

• Anomalous activity detection is showcased on wideband IQ data collected in a shielded

room from 0.1–1.1 GHz.

2.2 Method

The high-level details of the method are in the flow chart in Fig. 2.2. Models are presented

for signal, modulation of signal, and artifacts it undergoes in Sec. 2.2.2, 2.2.3 and 2.2.4. The

18



Figure 2.2. Emanation detection flow chart of the proposed algorithm detecting emanations
from raw IQ samples.

preprocessing technique is an important contribution in this paper that removes the effect of

modulation, artifacts due to HW, and channel. Theoretical derivations are done using the models

introduced, to show how preprocessing achieves this for emanation from a single source in Sec.

2.2.5.

The derivations are extended to a use case where multiple emanations are present resulting

in multi-harmonics in the received signal, see Sec. 2.2.6. When multi-harmonics are present,

there are additional cross terms present in the derivations, compared to single harmonic cases.

In Sec. 2.2.6, it is shown how the additional cross-terms in the multi-harmonics use case are

reduced, resulting in the removal of artifacts. In Sec. 2.2.7 it is shown how the algorithm deals

with overt signals interfering emanations. Overt signals are intentionally transmitted signals such

as Wi-Fi, cellular, and Bluetooth.

The preprocessed signal has artifacts removed and has a harmonic structure in the

frequency domain. The Welch averaging is used to estimate the Power Spectral Density (PSD)

of the preprocessed signal, see Sec. 2.2.8. Periodogram averaging reduces signal variance and

improves the performance of the subsequent peak-finding module. However, this reduces the
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lowest frequency resolution, placing a lower threshold on the detected pitch frequency. Below

this threshold, low-pass filtering was applied, and no averaging was performed. Dominant peaks

are identified in the frequency domain in both cases using SNR thresholding and prominence-

based parameterless distance separation, see Sec. 2.2.9. SNR thresholds are computed based on

the signal variance estimates.

The frequency and SNR of dominant peaks in the frequency domain are used to estimate

the pitch frequency of each source, see Sec. 2.2.10. This is motivated by [20] where they demon-

strate pitch detection on acoustic signals, with a low sample rate and a single set of harmonics.

We improve upon this to detect multiple series of harmonics using an iterative procedure. The

pitch frequency and an SNR for each harmonic series are reported. Equations are in a discrete-

time domain, consistent with code implementation. Frequency domain representation supports

the plots in Sec. 2.4.

2.2.1 Justification of choice of algorithm

In this section, the shortcomings of prior work in satisfying the requirements of our

application are addressed. The details are provided for the computational load imposed by

wireless applications compared to audio.

Pitch detection has been extensively studied for audio signals [21, 22, 23, 24]. Audio ap-

plications have been varied such as source separation, enhancement of audio effects, biomedicine,

and mechanics. Techniques such as auto-correlation [21], cross-correlation [22], and average

square difference [23] use a similarity measure to estimate the pitch frequency. Frequency

domain techniques include cepstrum [24] use a dual transform for estimation. Techniques based

on parametric estimation theory such as maximum likelihood estimate [25] and maximum a-

posteriori [26] have been explored. Techniques using notch filters at frequencies of harmonics to

suppress them and minimize the overall output power are in [27, 28], subspace approaches such

as Multiple Signal Classification (MUSIC) and Estimation of Signal Parameters by Rotational

Invariance Techniques (ESPRIT) are in [29, 30].
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Figure 2.3. Illustration of unmodulated emanation signature: a periodic pulse function with
duration T and period Th.

These approaches assume some of the following in their signal model that limits their

application: assumption of white or colored Gaussian noise only and no consideration of channel

and clock artifacts, knowledge of the number of sources and number of harmonics in each source,

also the number of harmonics for each source are assumed the same. Wireless systems have

high sample rates. Here, each IQ capture is processed with 25 MHz bandwidth and 100 ms

duration, giving an IQ length is N = 2.5×106. This is compared to the 44.1 kHz sample rate

in audio and speech applications. In [27] that showcase techniques such as non-linear square,

subspace-based MUSIC, and filtering-based capon method, dimensions of the matrices operated

upon are O(N), where N is IQ length. Operating on matrices with dimensions in millions for

wireless applications is computationally not feasible.

Our application requires detecting and characterizing emanations from multiple sources

simultaneously. Further, the HW, channel artifacts are different for the wireless systems compared

to the audio applications. Further, there could be interferences due to overt signals. The proposed

algorithm addresses these requirements.

2.2.2 Harmonic signal model

Models are provided for the signal, modulation, and artifacts to establish algorithm

performance through mathematical derivations. The signal model for the harmonics is provided

in this subsection. Devices, with microprocessors, generate periodic carrier and clock signals.

These have sharp transitions and are approximated as periodic pulse train [16, 18, 17]. Periodic

pulse train x, see Fig. 2.3 with period Th, square pulse p of duration T , is given by [31, Eq.
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(3.41)]:

x(t) = ∑
k

p(t − kTh), (2.1)

p(t) =


1 |t|< T

2

0 T
2 < |t|< Th

2 .

(2.2)

The Fourier series representation [31, Eq. (3.44)] containing harmonics at a multiple of pitch

frequency fh = 1/Th is:

x(t) =
T
Th

∑
m

sinc
(

mT
Th

)
exp
(

j2πmt
Th

)
. (2.3)

The signal model for a single harmonic series xsh [27, Eq. (1.1)] with complex amplitude

αm ∈ C:

xsh[n] =
M

∑
m=1

αm exp( jwhmn), n ∈ [0, . . . ,N −1], (2.4)

Xsh(w) =
M

∑
m=1

αmδ (w−mwh), (2.5)

where Xsh is the Fourier transform of xsh, and M is the number of harmonics in the harmonic

series. The signal model xsh is generic and captures the harmonic pattern of the pulse train in

(2.3).

The pitch frequency in radians wh is related to physical frequency in Hz fh as [27, Eq.

(1.4)]:

wh = 2π fh/ fs, (2.6)

where fs is the sampling rate. Frequency in radians wh is used in equations for conciseness, and

frequency in Hz fh is used in plots for ease of interpretation.

The single harmonic series xsh in (2.4) undergo unintentional modulation at emana-
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tion source, channel, HW artifacts, and AWGN noise, resulting in received signal yyy. For

multi-harmonic cases, each harmonic series yyyk separately undergo unintentional modulation at

emanation source, channel, and HW artifacts. They are combined at the receiver with thermal

noise wwwmh to get receive IQ yyymh as:

yyymh =
K

∑
k=1

yyyk +wwwmh, (2.7)

where wwwmh is the AWGN noise for multiharmonic usecase. In the following sections, the

emanation model is presented. This is followed by showing how preprocessing helps remove

artifacts for single and multiharmonic series.

2.2.3 Transmit emanation model

The harmonic signature undergoes unintended modulation that is characteristic of the

physics of the HW, and unknown to us. This is captured in the transmit emanation model

presented in this subsection, where the harmonics are modulated. In a digital communication

system signal modulation is defined as follows. The binary sequence to be transmitted is parsed

into subsequences of length Km, indexed by i. Each subsequence is mapped into a waveform xi.

In a frequency modulation scheme, a frequency shift wi is applied to a carrier frequency wc as

follows: [32, Eq. (4.8)]:

xi[n] = exp( j (wc +wi)n) , 1 ≤ i ≤ 2Km, (2.8)

where 2Km is the number of waveforms, n ∈ [0, . . . ,N − 1]. In contrast to modulation in a

digital communication system, unintended modulation occurs on emanation signals. Signal

generation circuits of a processor generate periodic clock signals that act as a carrier. Due to

space constraints, signal generation and data processing circuits are in proximity, leading to

unintentional modulation of the carrier signals [16]. Activities in desktops and laptops modulate
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the clock signals and apply specific frequency shifts unknown to the user [17, 33]. Examples

of activities are based on processor and memory activities. A program is run at an alternating

period Td to achieve a frequency modulation of wd . Such unintentionally modulated emanation

signal with unknown frequency shifts wd of the harmonics xsh is modeled as xtx:

xtx[n] = xsh[n]
D

∑
d=1

αd exp( jwdn), (2.9)

where wd , αd are the dth frequency and complex amplitude shifts applied due to unintended

modulation, D number of frequency shifts whose value is unknown due to nature of emanation

modulation [17]. Preprocessing operation in Sec. 2.2.5 is shown to remove the effect of frequency

modulation wd , see (2.26).

Inserting (2.4) into (2.9) gives:

xtx[n] = ∑
m

αm ∑
d

αd exp( j(mwh +wd)n). (2.10)

2.2.4 Receive emanation model

The transmitted emanation further undergoes HW, channel artifacts, and thermal noise as

described in this subsection. Transmit source of emanation and receive HW are considered static,

the channel is time-invariant. Transmit emanation xtx impacted by channel impulse response h

becomes xch:

xch[n] = (xtx ⃝∗ h)[n], (2.11)
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Taking Fourier transform upon inserting (2.10) into (2.11):

Xch(w) = Xtx(w)H(w)

= H(w)∑
m

∑
d

αmαdδ (w−mwh −wd)

= ∑
m

∑
d

hm,dαmαdδ (w−mwh −wd), (2.12)

where hm,d = H(mwh +wd), Xtx(w) is the Fourier transform of xtx and contains pure tones,

represented as Dirac delta functions at mwh +wd . The effect of the channel artifact is an

amplitude and phase shift hm,d that does not impact the frequency of tones. Thus, the channel

does not impact the pitch estimation. Inverse Fourier transform of Xch(w) (2.12) is taken to get

xch[n] as follows:

xch[n] = ∑
m

∑
d

hm,dαmαd exp( j(mwh +wd)n). (2.13)

In addition to the channel effect, time-variant clock artifact and thermal noise [34, Eqs.

(1.11), (8.5)], impact transmit emanation resulting in received IQ samples as follows:

yyy = vvv+www. (2.14)

where yyy = [y[0], . . . ,y[N − 1]]T is emanations impacted by channel and clock artifacts vvv =

[v[0], . . . ,v[N −1]]T , and thermal noise www = [w[0], . . . ,w[N −1]]T , such that yyy,vvv,www ∈ CN .

Emanation impacted by channel and clock artifacts vvv result in the Hadamard product (⊙)

between clock artifacts ccc and emanation impacted by the channel xxxch:

vvv = ccc⊙ xxxch,

xxxch = [xch[0], . . . ,xch[N −1]]T , (2.15)

ccc = [exp( jβ [0]), . . . ,exp( jβ [N −1])]T ,
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where β [n] = we[n]n+θe[n] [35, pg. 360], we, θe frequency and phase errors due to imperfect

time-variant clocks. Grouping the summation over d gives:

xxxch = ∑
d

xxxd, (2.16)

where xxxd = [xd[0], . . . ,xd[N −1]]T such that xd[n] is:

xd[n] = αd ∑
m

hm,dαm exp( j(wh +wd)mn). (2.17)

2.2.5 Preprocessing

Thus a mathematical representation has been provided on how the harmonics undergo

modulation and artifacts to result in received IQ samples y. The received samples y are processed

to extract one or more harmonic series. In this subsection, it is shown how preprocessing removes

the effect of modulation, channel, and clock artifacts and helps extract the harmonics. Prepro-

cessing [36, 37, 38, 39] is used in audio applications to reduce artifacts due to reverberations

and background noise. For electromagnetic signals in this work, the preprocessing technique

is introduced as the Hadamard product of the signal with its complex conjugate. This is com-

putationally simple and equivalent to auto-correlation in the frequency domain of the FFT of

the signal with its frequency-reversed copy, as explained below. This is motivated by the time

domain auto-correlation used in pitch estimation [40] for audio.

Preprocessing is done by taking the product of each IQ sample y with its complex

conjugate y∗:

s[n] = y∗[n]y[n]. (2.18)
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This operation is equivalent to a matched filter [32, Eq. (3.56)] in the frequency domain:

S(w) = Y ∗(w)⃝∗ Y (w) = ∑
w1

Y ∗(w1)Y (w−w1)

= ∑
w1

Y ∗(w1)Y (−(w1 −w)), (2.19)

where Y (w) the Fourier transform of y is correlated against its frequency-reversed copy Y (−w).

The harmonic signal xsh is frequency modulated by the source of emanation see (2.9),

and affected by the clock, channel artifacts, and thermal noise. Combining (2.14) and (2.18), the

feature extracted sample vector sss = [s[0], . . . ,s[N −1]]T is:

sss = yyy∗⊙ yyy = vvv∗⊙ vvv+ zzz1, (2.20)

where reduction is due to the distributive property of the complex conjugate, and the distributive

property of Hadamard product. Variants of notation z represent cross terms that do not contain

harmonic patterns. The cross-terms zzz1 in (2.20) is:

zzz1 = 2Re{vvv∗⊙www}+www∗⊙www. (2.21)

Emanations impacted by channel and clock vvv from (2.15) is inserted into (2.20) as follows:

vvv∗⊙ vvv = (ccc⊙ xxxch)
∗⊙ (ccc⊙ xxxch) (2.22a)

= xxx∗ch ⊙ ((c∗⊙ c)⊙ xxxch) (2.22b)

= xxx∗ch ⊙ xxxch, (2.22c)

where commutative and associative properties of Hadamard product, and the distributive property

of complex conjugate operator over Hadamard product gives (2.22b). Further, the properties

ccc∗⊙ccc = JN and JN ⊙xxxch = xxxch, where JN ∈CN is an all ones vector, gives(2.22c). This removes
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the time-varying clock artifacts and reduces signal variance. Inserting xxxch from (2.16) into (2.22):

xxx∗ch ⊙ xxxch =
(
∑
d1

xxxd1

)∗⊙ (∑
d2

xxxd2

)
= ∑

d=1
xxx∗d ⊙ xxxd + zzz2, (2.23)

where the distributive property of Hadamard product and complex conjugate operator over

addition gives (2.23), and zzz2 contains cross terms as follows:

zzz2 = ∑
∀d1,d2
d1 ̸=d2

xxxd1 ⊙ xxxd2. (2.24)

Combining (2.20), (2.22), (2.23), sss becomes (zzz = zzz1 + zzz2):

sss = ∑
d

xxx∗d ⊙ xxxd + zzz = ∑
d

sssd + zzz. (2.25)

sd[n] is computed using xd[n] from (2.17) as follows:

sd[n] =
M

∑
m=−M

γm,d exp( jwhmn), (2.26)

where sd[n] ∈R, γm,d = |αd|2
∣∣hm,d

∣∣2 |αm|2 (M−|m|) such that γm,d ∈C. Preprocessing removes

the effect of unknown frequency modulation. Frequency modulation term exp( jwdn) in xd

(2.17), is removed in sd . Inserting (2.26) into (2.25):

s[n] = ∑
m

exp( jwhmn)∑
d

γm,d + z[n]

= ∑
m

γm exp( jwhmn)+ z[n], (2.27)
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whose Fourier transform is:

S(w) = ∑
m

γmδ (w−mwh)+Z(w), (2.28)

where Z is the Fourier transform of zzz. Matrix notation of (2.27) becomes:

sss = EEEaaa+ zzz, (2.29)

where matrices EEE ∈ CN×M the harmonic components, aaa ∈ CN×1 the complex amplitude, are:

EEE = (enm), enm = exp( jwhmn) , (2.30)

aaa = [γ1, . . . ,γM]T .

where m ∈ [1, . . . ,M], n ∈ [0, . . . ,N −1].

2.2.6 Preprocessing for multi harmonics

The derivations are extended to a multi-harmonic use case where a receiver contains

emanation signatures from multiple sources. There are additional cross-terms when compared to

a single harmonic use case. The results from Sec. 2.2.5 are used to reduce the terms and extract

the harmonic structure in the derivations. Using (2.14) and (2.15), an emanation from each of

the K sources impacted by channel and clock artifacts is:

yyyk = ccck ⊙ xxxk
ch, (2.31)

where xk
ch is transmit emanation impacted by channel, clock artifacts ccck = [exp( jβk[0]), . . . ,exp( jβk[N−

1])]T , βk[n] = wk
e[n]n+θ k

e [n] such that wk
e[n], θ k

e [n] represent frequency and phase errors of kth

source due to imperfect clocks. Preprocessing is applied on receive IQ yyymh, inserting (2.7) into
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(2.20) as follows:

sssmh = yyy∗mh ⊙ yyymh =
(
∑
k1

yyyk1
+www

)∗⊙(∑
k2

yyyk2
+www

)
. (2.32)

The properties of commutative, distributive over-addition of the Hadamard product, distributive

over-addition, and distributive over Hadamard product of the complex conjugate operator are

used to reduce (2.32) into:

sssmh = ∑
k

yyy∗k ⊙ yyyk + zzz1, (2.33)

zzz1 = www∗⊙www+2∑
k
Re{yyy∗k ⊙www}+ ∑

∀k1,k2
k1 ̸=k2

yyy∗k1
⊙ yyyk2

, (2.34)

where zzz1 represents cross-terms. Using (2.31), yyy∗k ⊙ yyyk becomes:

yyy∗k ⊙ yyyk =
(

ccck ⊙ xxxk
ch

)∗
⊙
(

ccck ⊙ xxxk
ch

)
=
(

xxxk
ch

)∗
⊙
(

xxxk
ch

)
=
(
∑
d1

xxxk
d1
)∗⊙ (∑

d2

xxxk
d2
)
, (2.35)

where (2.22), and (2.23) are used. Further, using (2.23) and (2.24):

yyy∗k ⊙ yyyk = ∑
d

(
xxxk

d

)∗
⊙
(

xxxk
d

)
+ zzzk, (2.36)

zzzk = ∑
∀d1,d2
d1 ̸=d2

(xxxk
d1
)∗⊙ (xxxk

d2
) (2.37)
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Using (2.33) and (2.36), sssmh becomes:

sssmh = ∑
k

∑
d

sssk
d + zzzmh, (2.38)

zzzmh = ∑
k

zzzk + zzz1, (2.39)

where sssk
d =

(
xxxk

d

)∗⊙ (xxxk
d

)
, zzzmh = [zmh[0], . . . ,zmh[N −1]]T . Using (2.26), sssk

d = [sk
d[0], . . . ,s

k
d[N −

1]]T becomes:

sk
d[n] = ∑

m
γ

k
m,d exp( jwk

hmn), (2.40)

Inserting (2.40) into (2.38), smh gives:

smh[n] = ∑
k

∑
m

exp( jwk
hmn)∑

d
γ

k
m,d + zmh[n]

= ∑
k

∑
m

γ
k
m exp( jwk

hmn)+ zmh[n], (2.41)

where γk
m = ∑d γk

m,d . Fourier transform of smh gives:

Smh(w) = ∑
k

∑
m

γ
k
mδ (w−mwk

h)+Zmh(w), (2.42)

where Zmh is the Fourier transform of zmh. Matrix notation of (2.41) is:

sssmh = EEEkaaak + zzzmh, (2.43)

where EEEk ∈ CN×M is harmonic components, aaak ∈ CN the complex amplitude, are:

[EEEk]nm = exp
(

jwk
hmn

)
, aaak = [γk

1 , . . . ,γ
k
M]T ,

where n∈ [0, . . . ,N−1], m∈ [1, . . . ,M]. Thus it has been theoretically shown for multi-harmonics
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Figure 2.4. FFT over absolute of OOK signal which is an overt signal with patterns similar to
emanation patterns with harmonics at multiples of the symbol rate. The signal has return-to-zero

(RZ) signaling and 500 Hz symbol rate.

use-case, the removal of artifacts, and extraction of harmonic structure, see (2.41) and (2.42).

2.2.7 Overt signals

Intentionally transmitted signals such as Bluetooth, cellular, and Wi-Fi signals are overt

signals xo. These are included in the signal model in (2.7) to discuss the impact of overt on pitch

estimation. Overt signal that undergoes channel and clock artifacts is expanded using (2.11),

(2.14):

yo[n] = exp( jβ [n]) (xo ⃝∗ h) [n]. (2.44)

Combining yyyo=[yo[0], . . . ,yo[N−1]]T with received emanations yyyk and thermal noise wwwmh (2.7),

the received IQ yyy is:

yyy =
K

∑
k=1

yyyk + yyyo +www. (2.45)

Applying preprocessing on receive IQ yyy following (2.32):

ssso = yyy∗⊙ yyy = sssmh + zzzo, (2.46)
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where sssmh is the preprocessing applied to the received signal from multiple emanation sources

from (2.32), zzzo containing additional terms is:

zzzo = 2Re{yyy∗o ⊙www}+2∑
k
Re{yyy∗k ⊙ yyyo}+ yyy∗o ⊙ yyyo. (2.47)

The term yyy∗o⊙www represents cross-correlation between overt and thermal noise and yyy∗k ⊙yyyo between

emanation source and overt, yyy∗o ⊙ yyyo auto-correlation of overt. The first term is uncorrelated and

does not result in a harmonic pattern. The second and third terms result in a harmonic pattern

only if the overt signal has a harmonic pattern.

An On-Off-Keying (OOK) modulation signal is an example of an overt signal that could

be confused with an emanation, the harmonics in the OOK signal are in Fig. 2.4. In this

illustration, the OOK modulated signal is synthetically generated over random information bits,

preprocessing, and FFT applied. OOK is a binary amplitude shift keying modulation type [32,

Eq. (4.9)], see below:

x(t) = b(u(t +T )−u(t)) , b ∈ {0,1}, (2.48)

where u is the unit impulse function, T duration of symbol, b is binary information bit. OOK is

not widely used in digital communication systems [32, pg. 175]. Thus it is shown overt signals

do not impact algorithm performance, except for corner cases as detailed.

2.2.8 Power spectral density estimation

The preprocessed signal has artifacts removed and harmonic structure retained. It is

necessary to reduce the signal variance of preprocessed signal and transform it into the frequency

domain for peak finding. This is achieved using the Welch method [41] discussed in this section.

Dominant peaks are identified in the PSD of so[n]. The frequency and SNR of the dominant

peaks are used to estimate the pitch in Sec. 2.2.10. Large signal variance results in picking false

peaks and missing true peaks. This impacts the performance of pitch estimation. The Welch

method is used to estimate the PSD to reduce the signal variance. The description of this method
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in this subsection closely follows [42, pg. 730]. It involves splitting the time series into smaller

overlapping segments, that are uncorrelated, and their modified periodograms are averaged to

reduce variance.

The direct current component at zero frequency could leak due to windowing and obscure

the low-frequency components and therefore the mean is subtracted as follows:

s̄o[n] = so[n]−
1
N

N−1

∑
n=0

s[n], (2.49)

Further, s̄o[n] of length N is broken into smaller overlapping segments si[n] of length L, where

i ∈ [0,Ns −1], the number of segments Ns = ⌊ N
Lo
⌋ [42, Eq. (10.67)]:

si[n] = s̄o[(i−w)Lo +n]v[n],n ∈ [0,L−1], (2.50)

and overlap length is L−Lo samples, v[n] is the Kaiser window of length L [42, Eq. (7.59)]:

v[n] =
Io

(
β

√
1− ( 2n

L−1 −1)2
)

Io(β )
, (2.51)

where Io zeroth-order modified Bessel function of the first kind parameterized by β . The modified

periodogram Pi(wl) is for each segment at frequencies, wl =
2πl
L , l ∈ [0,L−1]:

Pi(wl) =
1

LV

∣∣∣∣∣L−1

∑
n=0

si[n]exp( jwln)

∣∣∣∣∣
2

, (2.52)

V =
1
L ∑

l
|v[l]|2 . (2.53)

Averaging the periodograms Pi(wl) gives the PSD estimate:

P(wl) =
1
Ns

Ns

∑
i=1

Pi(wl). (2.54)
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Further, the variance is shown to reduce by a factor of Ns [42, Eq. (10.75)]:

Var(P(wl)) =
1
Ns

Var(Ps(wl)) (2.55)

where Ps(wl) is the PSD of so[n] without periodogram averaging. The PSD estimated in (2.54),

is used as input by the subsequent peak finding block.

For fixed-length IQ samples, there is a tradeoff between frequency resolution and signal

variance. The frequency resolution, which is equal to the main lobe width of the Kaiser window

is wres =

(√
1+ β

π

2
)

2π

L [43]. Consider adjacent peaks that are part of harmonic series as

(m+1)wh and mwh for ∀m, their separation is wh. To resolve two adjacent peaks, the frequency

separation should be greater than the frequency resolution wres:

wh ≥ wres =

√1+
(

β

π

)2
 2π

L
. (2.56)

Thus the window length L restricts the pitch frequency wh that can be detected. Periodogram

averaging increases frequency resolution wres by a factor N
L . To detect pitch frequency less

than wres, a modified periodogram (2.52) without averaging, is computed on smh at frequencies

wn =
2πn
N , n ∈ [0,N −1]. Inserting smh from (2.41) into (2.46), and computing Welch based PSD

that includes periodogram averaging:

P(wl) = ∑
k

∑
m

η
k
mδ (wl −mwk

h)+Pz(wl), (2.57)

where Pz(wl) represents terms not containing harmonics, ηk
m is the power of the harmonic peaks

as follows:

η
k
m =

∣∣∣γk
m

∣∣∣2 +2
∣∣∣Zmh(mwk

h)
∣∣∣+2

∣∣∣Zo(mwk
h)
∣∣∣ (2.58)

where Zmh(w), Zo(w) are the Fourier transforms of zmh[n] from (2.43) and zo[n] from (2.47).

35



Figure 2.5. Peak detection flow chart. Input to the peak detection block is the PSD of the
preprocessed signal. It outputs a list of dominant peaks with frequency and SNR values to the

subsequent pitch estimation block.

2.2.9 Peak finding

This section describes the identification of peaks in the PSD of the preprocessed signal.

The peak detection flowchart is in Fig. 2.5. Peak detection is extensively used in biomedical

signal processing [44, 45]. Peaks are commonly identified by searching local maxima whose

SNR exceeds a threshold. Biomedical signal peaks have specific patterns that are utilized to

estimate the noise floor and SNR accurately [45]. A robust percentile-based approach is used to

estimate the noise floor and threshold [44, 45, 46], which does not assume a specific model for

signal peaks.

The frequency and SNR of the detected peaks are passed onto the subsequent pitch

estimation block. The peaks with SNR exceeding a given threshold are picked. They are pruned

further using the prominence metric. The noise floor is the median of the signal [47]. To handle

non-flat noise floor, the spectrum is split into N f narrow frequency slices of length L f = L/N f ,

where L number of samples in PSD. The PSD in dB of ith frequency slice is:

Pi
dB(wl) = PdB(w(i−1)L f+l), l ∈ [0,L f −1], (2.59)

where PdB(wl) = 10log10 P(wl). The noise floor of ith slice NFi is the median of Pi
dB(wl). The
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threshold is calculated as twice the estimated standard deviation σ of signal power around the

mean. Assuming a Gaussian distribution for the noise, 68% of data is contained within σ around

the mean. The estimated standard deviation for the ith frequency slice is calculated as follows:

σi =
PCT(Pi

dB,84%)−PCT(Pi
dB,16%)

2
, (2.60)

where PCT is the percentile function. There could be parts of the spectrum with stronger

interferences and overt signals. A median is taken for estimated standard deviations, across

frequency slices:

σt = PCT([σ1, . . . ,σN f ],50%). (2.61)

The presence of overt signals and interferences would bias the noise floor and standard deviation

calculation. Preprocessing removes the effect of overt signals occupying large frequency bands

and thus aids in an accurate estimate.

Points of local maxima are identified at frequencies wp and their SNR is computed as:

SNR(wp) = PdB(wp)−NFi, (2.62)

where i is the frequency slice containing wp. These peaks at wp are trimmed based on SNR

exceeding the threshold as SNR(wp)> 2nσ σt , where nσ is a hyper-parameter chosen empirically.

Peaks filtered by the SNR threshold might have false peaks close to a true peak. Explicitly

specifying a distance separation is not robust for detecting emanations as the pitch frequency

could vary across frequencies. The prominence metric is a parameterless minimum distance

separation to filter false peaks close to a true peak. This metric is motivated by topographical

prominence in geology [48]. The peak prominence is its height relative to the lowest contour

line:

Prominence(wp) = PdB(wp)−PdB(wprom) (2.63)

37



where wprom is calculated as:

wprom = argmax
wm

{PdB(wm) : PdB(wm)≤ PdB(wp)}, (2.64)

and w belongs to a set of points of local minima:

wm ∈ {w : PdB(w−wl)≥ PdB(w)≤ PdB(w+wl)} . (2.65)

This metric has been used in the fields of biomedical [49] and speech signal processing [50].

Due to discrete sampling instants not coinciding with the true peaks, there is an error

in the frequency wp and power PdB(wp) estimates of the identified peaks. This error in each

peak δwp is bound by
∣∣δwp

∣∣≤ wres
2 , where wres is the frequency resolution, see (2.56). Parabolic

interpolation [51] is used to get a better estimate of frequency and power. For a peak at wp, the

points at wp−1, wp and wp+1 are fitted to a parabola in the coordinate system centered at (wp,0):

PdB(w) = a(w−wp)
2 +b, (2.66)

where w is the frequency, wp peak frequency in the new coordinate system. The estimated peak

frequency wp is [51]:

wp =
π

L

(
PdB
(−2π

L

)
−PdB

(2π

L

)
PdB
(−2π

L

)
+PdB

(2π

L

)
−2PdB(0)

)
, (2.67)

where −2π

L , 0, 2π

L are the frequency of samples interpolated in the new coordinate system. The

power at wp is:

PdB(wp) = PdB (0)−
1
4

(
PdB

(
−2π

L

)
−PdB

(
2π

L

))
. (2.68)
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Figure 2.6. Pitch estimation block. Input: list of peak frequencies and SNR. Output: provides
pitch frequencies, corresponding multiples, and SNR.

2.2.10 Pitch Estimation

The frequency and SNR of dominant peaks are used to find the pitch frequency. There

could be one or more harmonic series. The intention is to detect each of them and estimate the

corresponding pitch. The pitch estimation procedure in [20] is improved upon to detect multiple

harmonic series, for the wireless signals in this work. The flowchart for pitch estimation is in

Fig. 2.6.

The measured multiples are the peaks wp identified in the PSD of preprocessed IQ in

section 2.2.9. PSD is assumed to contain peaks at harmonics that are integral multiple of the pitch

at wk
h. These harmonics are referred to as predicted multiples. The set of measured multiples

M = wp : ∀p are assumed to include K series of harmonics from K source of emanations:

M = F1
⋃

F2
⋃

. . .
⋃

FK
⋃

Fp, (2.69)

where Fk = mwk
h : m ∈ [1, . . . ,M] is the set of harmonics for kth source, Fp is the set of false peaks

due to noise, interferences, spectral leakage, etc.
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An iterative process estimate pitch wk
h of kth emanation source as:

wk
h = argmin

w
L (w),w ∈ Sw. (2.70)

where w is the frequency, Sw the frequency search space. The loss function L (w) considers

the following factors: higher loss for a larger difference in frequency between predicted and

measured multiple, higher loss for lower SNR valued measured multiple. A measured multiple is

considered part of the harmonic series if within a threshold percentage error pt of the predicted

multiple:

Fk = {wp :
∣∣∣wp −mwk

h

∣∣∣≤ pt
100

wk
h}. (2.71)

Set of measured multiples is updated as M ≡ M −Fk ≡ {w ∈ M : w /∈ Fk}. Pitch estimation

for a new harmonic series wk+1
h , is thus iteratively attempted on the updated set M .

The list of multiples Fk is removed from M and pitch estimation of wk+1
h is again

attempted on the set of peaks M −Fk ≡ {w ∈ M : w /∈ Fk}. This process is recursive until the

pitch corresponding to each of the K sources is estimated.

The loss function is calculated as follows:

L (w) = Lpm(w)+αwLmp(w), (2.72)

where Lpm is the cumulative error in matching predicted to measured multiples, Lmp measured to

predicted multiples, αw weightage given to Lmp.

The loss Lpm is computed iterating over predicted multiples penalizing the mismatch to

its closest measured multiple:

Lpm(w) =
N f

∑
n=1

∣∣nw−wpn

∣∣
(nw)q1

(1+q2(Apn)
q3) , (2.73)

where q1, q2, q3 are hyper-parameters chosen empirically, Apn is SNR of peak wpn , N f =
max(M )

w .
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The index of measured multiple pn, closest to a predicted multiple at nw is:

pn = argmin
p

∣∣nw−wp
∣∣ . (2.74)

Since iteration is over predicted multiples, there is no penalty for unaccounted measured

multiples M −Fk ≡ Fk+1
⋃
. . .
⋃

Fp in loss function Lpm. These are instead considered in Lmp.

The unaccounted measured multiples are due to the presence of multiple sources of emanations

and false peaks. Similarly Lmp does not penalize for unaccounted predicted multiples. The

unaccounted predicted multiples occur due to the low SNR of corresponding measured multiples.

These measured multiples are not picked in the peak finding block described in Sec. 2.2.9 due to

low SNR. The low SNR could be due to factors such as the nature of emanation, high noise, and

interferences. The loss functions are combined in (2.72) to estimate the pitch.

The loss function Lmp iterates over the measured multiple, penalizing the mismatch with

the closest predicted multiple:

Lmp(w) =
P

∑
p=1

∣∣npw−wp
∣∣

(wp)q1
(1+q2(Ap)

q3) , (2.75)

where Ap is SNR of peak wp, the index of predicted multiple np closest to the measured multiple

wp is:

np = argmin
n

∣∣nw−wp
∣∣ . (2.76)

Thus mathematical derivations have been provided demonstrating the performance of the algo-

rithm. In the following section, the emanation detection performance of the algorithm on real IQ

data is shown.

2.3 Experimental Setup

The signal hound SDR captures IQ samples from sources of emanation inside a shielded

room, see Fig. 2.7. An antenna is placed inside the room 2.5 meters from the source of emanation.
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Figure 2.7. Shielded room acting as a Faraday cage. Used to capture data in a controlled RF
environment, that blocks RF signals from external sources.

Table 2.1. Parameters used

Type Details
IQ Freq. captured: 0.1–1.1 GHz, Bandwidth and duration of

IQ capture: 200 MHz (max bandwidth of SDR) and 100
ms, Bandwidth and duration of input to the algorithm: 25
MHz and 100 ms.

PSD Ensemble duration: 1 ms, Percentage overlap: 75, Win-
dow: Kaiser with beta of 10.

Pitch esti-
mation

Error threshold: 10% for pitch freq. ¡ 500 Hz and 2%
otherwise, q1 = 0.5, q2 = 1, q3 = -1, αw = 10−3 for high
pitch, 100 for low pitch, nσ = 2.

To ensure there are no emanations due to the SDR, both SDR and SDR-controlling laptop are

outside the room. The room is sanitized by collecting IQ from an empty room with no emanations.

No emanations are detected when the IQ is passed through the emanation detection algorithm.

Sources of emanation of interest are placed inside a shielded room, with parameters of

IQ capture in Table. 2.1. The 200 MHz is the maximum bandwidth capture for the Signalhound

SDR and is split into 25 MHz slices that are processed. The choice of 25 MHz processing

bandwidth and 100 ms capture duration is a balance between computational load and algorithm
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Figure 2.8. Spectrogram of emanations from a laptop connected to a monitor via an HDMI to
USB-C adaptor.
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Figure 2.9. High pitch detection: PSD over IQ with and without preprocessing. It captures
emanations from a laptop connected to a monitor via an HDMI to USB-C adaptor, the center

frequency is 137.5 MHz. (a) A noise-like signal is observed without preprocessing. (c) A clear
harmonic pattern was observed with prominent peaks, after preprocessing. Subplots (b), and (d)

are zoomed versions of (a), and (c) and are provided for details.

performance: Fixing the capture duration, a larger processing bandwidth means more samples

and computation but restricts the highest pitch frequency of the harmonics that can be estimated.

Similarly, fixing processing bandwidth, and increasing the duration of capture increases SNR

gains obtained from periodogram averaging, see Sec. 2.2.8 but increases computational load.

2.4 Results

The focus is finding anomalous activities by learning and tracking emanation patterns.

Emanations identified from narrow frequency slices are grouped to build the emanation pattern.

A change in the pattern from baseline is a potential anomalous activity. The algorithm in Sec. 2.2

is verified on real IQ data in this section. The performance is shown first on a single frequency

slice for the case of a laptop connected to a monitor, highlighting algorithm performance in a

step-by-step manner. This is followed by learning emanation patterns across 1 GHz bandwidth

for a laptop and a desktop connected to a monitor and for IQ collected from cases emulating

anomalous activity.

An emanation corresponds to a harmonic series with a pitch at f1. There could be
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Figure 2.10. Caption same as Fig. 2.9 but for low pitch detection.

multiple emanations corresponding to multiple harmonic series with pitch at f1, f2, etc. Physical

frequency f (2.6) is more intuitive and used in illustrations, compared to the frequency in radians

in Sec. 2.2.

The algorithm is demonstrated step-by-step for a laptop connected to a monitor via an

adaptor USB-C to HDMI. The spectrogram is in Fig. 2.8. Mildly visible periodic lines are seen

in the spectrogram, across both time and frequency axes. It is interesting to detect the periodicity

of these signatures and those not visible in the spectrogram. The center frequency used in the

spectrogram and estimated pitch plots is the actual IQ capture frequency. All other plots use a

baseband frequency where the center frequency is zero, for ease of illustration.

The PSD with and without preprocessing is presented. This illustrates the effect of

preprocessing in removing artifacts. This is done for both low and high-pitch detection. Esti-

mation of pitch frequencies is done separately for low and high pitch frequencies. This is to

accommodate the tradeoff between frequency resolution and signal variance, see Sec. 2.2. In

high pitch detection, the PSD of the raw IQ is in Fig. 2.9a with no visible signatures. In Sec.

2.2.5, preprocessing is shown to deal with artifacts. PSD on preprocessed signal is in Fig. 2.9c.

Notice the peaks with harmonic patterns post preprocessing, similar to the form in (2.42). There

are one or more harmonic series in the PSD which can be estimated.
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Figure 2.11. High pitch detection: Identified peaks are overlayed on PSD on the left side of the
diagram. The pitches estimated, and peaks identified as belonging to the harmonics are on the
right side. Use-case: IQ from a laptop connected to a monitor via an HDMI to USB-C adaptor,
the center frequency is 137.5 MHz. (a) Peaks identified. (c) Harmonics of estimated pitches.

Estimated pitch frequencies are 236 kHz and 365 kHz. Subplots (b) and (d) are zoomed versions
of (a), and (c) and are provided for details.

Similarly, for low pitch detection, PSD with and without preprocessing is in Fig. 2.10a

and 2.10c. Notice the larger signal variance in the PSD, compared to the PSD for high pitch

detection in Fig. 2.9a, 2.9c. Detection of low-frequency pitch necessitates lower-frequency

resolution. Therefore no periodogram averaging is done in computing PSD which results in high

signal variance.

In the PSD, peaks are detected using the algorithm in Sec. 2.2.9, the challenge is to detect

peaks in the presence of noise. This is done by finding local maxima in the PSD whose SNR

exceeds a threshold, these are calculated from PSD using (2.62) and (2.61). Further prominence

as a distance-based metric removes false peaks. Peaks thus identified are shown in Fig. 2.11a for

high pitch, and in Fig. 2.12a for low pitch.

The detected peak frequency and SNR are fed to the subsequent pitch estimation block in

Sec. 2.2.10. The loss function is computed for every candidate pitch frequency from frequency

search space, see (2.73), (2.75) and (2.72). Pitch is estimated as the frequency where the loss

function is minimum. Harmonics of the estimated pitch are estimated using (2.71). The pitch
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Figure 2.12. Caption same as Fig. 2.11 but for low pitch detection.
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Figure 2.13. PSD of preprocessed IQ, highlighting the impact of noise on peaks. Thermal noise
is synthetically added at specified SNR levels to IQ from emanations of a laptop connected to a

Monitor. Emanations are detected up to SNR as low as −14 dB.

is valid only if at least 5 harmonics are identified using (2.71). The pitches and corresponding

harmonics for high pitch detection are in Fig. 2.11c and for low pitch detection in Fig. 2.12c. The

IQ capture from 125 to 150 MHz contains pitch at frequencies 60 Hz, 236 kHz, and 365 kHz.

The algorithm is stress tested by synthetically adding AWGN noise ws at various SNRs,

to received signal y:

ys = y+ws. (2.77)

The SNR is defined as,

SNR = 10log10

(
||y||2

||ws||2

)
, (2.78)
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(a) Laptop connected to a Monitor.
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Figure 2.14. Emanation patterns for (a) a laptop and (b) a desktop connected to a monitor via an
HDMI to USB-C adaptor. Emanations detected in each of the 25 MHz slices of IQ data are

plotted. The desktop has CPU-intensive processes running, resulting in more emanations with
higher SNR spread across wider capture frequencies, compared to a laptop.

200 400 600 800 1000
105

106

Pi
tc

h 
fre

qu
en

cy
 (H

z)

(a) Laptop idle state.

200 400 600 800 1000
105

106

(b) Laptop connected to a damaged mouse.

200 400 600 800 1000
105

106

0

5

10

15

SN
R 

(d
B)

(c) Laptop connected to a damaged

keyboard.
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(d) Laptop idle state.
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(f) Laptop to Samsung pen drive, active data

transfer.

Figure 2.15. Use case demonstrating detection of anomalous activity. Emulating wear and tear
of electronics: emanation pattern of Laptop (a) in idle state, (b) connected to a damaged mouse,

(c) connected to a damaged keyboard. Emulating illegal copying of secure data: emanation
pattern of Laptop (d) in idle state, (e) connected to SD card with active data transfer, (f)

connected to pen drive with active data transfer. Emanations patterns in (b), and (c) differ from
baseline (a), similarly for (e), and (f) over (d), indicating detection of anomalous activity.

where ||y||2 is computed empirically as the power of y:

||y||2 = 1
N ∑

i

(
y2

I [i]+ y2
Q[i]
)
, (2.79)

where yI and yQ are the I and Q of the complex receive sample y as follows: y = yI + jyQ. The
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AWGN noise ws is a complex Gaussian distribution [52, A.1.3]: ws ∼ C N (0,σws), where

variance σws is:

σws = ||y||210−
SNR
10 . (2.80)

wI , wQ are sampled from N(0, σws
2 ). Synthetic AWGN noise is added to IQ data of emanations of

a laptop connected to a monitor. The PSD over preprocessed IQ is shown in Fig. 2.13, for various

levels of SNR. The algorithm detects the fundamental harmonic series at 236 kHz until around

−14 dB SNR. This highlights the robustness of the algorithm. For detection of the fundamental

frequency at SNRs below −10 dB, q1 = 0.9 is used compared to default in Table 2.1.

Further emanation patterns are presented for a laptop, and a desktop connected to a

monitor, see Fig. 2.14a and 2.14b. The x-axis represents the center frequency at which IQ

samples are captured, y-axis represents the pitch frequency of detected emanations. The laptop

is in an idle state, desktop has CPU CPU-intensive processes running. This causes crowded

emanations in the plot with stronger SNR, compared to the emanation pattern of a laptop. The

wideband pitch at 60 Hz corresponds to the leakage from the monitor with a 60 Hz refresh rate.

Detection of anomalous activity is illustrated using two use cases as described below.

Wear and tear of the mouse and keyboard are emulated by exposing the copper wire by removing

cable shielding in a small area. IQ data is collected from the damaged mouse and keyboard that

are actively used. Emanation patterns detected on the data are in Fig. 2.15. In the baseline of

an idle laptop only, the emanation pattern has pitches detected more in the lower IQ capture

frequencies. For damaged peripherals, the plot has more emanations at higher frequency regions

compared to the baseline, indicating potential anomalous activity.

For the second use case, IQ data is collected from an SD card and a pendrive with active

data transfer with a laptop. The emanation patterns detected are in the bottom row of Fig. 2.15.

Notice more number of emanations detected at higher IQ capture frequencies when there is

active data transfer to external storage devices compared to an idle laptop, indicating anomalous

activity. This is the first effort towards a generic HW agnostic solution in detecting anomalous
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activity using emanations. Therefore the focus is on detecting emanations and establishing that

emanation patterns can be used to detect anomalous activity. The emanation pattern plots in Fig.

2.15 are a proof of concept demonstrating this.

This work is the first effort toward using emanations in an HW-agnostic manner to detect

anomalous activity. The efforts taken in this paper make assumptions and have limitations

that are stated as follows. Theoretically, it has been shown that the algorithm can deal with

channel and clock artifacts, interferences, and thermal noise. Practically this has been shown via

simulations only for varying thermal noise levels. Future work is to attempt various channel and

clock artifacts via simulations. Also, careful hyperparameter tuning was needed to estimate the

pitch. This hand-crafting approach could be replaced by a more robust algorithm. Deep learning

approaches as applied to audio pitch estimation could be explored. Also, there are limitations in

multi-pitch estimation, currently more than a few pitches cannot be estimated. This could be

improved by using a longer duration emanation capture. Concerning data collection and HW

experiments, we could attempt data collection from a wider set of HWs and also do repeatable

captures. Further, emanation needs to be studied concerning different software activities on a

HW. Also, intentional clock artifacts could be introduced in the receive SDR by having clock

offset and performance tested. Further, data collection in an RF environment outside the shielded

room needs to be studied. Further, overt signals could be introduced and algorithm performance

checked in their presence practically.

2.5 Conclusion

A profiling-free HW agnostic technique is presented to detect RF emanations. Harmonics

from leakages of clock signals is identified as a generic signature symptomatic of emanations.

A model for emanations as harmonics modulated by random frequency shifts is used. The

important preprocessing helps unmodulate the harmonics, remove HW artifacts, and retain

the harmonic structure. Thorough mathematical derivations highlight the performance of the
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algorithm theoretically. Derivations are shown for single-harmonic, and multi-harmonic cases

with intentionally transmitted signals.

Algorithm performance is shown on IQ data collected in a shielded room. Emanations

detected across the 1 GHz bandwidth are shown as emanation pattern plots of detected pitch

frequencies vs IQ capture frequency. Emanation patterns detected the anomalous activity of

damaged electronic peripherals and illegal data transfer. Damaged electronic peripherals are

emulated by exposing cables of a mouse and keyboard, and data transfer is emulated by active

data transfer between an SD card and a pen drive with a laptop. Emanation patterns for both use

cases showed different emanation patterns compared to the baseline of an idle laptop. Thus we

have shown HW-agnostic anomalous activity detection using emanations.

2.6 Ackowledgements

The text of this chapter is in the full reprint of the material as it may appear in V.

Sathyanarayanan, P. Gerstoft, ”Anomalous activity detection using RF emanations”, Submitted

to IEEE transactions on Electromagnetic compatibility, 2024. The dissertation author was the

primary researcher and author of this chapter. The co-authors listed in these publications directed

and supervised the research.

50



2.7 References
[1] B. Yilmaz, E. Ugurlu, and M. Prvulovic, “Detecting Cellphone Camera Status at Distance

by Exploiting Electromagnetic Emanations,” in IEEE Mil. Commun. Conf., pp. 1–6, 2019.

[2] R. Spreitzer, V. Moonsamy, and T. Korak, “Systematic Classification of Side-Channel
Attacks: A Case Study for Mobile Devices,” IEEE Commun. Surv. Tuts., vol. 20, no. 1,
pp. 465–488, 2018.

[3] NSA, “NACSIM 5000: TEMPEST Fundamentals..” https://cryptome.org/nacsim-5000.zip.
Partially declassified document.

[4] R. Spolaor, L. Abudahi, and V. Moonsamy, “No Free Charge Theorem: A Covert Channel
via USB Charging Cable on Mobile Devices,” in Appl. Crypto. Netw. Secur., pp. 83–102,
2017.

[5] S. Anand and N.Saxena, “Keyboard Emanations in Remote Voice Calls: Password Leakage
and Noise (Less) Masking Defenses,” in ACM Conf. Data Appl. Secur. Privacy, pp. 103–110,
2018.

[6] M. Guri, B. Zadov, and E. Atias, “LED-it-GO: Leaking (a lot of) data from air-gapped
computers via the (small) hard drive LED,” in Detect. Intrusions Malware Vulnerability
Assess., pp. 161–184, 2017.

[7] M. Dey, A. Nazari, and A. Zajic, “EMPROF: Memory Profiling Via EM-Emanation in IoT
and Hand-Held Devices,” in IEEE Int. Symp. Microarchit., pp. 881–893, 2018.

[8] A. Nazari, N. Sehatbakhsh, and M. Alam, “EDDIE: EM-based detection of deviations in
program execution,” in IEEE Int. Symp. Comput. Archit., pp. 333–346, 2017.

[9] M. Bari, M. Chowdhury, and B. Chatterjee, “Detection of Rogue Devices using Unintended
Near and Far-field Emanations with Spectral and Temporal Signatures,” in IEEE Int. Microw.
Symp., pp. 591–594, 2022.

[10] M. Bari, M. Chowdhury, and S. Sen, “Is broken cable breaking your security?,” in IEEE
Int. Symp. Circuits and Syst., pp. 1–5, 2023.

[11] J. Feng, T. Zhao, and S. Sarkar, “Fingerprinting IoT Devices Using Latent Physical Side-
Channels,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 7, no. 2, pp. 1–26,
2023.
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Chapter 3

RML22: Realistic Dataset Generation for
Wireless Modulation Classification

Application of Deep learning (DL) to modulation classification has shown significant

performance improvements. The focus has been model centric, where newer architectures are

attempted on benchmark dataset RADIOML.2016.10A (RML16). RML16 is a high impact

effort that laid the foundation for generating a synthetic dataset for applying DL models to

wireless problems. This encouraged development of newer architectures to RML16. We use a

data centric DL approach where focus moves from model architectures to data quality. RML16

has shortcomings such as errors and ad-hoc choices of parameters. We build upon RML16

and provide realistic and correct methodology of generating dataset. A new benchmark dataset

RML22 is generated. Going forward, we envision researchers to improve model quality on

RML22. We attempt to improve data quality by studying the impact of information sources.

Further, the choices of artifacts and signal model parameterization are analyzed carefully. The

Python source code used to generate RML22 is shared to enable researchers to further improve

dataset quality.

3.1 Introduction

Wireless spectrum awareness is essential in enabling optimal spectral usage and detecting

anomalous signals. Spectrum is a critical resource due to increasing number of devices and
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data rate requirements. Developing intelligence in devices enables optimal spectral usage and

thereby meet increasing spectral demands. It is also of interest for cellular carriers and defense

organizations to police the spectrum. This helps detect illegal and malicious spectrum usage,

thereby ensuring robust communication link for critical applications. Modulation classification

is an important cog of spectrum awareness. Traditional approaches to modulation classification

are broadly classified as likelihood based and feature based [1]. They typically work well for

only a small subset of modulation types, channel and hardware (HW) artifacts.

DL as a field grew due to significant improvements in big data [2], algorithms [3, 4],

computational capabilities [5] and open source software platforms [6, 7]. In the last few years,

researchers have borrowed tools from DL and applied them to the problem of modulation

classification, demonstrating tremendous potential for universal success across a wide range

of modulation types and wireless technologies. The focus, however, has been model centric.

Numerous architectures [8, 9, 10, 11, 12, 13] such as CNN, recurrent neural networks, gen-

erative adversarial networks and auto-encoders have been attempted on benchmark datasets

RADIOML.2016.10A (RML16) [8] and RADIOML.2018.01A (RML18) [10].

It is important that the model architecture and dataset quality improve hand-in-hand for

best deployment performance. We use a data centric [14, 15] approach where the focus moves

from modeling to data quality. Here, the models are fixed, and efforts are taken to improve data

quality. It is expected that the deployment performance improves with improved data quality.

In contrast to traditional estimation theoretic methods, DL models learn from data. Their

performance is as good as the data. A quality real dataset involves captures across a wide range

of channel conditions, and HW artifacts. Obtaining such a real dataset is expensive. Wireless is

a mature field and accurate signal and artifact models exist. We leverage upon this, to provide a

framework towards generating a synthetic dataset for modulation classification.

A high impact effort to successfully leverage accurate wireless models to generate

synthetic dataset is in [16], which laid the foundation for generating a synthetic dataset for

applying DL models to solve wireless problems. The benchmark datasets for modulation
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classification RML16 and RML18, are generated using this methodology. GNU radio [17]

Python libraries are used to simulate the datasets and RML16 simulation software is available in

[18]. In RML18, the methodology of RML16 is expanded to include more modulation types and

a wider set of channel conditions. In our work, we focus on RML16, since it is the main prior

work that has focused on providing a framework for generating synthetic dataset. The software

for RML18 is not available and therefore not included for analysis.

We build upon [18] and provide a realistic methodology of generating dataset. The errors

in RML16 are identified, corrected, and a new benchmark dataset is generated referred to as

RML22. Eventual goal is to train a model on a comprehensive synthetic dataset and deploy it

with excellent performance in the real world. We have taken a first step towards building such a

dataset in RML22. Future iteration is to compare and improve the performance of model trained

on RML22 and tested on real collect. The software used to generate RML22 is shared, for

researchers to build upon the code to further improve dataset quality. The mathematical details

behind each block in dataset generation is presented.

The impact of artifacts and information sources are studied. Performance impact of differ-

ent information sources are studied. The choices of artifacts and signal model parameterization

are analyzed carefully. The results provide guidelines on approaches to improving dataset quality.

It is intended that continuous improvement in quality leads to building a complete dataset, on

which models can be trained and deployed real time. The simulation of blocks used in dataset

generation is representative of a generic wireless system. The dataset generation methodology

can be extended to any wireless communications problem that can be posed as a data-driven

learning problem such as classification of technology [19], modality, modulation [8], modulation

and coding scheme [20], coarse signal-to-noise-ratio (SNR) estimation [21] and coarse center

frequency offset (CFO) estimation [22].

The major contributions of this paper are as follows:

• A benchmark dataset RML22 is provided, generated after addressing shortcomings of

57



Figure 3.1. Wireless system block diagram.

RML16. We showcase that model trained on RML22 outperforms RML16 by 23% when

tested on RML22.

• RML22 generation software is shared to enable further improve dataset quality.

• Impact of information sources is studied. DL model trained and tested on direct English

text outperforms that of randomly generated data by 12% due to DL model learning the

intrinsic structure of English language.

• A careful mathematical treatment is provided to help reduce errors in future progression of

dataset generation.

A quality dataset needs accurate models, realistic simulation and parameterization of

models. In Sec. 3.2, we present details of models used and simulation approach with appropriate

justifications. In Sec. 3.3, we present details on realistic parameterization of models used in

simulation along with simulation call flow. In Sec. 3.4, we demonstrate shortcomings in RML16

and solutions that are incorporated in our dataset RML22.

3.2 System model

We provide the details of signal model, HW and channel artifacts below in sections

3.2.2, 3.2.4. Most literature on DL applied to modulation classification do not investigate the

underlying mathematics for dataset generation and focus only on DL architecture. A careful

mathematical exposition helps reduce errors in future progression of dataset generation. Further,
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it helps non-wireless researchers using new DL architectures to modulation classification datasets.

The shortcomings in RML16 dataset in Sec. 3.4 were identified through such effort.

A typical wireless system block diagram is in Fig. 3.1. An information source d is

modulated into a symbol space and shaped to generate a digital transmit sequence s. The transmit

(TX) HW transmits the digital sequence into a channel to a receive (RX) HW, which outputs the

raw received IQ samples y. The intention is to learn the underlying signature of each modulation

type and correctly classify it. The TX signal s undergoes HW and channel imperfections. In this

work, blind modulation classification [23] is performed where no prior information about the

signal or system is assumed.

The end goal is to generate a complete dataset through which models can be trained

and deployed to process over the air (OTA) signals. OTA signals could belong to modalities

such as single or multi-carrier, single input single output (SISO) or multiple input multiple

output (MIMO), spread spectrum, etc. This goal entails considering all modalities with accurate

models for channel and HW artifacts. The first step towards building a complete dataset is

solving the simpler case of single carrier and SISO correctly. Blind modulation classification

even for this simpler case is a hard problem. Channel modeling is very hard and there is a

trade-off between accuracy and complexity. In this work, a variation of sum of sinusoids is

used for the channel model [24, 25, 26]. Sophisticated and more accurate channel models such

as QUADRIGA [27] and NYUSIM [28] exist. We see models as an approximation of a real

system that are computationally tractable. The final goal is to get rid of models and learn more

accurate representations directly from real data. Simpler choice of channel models also help

reproducibility and ease of adoption of dataset generation methodology by other researchers.

3.2.1 Wireless signal representation

Wireless signals are transmitted on orthogonal carrier waves, whose magnitudes are

referred to as In phase and Quadrature phase (IQ). An IQ sample s is represented as real numbers
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Table 3.1. Abbreviations used and their expansions.

Abbreviation Expansion Abbreviation Expansion
ADC Analog to Digital Converter AWGN Additive White Gaussian Noise
CFO Center Frequency Offset CNN Convolutional Neural Network
DAC Digital to Analog Converter DL Deep Learning
ETU Extended Typical Urban model IQ In phase and Quadrature phase
LO Local Oscillator LOS Line Of Sight
LTE Long Term Evolution OTA Over the air
PA Power Amplifier PLL Phase Locked Loop
RRC Root Raised Cosine RX Receive
ReLU Rectified Linear Unit activation SNR Signal to Noise Ratio
SRO Sample Rate Offset sps Samples Per Symbol
TX Transmit USRP Universal Software Radio Peripheral
XO Crystal Oscillator BPSK Binary Phase Shift Keying
QPSK Quadrature Phase Shift Keying 8PSK 8 Phase Shift Keying
16QAM 16 Quadrature and Amplitude Modulation 64QAM 64 Quadrature and Amplitude Modulation
PAM4 Pulse Amplitude Modulation 4 WBFM Wide Band Frequency Modulation
CPFSK Continuous Phase Frequency Shift Keying GFSK Gaussian Frequency Shift Keying
AM-DSB Amplitude Modulation Dual Side Band

sI and sQ.

s[n] = sI[n]+ jsQ[n], sp[n] = ℜ(s[n]e j2π fcnTs), (3.1)

where s is baseband signal, sp passband signal with center frequency fc, sI and sQ are in phase

and quadrature phase parts of an IQ sample, Ts is the sampling interval. A sequence of received

IQ samples of specified length is passed as input to a DL model. This sequence is referred to as

a frame.

3.2.2 Modulation

The modulation types used are BPSK, QPSK, 8PSK, 16QAM, 64QAM, PAM4, WBFM,

CPFSK, AM-DSB, and GFSK. These are types found in popular wireless applications and

consistent with prior research [8, 29, 30]. WBFM and AM-DSB are analog modulation types

whose information source is analog, the rest are digital. The equations governing the simulation

of modulation and pulse shaping are presented below.

Modulation alters one of three characteristics of a carrier signal, namely amplitude, fre-

quency, or phase to embed an information source. The analog signal is sampled and represented
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digitally such as s[n] = s(t)|t=nTs , n = [1....N].

s[n] = a[n]cos(2π f [n]nTs +θ [n]) , (3.2)

where a is the amplitude, f frequency, θ phase of the signal, s modulated symbol, n sample index.

One or more of the three characteristics of an electromagnetic wave a, f ,θ are varied to generate

a requisite signal. Fading effects in wireless communication occur at passband frequencies.

However, simulation at the passband is computationally inefficient since center frequency is

significantly higher than signal bandwidth and sampling instants shorter. Therefore, a baseband

approach is used that is mathematically equivalent and computationally efficient. The equations

provided in this work follow digital baseband representation consistent with the simulation.

The equations illustrating the modulation types used are in (3.3) to (3.5). Frequency

modulations CPFSK, GFSK, and WBFM [31] are:

sCPFSK[n] = exp( jKmπd[n]) , (3.3a)

sGFSK[n] = exp

(
jKmπ ∑

k
d[k]g[n− k]

)
(3.3b)

sWBFM[n] = exp
(

j2π
fd

fout
d̃[n]

)
, (3.3c)

gGFSK[n] =
1√

2πσ2
exp

[
−
(

nTs√
2σ

)2
]
, σ =

√
ln2

2παg
(3.3d)

where d ∈ ±1 is the digital information source, d̃ ∈ [−1,+1] is the analog information source,

s represent modulated symbols, Km is the modulation index, g(.) is the Gaussian filter, αg is

the roll-off factor for Gaussian filter used in GFSK, fd is the maximum frequency deviation,

fout is the analog modulation sample rate. CPFSK is a frequency modulation technique with

continuity of phase during transition between symbols. GFSK is a frequency modulation type

with a Gaussian filter applied for pulse shaping. The two amplitude modulation types are PAM4
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and AM-DSB, see (3.4). The modulation order M is equal to 4 for PAM4.

sAMDSB[n] = d̃[n], d̃ ∈ [−1,+1] (3.4a)

sPAM[n] = dPAM[n], dPAM ∈ {1/M...M/M}, (3.4b)

The modulations BPSK, QPSK, 8PSK are types of M-PSK see (3.5a). The M-QAM modulation

can be thought of as amplitude modulation taking place in quadrature, see (3.5b). For more

details on M-PSK and M-QAM see [32, pg. 175].

sMPSK[n] = exp( j2π
i[n]−1

M
), i ∈ {1,2, ...M}, (3.5a)

sMQAM = AI[n]+ jAq[n], (3.5b)

AI,Aq ∈ [−(
√

M−1)d,−(
√

M−3)d, .....,+(
√

M−3)d,+(
√

M−1)d], (3.5c)

where M is the modulation order in M-PSK or M-QAM, AI and Aq are in-phase and quadrature

phase components, d is the signal distance. All modulation types are up-sampled using inter-

polation filters. A root-raised-cosine (RRC) pulse shaping filter (3.6) [32, pg. 140], is applied

via a convolution operation to PAM, PSK and QAM modulation types. RRC filter optimizes the

trade-off between maximal symbol rate and low inter-symbol-interference.

gRRC(t) =
1
Ts

sinc(t/Ts)
cos(παrt/Ts)

1− (2αrt/Ts)2 , (3.6)

where αr is the roll-off factor for RRC filter, sinc(t) is defined as sin(πt)/πt.

3.2.3 Transmit and receive HW architecture

A TX and RX HW based on a homodyne architecture [33, pg. 337] is illustrated in Fig.

3.2. The HW artifacts models presented in Sec. 3.2.4 follow this architecture. The digital IQ

stream is converted into an analog signal by the digital-to-analog converter (DAC). Further, it
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Figure 3.2. A homodyne architecture of the TX and RX HW. The HW model used follows the
architecture presented.

Figure 3.3. Dataset simulation block diagram for RML16 and RML22. Note that RML22
dataset follows the block diagram in the sequence presented for simulation. RML16 dataset does

not include the phase offset block. The sequence it follows is also different. All blocks in
RML16 has errors that are analyzed and corrected in Sec. 3.4.

is shifted from baseband to a carrier frequency, boosted by a power amplifier and transmitted

OTA via antennae. This signal undergoes channel effects also referred to as radio propagation

effects, before reaching the RX. At RX, the antenna senses the electromagnetic energy, converts

into an electric voltage. This electrical signal is amplified by a low-noise amplifier, shifted to

baseband from a higher center frequency. It is then converted into a digital IQ stream by the

analog-to-digital converter (ADC). A clock crystal is an important part of a wireless system. It

provides tone at requisite frequency via a phase-locked-loop (PLL) for the frequency shifting

operations in the TX and RX systems. It also provides reference frequencies for generating

sample timing to the ADC and DAC components.

3.2.4 Channel and HW artifacts

The problem of blind modulation classification is solved using DL techniques. To

simulate dataset for the DL approach, a simplified yet accurate model is presented. The received
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IQ signal y for a wireless signal affected by channel and HW effects is [34, pg. 16]:

y[n] = e j2π ferrnTs+θerr ∑
l

h[l]s[n− l −ζerr]+ z[n], (3.7)

where h is the channel impulse response, s is the modulated symbol up-sampled and pulse shaped

by an RRC filter, Ts sampling rate, ferr frequency error, θerr phase error, ζerr timing error, z

Additive White Gaussian Noise (AWGN). The y,s,h are the digital baseband equivalent terms.

The random variables ζerr,θerr, ferr,z,h represent the set of artifacts that is imposed upon

the clean transmit IQ stream, see block diagram in Fig. 3.3. Several HW artifacts that are not

considered here such as IQ imbalance, local oscillator (LO) leakage causing spur at DC, power

amplifier (PA) non-linearities etc. The model (3.7) is a simplified, yet accurate representation of

the artifacts considered.

Thermal Noise model

The thermal noise is modeled as follows in RML22.

SNR = 10log10
[
E(|s|2)/E(|z|2)

]
, (3.8a)

y[n] = s[n]+ z[n], (3.8b)

z[n] = zI[n]+ jzQ[n]∼ C N (0,σ2
z ),∀n, (3.8c)

zI[n],zQ[n]∼ N (0,σ2
z /2),∀n, (3.8d)

E(z(t)z∗(t + τ)) = δ (τ)σ2
z , E(zIzQ) = E(zI)E(zQ) (3.8e)

where z[n] is the nth sample of complex thermal noise, zI and zQ are the real and imaginary parts,

σz is the standard deviation of thermal noise.

Thermal noise z is modeled as zero mean AWGN, see (3.8c) and (3.8e), with the real and

imaginary parts independently zero-mean AWGN random process[35, p 29], see (3.8d). SNR is

calculated using (3.8a). The dominant source of thermal noise is assumed to be at the receiver,
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thus the additive assumption. In simulations, thermal noise z is assumed ergodic, and expectation

calculated averaging samples over time. Although thermal noise simulated in baseband is a

filtered and sampled version, the properties mentioned above are assumed to hold. The GNU

radio block simulating thermal noise is in [36].

Phase, Frequency and Timing error

The CFO and SRO in RML16 are negligible, see Sec. 3.4.1. A new model for simulating

clock effects is presented, following the homodyne architecture in Fig. 3.2. The errors in the

clock in TX and RX HW manifest as CFO, SRO and phase offset. The cumulative CFO effects

are:

f T X

LO
[n] = ( f̂XO +∆ f T X

XO
[n])LLO, (3.9a)

f RX

LO
[n] = ( f̂XO +∆ f RX

XO
[n])LLO, (3.9b)

f XO

err
[n] = ∆ f T X

XO
[n]−∆ f RX

XO
[n], (3.9c)

f LO

err
[n] = f T X

LO
[n]− f RX

LO
[n] = f XO

err
[n]LLO, (3.9d)

s′[n] = s[n]e j2π f LO

err
nTs, (3.9e)

where ∆ f T X

XO
[n],∆ f RX

XO
[n] are crystal oscillator (XO) errors in TX and RX, f̂XO is the needed reference

tone frequency from XO, LLO is the scaling factor to shift tone from XO frequency to center

frequency, f T X

LO
and f RX

LO
are the LO signals in TX and RX, f XO

err
and f LO

err
are the XO and LO frequency

errors in combined TX-RX system, s is the clean baseband signal, s′ is the baseband signal with

CFO.

The XO crystal of an RF system is prone to errors that manifest as CFO and SRO.

Frequency source from XO feed the LO via a phase locked loop (PLL). This in turn is used for

providing center frequencies for up-conversion and down-conversion in TX and RX systems,

respectively. XO frequency errors cause a mismatch in the LO frequencies of TX and RX that

manifests as CFO ferr, see (3.9) [37, pg. 360]. XO crystal is also used to generate accurate time
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ticks for the digital-to-analog-converter and analog-to-digital-converter via a timing PLL. XO

frequency errors cause a mismatch in the sampling instants of DAC and ADC in TX and RX

systems thereby causing SRO ζerr, see (3.11) [37, pg. 436]. XO is assumed the only common

source of errors for both CFO and SRO. In practice, the PLL leading into LO, DAC, ADC etc.,

also contribute to minor errors.

t̂ = 1/( f̂XOLt) = 1/ fCR, (3.10a)

tDAC =
1

( f̂XO+∆ f TX

XO
[n])Lt

, (3.10b)

tADC =
1

( f̂XO+∆ f RX

XO
[n])Lt

, (3.10c)

ζTX[n] = tDAC − t̂ ≈ ∆ f TX

XO
[n]Lt/ f 2

CR
, (3.11a)

ζRX[n] = tADC − t̂ ≈ ∆ f RX

XO
[n]Lt/ f 2

CR
, (3.11b)

ζerr[n] =
n

∑
i=1

(ζTX[i]−ζRX[i]) =
n

∑
i=1

f XO

err
[i]Lt

f 2
CR

, (3.11c)

where t̂ is the requisite time tick interval to DAC and ADC, fCR is the clock rate for DAC and

ADC (equal to the analog bandwidth), Lt is the scaling factor in timing PLL, tDAC and tADC are real

time tick intervals going to DAC and ADC, ζTX and ζRX are the SRO in TX and RX, ζerr is the

cumulative SRO in combined TX-RX system. The scaling factor Lt in timing PLL is assumed

the same for both DAC and ADC.

Phase changes occur due to factors such as frequency errors, Doppler, sampling errors,

distance traveled and non-synchronous TX and RX LO. Artifacts as ferr, ζerr, h(.) capture these
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phase changes, except non-synchronous TX and RX LO. This is captured by θerr:

xTX

LO
[n] = e j2π f TX

LO nTs+θ TX
err , (3.12a)

xRX

LO
[n] = e j2π f RX

LO nTs+θ
RX
err, (3.12b)

xTX

LO
(xRX

LO
)∗ = e j2π f LO

err nTs+(θ TX
err−θ

RX
err), (3.12c)

where xTX

LO
and xRX

LO
are the TX and RX LO signals, θ TX

err and θ RX

err are the phase errors in the TX and

RX respectively, θerr is the net phase error from the combined TX and RX systems. The TX and

RX LO signals used to upconvert and downconvert signals in TX and RX respectively. The net

effect of TX and RX LO after downconversion at RX is in (3.12c).

The methodology to simulate ferr, ζerr and θerr is in (3.13). CFO is a clipped Gaussian

process (3.13b). SRO is simulated via re-sampling through interpolation at time instants specified

by t ′ (3.13e). Phase error θerr is from a uniform distribution (3.13f).

fbias ∼U(− fmax, fmax), (3.13a)

f XO

err
[n]∼ N( fbias,nσ

2), | f XO

err
[n]| ≤ fmax (3.13b)

s′[n] = s[n]e j2π f XO

err [n]LLOnTs (3.13c)

T DAC

s [n] = nt̂, T ADC

s [n] = nt̂ +ζerr[n], (3.13d)

t ′[n] =
fCR

fs
T ADC

s [n] =
n
fs
+

1
fs fCR

n

∑
i=1

f XO

err
[i]Lt , (3.13e)

θerr ∼U(0,2π), s′[n] = s[n]e j2πθerr , (3.13f)

where fbias is the CFO at the start of frame, σ standard deviation per sample, fmax maximum

frequency error bound, T DAC

s and T ADC

s sampling instants, t ′ new sampling instant.
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Channel model

Channel effects are classified under small-scale and large-scale fading. Large-scale fading

effect is due to path losses as a function of distance, shadowing effects etc., and is considered

stationary in time scales of a frame duration. It thus manifests as reduction in signal power at

receiver, as captured by thermal noise model in Sec. 3.2.4. Small-scale fading occurs in the

distance scale of carrier wavelengths, that cause rapid changes in phase and amplitude of received

signal. The channel model considered here represents small-scale fading.

A wireless signal encounters numerous objects from TX to RX. The resultant signal at

the RX is the sum of multiple reflected, scattered signal copies with delay. The magnitude of

each multipath depends on path loss and material properties of reflector and scatters. The delay

depends on path length of the multipath. Modeling the effect along each path via ray tracing

needs complete knowledge of the channel, and not feasible. Instead, modeling via an input-output

relation is used [35, pg. 26], where y is the output signal, h channel impulse response, x input

signal. The passband is represented as:

yp(t) =
∫

hp(τ, t)xp(t − τ)dτ,

= ∑
i

ap(i, t)xp(t − τ(i, t)), (3.14a)

hp(λ , t) = ∑
i

ap(i, t)δ (λ − τ(i, t)), (3.14b)

and baseband represented as:

y[m] = ∑
l

h[l,m]x[m− l] (3.15a)

= ∑
l

x[m− l]∑
i

a[i,m]sinc[l − τ[i,m]

Ts
], (3.15b)

h[l,m] = ∑
i

ap[i,m]e− j2π fcτ[i,m]sinc[l − τ[i,m]

Ts
], (3.15c)
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where ap(i, t) is the passband magnitude response of ith path at time t, a[i,m] baseband magnitude

response of ith path at time mTs, τ(i, t) is the delay of ith path at time t, δ (.) is an impulse signal.

The channel hp(λ , t) is represented as a slow, time varying system with memory. Most

significant reflected and scattered paths are only considered and represented in the equation with

an index i. The channel is assumed to be underspread where the timescale of channel variations

is significantly longer than the delay spread of the channel. The continuous time passband

representation of the input output relation and channel impulse response is presented in (3.14).

The equivalent discrete baseband representation is in (3.15).

The radio propagation channel could be an office space, city downtown etc. To capture the

propagation effects, detailed knowledge of the objects in the signal path and large computational

resources are needed. An alternate approach is using statistical parametric model representing

the channel.

fX(x;σl) =
2x
σ2

l
exp
{
−x2

σ2
l

}
, (3.16a)

fX(x;K,σl)=
x

σ2
l

exp
{
−(x2 +K2)

σ2
l

}
I0

[
Kx
λ 2

]
, (3.16b)

R[l,n] = Em {h∗[l,m]h[l,m+n]} , (3.16c)

S[v] = ∑
l

∑
n

R[l,n]e− j2πvn, (3.16d)

SJakes[v] =
1

π fd

√
1− (v/ fd)

2
, |v| ≤ fd =

vmax

λ
, (3.16e)

where f is a probability distribution, x and σl are the magnitude and standard deviation of

the lth tap or path depending upon whether the channel taps h[l,m] or path magnitudes a[l,m]

are modeled, K referred as K-factor is ratio of energies in direct and reflected paths, I0 is the

zeroth order modified Bessel function of the first kind, R is the auto-correlation function of

channel impulse response, S is the Doppler spectrum, v Doppler frequency, fd maximum Doppler

frequency, vmax maximum relative speed between TX and RX, λ carrier frequency wavelength.
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Table 3.2. Parameters used in RML16 and RML22 dataset generation.

Description RML16 Values RML22 Values
Signal Samples per symbol = 8, Sample rate = 200 kHz Samples per symbol = 2, Sample rate = 30 kHz

Center frequency = 1 GHz, Clock rate = 100MHz
Modulation Roll-off factor = 0.35, CPFSK modulation index = 0.5,

GFSK BW time product = 0.3, GFSK sensitivity = 0.03,
WBFM max. freq. deviation = 75 kHz

Roll-off factor = 0.35, CPFSK modulation index = 0.5,
GFSK BW time product = 0.3, GFSK sensitivity = 1.57,
WBFM max. freq. deviation = 75 kHz

Dataset Num. frames per mod. per SNR = 1000, Frame length =
128, Frame duration = 0.64 ms

Num. frames per mod. per SNR = 2000, Frame length =
128, Frame duration = 4.5 ms

Fading Rician fading model,
Filter tap magnitudes = [0,−0.97,−5.23] dB,
Filter tap delays = [0, 4.5, 8.5] ns,
Num. of taps = 8, Max. freq. dev (Doppler) = 1 Hz,
Num. of sinusoids = 8, K-factor = 4

3GPP fading model ETU70,
Filter tap magnitudes = [−1, −1,−1,0,0,0,−3,−5,−7] dB,
Filter tap delays = [0, .05, .12, .2, .23, .5, 1.6, 2.3, 5] ns,
Num. of taps = 8, Max. freq. dev (Doppler) = 70 Hz,
Num. of sinusoids = 8

Clock effect LO and SRO max. freq. deviation: 500 Hz, 500 Hz
LO and SRO standard dev. per sample = 10−2, 10−2

XO, LO and SRO max. freq. dev.: 5 Hz, 500 Hz, 50 Hz
XO, LO and SRO std dev. per sample = 10−4, 10−2, 10−3

XO to LO scaling = 100, XO to clock rate scaling = 10
AWGN −20 to 20 dB in steps of 2 dB −20 to 20 dB in steps of 2 dB

In the statistical model, the magnitude of each path is assumed an aggregate of numerous

paths of similar delay. By central limit theorem, the real and imaginary components of the

magnitudes a(l, t) are zero-mean Gaussian. The amplitude of each path is thus a Rayleigh

distribution, see (3.16a). An alternate model used is the Rician distribution, see (3.16b). Due

to the independence between paths, the phase is uniformly [0, 2π] distributed. The channel tap

magnitudes are equivalently modeled as a Rayleigh or Rician distribution.

The time varying nature of the channel is modeled via a tap gain auto-correlation function,

see (3.16c). A measure of variance of channel in time for each tap l is conveniently captured

by auto-correlation function, upon using the wide-sense stationarity assumption. The tap gain

auto-correlation function is averaged across channel taps l and a Fourier transform in time is

taken to obtain the Doppler spectrum, see (3.16d). The Doppler spectrum indicates the amount

of spread in frequency due to time variation of the channel. Jakes model (3.16e) is commonly

used to simulate the Doppler spread due to time varying nature of the channel.

Channel effects are simulated using the power delay profile and maximum Doppler

frequency fd for a specific propagation environment [25, 26]. Power delay profile contains

average path gains and delays for a specified number of multipaths. User provides the maximum

relative speed v and then fd = v/λ , where λ is the center frequency wavelength.
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Figure 3.4. Call flow of RML22 dataset generation methodology. Software implementation of
dataset generation follows this call flow.

3.3 Dataset parameterization

In this section, RML22 dataset parameterization is detailed. The dataset generation

parameters for RML22 and RML16 are in Table 3.2, with call flow of dataset simulation in Fig.

3.4. A spectrum sensing system could sense signals of varying signal bandwidths and operate at

varying sample rate. Bandwidth is inversely proportional to symbol duration. Symbol duration is

chosen as that of long term evolution (LTE) symbol time of 66.67 µs [38], whose bandwidth

is 15 kHz. Sample rate is product of bandwidth and sps. In spectrum sensing applications,

computational load is a major challenge [39], due to the wide bandwidth sensed. Therefore,

samples per symbol (sps) greater than 2 may not be feasible, as used here. The choice of sps is

studied in detail in [40] that indicates minimal performance improvements with higher sps. The

sample rate for sps=2, is fs = 2/66.671×10−6 = 30 kHz. A study of impact of signal bandwidth

and sps is in Sec. 4.5. The choice of number of frames and frame length are extensively studied

[10], RML22 use the same as RML16. For SNR, performance values flatten around the points of

−20 and 20 dB [9]. Therefore, it is not useful to train on data beyond this range. The specific

SNR points in this range that are pertinent for training are studied in [41] for RML16. To simulate

a fading channel, the inputs should be the maximum Doppler frequency and power delay profile
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Table 3.3. Shortcomings in RML16 dataset.

Item Details
Clock effect CFO & SRO applied is negligible
Channel effect Static LOS channel simulated instead of Rician fading
SNR SNR is from −40 to 40 dB, instead of −20 to 20 dB
Order of artifacts Incorrect order of artifacts introduces wrong frequency shifts
Information source Analog modulation types WBFM and DSB-AM use incorrect information source
GFSK modulation Incorrect modulation index value used

path gains and delays. In this work, a 3rd generation partnership project (3GPP) channel model

LTE Extended Typical Urban model 70 (ETU70) [42] is used, this represents maximum 70 Hz

Doppler frequency. A study of impact of maximum Doppler frequency is in Sec. 4.5.

Frequency errors are generated for XO based on a homodyne architecture. It is scaled

accordingly for LO, ADC and DAC clocks. A clock rate of 100 MHz is chosen based upon

the maximum sampling rate of software defined radio USRP N310 [43]. Timing jitters due to

imperfect sample instants in DAC and ADC introduces SRO. Therefore, choice of DAC and ADC

clock rate impacts the SRO. The center frequency is derived by scaling XO frequency. However,

the errors in XO are also scaled accordingly into CFO, which depend on center frequency. In this

work, center frequency of 1 GHz is chosen. The frequency error does not change appreciably

within a frame. For standard deviation per sample of LO frequency error of 0.01, expected

frequency error is 0.34 Hz at the end of frame length of 128 samples, see Sec. 3.4.1 for details.

This frequency error is not appreciable, and thus the standard deviation likely does not impact

classification performance. The optimal choice of clock error simulation parameters is studied in

[44], the impact of XO frequency deviation is in Sec. 4.5.

3.4 RML16 error analysis and correction

In this section, we present the error analysis for RML16 and corresponding corrections

that are incorporated in RML22. See summary of errors in Table 3.3. The permanent GitHub

link to snapshots of code in Fig. 3.5 is in [24, 45].
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(a) Channel effect and SNR (b) Order of artifacts

(c) Information Source (d) GFSK modulation

Figure 3.5. Code snapshots highlighting the RML16 errors for channel effect, SNR, order of
artifacts, information source, and GFK modulation.

3.4.1 CFO and SRO simulation

The clock effects CFO and SRO are negligible in RML16. Note that phase errors are not

included in this dataset.

f LO

err
[n]∼ N (0,σn), | f LO

err
[n]| ≤ fmax, (3.17a)

P(| f LO

err
| ≤ 3σn) = P(| f LO

err
| ≤ 3

√
nσ), (3.17b)

where standard deviation σn at the end of nth sample is
√

nσ , n = [1....N]. Model used for

CFO simulation in [8] is (3.17). For N = 80× 103 and σ = 0.01, P(−3σn ≤ f LO

err
≤ 3σn) =

P(−6Hz ≤ f LO

err
≤+6Hz) = 0.9973. N is the length of transmit IQ stream. The maximum value

of N = 80×103 used in RML16, is considered in this error analysis. The intended maximum

frequency deviation is fmax = 500Hz. The applied frequency error f LO

err
is however bound by ±6

Hz with a high probability. The CFO applied is therefore negligible.

This issue also percolates to SRO simulation due to dependency of SRO on f XO

err
, see

(3.11c). To get f LO

err
to drift to 500 Hz, n =

(500
3σ

)2
= 278 million samples (3.17b). This involves

a few gigabytes of data and is prohibitively large. An alternate model that solves this issue is
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Figure 3.6. Histogram of frequency error estimated from tone passed through CFO model in
RML16 and RML22. The frequency estimate is calculated for 1000 frames following respective

CFO model.

proposed in (3.13b). The two models are studied as follows. A tone is sent through the two

CFO models and frequency error estimated. The average CFO across 1000 frames is taken and

histogram computed, see Fig. 3.6. The results indicate that the CFO is simulated correctly in

RML22. The results are applicable for SRO artifact.

3.4.2 Channel effect

RML16 attempts simulating a Rician fading channel effect, but a static line of sight (LOS)

channel is simulated. A stream of samples affected by channel and HW artifacts is generated.

Frames of specified length are carved out at random indices of the stream. The stream of samples

is regenerated, and process repeated until required frames are obtained. The noise seed for

channel effects erroneously remains same across each stream. Thus, the entire Rician distribution

is not sampled. Each stream is of a short duration, less than 1 s. Path gains are correlated within

a few seconds, thus a static LOS channel is simulated.

In RML16, each stream has a maximum length N = 80× 103. For a sampling rate

Fs = 200 kHz, number of samples N = 80×103 corresponds to capturing data undergoing fading

effects for 0.4 s. The frequency deviation input in the data generation is fd = 1 Hz. Based on

(3.16e), v = fdλ = fdc/ fc = 0.33 m/s for fd = 1 Hz and center frequency 900 MHz. The user

has moved 6 cm in the outdoor fading channel. Path gain changes are almost static in such a

short duration of 0.4 s. This is effectively a static LOS channel and not Rician. Code snapshot of
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channel effect function call illustrating error is in Fig. 3.5a. The solution is changing the random

seed for every iteration, thereby the channel effects are sampled from entire Rician pdf.

3.4.3 SNR

In RML16, it is intended to simulate thermal noise in an SNR range of −20 to 20 dB.

Due to errors, the actual SNR simulated is −40 to 40 dB. The SNR is defines as

SNR = 10log10

(
E(|s|2)
E(|z|2)

)
, σz = 10

−SNR
20 s.t. E(|s|2) = 1. (3.18)

The thermal noise simulation block [36] use noise standard deviation as input. This standard

deviation is 10
−SNR

20 , see (3.18). RML16 uses 10
−SNR

10 , causing the error. Code snapshot in Fig.

3.5a highlights the error.

3.4.4 Order of artifacts

Information source is mapped to symbols, upsampled and pulse shaped to generate

transmit IQ samples. Artifacts are applied to the IQ samples. The order of application of artifacts

should follow the input output response chosen for simulation. For noiseless channels, the effects

of incorrect order are:

y[n] = e j2π ferrnTs ∑
l

s[n− l −ζerr]h[l],

= e j2π ferrnTsF−1(S( f )H( f )),

y′[n] = e j2π ferrnTs ∑
l

s[n− l −ζerr]e− j2π ferrlTsh[l],

= e j2π ferrnTsF−1(S( f )H( f + ferr)),

(3.19a)

(3.19b)

(3.19c)

(3.19d)

where y is output from correct order of artifacts, y′ is the incorrect order of artifacts as followed

in RML16.

The correct order of artifacts is SRO, channel effects, CFO, AWGN, see (3.19a). The
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Figure 3.7. Audio recording used as source for analog modulation types AM-DSM and WBFM
in RML16. At a standard audio sampling rate of 44.1 kHz, x-axis corresponds to 0.45 s. The

first 10k samples is noise as it waits for signal to appear.

incorrect order followed in RML16 is SRO, CFO, channel effects, AWGN [24], see (3.19c).

Code snapshot in Fig. 3.5b showcases the incorrect order. Random phase offset is not included

in this analysis, since it is not used in RML16. The order of applications of artifacts are not

equivalent. There is an additional unintended frequency error contribution ferr from the term

H( f + ferr). The applied frequency error is thus 2 ferr instead of ferr. E.g., if the intended fmax

maximum frequency error bound for CFO is 500 Hz, the applied value is 1000 Hz.

3.4.5 Information source

The information source used for analog modulation types in RML16 is essentially noise,

due to extracting a near-zero amplitude portion of the audio recording, see Fig. 3.7. All frames

in RML16 for analog modulation types are affected. Code snapshot in Fig. 3.5c highlights the

error.

Data source used for analog modulation is from a podcast audio file. To generate RML16,

frames are extracted from a stream of samples, only the first 10k samples of the audio file is

repeatedly used. The audio file with running time of 53 minutes and sampled at 44.1 kHz, has

about 140 million samples. The amplitude is just noise for the first 10k samples, as it waits for

signal to start. Thus, the analog modulation types (WBFM and AM-DSB) are using noise as

information source. The correct method is to randomly choose from all parts of audio file.
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3.4.6 GFSK modulation issue

sGFSK[n] = exp( jKmπ ∑
k

d[k]g[n− k]) (3.20)

= exp( jKs ∑
k

d[k]g[n− k]),Ks = πKm = 2π
fd

fs
,

where Km is the modulation index, Ks is the sensitivity index, fd is the frequency deviation and

fs is the sampling rate.

To simulate GFSK modulation type either a sensitivity factor Ks or a modulation index

Km can be used. The relation between these are Ks = πKm. Ks = 0.1 is used to generate GFSK

in RML16. This corresponds to Km ≈ 0.03, which is low. In Bluetooth, Km = 0.5. This results

in generation of unrealistic GFSK modulated signal. Code snapshot in Fig. 3.5d captures the

error. In RML22, we use Ks = 0.5π (Km = 0.5).

3.5 Deep learning for modulation classification

The received IQ samples y depends on random variables such as d information source, m

modulation type, z thermal noise, h channel effect, ζerr SRO, ferr CFO and θerr phase offset:

y = f (d,m,z,h,ζerr, ferr,θerr). (3.21)

Mapping f (.) generates dataset that follows (3.7). Dataset is generated over instantiations of

random variables in Table 3.2 and models in Sec. 3.2.

The goal is to learn the function that maps received samples y to correct modulation type

m:

m = g(y;d,z,h,ζerr, ferr,θerr). (3.22)

The function should ideally learn the mapping for all possible instantiations of the variables.
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Table 3.4. Model architecture and training parameters.

Description Values
CNN Layer Input Conv Maxpool Conv Maxpool Conv Maxpool FC FC/Softmax
Output Dim. 128 x 2 128 x 64 64 x 64 64 x 64 32 x 64 32 x 32 16 x 32 128 11
Model Conv. layer: kernel size = 3, padding=1, stride=1, Max. pool layer: kernel size = 2, stride=2, Each Conv. layer include

Batch norm and Dropout = 0.3, ReLU and Softmax activation functions, Num. of parameters in model: 117739
Training Xavier Initializer, Adam Optimizer, Regularizers: Early stopping and L2, Batch size: 32, 128, 512,

Learning rate scheduler (LRS) start=1×10−3, step = 8 epochs, LRS decay = 0.1, Test & validation set: 20% each

Mapping g(.) is learnt by training DL model on a dataset. Each dataset is generated over

modulation types BPSK, QPSK, 8PSK, 16QAM, 64QAM, PAM4, WBFM, CPFSK, GFSK,

AM-DSB and SNRs −20 to 20 dB in 2 dB steps. 2000 frames are generated per modulation type

and SNR level. The frame contains raw temporal IQ samples. No feature extraction is applied,

the DL model intrinsically learns feature extraction in training.

The focus is only on improving data quality and therefore a simple CNN architecture

is used. CNN model [30] has three convolutional and two fully connected layers, see archi-

tecture and training parameters in Table 3.4. In each convolutional layer, data passes through

batch normalization, maximum pooling, dropout, and rectified linear unit (ReLU) activation.

Batch normalization [46] helps in convergence of neural network training. Pooling enables

downsampling of signal across layers, reducing computation during training. It also reduces

sensitivity of convolutional layers to a specific portion of frame. Dropout [3] zeroes out specified

percentage of nodes in each layer, adding noise to regularize. Regularization avoids over fitting

model to training data. L2 regularization with weight decay 5×10−4 noticeably reduced training

times. Xavier initialization [47] is used to help avoid exploding and vanishing gradients. Adam

optimizer [48] known to be effective and robust, is used. A learning rate scheduler is used with

initial learning rate of 10−3, reduced every 8 epochs by a 0.1 factor. A total of 200 epochs is

attempted every training run. Early stopping as an additional regularizer is used. Training stops

when validation accuracy does not decrease for 16 consecutive epochs. Hyperparameter tuning

is done over batch sizes 32, 128 and 512.

78



Table 3.5. Performance studies done and datasets used.

Type of study Description of dataset
RML22 vs RML16 RML16, Clean, AWGN, Clock, Fading, RML22 with 8 sps
Artifacts Clean, AWGN, Clock, Fading, RML22
Information source Analog modulation: Podcast, Digital modulation:

Random sequence, Shakespeare and Sherlock Holmes
Clock effects RML22, max. LO deviation 500 Hz (default) and 50 Hz
Doppler effects RML22, max Doppler freq. 70 Hz (default) and 1 Hz
Sampler per symbol RML22, sps = 2 (default) and 8
Signal bandwidth RML22, signal bandwidth 15 kHz (default) and 100 kHz
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Figure 3.8. Constellation diagrams of clean symbol of (a) 16QAM that are (b) RRC pulse
shaped, (c) CFO rotated, (d) phase shifted, (e) AWGN noise applied, (f) Rician faded. It is
visually easy to differentiate (a) 16QAM and (g) 64QAM for clean symbols, but harder for

symbols that undergo fading (b) and (h).

3.6 Results and Discussion

The end goal is a DL model performing best when deployed real time. A step towards

this is generating a quality dataset. The performance of the proposed benchmark dataset RML22

is compared with RML16. Key to improving data quality is understanding the performance

impact of artifacts. To study performance impact of artifacts, five datasets (clean, AWGN, clock,
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Table 3.6. Accuracy of model trained on RML16 or RML22, and tested on datasets Clean,
AWGN, Clock, Fading and RML22. Datasets use sps = 8. Accuracy averaged across entire SNR

range.

Trained
Tested Clean AWGN Clock Fading RML22

RML16 0.63 0.38 0.64 0.6 0.44
RML22 0.87 0.56 0.87 0.86 0.67
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Figure 3.9. Accuracy vs. SNR for models trained on RML16 or RML22 and both tested on
RML22.

fading and RML22) are generated:

yclean[n] = s[n], yAWGN[n] = s[n]+ z[n], (3.23a)

yclock[n] = e j2π ferrnTs+θerrs[n], (3.23b)

yfading[n] = ∑
l

h[l]s[n− l], (3.23c)

yRML22[n] = e j2π ferrnTs+θerr∑
l
h[l]s[n−l−ζerr]+ z[n]. (3.23d)

Further, performance impact of artifact and signal model parameterization is studied as follows:

choice of information source, parameterization of clock and Doppler effects, sps and signal

bandwidth. Illustration of the effects of artifacts in a constellation diagram is in Fig. 3.8.

Constellation diagram represents a complex temporal sequence as a scatter plot in an IQ plane.

Though the input to a DL model is a two-dimensional real-valued sequence, constellation diagram

illustration provides intuition on difficulties involved in classification. Illustration is for specific

instantiation of random variables governing information source, fading, AWGN and clock effects

for 128 symbols. AWGN cause spreading in clusters centered on true symbol states as shown
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Figure 3.10. Confusion matrices for models trained on (a) RML22 or (b) RML16 and both
tested on RML22. Test data is from high SNR region above −5 dB. Accuracy displayed on a

0–1 scale. Values less than 0.05 are not printed for clarity of illustration.

Table 3.7. Artifacts impact on classification. Accuracy of models trained and tested on the
datasets Clean, Clock, Fading, AWGN and RML22. Accuracy averaged over SNR range for

AWGN and RML22. Clean, clock and fading datasets have no thermal noise added, see Eq. 3.23

Trained
Tested Clean Clock Fading AWGN RML22

Clean 1 0.38 0.3 0.35 0.16
Clock 0.98 0.99 0.68 0.3 0.33
Fading 0.93 0.84 0.93 0.38 0.43
AWGN 0.92 0.34 0.37 0.62 0.28
RML22 0.84 0.84 0.83 0.52 0.61

in Fig. 3.8e, clock effects cause rotation as shown in Fig. 3.8c and 3.8d, while fading creates

spreading across entire symbol space as shown in Fig. 3.8f. Pulse shaping in Fig. 3.8b causes

spreading, however it is deterministic and therefore learnable by DL. 16QAM and 64QAM

are visually indistinguishable post fading, see Fig. 3.8f and 3.8h. This highlights difficulty in

modulation classification due to fading. Similar intuitions can be made for each artifact.

Description of studies done, and datasets used is in Table 3.5 with the results discussed

below. Sps of value 2 is used in these tests, unless specified differently. Accuracies are specified

on a scale of 0 to 1.

Comparison of RML16 and RML22: Models are trained on RML16 and RML22 and

tested on the five datasets. Model trained on RML22 and RML16 have accuracies of 0.67 and

0.44 when tested on RML22, see Table 3.6. RML22 outperforms RML16 by 0.23 because, the
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Table 3.8. Effect of information source, changed as randomly generated, Shakespeare and
Sherlock Holmes works. Accuracy averaged across entire SNR range.

Trained
Tested Random Shakespeare Sherlock

Random 0.61 0.58 0.58
Shakespeare 0.58 0.73 0.73

Sherlock 0.56 0.71 0.73
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Figure 3.11. Histogram of common characters in the Sherlock Holmes and Shakespeare works.

shortcomings of RML16 are corrected towards generating RML22. RML22 outperforms RML16

by 0.23 on average when tested across the five datasets. Datasets for this test are generated with

sps 8 instead of default 2, to be consistent with RML16.

Accuracy versus SNR plot for model trained on RML16 or RML22 and tested on RML22

is in Fig. 3.9. Model trained on RML22 outperforms RML16 across all SNRs, difference being

larger in high SNR region. The corresponding confusion matrix is in Fig. 3.10. RML16 accuracy

of analog modulation types WBFM and AM-DSB are lower than RML22 by 0.65, due to error

in analog information source generation as described in Sec. 3.4.5. GFSK modulation has 0

accuracy for RML16 compared to 1.0 for RML22, due to incorrect modulation index as described

in 3.4.6. Phase sensitive modulation types BPSK, QPSK, 8PSK, 16QAM and 64QAM have 0.06

higher accuracy for RML22 over RML16, likely due to incorrect clock effects as described in

Sec. 3.4.1.

Artifacts: The impact of channel and HW artifacts are studied, see Table 3.7. Models are

trained and tested on datasets Clean, AWGN, Clock, Fading, and RML22. For each case, we

observe the following.
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(a) LO clock max freq deviation (b) Max Doppler freq deviation

(c) Signal bandwidths (d) Sps parameterization

Figure 3.12. Dataset parameterization. (a) Trained and tested on RML22 with LO max
frequency deviation 50 and 500 Hz. (b) Trained and tested on RML22 with max Doppler

frequency deviation 1 and 70 Hz. (c) Trained and tested on RML22 with signal bandwidths 15
and 100 kHz. (d) Trained and tested on RML22 with sps 2 and 8.

Clean: Perfect accuracy of 1 is achieved. This is a baseline test and ensures DL model perfectly

classifies amidst the non-linearity of pulse shaping. Pulse shaping, although non-linear, is

deterministic and easy to learn. Further, this case ensures choice of signal model parameters

such as number of symbols per frame is appropriate. If symbols in a frame do not sufficiently

span the symbol states of a modulation type, performance could be affected [34, pg. 120].

Clock and Fading: DL model is robust to clock and fading effects with high accuracies of 0.99

and 0.93 respectively.

RML22: Model trained on RML22 has lower test accuracy on AWGN dataset compared to

RML22, values being 0.52 and 0.61. This is contrary to expectation, since RML22 contains

additional artifacts of clock and fading effects on top of AWGN. Data with mild artifacts can

perform poorly on model trained on harsh artifacts. In deployment scenario, signal from TX HW

with good clock (mild clock artifacts) or high transmit power (high SNR) can perform poorly on

model trained on harsh artifacts. In Table 3.6, accuracy on dataset RML22 with sps of 8 is 0.67,
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a 6% improvement over sps 2. Further, model trained on RML22 tests worse on RML22 over

clock and fading, accuracies being 0.61, 0.84, 0.83. Reason is RML22 contains AWGN on top

of clock and fading. AWGN effects at low SNR are harsh, see Table 3.9, thus reducing average

accuracy to 0.61.

Information source: Performance for different digital information sources are studied,

see Table 3.8. In wireless systems, user intends to transmit digital message such as text,

electronic mail, or analog message such as audio in frequency modulation (FM) broadcasting.

Digital message is transformed bit sequence and mapped to symbol, while analog message is

directly mapped to a symbol. Digital information source study includes dataset from random

binary sequence, Shakespeare works, Sherlock Holmes works for digital modulation and audio

podcast for analog modulation. Wireless systems perform interleaving, encryption etc., that

generates randomized binary sequence as input for digital modulation block. Therefore, random

binary sequence is most representative of digital information source in wireless systems. For

Shakespeare and Sherlock Holmes datasets, their text has decimal numbers assigned through

American standard code for information interchange (ASCII) encoding. Direct text to binary

sequence for English text does not follow the assumption of a random bit sequence and show

interesting results as seen below.

Model trained on random sequence performs best with 0.61 when tested on random

sequence as digital source. Models trained and tested on text from Shakespeare and Sherlock

Holmes have the highest accuracy of 0.73. DL model has increased performance by learning

the intrinsic structure of English language. The histogram in Fig. 3.11 highlights similarity of

character count between Shakespeare and Sherlock Holmes works. The high cross performance

of model trained on Shakespeare, tested on Sherlock Holmes and vice-versa further validates

the hypothesis. This performance improvement shown cannot be leveraged in current wireless

systems, which use interleaving and encryption. Artifact and signal model parameterization

impact modulation classification performance. The results for study on choice of parameterization

is in Fig. 3.12. Datasets are generated with different clock errors, Doppler frequencies, sps
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and signal bandwidth. Datasets are generated by using RML22 generation code and changing

appropriate parameters. Based on the Fig. 3.12 we observe:

Clock effects: Different HWs have varying clock effects based on their XO crystal quality.

We study impact of LO maximum frequency deviation parameterization. Model trained with

a maximum LO frequency deviation of 500 Hz performs best, see Fig. 3.12a. This is because

maximum LO frequency deviation of 500 Hz also contains 50 Hz values.

Doppler frequency: To study Doppler frequency parameterization, a slow pedestrian and

fast vehicle equivalent Doppler of 1 and 70 Hz are used. Model trained on lower Doppler of 1

Hz performs poorer, see Fig. 3.12b. Doppler causes rotational effect similar to CFO. Inline with

discussion for previous case, Doppler of 70 Hz contains the effect of Doppler 1 Hz and therefore

has better performance.

Sps: Sps of a frame is chosen based on a combination of radio frequency card bandwidth,

ADC sample rate and computational resources. Sps parameterization values of 2 and 8 are

chosen in this study, corresponding to RML22 and RML16. Sps of 2 and 8 correspond to 64

and 16 symbols, in a frame length of 128. Model trained on sps = 2 acts as a random classifier

on dataset sps = 8 and vice-versa, see Fig. 3.12d. This is because, the model expects a symbol

every N number of samples in its input. In deployment scenarios, models are pre-trained with

large synthetic dataset and updated with real OTA dataset via transfer learning. It is essential

both datasets have same sps.

Signal bandwidth: The incoming signal bandwidth varies based on technology type and

throughput requirements. Models trained and tested on signal bandwiths of 15 and 100 kHz,

corresponding to values used in RML22 and RML16. Model trained on larger signal bandwidth

of 100 kHz performs poorer, see Fig. 3.12c. Signal with larger bandwidth is affected more by the

frequency selective fading. Thus, dataset with larger bandwidth is likely noisier, which hampers

learning.

Impact of RML16 shortcomings on prior work is discussed. It is apparent that results of

works [49, 50] that use attention mechanisms to estimate and correct clock effects, need revisit.
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For other works, it is not apparent if results hold good and therefore experiments needs to be

redone.

3.7 Conclusion

We used a data centric approach to solve modulation classification problem for a single

carrier, SISO signal model. We provided a benchmark dataset RML22 by correcting the short-

comings in RML16. A performance improvement of 23% was shown in using the corrected

dataset RML22. Performance is poorer on RML16 for analog modulation types due to error in

information source, for GFSK modulation type due to incorrect modulation index, for phase

sensitive modulation types M-ary PSK and M-ary QAM due to issues with clock effects. Perfor-

mance impact of digital information source were studied. Model trained on digital information

source as binary sequence from English text such as Sherlock Holmes and Shakespeare works

was shown to outperform a random binary sequence by 12%. A histogram of commonly oc-

curring characters in the information source text indicated improved performance is due to DL

model learning intrinsic structure of English language.

The impact of artifact and signal model parameterization were studied for clock effects,

Doppler frequency, number of samples per frame and signal bandwidth. The results indicated

performance significantly affected by choice of parameters. Therefore, choice of parameterization

towards generating dataset should be based upon values seen in deployment.
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Chapter 4

Novel Training Methodology to Enhance
Deep Learning Based Modulation Classifi-
cation

Automatic Modulation Classification (AMC) is central to dynamic spectrum sensing.

This work aims to improve the performance of deep learning (DL) models applied to AMC.

Novel training methodology is introduced to improve performance. Over-the-air (OTA) data

is collected using software-defined radio (SDR) over a range of modulation types and SNR

levels. Collected dataset is partitioned into subsets across SNR levels. A group of identical

models is trained on these multiple subsets and performance is compared against model trained

on whole dataset. Efforts are taken to identify and isolate corrupted OTA data caused by

interferences. Convolutional neural network (CNN) based architecture is used. We show

an average improvement of 6% in the classifier’s performance on OTA data using this SNR

partitioning approach.

4.1 Introduction

Modulation is the act of embedding information onto an electromagnetic wave by ma-

nipulating amplitude, frequency or phase of a signal. AMC detects modulation type of wireless

signal without apriori knowledge. It is an essential part of spectrum sensing. Latest wireless

communication designs rely on accurate spectrum sensing to maximize usage of under utilized
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spectrum. Spectrum sensing is thus critical to newer standards of cellular and WiFi technologies.

Traditional approaches to modulation classification used hand-crafted features created

from in-phase and quadrature-phase (IQ) signals. Popular analytical methods include likelihood

based [1], feature based [2] and artificial neural network [3] based techniques. More recent

analytical approaches can be found in [4, 5, 6, 7]. Inspired by recent success of DL in computer

vision, DL is used for AMC and has greatly outperformed analytical methods [8, 9, 10, 11].

Popular architectures used are CNN, CNN with residual connections (ResNet), Convolutional

Long Short-term Deep Neural Network (CLDNN) and Long Short-Term Memory (LSTM). Most

works of DL over AMC use the two standard synthetic datasets [8] and [9].

Current approaches to applying DL over AMC typically include attempting varying DL

architectures to the standard datasets. In this work, we propose a new training methodolgy

via signal to noise ratio (SNR) partitioning. Models are trained on subset of the data and test

accuracies compared over model trained on complete dataset. We showcase an overall accuracy

improvement of 6% using the SNR partitioning approach. SDR USRP N310 are used to collect

OTA datasets in this work. Datasets are collected for channels emulating simple additive white

gaussian noise (AWGN) and multipath non line of sight (NLOS).

Full version of paper to be submitted post-acceptance shall be updated as described below.

New SNR partitioning approach shall be tested on benchmark datasets RADIOML 2018.01A and

RADIOML 2016.10A. Perfect SNR estimates have been assumed in the results presented. Blind

SNR estimate algorithms shall be implemented on test data and test accuracy results updated.

4.2 SNR partitioning approach

The artifacts experienced by a wireless signal can be modelled as,

r(t) = Ae j2π∆ f te jθ
K

∑
k=1

e jφk s̃kg(t − (k−1)T − ε)+ z(t), (4.1)
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Figure 4.1. Illustration of SNR partitioning approach. NDA SNR estimation algorithm used for
SNR estimation. Appropriate model picked for inference based on SNR estimate.

where A is path loss, ∆ f is frequency offset, θ is phase offset, φk is phase jitter, g(t) is channel

impulse, T is symbol period, ε < T is time offset, {s̃k}K
k=1 are K modulation symbols. Random

variables in Eq. (4.1) are represented as uuu =
[
z,A,∆ f ,θ ,{φk}K

k=1,g(t),ε,{s̃k}K
k=1
]T . The goal is

finding a function f (.) mapping signal r(t,uuu) to the correct modulation type, i. A DL classifier

learns f (.) by training on occurrences of uuu.

Learning a function can be difficult, especially over feature space spanning numerous

random variables in u. Here, we learn over subset of feature space of the underlying probability

distribution. We learn over data partitioned across the random variables: path loss A and noise z

that constitute SNR. Likely, a DL model learns better over the subset of data and shows higher

test accuracies.

Fig. 4.1 illustrates the SNR partitioning approach. We leverage prior work in non-data

aided (NDA) SNR estimation [12, 13, 14, 15] to improve test performance of DL over AMC.

The dataset is partitioned into subsets and each model learns on a specific subset of the SNR

region. During inference the SNR estimation algorithm will identify the SNR subset the data

belongs to. Data is passed through the model trained on identified subset for inference.
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Partitioning of SNR used in this work is specified in Table. 4.1. SNR estimation

algorithms perform poorly below 0 dB. Therefore, SNR range from −20 to 0 dB form one

subset. SNR range from 0 to 20 dB is further split into four equispaced subsets. Choice of SNR

partitioning is a hyper parameter. Availability of perfect SNR estimates is assumed in this work.

Models trained on one SNR subset are able to classify data belonging to a different subset with

good accuracy [11]. There is thus a good margin for error in SNR estimation.

4.3 Experimental Testbed

An illustration of the data generation and test setup is shown in Fig. 4.2. Random data

bits are generated over uniform distribution. They are mapped to modulation symbols, pulse

shaped using raised root cosine filter with roll-off factor specified in Table. 4.1.

Data is transmitted and received via USRP N310 for two channels, 11 modulation types

and 21 SNR levels as outlined in Table. 4.1. The data is captured separately for channels

emulating AWGN and NLOS channels in an indoor environment. Receive USRP noise floor

is measured at around −87 dBm. Transmit system host controls an external programmable

attenuator to maintain transmit power relative to measured noise floor, see (4.2). This helps

achieve requested SNR.

ytx = s+ z, (4.2a)

z ∼ C N (0,σ2), (4.2b)

SNR = 10log10

(
∥s∥2

2

∥z∥2
2

)
, (4.2c)

where ytx, s and z ε C128, correspond to the transmitted signal, clean signal and noise respectively.

z is complex Gaussian with variance σ2 such that a specific SNR is met.

This method of setting SNR for modulation data is sanitized by calculating SNR on a

94



pure tone. A pure tone is transmitted at a specific power relative to noise floor. SNR values

estimated for pure tone via least squares approach match intended value within an error margin

of 0.2 dB.

xtone[n] = αe j[2π( fc+ ferr)(
n
fs )+φerr], (4.3a)

ytone[n] = xtone[n]+ z[n], (4.3b)

α̂, f̂err, φ̂err = argmin
α, ferr,θerr

1
N

N

∑
n=1

(ytone[n]− xtone[n])2, (4.3c)

ẑ[n] = ytone[n]− α̂e j[2π( fc+ f̂err)(
n
fs )+φ̂err], (4.3d)

SNRestimate = 10log10


∥∥∥α̂e j[2π fc( n

fs )]
∥∥∥2

2

∥ẑ[n]∥2
2

 , (4.3e)

where xtone and ytone represent received signal with and without thermal noise z. α , ferr,

φerr represent path loss, frequency error and phase error that are unknown. n, fs and fc represent

sample index, sampling rate and transmit tone frequency.

Tone frequency is at an offset of 50 KHz from center frequency to avoid leakage from

DC offset. Least squares (LS) approach outlined in (4.3c) is used to estimate parameters of the

tone. A two staged coarse and fine grid search over possible values of α , ferr, φerr is done to

solve the LS problem. Coarse search uses large step size and fine search uses small step size. In

first stage, ferr search space uses knowledge of hardware clock stability. The step size values

and search space for α and φerr are hyper parameters. Estimated values from coarse search are

used as seed for fine search. Estimated parameters of fine search are used to compute SNR using

(4.3d) and (4.3e).

TX and RX USRPs are connected via cable to emulate AWGN channel. To emulate

NLOS, antennae are placed with blocked line of sight [16]. In the NLOS data collection, data are

corrupted from unexpected user movements, interferers etc. Channel is thus monitored by trans-

mitting and receiving pure tone via co-located antennae. LS SNR estimation is computationally
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Figure 4.2. Data collect workflow

Table 4.1. Data generation and testbed parameters

Description Values
Modulation types SSBAM,DSBAM,BFM,CPFSK,GFSK,PAM4,

64QAM,16QAM,8PSK,QPSK,BPSK
SNR Levels −20 to +20 dB in steps of 2 dB
SNR Subsets Subset1: −20 to 0 dB, Subset2: 0 to 5 dB, Subset3: 5 to 10

dB, Subset4: 10 to 15 dB, Subset5: 15 to 20 dB, Complete
set: −20 to 20 dB

Channel types AWGN and Non-Line-of-sight (NLOS).
Center frequency 900 MHz and 903 MHz ISM band for modulation data and

tone respectively
Sampling rate 1.25 MHz and 0.25 MHz for modulation data and tone re-

spectively
Rolloff factor roll-off picked from uniform distribution U(0.1,0.4), every

input frame
Duration of each input
frame

102.5 µs

Input frame dimensions 128 by 2
Symbols per input frame 16
Samples per symbol 8
Dataset size per channel
type

693K for training and 115K for testing

Dataset size per channel
type per per modulation per
SNR

3k for training, 5K for testing

Clock source Internal clock with 0.1 ppm frequency stability
Antennae type External Antennae 2.2 dBi Gain, Model No. APAMSTJ-138

expensive. To reduce time of computation, 1 ms chunks are extracted every 100 ms. Estimated

SNR on these 1ms chunks confirmed data capture is clean.
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Table 4.2. CNN architecture, training and hyper parameter tuning details

CNN layers Output dimensions
Input 128 × 2
Conv 128 × 64

Maxpool 64 × 64
Conv 64 × 64

Maxpool 32 × 64
Conv 32 × 32

Maxpool 16 × 32
FC 512 × 128

FC/Softmax 128 × 11

Model layer and tuning details
Conv layer: kernel size = 8, padding=4, stride=1
Max pool layer: kernel size = 2, stride=2
Optimizers used: Adam, SGD
Learning rates: 1e-2, 1e-3, 1e-4
Batch size: 2,4,8,16,32
Initialization: Xavier
Activation: ReLU
Regularization: Early stopping, Batch norm
Library: Pytorch

4.4 Models

CNN is a popular choice of DL architecture [10, 8] for modulation classification. Details

of CNN architecture proposed and used in this work are in Table. 4.2. CNN model with residual

connections (ResNet) was attempted, but did not show good test accuracy likely due to over

fitting. Dimension of input frame to model is 128 by 2 and output is 11. Input frame contains

128 complex wireless samples represented as 128 by 2 real array. Output represents the 11

modulation types.

The first 3000 input frames of the capture per modulation and SNR level, are used for

training and validation. Succeeding 5000 input frames are for testing. Choice of training data size

is consistent with [9], where it was shown larger data size doesn’t improve accuracy. However,

larger test data is favoured as it reduces variance in accuracy.

Hyper parameter tuning is essential to find the optimal choice of learning rate, batch size,

etc. for the given training data. Training process is repeated for the learning rates 0.01, 0.001

and 0.0001. The batch sizes used are 2, 4, 8, 16 and 32. Adam and Stochastic Gradient Descent

(SGD) optimizers were attempted for the specified values of learning rate and batch size. Best

test accuracies are obtained using Adam optimizer, for a learning rate of 0.001 and batch size of

16.
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(d) NLOS Complete set

Figure 4.3. Confusion matrices for models trained on subset and complete dataset for positive
SNR region.

4.5 Results and Discussion

There are two datasets belonging to AWGN and NLOS channels. An identical CNN

architecture introduced in section 4.4 is used in all the tests. For each dataset, there is a model

trained on complete SNR range and 5 models trained on each of the 5 SNR subsets, see Table. 4.1.

Test data is split into 5 parts corresponding to SNR subsets. For each of 5 parts, test accuracies

are computed for model trained on complete SNR and model trained on same SNR subset.

In Fig. 4.4, the AWGN and NLOS dataset test accuracies for models trained on SNR

subset versus complete SNR set is displayed. Improvements in test accuracies of model trained

on subset over complete SNR set is listed in Table 4.3. The average accuracy improvement for

AWGN and NLOS datasets is 8% and 4%, for positive SNR region.

The SNR subset −20 to 0 dB has least improvement in accuracy. It is hard for a classifier
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Figure 4.4. Accuracy Comparison for SNR partitioning approach. Models are trained on subset
and complete set. Test accuracies corresponding to each of the five subsets are plotted for

AWGN and NLOS datasets.

to learn at low SNR, likely placing a cap on the performance benefits that could be obtained.

Thus even with SNR partitioning approach, we do not see improvements in negative SNR region.

Subset 0 to 5 dB has the best improvement in accuracy, when averaged across both channels.

The overall improvements in accuracy is higher for AWGN than NLOS. This is likely because

NLOS dataset is collected in harsher multipath channel and more difficult to learn. Overall, we

see improvements in test accuracy on all subsets across both channels.

Fig. 4.3 contains confusion matrices for models trained on subset and complete dataset.

Performance improvements is seen only for positive SNR and thus confusion matrices are plotted

for test data in this region. Test results of four models trained on positive SNR region are averaged

to obtain confusion matrix for subset. This is compared against model trained on complete

dataset. 16QAM and DSBAM have maximum accuracy improvement for models trained on

subset over complete set. This is noticed across AWGN and NLOS datasets. 64QAM for NLOS

performs better for model trained on complete set over subset, contradicting the general trend.

The cost paid for performance improvements is extra computation both at training and

inference. This is because we train on five classifiers and use SNR estimation algorithm at

inference, compared to single model at training and testing.
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Table 4.3. Gain in classification performance (in %) for each subset using SNR partitioning
method

Subset1
−20 to 0 dB

Subset2
0 to 5 dB

Subset3
5 to 10 dB

Subset4
10 to 15 dB

Subset5
15 to 20 dB

Avg. over
SNR >= 0 dB

AWGN 1.98 8.07 6.07 8.62 8.28 7.76
NLOS 1.4 7.85 2.77 4.1 1.85 4.14

4.6 Conclusion

This work has demonstrated improved performance when incorporating new training

methodology via SNR partitioning approach. A comparative study of the classifier’s test accuracy

is done for the model trained on the SNR subsets and complete dataset. There is an average

improvement of 8% and 4% for the AWGN and NLOS channels respectively for the positive

SNR region. The cost of improved accuracies is more computation at training and inference.

OTA data captured using SDR is used in this work.
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Chapter 5

Over the Air Performance of Deep Learn-
ing for Modulation Classification Across
Channel conditions

Deep learning (DL) models used for modulation classification are mostly trained on

simulated data. Their performance drops significantly on real test data, due to disparity in

probability distributions between simulated and real data. The eventual goal is building a DL

model classifying modulation type accurately on real data. This work empirically studies the

performance impact due to disparity in probability distributions between training and test data.

We borrow best performing deep learning models from literature for our analysis. Models are

tested on data belonging to channel conditions they were trained on and otherwise. Software

defined radios (SDR) collect training and test data under channel conditions of additive white

Gaussian noise, line-of-sight (LOS) and non-line-of-sight (NLOS). Convolutional neural network

(CNN) and Residual neural network (ResNet) architectures are used. Test accuracies of the

models are compared across model architectures, channel conditions, modulation types and SNR.

Performance results of DL models on real data, are presented for wide set of scenarios. Dataset

is available for download and can be used for evaluating deep learning models.
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5.1 Introduction

Modulation is the manipulation of the amplitude, frequency or phase of an electromag-

netic (EM) wave with the intent of transmitting information. In general the transmitter informs

the receiver about the modulation scheme. However, for dynamic spectrum sensing and elec-

tronic warfare inferring modulation type, modulation classification is important. Early works

used hand crafted features from raw temporal signals such as zero crossing locations [1], square

law classifiers [2], phase based classifiers [2], and statistical moment classifiers [3]. Recent

analytical approaches are in [4, 5, 6]. Latest advancements in DL model architecture, computing

software and hardware have made DL an accessible tool. The traditional models worked well for

specific modulation types and channel conditions but there was no approach that was universally

applicable for all modulation types. DL models with many parameters show much improved

performances [7, 8, 9, 10, 11, 12, 13, 14, 15].

The goal is to build a robust DL model that can accurately predict the modulation

type of real data under all possible channel conditions. The focus mostly has been to attempt

different DL architectures to improve performance on the benchmark RadioML dataset [7].

Performance results for real data using non-DL techniques such as support vector machine [16]

and likelihood-based approach[17] are modest. Real data performance on a subset of SNR,

modulation and channel types with DL based approaches, fully-connected neural networks and

convolutional-auto encoders is in [18, 19].

A carefully trained DL model on a large synthetic dataset was developed in [15] with

excellent performance on simulated test data. However, their performance on real data dropped

significantly under benign LOS fading conditions for a high SNR of 10 dB. We performed over

the air tests of this DL model using the setup in Fig. 5.1. Radiated tests were done for SNR above

10 dB. The performances match when the LOS component was significant. When the antenna

were moved further away, the performance was erratic, sometimes dropping significantly and was

over-sensitive to antennae placement. The SNR at the receiver was maintained by transmitting

104



signal with digitally added AWGN noise and at a power well above receiver noise floor. These

results pose a question on the over-reliance on simulated data for training. The plausible reason

is that the training and test data did not belong to the same probability distributions. A DL model

trained on data from an AWGN channel will perform poorly when tested on data from fading

channel since the probability distribution governing a pure AWGN channel is different from a

fading channel.

We conduct quantitative studies of DL performance tested on data belonging to channel

conditions they were trained on and otherwise. Test accuracies are compared across DL archi-

tectures, channel conditions, modulation types, and SNR. The availability of low-cost SDRs

and open source GNU radio has made real data collection accessible. SDRs are used to collect

training and test data in a AWGN channel and radiated LOS and NLOS fading channels. The

DL models used are CNN from [20] and ResNet from [15] since they performed well on the

RadioML dataset [7].

5.2 Wireless System Model

The noiseless electromagnetic signal transmitted over-the-air is modeled as follows.

r(t) = Ae j2π∆ f te jθ
K

∑
k=1

e jφk s̃kg(t − (k−1)T − ε) ,

0 ≤ t ≤ KT

(5.1)

where A is the attenuation due to path loss between transmitter and receiver, ∆ f is the carrier

frequency offset, θ is carrier phase offset, φk is phase jitter, g(t) is the effective impulse response

of the channel given by the convolution of the transmitter pulse shaping filter and the channel

impulse response, T is a symbol period, ε < T is the time offset from the start of a symbol period

and {s̃k}K
k=1 are K complex transmitted data symbols drawn from a finite size modulation format.

We represent the set of parameters in (5.1) through uuu =
[
A,∆ f ,θ ,{φk}K

k=1,g(t),ε,{s̃k}K
k=1
]T .
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The goal is finding a function f (.) mapping signal r(t,uuu) to the correct modulation type, i.

i = f (r(t),uuu) . (5.2)

We learn function f (.) by training a deep learning model on all possible occurrences of uuu.

5.3 Data and Experimental Testbed

An illustration of the data generation and test setup is in Fig. 5.1. Random data bits over

uniform distribution are generated, mapped to modulation symbols, pulse shaped using raised

root cosine filter and Gaussian noise added to set the SNR level. Gaussian noise is included as

follows,

Ytx = S+Z, (5.3)

Z ∼CN(0,σ2), (5.4)

SNR = 10log10

(
∥S∥2

2

∥Z∥2
2

)
, (5.5)

where Ytx, S and Z ε C1024, correspond to the transmitted signal, clean signal and noise respec-

tively. Z is sampled from a complex valued Gaussian distribution with variance σ such that a

specific SNR is met. SNR is set during transmit data generation since this is easier in comparison

to controlling received signal power over the noise floor.

The generated data is transmitted and received using USRP N310 operating in the 900

MHz ISM band at a sampling rate of 1.25 MHz. We implement three types of channels. AWGN

channel is set up by connecting the transmit and receive ports of two USRPs using RF cables.

For LOS and non-LOS channels, antennaes are placed as shown in Fig. 5.2. It is likely LOS path

dominates reflected path which makes the LOS channel a rician channel. For NLOS channel,

there is likely no single dominant path due to obstruction. This assumption makes NLOS channel
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a rayleigh channel.

For each of the channel conditions, in-phase and quadrature phase (IQ) samples are

transmitted and received across 11 modulation types and 21 SNR levels as detailed in Table 5.1.

Amongst them GFSK, CPFSK and BFM are frequency modulation types, BPSK, QPSK and

8PSK are phase modulation types, PAM4, DSBAM and SSBAM are amplitude modulation types

while 16QAM and 64QAM belong to a combination of phase and amplitude. 8PSK, 16QAM

and 64QAM are tightly packed with lesser spacing between symbols and therefore more prone

to misclassification.

The input fed to the DL has dimension 1024 by 2 corresponding to a signal of duration

820 µs. There are 5000 data points for each instance of modulation and SNR. The dataset size

for data points belonging to all modulation types and SNR is 1.155 million. There are three

datasets each belonging to channel conditions AWGN, LOS and NLOS. The dataset is available

[21].

Figure 5.1. Data collect workflow.
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Table 5.1. Data generation and testbed parameters

Description Values
Modulation types SSBAM,DSBAM,BFM,CPFSK,

GFSK,PAM4,64QAM,16QAM, 8PSK,QPSK,BPSK
SNR Levels −20 to +20 dB in steps of 2 dB
Channel types AWGN, LOS, NLOS.
Center frequency 900 MHz ISM band
Sampling rate 1.25 MHz
Duration of each input data point 820 µs
Input data point dimensions 1024 by 2
Symbols per input data point 128
Samples per symbol 8
Dataset size per channel type 1.155 million

” ” per modulation 105000
” ” per SNR level 55000

Clock source Internal clock with 0.1 ppm frequency stability
Antennae type External Antennae 2.2 dBi Gain, Model No.

APAMSTJ-138

(a) (a) LOS Fading (b) (b) NLOS Fading

Figure 5.2. Photograph of antenna setups used for (a)LOS and (b)NLOS fading.

5.4 Models

CNN and ResNet are commonly used DL models for modulation classification [7, 10,

11, 12, 13, 14, 15]. Specific architectures used are described in Table 5.2. The DL input has

dimension 1024 by 2 and the output is the 11 modulation types. Each convolutional block in

CNN contains a convolutional layer, batch normalization, pooling and relu activation in sequence.

Each residual block in ResNet consists of one convolutional layer, two residual units and a max

pooling layer.

The CNN architecture from [20] which is a variant of the VGG model [22], was chosen

since it displayed a test accuracy of 90% on simulated fading channel conditions. The ResNet

108



Table 5.2. CNN and ResNet architecture

CNN layers Output dimensions

Input 1024 × 2
Conv 1024 × 16

Maxpool 512 × 16
Conv 512 × 24

Maxpool 256 × 24
Conv 256 × 32

Maxpool 128 × 32
Conv 128 × 48

Maxpool 64 × 48
Conv 64 × 64

Maxpool 32 × 64
Conv 32 × 96

Avgpool 1 × 96
FC/Softmax 1 × 11

ResNet layers Output dimensions

Input 1024 × 2
Residual Stack 512 × 32
Residual Stack 256 × 32
Residual Stack 128 × 32
Residual Stack 64 × 32
Residual Stack 32 × 32
Residual Stack 16 × 32

FC/SeLU 1 × 128
FC/SeLU 1 × 128

FC/Softmax 1 × 11

architecture is from [15], since it demonstrated test accuracy of 87% on real data under indoor

conditions. Further a sanity test of the models was done by training and testing on a simulated

rician channel and they displayed test accuracy of 85%. Overall CNN has 98,323 trainable

parameters and the ResNet model has 236,344 trainable parameters. The data split for training

and testing is 80% and 20%. The open source library PyTorch [23] is used in this work.

(a) High SNR: above −5 dB (b) Low SNR: below −5 dB

Figure 5.3. Test accuracies on data of various channel types averaged over all modulation types
and SNR levels. Row labels indicate type of trained model and column labels the test data.

5.5 Results and Discussion

The training data is partitioned into three datasets corresponding to the channels AWGN,

LOS and NLOS. Each dataset of size 1.155 million, has data points across all modulation types
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Figure 5.4. Test accuracies on familiar channel data versus unfamiliar channel data across SNR.
The two shades regions represent High and Low SNR regimes. Test performance on familiar

data (solid lines) and unfamiliar data (dotted lines). CNN model (circular markers) and ResNet
model (triangular markers)

and SNR. CNN and ResNet models are trained on each of these three datasets, thus generating

six models. The six models are tested on each of the three datasets independently. For every

trained model, one of the three datasets belongs to the same channel conditions as the training

data. This dataset will be referred to as familiar dataset and the other two as unfamiliar datasets.

Eg., an AWGN dataset is unfamiliar to a CNN model trained on LOS data. Each of these models

are tested on the three datasets and results obtained across modulation types and SNR levels.

The test accuracies on datasets across channel types and two SNR regions, averaged over

all modulation types is displayed in Fig. 5.3. The dataset is partitioned into high and low SNR

regions at the point of −5 dB SNR, since at values lower than this point the test accuracies drop

steeply. The test accuracy is best on familiar dataset for both high and low SNR regions. Also,

in wireless communications a LOS fading channel is typically known to corrupt the data more

than a pure AWGN channel. Based on difficulty level the channel list would be AWGN, LOS

and NLOS. Thus a model trained on LOS fading channel and tested on AWGN is expected to

perform better than a model trained on AWGN and tested on LOS. The results observed confirm

this expectation at high SNR. For low SNR, CNN test accuracy is in line with this expectation,
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however ResNet test accuracy numbers are flipped for reasons not apparent.

The test accuracies of models on familiar and unfamiliar data is plotted across SNR levels

in Fig. 5.4. The test accuracies are smoothened using a three point moving average filter. The

smoothened test accuracies are plotted in Fig. 5.4 and Fig. 5.7. ResNet outperforms CNN at

high SNR on familiar data while it under-performs against CNN on unfamiliar data. ResNet

has likely overfitted on the training data and therefore under-performs on unfamiliar data. In

low SNR, ResNet models outperform CNN on unfamiliar data, contrary to the results in high

SNR. This may be attributed to the fact that the datasets are highly corrupted at low SNR and

difficult to learn which prevents ResNet from over-fitting at training. Note that the shape of the

test accuracy versus SNR is consistent with [15].

As expected, models performed better at classifying data from familiar dataset, see Fig.

5.4. When averaged over all types of trained models, both CNN and ResNet gave a test accuracy

of 0.70. Next, models were trained on a cumulative dataset that is an aggregate of AWGN, LOS

and NLOS datasets. The average test accuracies of CNN and ResNet on the cumulative dataset

was 0.79 and and 0.81 respectively, which is a 10% improvement from 0.70.

The confusion matrix for CNN and ResNet models trained and tested on the cumulative

dataset is illustrated in Fig. 5.5 and 5.6. The maximum value of colorbar is set to 0.25 in Fig.

5.6 to highlight the off-diagonal elements. 16QAM and 64QAM are confused as each other,

while other modulation types have low misclassification rate in the high SNR case. In the low

SNR case, there is confusion amongst most of the modulation types. Fig. 5.7 provides test

accuracies across all SNRs and modulation types. The test accuracy is close to 100% above −2

dB SNR point for most modulation types. ResNet outperforms CNN at low SNR across most

types of modulation. It is known that phase sensitive modulation types have lower classification

accuracies and higher order schemes within them are more vulnerable [7, 11, 15]. The results

indicate that BPSK, QPSK, 8PSK, 16QAM and 64QAM have poor performance, with 16QAM

and 64QAM performing the worst. 16QAM and 64QAM are higher order modulation schemes
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that are tightly packed in the IQ constellation. The presence of HW and channel impairments

will spread the points in the constellation and make it really hard to learn.

(a) CNN low SNR (b) ResNet low SNR

Figure 5.5. CNN and ResNet confusion matrices for low SNR region below −5 dB.

(a) CNN high SNR (b) ResNet high SNR

Figure 5.6. CNN and ResNet confusion matrices for high SNR region above −5 dB. Maximum
value of colorbar set to 0.25 to highlight off-diagonal elements.

5.6 Conclusion

In this work, data belonging to the channel conditions AWGN, LOS and NLOS are

collected using software defined radios across a wide set of modulation types and SNR levels.

CNN and ResNet models are trained on data belonging to specific channel conditions. Test

accuracies are evaluated across model architectures, channel conditions, modulation types and

SNR.
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(a) CNN model

(b) ResNet model

Figure 5.7. CNN and ResNet model accuracies trained and tested on cumulative set across
modulation type and SNR.

Test accuracies were higher on data belonging to same channel conditions as training

data. Also, test accuracies were higher on models tested on data belonging to less challenging

conditions than the training data. Models were further trained on cumulative dataset belonging to

all channel conditions and the test accuracies increased by 10%. Resnet had better performance

at high SNR while CNN had better performance at low SNR. Phase sensitive and tightly packed

modulation schemes had the poorest test accuracies.

The work is intended to find ways to improve real time deployment performance of DL

models for modulation classification. The results provided empirically establish the following

intuitions on real data. The test and training data should belong to the same probability distribu-

tion for the best performance. Further, training a model on challenging fading conditions makes

it automatically learn patterns of benign channels. Also, caution is needed in using powerful
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models such as ResNet that can over-learn and perform poorly on data not familiar.
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Chapter 6

Conclusion

The thesis focuses on two pivotal cogs of spectrum sensing: modulation classification,

and characterization of of emanations. In the first paradigm, the focus is to improve DL-based

modulation classification performance using a hybrid approach. The domain knowledge from the

fields of wireless systems is leveraged to improve performance. The second paradigm focuses on

the characterization of emanations that are used to detect anomalous activities.

6.1 Modulation classification

6.1.1 Over the Air Performance of Deep Learning for Modulation
Classification Across Channel conditions

Channel artifacts significantly affect performance in any wireless system. In the first

work under modulation classification, the impact of channel conditions within the context of

training and test data disparity is studied. This is also one of the first efforts in attempting

modulation classification using DL on real OTA data for a wide set of modulation types and SNR.

CNN and ResNet architecture models are trained and tested on OTA data belonging to channel

conditions AWGN, LOS, and NLOS. The trained models are tested on each of the three datasets

independently. For every trained model, one of the three datasets belongs to the same channel

conditions as the training data. This dataset will be referred to as a familiar dataset and the other

two as unfamiliar datasets. Eg., an AWGN dataset is unfamiliar to a CNN model trained on LOS
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data.

The dataset is partitioned into high and low SNR regions at the point of −5 dB SNR,

since at values lower than this point the test accuracies drop steeply. The test accuracy is best

on familiar datasets for both high and low SNR regions. Also, in wireless communications a

LOS fading channel is typically known to corrupt the data more than a pure AWGN channel.

Based on increasing difficulty levels the channel list would be AWGN, LOS, and NLOS. Thus a

model trained on LOS fading channel and tested on AWGN is expected to perform better than a

model trained on AWGN and tested on LOS. The results observed confirm this expectation at

high SNR. For low SNR, CNN test accuracy is in line with this expectation, however, ResNet

test accuracy numbers are flipped for reasons not apparent. Further, ResNet outperforms CNN at

high SNR on familiar data while it under-performs against CNN on unfamiliar data. ResNet has

likely overfitted on the training data and therefore under-performs on unfamiliar data. In low

SNR, ResNet models outperform CNN on unfamiliar data, contrary to the results in high SNR.

This may be attributed to the fact that the datasets are highly corrupted at low SNR and difficult

to learn which prevents ResNet from over-fitting at training.

Overall, test accuracies are higher on data belonging to the same channel conditions as

training data. Thus, efforts should be taken to use training data whose channel conditions are

similar to the test data. Also, test accuracies are higher on models tested on data belonging to

less challenging conditions compared to training data. Thus training a model on challenging

fading conditions makes it automatically learn patterns of data belonging to benign channel

conditions. Thermal noise is typically modeled as added at the receiver. Accurate noise floor

estimation at receiver, and calibration of TX and RX power are needed to achieve this in real

data collection. This is non-trivial and therefore in this work thermal noise is added synthetically

before transmission. In the next work, this problem is addressed.
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6.1.2 Novel Training Methodology to Enhance Deep Learning Based
Modulation Classification

In this second work, signal processing advances in blind SNR estimation are leveraged

to improve modulation classification performance. Considering that SNR significantly affects

the performance of wireless systems, a divide and conquer approach is proposed where models

learn to classify on a subset of SNR conditions. In this novel training methodology, each model

is trained on data belonging to specific subsets based on SNR. At inference, signals belonging to

specific SNR subset are passed through the appropriate model for inference. OTA data belonging

to AWGN and NLOS channels, is captured using USRP SDR across a wide range of modulation

and SNR are used in this work.

For results comparison, CNN models are trained on each subset and complete set of data

belonging to both channel types. SNR range from −20 to 0 dB form one subset. SNR range

from 0 to 20 dB is further split into four equispaced subsets. The choice of SNR partitioning

is a hyperparameter. The SNR subset −20 to 0 dB has least improvement in accuracy. It is

hard for a classifier to learn at low SNR, likely placing a cap on the performance benefits that

could be obtained. Thus even with the SNR partitioning approach, we do not see improvements

in negative SNR regions. Subset 0 to 5 dB has the best improvement in accuracy. The overall

improvements in accuracy are higher for AWGN than NLOS. This is likely because the NLOS

dataset is collected in the harsher multipath channel and is more difficult to learn. Overall, we

see improvements in test accuracy on all subsets across both channels.

The cost paid for performance improvements is extra computation both at training and

inference. This is because we train on five classifiers and use the SNR estimation algorithm

at inference, compared to a single model at training and testing. Overall, a cumulative 6%

performance improvement is shown by using the novel training method.
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6.1.3 RML22: Realistic Dataset Generation for Wireless Modulation
Classification

For the final work under modulation classification, a data-centric approach is taken to

solve the modulation classification problem. We identified errors and ad-hoc choice of parameters

in RML16 which is the current state of art synthetic dataset. Building upon RML16, a realistic

and correct methodology for generating a dataset is provided. The performance of the proposed

benchmark dataset RML22 is compared with RML16. Further, the performance impact of

artifact and signal model parameterization is studied as follows: choice of information source,

parameterization of clock and Doppler effects, sps, and signal bandwidth.

Models are trained on RML16 and RML22 and tested on the five datasets. Models

trained on RML22 and RML16 have accuracies of 0.67 and 0.44 when tested on RML22.

RML22 outperforms RML16 by 0.23 because the shortcomings of RML16 are corrected towards

generating RML22. RML16 accuracy of analog modulation types WBFM and AM-DSB are

lower than RML22 by 0.65, due to errors in analog information source generation. GFSK

modulation has 0 accuracy for RML16 compared to 1.0 for RML22, due to incorrect modulation

index. Phase-sensitive modulation types BPSK, QPSK, 8PSK, 16QAM, and 64QAM have 0.06

higher accuracy for RML22 over RML16, likely due to incorrect clock effects.

Further performance of models is studied in the context of generalization for different

instantiation of the following parameters. For clock effects, different HWs have varying clock

effects based on their XO crystal quality. A model trained with a maximum LO frequency

deviation of 500 Hz performs best. This is because a maximum LO frequency deviation of 500

Hz also contains 50 Hz values. To study Doppler frequency parameterization, a slow pedestrian

and fast vehicle equivalent Doppler of 1 and 70 Hz are used. The model trained on a lower

Doppler of 1 Hz performs poorer. Doppler causes a rotational effect similar to CFO. In line

with the discussion for the previous case, Doppler of 70 Hz contains the effect of Doppler 1 Hz

and therefore has better performance. Sps of a frame is chosen based on a combination of radio
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frequency card bandwidth, ADC sample rate, and computational resources. Sps parameterization

values of 2 and 8 are chosen, corresponding to RML22 and RML16. The model trained on sps

= 2 acts as a random classifier on dataset sps = 8 and vice-versa. This is because the model

expects a symbol for every N number of samples in its input. In deployment scenarios, models

are pre-trained with large synthetic datasets and updated with real OTA datasets via transfer

learning. Thus, it is essential both datasets have the same sps.

Data is generated for a single carrier, the SISO signal model. It is of interest to expand

to multicarrier as encountered in OFDM-based technologies such as LTE, 5G, and also MIMO.

Several HW artifacts are not considered in data generation such as IQ imbalance, local oscillator

(LO) leakage causing spur at DC, power amplifier (PA) non-linearities, etc. It will be of interest

to test the performance impact of these artifacts. Further, current work does not involve testing

models trained on RML16, and RML22, upon real data. This should be done to confirm that

RML22 is indeed a realistic corrected dataset.

6.2 Anomalous Activity Detection using RF Emanations

This work provides a profiling-free HW-agnostic technique for detecting emanations. We

introduce detection of the harmonics of clock leakages as a generic signature of emanations. The

pitch of the harmonic was used to characterize the emanation detected. The harmonic signature

undergoes unintended modulation that is characteristic of the physics of the HW, and unknown

to us. This is captured in the transmit emanation model. The transmitted emanation signal

undergoes HW and channel artifacts, captured in the receive emanation model.

A pre-processing technique is introduced to remove modulation and artifacts. Derivations

are provided to show how preprocessing removes the effect of modulation, channel, and clock

artifacts and helps extract the harmonics. These derivations are extended for multi-harmonics

cases and when overt signals as interferer are present. Further, Welch-based PSD estimation is

done to reduce the variance and improve SNR gain. In the PSD, dominant peaks are found using
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SNR and prominence metrics. The peaks with SNR exceeding a given threshold are picked.

They are pruned further using the prominence metric. A robust percentile-based approach is

used to estimate the noise floor and threshold, which does not assume a specific model for signal

peaks. The frequency and SNR of dominant peaks are used to find the pitch frequency. There

could be one or more harmonic series. The intention is to detect each of them and estimate the

corresponding pitch. The pitch estimation procedure from audio processing fields is improved

upon to detect multiple harmonic series, for the wireless signals in this work.

Backing the theoretical exposition of the algorithm, the performance of the algorithm is

shown on real IQ data. IQ data is collected in bandwidth from 0.1–1.1 GHz in a shielded room.

Damaged electronic peripherals are emulated by exposing cables of the mouse, and keyboard,

and data transfer is emulated by copying data onto an SD card and pen drive. Emanation patterns

across the 1 GHz bandwidth are different for both use cases compared to a baseline of an idle

laptop. Thus we show the detection of anomalous activity using emanations, in a profiling-free

manner without HW knowledge. Anomalous activities are shown to be detected using the

emanation patterns.

As a future step, a study needs to be done to improve multi-pitch estimation performance.

In real OTA data, harmonics of dominant pitches sometimes make detection of weaker pitches

difficult. Further, SNR gains to be had with longer IQ capture should be explored. Emanation

detection needs to be done from an exhaustive set of HW devices to check the performance of

the algorithm. Further, overt signals could be introduced and algorithm performance checked in

their presence practically.
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