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SOLUTION OF FINITE ELEMENT PROBLEMS
BY PRECONDITIONED
CONJUGATE GRADIENT AND LANCZOS METHODS

by

R. L. Taylor and B. Nour-Omid
Department of Civil Engineering
University of California, Berkeley

ABSTRACT

The solution of nonlinear, transient finite element problems may be achieved using step-
by-step integration of the equations of motion combined with a Newton solution of the resuit-
ing nonlinear algebraic equations. The use of Newton type methods leads to a set of linear
simultaneous algebraic equations whose solution gives the next iterate. For very large problems
the solution of the large set of linearized equations may be a formidable task - often consuming
more than half of the computing effort when performed by a direct method based upon Gauss
elimination. Accordingly, it is of considerable importance to investigate alternative methods to
solve the problem. The present study presents results obtained by using a Preconditioned Con-
jugate Gradient Method (PCG) described in [7] and a Preconditioned Lanczos Method (PLM)
described in [6] to solve a variety of numerical examples. Based upon results obtained it is evi-
dent that a significant reduction in overall effort, compared to direct solutions, may be achieved
using the preconditioned methods.

The work reported here was supported by the Naval Civil Engineering Laboratory, Port Hueneme, CA,
under purchase order N62583/83 M T265.



1. Introduction

The finite element method of discretization is used to reduce many complex continuum
problems to discrete systems. Although this reduction is the most important step in the overall
analysis of a structure, solving the resulting discrete problem is often far from trivial. In gen-
eral, the reduced system is nonlinear and an iterative method must be employed to arrive at the
solution. Most solution methods are based on some form of Newton’s method in which the
nonlinear problem is linearized, using an initial approximation, to arrive at a linear set of simul-
taneous algebraic equations. The solution of the set of linear equations leads to a correction of
the initial approximation. When solving the linear equations, one should not loose sight of the
primary objective: solving the nonlinear problem.

Iterative methods, such as the conjugate gradient or Lanczos method, are among the
many methods that may be used to solve systems of linear equations. The advantage of these
methods, when used as the inner loop of the Newton iteration, is twofold.

(i) The linear equation may be solved to any desired level of accuracy as governed by the

Newton iteration.

(ii) A considerable reduction in storage can be achieved when no triangular factorization need
be performed.

In [6] a method was developed, based on the preconditioned Lanczos method, to realize
some of the advantages of iterative methods. In this previous study, the triangular factors of
the initial tangent matrix were used to form a preconditioning matrix for the subsequent solu-
tion steps. In the present study we have eliminated factorizations by employing other precondi-

tioners and further, have reduced the storage needs of the method.
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2. A Preconditioned Conjugate Gradient Method

An essential step in nonlinear analysis of structures using Newton’s method (or a variant
such as modified Newton or quasi-Newton methods) is solving a linear system of algebraic
equations. The preconditioned conjugate gradient method (hereafter called PCG) is one of the
many procedures for solving

r=b—-—Ax=0 (2.1)
where A is an nx n symmetric positive definite matrix (which for finite element calculations is
sparsely populated) and b is the right-hand side vector. In the case of static analysis, A is the
current tangent matrix and in the case of dynamic analysis, A depends on the mass, damping

and tangent stiffness matrices, as well as the time increment.

The initial popularity of the conjugate gradient method was due to a number of factors.
In exact arithmetic the method required a maximum of n iterations to solve (2.1} which made
the method superior to other iterative methods. In fact conjugate gradient is in the class of
semi-iterative methods which also includes the Lanczos algorithm [10]. The disadvantage of
direct methods is their large storage demands for keeping the factors of A. The only interface
between the conjugate gradient method and A is through the product Av for a given vector v.
This is an elegant way of taking advantage of sparsity of A which has the added advantage that
A need not be known explicitly but only a means of computing the matrix-vector product is
required.

The popularity of the conjugate gradient method vanished once it was found that under
certain conditions the method required as many as 5» or 6 steps to reduce the residual to the

desired level. This degradation is due to the strong influence of round-off error.
The addition of preconditioning eliminated this difficulty. Instead of solving (2.1) we
solve
P 'Ax=P'p (2.2)
for some appropriate choice of P. The object then is to choose P such that the coefficient

matrix of (2.2) is well conditioned.
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Theoretical considerations suggest that at the end of each iteration of CG the residual

norm is reduced by a factor % when solving (2.1) where « is the condition number of A,
K
defined by « = |All IA7']l. See [1] for more details. Note that when x = 1, one iteration is

sufficient to solve the equation. This provides us with a guideline for choosing P. For a well
chosen P only a few iterations reduce the residual norm to the desired level. Here we give an

outline for the preconditioned conjugate algorithm:

Given an initial guess x;, a positive definite preconditioning matrix P, the matrix A and the
right hand side b:
(1) Setpy=r1y=Db— Ax,
(2) Solve Pdy = 1y, for d,
(3) for k=0,1,2, --- until convergence do

(@) a;, = (rk,dk)/(pk,Apk)

(b) Xpi1 = X4 + ayPy

(€) Tys1 = T—a,Ap,

(d) Solve Pd, | =1,y

(e) Br = (riq1,disy)/(xe,dy)

() Prr1 = dpy1+BiPyi

The operation (v,u) denotes the inner product v’ u. This algorithm generates a sequence
of approximations to the solution x with a corresponding residual vector r,. The termination
criterion can be chosen based on these quantities. In addition to storage demands for A and P
the algorithm requires storage for 4 vectors. The total number of operation per iteration is
NZA + NZP+ 35N, where NZA and NZM are the number of operations for forming Au and

P!y for a given u and v.



3. Splitting Methods

Next we turn to a topic which at first sight may seem unrelated to the solution of non-
linear algebraic equations. Consider the system of first order differential equations

x = f(x,1) 3.1

where x is an #-dimensional vector, the superposed dot, ( * ), denotes differentiation with

respect to time and f is a function of the unknown vector x and +.

We consider a special form of f which can be written as a sum of its subcomponents f,.

Under these conditions the original problem can be thought as a sum of s subproblems
x=f(x,0) i=1,.s (3.3)

In the case of finite element discretization of the spatial domain the sum in (3.2) ranges over

the elements or a set of elements. In other cases the splitting may be formed by other means,

one of which is demonstrated in the following section.

A consistent algorithm for the solution of (3.1), based on the notion of a splitting tech-
nique [2], can now be constructed as a product of algorithms for the sub-problems. In other
words, write the algorithm for (3.3) as

Xpi1 = S{P[x,,] (3.4)
where S is an operator denoting the algorithm and the index m ranges over the increment in
time, A. Then the algorithm for (3.1) can be written as

Xpi1 = SP[x,] (3.5)

where

s = I s® (3.6)

i=1

One of the disadvantages of the splitting method is its low accuracy. The best that these
methods can achieve is second order accuracy. That is the truncation error is of the order of #
at best. In the sequel we will use the above procedure to construct a preconditioning matrix for

the conjugate gradient algorithm described in section 2. The inherent inaccuracy of the splitting
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method poses no problem since the algorithm is used only as a preconditioner and therefore

one can obtain very high accuracies through the conjugate gradient iteration.



4. Solution of Static Problems

Consider the system of linear first order differential equations

X+ Ax=b 4.1

where 7 is a given parameter. Formally the solution to equation (4.1) is

x(1) = e (xg— A7'B) + A b (4.2)
where x; = x(0), is an initial condition. We observe from (4.2) thet as ¢ ends to infinity x(r)
converges to the solution of (2.1) for r > 0. Consiquently (4.1) may be utilized to solve the
linear equations (2.1). Indeed this approach has been suggested previously (e.g., see [9]). In
general the exponential of a large matrix cannot be easily computed and a numerical solution of
(4.1) must be used. In order to achieve a soluion of (2.1) the numerical solution to (4.1) must
be assymptotically correct for infinite A4, or a very large number of time steps must be used to
compute the solution at infinite time. Here we are not concerned with constructing an accurate
solution to (4.1), rather we consider the method as a means of constructing a suitable precondi-

tioning matrix for the conjugate gradient algorithm described above.

Splitting methods may be applied to any problem of the form

x = Bx (4.3)
where B is an additive operator defined by
B- 3 B, (4.4)
i=1
such that the equations
* = Bix i= 1,...,S (45)

are significantly easier to solve than the original equations. The time stepping algorithm for the
global problem is then the product of all the time stepping algorithms for the subproblems with
a fractional time step h/s [2].

The coefficient matrix A in (2.1) may be written as the sum of its diagonal matrix, D, a

strictly lower triangular matrix, L, and a srictly upper triangular matrix such that

A=WD+L)+ @D+ 1L)7 (4.6)
The associated subproblems, x = —(%2D + L)x and x = —(%2D + L7)x can be solved easily.
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Applying a backward difference method with a time step A/2 to each of the subproblems, we

arrive at

4.7

1+-2D+21
4r

Xm+1 =

-1
1+ 2@+un)| [Lb+x,
47 2T

where x,, is an approximation to x(m#A). For an initial condition xo = 0 we get an approxima-

tion to x(h)
h h B h -
x;=§{—|I+-—(D+2L) I+-—M+2L7)| b (4.8)
27 4r 4r
which is compared to the exact solution
x(h) = [1— er|at 4.9)

Comparing equations (4.8) and (4.9) suggests that the coefficient matrix in (4.8) may be a good

approximation to A~! for large A, and may therefore be an effective preconditioning matrix.

The scalar factor 2L may be ignored for preconditioning purposes.
T

When using (4.8) in conjunction with the conjugate gradient algorithm of section 2 the

preconditioning matrix becomes

P=(0+w/2D+ oL)d + /2D + wL7) (4.10)

where w = A/27 is now a free parameter.

To simplify the choice of w we scale the stiffness matrix A such that diagonal of A is

unity. The resulting matrix is A = D~#AD~%. The system of equations (2.1) now becomes

AX=b 4.11)
where X = D" x and b = D~"b.
The preconditioned matrix must now be applied to (4.11) resulting in
P=(I+ol)d+ ol (4.12)

where A=L + L7. It is easy to show that preconditioning (4.11) using P is equivalent to

preconditioning (2.1) with

P=(D+ oL)D!(D + wL7) (4.13)

This can be identified as a member of the class of incomplete Choleski preconditioners [3].
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Note that when o = 0, P becomes the diagonal matrix D, resulting in the simplest form of
preconditioning; diagonal scaling. When w = 1 then P = A + LD!'L7 where we note that the
error matrix LD™!L7 is rank deficient since L has zero diagonals. If the norm of D is larger
then the norm of L then the norm of the error matrix will be small compared to the norm of

A. consequently, for most problems it is expected that the optimum « will be close to unity.
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5. Solution of Dynamic Problems

We next construct a preconditioning matrix for the linear system of equations arising in a
step-by-step algorithm for dynamic analysis of linear and nonlinear structures. In particular, we
consider the Newmark algorithm and the preconditioning matrix follows from the splitting
method of section 3, in much the same way as for the static problem.

Consider the linearized equations of motion

Miu+ Ku=f (5.1)
where M is the diagonal mass matrix, K is the stiffness matrix, f is the external load vector and
u is the response of the structure. For simplicity, we ignore damping effects; however, all of
the following results may be extended easily to the damped case. Accordingly, the linearized

system of equations arising at every time step of the Newmark method is

Ax=b (5.2)
where
_ 1
A—K+—ﬁAt2M (5.3)
and
b=f ., + M%M[u,+Atv,+ (h — B)Afa, ] (5.4)

Here v and a are velocity and acceleration vectors, respectively, At is the specified time incre-
ment, ¢t is the time and x is now the increment of displacement response. The Newmark
parameters are chosen such that 8 > (%4 + y)?/4 with y > % which ensures unconditional
local stability. The discretizations in time are

U, 4, =u, +Atv,+ +HAL[(1—28)a, + 2Ba, ; 4,)] (5.5)
vr+Ar=vr+At(1_7)ar+7Atar+Ar (5.6)

The object is to solve (5.2) without forming the factors of A.

A splitting method similar to the one used for equation (4.1) can now be applied to equa-
tion (5.1). The matrix resulting from the splitting algorithm can then be used as a precondi-

tioner for (5.2). Consider
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_ 1 i T 1
P (L+——BM2M)M (L +—BAFM)

where K = L + L7. Multiplying out the terms in (5.7), we obtain

[BAPLM'LT + L + LT + B—l— M]

F- AL

h‘
— B

= — 2 —1Iy T
BA7 [BAPLM™ILT + A]

-1
= BA7 [E(AA) + Al

where E(AF) = BAPLM™ILT,

(5.7)

(5.8)

The preconditioned conjugate gradient algorithm of section 2 is invariant under the scaling

of the preconditioning matrix; therefore, (5.8) shows that P will tend quadratically to the

dynamic stiffness matrix A as the time step diminishes. In other words, E tends to the zero

matrix quadratically in A¢. We see later that this characteristic results in an effective precondi-

tioning and the solution of equation (5.2) is obtained in very few iterations of the precondi-

tioned conjugate gradient algorithm.



-12 -

6. Lanczos Algorithm for Solution of the Linearized Preblem

The discretization of nonlinear structural mechanics problems and linearization of the
resulting nonlinear algebraic equations for application of a Newton type methods normally will
lead to a symmetric system of linear algebraic equations, (2.1).

In Section 2 we described the use of the conjugate gradient method to solve the linear
system of equations. In this section an alternative solution technique, a simple Lanczos
method, is presented.

Iterative methods often have been used in numerical analysis for the solution of large sys-
tems of equations. The Conjugate Gradient method is one such technique introduced in 1952
by Hestenes and Stiefel [4]. In the same year Lanczos published his method of minimized
iteration which was initially introduced for computing the eigen pairs of a large symmetric
matrix. Lanczos and Householder [5] pointed out the intimate connection between the two
approaches. These methods have several attractive features in common. There is no need for
A to have further special properties, such as banded form, no acceleration parameters have to
be estimated, and the storage requirements are only a few r-vectors in addition to the storage
needs of A.

6.1. The Lanczos Algorithm

For certain applications of the finite element method, especially in nonlinear problems, it
is usual to have on hand an initial approximation x° to the true solution of 2.1. The problem is
now to find a correction x° to be added to x. Then

AXC =TIy (61)

where
rp=b — Ax¢ (6.2)
The Lanczos algorithm may be described very simply as a process of constructing the weak

form of equation 2.1 from a very special subspace. The subspace under consideration is gen-

erated from the set of j vectors (ry, Arg, - - , A7y ), known as the Krylov subspace [9].
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To construct the weak form it would be simpler if an orthonormal set of vectors, say
(q;,95, " ' - ,q j), were available. This can be achieved by applying Gram-Schmidt orthogonaliza-
tion to the Krylov vectors. Initially, this appears to be an expensive way of obtaining an ortho-
normal base vectors, however this process can be simplified when the following two facts are
used [9]:

(i) The use of Agq; and A’r,, for orthogonalization against the previous q vectors and normal-

ization of the resulting vector, leads to the same vector q,,;.
(ii) The vector Aq; is orthogonal to q;,q, * * - ,q;-,.

Consequently it is sufficient to orthogonalize Aq; against q,_; and q; to obtain the next orthog-

onal vector. Accordingly,
=619+ = Aq; —a,q; — 8,4, (6.3)

where a; = q/Aq; and 8; = q/;Aq;. It is important to note that the vectors (q;,q,, - - * ,q,-2)

are not needed in equation 6.3 . This defines one step of the simple Lanczos algorithm. The

normalization of r; results in q;;;. It is easy to show, by looking at ¢/, r;, that 8, = [Ir, .
The special choice for the base vectors of the subspace has an additional advantage. The

projection of A onto this subspace is a tridiagonal matrix, T ;.

ay B2
B2 %2 B3
T, =Q/AQ, = As . . (6.4)
aj-1 B,
B a;
where the q vectors form the columns of the matrix Q;, Q; = (q;,4z, - * - ,q,). This fact was

realized soon after Lanczos introduced his method and the algorithm was put to use as a pro-
cess for the orthogonal transformation of a matrix to tridiagonal form. Despite its additional
attractions, the Lanczos process gave way to Givens’ method in 1954 and later to

Householder’s method in 1958.

The relationships that define the simple Lanczos algorithm can now be summarized in the
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following three equations.

Q/Q, =1, (6.5.2)
AQ, — QT =rje/ (6.5.b)
Q/r;=0 6.5.0)

where e; is the j-th column of the jxj identity matrix I,. Setting qo = 0 and using r; as the
starting vector, the Lanczos algorithm may then be described as
Given 1y, set 8; = |rpll, for j = 1,2, - - - repeat

| gy}

B

(2) u; —Aq;

3) r—u—8,q,,

4) a; —q/r;

(5) 1, —1;—aq,

©) By — Il

While a direct use of the simple Lanczos algorithm usually leads to numerical difficulties,
thus requiring some reorthogonalization of the vectors, with care in selecting the precondition-

ing matrix these difficulties are avoided. In our test of the algorithm to date no difficulties have

been encountered in using the simple preconditioned Lanczos algorithm (see Numerical Exam-

ples).
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7. Modification to the FEAP Program.

The finite element computer program FEAP is described in Chapter 24 of Zienkiewicz
[13] and forms the basis for all computations performed as part of the current effort. Several
basic modifications have occurred since the original program was published. These include: (a)
replacement of the original subprograms ACTCOL and UACTCL for the direct solution of
linear algebraic equations for symmetric and unsymmetric problems, respectively, by the single
solver DASOL which is probably the most efficient implementation of a variable band, active
column equation solver available today for virtual memory machines; (b) inclusion of the New-
mark method to integrate the equations of motion for linear and nonlinear problems in struc-
tural mechanics; (c) the ability to construct a tangent stiffness matrix and a residual force
simultaineously (instead of using TANG followed by FORM, e.g., see below); (d) a conver-
gence criteria based upon the current increment in energy (e.g., Ax” r); and (e) inclusion of a
general data storage structure for nonlinear materials which require additional information to
the displacements in order to evaluate the current stress state at each integration point in an

element.

In the work reported here the program FEAP has been extended further to include the
capability of solving problems using the Preconditioned Conjugate Gradient Method (PCG) or
the Preconditioned Lanczos Method (PLM) described above. In addition, a line search algo-
rithm has been incorporated for use with any of the solution methods - i.e., direct, PCG, or
PLM. As noted above, the preconditioning matrices require a knowledge of the nonzero terms
in the global tangent stiffness matrix (as well as the mass matrix for dynamics problems). Since
it is not necessary to factor the preconditioning matrix, which would cause fill in the nonzero
structure, we have developed a direct means to construct the array containing the nonzero

terms.

The algorithm to construct the locations of the nonzero terms in the compressed tangent

stiffness matrix may be summarized by the following steps:
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1.) Make a list of the elements which are attached to each node. In FEAP this step is accom-
plished by constructing dynamically dimensioned arrays which will contain only the terms
associated with the actual nonzero structure; so that no storage will be wasted. Accord-
ingly, the first step is divided into two parts ~ the first to determine dimensioning and the

second to obtain the actual elements connected to each node.

2.) For each nodal degree-of-freedom use the list of elements to find all the other nodal
degree-of-freedoms which are connected. Since we are currently considering symmetric

equations only the terms above the diagonal entry are constructed.

The above two steps have been incorporated into the set of subprograms which are listed
in Appendix A. In FEAP the array of nonzero terms may be constructed by using the macro
command CTAN (compressed tangent stiffness matrix) instead of the usual TANG (note that
there is no equivalent compressed array for UTAN since neither of the preconditioned solvers
is programmed to handle unsymmetric equations). rThus a typical Newton iteration using the
PCG algorithm is given by the set of macro statements:

LOOP,NEWT,10
CTAN
FORM

PCG ,LINE,1.,100.
NEXT

where the LOOP for the NEWTon step is to be executed for a maximum of 10 iterations (the
iteration will terminate earlier if the prescribed tolerance on energy is met), CTAN indicates a
compressed tangent is to be constructed as described above, and PCG indicates that the Precon-
ditioned Conjugate Gradient algorithm is to be used with LINE search (omit LINE if no line
search is desired - the current search requires several evaluations of the residual, consequently,
for large problems may be time consuming), the 1. indicates that the value of w is unity, and
100. is the maximum number of PCG iterations to be used to solve the equations. Alterna-

tively, the commands:
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LOOP,NEWT, 10

CTAN,----,1.
LANC,LINE,1.,100.
NEXT

may be used. The nonzero value on the CTAN instruction indicates that a residual is to be
computed as well as the compressed tangent and is thus equivalent to CTAN and FORM. The

use of LANC instead of PCG indicates that the Lanczos aigorithm is to be employed.
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8. Numerical Examples

The preconditioned conjugate gradient algorithm (as well as the Lanczos method) has
been tested on a series of test problems. In order to assess the overall efficiency of problem
solution we report both the computing time (for a VAX 11/780 computer operating under
UNIX 4.2 BSD) and storage requirements for the coefficient array. In our test problems we

include two and three dimensional solids subjected to both static and dynamic loading states.

Example 1. Two dimensional cantilever structure.

The first example considered is a cantilever structure with two holes to induce added
stress gradient effects. The model consists of 225 nodes with 184 4-node plane elements, see
Figure 1. The material is linear elastic and utilizes ELMTO1 described in Chapter 24 of [13].
For this problem (as well as all subsequent analyses) we perform a solution using the direct
solution of the equations as well as the PCG and Lanczos algorithms. The timing and perfor-
mance of the PCG and Lanczos methods utilized are nearly identical, accordingly, we shall
report only the results for the PCG algorithm. The essential results for the cantilever structure
are summarized below.

Model: Cantilever type structure
(225 nodes 184 elements)

profile 9990 Non-zero terms: 3162
Static
Direct
total time: 16.77
PCG
total time: 28.78 <39 iterations>
Dynamic
(5 time Direct
steps) total time: 32.42
PCG

total time: 77.52 <24 to 27 iterations>

These results are much as expected - indicating that the iterative PCG algorithm requires more
solution effort (measured in CPU time) than a direct solution. The only redeeming feature for

this example is the reduced storage requirements for the stiffness matrix (3162 words instead of
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9990 words). Accordingly, if one had access to a very small computer it is conceivable that the
PCG algorithm would be more effective since it could greatly reduce the number of calls to
backing storage. On the otherhand, with access to a virtual memory machine the direct solu-

tion is to be preferred.
Example 2. Cylindrical Structures

As a second example we consider a cylindrical structure subjected to end loadings. Two
different meshes are considered to illustrate the performance of the PLM algorithm under mesh
refinements. The material is again linearly elastic and both static and dynamic loadings are con-
sidered. The first mesh consists of 231 nodes and 200 4-node isoparametric elements (type
ELMTO01), while the refined mesh consists of 496 nodes and 450 elements. The meshes are

shown in Figures 2. and 3. Results for the analyses are summarized below.

Model: Small Cylinder Structure
(231 nodes 200 elements)

profile 17485 Non-zero terms: 3345
Static
Direct
total time: 22.50
PCG
total time: 30.63 <39 iterations>
Dynamic
(15 time Direct
steps) total time: 83.32
PCG

total time: 232.75 <25 to 27 iterations>
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Model: Large Cylinder structure
(496 nodes 450 elements)
profile 57280 Non-zero terms: 7570
Static
Direct
total time: 71.82
PCG
total time: 149.48 <140 iterations>
Dynamic
(5 time Direct
steps) total time: 119.73

PCG
total time: 230.37 <31 to 39 iterations>

Once again the direct solution is more efficient in CPU, however the storage requirements for
the PLM (or PCG) method are significantly less than the direct method. Note that the number
of terms is almost directly proportional to the number of nodes (indeed for a regular mesh of
4-node quadrilateral elements the number of nonzero terms in any column is 10 or less),
whereas for the direct method the number of terms within the nonzero profile of the matrix is
almost proportional to the number of nodes squared! The other significant fact in this example
is the number of iterations required to solve the dynamic problem is significantly less than that
required for the static loading. Furthermore, for the dynamic loading the number of iterations

required to solve the problem increases very little with increased problem size.
Example 3. Three Dimensional Structures

In order to assess the performance of the PCG algorithm on three dimensional problems
we have considered the loading on a compact block of 8-node brick isoparametric elements.
Two different meshes with linear elastic material properties have been considered. The first
mesh consists of 64 elements which are arranged in a regular cube with 4 elements on a side.
The mesh has 125 nodes with 21795 words required to store the nonzero profile for a direct
solution and only 7455 words required for the PCG method. For the dynamic loading case, this
problem produces the first PCG results which are more efficient than a direct solution. The

results are summarized below:
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Model: 4 X 4 X 4 solid structure
(125 nodes 64 elements)
profile 21795 Non-zero terms: 7455

Static
Direct
total time: 46.65
PCG
total time: 201.49 <187 iterations>

Dynamic
(4 time Direct
steps) total time: 93.18
PCG
total time: 79.13 <25 to 27 iterations>

In order to assess the improvement in performance we constructed a larger problem by subdi-
viding the mesh to form a cube with 8 elements on each edge. Accordingly, the mesh now
contains 512 8-node brick elements with a total of 729 nodes. The nonzero profile increases
dramatically to 469,071 words whereas, as before, the number of nonzero terms in the
compressed profile only increases proportionally to the number of nodes to 60,903 words. The
ratio of solution times for the dynamic loading case increases even more for this case, as sum-
marized below;, moreover, even the static loading case now requires less CPU for the PCG

method than that of the direct solution.

Model: 8 X 8 X 8 solid structure
(729 nodes 512 elements)
profile 469071 Non-zero terms: 60903

Static
Direct
total time:1585.23
PCG
total time:1145.29 <130 iterations>

Dynamic
(4 time Direct
steps) total time:2070.32
PCG
total time: 320.83 <5 and 6 iterations>

This example illustrates the type of improvements which should be attained for all large three
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dimensional applications. The size of problem we have considered is quite small (indeed even
the largest mesh we could consider is only marginally acceptable for simulating very simple
geometries) and is limited primarily by the fact that we utilized a VAX 11/780 computer. In
double precision arithmetic we required over 4 megabytes of dimensioned memory to solve the
problem. We fully anticipate that applications to larger problems on faster ane larger computers

can achieve the same level of improvement we have indicated here.
Example 4. Nonlinear Material Response - Two Dimensional Application.

In order to test the performance of the PLM algorithm in a nonlinear application, we con-
sidered the elastic-plastic static response of a plane strain strip with a hole. The mesh is shown
in Figure 4. and the spread of plastic zone at different load steps in Figure 5. The problem was
solved using both direct solution and the PLM method and utilized the consistent tangent for-
mulation developed in [12]. This formulation ensures a quadratic asymptotic rate of conver-
gence when used with a full Newton method. The overall solution time for the PLM method
was greater than the direct solution, in accordance with results obtained for Examples 1 and 2.
The PLM algorithm performed well, however, and showed no loss in performance with
increased plastic deformations. Accordingly, we fully expect that the solution of nonlinear
three dimensional problems will be more efficient with the PLM method than a solution

achieved using a direct solution of the algebraic equations.




-23.

9. Comparison of Global and Element by Element Preconditioned Methods

The global preconditioning of the conjugate gradient or Lanczos method was shown previ-
ously to lead to more efficient solution of typical problems [7] than use of element-by-element
preconditioning. In order to indicate the number of operations in an element-by-element
(EXE) method compared to the global preconditioned form with compressed storage of the
array we have constructed a table to indicate the number of operations in a single iteration of
each method. For the element-by-element method we assume a second order accurate double

pass method (e.g., see [8]). The results are summarized in the table for Examples 1, 2, and 3

cited above.

Example | Mesh | Operations per Iteration

Elmt | PCG/PLM EXE
1 184 12,648 23,552
2 200 13,380 25,600
2 450 30,280 57,600
3 64 29,820 73,728
3 512 243,612 589,824

The difference in the number of operations is due to the fact that each degree-of-freedom in a
mesh is associated with more than one element. Indeed, on the average, the above table indi-
cates that there is a savings in number of operations by a ratio of about 1.8 to 2.5 for the
PCG/PLM algorithms in comparison with an element-by-element algorithm. Thus, an
element-by-element method must converge in about half as many steps in order to be as
efficient as the PCG/PLM methods. Our previous experience indicated that element precondi-
tioning never converged in fewer steps that the global preconditioning method; consequently,
we believe that the current implementation offers considerable savings over element-by-
element methods. The final proof of this assertion must, however, await considerable numeri-

cal testing of various implementations for iterative methods.
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Appendix A. Listing of Compact Stiffness Construction.

The full description of the algorithm to construct the compact storage of the stiffness is
described in: "An Algorithm for Assembly of Stiffness Matrices into a Compacted Data Struc-
ture," by B. Nour-Omid and R. L. Taylor, Report No. UCB/SESM 84/06, Structural Engineer-
ing and Structural Mechanics, University of California, Berkeley, May 1984. The listing fol-
lows:

SUBROUT INE ELCNT (NUMNP ,NUMEL , NEN,NEN1, IX, IC)
DIMENSION [X(NEN1,1),1C(1)

INPUT

NUMNP TOTAL NO. OF NODES IN THE MESH
NUMEL TOTAL NO. OF ELEMENTS IN THE MESH
NEN MAX. NO. OF NODES PER ELEMENT
NEN1 DIMENSION OF IX ARRAY

IX ELEMENT CONNECTIVITY ARRAY

OUTPUT

IC ARRAY OF LENGTH NUMNP. IT FIRST HOLDS THE ELEMENT DEGREE
OF EACH NODE, THEN BECOMES A POINTER FOR AN ARRAY THAT
CONTAINS THE SET OF ELEMENTS CONNECTED TO EACH NODE.

COUNT THE NUMBER OF ELEMENTS EACH NODE BELONGS TO

[oNoRoRoRoRoRoRoNeoRoNoRoNoNo Ko}

CALL IZERO(IC,NUMNP)
DO 110 N = 1,NUMEL
DO 100 J = 1,NEN
I = IX(J,N)
IF(1.GT.0) IC(1) = I1C(1) + 1
100 CONT INUE
110  CONTINUE

C.... SET UP POINTERS
DO 120 1 = 2 ,/NUMNP

IC(1) = IC(1) + IC(1-1)
120  CONTINUE

C
RETURN
END
SUBROUTINE CASSEM(D,A,B,S,P,JCOLE, IROW, LD, ID,NST,NEL ,AFL,BFL)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
LOGICAL AFL,BFL
DIMENSION D(1),A(1),B(1),S(NST,1),P(1),JCOLE(1),TROW(1),LD(1)
1 ,1D(1)
C
C.... COMPACT ASSEMBLY OF PROFILE MATRIX
C
DO 200 J = 1,NEL
N = LD(J)
IF ( AFL' .AND. N .GT. 1 ) THEN
DO 150 I = 1,NEL
K = LD(1)
IF ( K .GT. 0 .AND. K .LT. N ) THEN
INZ = INZA( JCOLE(N-1)+1,JCOLE(N), IROW,K)
A(INZ) = A(INZ) + s(1,1)
END IF
150 CONTINUE
END IF
c.... ASSEMBLE THE DIAGONAL
IF ( N .GE. 1 ) THEN
IF ( AFL ) D(N) = D(N) + S(J,1J)
c.... ASSEMBLE THE LOAD IF NECESSARY
IF ( BFL ) B(N) = B(N) + P(J)
END IF
200 CONTINUE

RETURN
END
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SUBROUTINE COMPRO({NUMNP , NUMEL ,NEN,NEN1 ,NDF, IX,1D,IC, IROW, IELC,

JCOLE ,KP)

FOR (NUMNP,KNUMEL ,NEN NEN1,I1X,I1C) SEE SUBROUTINE ELCNT

INPUT

NDF NUMBER OF UNKNOWNS AT EACH NODE
ID ACTIVE UNKNOWNS AT EACH NODE
OUTPUT

1
DIMENSION IX(NEN1,1),ID(NDF,1),1C(1),IROW(1),1ELC(1),JCOLE(1)

IELC HOLDS THE SET OF ELEMENTS CONNECTED TO EACH NODE
IROW ROW NUMBER OF EACH NONZERO IN THE STIFFNESS MATRIX

JCOLE END OF ENTRIES IN IROW FORM A GIVEN COLUMN
FIND ELEMENTS CONNECTED TO NODES

CALL I1ZERO (IELC, IC(NUMNP))
DO 230 N = 1 NUMEL
DO 220 J = 1,NEN
I = IX(J,N)
IF (1 .GT. 0 ) THEN
KP = IC(1) :
IF ( IELC(KP) .EQ. 0 ) GO TO 210
KP = KP - 1
GO TO 200
IELC(KP) = N
END IF
CONT INUE
CONT INUE

SET UP COMPRESSED PROFILE POINTERS

0) GO TO 310

KP =0
NEP = 1
DO 350 I = 1,NUMNP
NE = IC(1)
DO 340 Il = 1,NDF
NEQ = ID(I1,1)
IF ( NEQ .GT. 0 ) THEN
JCOLE(NEQ) — KP
KPO = KP + 1
IF ( NEP .LE. NE ) THEN
DO 330 N = NEP,NE
NN = IELC(N)
DO 320 J = 1,NEN
K = IX(J],NN)
DO 310 JJ = 1 ,NDF
NEQJ = ID(JJ] K)
IF (NEQJ .GE. NEQ .OR. NEQJ .LT.
CHECK TO SEE IF NODE ALREADY IN LIST
IF ( KPO .LE. KP ) THEN
DO 300 KK = KPO,KP
IF( IROW(KK) .EQ. NEQJ ) GO TO 310
CONT INUE
END IF
KP = KP + 1
IROW(KP) = NEQJ
CONT INUE
CONT INUE
CONT INUE
JCOLE(NEQ) = KP
END IF
END IF
CONT INUE
NEP = NE + 1
CONT INUE
RETURN

END
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INTEGER FUNCTION INZA(N1,N2, ROW K)
DIMENSION IROW(1)

FIND THE TERM FOR THE ASSEMBLY

DO 100 N = N1 ,N2
IF ( IRON(N) .EQ. K ) THEN
INZA = N
RETURN
END IF
CONT INUE
ERROR IF LOOP EXITS
STOP
END

SUBROUTINE [ZERO(1A,NN)
DIMENSION IA(NN)
DO 100 N = 1,NN
IA(N) = o
CONTINUE
RETURN
END
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Figure 1. Cantilever Type Structure
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Figure 2. Small Cylinder Structure
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Figure 3. Large Cylinder Structure
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Figure 4. Periorated strip. Finite element mesh.
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Figure 5. Perforated strip. Elastic-plastic interface.





