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β = δK,K = δK,S†S = 1 and Ñc = 2. . . . . . . . . . . . 215

LIST OF TABLES

Table 7.1: Matter content of SQCD and its (anomalous) transformation

properties. . . . . . . . . . . . . . . . . . . . . . 190

Table 7.2: Matter content of SQCD and its (non-anomalous) transformation

properties. . . . . . . . . . . . . . . . . . . . . . 190

x



ACKNOWLEDGMENTS

The most delightful part for me in my dissertation is that of the acknowledgments.

It gives me the opportunity to thank all the people who helped me grow into a scientist,

and show my appreciation for the way they have positively affected my life and my

future.

The first thank you goes to my advisor, Ken Intriligator. If I learned anything

regarding how to do research in physics I learned it from him. I can only hope that I

take with me part of his unique intuition and understanding of physics. Thank you,

Ken, for answering my questions, collaborating with me, giving me good advice on all

sorts of issues, and for all the great things you’ve done to help me make it in physics.

An equal amount of gratitude goes to Ben Grinstein. I benefited so much from

essentially, but not officially, having him as my second advisor. His way of doing physics,

his deep understanding, and his amazing personality made it such a great experience

to work and interact with him. I learned so much from Ben, and I owe him a lot for

believing in me and for being such a great teacher. Thanks, Ben.

My other main collaborator during my PhD, Jeff Fortin, deserves a special

mention too. We started working together when he arrived to UCSD as a postdoc, and

I’m sure that without him around I would be lost. He was so patient with me, and so

willing to share his intuitions and understanding. It was a joy doing calculations and

studying papers with Jeff, and I’m looking forward to more collaborations with him in

the future.

My dissertation has come to fruition also due to the time and effort of the

members of my committee, Mark Gross, Julius Kuti, Justin Roberts, and Frank

Wuerthwein. Thank you very much for the stimulating discussions we have had, and

for your interest in my research.

As a student at UCSD I have benefited immensely from discussions with Julius

Kuti, Aneesh Manohar, and John McGreevy. I will miss asking questions and getting

such thoughtful and precise answers from them. I have also learned a lot from Nitu

xi



Kitchloo. Nitu taught geometry and physics, the most inspiring and enjoyable course

I have ever attended, and we have had many interesting conversations that helped

me see the world from the eyes of a mathematician. He was also on my advancement

committee.

Thank you to my teachers at UCSD—Dan Dubin, George Fuller, Ben Grinstein,

Ken Intriligator, Elizabeth Jenkins, Nitu Kitchloo, Tom O’Neil, Raj Pathria, Lu Sham,

and Art Wolfe—for the stimulating courses they taught. I would also like to thank my

undergraduate advisor, Theocharis Apostolatos, and my master’s advisor, Jan de Boer,

for their encouragement and for all that they have taught me.

Thanks to my present and former fellow graduate students at UCSD—Prarit

Agarwal, Grigor Aslanyan, Casey Conger, Chris Murphy, Randy Kelley, Chris Schroeder,

Brian Shotwell, David Stone, Matt Sudano, and Patipan Uttayarat—as well as the

postdocs—Antonio Amariti, Jeff Fortin, Andy Fuhrer, Dani Nogradi, David Pirtskhalava,

Ricky Wong, Jaewon Song, Ze’ev Surujon, and Wouter Waalewijn. They have offered

me their knowledge, they have tolerated me for a long time, and they have done their

best to make my life “at work” as enjoyable as it could be.

In my undergrad years back in Athens, Greece, I was fortunate to meet my

best friends Artemis Geromitsos and Dimitris Korres. Thank you guys so much for all

the fun times and the amazing conversations. Thank you also to Romulo Goncalves,

Dimitris Palioselitis, Menelaos Tsiakiris, and Johan Vande Voorde for the good times

in Amsterdam during my master’s.

During my PhD I had the priviledge to meet people whose papers have inspired

and intrigued me, people whose achievements have acted as a guiding light and have

fueled my passion for physics. Thank you to Philip Argyres, Zohar Komargodski, Hong

Liu, Emil Mottola, David Poland, and Joe Polchinski for all the inspiration you gave

me. I would also like to thank Joe Polchinski for all his help during the stressful

postdoc-application period.

Of course physics-related people are not the only ones that have made this

xii



dissertation possible. I couldn’t possibly thank my parents Thanasis and Maria enough

for supporting my pursuits so passionately and for their unconditional love. I know that

I can always rely on them, and that makes my life so much easier. My sister Vanessa

has also helped me tremendously. She has motivated me throughout my life, and has

always acted as the best example of high achievement and pursuit of knowledge and

excellence.

My wife Jenny deserves the closing paragraph. She has added so much to my

life, and has helped me far beyond what I could have imagined. She has inspired me

with her stunning creativity and her brilliance, and she has made me content with her

understanding for my passions. Thank you so much, Jenny, for your patience and for

your love.

Technical acknowledgments: Chapter 2 is a reprint of the material as it appears

in “Limit Cycles in Four Dimensions,” J.-F. Fortin, B. Grinstein and A. Stergiou, JHEP

1212, 112 (2012), arXiv:1206.2921. Chapter 3 is a reprint of the material as it appears

in “Limit cycles and conformal invariance,” J.-F. Fortin, B. Grinstein and A. Stergiou,

JHEP 1301, 184 (2013), arXiv:1208.3674. Chapter 4 is a reprint of the material as

it appears in “On limit cycles in supersymmetric theories,” J.-F. Fortin, B. Grinstein,

C.W. Murphy and A. Stergiou, JHEP 1212, 112 (2012), arXiv:1206.2921. Chapter 5

is a reprint of the material as it appears in “Current OPEs in Superconformal Theories,”

J.-F. Fortin, K. Intriligator and A. Stergiou, JHEP 1109, 71 (2011), arXiv:1107.1721.

Chapter 6 is a reprint of the material as it appears in “Superconformally Covariant OPE

and General Gauge Mediation,” J.-F. Fortin, K. Intriligator and A. Stergiou, JHEP

1112, 64 (2011), arXiv:1109.4940. Chapter 7 is a reprint of the material as it appears

in “Field-theoretic Methods in Strongly-Coupled Models of General Gauge Mediation,”

J.-F. Fortin and A. Stergiou, Nucl.Phys. B873, 92 (2013), arXiv:1212.2202. I was

a coauthor of all of these papers. This work was supported in part by UCSD grant

DOE-FG03-97ER40546.

xiii

http://dx.doi.org/10.1007/JHEP12(2012)112
http://dx.doi.org/10.1007/JHEP12(2012)112
http://arXiv.org/abs/1206.2921
http://dx.doi.org/10.1007/JHEP01(2013)184
http://arXiv.org/abs/1208.3674
http://dx.doi.org/10.1007/JHEP12(2012)112
http://arXiv.org/abs/1206.2921
http://dx.doi.org/10.1007/JHEP09(2011)071
http://arXiv.org/abs/arXiv:1107.1721
http://dx.doi.org/10.1007/JHEP12(2011)064
http://dx.doi.org/10.1007/JHEP12(2011)064
http://arxiv.org/abs/1109.4940
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.009
http://arXiv.org/abs/1212.2202


VITA

2005 B.S. in Physics, National and Capodistrian University of

Athens

2007 M.S. in Theoretical Physics, University of Amsterdam

2007–2013 Teaching and Research Assistant, University of California,

San Diego

2013 Ph.D. in Physics, University of California, San Diego

xiv



PUBLICATIONS

Jean-François Fortin and A.S., “Field-theoretic Methods in Strongly-Coupled Models of

General Gauge Mediation”, Nucl.Phys. B873, 92 (2013), arXiv:1212.2202.

Jean-François Fortin, Benjamı́n Grinstein, Christopher W. Murphy and A.S., “On limit

cycles in supersymmetric theories”, Phys.Lett. B719, 170 (2013), arXiv:1210.2718.

Jean-François Fortin, Benjamı́n Grinstein and A.S., “Limit cycles and conformal invari-

ance”, JHEP 1301, 184 (2013), arXiv:1208.3674.

Jean-François Fortin, Benjamı́n Grinstein and A.S., “Limit cycles in four dimensions”,

JHEP 1212, 112 (2012), arXiv:1206.2921.

Jean-François Fortin, Benjamı́n Grinstein and A.S., “Scale without conformal invariance

at three loops”, JHEP 0812, 85 (2012), arXiv:1202.4757.

Jean-François Fortin, Benjamı́n Grinstein and A.S., “Cyclic unparticle physics”, Phys.

Lett. B709, 408 (2012), arXiv:1110.1634.

Jean-François Fortin, Kenneth Intriligator and A.S., “Superconformally Covariant OPE

and General Gauge Mediation”, JHEP 1112, 64 (2011), arXiv:1109.4940.

Jean-François Fortin, Benjamı́n Grinstein and A.S., “Scale without Conformal Invariance:

Theoretical Foundations”, JHEP 1207, 25 (2012), arXiv:1107.3840.

Jean-François Fortin, Kenneth Intriligator and A.S., “Current OPEs in Superconformal

Theories”, JHEP 1109, 71 (2011), arXiv:1107.1721.

A.S., “The chet package”, arXiv:1106.2809.

xv

http://dx.doi.org/10.1016/j.nuclphysb.2013.04.009
http://arXiv.org/abs/1212.2202
http://dx.doi.org/10.1016/j.physletb.2012.12.059
http://arXiv.org/abs/1210.2718
http://dx.doi.org/10.1007/JHEP01(2013)184
http://arXiv.org/abs/1208.3674
http://dx.doi.org/10.1007/JHEP12(2012)112
http://arXiv.org/abs/1206.2921
http://dx.doi.org/10.1007/JHEP08(2012)085
http://arXiv.org/abs/arXiv:1202.4757
http://dx.doi.org/10.1016/j.physletb.2012.02.046
http://dx.doi.org/10.1016/j.physletb.2012.02.046
http://arxiv.org/abs/1110.1634
http://dx.doi.org/10.1007/JHEP12(2011)064
http://arxiv.org/abs/1109.4940
http://dx.doi.org/10.1007/JHEP07(2012)025
http://arXiv.org/abs/arXiv:1107.3840
http://dx.doi.org/10.1007/JHEP09(2011)071
http://arXiv.org/abs/arXiv:1107.1721
http://arXiv.org/abs/arXiv:1106.2809


Jean-François Fortin, Benjamı́n Grinstein and A.S., “Scale without Conformal Invariance:

An Example”, Phys.Lett. B704, 74 (2011), arXiv:1106.2540.

A.S., “Precession of Pericenter: A More Accurate Approach”, arXiv:gr-qc/0610158.

xvi

http://dx.doi.org/10.1016/j.physletb.2011.08.060
http://arXiv.org/abs/arXiv:1106.2540
http://arxiv.org/abs/gr-qc/0610158


ABSTRACT OF THE DISSERTATION

A tale of scale, conformal, and superconformal invariance

by

Andreas Stergiou

Doctor of Philosophy in Physics

University of California, San Diego, 2013

Professor Kenneth Intriligator, Chair

Professor Julius Kuti, Co-Chair

This dissertation consists of two parts. In the first, we study the possibility of

recurrent trajectories in renormalization-group flows of unitary four-dimensional gauge

theories, and the relation of scale and conformal invariance. We carry out three-loop

computations of the beta function in dimensional regularization, and we establish

that the beta-function vector field of four-dimensional gauge theories admits recurrent

trajectories. It is then demonstrated that theories that live on these trajectories are

conformal. Along the way, we construct a perturbative proof that scale implies conformal

invariance in relativistic unitary quantum field theories in four spacetime dimensions.

We also point out that the beta function of supersymmetric theories does not admit

limit cycles in perturbation theory.

xvii



The second part of this dissertation pertains to theories that are superconformal,

or approximately superconformal. We use the constraints of superconformal symmetry

to illustrate features of two- and three-point correlators involving conserved-current

insertions. This is motivated by “general gauge mediation” where two-point current-

correlators parametrize the soft masses of the minimal supersymmetric standard model.

We show that the superconformal symmetry and current conservation are enough to fix

the operator products of descendants in terms of those of the primaries. Subsequently

we consider soltly broken superconformal symmetry and we study analyticity properties

of these correlators, e.g. their discontinuities. We then use the optical theorem to relate

them to total scattering cross sections from visible to hidden sector states. We also

discuss how the current-current OPE can be truncated to the first few terms to get

a good approximation to the soft masses. Finally, we demonstrate our techniques in

several examples, both at weak and strong coupling. Among them, we introduce a

new framework where supersymmetry-breaking arises both from a hidden sector and

dynamically.

xviii



Chapter 1

Introduction

In this first, introductory chapter we present a summary of the results presented

in the following chapters, and we attempt to elucidate the motivation for this work.

1.1. The framework

The most successful language for the description of the elementary constituents

of matter is that of quantum field theory (QFT). It arises when quantum mechanics

and the special theory of relativity are combined, and it is so powerful and rich that

it has helped us reveal profound results about the nature of the subatomic world for

several decades. Despite its long study, QFT keeps hiding a lot of secrets, and active

research is being undertaken to uncover more features of the fundamental particles and

their interactions.

The success of QFT can be summarized in the discovery of the Higgs boson at

the Large Hadron Collider in Geneva, Switzerland, in 2012. It was theorized in the

mid-60’s, based on thinking in the context of QFT, that a spin-zero particle should

exist, its role being the generation of the property we call mass. A huge experimental

effort, of a scale never before seen in history, and technological advances that would

have not been made without the motivation of finding out if the Higgs particle exists,

led to its discovery almost fifty years after its first appearance in the mathematical

formulas of QFT. The discovery of the Higgs boson is only one example of the guidance

1



2

QFT provides to experiment. Without it, it would have been nearly impossible to

experimentally approach the question of the origin of mass in the universe.

Although the study of QFT is well-motivated by its early success, it has

become clear that the best formulation of QFT is currently out of reach. This is a

rather unsatisfactory state of affairs, but we are willing to put up with it because of

QFT’s unique ability to describe the subatomic world. However, very complicated and

impractical calculations are required nowadays to make progress, so it has become

common to analyze systems with a lot of symmetry as a way to simplify the seemingly

intractable calculations. Luckily, even in the case where higher symmetry is involved,

QFT still contains a wealth of striking phenomena.

1.2. Symmetries in physics

Probably the most important lesson one learns in early physics education is that

it is much easier to solve problems with a high degree of symmetry. As an example, it

is very easy to find the electric field outside charge distributed continuously on a sphere,

like the one in Figure 1.1a. However, if the charge was distributed on an egg like the

one in Figure 1.1b, then the calculation would be a lot more complicated, although an

egg is not that asymmetric.

(a) A sphere [1] (b) An egg [2]

Figure 1.1: Electric charge can be distributed continuously on the surface of a sphere
or that of an egg. The electric field outside the sphere is much easier to compute than
that outside the egg.
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The above example illustrates clearly that, when possible, one should study the

most symmetric systems, for those capture the essential physics without introducing

computational complications. Of course one should not be misguided: the most

symmetric examples may not exhibit the most general behavior.

In high-energy physics there is a spacetime symmetry we always impose on

our theories: Poincaré invariance. This is the sanity requirement that experiments

performed in various locations in space and at various times should give the same

answers, as well as the requirement of Lorentz invariance, i.e. that rotations and boosts

of the experimental apparatus do not affect the essential results of the experiment.

The Standard Model of particle physics, the most successful theory at our disposal, is

Poincaré invariant.

Although Poincaré invariance imposes some restrictions on the form of the

theories we can consider, it is natural to ask if we can impose further symmetries in

a consistent way. The motivation is of course that the more symmetry we have, the

easier it becomes to analyze the theory under consideration. Now, it turns out that

aside from spacetime symmetries QFTs can also have global symmetries that act on

the fields of QFT but not on spacetime. At this point an example is useful. A free

complex scalar field φ of mass m is described by the Klein–Gordon Lagrangian,

L = ∂µφ
∗∂µφ−m2φ∗φ. (1.2.1)

The scalar field φ inherits a transformation property from the fact that it is a function

on spacetime: under a Lorentz transformation L, φ obeys U−1(L)φ(x)U(L) = φ(L−1x),

where L−1 is the inverse Lorentz transformation, and U(L) is a unitary operator

representing the Lorentz transformation L. In other words, the Lorentz transformed

field at the Lorentz transformed point has a value equal to the value of the untransformed

field at the original point. This is the statement that φ is a scalar field. It is not hard

to see that the Lagrangian (1.2.1) is also a scalar under Lorentz transformations.

On top of the Lorentz symmetry, we can quickly see that we can multiply
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the field φ in (1.2.1) by a complex constant phase, φ → eiαφ, α∗ = α, and leave L

invariant. This is a new type of symmetry of L , called a global symmetry because the

parameter α is not a function of spacetime.

Now, in the quest for higher symmetry, one may wonder if the Poincaré group

can be combined with a global symmetry group in a non-trivial way. The answer was

given in [3] and it is negative. The result of [3], known as the Coleman–Mandula

theorem, is that a QFT’s symmetry group is a direct product of the Poincaré group

and the global symmetry group; no non-trivial mixing between the two is allowed.

Like every theorem, the Coleman–Mandula theorem relies on certain assumptions.

One is free to relax these assumptions and, if that is done in a meaningful way, it results

in novel ideas. It turns out that relaxing key assumptions of the Coleman–Mandula

theorem leads to supersymmetry, scale, and conformal symmetry. The details are

rather technical, but the point that should be clear is that the two possible loopholes

of the Coleman–Mandula theorem result in the extension of the spacetime symmetry

group of QFT. Supersymmetric theories, as well as conformal and even superconformal

theories, enjoy a high degree of symmetry which makes them far more tractable than

ordinary QFTs. It is not a surprise, then, that the study of such theories has dominated

the QFT research for the past forty years. In this dissertation we study conformal,

supersymmetric and superconformal theories.

1.3. Scale and conformal invariance

In the real world phenomena we observe and measurements we make are fully

dressed with all the effects of quantum mechanics and the various interactions. In our

theoretical studies, however, we simply introduce a set of parameters and we perform

calculations with these parameters trying to reproduce our observations. Therefore, in

order to make contact with experiment, we have to build a bridge between parameters

of our theoretical model and parameters with which we describe our observations.
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This bridge is called renormalization, and it is necessary in order to make sense of

computations in QFT. A great deal of confusion resulted during the development of

QFT from the fact that renormalization was not included in the calculations, which

thus gave divergent results. With the advent of renormalization it was soon realized

that the divergences, which were there in intermediate steps of the computations, were

actually simply an artifact of the way the calculations were performed.

At the technical level, in order to implement the idea of renormalization one

introduces an arbitrary energy scale µ in the theory. The requirement is then that

physical quantities do not depend on µ, and it is encoded in the renormalization-group

equation (RGE). The RGE is describing the evolution of the theory’s parameters as

we vary the renormalization scale µ. If the parameters of the theory are collectively

denoted by gi, then the RGE that describes the evolution of the coupling with µ is a

first-order differential equation:

µ
dgi

dµ
= βi(g), (1.3.1)

where βi(g) is the so-called beta function. If we think of the couplings as coordinates

and of t = − ln(µ/µ0) as time, then the beta function is the velocity of evolution of

the system. The solution to the RGE is called a flow.

The content of (1.3.1) is that as we vary the energy at which we study the

theory, the renormalized parameters of our theory change. We can think of this as a

flow in the space of theories, since a theory is defined by the values of its parameters.

Now suppose that we follow the flow all the way to its end, i.e. to the limit t → ∞.

What can that end be? This question was first considered in its generality in [4], where

the possibility of a fixed point was considered along with that of a limit cycle and other

more exotic final states.

The interpretation of the physics of the fixed point is well-known: the theory is

conformally-invariant. Let us review this fact. A conformal transformation is a change
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of coordinates that results in the metric transforming as

γµν(x)→ e−2σ(x)γµν(x).

Infinitesimally this becomes δγµν = −2γµνδσ. The variation of the action is then

δS =

∫
ddx

δS

δγµν
δγµν = −2

∫
ddx
√
γ

1
√
γ

δS

δγµν
γµν δσ,

where γ is the determinant of the metric, and we work in Euclidean spacetime with

dimension d. The stress-energy tensor is defined as

Tµν(x) = − 2
√
γ

δS

δγµν(x)
,

and it is by construction a symmetric tensor. With this definition we can write

δS = −1
2

∫
ddx
√
γ Tµνδγ

µν =

∫
ddx
√
γ Tµµδσ, (1.3.2)

where Tµµ ≡ γµνTµν is the trace of the stress-energy tensor.

The infinitesimal variation δσ can be x-dependent as well as x-independent. In

the former case the transformation is called a scale transformation, while in the latter

a special conformal transformation. Now, if we are performing a scale transformation,

then the action will remain invariant if the trace of the stress-energy tensor is a

total derivative, as is clear from (1.3.2). If δσ is x-dependent, then the theory enjoys

invariance under conformal transformations if the trace of the stress-energy tensor is

zero.

But what is the relation between this and the fact that a theory is conformal at

a fixed point of the RG running? It turns out that the trace of the stress-energy tensor

in a QFT is also given by Tµµ = βiOi, where Oi is a complete set of scale-dimension-d
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operators in the QFT and βi are the beta functions.1 Consequently, if the beta functions

are zero, i.e. if we are at a fixed point of the renormalization-group flow, then the

theory is conformal.

Let us summarize what we have found. If we take a QFT in flat-space, then

the theory is conformal if Tµµ = 0, and it is only scale-invariant if Tµµ = ∂µV
µ for

some local operator V µ(x) (without explicit x-dependence). For technical reasons, the

operator V µ cannot be equal to a linear combination of a conserved current and the

divergence of a two-index tensor. There are several questions that arise at this point.

Are there theories that are invariant under scale transformations but not under the

special conformal ones? If Tµµ = 0 corresponds to fixed points, what does Tµµ = ∂µV
µ

correspond to?

To answer these questions certain assumptions have to be made. We are

interested in relativistic QFTs that are unitary, renormalizable, and have a well-defined

stress-energy tensor. We will call these theories well-behaved from now on.

1.3.1. Two-dimensional QFT

In two-dimensions the question of scale without conformal invariance was an-

swered a long time ago. The basis for the answer was given by the results of Zamolod-

chikov [6] on the so called c-theorem. More specifically, Zamolodchikov showed that

in any two-dimensional QFT one can define a function of the couplings that is mono-

tonically decreasing along the RG flow. This result corroborates the intuition that

the “number of degrees of freedom” of a QFT decreases in the flow from high to low

energies, an intuition based on the idea that one can excite more degrees of freedom

using high-energy probes.

Regarding the relation of scale and conformal invariance, Polchinski showed they

are actually equivalent in two dimensions [7]. In other words, there is no well-behaved

two-dimensional QFT that is scale-invariant without being conformal, or, to connect

1For a derivation using dimensional regularization the reader is referred to [5].
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with the previous section, there is no appropriate operator V µ such that Tµµ = ∂µV
µ.

The results of Zamolodchikov and Polchinski are based on very general principles,

and so it was suggested soon after their discovery that even QFTs in higher spacetime

dimensions should display similar properties. Although a wealth of evidence supported

this expectation, it was not until very recently that significant progress was made.

Let us note here that the results we describe below are based on methods that

are available only for QFTs defined in even dimensions. Similar questions can be

asked about QFTs in odd spacetime dimensions, and there is a very strong interest in

the answers. Nevertheless, we will concentrate in the case of even dimensions in this

dissertation.

1.3.2. Four-dimensional QFT

The results we reviewed in the previous section imply that there are no exotic

flows in the RG running of two-dimensional QFTs. More specifically, the endpoints

of any RG flow in two-dimensional QFTs are conformal field theories, where the beta

functions vanish. There is no room for limit cycles or other more exotic flows as

envisioned by Wilson. Nevertheless, the situation in higher dimensions is more rich, as

we now explain. Explicit calculations and further comments can be found in chapter 2.

The usual calculation of beta functions in QFTs is done in perturbation theory

and proceeds order by order in the loop expansion. The beta function is then a

function of the couplings, and CFTs are positions in coupling space with vanishing

beta functions. Now suppose that, contrary to the case of two-dimensional QFTs, an

appropriate operator V µ exists such that Tµµ = ∂µV
µ 6= 0. To make the discussion

more concrete, let us work with multi-flavor φ4 theory,

L = 1
2∂µφa∂

µφa − 1
4!λabcdφ

aφbφcφd. (1.3.3)

This example was considered by Polchinski [7], who proceeded as follows. We know that

Tµµ = βiOi = βabcdφaφbφcφd, and we can also verify that the most general candidate
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V µ is V µ = Qabφa∂
µφb, with Qab anti-symmetric. Then, ∂µV

µ = Qabφa∂
2φb, and after

we use the equations of motion we find that the theory under consideration will be

scale-invariant without being conformal at positions in coupling space for which

βabcd = Qaeλebcd + permutations. (1.3.4)

The aim is now to find values for the couplings and the entries of Q for which (1.3.4)

is true. Polchinski then worked in d = 4− ε spacetime dimensions, a necessary trade-off

that allows computational control, and used the one-loop beta function to prove that

there are no solutions to (1.3.4) that do not make both sides zero. Although his result

is valid at one loop and in d = 4− ε, it is nevertheless rather interesting that there are

no non-trivial one-loop solutions in the space of couplings of the form of (1.3.4).

Prompted by Polchinski’s result, Dorigoni and Rychkov [8] considered a more

general theory, a theory of real scalars φa and Weyl spinors ψi, with the most general

scale-invariant couplings allowed:

L = 1
2∂µφa ∂

µφa + iψ̄iσ̄
µ∂µψi − 1

4!λabcdφaφbφcφd −
1
2ya|ijφaψiψj −

1
2y
∗
a|ijφaψ̄iψ̄j .

The candidate virial current is now

Vµ = Qabφa∂µφb − Pijψ̄iiσ̄µψj ,

where Q is anti-symmetric and P anti-Hermitian. At one loop, they showed a result

similar to Polchinski’s, i.e. that there are no non-trivial solutions to

βabcd −Qabcd = 0, and βa|ij − Pa|ij = 0, (1.3.5)
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where

Qabcd = Qaeλebcd + 3 permutations,

Pa|ij = Qabyb|ij + (Pkiya|jk + i↔ j).

(1.3.6)

The first examination of (1.3.6) in higher orders in perturbation theory was

considered in [9–11]. It came as a surprise that there are solutions to (1.3.5) when

higher loop orders are included. In order to find the solutions, one has to work at three

loops.

The next step was to move away from d = 4− ε and go to the interesting case

of d = 4. As explained in chapter 2 below, one can still find nontrivial solutions of

(1.3.5) in a gauge theory with scalars and Weyl spinors, whose gauge coupling sits at a

fixed point.

1.3.3. Interpretation of the solutions

According to our arguments above, when the beta functions are zero the theory

is conformal and sits at a fixed point of the RG. But what about beta functions of

the form of (1.3.5)? In that case, one can verify that the evolution of the couplings is

described by

λ̄abcd(t) = Ẑa′a(t)Ẑb′b(t)Ẑc′c(t)Ẑd′d(t)λa′b′c′d′ ,

ȳa|ij(t) = Ẑa′a(t)Ẑi′i(t)Ẑj′j(t)ya′|i′j′ ,

where the Ẑ(t) matrices are given by

Ẑaa′(t) =
(
eQt
)
aa′
, Ẑii′(t) =

(
ePt
)
ii′
.

Then any point (λ̄abcd(t, λ, y), ȳa|ij(t, λ, y)) lies on a trajectory that satisfies (1.3.5),

since the couplings and also the beta functions transform homogeneously along the
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trajectory:

β̄abcd(t) = Ẑa′a(t)Ẑb′b(t)Ẑc′c(t)Ẑd′d(t)βa′b′c′d′ ,

β̄a|ij(t) = Ẑa′a(t)Ẑi′i(t)Ẑj′j(t)βa′|i′j′ .

(1.3.7)

Here, unbarred parameters are evaluated at (λabcd, ya|ij), i.e., at a solution of (1.3.5).

The behavior (1.3.7) ensures that Qab and Pij are constant along the scale-invariant

trajectory.

Therefore, since the eigenvalues of Q and P are purely imaginary, we have found

that solutions of (1.3.5) are recurrent trajectories of the beta function, i.e. limit cycles

and ergodic trajectories! But what is the physics of these trajectories? It turns out

that even if the beta functions are nonzero and of the specific form of (1.3.5), then the

theory is still conformal! This stems from the work of Jack and Osborn [5], which we

now review. More details can be found in chapter 3.

The crucial observation of Jack and Osborn is the fact that the trace of the

stress-energy tensor can get contributions from divergence terms, i.e.

Tµµ = βiOi + ∂µJ
µ,

where Jµ is a dimension-three operator. Note that if the theory is conformal and the

operator Jµ has no anomalous dimension, then ∂µJ
µ = 0. Therefore, we consider the

case where Jµ has an anomalous dimension, but of course Tµµ does not. Now, one can

express ∂µJ
µ in the basis of the dimension-four operators Oi, and that will induce a

shift of the beta functions. So the expectation is that the beta function is not the

quantity that can tell us if a theory is conformal.

To be more explicit, let us take the example (1.3.3). Then, the most general

candidate Jµ is Jµ = Sabφa∂
µφb, where Sab is an anti-symmetric matrix with entries
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that are functions of the couplings. After we use the equations of motion, we then find

Tµµ = (βI − (Sλ)I)OI

where the index I denotes the collection of indices (abcd), and (Sλ)I = Saeλebcd +

permutations.

Thus, we arrive at the conclusion that a theory with couplings gI is conformal

if

BI = βI − (Sg)I = 0. (1.3.8)

One can actually show that if βI = 0 then BI = 0, but the converse does not hold. As

it turns out, the solutions found in [9–11] have BI = 0, and the same is true for the

solutions in chapter 2. This is shown in chapter 3, with an explicit calculation of S at

three loops. Consequently, we have found new conformal theories.

One can further argue that, at least in perturbation theory, whenever solutions

of βI = (Qg)I are found, then (Qg)I = (Sg)I , and thus the theory is conformal by

(1.3.8). This follows from consistency conditions stemming from the Abelian nature

of the Weyl group, and is shown explicitly in chapter 3. If there were solutions to

βI = (Qg)I with (Qg)I 6= (Sg)I , then the theory would be scale-invariant without

being conformal. With our arguments we have thus shown that scale implies conformal

invariance in perturbation theory in well-behaved theories. This is the main result of

chapter 3.

1.4. Supersymmetry and its breaking

As we have already remarked, the Coleman–Mandula theorem constrains the

nature of the spacetime symmetry group of a QFT. Nevertheless, Coleman and Mandula

only considered bosonic operators to construct their proof, and so one can relax that

assumption to obtain theories with an enlarged symmetry group, i.e. supersymmetric
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theories. Global supersymmetry transformations are generated by the fermionic quantum

operators Q, called supercharges, which transform fermionic states into bosonic states

and vice-versa:

Q|fermion〉 ∝ |boson〉 and Q|boson〉 ∝ |fermion〉.

This immediately implies that the number of fermionic and bosonic degrees of freedom

in a supersymmetric theory are equal.

1.4.1. A digression

One can ask if scale and conformal invariance are equivalent in supersymmetric

theories. This is the topic explored in chapter 4 and the answer is of course positive as

follows from the previous section. Nevertheless, the question is still interesting in its own

right, since in supersymmetric theories the extra symmetry results in simplifications.

More specifically, if we calculate the S of (1.3.8) in the most general renormal-

izable and classically scale-invariant supersymmetric theory, then we find S = 0 to all

orders in perturbation theory. This is yet another example of the simplicity enforced by

symmetry. As a result, the beta functions of supersymmetric theories do not have limit

cycles or ergodic trajectories, and the only conformal theories are the ones associated

with fixed points of the RG flows.

1.4.2. Supersymmetry breaking

From our brief description of supersymmetry (SUSY), it is clear that SUSY is

not part of our world, for we do not observe an equality of fermionic and bosonic degrees

of freedom. Therefore, if SUSY was once a symmetry of the universe, it must have been

broken somewhere along the evolution of the universe. However, SUSY could not have

been broken arbitrarily, since, although it is certainly broken today, the symmetry still

manifests itself in certain ways, mainly through properties of the superpartner particles.

These are particles that are partnered with the observed particles to give equal number
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of bosonic and fermionic degrees of freedom at some point in the past. As an example,

SUSY predicts the existence of fermionic superpartners of the gauge bosons, called

gauginos, and bosonic partners of quarks called squarks. If SUSY were not broken,

these would have the same mass with the corresponding gauge bosons and quarks, but

since we do not observe them the symmetry is broken and they have acquired large

masses. That’s how they avoid detection in experiments.

Various attempts to keep SUSY-breaking consistent with the observed phe-

nomenology have led to the idea of mediation of SUSY-breaking, whereby SUSY is

broken in a hidden sector and the breaking is communicated to our visible sector

through interactions. The interactions will certainly be gravitational, but one could in

addition construct models where the gauge interactions of the Standard Model play

an essential role. Indeed, gauge mediation requires that SUSY be broken in a hidden

sector with the breaking communicated to the visible sector through the familiar gauge

interactions. All soft SUSY-breaking terms in the visible sector are generated via loop

effects, and desired phenomenology is obtained very naturally.

In the minimal version of gauge mediation one assumes the existence of a hidden

sector that contains a gauge singlet chiral superfield S, as well as a messenger sector

with fields Φ, Φ̃ that are charged under the gauge interactions of the standard model.

Through interactions in the hidden sector S develops a vacuum expectation value

both in its first and its last component, 〈S〉 = 〈S〉+ θ2〈FS〉. The superpotential that

couples the hidden sector with the messenger sector is Wh⊗m ∝ S Tr(Φ̃Φ), such that

the SUSY-breaking of the hidden sector is transmitted to the messenger sector. The

usual gauge interactions then communicate the SUSY-breaking to the supersymmetric

extension of the standard model generating the appropriate soft SUSY-breaking terms.

1.4.3. General gauge mediation

A powerful framework for the study of gauge mediation, dubbed general gauge

mediation (GGM), was introduced in [12]. In GGM soft terms are written in terms
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of one- and two-point correlators of components of a current (linear) superfield of the

hidden sector,

J (z) = J(x) + iθj(x)− iθ̄̄(x)− θσµθ̄jµ(x) + · · · , (1.4.1)

where the ellipsis stands for derivative terms, following from the conservation equations

D2J = D̄2J = 0, where D and D̄ are appropriate covariant derivatives. The linear

superfield is the SUSY generalization of a conserved current. Among the virtues of GGM

is its ability to disentangle genuine characteristics of gauge mediation from possible

model-dependent features. GGM also leads to phenomenological superpartner-mass sum

rules, that could be verified by experiments.

The correlators one considers in GGM are

〈J(x)J(0)〉 = C0(x)
F.T.−−→ C̃0(p),

〈jα(x)̄α̇(0)〉 = −iσµαα̇∂µC1/2(x)
F.T.−−→ σµαα̇pµC̃1/2(p),

〈jµ(x)jν(0)〉 = (ηµν∂
2 − ∂µ∂ν)C1(x)

F.T.−−→ −(ηµνp
2 − pµpν)C̃1(p),

〈jα(x)jβ(0)〉 = εαβB1/2(x)
F.T.−−→ εαβB̃1/2(p),

(1.4.2)

where F.T. stands for Fourier-transforming, F.T. ≡ i
∫
d4x e−ip·x.

Motivated by the theoretical appeal of gauge mediation, in chapter 5 we study

constraints of superconformal symmetry on correlation functions involving the linear

superfield J . The foundation for our work was laid down by Osborn [13], who worked

out the general form of two- and three-point correlation functions of superconformal

primary operators. Using the results of [13] we find the general form of three-point

functions with two current insertions, and we show that, within a superconformal field

theory, the superconformal algebra and current conservation are powerful enough to

relate all possible two-operator products of components of the current superfield (1.4.1)

to the operator product J(x)J(0). Consequently, only the correlator 〈J(x)J(0)〉 is

necessary, while all other correlators in (1.4.2) can be expressed in terms of 〈J(x)J(0)〉

with the help of the superconformal group. We also point out that in superconformal
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theories the spacetime symmetry is not enough to guarantee that only the lowest-

components’ operator product is necessary. The Ward identity of current conservation

is essential in deriving our result for the operator product J (z)J (0).

Here we also rely on the operator product expansion (OPE). The idea behind

the OPE is that local physics can be captured by local operators. Consider the situation

where one wants to calculate the correlation function 〈J(x)J(0)〉, in the limit x→ 0,

where J is some operator. The product operator J(x)J(0) is not a local operator, yet

it is reasonable to expect that in the limit x → 0 there is an expansion of J(x)J(0)

which can approximately describe the same physics as the full operator, i.e. such that

it can substitute J(x)J(0) in any correlation function. So we write

J(x)J(0) ∼
∑

cO(x)O(0)

where the operator O is of course local and the x-dependence of the left-hand side is

captured by the coefficient c-functions cO(x), called the Wilson coefficients. The Wilson

coefficients are universal, i.e. they don’t depend on the correlation function in which

the substitution is made.

In practical applications of the OPE one splits all momentum integrals in two

regions. If a vacuum expectation value of an operator is considered, then only the

low-energy behavior is captured, while if a Wilson coefficient is considered, then the

calculation is only taking care of the high-energy effects. This splitting of scales inherent

in the OPE makes it a very useful tool for the study of theories even at strong coupling.

In chapter 6 we study the J(x)J(0) OPE and we find an approximation to

the soft MSSM SUSY-breaking masses even for strongly-coupled hidden sectors. The

expansion relies on several approximations (e.g. cuts at supersymmetric threshold,

uniform convergence of the OPE) but, at least in the simple case of minimal gauge

mediation, a complete knowledge of the OPE leads to an exact evaluation of the soft

SUSY-breaking masses. These are the masses of the squarks and gauginos that SUSY

predicts, and so they are interesting to theorists and experimentalists alike.
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It seems contradictory that we can use the power of the symmetry, which

we took advantage of in chapter 5, even when the symmetry is broken, but this is

typical of spontaneous breaking of symmetries. The theory still respects the symmetry,

but the vacuum does not. So in order to carry out our computations we promote

all symmetry-breaking parameters to fields with suitable transformation properties.

The symmetry is then restored, and the expectation value of the fields gives rise to

spontaneous symmetry breaking.

To avoid complications such as lengthy OPE computations and analytic continu-

ations, a further approximation is introduced in chapter 6, for which one only needs to

identify the lowest-dimension operators that have non-zero vacuum expectation values

after acted upon with the SUSY operators Q2 and Q̄2Q2. In the example of minimal

gauge mediation there is only one such operator, namely S†S, and one finds that our

approximation to the soft masses is actually only a factor of two smaller than the exact

answers at this order.

Finally, in chapter 7 we use the results of chapter 6 to understand the generation

of soft masses even when the sector responsible for SUSY-breaking is strongly-coupled.

At strong coupling direct computational control is lost, but the OPE can still be used

since the calculation of the Wilson coefficients is done at high energies where the

theories we consider are weakly-coupled due to asymptotic freedom.

The hidden-sector theory we study is the supersymmetric extension of QCD,

which is known even at strong coupling to break SUSY in interesting ways [14]. In this

context, we derive explicit expressions for the approximate values of gaugino and squark

masses. Chapter 7 serves as a useful illustration of the ideas presented in chapter 6,

but it also studies a new model of SUSY breaking in supersymmetric QCD, where two

sources of SUSY-breaking exist. This gives a deformation of the SUSY-breaking pattern

of [14], and allows for non-zero gaugino masses as required by phenomenology.
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Chapter 2

Limit Cycles in Four Dimensions

2.1. Introduction

A necessary prerequisite for the complete understanding of quantum field theory

(QFT) is the appreciation of its possible phases. In some cases a phase may be out

of direct computational reach, e.g., the confining phase of QCD, while in others one

may be able to use perturbation theory to gain an understanding of the dynamics of

the theory. For a long time the only perturbatively accessible phase of QFT has been

presumed to be that of a theory at a conformal fixed point, where, e.g., correlators

exhibit power-law scaling.

Recently, the existence of renormalization-group (RG) limit cycles was established

by us in d = 4 − ε spacetime dimensions with a three-loop calculation in a unitary

theory of scalars and fermions [1–3]. Theories in d = 4 − ε are of course unphysical,

but working with them has always been useful in the study of properties of the RG

[4], in the sense that RG effects found in such theories have invariably been shown to

have counterparts in more physical cases. It was therefore suggested by our results that

limit cycles should also occur in integer spacetime dimensions. In the present note we

show that this is indeed the case in a four-dimensional unitary gauge theory.

This new feature of the RG gives rise to an obvious question: “what phase of

QFT is described by a limit cycle?” It follows from the work of Jack and Osborn [5]

that theories that live on limit cycles may be CFTs. As we show in [6] this is indeed

20
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the case for the limit cycle we present below. Thus, although beta functions admit

limit cycles, theories that live on these cycles are conformal.

The existence of recurrent trajectories in the RG has implications for the c-

theorem. This theorem reflects the intuition that coarse-graining reduces the number of

massless degrees of freedom of a QFT, and it comes in different versions, as explained,

e.g., in [7]. The strong version, i.e., that there exists a scalar function of the couplings

c, along any RG flow, that obeys dc/dt ≤ 0, with t the RG time and the inequality

saturated only at fixed points, was proved long ago for QFTs in d = 2 [8], and has been

elaborated on heavily in the literature. Soon thereafter it was suggested that a strong

c-theorem should be true in d = 4 as well [9], and that was indeed shown to be the

case at weak coupling [5, 10], at least when renormalization effects of certain composite

operators are not of relevance [3, 11]. A proof of the four-dimensional version of the

weak version of the c-theorem was recently claimed [12] (see also [13]), i.e., that there

is a c-function such that if two four-dimensional CFTs are connected by an RG flow,

then cUV > cIR. Similar ideas were used in an attempt for a proof of the weak version

of the c-theorem in d = 6 [14].

We hasten to remark that the existence of limit cycles in the beta-function

vector field does not contradict intuition derived from the c-theorem. In particular, the

quantity c that satisfies a c-theorem is constant even on limit cycles, and is expected

to have the same monotonic behavior when it flows from a UV fixed point or limit

cycle to an IR fixed point or limit cycle. However, the existence of RG limit cycles

obviously demonstrates that beta-function flows are not gradient flows.

The outline of the paper is as follows. In the next section we present our

example. We describe in detail the three-loop calculation that establishes the limit

cycle, and we show that the dilatation current of the theory on the limit cycle is

well-defined and free of anomalies. In the last section we conclude and mention a few

open questions.
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2.2. The 4d example

In this section we describe in detail the first example of a limit cycle in d = 4.

2.2.1. The theory

Our theory has an SU(3) gauge group with two singlet real scalars, φ1 and

φ2, two pairs of fundamental and antifundamental active Weyl fermions, (ψ1,2, ψ̃1,2),

as well as 1
2(29− 3ε) pairs of fundamental and antifundamental sterile Weyl fermions.

The kinetic terms are canonical and the interactions are given by1

V = 1
24λ1φ

4
1 + 1

24λ2φ
4
2 + 1

4λ3φ
2
1φ

2
2 + 1

6λ4φ
3
1φ2 + 1

6λ5φ1φ
3
2

+

φ1

(
ψ1 ψ2

)y1 y2

y3 y4


ψ̃1

ψ̃2

+ φ2

(
ψ1 ψ2

)y5 y6

y7 y8


ψ̃1

ψ̃2

+ h.c.

 .

In contrast with the active Weyl spinors, the sterile ones do not interact with the

scalars, but they do interact with the gluons through their kinetic terms. One needs

sterile fermions in order to get a perturbative fixed point for the gauge coupling, à la

Banks–Zaks [2, 15]. The smallest value of ε for which our theory is physical is ε = 1
3 ,

but we will treat ε as an expansion parameter and take ε→ 1
3 at the end. As we will

see, our perturbative results can be trusted in this limit.

The most general virial current in our theory is2

V µ = Qabφa∂
µφb − Pijψ̄iiσ̄µψj , (2.2.1)

where Qab is antisymmetric and Pij anti-Hermitian, i.e., Qba = −Qab and P ∗ji = −Pij .

For compactness we have denoted by ψ3,4 the two antifundamentals ψ̃1,2. By gauge

1The beta functions for all couplings in this theory can be found at http://het.ucsd.edu/
misc/4D_betas2s12f.m.

2Lower case indices from the beginning of the roman alphabet are indices in flavor space for
scalar fields, while lower case indices from the middle are indices in flavor and gauge space for
Weyl spinors.

http://het.ucsd.edu/misc/4D_betas2s12f.m
http://het.ucsd.edu/misc/4D_betas2s12f.m
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invariance Pij = Pji = 0 for i = 1, 2 and j = 3, 4. All these constraints are satisfied by

Q =

 0 q

−q 0

 and P =



ip1 p5 + ip6 0 0

−p5 + ip6 ip2 0 0

0 0 ip3 p7 + ip8

0 0 −p7 + ip8 ip4


.

The virial current (2.2.1) contains a fermionic part, something that can lead

to an ABJ-like anomaly [16, 17] for the dilatation current. In this case, the virial

current would have an extra contribution to its anomalous dimension,3 beyond the one

calculated from its two-point function. This is not allowed by conformal invariance [6].

Therefore, we expect that a limit cycle solution should have the property that the virial

current be not anomalous. Consequently, a consistent limit cycle in a gauge theory

with an SU(n ≥ 3) gauge group and fundamental and antifundamental fermions should

have

TrP = 0.

This condition provides a powerful check on our computations.

2.2.2. The three-loop computation

It is convenient to rewrite compactly the interactions in V as

V = 1
4!λabcdφaφbφcφd + (1

2ya|ijφaψiψj + h.c.).

3As is also the case, e.g., for the axial current [18, Appendix C].
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Here, again, we are using the compact notation for the Weyl spinors, with ψ3,4 standing

for ψ̃1,2. To find a limit cycle we must exhibit solutions to

βg(g, y, λ) = 0 ,

βa|ij(g, y, λ) = −Qa′aya′|ij − Pi′iya|i′j − Pj′jya|ij′ ,

βabcd(g, y, λ) = −Qa′aλa′bcd −Qb′bλab′cd −Qc′cλabc′d −Qd′dλabcd′ ,

(2.2.2)

that do not require zero βa|ij and/or βabcd. This requires both determining the values

of the coupling constants and of the matrices Q and P for which the equations are

satisfied. It would appear, naively, that the system of equations (2.2.2) has more

unknowns than equations, due to the presence of the unknowns Qab and Pij , and is

thus ill-defined. However, in searching for particular solutions, one is free to set some

coupling constants to zero. This is accomplished by using the freedom to redefine the

scalar fields by an O(2) transformation and the active Weyl spinors by a U(2)× U(2)

transformation, with the concomitant redefinition of coupling constants. Note that a

coupling may become zero without its beta function becoming zero, since the couplings

are not exclusively multiplicatively renormalized. Hence, the number of unknowns in

(2.2.2) is reduced and we obtain a well-defined system with equal numbers of equations

and unknowns.

As in Ref. [3] we can calculate the entries of Q and P on a limit cycle in an

expansion in ε. To that end, we expand in the small parameter ε the couplings,

g =
∑
n≥1

g(n)εn−
1
2 , ya|ij =

∑
n≥1

y
(n)
a|ijε

n− 1
2 , λabcd =

∑
n≥1

λ
(n)
abcdε

n ,

and the unknown parameters in the virial current,

Qab =
∑
n≥3

Q
(n)
ab ε

n, Pij =
∑
n≥3

P
(n)
ij εn ,

and we solve Eqs. (2.2.2) order by order in ε. The lowest order entries in Q and P
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are of order ε3, for at lower orders in ε, corresponding to one- and two-loop orders in

perturbation theory, the beta functions produce a gradient flow [5].

To establish a limit cycle we have to compute the ε3-order terms in the ε

expansion of the parameters of the virial current. For a complete calculation of these we

need the two-loop beta function for the quartic coupling, the three-loop beta function

for the Yukawa coupling, and the four-loop beta function for the gauge coupling. To

see why, let us explain how the ε expansion works.

The ε expansion of the beta functions can be written schematically as

βg

g2
=
∑
n≥1

f (n)
g εn+ 1

2 = f (1)
g (g(1), y(1))ε3/2 + f (2)

g (g(1), y(1), λ(1); g(2), y(2))ε5/2

+ f (3)
g (g(1), y(1), λ(1), g(2), y(2), λ(2); g(3), y(3))ε7/2 + · · · ,

βy =
∑
n≥1

f (n)
y εn+ 1

2 = f (1)
y (g(1), y(1))ε3/2 + f (2)

y (g(1), y(1), λ(1); g(2), y(2))ε5/2

+ f (3)
y (g(1), y(1), λ(1), g(2), y(2), λ(2); g(3), y(3))ε7/2 + · · · ,

βλ =
∑
n≥1

f
(n)
λ εn+1 = f

(1)
λ (g(1), y(1);λ(1))ε2 + f

(2)
λ (g(1), y(1), λ(1), g(2), y(2);λ(2))ε3 + · · · .

Note that the gauge-coupling beta function is divided by g2. This way systems of

equations obtained at a specific ε order contain the same coefficients in the ε expansion

of the couplings and can thus be solved simultaneously. All couplings, f ’s, and beta

functions carry flavor indices which we omit for brevity. It is important to realize

that both the one- and the two-loop order of βg contribute to f
(1)
g , for we are fixing

the gauge coupling to a point à la Banks–Zaks. The first step is to simultaneously

solve f
(1)
g = 0 and f

(1)
y = 0, a system of nonlinear equations from which we get a

set of solutions {(g(1), y(1))}. Each solution in this set is then used to solve f
(1)
λ = 0,

another system of nonlinear equations, which also gives a set of solutions {λ(1)}. At

this point we can discard solutions with complex λ(1)’s—those correspond to nonunitary

theories—and construct the set of solutions S = {(g(1), y(1), λ(1))}. The determination

of the unknowns in f
(n≥2)
x requires solving simultaneous linear equations, and so we
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have a unique solution for each element of S. At the next step we use solutions in S

to simultaneously solve f
(2)
g = 0 and f

(2)
y = 0 for the unknowns g(2) and y(2), which

are thus uniquely determined. These are used in f
(2)
λ from which λ(2) is determined,

and then we consider f
(3)
g and f

(3)
y . These two functions receive contributions from the

(n ≤ 4)-loop orders of βg and the (n ≤ 3)-loop orders of βy. At this level we also have

to take Q and P into account, i.e., we have to see if there are solutions in the set S

that can lead to solutions of the linear equations f
(3)
g = 0 and f

(3)
y = Qy + Py with Q

and/or P nonzero. An indication of which solutions in S may lead to non-vanishing

Q or P is that, already at the previous order, the beta functions for the coupling

constants that were set to zero do not vanish.

Now, the two-loop Yukawa and scalar coupling beta functions and the three-

loop gauge beta function can be found in the literature [19, 20]. To establish the

non-vanishing of Q or P at lowest order, ε3, the three-loop Yukawa beta function and

the four-loop gauge beta function are required. Fortunately, a complete calculation of

these beta functions is not needed. We parametrize the beta functions at these orders by

summing all possible monomials of coupling constants of appropriate order with arbitrary

coefficients cn. Then, by solving the set of linear equations f
(3)
g = 0 and f

(3)
y = Qy+Py,

we determine which of these coefficients are involved in the determination of Q and

P . There is a one-to-one correspondence between each monomial in the beta functions

and a three- or four-loop Feynman diagram. Thus, rather than computing some 1200

three-loop diagrams for the Yukawa beta function and a larger number of four-loop

diagrams for the gauge beta function, we find that only a small number of diagrams

needs to be computed.

For the present model, following the procedure outlined in the previous para-
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graph, we find, to lowest order in ε, that the point

y1 =
219
√

92 534(11 430 301−30 212
√

19 370)
27 828 258 757 πε3/2 + i24

√
3559

3559 π
√
ε+ · · · ,

y4 = 8
√

17 795
3559 π

√
ε+ · · · , y5 = 16

√
10 677

3559 π
√
ε+ · · · ,

λ1 = −3(4 177 004+11 781
√

19 370)
7 819 123 π2ε+ · · · , λ2 = −75(93 964+1245

√
19 370)

7 819 123 π2ε+ · · · ,

λ3 = 1743(9
√

19 370−676)
7 819 123 π2ε+ · · · , λ4 =

−249
√

78(11 430 301−30 212
√

19 370)
7 819 123 π2ε+ · · · ,

λ5 =
−63
√

78(11 430 301−30 212
√

19 370)
7 819 123 π2ε+ · · · , g = 6

√
78 298

3559 π
√
ε+ · · · ,

(2.2.3)

where we omit couplings that are zero at this point, lies on a limit cycle. Among the

zero couplings only the imaginary part of y5 and the real part of y8 have nonzero beta

functions and are thus generated on the limit cycle. Since not all imaginary parts of

y1,...,8 can be rotated away, the theory violates CP. For the entries of Q and P we find

q(3) =
3
√

891 563 478− 2 356 536
√

19 370

3 763 549 370 814 194
(2 061 664 + 143 986c1 + 127 268c2

− 735 868c3 + 63 634c4 − 735 868c5 − 1 117 968c6 − 1 593 120c7

+ 654 696c8 + 1 309 392c9 + 1 726 320c10 + 2 146 752c11 − 25 316 928c12

+ 24 431 904c13 − 863 136c14 + 4 779 648c15 + 106 491c16

− 212 982c17 + 212 982c18 + 106 491c19 − 212 982c20),

(2.2.4)

and

p
(3)
1 = −18

√
297 187 826− 785 512

√
19 370

1 881 774 685 407 097
(389 632 + 4300c1 + 50 720c2 − 105 124c3

+ 25 360c4 − 105 124c5 − 94 632c6 − 357 744c7 + 93 528c8 + 187 056c9

+ 276 648c10 + 276 648c11 − 3 616 704c12 + 3 490 272c13 − 155 844c14

+ 862 992c15 + 15 213c16 − 30 426c17 + 30 426c18 + 15 213c19 − 30 426c20)− p(3)
3 ,

(2.2.5)
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where the coefficients c1,...,20 are given by the contributions of the three-loop diagrams

of Fig. 2.1 to the Yukawa beta function. None of the three- or four-loop contributions

to βg appears in q(3) or p
(3)
1 . For the other entries of P we find p

(3)
5,6,7,8 = 0, and that

p
(3)
2,3,4 are undetermined with p

(3)
4 = −p(3)

2 .4 The condition for absence of anomalies of

the dilatation current, TrP = 0, is thus p
(3)
1 + p

(3)
3 = 0. We remark that q(3) and p

(3)
1

can be determined simply because the running couplings Im y5 and Re y8 run through

zero at the point (2.2.3).

D
(3)
1 D

(3)
2 (and its symmetric) D

(3)
3 (and its symmetric)

D
(3)
4 D

(3)
5 (and its symmetric) D

(3)
6

D
(3)
7 (and its symmetric) D

(3)
8 D

(3)
9 (and its symmetric)

4Undetermined entries of P multiply operators that are conserved, i.e., they correspond to
global symmetries in the fermionic sector of the theory.
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D
(3)
10 D

(3)
11 D

(3)
12

D
(3)
13 (and its symmetric) D

(3)
14 D

(3)
15

D
(3)
16 D

(3)
17 (and its symmetric) D

(3)
18 (and its symmetric)

D
(3)
19 D

(3)
20 (and its symmetric)

Figure 2.1: Three-loop diagrams that contribute to q(3) and p(3).

Note that both q(3) and p
(3)
1 receive contributions from exactly the same dia-

grams, although with different weights, and that twelve of these diagrams (D
(3)
1 –D

(3)
10 ,
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D
(3)
12 , and D

(3)
13 ) are exactly the diagrams that contributed to the frequency of the cycle

of Ref. [3]. All diagrams involve at least two types of couplings, as expected from the

“interference” arguments of Wallace and Zia [21], as was also seen in our three-loop

calculations in d = 4− ε spacetime dimensions [3].

In dimensional regularization with d = 4− ε the three-loop diagrams of Fig. 2.1

have simple ε-poles and thus they contribute to the Yukawa beta function. The residues

of the simple ε-poles of D
(3)
1–20 lead to the coefficients c1,...,20 in

(16π2)3βa|ij ⊃ c1(yby
∗
cydy

∗
cye)ijλabde + · · ·+ c20g

2[(yby
∗
c t
∗At∗Ayd)ij + {i↔ j}]λabcd,

as explained, for example, in [22]. We performed the three-loop computation with

the method developed in Ref. [23] and the results of Ref. [24]. Since q(3) and p
(3)
1 are

gauge-invariant, we can easily incorporate a quick check in our calculation by using the

full gluon propagator, with the gauge parameter ξ. We find5

c1 = 3, c2 = −1, c3 = 2, c4 = 5, c5 = 1
2 , c6 = 3

2 ,

c7 = 1
2 , c8 = 3

2 , c9 = 1
2 , c10 = 5

8 , c11 = 5
8 , c12 = − 5

32

c13 = − 1
16 , c14 = 3, c15 = −3

8 , c16 = −7 + 3ξ, c17 = 4ξ, c18 = −7− ξ,

c19 = 19 + 5ξ, c20 = −ξ.

Inserting these into the expressions (2.2.4) and (2.2.5) we obtain

q(3) =
20 745

√
891 563 478− 2 356 536

√
19 370

99 040 772 916 163
≈ 5× 10−6,

and

p
(3)
1 = −p(3)

3 .

5The symmetry factors are included in the c’s. Diagrams D
(3)
6–11 have symmetry factor s = 1

2 ,

diagrams D
(3)
12,13 have s = 1

4 , and diagram D
(3)
15 has s = 1

6 . All other diagrams have s = 1.
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That q(3) 6= 0 indicates that we have a limit cycle in the RG running of a four-

dimensional unitary, renormalizable, well-defined gauge theory. This is the first example

ever exhibited of such behavior. As expected, there is no ξ-dependence in the final

answer. As expected, the dilatation current is automatically non-anomalous. These are

nontrivial checks and lend credibility to our calculation. We have found in the same

theory a distinct second limit cycle, in another position in coupling space, with exactly

the same properties as the one we presented above.

We have verified that our results can be trusted in the ε → 1
3 limit. More

specifically, the expansion parameters are bounded on the cycle: |λ|/16π2 < 5%,

|y|2/16π2 < 1%, and g2/16π2 = 0.46%. Hence, they remain perturbative along the

whole cycle.

The only unsatisfactory feature of our example is the fact that, as can be seen

from Eqs. (2.2.3), the tree-level scalar potential is unbounded from below. Still the model

can be studied in perturbation theory, since the vacuum state φ = 0 is perturbatively

stable and its non-perturbative lifetime τ is exponentially long, ln(τ) ∼ 1/max(λa).

This is similar in spirit to perturbative studies of renormalization for φ3 models in

six dimensions. However, we expect that four-dimensional limit cycles with bounded

scalar potential also exist. Our expectation is based on our results in d = 4 − ε,

where by progressing from the simplest examples, which displayed unbounded tree-level

potentials, to more involved examples, we found limit cycles with bounded tree-level

scalar potentials [1, 3]. In any case, the behavior of the effective potential in any of

these theories remains an open question.

2.3. Conclusion

The existence of limit cycles brings to light a new facet of unitary four-

dimensional QFT. Many new questions arise:

• What is the nature of RG flows away from limit cycles? Are there flows to or
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from fixed points from or to cycles or ergodic trajectories?

• Are there limit cycles in supersymmetric theories?

• Are there limit cycles in d = 3 and d > 4? Are there strongly-coupled limit cycles

in d = 3 that correspond to the ε→ 1 limit of the d = 4− ε perturbative models?

• Are there limit cycles one can be establish in more indirect ways, i.e., without

the need of three-loop computations?

• Are there new possibilities for beyond the standard model physics associated with

limit cycles [25]?

• What is the holographic description of limit cycles? (This question has been

considered in Refs. [26, 27].)

• Are there applications for condensed matter systems?

Answers to these questions will allow a more complete understanding of QFT, and

may lead to a new class of phenomena with unique characteristics. It should already

be clear, though, that RG flows display behavior that is much richer than previously

thought.
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Chapter 3

Limit Cycles and Conformal Invariance

3.1. Overview in lieu of Introduction

Two recent reported results can potentially greatly enrich our understanding

of quantum field theory (QFT). On the one hand, Komargodski and Schwimmer (KS)

[1], following earlier work by Cappelli, D’Appollonio, Guida and Magnoli (CDGM)

[2, 3], have delineated a nonperturbative proof of an inequality satisfied when a four-

dimensional QFT flows between two fixed points of the renormalization group (RG).

On the other hand, we have discovered closed RG trajectories1 in theories in d = 4− ε

[4–6] and d = 4 [7] spacetime dimensions, in a regime where perturbation theory is

applicable. While the former result can impose restrictions on the possible realizations

of long distance (IR) phases of QFTs, the latter exhibits explicitly a novel feature of

QFTs. A question naturally arises as to whether these results are compatible.

In this work we will show perturbatively that unitary, interacting, scale-invariant

cycles2 in d = 4 correspond to conformal field theories (CFTs), that is, theories with

invariance under the full conformal group, not just Poincaré plus dilatations. This

follows from the work of Jack and Osborn (JO) [8]. Compatibility of this type of

1Meaning closed flow-lines of the familiar dim-reg beta-function vector field, in conventions
where the anomalous-dimension matrix is symmetric. For a word on conventions and their effects
on RG functions see Appendix 3.A.

2More precisely “limit recursive flows” of the dim-reg beta-function vector field. In what
follows we refer to both limit cycles and limiting ergodic behavior simply as “cycles.”
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cycles3 with the aforementioned inequality is then not surprising since the inequality

still compares a quantity defined on CFTs, be it a CFT at an endpoint of an RG flow

or a CFT corresponding to a limit cycle of the RG flow.

Luty, Polchinski and Rattazzi (LPR) [11] argued that limit cycles cannot exist

in d = 4 unitary QFT, and hence that scale without conformal invariance is excluded.

As we shall see, limit cycles do occur, but QFTs on them are fully conformal, not just

scale-invariant. LPR have informed us that their manuscript is being replaced with one

that contains a corrected version of their argument, with their conclusion regarding the

absence of scale without conformal invariance unchanged.

The work of KS is not sensitive to the presence of cycles. Indeed, KS assume

the existence of a flow from a short distance (UV) CFT to an IR CFT, and argue that

the coefficient a of the Euler density in the curved-space trace anomaly,

Tµµ = operator terms + c(Weyl tensor)2 − a(Euler term),

is larger at the UV than the IR fixed point: aUV > aIR. This, then, is a proof of the

“weak version” of the c-theorem. The KS argument incorporates putative flows from a

fixed point or cycle to another fixed point or cycle, since in both cases the theories

encountered are CFTs.

In d = 2 a stronger result holds: there exists a quantity c, local in the RG scale,

that is monotonically decreasing along any RG flow [12]. This is referred to as the

“strong version” of the c-theorem, and it was first argued to also be true in d = 4 by

Cardy [13]. A proof was later found by JO (see also [14]), albeit only in perturbation

theory. Away from fixed points the quantity that plays the role of c in the arguments of

JO is not exactly equal to a (the coefficient of the Euler term in the curved-space trace

anomaly). However, it agrees with a at endpoints/limit cycles of the RG trajectories.

3The condition for scale invariance, µdgi/dµ = Qijg
j , QT = −Q = constant [9], gives recursive

flows [10]. Our study of cycles here is concerned with this type of closed trajectories, given by a
rotation of the coupling constants by a compact Abelian group generated by Q. Whether recursive
flows that are not of this type exist is an open question.
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This is in agreement with the result of KS that the weak version of the c-theorem is

valid for a. In this paper we extend the perturbative proof of JO to include RG cycles.

Of course it is well-known that a may increase away from trivial UV fixed points:

for example, for pure Yang–Mills (YM) theory with beta function βg = −β0g
3/16π2 −

β1g
5/(16π2)2 − · · · one has [8]

a = a0 +
nV β1

8(16π2)3
g4 +O(g6).

Here a0 is the free field theory (one-loop) value of a and nV = dim(Adj) is the number

of vector fields.4 Nevertheless, even in this case JO showed that there exists a quantity,

β̃b, which flows monotonically (to all orders in perturbation theory). The quantity β̃b

is related to a, which in JO is denoted by βb, by

β̃b = βb + 1
8wβ

g, βb ≡ a.

Here w is a function of the coupling g, and βg = −dg/dt is the beta function. While

β̃b and βb agree on fixed points, the difference is parametrically large away from fixed

points. In Section 3.2 we explain this in detail.

The result of JO follows from careful inspection of how the theory responds

to Weyl rescaling. The KS method, or an elaboration on it by LPR [11], extensively

uses Weyl rescaling and takes advantage of the particularly simple form this takes on

fixed points. However, in trying to extend the KS arguments to produce a proof of the

strong version of the c-theorem, LPR use Weyl rescaling away from fixed points. We

explain how consistency requires introducing spacetime-dependent coupling constants

and then in addition new counterterms that involve derivatives of the couplings. We

use the very rescaling in LPR to derive JO’s consistency conditions anew, of which the

monotonic flow of β̃b is but one example.

4We thank K. Intriligator for discussions on this point.
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For models which display cycles the state of affairs is significantly more complex.

In all these models the kinetic terms of the Lagrangian are invariant under a “flavor”

symmetry group GF (that commutes with the gauge group). Scalar self-interactions and

Yukawa couplings of scalars with fermions break GF . The dependence of counterterms

on the coupling constants characterizing these interactions is restricted by the pattern

of breaking of GF . There is a well-known, simple method of accounting for this. The

coupling constants are treated as spurions, that is, as non-dynamical fields, and allowed

to transform under GF precisely so as to render the Lagrangian invariant under these

symmetry transformations. Then, if the regulator respects the symmetry, so will the

counterterms. It follows that the entries in the trace anomaly respect the symmetry too.

As a is the coefficient of the GF -invariant Euler density, it is itself GF -invariant as well.

And since the flow on a cycle corresponds to a GF -transformation of the couplings, a

remains constant on the cycle.

This raises the following question: “how is the monotonic flow of β̃b consistent

with the constancy of a?” Actually, β̃b is also GF -invariant, and is thus also guaranteed

to be constant along the cyclic flow. The answer is found in the flow equation for β̃b

given by Osborn in [14]. His equation is a generalization, applicable to these more

complex theories, of that found by JO. This flow equation is not guaranteed to give

monotonic flows, but can and does give constancy of β̃b on cycles. We review the work

of JO concerning these more complex theories in Section 3.3, and show that a quantity

B̃b decreases monotonically along RG flows, at least in perturbation theory, and agrees

with βb on fixed points and cycles. This is a result essentially contained in [8, 14],

although it is not explicitly mentioned there.

To obtain this result an understanding of the modifications to the trace-anomaly

equation in theories with cycles is required. It is a little-known fact that in theories

with many fermions and scalars there generically appears a term in the trace anomaly

of the form of the divergence of a current. The current generates transformations that

correspond to a particular element S of the Lie algebra of GF , that is a function of
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the coupling constants. JO showed by direct computation that S vanishes to three

loops if the field content of the QFT consists solely of scalars, and to two loops if of

scalars and Dirac spinors. On the other hand, the element Q of the Lie algebra of

GF that generates the flow along the cycle is found in our computations to arise at

three-loop order in gauge theories that include both scalars and spinors [7]. Could

it be, then, that S is non-zero at three loops in these theories? And if so, what is

the relation between Q and S? In Section 3.4.1 we take on the task of computing

the lowest-order contribution to JO’s S for the most general four-dimensional QFT,

compare with Q and demonstrate that S agrees with Q on cycles and vanishes on fixed

points. A corollary of this result is that scale implies conformal invariance in relativistic

unitary perturbative four-dimensional QFTs.

That S agrees with Q on cycles suggests that the two terms in the flat-space

trace anomaly may cancel. That is, the well-known β ∂L /∂g term may cancel against

the little-known divergence of the S-current term, since the β-term is determined by Q

on cycles. This is indeed what happens: the trace of the stress-energy tensor vanishes

for unitary, scale-invariant cycles, and hence these models display invariance under the

full conformal group. In the rest of Section 3.4.2 we prove this and explore a few of its

consequences. Armed with these results, we return to the proof of the c-theorem in

Section 3.5. There we give a slightly streamlined version of the LPR version of the KS

argument, with care to address the possible differences that may arise when the CFTs

at the ends of the RG flow correspond to cycles.

Let us specify here that we follow closely the notation of JO [8], with some

notable exceptions. From here on, following JO, in the anomaly equation we use βa and

βb for −c and a respectively, although we still use the terminology c-theorem instead

of the more accurate βb-theorem. Also, we call λa,b,c rather than a, b, c the infinite

counterterms that give rise to βa,b,c (having infinite counterterms labeled by a and c

can certainly produce confusion with the corresponding “beta functions” that appear

in the Weyl anomaly and that are commonly referred to as a and c). Throughout this
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paper RG time is defined by t = − ln(µ/µ0), so that it increases as we flow to the IR.

Many of our results are extracted from the work of JO. So it is perhaps necessary

to remark that, besides parsing the results of JO to hopefully make them slightly more

accessible to the general reader, we have made several novel contributions:

• We have discovered where in the argument of LPR the quantity βb is replaced by

β̃b (or, in more generality, by B̃b).

• We have extended JO’s calculation of S to third loop order, which is the leading

non-vanishing contribution to S in a Yang–Mills theory with scalars and spinors.

• We have shown that S vanishes on fixed points and agrees with the generator Q

of limit cycles on them.

• We have demonstrated in perturbation theory that unitary, scale and Poincaré

invariant, interacting QFTs in d = 4 have vanishing trace of the stress-energy

tensor and hence are invariant under the full conformal group.

• We have used the above to

◦ find, using arguments of JO, a perturbative proof of an extension of the strong

version of the c-theorem, i.e., that there exists a quantity that monotonically

decreases in flows out of UV fixed points and cycles, and

◦ clarify that the arguments of KS apply even in the presence of cycles, i.e.,

that (βb)UV > (βb)IR for presumed RG flows that can now originate or

terminate on cycles as well as fixed points, valid even outside perturbation

theory (provided the implicit assumptions in KS do not invalidate their

result).

3.2. Weyl consistency conditions

In this section we review the derivation of the Weyl consistency conditions of

JO. The method uses as a starting point the expressions of Weyl invariance used by
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KS and by LPR. The presentation is formulated so that it becomes clear that the

assumptions in those works already implicitly lead to the JO consistency conditions.

Hence, although the derivation presented here may seem novel, it actually follows closely

JO. We have included it here for completeness, for pedagogy and because it makes clear

that neither the results of KS nor those of LPR should be in conflict with those of JO.

Let us briefly review Osborn’s argument for the consistency conditions [14].

These are analogous to the well-known Wess–Zumino consistency conditions [15]. Let

∆σW̃ denote the action of a Weyl transformation on W̃ , the generating functional for

connected renormalized Green functions. Because of the Abelian nature of the Weyl

group, the Weyl consistency conditions follow:

[∆σ,∆σ′ ]W̃ = 0.

In JO the same consistency conditions are obtained by requiring finiteness of the trace of

the stress-energy tensor in curved background and with spacetime-dependent couplings.

One can also obtain the Weyl consistency conditions based on the arguments of LPR.

LPR start from a quantum action S0 which is a function of a conformally flat

metric, γµν = e−2τ(x)ηµν and coupling constants gi(µ) (in d = 4− ε regularization, with,

say, minimal subtraction (MS)). By rescaling the fields, which are dummy variables of

integration anyway, by φ→ (eτ )δφ, where δ is the canonical dimension of the field (as in

δ = (d− 2)/2 for scalars), and using the µ-independence of the bare couplings, one sees

that the τ -dependence in S0 arises only due to the scale dependence of renormalized

coupling constants, gi(eτµ). Effectively, the regularized generating functional W satisfies

W [e−2τ(x)ηµν , g
i(µ)] = W [ηµν , g

i(eτ(x)µ)]. (3.2.1)

Alternatively, Komargodski [16] argues that the functional is made invariant under
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Weyl transformations by adding a conformal compensator τ(x). One can write

W [e−2τ(x)ηµν , g
i(e−τ(x)µ)] = W [ηµν , g

i(µ)],

or, equivalently, that the left-hand side is invariant under τ → τ + σ. For finiteness

it is also necessary to include in W all possible counterterms that are functions of

spacetime-dependent background and coupling constants, γµν(x) and gi(x). It is from

counterterms that do not vanish for spacetime-independent coupling constants that the

βa,b,c-anomalies arise. It is convenient, in order to keep track of curvature-dependent

terms, to do this in a more general background metric,

W [e−2τ(x)γµν(x), gi(µ)] = W [γµν(x), gi(eτ(x)µ)], (3.2.2a)

W [e−2τ(x)γµν(x), gi(e−τ(x)µ)] = W [γµν(x), gi(µ)]. (3.2.2b)

At the risk of restating the trivial, let us emphasize that it is not consistent to neglect

the spacetime dependence of couplings when studying Weyl anomalies, since the Weyl

transformation involves spacetime-dependent couplings. The counterterms associated

with spacetime derivatives of these couplings will lead to additional anomalies. Some of

these may—and as we will see, do—contribute to the dilaton/compensator scattering

amplitude even after one takes the limit of flat background and spacetime-independent

coupling constants.

The approach of LPR allows one to compute quantities associated with a model

in a curved background with spacetime-independent coupling constants in terms of

corresponding quantities for the same model but in a flat background with, however,

spacetime-dependent coupling constants. This observation is not new. For example, in

JO the same observation is used precisely for the same purpose, namely, to compute the

anomalies associated with scale transformations using only computations in flat space.

Similarly, the approach of Komargodski allows for an explicit nonlinear realization of

scale invariance, at the price of introducing spacetime-dependent coupling constants.
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In either case it is important to realize that new counterterms are required to render

the model finite, much like counterterms involving derivatives of the metric need to be

introduced to render finite the model in a curved background. These new counterterms

must involve derivatives of the coupling constants and lead to new Weyl anomalies.

At the end of this section we study how these new anomalies contribute to the Wess–

Zumino action for the conformal compensator τ(x) even after the couplings and the

metric are taken to be spacetime-independent. For the remainder of this section we

take a closer look at these counterterms, the anomalies they produce and the relations

between them, that is, the JO consistency conditions, that follow from (3.2.2).

Consider the theory in the background of an arbitrary metric γµν(x) and

arbitrary spacetime-dependent coupling constants gi(x) corresponding to interaction

terms gi(x)Oi(x) in the Lagrangian. The arbitrary spacetime dependence of the

couplings allows one to use them as sources for operators in the interaction part of the

Lagrangian, by taking functional derivatives of the generating functional with respect to

gi(x). If the quantum action is renormalized, then this procedure automatically gives

finite correlations functions for the insertions of these operators. Let W̃ stand for the

renormalized generating functional. It is convenient to separate the counterterms that

are independent of quantum fields from the rest of the action. They can be taken out

of the functional integral and contribute directly to W̃ :

W̃ = W +Wc.t..

The generating functional W results from performing the functional integral over

quantum fields in the absence of the quantum-field-independent counterterms. The

counterterms required to render the theory finite were first classified in JO. They consist

of all possible diff-invariant dimension-four operators constructed out of the metric and

couplings and their derivatives:

Wc.t. = −
∫ √
−γ µ−ελ ·R,



44

where dimensional regularization is used with d = 4− ε and

λ ·R = λaF + λbG+ λcH
2 + Ei∂µg

i∂µH + 1
2Fij∂µg

i∂µgjH + 1
2Gij∂µg

i∂νg
jGµν

+ 1
2Aij∇2gi∇2gj + 1

2Bijk∂µg
i∂µgj∇2gk + 1

4Cijkl∂µg
i∂µgj∂νg

k∂νgl.

(3.2.3)

Here F is the Weyl tensor squared, G is the Euler density, H is proportional to the

Ricci scalar, and Gµν is the Einstein tensor:

F = RµνρσRµνρσ −
4

d− 2
RµνRµν +

2

(d− 2)(d− 1)
R2,

G =
2

(d− 3)(d− 2)
(RµνρσRµνρσ − 4RµνRµν +R2),

H =
1

d− 1
R, Gµν =

2

d− 2
(Rµν − 1

2γµνR).

The quantities above are defined as in JO, with inessential d-dependent factors for later

convenience. Each of the counterterms in λ ·R is an expansion in 1/ε chosen to render

W̃ finite—for this one must in addition introduce wave-function and coupling constant

counterterms, as usual. The coefficients λ = (λa, λb, . . . ,Cijkl) are in general functions

of the couplings gi(x).

The anomalous variation of the generating functional is dictated by these

counterterms. While W satisfies (3.2.1) and (3.2.2), this is not true of Wc.t., as can

be seen by explicit computation. The anomaly is precisely the statement that the

infinitesimal transformation τ → τ + σ in (3.2.2b),

∆σWc.t. = Wc.t.[(1− 2σ)γµν , g
i − σµ dgi/dµ]−Wc.t.[γµν , g

i],

fails to vanish. The anomalous variation can be split into a term that would occur

even if σ were spacetime-independent plus a term proportional to the derivative of σ:

∆Wanomaly = ∆σWc.t. = −
∫ √

−γ (σβλ ·R + ∂µσZ µ). (3.2.4)
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These terms again can be expanded using dimensional analysis and diff-invariance:

βλ ·R = βaF + βbG+ βcH
2 + χei∂µg

i∂µH + 1
2χ

f
ij∂µg

i∂µgjH + 1
2χ

g
ij∂µg

i∂νg
jGµν

+ 1
2χ

a
ij∇2gi∇2gj + 1

2χ
b
ijk∂µg

i∂µgj∇2gk + 1
4χ

c
ijkl∂µg

i∂µgj∂νg
k∂νgl,

(3.2.5)

and5

Zµ = Gµνwi∂
νgi + ∂µ(Hd) +HYi∂µg

i

+ ∂µ(Ui∇2gi + 1
2Vij∂νg

i∂νgj) + Sij∂µg
i∇2gj + 1

2Tijk∂νg
i∂νgj∂µg

k,

(3.2.6)

up to terms with vanishing divergence. Since W̃ is finite and the σ-variation of W

vanishes, it must be that the variation of Wc.t. is finite by itself.

Calculations of the coefficients in βλ ·R and Zµ can be done using standard tech-

niques of dimensional regularization with a mass-independent renormalization scheme,

say MS. For now, let us concentrate on the relatively straightforward computation of

βλ ·R. Since for constant σ the transformation δγµν = −2σγµν just counts dimensions,

and the dimension of the volume element is d while that of the operators in Wc.t. is

four, we obtain

(ε− β̂i∂̂i)λ ·R = βλ ·R, (3.2.7)

where the beta function is

µ
dgi

dµ
= β̂i = −εkigi + βi(g) (no sum over i).

Here the derivative is taken holding the bare parameters fixed. ki is defined by

requiring that the Lagrangian scales appropriately: for φ′ = µδεφ and g′i = µk
iεgi, then

L (φ′, g′) = µ−εL (φ, g). Note that β̂i∂̂i ≡ β̂i∂̂/∂̂gi denotes substitution of gi by βi

5The second term involves the function of coupling constants d, which is not to be confused
with d = 4− ε. We follow Osborn in this unfortunate choice of notation, hoping that with this
warning no confusion will arise in what follows.
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wherever gi may be found, e.g., β̂i∂̂i(∂µg
j) ≡ ∂µβj = ∂iβ

j∂µg
i, and of course respects

the standard rules of differentiation. Using (3.2.7), it is straightforward to show that,

e.g.,

χaij = (ε− β̂k∂k)Aij −Aik∂j β̂
k −Ajk∂iβ̂

k.

The consistency conditions of JO can be understood as following from requiring

that (3.2.2) applied to the complete renormalized generating function W̃ fails only

up to the finite, anomaly terms. The left-hand side of (3.2.2a) does not involve any

counterterms from spacetime-dependent couplings, while the right-hand side does not

involve any from a curved background. Hence, the counterterms in one and the other

case must be related. Consider on the right-hand side of (3.2.2a), for example, the

counterterm

1
2Aij∇2gi∇2gj = 1

2Aij β̂
iβ̂j(∇2τ)2 + · · · , (3.2.8)

where we have expanded to lowest order in τ(x). Comparing with the counterterms on

the left-hand side of (3.2.2a), that arise solely from a curved background, we have,

√
−γ (λaF+λbG+λcH

2) = 8λb
[
(∇2τ)2 − (∂µ∂ντ)2 + · · ·

]
+4λc

[
(∇2τ)2 + · · ·

]
. (3.2.9)

The λb term is a total derivative so for localized τ(x) it does not contribute (recall

there is an implicit spacetime integration). Matching the terms in (3.2.8) and (3.2.9)

we find that the counterterms are related,

4λc ∼ 1
2Aij β̂

iβ̂j , (3.2.10)

where the symbol ∼ denotes equality up to finite terms, that is, the difference is finite

as ε→ 0. This precisely corresponds to Eq. (3.12) of JO. Applying µd/dµ on the bare

couplings to derive RGEs and the corresponding beta functions, one then derives from
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this JO’s consistency condition (3.21a),

8βc = χaijβ
iβj − βi∂iX, (3.2.11)

where X arises from the finite difference between the left- and right-hand sides of

(3.2.10), and βc and χaij are beta functions for λc and Aij , respectively. The remaining

consistency conditions in JO can be obtained in a similar fashion. We only quote here

one other consistency condition that plays an important role in what follows. Using

(3.2.2a) the lowest order terms in τ(x) that are linear in the Einstein tensor give

8∂iλb ∼ Gij β̂
j . (3.2.12)

With the finite difference between the two sides of (3.2.12) denoted by wi one obtains

8∂iβb = χgijβ
j − βj∂jwi − ∂iβjwj .

This consistency condition is the origin of the proposal in JO for a c-function,

β̃b ≡ βb + 1
8β

iwi,

which satisfies

∂iβ̃b = 1
8(χgij + ∂[iwj])β

j , (3.2.13)

where ∂[iwj] = ∂iwj − ∂jwi. Then its RG flow is monotonic provided the “metric” χgij

is positive-definite, for

−dβ̃b
dt

= βi∂iβ̃b = 1
8χ

g
ijβ

iβj .

To summarize, the extension (3.2.2) of the invariance requirement of LPR in

(3.2.1), when applied to the complete set of counterterms required for finiteness when

coupling constants have spacetime dependence, leads to the consistency conditions of JO.
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3.2.1. The trace anomaly and the computation of ∇µZ µ

As formulated, the renormalized generating functional W̃ is a finite function of

the background metric and of renormalized spacetime-dependent coupling constants.

As such we can obtain finite insertions of composite operators in Green functions by

functional differentiation,

〈Tµν(x)〉 =
2√
−γ

δW̃

δγµν(x)
and 〈[Oi(x)]〉 =

1√
−γ

δW̃

δgi(x)
. (3.2.14)

Note that [Oi(x)] stands for the fully renormalized insertion of the composite operator

Oi(x), which may differ from the operator monomial in an expectation value. Following

JO, we make this distinction explicit by introducing the notation [. . .].

Using (3.2.14) in (3.2.2) and (3.2.4) one obtains

Tµµ = β̂i[Oi]− µ−εβλ ·R + µ−ε∇µZ µ. (3.2.15)

This is the well-known trace anomaly, accounting for the effects of curved background

and spacetime-dependent coupling constants. However, this equation is not quite correct

in the most generality: there are two terms missing on the right-hand side. The first is

an operator that vanishes by the equations of motion times the anomalous dimension of

the corresponding quantum field. We have lost track of this term because the relation

(3.2.1) is only correct up to terms that vanish by the equations of motion. The second

missing term is more subtle: we have missed counterterms that may be needed to render

some theories finite. When the kinetic terms of the Lagrangian exhibit a continuous

symmetry the current associated with this symmetry is a dimension-three operator and

a new type of counterterm is required in the presence of spacetime-dependent couplings,

that is, a counterterm proportional to the product of the current and the derivative of

a coupling. This will be discussed extensively, and the anomaly equation will be fixed,

in Section 3.3.

Let us turn to the computation of Z µ in (3.2.4). It follows, of course, straightfor-
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wardly from the definition (3.2.4). Slightly less trivial is the fact that the computation

must give a finite current Z µ. That this must be so can be seen from the trace anomaly

in (3.2.15), in which all other terms are already finite. This means that there must be

cancellations among infinite terms that contribute to Z µ. In fact, these cancellations

are nothing but the consistency conditions, e.g., (3.2.10) and (3.2.12). For example,

the terms in (3.2.4) involving the Einstein tensor (modulo terms that do not vanish for

spacetime-independent σ) are

∫ √
−γ Gµν(−8λb∇µ∂νσ − Gij∂µg

iβ̂j∂νσ) =

∫ √
−γ ∂νσGµν∂µgi(8∂iλb − Gij β̂

j)

=

∫ √
−γ ∂νσGµν∂µgiwi.

Here, in going from the first to the second line we used the finiteness condition (3.2.12)

and the definition that the finite difference is wi. Thus we have reproduced the first

term in Zµ of (3.2.6). The remaining terms in (3.2.6) can be similarly found.

3.2.2. Wess–Zumino action

The Wess–Zumino action, WWZ, is a function of τ(x) that will give −∆Wanomaly

upon a Weyl transformation, τ(x)→ τ(x)+σ(x). Focusing on the βb-term in ∆Wanomaly,

−
∫ √
−γ σβbG, (3.2.16)

KS write the corresponding WZ term as6

∫ √
−γ
{
τβbG− 4βb

[
Gµντ,µτ,ν + τ,µτ

,µ∇2τ + 1
2(τ,µτ

,µ)2
]}
,

where we have introduced the shorthand τ,µ = ∂µτ . However, this computation is

incomplete. The problem with this is that we have ignored the effect of the new

6The sign in the term cubic in τ is opposite to that of KS because we use the opposite sign
convention for the conformal compensator, which gives ∆σ as in JO.
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counterterms arising from spacetime dependence of the couplings. Since we will not

need a Wess–Zumino action for our generalization of the KS argument to theories

with cycles, we will not aim at being complete and only point out one interesting

consequence here. Consider, for example, the term in Z µ

−
∫ √
−γ ∂µσ wiGµν∂νgi. (3.2.17)

Now with ∂µg
i = −βiτ,µ, one has the following generalization of the Wess–Zumino

dilaton action:

∫ √
−γ
{
βbτG− 4(βb + 1

8wiβ
i)
[
Gµντ,µτ,ν + τ,µτ

,µ∇2τ + 1
2(τ,µτ

,µ)2
]}
. (3.2.18)

The Weyl variation of (3.2.18) gives the sum of (3.2.16) and (3.2.17) (if ∂µg
i = −βiτ,µ

there). The correction that takes βb into β̃b = βb + 1
8wiβ

i is generally of lower order

than the running of βb. That is, 1
8wiβ

i is of lower order than βb−βb0, where βb0 stands

for the free field theory value of βb.

Let us be more explicit. Consider, for example, the perturbative result of JO

for a pure YM theory with gauge coupling g,

βb = βb0 +
nV β1

8(16π2)3
g4 +O(g6), (3.2.19)

from which βb is seen to increase in the flow out of the trivial UV fixed point. JO also

give gw = 2nV /16π2 + · · · , and therefore

β̃b = βb0 −
nV β0

4(16π2)2
g2 +O(g4),

which shows that the leading-order running of β̃b is modified by the 1
8wβ

g term. Note

that β̃b decreases in the flow out of the trivial UV fixed point, as opposed to βb which,

as seen from (3.2.19), increases. Therefore, a strong c-theorem in four dimensions

should involve β̃b, not βb. Of course β̃b and βb agree at fixed points.
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There is another subtle point we would like to address. The coefficient appearing

in the two-point function of the trace of the stress-energy tensor appears to play the

role of the “metric” χgij in the consistency condition (3.2.13). In Appendix 3.B we

point out, following JO, that this is actually related to −2χaij , see (3.2.11). Explicit

computations show that −2χaij agrees with χgij to second order in perturbation theory

in any four-dimensional theory. As we show in Appendix 3.B this agreement fails, for

example, at third order in a YM theory with a single gauge coupling.

3.3. Flavor symmetries, dimension-three operators and the corrected trace

anomaly

As we have mentioned above, in deriving the trace anomaly we have missed

counterterms that may be needed to render some theories finite. When the kinetic

terms of the Lagrangian exhibit a continuous symmetry the current associated with

this symmetry is a dimension-three operator and a new type of counterterm is required

in the presence of spacetime-dependent couplings, that is, a counterterm proportional

to the product of the current and the derivative of a coupling.

Consider a theory with nS real scalar fields interacting through the usual quartic

interaction. The kinetic part of the bare Lagrangian,

L0K = 1
2∂

µφ0a∂µφ0a,

exhibits a continuous symmetry under transformations of the fields δφ0a = −ωabφ0b,

where ω is in the algebra of the flavor group GF = SO(nS). In the process of

renormalization we introduce a renormalization matrix Z and write

L0K = 1
2∂

µφTZ∂µφ,
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where renormalized fields, φ, are related to bare fields by φ0 = Z1/2φ.7 In the pres-

ence of spacetime-dependent coupling constants new divergences arise and thus new

counterterms are needed. For example, one must introduce a new counterterm of the

form

Lc.t. = (∂µgi)(Ni)abφ0b∂µφ0a, (3.3.1)

with (Ni)ab = −(Ni)ba, that is, in the algebra of GF . Note that this new counterterm is

not accounted for in Wc.t. which by construction is independent of quantum fields. Note

also that additional counterterms, symmetric under a ↔ b, must also be introduced.

One may integrate by parts to write these as terms with no derivatives acting on the

quantum fields. While necessary, they do not play a central role in what follows.

To be more explicit, we consider a theory of real scalars and write for the bare

Lagrangian

L0 = 1
2γ

µνD0µφ0aD0νφ0a + 1
8(d− 2)φ0aφ0aH − 1

4!g
0
abcdφ0aφ0bφ0cφ0d. (3.3.2)

This is written in term of bare fields φ0. The second term is introduced to ensure

conformal invariance of the classical action. In the potential term, the bare couplings

g0
abcd are completely symmetric under exchange of the indices a, b, c and d. The covariant

derivative,

D0µφ0 = (∂µ +A0µ)φ0,

is introduced with an eye towards including the counterterm (3.3.1), since

A0µ = Aµ +NI(Dµg)I , Dµ = ∂µ +Aµ. (3.3.3)

Here, following JO, we use the compact notation I = (abcd) and we have left implicit

7Note that in this step we have the freedom to introduce an orthogonal matrix O and define
φ0 = Z̃1/2φ, where Z̃1/2 = OZ1/2. This does not affect Z = ZT/2Z1/2. Nevertheless, such a
freedom leads to an ambiguity in the definition of beta functions and anomalous dimensions as
we explain in Appendix 3.A.
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the Lie-algebra indices (so that NT
I = −NI and ATµ = −Aµ). Note that NI is a function

of the renormalized couplings that has an ε-expansion starting at order 1/ε. If the

theory contains gauge fields and some of the scalars are charged under the gauge group

Gg ⊆ GF , it is straightforward to include an additional quantum gauge field in addition

to the background field Aµ.

The Lagrangian (3.3.2) is explicitly locally GF -symmetric if we agree to trans-

form the couplings and the gauge fields:

δg0
abcd = −ωaeg0

ebcd + permutations (δg0
I = −(ωg0)I for short),

δAµ = Dµω.

The first of these is already used in defining the covariant derivative (Dµg)I in (3.3.3).

It is very important to note at this point that if this explicit local invariance is non-

anomalous it can (and will) be used to constrain the counterterms and the generating

functional W̃ ,

W̃ [γµν(x), (Ωg)I(x),ΩDµΩ−1] = W̃ [γµν(x), gI(x), Aµ], (3.3.4)

where Ω(x) = exp(ω(x)) ∈ GF . Of course, in theories without spinors the symmetry

is trivially non-anomalous. Furthermore, derivatives of the generating functional with

respect to the background field now give insertions of the scalar current.

It is not our intention to repeat the calculations of JO in their entirety here. We

will instead describe the main ingredients and results. We have already described the

two main new ingredients, namely, the need for new counterterms and the introduction

of a background field to ensure invariance under GF in (3.3.4). As before, additional

quantum-field-independent counterterms are required. These are as in (3.2.3) but with

the replacement ∂µ → Dµ to ensure GF invariance. Additional counterterms involving
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the field strength Fµν = [Dµ, Dν ] are also required,

λ̃ ·R = λ ·R + 1
4Tr(K FµνFµν) + 1

2Tr(PIJF
µν)(Dµg)I(Dνg)J . (3.3.5)

Moreover, as advertised, new field-dependent counterterms must be included,

Q = ηabφaφbH + (δI)abφaφb(D
2g)I + 1

2(εIJ)abφaφb(D
µg)I(Dµg)J . (3.3.6)

Proceeding much as before, JO find8 [8, Eq. (6.15)]

Tµµ = β̂I [OI ] + [βQ] + [(Dµφ)TβAµ φ]−µ−εβλ̃ ·R +∇µ(Jµ+JµΘ + Z̃ µ)− ((1 + γ̂)φ) · δ
δφ
S̃0,

(3.3.7)

which, using the underlying gauge invariance, they rewrite as [8, Eq. (6.23)]

Tµµ = B̂I [OI ] + [βQ] + [(Dµφ)TBA
µ φ]−µ−εβλ̃ ·R +∇µ(JµΘ + Z̃ µ)− ((1 + γ̂+S)φ) · δ

δφ
S̃0.

(3.3.8)

Many comments are in order. The last term, involving the derivative of the full

action integral S̃0, vanishes by the equations of motion. We have included it here

for completeness. We have already commented that a similar term is missing from

(3.2.15). The operator [OI ] corresponds to the interaction term in the Lagrangian,

OI = 1
4!φaφbφcφd, but differs from it, [OI ] = OI −∇µJµI where JµI = (Dµ

0φ0)TNIφ0. Its

coefficient in (3.3.8) is given by

B̂I ≡ β̂I − (Sg)I ,

8Note that in Jack and Osborn the first term contains β̂V = µdV/dµ, where V is the
renormalized potential, and with the derivative taken by holding the bare fields, φ0, and the bare
potential, V0, constant (independent of RG time). With a potential of the form V = gIOI and

following Jack and Osborn’s definitions we then obtain [β̂V ] = β̂I [OI ] as expected.
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where β̂I = µdgI/dµ = −εgI + βI . The current Jµ in (3.3.7) is defined as

Jµ = (Dµ
0φ0)TNI β̂Iφ0 (3.3.9)

and it is finite as required from consistency of (3.3.7). Note that the combination

[OI ] + ∇µJµI appearing in (3.3.7) is just OI . However, OI is not by itself a finite

operator. While β̂IOI is finite, since it is the sum of two finite operators, replacing β̂I

by its ε→ 0 limit, βIOI , is not by itself finite. Finiteness of Jµ implies that it can be

brought to the form

Jµ = [(Dµφ)TSφ].

The Lie-algebra element S is then defined by B̂INI = S. Since S is finite it is required

that the infinite pieces of B̂INI cancel automatically, i.e.,

B̂INI = S ⇒ S = −N1
I gI , (3.3.10)

where NI =
∑∞

n=1N
n
I /ε

n, so that N1
I is the residue of the simple ε-pole in NI . Can-

cellation of the infinite pieces requires that BIN
n
I − gIN

n+1
I = 0 for n ≥ 1. The beta

functions for the field-dependent quadratic counterterms are

βQ ≡ βηabφaφbH + (βδI )abφaφb(D
2g)I + 1

2(βεIJ)abφaφb(Dµg)I(Dµg)J .

The term βλ̃ ·R is the obvious generalization of (3.2.5) while the current Z̃ µ is defined

as in (3.2.6) but rendered GF -invariant by replacing derivatives by covariant derivatives.

In addition, Z̃ µ has contributions from the new counterterms in (3.3.5), and there are

additional contributions to the terms with the A and B of (3.2.3). The third term in

(3.3.8) involves

BA
µ ≡ βAµ +DµS ≡ ρI(Dµg)I +DµS ≡ PI(Dµg)I , ρI = gJ∂JN

1
I +N1

I ,
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where βAµ ≡ µdAµ/dµ is the beta function for the background gauge field Aµ. Finally,

the current JµΘ arises from the counterterms in (3.3.6) and has a complicated expression

in terms of the simple ε-poles in δI and εIJ (see JO for details [8, Eqs. (6.21–22)]).

At this point we can take the limit of flat spacetime, spacetime-independent

couplings and no background gauge field in (3.3.8). This gives

Tµµ = B̂I [OI ]− ((1 + γ̂ + S)φ) · δ
δφ
S0. (3.3.11)

Since [OI ] is finite we can now safely conclude that a theory is conformal if and only if

BI = 0. This does not require that βI = 0.

In the general case considered here the JO consistency conditions are modified

relative to what has been presented in Section 3.2. On the one hand the conditions have

to be covariant under transformations by the symmetry group GF . On the other, there

are additional terms that arise from the additional counterterms required to render the

theory finite. Osborn gives the form of these most general consistency conditions [14].

Two conditions play a role in our discussion:

8∂Iβb = χgIJBJ −BJ∂JwI − (∂IBJ)wJ − (PIg)JwJ

= χgIJBJ − βJ∂JwI − (∂IβJ)wJ − (ρIg)JwJ ,

(3.3.12)

and

BIPI = 0. (3.3.13)

In addition, covariance under GF gives, e.g.,

(ωg)I∂Iβb = 0 and (ωg)I∂IS = [ω, S]. (3.3.14)

Of course, the first of these applies to any GF -invariant while the second to any

antisymmetric tensor (for example, any Lie-algebra valued function). Using the first of
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(3.3.14) in (3.3.12) gives a nontrivial relation among several beta functions:

(ωg)I
[
χgIJBJ −BJ∂JwI − (∂IBJ)wJ − (PIg)JwJ

]
= 0, (3.3.15)

or, equivalently,

(ωg)I
[
χgIJBJ − βJ∂JwI − (∂IβJ)wJ − (ρIg)JwJ

]
= 0. (3.3.16)

These conditions can be used to understand aspects of the flow of βb. Consider

the flow defined by some arbitrary function fI(g),

dḡI
dη

= −fI(ḡ(η)).

If one takes fI = βI then the flow can be identified with the RG flow, with η = t =

− ln(µ/µ0). From (3.3.12) we have

−8
dB̃b
dη

= χgIJfIBJ + fIBJ∂[IwJ ] − (PIg)JfIwJ , (3.3.17)

where

B̃b = βb + 1
8BIwI , (3.3.18)

and

−8
dβ̃b
dη

= χgIJfIBJ + fIβJ∂[IwJ ] − (ρIg)JfIwJ . (3.3.19)

Three special cases are of most interest. Consider first fI(g) = −(ωg)I . From the

second equation in (3.3.14) we see that on this flow ω is constant. This is a recursive

flow (cycle or ergodic). It follows from the GF -invariance of B̃b and β̃b that these

remain constant on the flow. This is a consequence of the detailed cancellations that

must be satisfied by the beta functions in (3.3.15) and (3.3.16). This general result can

be applied to limit cycles, βI = (Qg)I , for which ω = Q. We thus see that counterterms

that ensure GF -covariance guarantee constancy of βb (and β̃b) on recursive flows.
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The second and third special cases correspond to fI = BI and fI = βI . While

the BI and βI flows are generally distinguishable, one may use (3.3.14) to show the two

flows are identical for GF -invariants.9 Using (3.3.17) with fI = BI and the consistency

condition (3.3.13) we see that

−8
dB̃b
dt

= χgIJBIBJ . (3.3.20)

This shows that B̃b decreases monotonically along both flows and is a good candidate

for the c function of the c-theorem. Indeed this shows a strong version of the c-theorem

in perturbation theory. To two loops χgIJ = −2χaIJ > 0, where unitarity is required for

the inequality, so the right-hand side of (3.3.20) is positive-definite along a perturbative

flow.

The relation between the BI and βI flows can be made more explicit, hopefully

clarifying their relation. Consider the flows

−dgI
dt

= βI(g(t)) and − dḡI
dη

= BI(ḡ(η)).

The solution to the η-flow is given in terms of the one for the RG flow by

ḡ(η) = F (η)g(η) where F (η) = T

(
exp

[
−
∫ η

−∞
dη′S(η′)

])
.

Here T is the η-ordered product and F ∈ GF . As such, βI(ḡ) = βI(Fg) = (Fβ)I(g)

and similarly for BI and indeed for any tensor function of the couplings. Of special

interest are GF -invariants, like B̃b, for which B̃b(ḡ) = B̃b(Fg) = B̃b(g). So we see again

that the monotonic η-flow of B̃b gives a monotonic RG flow of B̃b.

The quantity β̃b does not appear to be a good candidate for the c function of

the c-theorem. Using (3.3.19) to study its flow, so the term fIβJ∂[IwJ ] automatically

9This was pointed out to us by J. Polchinski.



59

vanishes, we obtain

−8
dβ̃b
dt

= χgIJβIBJ − (ρIg)JβIwJ . (3.3.21)

Were we to ignore the last term on the right-hand side we would be able to establish

a perturbative c-theorem for β̃b. Indeed, to two loops BI = βI and χgIJ = −2χaIJ > 0

so the right-hand side of (3.3.21) would be positive-definite along a perturbative flow.

However, the last term is parametrically of the same order as the first on the right-hand

side of (3.3.21) so this does not give a perturbative c-theorem for β̃b.

3.4. Scale implies conformal invariance

3.4.1. S is Q (on cycles)

In this subsection we elucidate the relation between Q and S. Our treatment is

focused on theories in d = 4. We remind the reader that Q is defined as the solution

to the equations βg = 0 and βI = (Qg)I , defining an RG cycle on which Q remains a

constant while S is defined as a function of couplings that makes explicit the finiteness

of the current Jµ in (3.3.9). There is no a priori reason they should be related.

What is known about S? JO have shown, by direct calculation, and we have

verified, that in a scalar field theory S vanishes up to third order in the loop expansion.

The result holds even if gauge fields are included and the scalars are charged under

the gauge group. For theories with scalars and fermions, JO have shown, and we have

verified, that S remains zero to two loops. However, this is consistent with a possible

equality of S and Q on cycles. Indeed, we have obtained previously that Q is of third

order in the loop expansion in Yang–Mills theories with scalars and fermions, while

in purely-scalar field theories a non-vanishing Q, if it exists, must be at least of fifth

order in the loop expansion.

As might be expected from the discussion above, we will show that (up to

conserved current)
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1. S is Q on cycles,

2. S vanishes at fixed points.

In light of these results the computation of Q can be tremendously simplified given an

explicit expression for S. Presently, the procedure to determine Q involves determining

first the beta functions for the coupling constants to second order in the loop expansion

for scalar self-couplings, to third order in the loop expansion for Yukawa couplings

and to fourth order in the loop expansion for Yang–Mills couplings, and then solving

the system of nonlinear coupled equations βg = 0 and βI = (Qg)I (we implicitly use

here that gI can also stand for Yukawa couplings). Since S must have a perturbative

expansion that starts at third order in the loop expansion, to determine Q from S it

suffices to evaluate it with coupling constants on the cycle computed to lowest order

in the loop expansion. So Q is obtained from S by determining the zeroes of the

one-loop beta functions (two-loop for gauge couplings): if S = 0 on the zero of the beta

functions, the zero is a fixed point of the RGE, but if S 6= 0 on the zero, then the zero

is a point on a cycle and Q = S there.

To this end an explicit, three-loop expression for S is required. But as pointed

out above, there has been no computation of S to the order where one would expect it

to be non-vanishing if S were to equal Q on cycles. We have endeavored to compute

S to third order in the loop expansion for a general theory containing nS real scalars

and nf Weyl spinors, possibly charged under a gauge group. The potential in the

Lagrangian is

V = 1
4!λabcdφaφbφcφd + (1

2ya|ijφaψiψj + h.c.).

The details of the computation are spelled out in Appendix 3.C. The surprisingly simple

result is

(16π2)3Sab = 5
8 tr(yay

∗
cydy

∗
e)λbcde + 3

8 tr(yay
∗
cydy

∗
dyby

∗
c )− {a↔ b}+ h.c..

We have evaluated this expression on the fixed points and cycles of the theories we



61

explored in [4, 6, 7] and found that in each case, even in examples in d = 4 − ε, S

vanishes at all fixed points and equals our previous determination of Q on all cycles.

Now for the (perturbative) proof of the propositions above. First we show that

S = Q on cycles. Consider the η-flow with fI = BI , with boundary condition that at

η = 0 the point ḡI(0) is on the cycle. Then BI(0) = βI(ḡ(0))−(Sg(0))I = ([Q−S]g(0))I ,

with Q− S in the Lie algebra of GF and the left-hand side of (3.3.20) vanishes. Since

χgIJ is positive-definite to second order in the loop expansion, (3.3.20) gives BI(0) = 0.

This implies S = Q+∆Q on cycles, where (∆Qg)I = 0. But if ∆Q 6= 0 this corresponds

to a conserved current, ∇µ[(Dµφ)T∆Q φ] = 0, and we are free to redefine the scale

current by a conserved current by Q→ Q+ ∆Q. Hence, S = Q on cycles.10

For theories with two scalars there is an alternative, perhaps simpler proof that

S equals Q when evaluated on a cycle. Consider (3.3.20) evaluated on a point on

the cycle. It is easy to show that S is a constant on the cycle: −dS/dt = βI∂IS =

(Qg)I∂IS = [Q,S] = 0, where the last two steps follow from (3.3.14) and the fact that,

for two flavors, the flavor group, SO(2), is Abelian. Now, as before, we consider the

η-flow defined by the BI function starting from a point on the RG-cycle (we make the

distinction of the actual RG-cycle and a η-cycle explicit, to avoid confusion). The flow

is defined by −dḡI/dη = BI = βI − (Sg)I = ([Q − S]g)I , where the last step follows

from assuming the initial point is on the RG-cycle and then noting that the solution

corresponds to a trajectory that traverses the same cycle but at a different angular

speed (the angular speeds are Q12 and Q12−S12 for the RG- and η-cycles, respectively).

Therefore the η-cycle is generated by a trajectory in GF and it follows that, just as for

an RG-cycle, any GF -invariant remains constant on the η-cycle. But the consistency

condition (3.3.20) then implies that BI = ([Q− S]g)I = 0 on the cycle. Since Q and S

are each characterized by a single number the only solution is S12 = Q12 (on the cycle).

It is easy to show that (Sg)I = 0 at a fixed point, and this is consistent with

10In unitary theories with N = 1 supersymmetry we recently showed, without relying on
perturbation theory, that S = 0 [17]. It thus follows that RG limit cycles do not arise in such
theories.
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the notion that a fixed point corresponds to the case (Qg)I = 0. To see this, notice

that at a fixed point BI = −(Sg)I so at that point the flow corresponds to a first-order

GF -transformation. That is, the first derivative with respect to η of GF -invariants

vanishes at the fixed point. Hence, (3.3.20) gives that χgIJ(Sg)I(Sg)J = 0 and hence

(Sg)I = 0 at the fixed point. The solution is that either S = 0 at the fixed point,

or there is an emergent symmetry at the fixed point, and Jµ is the corresponding

conserved current. This completes the proof of the two propositions above.

3.4.2. Cyclic CFTs

A perturbative proof that scale imples conformal invariance

The condition for a theory in d > 2 to be scale-invariant is that the trace of its

stress-energy tensor be a total derivative [9],

Tµµ = ∂µV
µ,

where V µ 6= jµ + ∂νL
µν with ∂µj

µ = 0 and, without loss of generality, Lµν = Lνµ. A

candidate for V µ is V µ = ∂µφTPφ. If the theory includes spinors an additional current

can be added to V µ but the argument below is easily generalized by trivial extensions,

e.g., by interpreting the index I as including all couplings. Using the equations of

motion, or alternatively a GF -transformation, this can be cast as an algebraic condition,

BI = (Pg)I . (3.4.1)

It is easy to see now that in d = 4 the BI -flow of B̃b requires (Pg)I = 0. Indeed, using

(3.4.1) in (3.3.20) the left-hand side vanishes on account of BI being of the form (ωg)I ,

and then perturbative positivity of χgIJ implies BI = 0. While P may not vanish, the

current V µ can at most be a symmetry of the theory, V µ = jµ. This concludes the

proof that scale implies conformal invariance in perturbation theory.
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Some properties of cyclic CFTs

Our result that scale implies conformal invariance implies that the non-trivial

cycle found in [7] actually corresponds to a CFT. We dub such CFTs cyclic CFTs. It

is quite surprising that CFTs can be found at points where the beta functions do not

vanish. It is unclear what, if anything, distinguishes these theories from fixed-point

CFTs. Presumably the special current Jµ plays a crucial role. We hope to address

these questions in the future, but at present have no progress to report.

Since the stress-energy tensor is not renormalized, and since the divergence of

the special current Jµ appears in the trace-anomaly equation, one may suspect its

anomalous dimension vanishes. If so this would correspond to a non-conserved vector

operator of dimension exactly three (no anomalous dimension), which is impossible in

a unitary CFT. However, the operator actually mixes under renormalization. A simple

computation gives

µ
d

dµ
[OI ] = −∂I β̂J [OJ ] + ∂µ[∂µφTρIφ],

µ
d

dµ
[∂µφTωφ] = −[∂µφTρI(ωg)Iφ],

which allows one to readily verify that (i) the combination β̂I [OI ] + ∂µJ
µ is RG-

invariant, (ii) a symmetry current is RG-invariant, and (iii) Jµ is not RG-invariant,

µ d
dµJ

µ = −[∂µφT β̂IρIφ].

Even if the beta function is non-vanishing, properties that follow directly from

the conformal symmetry apply to these cyclic CFTs. Consider for example the well-

known fact that two point correlators of primary operators can be diagonalized and

〈O(x)†O(0)〉 = (x2)−∆O .

Now contrast this with the two point function of the elementary real scalars φa in a



64

cyclic CFT. Scale and Poincaré invariance alone give [5]

〈φ(x)φT (0)〉 = (x2)−
1
2

∆G(x2)−
1
2

∆T
, (3.4.2)

where G is a fixed real, positive, symmetric matrix and ∆ = 1 +γ+Q, with γT = γ the

anomalous dimension matrix of the elementary fields φ and QT = −Q defining the cycle

through βI = (Qg)I . Now one can redefine the field by φ→M−1φ with M chosen so

that MGMT = 1, which is always possible with real M for a real, positive, symmetric

matrix. This effectively redefines ∆→M∆M−1. The condition for invariance under

special conformal transformations then gives11 ∆T = ∆. A further field redefinition

by an appropriate orthogonal transformation R finally brings ∆ into diagonal form,

∆ → R∆RT . The entries of this diagonal form of ∆ correspond to the roots of the

characteristic polynomial of 1 + γ +Q which must be real. It is interesting that this

puts restrictions on the possible values of Q: given a fixed value of γ, for large enough

Q some roots will be complex. To put it differently, from our proof that these theories

are conformally invariant we infer that if a matrix XAX−1 is diagonal for a real matrix

A and a real, symmetric, invertible matrix X, then all the roots of the characteristic

polynomial of A are real.

This unfortunately means that the large-Q scenario of [5], which leads to

interesting oscillatory behavior in unparticle physics, is excluded by conformal invariance.

More generally, the constraints that unitarity and scale invariance alone place on the

scaling dimensions of operators are weaker than those that follow if conformal invariance

is also imposed [18]. These weaker conditions are popular in unparticle phenomenology

as they amplify the putative effects of unparticles. Of course our proof does not rule

out theories that are scale-invariant but not conformal outside the realm of perturbation

theory, leaving a smidgen of hope for unparticle enthusiasts.

11Alternatively, special conformal transformations on (3.4.2) require that ∆G = G∆T .
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3.5. The c-theorem in the presence of cycles

As we have seen, the consistency relations of JO lead to the c-theorem in

perturbation theory,

−dB̃b
dt

= 1
8χ

g
IJBIBJ ≥ 0,

with B̃b defined in (3.3.18). Only the last step in this sequence of relations invokes

perturbation theory, for the positivity of the metric χgij is established perturbatively.

For a non-perturbative proof we turn to the method of KS.

Let us review the argument of KS. Our presentation is closer in spirit to that

of LPR. We will try to note explicitly when implicit assumptions in that argument

are made. While plausible, these assumptions should be justified for the theorem to

be established. We deviate from both presentations in that we do not derive nor

use a Wess–Zumino dilaton action for, as we will see, this is not necessary for the

computation.

Consider the four point function of the operator 1
2∂µ(xνT

µν) in an arbitrary four-

dimensional theory which is classically scale-invariant. Furthermore, we will consider

kinematics such that p2
i = 0, i = 1, . . . , 4, for the momenta pi of the four insertions, so

that the Mandelstam variables satisfy s+ t+ u = 0. Equivalently, for the theory on a

conformally flat background, gµν = e−2τ(x)ηµν , one may compute the τ(x) scattering

amplitude A(s, t) with the on-shell condition ∇2τ = 0.

Now, we will assume that the forward scattering amplitude Afwd(s) = A(s, 0)

exists, that is that the limit t → 0 of A(s, t) exists. This could fail if A(s, t) had

terms of the form, e.g., ∼ s2 ln(t). Now, Afwd(s) can be computed by taking four

τ(x)-derivatives of the generating functional and then taking the metric as flat, the

coupling constants to be spacetime-independent and the background field Aµ and the

conformal compensator to vanish. Alternatively, and more straightforwardly, one can

work with a conformally flat metric and having the only spacetime dependence in

couplings and Aµ arise through the dependence on the conformal factor τ(x), so that
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one merely needs to take τ(x) = 0 after four times differentiating W̃ . Now the first

derivative simply gives the conformal anomaly equation

Tµµ = B̂I [OI ] + [βQ] + [(Dµφ)TBA
µ φ]−µ−εβλ̃ ·R +∇µ(JµΘ + Z̃ µ)− ((1 + γ̂+S)φ) · δ

δφ
S̃0,

One need only thrice differentiate this equation to obtain the four-point amplitude

of Tµµ. Note that on fixed points and cycles, where we will need this, the first term

vanishes since B̂I = 0. Also, the last term, which vanishes by the equations of motion,

can be ignored for the computation of the amplitude. Most of the remaining terms

vanish once the couplings are taken to be spacetime-independent (and the metric flat

and Aµ = 0). The remaining terms arise from the G and H2 terms in βλ ·R. For a

conformally flat metric, γµν = exp(−2τ(x))ηµν , one has (in d spacetime dimensions)

e−4τG = 8(∂2τ)2 − 8τ,µντ
,µν − 16τ,µτ,ντ

,µν

− 8(d− 3)τ,µτ
,µ∂2τ + 2(d− 1)(d− 4)(τ,µτ

,µ)2,

e−4τH2 = 4(∂2τ)2 − 4(d− 2)τ,µτ
,µ∂2τ + (d− 2)2(τ,µτ

,µ)2.

The cubic term in H2 vanishes for an “on-shell” conformal factor ∂2τ = 0 and so the

only contribution to the “on-shell” forward scattering amplitude is from G:

Afwd(s)|FP or cycle = −βb(s2 + t2 + u2)|t=0 = −2βbs
2.

Let’s assume that there exists an RG trajectory from a UV fixed point or cycle to an IR

fixed point or cycle. On this trajectory this equation no longer holds. However, we can

inspect limiting behavior. Since Afwd/s
2 depends on s only through the dimensionless

ratio µ2/s, its behavior is dictated by the renormalization group. Hence,

lim
s→∞

Afwd(s)

s2
= lim

s→∞

Afwd(s)|FP or cycle

s2
= −2(βb)UV
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and

lim
s→0

Afwd(s)

s2
= lim

s→0

Afwd(s)|FP or cycle

s2
= −2(βb)IR,

where (βb)UV and (βb)IR are the limiting UV and IR values of βb along the trajectory

and correspond to those on the fixed point or cycle. LPR study the approach to these

limiting values using conformal perturbation theory.

Following LPR we next consider the integral of Afwd(s)/s3 over the contour in

Fig. 3.1. The integral over the semicircle I1 cannot be easily computed, but in the

I2 I2

I1

I3I3

s

Figure 3.1: The contour of integration for
∫
dsAfwd(s)/s3.

limit that the radius of the semicircle vanishes it is reasonable that one can use the

limiting value, ∫
I1

ds

s3
Afwd(s) ≈

∫
I1

ds

s
2(βb)IR = 2πi(βb)IR, (3.5.1)

where the last step corresponds to taking the vanishing limit of the radius of the

semicircle I1. Similarly, the large circle I3 gives

∫
I3

ds

s3
Afwd(s) ≈

∫
I3

ds

s
2(βb)UV = −2πi(βb)UV. (3.5.2)
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It follows from Cauchy’s theorem that

(βb)UV − (βb)IR =
1

2πi

∫
I2

ds

s3
Afwd(s)

=
1

π

∫ ∞
0

ds

s3
Im(Afwd(s+ i0)),

where in the last line LPR assume crossing symmetry to write Afwd(−s + i0) =

A∗fwd(s + i0). Finally, the KS argument invokes the optical theorem that relates the

imaginary part of the forward scattering amplitude to a positive-definite cross section

to conclude that

(βb)UV − (βb)IR > 0.

We note in passing that the optical theorem is known to apply for forward scattering

amplitudes of (on-shell) physical particles. It is not clear a priori that it applies to

Green functions of composite operators at p2
i = 0, even if it corresponds to the scattering

amplitude of would-be dilaton scattering. We think the assumption of positivity is

reasonable, so we press on.

What steps in the argument above require special attention when the theory

admits dimension-three currents? As we have pointed out, the trace of the stress-energy

tensor now has an additional ∂µJ
µ term, but we have already accounted for this in

the presentation above: the current can be eliminated by replacing BI for βI in the

expression for the trace of the stress-energy tensor. Throughout the flow this makes no

difference to the argument above, since the positivity of the integral over the segments

I2 of the contour follows from the optical theorem. For cycles one is not free to ignore

the τ(x) dependence of the couplings or the background vector field in the anomaly

equation. But on the cycle the couplings are covariantly constant. Hence, the terms

that vanish at fixed points because of the constancy of couplings also vanish for cycles,

but now because they are covariantly constant. Finally, the validity of the limits in

(3.5.1) and (3.5.2) needs to be established anew for limit cycles. However, the same

method of conformal perturbation theory may be applied to establish the result. Since
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it is only scaling that is used in this step of the argument by LPR, the proof goes

through as presented there.

3.6. Summary and concluding remarks

We have shown that the Komargodski–Schwimmer proof of the weak version of

the c-theorem includes the more general case that a renormalization group flow goes

from a fixed point or cycle to another fixed point or cycle. Regarding the strong version

of the c-theorem, proven in perturbation theory by Jack and Osborn, we pointed out

that the quantity that plays the role of c is B̃b (defined in (3.3.18)) which is closely

related to the a-anomaly (βb in the notation of Jack and Osborn); these quantities

agree at fixed points and on cycles, but are not generally the same.

We presented a calculation of the Lie-algebra function of coupling constants S

introduced by Jack and Osborn. This is the first calculation of S to an order (third) in

the loop expansion where it does not vanish. We then proved that S = 0 on fixed points

and that S precisely corresponds to the generator Q of limit cycles when evaluated

at any point on the limit cycle. This gives a major improvement on the method of

searching for limit cycles: one merely needs to find zeroes of the beta functions to the

first order in the loop expansion (second order for Yang–Mills couplings) and evaluate

S there. If S = 0 the zero corresponds to a fixed point, while if S = Q 6= 0 the zero

corresponds to a limit cycle with Q the generator of the cycle.

We used these results to show that the trace of the stress-energy tensor vanishes

on cycles, and hence that scale implies conformal invariance (perturbatively in unitary

relativistic d = 4 QFT). If “theory space” is understood as the space of couplings of a

model modulo the action of GF on these couplings (with GF the group of symmetries

of the free Lagrangian), then cycles and fixed points are mapped to single points. It is

remarkable that all such points describe in fact CFTs.

Some questions remain which we intend to turn to in the future. Among them
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are:

• Are there renormalization group flows between fixed points and cycles?

• Are there limit cycles in four dimensions with bounded tree-level scalar potential?

• Are there any properties of cyclic CFTs that generically distinguish them from

fixed point CFTs? In particular, does the current associated with the generator

S play a special role?

• Can a non-perturbative proof of the strong version of the c-theorem be given by

extending the perturbative proof, say, by showing positivity of the metric χgIJ

using dispersion relations?

• Do relativistic, unitary QFTs admit recursive RG flows that do not correspond

to motions by generators in GF ?

We look forward to addressing these questions.
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3.A. Ambiguities in RG functions

It is well-known that anomalous-dimension matrices and beta functions are

dependent on the renormalization scheme. Nevertheless, physical quantities obtained
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from the anomalous-dimension matrices and the beta functions which are relevant to

the study of scale-invariant theories are, as expected, independent of the scheme [6].

It is however usually not appreciated that anomalous-dimension matrices and

beta functions exhibit another freedom, mentioned briefly in the beginning of Section

3.3, which we review here. For simplicity consider a theory of real multi-component

scalars with bare Lagrangian

L0 = 1
2∂µφ0a∂

µφ0a − 1
4!g

0
abcdφ0aφ0bφ0cφ0d.

There is an ambiguity in the definition of the wavefunction renormalization matrix

Z1/2, corresponding to the freedom of choosing Z̃1/2 = OZ1/2 where OTO = 1 [8]. In

this appendix we study the effect of this ambiguity in the definition of RG functions.

For simplicity we present this analysis in the flat background limit. Dimensional

regularization is used throughout.

Bare couplings and fields are related to the corresponding renormalized quantities

by

g0
I = µkIε(gI + LI(g)), φ0 = µδεŽ(g)φ,

where Ž = Z1/2, and Ž − 1 and LI have expansions in ε-poles starting at 1/ε. The

anomalous-dimension matrices and the beta functions, as well as the antisymmetric

matrix S of (3.3.10), are given by

γ̂ = δε− kIgI∂I Ž1, β̂I = −kIgIε− kIL1
I + kJgJ∂JL

1
I , S = −kIgIN1

I ,

where the superscript denotes residues of simple poles. The index carried by k is exempt

from the summation convention. In the present example kI = 1, but we keep it for

generality. Since we are interested in ambiguities that arise because of different choices

in the subtraction of infinite quantities, we assume that O has an expansion in ε-poles,

O = 1 +O1/ε+ · · · , where O1 is antisymmetric as required by OTO = 1. Then, under
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the freedom mentioned above, it is easy to verify that the relevant quantities change as

Ž1 → Ž1 +O1, L1
I → L1

I + (O1g)I , N1
I → N1

I − ∂IO1,

This induces a change in the anomalous-dimension matrix, the beta functions, and the

antisymmetric matrix S:

γ̂ → γ̂ − ω, β̂I → β̂I + (ωg)I , S → S + ω,

where ω = kIgI∂IO
1. This ambiguity, or “gauge” freedom, in the definition of anomalous

dimensions and beta functions is usually resolved by requiring that the anomalous-

dimension matrix be symmetric. Note, however, that the trace of the stress-energy

tensor, being a physical quantity, has to be invariant under this unphysical freedom.

Indeed, this is obviously the case in (3.3.11). As we see β̂, γ̂ and S are gauge-covariant,

but B̂I = β̂I−(Sg)I and Γ̂ = γ̂+S are gauge-invariant. Although RG flows are specified

by β̂, there is a gauge, defined by ω = −S so that S = 0, in which B̂ = β̂ and Γ̂ = γ̂.

Finally, it is worth pointing out that B̂I could be seen as the proper vector

field whose RG flows one should consider, and whose fixed points describe CFTs. This

vector field does not admit cycles in perturbation theory.

3.B. The relation between the metrics χaij and χgij

The coefficient cg of LPR appears to play the role of the “metric” χgij in the

consistency condition (3.2.13). As we mention in the end of Section 3.2.2 and elaborate

on further here, this is not the case. To see the connection with the work of JO,

following LPR we write

∆Wanomaly =
1

2

∫
d4x d4y τ(x)τ(y)〈Θ(x)Θ(y)〉,
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where Θ = βiOi, and therefore

d

dt
∆Wanomaly =

1

2

∫
d4x d4y τ(x)τ(y)

d

dt
〈Θ(x)Θ(y)〉. (3.B.1)

In Ref. [14, Eq. (3.18b)] Osborn finds the RGE for the product of two local renormalized

operators,

− d

dt
〈Oi(x)Oj(0)〉+ ∂iβ

j〈Oi(x)Oj(0)〉+ ∂jβ
k〈Oi(x)Oj(0)〉 = −χaij∂2∂2δ(4)(x).

The quantity χaij can be thought of as the beta function associated with the counterterm

needed in order to renormalize the correlator 〈Oi(x)Oj(0)〉. Now since −dβi/dt =

βj∂jβ
i, it is easy to see that

d

dt
〈Θ(x)Θ(0)〉 = χaijβ

iβj∂2∂2δ(4)(x).

Using this in (3.B.1) we see that the metric of LPR is −2χa, which is always positive.

This suggests the question “is there a relation between χg and χa?”

In the specific example of a gauge theory with a simple gauge group G and

charged Dirac fermions in some representation, JO give [8, Eqs. (5.12)], at two loops,

χa(2) = −1

2
χg(2) = − nV

8π2g2

[
1 +

(
17C − 20

3
R

)
h

]
, h ≡ g2

16π2
, (3.B.2)

where tr(taadjt
b
adj) = Cδab, R is similarly defined for the representation of the Dirac

fermions, and nV = dim(Adj) is the number of vectors. However, the relation χg = −2χa

of (3.B.2) does not hold in general, and so the task of computing χg is complicated.

Nevertheless, Weyl consistency conditions give the general relation between χa and

χg [8, Eq. (3.23)]:

χgij + 2χaij − χ̄aijkβk = −βk∂kVij − ∂iβj Vkj − ∂jβk Vik, (3.B.3)
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where ζVij = χ̄aijkk
kgk (no sum over the index k), and χ̄aijk = ∂kχ

a
ij − 1

2(χbikj + χbjki),

with χbijk necessary to regulate infinities in three-point functions, and ζ defined as an

operator counting the number of loops, whose form can be read off from O(ε) terms of

the finiteness condition (3.9e) of JO:

ζVij = (1 + kkgk∂k)Vij + 2kiVij (no sum over the index carried by k)

(cf. JO’s (3.16b)).

In our gauge-theory example (3.B.3) becomes

χg + 2χa − χ̄aβg = −βg ∂V
∂g
− 2

∂βg

∂g
V, ζV = 1

2 χ̄
ag, (3.B.4)

where ζV = (2 + 1
2g ∂/∂g)V = (2 + h ∂/∂h)V , the beta function for the gauge coupling

is

1

g
βg = −β0h− β1h

2 +O(h3), β0 =
1

3
(11C − 4R), β1 =

2

3
C(17C − 10R),

and χ̄a = ∂χa/∂g − χb, where χb is given at two loops by χb(2) = nV
4π2g3 (1 + 4β0h). It

follows that

χ̄a = − nV
π2g3

[β0h+O(h2)].

Expanding V = v0 + v1h+ · · · gives ζV = 2v0 + 3v1h+ · · · = 1
2gχ̄

a, or

V = −nV β0

64π4
+O(h).

With these results (3.B.4) gives

χg + 2χa = −nV β
2
0

32π4
h+O(h2),

and, therefore, beyond two-loop order, χg 6= −2χa.
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To summarize, the results of LPR correspond to using JO’s −2χaij as a metric,

which however is not in general equal to JO’s metric χgij . Indeed, χgij + 2χaij fails to

vanish beyond the first few orders in the loop expansion. The positivity of χgij may

also fail non-perturbatively (for example, if its perturbative expression has finite radius

of convergence).

3.C. How to calculate NI and S

The calculation of JO’s NI proceeds order by order in perturbation theory. In

this appendix we calculate contributions to NI in a quantum field theory with real

scalars and Weyl spinors up to two loops, and we also perform a three-loop calculation

of the part of NI that is needed in order to compute S.

As can be seen from (3.3.1), in order to calculate NI we need to compute

self-energies of scalars but with coupling constants as spectator fields. Equivalently,

the calculation can be done by considering scalar self-energy diagrams and letting

momentum come in from external legs and go out through couplings. From these

diagrams we can then pick up the contribution linear in the momentum of the field

and linear in the momentum of the coupling. After we antisymmetrize, we have a

contribution to NI .

It is perhaps helpful to remind the reader here that in a theory with scalars

and fermions the I index can be either (abcd) or (a|ij). Let us also remark that S

appears first at three loops in a theory with scalars and spinors. The reason is easily

seen from (3.3.10): a diagram that contributes to N will only contribute to S if it

is not symmetric under a ↔ b. As it turns out there are no such diagrams in scalar

self-energies at one and two loops, but there are four such diagrams at three loops.

Consequently, even if the theory contains gauge fields, diagrams with gauge fields will

not contribute to S at three loops, but certainly will do so at higher order. Therefore,

even in a gauge theory we don’t need to include gauge fields in our leading-order
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calculation of S.

3.C.1. One loop

At one loop the calculation proceeds with no subtleties since renormalization

is trivial, i.e., there are no subdivergences to be subtracted. The two diagrams that

contribute to NI and their corresponding counterterms are shown in Fig. 3.2.

p p pp

p p pp

Figure 3.2: Diagrams that contribute to Na|ij at one loop and their corresponding
counterterms.

A straightforward calculation gives

(Nc|ij)ab = − 1

16π2ε

1

2
(y∗a|ijδbc − y

∗
b|ijδac) + finite,

and there is of course a complex conjugate (N∗c|ij)ab.

In order to simplify the notation we write the result for the residue of the simple

ε-pole in NI in the form

16π2(N1
I )ab∂

µgI = −1
2 [tr(ya∂

µy∗b ) + h.c.− {a↔ b}],

where gI on the left-hand side stands here for yc|ij or y∗c|ij . Selecting the appropriate

derivatives one easily reads off the corresponding N1
I . Our result reproduces JO’s

equation (7.16) for ρI when we use Dirac spinors.
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3.C.2. Two loops

At two loops there are three Feynman diagrams that contribute to NI , listed

in Fig. 3.3. The calculation of the residues of the simple ε-poles of NI requires now

Figure 3.3: Feynman diagrams that contribute to NI at two loops.

a subtraction of subdivergences, something that proceeds, for the most part, in the

usual way. However, there is a small subtlety, not seen in the usual treatments of

renormalization, that we would like to point out. Clearly, the two right-most diagrams

of Fig. 3.3 have subdivergences so we have to add to them the diagrams with the

insertions of the corresponding counterterms. For the right-most diagram the graph

with the insertion of the counterterm is

Now, when the momentum that comes in from, say the left external leg, flows out

through the counterterm, then there are two diagrams that contribute, namely

p

p

and

p

p
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where the momentum exits to the north-east or to the north-west depending on which

vertex it flows out of in the original diagram in Fig. 3.3. In both cases the counterterm

is the same, but the diagram with the insertion of the counterterm is different as a

result of the difference in the momentum of the internal leg that the counterterm picks

up. That is, had we retained different momenta for the various vertices, there would

be two momenta associated with the counterterm.

The two-loop result for N1
I , previously unpublished, is

(16π2)2(N1
I )ab∂

µgI =− 1
24λacde ∂

µλbcde + [1
4 tr(y∗ayc∂

µy∗byc )

+ 1
8 tr(y∗a∂

µycy
∗
cyb ) + 3

8 tr(y∗aycy
∗
c∂

µyb ) + h.c.]− {a↔ b}.

It follows that S vanishes at this order. This can be seen, term by term (when

anti-symmetrized in a and b) by replacing gI for ∂µgI .

3.C.3. Three loops

At three loops there are many diagrams that contribute to NI , but only four

are not symmetric under a↔ b and thus end up contributing to S. These diagrams are

shown in Fig. 3.4, and we here only compute their contributions to N1
I . From these

Figure 3.4: Three-loop diagrams that contribute to NI not symmetric under a↔ b,
and thus leading to contributions to S at three loops.

diagrams (and the corresponding counterterms), using the methods for the calculation
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of pole parts of three-loop diagrams given in [19], we find

(16π2)3(N1
I )ab∂

µgI ⊃− 1
2 tr(ya∂

µy∗cydy
∗
e)λbcde − 1

3 tr(yay
∗
c∂

µydy
∗
e)λbcde

− 1
2 tr(yay

∗
cyd∂

µy∗e)λbcde − 5
24 tr(yay

∗
cydy

∗
e)∂

µλbcde

− 1
24 tr(yb∂

µy∗cydy
∗
e)λacde − 5

24 tr(yby
∗
c∂

µydy
∗
e)λacde

− 1
24 tr(yby

∗
cyd∂

µy∗e)λacde − 5
24 tr(∂µyby

∗
cydy

∗
e)λacde

− 7
32 tr(ya∂

µy∗cydy
∗
dyby

∗
c )− 7

96 tr(yay
∗
c∂

µydy
∗
dyby

∗
c )

− 23
96 tr(yay

∗
cyd∂

µy∗dyby
∗
c )− 7

96 tr(yay
∗
cydy

∗
d∂

µyby
∗
c )

− 7
32 tr(yay

∗
cydy

∗
dyb∂

µy∗c ) + 1
16 tr(ya∂

µy∗cycy
∗
dyby

∗
d)

− 5
48 tr(yay

∗
c∂

µycy
∗
dyby

∗
d)− 1

48 tr(yay
∗
cyc∂

µy∗dyby
∗
d)

− 7
96 tr(yay

∗
cycy

∗
d∂

µyby
∗
d) + 1

16 tr(yay
∗
cycy

∗
dyb∂

µy∗d)

+ h.c.− {a↔ b},

and since

S ≡ −kIN1
I gI = −N1

abcdλabcd − (1
2N

1
a|ijya|ij + h.c.)

we finally obtain

(16π2)3Sab = 5
8 tr(yay

∗
cydy

∗
e)λbcde + 3

8 tr(yay
∗
cydy

∗
dyby

∗
c ) + h.c.− {a↔ b}.

As already remarked in the main body, evaluating this on points in coupling space

where we have found fixed points and cycles in Refs. [4, 6, 7], we find that S vanishes

at all fixed points and equals Q on all cycles.
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Chapter 4

On Limit Cycles in Supersymmetric Theories

4.1. Introduction

In recent papers by some of us two independent methods were used to claim

the existence of unitary four-dimensional quantum field theories that are scale but not

conformally invariant (SFTs) [1–3]. A natural interpretation of the renormalization-

group (RG) behavior of such theories is that they live on RG limit cycles with a

constant “number of degrees of freedom.” Nevertheless, the work of Jack and Osborn

[4] (see also [5]), which we think is widely unappreciated in the literature, has lead us

to a new understanding of the conditions for conformal invariance.1 More specifically,

it has become clear that a theory does not need to have zero beta functions in order

for it to be conformal, and that the claimed examples of non-conformal scale-invariant

field theories [1–3] are actually conformal.

We will not have much to say here about this new understanding—more details

will be given in a forthcoming publication [6]. Our aim in the present note is to

show that unitary N = 1 supersymmetric theories in four dimensions cannot flow to a

superconformal phase with nonzero beta functions. In other words, we will show that

the beta-function vector field of supersymmetric theories does not admit limit cycles,

in contrast to that of non-supersymmetric theories. (Let us remark here that we use

1We acknowledge helpful discussions on this point with Markus Luty, Joseph Polchinski and
Riccardo Rattazzi, as well as informative correspondence with Hugh Osborn.
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“limit cycles” loosely to mean recursive flows in the beta-function vector field of a theory,

that is, flows that may be cyclic or ergodic.) A corollary of this result is that there are

no unitary N = 1 supersymmetric SFTs in four dimensions.

The subject of scale without conformal invariance in unitary N = 1 supersym-

metric theories with an R-symmetry was investigated recently by Antoniadis and Buican

[7]. Their treatment relies on carefully analyzing constraints in the operator content

of such theories, and relies on various well motivated assumptions. A criterion is then

given for a unitary supersymmetric theory to contain a superscale-invariant phase: it

has to contain at least two real nonconserved dimension-two scalar singlet operators [7].

The most constraining assumption in the analysis of [7] is perhaps that an R-symmetry

is required along the RG flow.

The operator content of possible supersymmetric SFTs was also studied by

Nakayama [8], without the requirement of an R-symmetry. The so-called virial mul-

tiplet was constructed and its implications for scale without conformal invariance in

supersymmetric theories were explored. In concrete examples difficulties were found in

constructing a nontrivial virial multiplet in perturbation theory. However, relaxing the

constraint of unitarity produced non-conformal scale-invariant field theories in a simple

Wess–Zumino model.

With the recent work mentioned in the last two paragraphs in mind,2 it seems

unlikely that supersymmetric theories can host a superscale-invariant phase that is not

superconformal. Still, we think it is interesting to ponder the existence of supersym-

metric limit cycles. Examples of limit cycles in non-supersymmetric theories are more

generic than previously thought: in addition to a four-dimensional example, limit cycles

in 4− ε dimensions have also been found [1, 2, 11]. Thus, it is worthwhile to analyze

the constraints supersymmetry imposes on such RG behavior.

The conclusion of our present note is that supersymmetry does not allow for

limit cycles, and thus it does not allow for SFTs. Our method of proof, as will become

2For other studies of superscale and superconformal invariance see [9, 10].
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clear below, is very different in spirit from that employed by Antoniadis and Buican,

and by Nakayama. More specifically, in order to reach our conclusion we analyze

supersymmetric theories with superspace-dependent couplings, and show that a quantity

corresponding to the S of [4] (see also [6]) is constrained to be zero by supersymmetry.

The quantity S is related to the frequency with which a theory traverses its putative

limit cycle, and thus the fact that S = 0 in supersymmetry immediately shows that

supersymmetric limit cycles cannot occur.

Note Added: As this work was being finalized, Nakayama added an appendix

to [8] where he also showed that S must vanish to all orders in perturbation theory in

N = 1 supersymmetric field theories.

4.2. Preliminaries

In this section we give a brief review of material that is necessary for our

arguments.

We are interested in four-dimensional theories that are classically scale-invariant.

They are parametrized by coupling constants gi. Following Jack and Osborn we

promote these to spacetime-dependent couplings, gi(x). This is useful in two ways.

Firstly, the couplings now act as sources for composite operators appearing in the

Lagrangian. This allows us to define finite composite operators as functional derivatives

of the renormalized generating functional for Green functions, W , with respect to the

couplings. A similar method is used frequently to define the stress-energy tensor: the

theory is lifted to curved space and the stress-energy tensor is obtained as a functional

derivative of W with respect to the metric. Secondly, it allows us to obtain a local

version of the Callan–Symanzik equation, with terms involving derivatives of couplings

interpreted as anomalies and thus satisfying Wess–Zumino consistency conditions [12].

In order to render this theory finite one must include all possible dimension-four

counterterms consistent with diffeomorphism invariance. In addition, the counterterms
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may be further constrained by formal symmetries of the theory in which both quantum

fields and couplings transform. Consider, for example, a theory of real scalars with

bare Lagrangian

L0 = 1
2η

µν∂µφ0a∂νφ0a − 1
4!g

0
abcdφ0aφ0bφ0cφ0d. (4.2.1)

This is written in terms of bare fields φ0. In the potential term the bare couplings g0
abcd

are completely symmetric under exchange of the indices a, b, c and d. The kinetic part

of the Lagrangian exhibits a continuous symmetry under transformations of the fields

δφ0a = −ωabφ0b, where ω is in the Lie algebra of the flavor group GF = SO(nS). The

whole Lagrangian is GF -symmetric if we agree to transform, in addition, the couplings

as

δg0
abcd = −ωaeg0

ebcd − ωbeg0
aecd − ωceg0

abed − ωdeg0
abce,

or δg0
I = −(ωg0)I for short, where, following Jack and Osborn, we use the compact

notation I = (abcd). For spacetime-independent couplings the theory is renormalized

by including the usual wave-function, φ0 = Zφ, and coupling constant, g0
I = gI + LI(g),

renormalization. But in the presence of spacetime-dependent coupling constants one

must introduce new counterterms. Among them we are particularly interested in the

counterterm of the form

Lc.t. = (∂µgI)(NI)abφ0b∂µφ0a, (4.2.2)

with (NI)ab = −(NI)ba, that is, in the Lie algebra of GF ; see [4] for a complete account

of counterterms required in the case of spacetime-dependent couplings in a curved

background.

Finite operators corresponding to currents associated with generators of GF

are most readily introduced by introducing background gauge fields. We promote the



86

Lagrangian (4.2.1) to

L̃0 = 1
2g
µνD0µφ0aD0νφ0a + 1

12φ0aφ0aR− 1
4!g

0
abcdφ0aφ0bφ0cφ0d ,

where the covariant derivative,

D0µφ0 = (∂µ +A0µ)φ0,

is introduced with an eye towards including the counterterm (4.2.2) through the

renormalization of A0µ,

A0µ = Aµ +NI(Dµg)I , Dµ = ∂µ +Aµ.

We have left implicit the Lie-algebra indices (so that NT
I = −NI and ATµ = −Aµ). Note

that NI is a function of the renormalized couplings that has an expansion in ε-poles

starting at order 1/ε. If the theory contains gauge fields and some of the scalars are

charged under the gauge group Gg ⊆ GF , it is straightforward to include an additional

quantum gauge field in addition to the background field Aµ.

The generating functional W is now a function of the background gauge field

in addition to the metric and couplings, and finite operators are defined by functional

differentiation:

〈Tµν(x)〉 =
2√
−g

δW

δgµν(x)
, 〈[Oi(x)]〉 =

1√
−g

δW

δgi(x)
, 〈[φaDµφb]〉 =

1√
−g

δW

δAµab(x)
.

With this formalism Jack and Osborn obtain the trace-anomaly equation [4, Eq. (6.15)]

Tµµ = βI [OI ] + ∂µ[(∂µφ)TSφ]− ((1 + γ)φ) · δ
δφ
S0,

where S0 =
∫
d4x
√
−gL0 and βI , and γ are, as usual, the beta function of the coupling
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gI and the anomalous dimension of the field φ, respectively. We have specialized

their result to the case of flat metric, spacetime-independent couplings, and vanishing

background vector field. The last term, involving the functional derivative of the

quantum action, vanishes by the equations of motion. The surprising aspect of this

result is the often neglected term that involves the total divergence of the current

[(∂µφ)TSφ]. It is defined in terms of the GF -Lie algebra element

S ≡ −gIN1
I ,

where NI =
∑∞

n=1N
n
I /ε

n, so that N1
I is the residue of the simple ε-pole in NI . Moreover,

using the equation of motion (or the generalized symmetry under GF ) Jack and Osborn

get [4, Eq. (6.23)]

Tµµ = (βI − (Sg)I)[OI ]− ((1 + γ + S)φ) · δ
δφ
S0.

This shows that a theory is conformal provided βI − (Sg)I = 0. The account above is

readily generalized to the case of real scalars interacting with Weyl fermions in the

presence of quantum gauge fields.

In [6] we used Weyl consistency conditions [4, 5] and perturbation theory to

show that S has two important properties:

1. S vanishes at fixed points. That is, if βI = 0 then S = 0.

2. On cycles, defined by βI = (Qg)I for Q in the Lie algebra of GF , one has S = Q.

Perturbation theory is only needed to establish positivity of the natural metric in

the space of operators, χgIJ in the notation of [4]. It follows that in a theory for

which S = 0 identically there is no possibility of limit cycles, and that conformal

invariance corresponds to fixed points. We will show below this is precisely the case for

supersymmetric theories.
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4.3. Finding Limit Cycles

In this section we review how to determine whether the beta-function vector field

of a theory admits limit cycles [2, 3, 6], making the procedure manifestly supersymmetric

whenever possible. However, we often use what is known in the non-supersymmetric

case to deduce what conditions have to be satisfied in the supersymmetric case.

Consider a classically scale-invariant supersymmetric field theory in four di-

mensions with Nf chiral superfields of mass dimension one. Classical scale invariance

implies that the theory is renormalizable. The part of the Lagrangian we are interested

in is3

L =

∫
d4θΦ†aΦa +

(∫
d2θ

1

3!
yabcΦaΦbΦc + h.c.

)
. (4.3.1)

There may be vector superfields in addition to the chiral superfields in (4.3.1), interacting

in through a term Φ†aeV Φa in the Kähler potential. However, we do not concern ourselves

with vector superfields: their trivial flavor structure renders them unable to play a role

in determining whether limit cycles exist.

The Kähler potential exhibits a continuous symmetry under transformations of

the fields δΦa = −ωabΦb, where ω is in the algebra of the “flavor” group GF = SU(Nf ).

The Yukawa couplings in the superpotential break GF . This flavor symmetry can

be extended to the whole Lagrangian by treating the coupling constants as spurions,

non-dynamical fields that are allowed to transform under GF . More specifically, the

coupling constant yabc is promoted to a superspace-dependent chiral superfield of mass

dimension zero,

Yabc(z) = yabc(z) +
√

2θyψabc(z) + θ2yFabc(z),

where zµ = xµ + iθσµθ̄. The yψ and yF components of the spurion field are irrelevant

and we ignore them in what follows. The Lagrangian (4.3.1) is manifestly GF -symmetric

3Lower case Roman letters are indices in flavor space for (anti-)chiral superfields.
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if the Yukawa couplings transform as

δYabc = −ωaa′Ya′bc − ωbb′Yab′c − ωcc′Yabc′ .

The theory also possesses a spurious U(1) R-symmetry in addition to the GF

symmetry. The fields and couplings transform under the R-symmetry as

Φ→ eiαΦ, Φ† → e−iαΦ†, Y → e−iαY, Y → eiαY . (4.3.2)

The R-symmetry is non-anomalous because the R-charge of the fermionic component of

Φ is zero.

We now look for a supersymmetric version of the new type of counterterm

that is required in the presence of superspace-dependent couplings, as in (4.2.2). In

supersymmetric theories the only candidate for this counterterm has the form

Lc.t. =

∫
d4θΦ†aFabΦb, (4.3.3)

where Fab is a function of the couplings. If the theory is to be unitary, Fab must

be Hermitian, Fab(Y, Y ) = Fba(Y , Y ) = F ∗ba(Y, Y ). One can readily check that one of

the components of (4.3.3) is of the form (4.2.2), that is, the product of the current

associated with GF and the derivative of the couplings

Lc.t. ⊃ ((NI)ab∂
µyI − (NI)

∗
ba∂

µy∗I ) (φ∗a∂µφb − ∂µφ∗a φb) ,

with I again a shorthand for contracted flavor indices. N can be expressed in terms of

F as

(NI)ab =
∂Fab(y, y

∗)

∂yI
, (NI)

∗
ba =

∂Fab(y, y
∗)

∂y∗I
.

Both N and F−1 are functions of the renormalized couplings that have ε-pole expansions

starting at order 1/ε.
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4.4. Absence of Limit Cycles in Supersymmetric Theories

We are finally ready to prove at the quantum level that a unitary, N = 1

supersymmetric field theory in four dimensions does not have limit cycles. Our strategy

is to show that S is exactly zero in supersymmetric theories with the aforementioned

qualifications. This we can show without recourse to perturbation theory. However, we

are mindful that the proof in [6] that S = Q on cycles and S = 0 at fixed points does

rely on perturbation theory.

The expression for S in our case is

Sab ≡ −1
2(N1

I )abyI − h.c., (4.4.1)

= −1

2

(
yI
∂F 1

ab(y, y
∗)

∂yI
− y∗I

∂F 1
ab(y, y

∗)

∂y∗I

)
, (4.4.2)

where F 1 is the residue of the simple 1/ε pole in F . The Hermitian conjugate is

subtracted in (4.4.1), as expected since S is anti-Hermitian. The quantum action is

invariant under the R-symmetry introduced in Section 4.3, see (4.3.2). Therefore

Fab(Y, Y ) = Fab(e
−iαY, eiαY ),

or, by taking α to be infinitesimal,

0 = YI
∂Fab(Y, Y )

∂YI
− Y I

∂Fab(Y, Y )

∂Y I

.

Comparing the scalar component of this equation with (4.4.2) shows S = 0. The

theory cannot exhibit renormalization group limit cycles. Furthermore, unitarity and

superscale invariance imply superconformal invariance in unitary four dimensional N = 1

supersymmetric field theories.
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4.5. A Perturbative Proof and a Four-Loop Example

If S vanishes in supersymmetric theories non-perturbatively, the implication

must also be true to all orders in perturbation theory. In this section we illustrate the

vanishing of S in perturbation theory with a four-loop example. Remarkably, four-loop

calculations in the Wess–Zumino model exist in the literature [13]. For a diagram

containing only chiral superfields, it is a simple combinatoric exercise to convert the

results of [13] to the model under consideration in this work.

In non-supersymmetric theories a scalar-propagator loop correction contributes

to S if the corresponding diagram is not symmetric under a↔ b. Such diagrams first

arise at the three-loop level in ordinary field theories [6]. In N = 1 supersymmetric

Wess–Zumino models asymmetric diagrams arise at four loops, see e.g. Fig. 4.1. The

Figure 4.1: Four-loop diagrams that contribute to F that are asymmetric under
exchange of the external legs. The lines are superfield propagators.

four-loop contribution of the diagrams of Fig. 4.1 to F 1 is

(16π2)4F 1
ab ⊃ 3

8(ζ(3)− 1
2ζ(4))(yacdy

∗
dkmyfk`y

∗
befyejmy

∗
ij`yghiy

∗
cgh

+ yacdy
∗
dkmyik`y

∗
ghiyfghy

∗
befyejmy

∗
cj`),

where ζ is the Riemann zeta function. From this expression for F 1 we see that S

vanishes by (4.4.2). There are at least two ways to understand this diagrammatic result.

It is obvious from the form of (4.4.2) that S counts the difference in the number

of y’s and y∗’s in F . The non-renormalization of the superpotential guarantees that

any diagram containing an unequal number of y’s and y∗’s vanishes. Thus, the only

diagrams that contribute to F contain an equal number of y’s and y∗’s, and S must
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vanish to all orders in perturbation theory. In contrast with the non-supersymmetric

case, not even diagrams asymmetric under exchange of the external legs can contribute

to S.

The second way in which our result can be understood is as follows. In non-

supersymmetric theories momentum is allowed to flow into the diagram that gives N1

from an external leg and out of the diagram through a coupling. If the diagram is

asymmetric, then interchanging the external lines of the diagram results in a different

routing of the external momentum through the diagram, and thus to a different

numerical coefficient for the corresponding contribution to N1. This leads to a nonzero

contribution to S after antisymmetrization. In the supersymmetric case, however, the

coefficient of all diagrams contained in the θ-expansion of an asymmetric diagram—like

the one in Fig. 4.1—comes from the zeroth-order in θ diagram, which is calculated

with no external momentum flowing into the diagram. Thus, there is no possibility of

a contribution to S. This is true to all orders in perturbation theory.
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Chapter 5

Current OPEs in Superconformal Theories

5.1. Introduction

There are many examples of 4d (super)conformal theories ((S)CFTs). Some have

microscopic Lagrangian descriptions, e.g. N = 1 SQCD in the conformal window [1] or

N = 4 SYM, while others need not (e.g. [2]). Even if there is a microscopic description,

it’s generally of limited use, because of strong coupling effects. The “observables” of

conformal theories are the spectrum of operators Oi, their operator dimensions ∆i, and

their operator product expansion (OPE) coefficients,1 the ckij in

Oi(x)Oj(0) =
∑
Ok

ckij
x∆i+∆j−∆k

Ok(0) =
∑

primary
Ok

ckij
x∆i+∆j−∆k

F∆k
∆i∆j

(x, P )Ok(0). (5.1.1)

Conformal symmetry implies that all local operator correlation functions are fully

determined, via the OPE, by the n ≤ 3-point functions of a subset of the operators, the

primaries. In particular, conformal symmetry relates the OPE coefficients of descendant

operators to those of the primaries, with determined functions F∆k
∆i∆j

(x, P ) in (5.1.1).

The OPE expansion (5.1.1) is exact in CFTs, and determines all correlation functions

of local operators. We’re here interested in 4d N = 1 SCFTs, where the additional

symmetry yields additional relations among OPE coefficients.

Conformal or approximately conformal theories are intrinsically interesting, and

1There are also non-local observables, like Wilson loops, but we will not discuss them here.
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have various possible applications to high energy physics and beyond the Standard Model

(BSM) model building, to perhaps help mitigate various model building challenges.

For example, invoking running effects with O(1) anomalous dimensions could help

suppress or enhance otherwise finely tuned quantities or ratios. Examples include

sequestering [3], achieving flavor hierarchy from anarchy [4–6], and µ/Bµ in gauge

meditation[7, 8]. Furthermore, flowing near an approximate CFT could help lead to

useful scale separations or interesting phenomenology, e.g. in walking technicolor or

unparticles with mass gaps.

Our discussion here is particularly motivated by possible applications to general

gauge mediation (GGM) [9], where one is interested in current-current two-point

functions like 〈J(x)J(0)〉. 4d N = 1 supersymmetry conserved currents jµ reside in

real supermultiplets

J (z) = J(x) + iθj(x)− iθ̄̄(x)− θσµθ̄jµ(x) + · · · , (5.1.2)

where · · · are derivative terms, following from the conservation equations D2J =

D̄2J = 0. The operator2 J(x) = J | is a real superconformal primary, with dimension

∆J = 2, and the conserved current jµ(x) is among its descendants. Here jµ(x) is a

global current of the CFT (that could later be weakly gauged as in GGM). With this

application in mind, we will here consider general aspects of the super OPEs of these

operators in 4d N = 1 SCFTs. We will discuss applications to GGM in detail in a

separate paper [10].

The leading short-distance terms in the OPE of J (z) with operators have

universal coefficients, fixed in terms of the charges. As we’ll recall, this is similar to the

universal coefficients in OPEs involving the conserved Tµ(z) U(1)R-plus-stress-energy-

tensor supermultiplet[11] of SCFTs, which was considered e.g. in [12–14]. The leading

terms in the OPE of the bottom, primary component of currents with themselves take

2We use | to denote the bottom component, setting all θ, θ̄ = 0.
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the form

Ja(x)Jb(0) = τ
δab1

16π4x4
+
kdabc
τ

Jc(0)

16π2x2
+ fabc

xµjcµ(0)

8π2x2
+ ciab

Oi(0)

x4−∆i
+ · · · , (5.1.3)

with a an adjoint index for the (say simple) group G. In what follows, we often suppress

the group adjoint index, or simply take G = U(1) since the generalization is fairly

straightforward. For the moment, we just want to illustrate a point with the symmetric

dabc and the structure function terms fabc in (5.1.3).

Conformal symmetry relates terms in the OPE. In the non-SUSY case, the

coefficients of all descendant operators are fully determined from those of the primary

operators, as was worked out (in many different ways) in the 1970s, see e.g. [15]. It is

natural to expect that (i) the SUSY version should be completely analogous and (ii)

that it must have long ago been worked out for general operators. But both statements

are untrue! This follows from the works of Hugh Osborn and collaborators, but it has

not been very explicitly discussed in the literature, and it comes as an initial surprise

to many experts.

The OPE is related to operator two- and three-point functions, and the fact

that non-SUSY conformal descendant terms are uniquely characterized by the primaries

is related to the fact that conformal symmetry can be used to map any three operator-

insertion points xµ1,2,3 to wherever one pleases. The constraints of (non-SUSY) conformal

symmetry on operator two- and three-point functions, in general spacetime dimension d,

were studied in [16], including the additional constraints coming from Ward identities

for conserved quantities like jµ or Tµν .

That the OPE coefficients of superconformal primaries are generally not sufficient

to determine those of the superdescendants can likewise be understood from their

relation to operator two- and three-point functions. The 4d N = 1 superconformal

constraints on operator two- and three-point functions were analyzed, using a superspace

analysis by Osborn [14], and we’ll here review, and heavily use, his framework. A quick

way to understand why superdescendant three-point functions are generally not fully
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determined by the primaries is to note that N = 1 supertranslations and superconformal

transformations only suffice to eliminate the Grassmann coordinates at two points in

superspace—the third Grassmann coordinate in three-point functions remains. This

explains the existence of the nilpotent three-point function superconformal invariant

building blocks, Θ and Θ̄, found in superspace in [14] (see also [17]).

As an illustration, consider the superspace expression for current three-point

functions [14], capturing the G structure functions fabc and TrG3 ’t Hooft anomaly k,

〈Ja(z1)Jb(z2)Jc(z3)〉 =
1

x3̄1
2x1̄3

2x3̄2
2x2̄3

2

[
i
fabcτ

128π6

(
1

X2
3

− 1

X̄2
3

)
+
dabck

256π6

(
1

X2
3

+
1

X̄2
3

)]
(5.1.4)

with notation reviewed in section 5.3.1. For now we will just say that X − X̄ = 4iΘΘ̄,

with Θ ∼ θ’s in superspace. The fabc terms in (5.1.4) do not contribute if we restrict (via

θ → 0) to superconformal primary components, but do contribute for superdescendants.

Explicitly, in (5.1.3), the fabc term is a descendant coefficient that is unrelated to the

kdabc primary coefficient. In (5.1.4) the Θ dependence is at least determined by G

symmetry. For general operators, the Θ dependence is ambiguous, not fully determined

by the symmetries.

We will here study the general constraints of superconformal symmetry on

the two- and three-point functions relevant for the J(x)J(0) sOPE, and how the

sOPE coefficients are obtained from these correlators. We will do this both using

the superspace results of Osborn [14] for the relevant two- and three-point functions,

and also directly from the superconformal algebra. As we’ll discuss, the fact that the

currents are conserved here allows the superspace Θ dependence to be completely fixed.

Thus, the coefficients of the superconformal primaries in the J(x)J(0) OPE suffice to

fully determine all OPE coefficients of all descendants. We will also show that the

only operators contributing on the RHS of the J(x)J(0) OPE are integer-spin real

U(1)R-charge-zero superconformal primaries, Oµ1...µ` , and their superdescendants.

The paper is organized as follows: section 5.2 briefly reviews the aspects of the



99

OPE in 4d CFTs that we will use in the following discussion. Section 5.3 discusses

superconformal theories, and the constraints of superconformal symmetry on two- and

three-point functions and the OPE. The superspace formalism of [14], and the recent

results about chiral-chiral and chiral-anti-chiral OPEs [18–20], are reviewed. In section

5.4 we consider the current-current OPE, showing how the additional constraints of

the current’s conservation constrains the 〈JJO〉 three-point functions, and hence the

OPE. We show that only real, U(1)R-charge zero, integer-spin operators O(`), and their

superconformal descendants, can appear on the RHS of the J(x)J(0) OPE. We show

that the OPE coefficients within each supermultiplet are fully specified by a single OPE

coefficient. The dependence on the nilpotent invariant Θ mentioned above is here fully

determined by the J current conservation.

In section 5.5 we discuss aspects of four-point functions and their conformal

blocks, where the four-point function is factorized into an OPE sum of intermediate

operators, and their descendants, in the s, t, or u channel. In N = 0 theories, the

contribution of an intermediate primary operator of dimension ∆ and spin ` is given

by a known function [21], g∆,`(u, v), which accounts for the sum over descendants and

is independent of the external operators. There is no general analog of such a general

“superconformal block” in SCFTs, because of the generally ambiguous dependence on the

super-descendants in the sOPE. This ambiguity is resolved when the external operators

are in reduced multiplets, in particular the chiral and anti-chiral multiplets discussed in

[19] and the conserved currents discussed here. The superconfomal blocks, then, depend

on the type of external states. We review the results of [19] for N = 1 superconformal

blocks Gφφ
∗;φφ∗

∆,` , and briefly mention how Gφφ;φ∗φ∗

∆,` differs. Then we discuss the N = 1

superconformal blocks for GJJ ;JJ
∆` and GJJ ;φφ∗

∆,` . Finally, we discuss these quantities in

N = 2 SCFTs, where they are related by the additional SU(2)I symmetry.

Section 5.6 summarizes our findings and discusses possible applications of the

results. Finally, appendix 5.A summarizes some of the relations of the (super)conformal

algebra, and our sign conventions.
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5.2. Review of OPE results in the non-SUSY case

Aspects of CFTs and the OPE are discussed in many references and reviews.

We will here review, for completeness, some of the main points for our later use. We

summarize the algebra and our sign conventions in appendix 5.A.

5.2.1. Primaries, descendants and their two- and three-point functions

Representations of the conformal group are built by regarding Pµ and Kµ as

raising and lowering operators, respectively; they raise or lower operator dimension

by one unit. Each irreducible representation has a lowest, “quasi-primary” operator

at the bottom, which is annihilated by all lowering operators at the origin, xµ = 0.

(The origin is a distinguished point, as the fixed point of scale transformations.) The

quasi-primary has an associated tower of “descendant” operators above it, generated

by [Pµ, ?]; this accounts for the fact that the operators can anyway be translated to a

general point via OI(x) = e−iP ·xOI(0)eiP ·x.

Conformal symmetry completely determines the form of the n ≤ 3-point func-

tions, in terms of the operator dimensions, up to the overall normalization coefficients.

This follows from the fact that conformal transformations can be used to map any three

points xµ1,2,3 to wherever one pleases. For example, we can use translation symmetry to

map xµ1 = 0, and special conformal symmetry to make xµ3 =∞, and then use Lorentz

symmetry and dilatations to map xµ2 to a canonical unit vector.

Scale invariance implies that the only non-zero one-point function is that of the

identity operator, which is the only operator with ∆O = 0:

〈Oa(x)〉 = δa,0, O0 ≡ 1.

The two-point functions of primary operators take the form

〈Osii (xi)O
sj
j (xj)〉 =

cij

r∆i
ij

P sisj (xij), xµij ≡ x
µ
i − x

µ
j , rij ≡ x2

ij . (5.2.1)
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Here cij are constant normalization coefficients, the analog of the Zamolodchikov metric

on the space of deformations in 2d. Conformal symmetry implies that cij vanish

unless the two operators have the same operator dimension, cij ∝ δ∆i,∆j , and of course

the same spin. The si,j in (5.2.1) are Lorentz indices and P sisj (x) is an appropriate

representation of the rotation group, e.g. P = 1 for scalars or, taking both operators to

have spin `, with si = (µ1 . . . µ`) and sj = (ν1 . . . ν`), both symmetrized and traceless

[16],

P sisj (x) = I(µ1ν1(x) · · · Iµ`ν`)(x), Iµν(x) ≡ ηµν − 2
xµxν

x2
,

with the Lorentz indices symmetrized and traceless.

Conformal symmetry implies that primary operator three-point functions have

the form

〈Osii (xi)O
sj
j (xj)Oskk (xk)〉 =

cijk

r
1
2

(∆i+∆j−∆k)

ij r
1
2

(∆i+∆k−∆j)

ik r
1
2

(∆j+∆k−∆i)

jk

P sisjsk(x),

(5.2.2)

where cijk are constants and P sisjsk(x) is a fixed tensor depending on the Lorentz spins

of the operators, e.g. P = 1 for scalar operators, that is determined in [16]. Of course,

(5.2.2) reduces to (5.2.1) if any of the operators is the identity, so c0ij = cij . A case

of particular interest here is for two scalar primaries and one spin-` primary operator,

where the explicit form of (5.2.2) is

〈Oi(xi)Oj(xj)O(µ1...µ`)
k (xk)〉 =

cijk

r
1
2

(∆i+∆j−∆k+`)

ij r
1
2

(∆k+∆ij−`)
ik r

1
2

(∆k−∆ij−`)
jk

Z(µ1Zµ2 · · ·Zµ`),

(5.2.3)

where ∆ij ≡ ∆i −∆j , and

Zµ ≡
xµki
rik
−
xµkj
rjk

, Z2 =
rij

rikrjk
, (5.2.4)
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which is called Xµ
ji in the notation of [16] and Xµ

k |θ,θ̄=0 in the notation of [14] that

we’ll use shortly.

The primary two- and three-point functions (5.2.1) and (5.2.2) fully determine

those of all descendants. For example, we can replace Osjj (xj) with [Pµ,O
sj
j (xj)] =

i∂µO
sj
j (xj) in (5.2.1) and (5.2.2) simply by taking i∂/∂xµj of the LHS.

The above expressions can be written in terms of (radial quantization) states:

using translation symmetry to map xi → 0, the (say scalar) operator Oi(xi) creates an

in-state,

lim
xi→0

Oi(xi)|0〉 = |Oi〉. (5.2.5)

Using conformal symmetry to map xj →∞, Oj(xi) likewise creates an out-state,

lim
xj→∞

〈0|Oj(xj)x
2∆j

j = 〈Oj |, (5.2.6)

where the x
2∆j

j factor follows, for example, via an inversion, x′µ = xµ/x
2, with O′j(x′) =

Ωinv(x)∆jOj(x), Ωinv(x) = x2 (see appendix 5.A), which maps (5.2.5) to (5.2.6). Then,

(5.2.1) and (5.2.3) give (taking (xi, xj , xk)→ (0,∞, x), (5.2.4) gives Zµ → xµ/x2)

〈Oj |Oi〉 = cij ,

〈Oj |O(µ1...µ`)
k (x)|Oi〉 =

cijk

(x2)
1
2

(∆i+∆j−∆k+`)
x(µ1 · · ·xµ`).

5.2.2. The OPE; descendants from primaries

The OPE contains precisely the same information as the two- and three-point

functions:

Osii (xi)O
sj
j (xj) =

cijP
sisj (xij)

r∆i
ij

1 +
∑
k′

ck
′
ij

r
1
2

(∆i+∆j−∆k′ )
ij

[F k
′

ij (xij , P ),Ok′ ](sk′ )(xj). (5.2.7)

The function F k
′

ij (xij , P ) gives the coefficients of the descendant operators and depends

only on the operator dimensions ∆i,j,k′ and spins si,j,k′ . Taking expectation values



103

of both sides yields (5.2.1) from the unit operator O0 ≡ 1 on the RHS of (5.2.7), so

cij = c0
ij .

To relate the OPE (5.2.7) to the three-point functions (5.2.2) we multiply both

sides of (5.2.7) by Oskk (xk) and then, taking the expectation value, use (5.2.1) to

evaluate the remaining two-point function 〈Osk′k′ (xj)Oskk (xk)〉. This gives the relation

cijk = ck
′
ij ckk′ , or equivalently ckij = cijk′c

k′k for primaries, (5.2.8)

where ckk
′
ck′m = δkm, summing the dummy index k′. It follows from (5.2.8) that, e.g.

ckij = ck`cjmc
m
i` . (5.2.9)

The relations (5.2.8) follow from matching the OPE (5.2.7) to merely the leading

xij → 0 dependence in the three-point functions (5.2.2). This leading dependence comes

from restricting to primary operators on the RHS of the OPE, dropping the [Pµ, ?]

descendant terms. Matching to the full xij , xjk, and xik dependence in (5.2.2) will

determine the coefficients of all the [Pµ, ?] descendant terms, i.e. the function F kij(xij , P ),

in the OPE (5.2.7). These functions incorporate also the spin dependence, which is

a complication that we won’t need to deal with in full generality. It’ll suffice here to

focus on the OPE of scalar operators.

Consider then the OPE of two scalar operators, which generally includes non-zero

integer-spin-` primary operators O(µ1...µ`)
k′ (with symmetrized indices) on the RHS,

Oi(xi)Oj(xj) =
∑
O`
k′

ck
′
ij

r
1
2

(∆i+∆j−∆k′ )
ij

F
∆k′ ;`
∆i∆j

(xij , P )µ1...µ`O
(µ1...µ`)
k′ (xj). (5.2.10)

The (odd) even spin ` terms are (anti-) symmetric under Oi ↔ Oj . For simplicity,

consider first the spin ` = 0 primary operators on the RHS,

Oi(xi)Oj(xj) ⊃
∑
O`=0
k′

ck
′
ij

r
1
2

(∆i+∆j−∆k′ )
ij

F
∆k′
∆i∆j

(xij , P )Ok′(xj). (5.2.11)
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The function F
∆k′
∆i∆j

(x, P ) satisfies F
∆k′
∆i∆j

(x = 0, P ) = 1, to give the leading xij → 0

singularity from the primary Ok′ . The higher-order terms in F account for the OPE

coefficients of Ok′ ’s descendants, which are fully determined by the conformal symmetry;

reproducing the three-point functions gives one derivation [15]: we multiply (5.2.11) by

Ok(xk) and take expectation values of the resulting two-point function using (5.2.1),

with P = 1 for this scalar case, and then require that the result reproduces the

three-point functions (5.2.2), again with P = 1. This determines that, for this scalar

case,

F∆k
∆i∆j

(xij , P → i∂xj ) = C
1
2

(∆k+∆i−∆j),
1
2

(∆k−∆i+∆j)(xij , ∂xj ), (5.2.12)

where the function on the RHS is defined to be the solution of

Cab(xij , ∂xj )
1

ra+b
jk

=
1

raikr
b
jk

, (5.2.13)

(see e.g. [18] for details, as well as the generalization for the general spin-` operators)

such that (5.2.10) reproduces the three-point functions (5.2.3).

One can also obtain the functions F∆k
∆i∆j

(x, P ) that capture the descendant OPE

coefficients by requiring that [Kµ, ?] gives the same result when taking ? = the LHS

and the RHS of (5.2.11). Using the algebra and action of Kµ, given in appendix 5.A,

this gives

i(x2∂µ − 2xµx · ∂ − 2∆ixµ)

(
F∆k

∆i∆j
(x, P )

(x2)
1
2

(∆i+∆j−∆k)

)
=

1

(x2)
1
2

(∆i+∆j−∆k)
[Kµ, F

∆k
∆i∆j

(x, P )],

(5.2.14)

treating the primaries Ok as a basis of independent operators. This equation can be

solved exactly, see the original papers [15]. As an expansion in powers of x, it is

straightforward to use the algebra to see that (5.2.14) is solved by

F∆k
∆i∆j

(x, P ) = 1− i

2

(
∆k + ∆i −∆j

∆k

)
x · P + · · · .
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5.2.3. Conserved-current leading OPE singularities from their charges

The normalization of conserved currents, their leading OPE with other operators

and themselves, is determined in terms of the operator’s conserved-charge value. Con-

served currents jaµ(x) are real, spin-` = 1, ∆jµ = 3 operators. For simplicity, consider

first the case of a U(1) current, jµ(x), in the three-point function with a scalar operator

of U(1) charge qO,

〈O(x1)O†(x2)jµ(x3)〉 = −iqO
cOO†

2π2

Zµ

r∆O−1
12 r13r23

, (5.2.15)

where we use (5.2.3). The i is needed for jµ to assign the correct charge to the

operator, and it ensures that (5.2.15) is Hermitian with the exchange x1 ↔ x2, which

takes Zµ → −Zµ. More generally, the OPE of a conserved current jaµ(x) with primary

operator OI(x) (a is an adjoint index and I runs over O’s representation) is

jaµ(x)OI(0) = −i(taO)IJ
xµ

2π2x4
OJ(0) + less singular, (5.2.16)

where taO is the representation of the operator; for a U(1) current, tO = qO the U(1)

charge, and we take O to be a Lorentz scalar for simplicity. For an operator Jb in the

adjoint representation, (ta)bc = ifabc so (5.2.16) becomes

jaµ(x)Jb(0) = fabc
xµ

2π2x4
Jc(0) + less singular. (5.2.17)

Using (5.2.9) with (5.2.16) determines the coefficient of jaµ on the RHS of the O†I(x)OJ(0)

OPE. In particular, (5.2.17) leads to the fabc term on the RHS of (5.1.3).

The OPE of the stress-energy tensor with the operator is [16]

Tµν(x)O(0) = −2∆O
xµxν − 1

4ηµνx
2

3π2x6
O(0) + less singular. (5.2.18)
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It follows from (5.2.15) and (5.2.18) and (5.2.9) that (using cTT = 40c/π4)

O†(x)O(0) =
cO†O
x2∆O

1− iqO
2π2

3τ

cO†Oxµ

x2(∆O−1)
jµ(0) + ∆O

π2

60c

cO†Oxµxν

x2(∆O−1)
Tµν(0) + . . . (5.2.19)

These relations between the leading singularities and the charges can be shown,

much as in 2d, by computing the charge operator by integrating the current over a

spatial S3 in radial quantization, and then using the OPE where it hits the other

operators. Properly regulated, this yields the commutator of the charge with the

operator and the leading singularity gives the operator’s charge value. Equivalently,

the leading term coefficients in (5.2.16) and (5.2.18) are fixed as they give the correct

contact terms in the conserved current’s Ward identities for ∂µjµ, ∂µTµν , and T µ
µ .

This can be shown [16] by treating the x→ 0 singularities in (5.2.16) and (5.2.18) with

differential regularization [22]:

R

(
1

x2η

)
=

1

x2η
− µ2η−4

4− 2η
2π2δ(4)(x) = − 1

4− 2η
∂2

(
1

2η − 2

1

x2η−2
− µ2η−4

2

1

x2

)
,

and for 2η → 4,

R

(
1

x4

)
= −1

4
∂2

(
1

x2
ln(µ2x2)

)
.

The normalization of the currents is fixed by the above conditions, that their

OPEs with operators give the correct operator charges. The leading singularities in

the self-OPEs jaµ(x)jbν(0) and Tµν(x)Tρσ(0) are similarly determined from Ward identity

contact terms. The current-current OPE leading terms are

jaµ(x)jbν(0) = 3τab
Iµν(x)

4π4x6
1 + 2fabc

xµxνx
κ

π2x6
jcκ(0) + kdabc

D κλ
µν (x)xλ
8π2x4

jcκ(0) + · · · ,

where fabc are the group structure constants, and kdabc is the coefficient of the TrG3 ’t

Hooft anomaly. The leading terms in the stress-tensor self-OPE are more involved to

write out, because of all the indices, see [16]. The terms ∼ 1/xn for integer n contribute

to the conformal anomaly 〈T µ
µ 〉 when the operators are coupled to background sources,
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see e.g. [23] for a nice discussion. In particular, τab = τδab gives the contribution to

〈T µ
µ 〉 when jaµ(x) are coupled to external sources Aaµ(x), which shows that τ gives the

contribution to the one-loop beta function for the gauge coupling if the G symmetry is

weakly gauged.

5.3. 4d N = 1 SCFT primaries, descendants, and OPEs

The N = 1 superconformal algebra (isomorphic to SU(2, 2|1)) extends the

conformal algebra with the supercharges Qα and Q̄α̇, the superconformal supercharges,

Sα and S̄α̇, and the U(1)R-generator, R. (See appendix 5.A for more details about the

algebra.)

Representations are formed by regarding Pµ, Qα, and Q̄α̇ as the raising operators,

and Kµ, Sα, S̄α̇ as the corresponding lowering operators. If an operator O has (∆, r)

for its operator dimension and R-charge, respectively, then Qα(O) ≡ [Qα,O} has

(∆ + 1
2 , r − 1) and e.g. Sα(O) ≡ [Sα,O} has (∆ − 1

2 , r + 1). The superconformal

Q̄

P

Q

K

S̄ S

∆

r

Figure 5.1: A representation of the superconformal group.

quasi-primary operators are at the bottom of the representations, annihilated by all
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lowering operators at the origin, xµ = 0. Each superconformal quasi-primary has a

tower of superconformal descendant operators above it, obtained by acting with the

raising operators; this is represented by the dots in Fig. 5.1, with the superconformal

quasi-primary operator at the bottom.3 The other operators on the bottom left and

right edges, e.g. Qα(O), are conformal primaries but superconformal descendants.

Every SCFT has a superconformal U(1)R-plus-stress-energy-tensor supermulti-

plet [11]

Tµ(z) = jRµ (x) + θαSαµ(x) + θ̄α̇S̄α̇µ(x) + 2θσν θ̄Tνµ(x) + · · · , (5.3.1)

where the · · · are derivative terms, determined by the conservation equation D̄α̇Tαα̇ = 0.

The primary component jRµ (x) = Tµ| is the conserved superconformal U(1)R symmetry

current, with ∆jRµ
= 3. The supercurrents Sαµ (x), S̄ α̇µ (x), and the stress-energy tensor

Tµν(x) are among its descendants. The leading short distance singular terms in the

OPE of Tµ(z) with other operators, including itself, have coefficients with interesting

universality [12] interpretations, fixed in terms of the dimension and R-charges of the

operators, ’t Hooft anomalies, and the central charges a and c. The supersymmetry

relations among the jµR and Tµν operators in (5.3.1) then yields the relations of [13]

and [14] between the central charges and the U(1)R ’t Hooft anomalies.

Knowing how the superconformal generators act on the operator representations

at xµ = 0, their action at a general point xµ follows from OI(x) = e−iP ·xOI(0)eiP ·x

and the algebra. For example, for a scalar superconformal primary, it follows that

[Sα,O(x)] = ix · σ̄α̇α[Q̄α̇,O(x)].

3In special cases some superconformal descendants are also primaries, i.e. annihilated by the
lowering operators. Such operators are zero-norm null states, that must be set to zero, leading to
a truncated representation. Examples are chiral primary operators O, where Q̄α̇(O) ≡ [Q̄α̇,O] is
null, and (semi-)conserved currents J , where Q2(J) ≡ {Qα, [Qα, J ]} is null.
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As another example, raising and then lowering a scalar superconformal primary yields

SβQα(O(x)) = 2(σµν βα x[µ∂ν]+δ
β
α x·∂)O(x)−ix·σ̄α̇βQαQ̄α̇(O(x))+(2∆O+3rO)δ β

α O(x),

(5.3.2)

where, again, we define SβQα(O(x)) ≡ {Sβ, [Qα,O(x)]}.

Considering (5.3.2) at xµ = 0, it’s seen that Qα(O(0)) is null only if ∆O = −3
2rO;

these are the anti-chiral primaries. Similarly, it follows from SαQ2(O(0)) = 2[2(2 −

∆O)− 3rO]Qα(O(0)), that Q2(O) is null only if ∆O = 2− 3
2rO. Likewise, Q̄2(O)(0) is

null only if ∆O = 2 + 3
2rO. Conserved current operators satisfy both conditions,

Q2(J(x)) = Q̄2(J(x)) = 0,

and so ∆J = 2 and rJ = 0. The scalar primary operator J(x) has the conserved current

jµ as a superpartner descendant, jµ(x) = −1
4 σ̄

α̇α
µ [Qα, Q̄α̇]J(x).

One might anticipate that, much as in (5.2.11), the OPE for all operators is

completely determined by those for the superconformal primaries,

Oi(x)Oj(0)
?
=

∑
sprimary
Ok

ckij

(x2)
1
2

(∆i+∆j−∆k)
F kij(x, P,Q, Q̄)Ok(0), (5.3.3)

where “sprimary” is shorthand for “superconformal primary”, with the superconformal

descendant OPE coefficients completely determined from those of the superconformal

primaries. But as we mentioned after (5.1.4), this is generally incorrect. This is already

known, but perhaps not widely so. We can illustrate an example of from what we’ve

discussed so far: consider the OPE O†(x)O(x), where O is a scalar operator with

superconformal U(1)R charge rO and dimension ∆O. It follows from (5.2.19) that

O†(x)O(0) ⊃ −irO
π2

8c

cO†Oxµ

x2(∆O−1)
jµR(0) + ∆O

π2

60c

cO†Ox
µxν

x2(∆O−1)
Tµν(0) + · · · , (5.3.4)

where we used the supersymmetry relation between the coefficient τRR of the jµR two-
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point function and the conformal anomaly c, τRR = 16c/3 (see e.g. [24]). Equivalently,

Tµ(z)O(0) ⊃
(
−irO

xµ
2π2x4

− 4∆O
1

3π2x6
θσν θ̄(xµxν − 1

4x
2ηµν)

)
O(0) + · · · . (5.3.5)

For a general operator O, the coefficients rO and ∆O in (5.3.4) or (5.3.5) are

not proportional to each other (only for chiral or anti-chiral primaries is there a fixed

proportionality). So, for general operators O, the two terms on the RHS of (5.3.4)

have two independent OPE coefficients, for the primary operator, jµR, and its super-

descendant, Tµν . This illustrates that (5.3.3) can not hold with any universal functions

F kij . Generally, the coefficients of the Q and Q̄ descendant terms in F in (5.3.3) are

independent coefficients, not fixed by the symmetries. This all follows from the general

superpace analysis of Osborn [14], that we’ll now review.

5.3.1. Two and three-point functions: the superspace analysis of [14]

Operators are labeled by (j, ̄, q, q̄), where (j, ̄) are the Lorentz spins, q ≡
1
2(∆ + 3

2r) and q̄ ≡ 1
2(∆− 3

2r), where ∆ is the operator’s dimension and r its R-charge.

Chiral operators have q̄ = 0, real operators have q = q̄ = 1
2∆, and conserved currents

have q = q̄ = 1. The form of two-point functions of arbitrary superconformal primaries

is completely fixed in [14] by superconformal invariance, up to overall coefficients ckk̄

(which could be set to δkk̄ by choice of operator normalization for some operators (but

not J or Tµ)):

〈Oi3k (z2)Ōı̄3
k̄

(z3)〉 = ckk̄
Ii3 ı̄3(x23̄, x2̄3)

x2̄3
2q̄3x3̄2

2q3
. (5.3.6)

Here zi denotes superspace coordinates, zi = (xµi , θ
α
i , θ̄

α̇
i ), xµij = xµi − x

µ
j , θαij = θαi − θαj ,

and

xı̄j
µ = xµij − iθiσ

µθ̄j + iθjσ
µθ̄i − iθijσµθ̄ij .

Ii3 ı̄3(x23̄, x2̄3), where xi̄
µ = −x̄iµ, is a bilocal invariant tensor in the spin indices i3,

ı̄3, reducing to 1 for scalars (see [14] for the explicit expression).
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The form of three-point functions is determined in [14] to be

〈Oi11 (z1)Oi22 (z2)O†i33 (z3)〉 =
Ii1 ı̄11 (x13̄, x1̄3)Ii2 ı̄22 (x23̄, x2̄3)

x1̄3
2q̄1x3̄1

2q1x2̄3
2q̄2x3̄2

2q2
ti3ı̄1 ı̄2(X3,Θ3, Θ̄3). (5.3.7)

We called the third operator O†3 because we’re eventually interested in the OPE, O1O2 ∼

O3. Xµ
3 is a 4-vector formed from the superspace coordinates zi=1,2,3 = (xi, θi, θ̄i) [14],

X3 ≡
x21̄x̃1̄2x23̄

x1̄3
2x3̄2

2
; (X3)αα̇ = σµαα̇X

µ
3 , x̃α̇α = εαβεα̇β̇xββ̇.

The spinor quantities in (5.3.7) are given by

Θ3 ≡ i
(

1

x1̄3
2
x31̄θ̄31 −

1

x2̄3
2
x32̄θ̄32

)
, Θ̄3 ≡ i

(
1

x3̄1
2
θ31x13̄ −

1

x3̄2
2
θ̄32x23̄

)
, (5.3.8)

which are nilpotent, they vanish upon setting the Grassmann coordinates to zero, and

they don’t have a direct analog in ordinary conformal theories. Xµ
3 is a superspace

extension of the vector Zµ defined in (5.2.4), Zµ =
xµ31
r13
− xµ32

r23
. For example, setting the

Grassmann part of the zi=1,2 coordinates to zero, and defining Y µν ≡ εµνρλ
xρ13x

λ
23

r13r23
, we

find

Xµ
3 |θi=1,2=θ̄i=1,2=0 = Zµ +

[
i(Z2ηµν − 2ZµZν) + 2Y µν

]
θ3σν θ̄3 + Z2

(
xµ12

r12
− Zµ

)
θ2

3 θ̄
2
3

(5.3.9)

(the boxed terms will drop out). The function t in (5.3.7) is generally under-determined,

constrained only by a homogeneity condition corresponding to the scale and R-charges:

ti3ı̄1 ı̄2(λλ̄X, λΘ, λ̄Θ) = λ2aλ̄2āti3ı̄1 ı̄2(X,Θ, Θ̄), (5.3.10)

with

a− 2ā = q̄1 + q̄2 − q3, ā− 2a = q1 + q2 − q̄3.

Conformal three-point functions of primaries have a fully-determined dependence
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on the operator locations, which can be viewed as a consequence of the fact that ordinary

conformal symmetry transformations can be used to map any three points to any three

other points. But superconformal symmetry does not suffice to map three super-

positions zi to wherever one pleases, and that is related to the existence of the Θ, Θ̄

in (5.3.7) and (5.3.8). Indeed, supertranslations can be used to set, say, z1 = 0 and

superconformal transformations can be used to map, say, x2 = ∞ and θ2 = θ̄2 = 0.

Then we are left with the z3 ≡ z superspace coordinate, which we can act on with

ordinary rotations, U(1)R rotations, and scale transformations. With these mappings,

Xµ
3 is given by (5.3.9) with Zµ → xµ/x2, xµ12/r12 → 0 and Y µν → 0. The nilpotent

quantities (5.3.8) map to

Θ→ i

x2
(x− iθθ̄)θ̄, Θ̄→ −i

x2
θ(x + iθθ̄). (5.3.11)

The existence of Θ3 and Θ̄3, and the fact that t’s dependence on them is generally

under-determined by (5.3.10), implies that the three-point functions of superconformal

primaries are generally insufficient to fully determine those of their superconformal

descendants. The superconformal primary three-point functions are extracted by setting

the Grassmann coordinates to zero, but that’s generally insufficient to determine the

Θ3 and Θ̄3 dependence (since they then vanish), which is needed to determine the

three-point function of general superconformal descendants. So the OPE coefficients of

superconformal primaries generally do not fully determine those of their superconformal

descendants.

This general ambiguity in the function t(X,Θ, Θ̄) is eliminated only in special

cases, when some of the three operators are in reduced superconformal representations,

with null states, e.g. chiral primaries, anti-chiral primaries, or conserved currents.

Superspace derivatives on the operators Oi in (5.3.7) can be converted into differential

operators acting on the function t(X3,Θ3, Θ̄3), and so constraints on the operators lead

to corresponding constraints on the function t(X3,Θ3, Θ̄3). In particular, acting on say
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O1, one replaces Dα → Dα and D̄α̇ → D̄α̇, which act on t(X,Θ, Θ̄) as [14]

Dα =
∂

∂Θα
− 2i(σµΘ̄)α

∂

∂Xµ
, D̄α̇ = − ∂

∂Θ̄α̇
, (5.3.12)

with X̄ = X − 4iΘΘ̄. As examples, we’ll first review the cases that have been discussed

in the literature, where O1 and O2 are chiral or anti-chiral operators. In the following

section, we’ll consider our case of interest: conserved currents.

5.3.2. Review of chiral-chiral OPEs [18–20]

Take the operators O1 and O2 in the three-point function (5.3.7) to both be

chiral primaries, which we’ll write as Oi = φi. The condition D̄α̇φ1 = 0 implies that

D̄α̇t = 0 for the operator in (5.3.12), with a similar condition for D̄α̇φ2. If we take φ1

and φ2 to be the same operator, the latter condition is accounted for by the z1 ↔ z2

symmetry, which implies

t(X3,Θ3, Θ̄3) = t(−X̄3,−Θ3,−Θ̄3). (5.3.13)

The solutions for t(X3,Θ3, Θ̄3) are [18–20]

t ∼ constant,

t ∼ Θ̄3X̄
∆O−∆i−∆j−1−`
3 X̄µ1

3 · · · X̄
µ`
3 ,

t ∼ Θ̄2
3X̄

∆O3
−∆i−∆j−`+1

3 Xµ1
3 · · ·X

µ`
3 .

The case t ∼ constant implies that the operator O3 in the three-point function (5.3.7) is

also chiral, O3 = φk, with R(OI3) = R(φi) +R(φj)− 2; this is the chiral ring. The other

two cases for t have factors of Θ̄3 and Θ̄2
3, corresponding to operators O3 in (5.3.7)

that are Q̄α and Q̄2 exact (hence trivial in the chiral ring, but nevertheless important

for non-holomorphic considerations). Correspondingly, the possible terms in the OPE
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are

φi(x)φj(0) = ckijC(x, P )φk(0) +
∑
OI

cO
I

ij Q̄CI(x, P )OI(0) +
∑
OJ

cO
J

ij Q̄
2CJ(x, P )OJ(0),

(5.3.14)

where ckij , c
OI
ij , and cOJij are constant OPE coefficients. The operators OJ in (5.3.14)

have even spin, ` = 2j1 = 2j2, and R(OJ) = 2
3(∆i + ∆j) − 2 (so unitarity requires

∆O ≥ |32RO|+`+2). To give a simple example, consider a theory with a chiral superfield

Φ, K = Φ̄Φ and W = λΦn+1/(n + 1). Then, the equation of motion Φn = −Q̄2Φ̄/λ

illustrates the last term in (5.3.14). The OI possibility in (5.3.14) runs only over

superconformal primaries with R(OJ) = 2
3(∆i + ∆j)− 1, spins (j1, j2) = (1

2(`+ 1), 1
2`),

with ` odd for (5.3.13), and ∆(OJ) = ∆i + ∆j + `+ 1
2 , where ∆ is fixed (saturating a

unitarity bound) because the operator OJ must be in a shortened multiplet to have

both sides of (5.3.14) annihilated by Q̄α̇.

In (5.3.14) we have written just the first components of the superfields on the

LHS. The full superfield expression for the first term in (5.3.14) was worked out in [18]:

Φi(z1+)Φj(z2+) ⊃ ckijCqi,qj (z12+, ∂z2+)Φk(z2+),

which has no x12 singularity since qk = qi + qj for the chiral ring, and

Cq1,q2(z12+, ∂z2+)
1

(x2+ − 2iθ2σθ̄ − x−)2q1+2q2
=

1

(x1+ − 2iθ1σθ̄ − x−)2q1(x2+ − 2iθ2σθ̄ − x−)2q2
,

which was solved for in [18] in a superspace expansion in θ12, with components given

by the functions Cab(x12, ∂x2) in (5.2.13).
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5.3.3. Review of chiral-anti-chiral OPE [19]

Let the operators O1 and O2 in (5.3.7) be chiral and anti-chiral respectively.

As in [19], for simplicity we’ll take O1 = Φ and O2 = Φ̄, the conjugate field. The

conditions D̄1,α̇t = 0 and D2,αt = 0 then imply that the operator O3 must be real and

of integer spin ` = 2j = 2̄, with [19]

〈Φ(z1+)Φ̄(z2−)Oµ1...µ`(z3)〉 ∝ 1

x3̄1
2∆Φx2̄3

2∆Φ
X̄∆O−2∆Φ−`

3 X̄µ1
3 · · · X̄

µ`
3 − traces. (5.3.15)

The result (5.3.15) encodes interesting relations among the component OPE coefficients.

We will review this in some detail, following [19], since many details will prove applicable

for our case of interest, to be discussed in the next section.

Real operators Oµ1...µ` in (5.3.15) have a superspace expansion

Oµ1...µ`(x, θ, θ̄) = Aµ1...µ`(x) + ξµB
µµ1...µ`(x) + ξ2Dµ1...µ`(x) + · · · , (5.3.16)

where ξµ ≡ θσµθ̄ and · · · are operators with non-zero R-charge. The A component is

primary, and the others others are all A’s descendants: defining Ξµ ≡ σ̄µα̇α[Qα, Q̄α̇],

Bµµ1...µ` = −1

4
ΞµAµ1...µ` , Dµ1...µ` = − 1

64
ΞµB

µµ1...µ` − 1

16
∂2Aµ1...µ` .

The operators Aµ1...µ` and Dµ1...µ` are irreducible spin-` representations, while Bµµ1...µ`

decompose into Bµµ1...µ` = Mµµ1...µ` + `2

(`+1)2 η
µµ1Nµ2...µ` + Lµµ1...µ` , where M (called J

in [19]) is a spin `+ 1 operator, N is a spin `− 1 operator, and L = L+ + L−, with

L± in the (1
2`±

1
2 ,

1
2`∓

1
2) representation of SU(2)× SU(2). The operators B and D

can be decomposed into conformal primary and descendant contributions [19], with

Mµµ1...µ`
prim = Mµµ1...µ` , Nµ2...µ`

prim = Nµ2...µ` , and (P here
µ = −iP there

µ , as we prefer Hermitan
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generators)

Lµµ1...µ`
prim = Lµµ1...µ` − `

4(∆− 1)
εµµ1

νρiP
νAρµ2...µ` ,

Dµ1...µ`
prim = Dµ1...µ` − `(`+ 1)− (∆− 1)

8(∆− 1)2
P 2Aµ1...µ` +

`2

4(∆− 1)2
PνP

µ1Aνµ2...µ`

− `

4(∆− 1)
εµ1ν

ρσiPνL
ρσµ2...µ` .

(5.3.17)

Setting for example θ1 = θ2 = θ̄1 = θ̄2 = 0 in (5.3.15) to extract the three-point

functions for φ = Φ| and φ̄ = Φ̄|, it is found that [19]

〈φφ∗Aµ1...µ`〉 = cφφ∗O`
Z∆−`

r∆Φ
12

Zµ1 · · ·Zµ` ,

〈φφ∗Mµµ1...µ`
prim 〉 = icφφ∗O`(∆ + `)

Z∆−`

r∆Φ
12

ZµZµ1 · · ·Zµ` ,

〈φφ∗Nµ2...µ`
prim 〉 = icφφ∗O`

(`+ 1)(∆− `− 2)

2`

Z∆+2−`

r∆Φ
12

Zµ2 · · ·Zµ` ,

〈φφ∗Lµµ1···µ`
prim 〉 = 0,

〈φφ∗Da1···a`
prim 〉 = −cφφ∗O`

∆(∆ + `)(∆− `− 2)

8(∆− 1)

Z∆+2−`

r∆Φ
12

Zµ1 · · ·Zµ` ,

(5.3.18)

where Z is the quantity in (5.2.4) and the products like Zµ1 · · ·Zµ` are to be understood

as symmetrized traceless. The primary three-point functions (5.3.18) indeed have the

form (5.2.3), involving only the coordinate Zµ. Indeed, 〈φφ∗Lprim〉 had to vanish, since

it’s impossible to form something with L’s Lorentz structure using only Zµ. The upshot

of (5.3.18) is that the coefficient cφφ∗O` = cφφ∗A` of the superconformal primary A



117

indeed completely determines those of the descendants, M , N , Lprim, and Dprim:

cφφ∗M`+1
= i(∆ + `)cφφ∗A` ,

cφφ∗N`−1
= i

(`+ 1)(∆− `− 2)

2`
cφφ∗A` ,

cφφ∗Lprim
= 0,

cφφ∗D`;prim
= −∆(∆ + `)(∆− `− 2)

8(∆− 1)
cφφ∗A` .

(5.3.19)

To convert (5.3.19) to relations among the OPE coefficients, we can use ckij =

cijk′g
k′k (5.2.8), and the relations among the two-point function normalizations. The

two-point function of A` is proportional to

〈Aν1...ν` |Aµ1...µ`〉 ∼ symmetrize(ηµ1ν1 · · · ηµ`ν`)− traces ≡ Iµ1...µ`;ν1...ν`
` .

Likewise, the two-point functions of M`+1, N`−1, and D` are proportional to I`+1, I`−1,

and I`, respectively, and 〈Lνν1...ν`
prim |Lµµ1...µ`

prim 〉 ∼ ηµνIµ1...µ`;ν1...ν`
` . The proportionality

factors for the two-point function normalization of the super-descendants, relative to

the primary component, are given by [19]

cM`+1M`+1
= 2(∆ + `)(∆ + `+ 1)cA`A` ,

cN`−1N`−1
=

2(`+ 1)2(∆− `− 2)(∆− `− 1)

`2
cA`A` ,

cLprimLprim =
8`2∆(∆ + `)(∆− `− 2)

(`+ 1)2(∆− 1)
cA`A` ,

cD`;primD`;prim
=

∆2(∆− `− 2)(∆− `− 1)(∆ + `)(∆ + `+ 1)

4(∆− 1)2
cA`A` ,

(5.3.20)

where the factor cA`A` could be set to one by choice of normalization of O`. Note that

when the unitarity bound ∆ ≥ ` + 2 is saturated, the norm (5.3.20) of N`−1, Lprim,

and D`;prim all vanish; indeed, these components of the supermultiplet vanish when the

unitarity bound is saturated—the supermultiplet is shortened.
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5.3.4. Another example: the 〈OO†Tµ〉 three-point function

As another example of applying the general formalism of [14], we can consider

the three-point function the stress-energy tensor supermultiplet Tµ (5.3.1) with a scalar

superfield O and its conjugate O†. For the case O = Φ a chiral operator, q = ∆Φ = 3
2rΦ,

q̄ = 0, the result was given in [14],

〈Φ(z1+)Φ̄(z2−)T µ(z3)〉 = −irΦ

cφφ̄
2π2

1

x3̄1
2qx2̄3

2q

X̄µ
3

X̄
2(q−1)
3

, (5.3.21)

where cφφ̄ is the 〈φφ̄〉 two-point function normalization, and the coefficient in (5.3.21)

is fixed by the condition that the OPE reproduces the correct U(1)R charge, as in

(5.2.15). This is a special case of (5.3.15), where we take ∆O = 3 and ` = 1 to

get Oµ → T µ. So cφφ∗jµR
= −irΦcφφ∗/2π

2 and then (5.3.19), with Mµν = 2Tµν (see

(5.3.1)) gives cφφ∗Tµν = rΦcφφ∗/π
2, which fits with (5.2.18) and ∆ = 3

2 |rΦ| for chiral

and anti-chiral operators.

As another example, we consider the case where the operator O is real, O = O†,

so qO = q̄O = 1
2∆O, and RO = 0. Using (5.3.7), (5.3.10), and the z1 ↔ z2 symmetry

we find

〈O(z1)O(z2)T µ(z3)〉 =

−∆OcOO

6π2(x1̄3
2x3̄1

2x2̄3
2x3̄2

2)
1
2

∆O(X3 · X̄3)∆O−1

[
Xµ
− + 2

(X− ·X+)Xµ
+

X3 · X̄3

]
,

(5.3.22)

where Xµ
+ ≡ 1

2(Xµ
3 + X̄µ

3 ) is a vector that’s odd under the z1 ↔ z2 operation in (5.3.13),

and Xµ
− ≡ i(X

µ
3 − X̄

µ
3 ) ≡ −4Θ3σ

µΘ̄3 is a (nilpotent) vector that’s even under the Z2.

So X3 · X̄3 = X2
+ + 4Θ2

3Θ̄2
3. The relative factor of two between the two terms in the

sum on the RHS is determined by the condition DαT
αα̇ = D̄α̇T

αα̇ = 0, and the overall

normalization by (5.2.18). As a special case of (5.3.22), the three-point function of two
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conserved currents and the stress tensor is

〈J (z1)J (z2)T µ(z3)〉 = − τJJ
48π6x1̄3

2x3̄1
2x2̄3

2x3̄2
2X3 · X̄3

[
Xµ
− + 2

(X− ·X+)Xµ
+

X3 · X̄3

]
,

(5.3.23)

Comparing the 〈J(x1)J(x2)Tµν(x3)〉 and the 〈jρ(x1)jσ(x2)jµR(x3)〉 components encoded

in (5.3.23) leads to the relation τJJ = −3 TrF 2R, giving the current two-point function

coefficient τ in (5.1.3) as a ’t Hooft anomaly.

5.4. Our case of interest: the current-current OPE

We now consider the OPE of two ∆ = 2 conserved-current primary operators,

J(x)J(0) =

∞∑
`=0

∑
sprimary

O(`)
k

ckJJ

(x2)
1
2

(4−∆k)
F kJJ(x, P,Q, Q̄)(`)O(`)

k (0), (5.4.1)

where O(`)
k are superconformal primaries, of dimension ∆k and spin `, and we will show

that the O(`)
k are necessarily real, of U(1)R-charge zero. For simplicity, we consider U(1)

currents. The LHS of (5.4.1) is then symmetric under exchanging the operators, and

hence xµ → −xµ, so only even spin operators can contribute on the RHS of the OPE.

For non-Abelian groups, odd spin components can appear on the RHS of Ja(x)Jb(0),

with coefficients proportional to fabc as in (5.1.3). We discuss how to determine the

F kJJ(x, P,Q, Q̄)(`) from the condition of superconformal covariance, combined with J ’s

current conservation.

The OPE result (5.4.1) for the bottom component of the supercurrent multiplet

will determine the OPE coefficients of its superconformal descendants, in particular of

jα(x) = Qα(J(x)), jµ(x) = −1
4Ξµ(J(x)), (5.4.2)

where Ξµ ≡ σ̄α̇αµ [Qα, Q̄α̇]. We can use Qα and Q̄α̇ to map from the primary J , to its

descendants, as in (5.4.2). We can also map in the opposite direction, by using the Sα
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and S̄α̇ superconformal supercharges, which act on the primary component as

Sα(J(x)) = ix · σ̄α̇αQ̄α̇(J(x)), S̄α̇(J(x)) = −ix · σ̄α̇αQα(J(x)), (5.4.3)

vanishing at the origin. Acting on the descendants as in (5.3.2) with ∆J = 2 and

rJ = 0, we find

Sα(jα(x)) = −ix · σ̄α̇αQαQ̄α̇(J(x)) + 4(x · ∂ + 2)J(x),

Sα(jµ(x)) = 3σ̄µα̇α̄α̇(x)− 2x · σ̄α̇ασ̄µνβ̇
α̇
∂ν ̄β̇(x).

5.4.1. Using the algebra to find relations in the J(x)J(0) OPE

In this subsection, we discuss how superconformal symmetry leads to relations

for J(x)J(0) by directly using the algebra. The relations obtained this way alternatively

follow from using the superspace formalism of [14], which we will use in the next

subsection.

When the superconformal generators act on the product J(x)J(0), the product

rule gives two terms, e.g. Qα(J(x)J(0)) = Qα(J(x))J(0) + J(x)Qα(J(0)). But for the

lowering operators, Sα, S̄α̇ and Kµ, the term where they act on the primary J(0)

vanishes, so e.g.

Sα(J(x)J(0)) = Sα(J(x))J(0) = −ix · σ̄α̇α̄α̇(x)J(0). (5.4.5)

The jα(x)J(0) OPE thus follows from the J(x)J(0) OPE, with only superdescendants

in J(x)J(0) contributing to the OPE around the origin, since superconformal primary

terms are annihilated by Sα in (5.4.5).

The relation (5.4.5) illustrates how the OPE J(x)J(0) of the primary operators

in the multiplet determine the OPEs of the descendants. Additional relations follow

because we are here considering conserved currents rather than generic operators, so

Q2(J(x)) = Q̄2(J(x)) = 0. For example, consider the jα(x)jα(0) operator product,
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relevant for determining gaugino masses in general gauge mediation, which can be

related to J(x)J(0) as in [25] (see appendix 5.A for a discussion about the sign)

jα(x)jα(0) = 1
2Q

2(J(x)J(0)).

In superconformal theories, this descendant operator product can also be related to the

primary J(x)J(0) by using (5.4.3) as

jα(x)jβ(0) =
1

x2
Qβ(ix · σS̄)α(J(x)J(0)). (5.4.6)

Again, S̄α̇ only acts on J(x), and then Qβ only acts on J(0) (since Q2(J(x)) = 0).

Another interesting relation that follows from (5.4.3), combined with Q2(J(x)) =

Q̄2(J(x)) = 0, is

SαSβ(J(x)J(0)) = S̄α̇S̄β̇(J(x)J(0)) = 0. (5.4.7)

The relations (5.4.6) relate operator products of descendants to those of the primaries,

while (5.4.7) constrain the terms that can appear on the RHS of the OPE of the

primaries.

There are two more operators that annihilate J(x)J(0),

[
x2QαQβ +Qα(ix · σS̄)β −Qβ(ix · σS̄)α

]
(J(x)J(0)) = 0,[

x2Q̄α̇Q̄β̇ + (S ix · σ̄)β̇Q̄α̇ − (S ix · σ̄)α̇Q̄β̇

]
(J(x)J(0)) = 0,

thus constraining the OPE J(x)J(0). Other relations, giving OPEs of descendants in

terms of the J(x)J(0) primary OPE, are

jα(x)̄α̇(0) =
1

x4

[
(S ix · σ)α̇(ix · σS̄)α − x2Q̄α̇(ix · σS̄)α + 2∆Jx

2(ix · σ)αα̇
]

(J(x)J(0)),

jµ(x)jν(0) =
1

16x8

[
(x2ηµρ − 2xµxρ)(Sσ

ρS̄ − S̄σρS)

×{x4(Q̄σ̄νQ−QσνQ̄) + (x2ηνλ − 2xνxλ)(SσλS̄ − S̄σ̄λS)
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−2x2
(
Qσν ix · σ̄S − Q̄σ̄ν ix · σS̄

)
}

−8i(∆J + 1)x2(ηµνηλρ − ηµληνρ − ηµρηνλ − iεµνλρ)xλ

×{(x2ηρδ − 2xρxδ)SσδS̄ + x2Q̄σ̄ρ ix · σS̄ + 4i∆Jx
2xρ}

−8i(∆J + 1)x2(ηµνηλρ − ηµληνρ − ηµρηνλ + iεµνλρ)x
λ

×{(x2ηρδ − 2xρxδ)S̄σ̄δS + x2Qσρ ix · σ̄S + 4i∆Jx
2xρ}

+32x4∆J(∆J + 1)(x2ηµν − 2xµxν)
]

(J(x)J(0)),

jµ(x)J(0) =
x2ηµν − 2xµxν

4x4

[
Sσν S̄ − S̄σ̄νS

]
(J(x)J(0)).

In sum, OPEs of the superdescendants are all determined from the primary OPE

J(x)J(0), and the superdescendants in J(x)J(0) are constrained by superconformal

symmetry and current conservation. We will find the explicit expressions in the next

subsection.

5.4.2. Current-current OPEs using the superspace results of [14]

We now consider the superspace three-point functions (5.3.7) where O1 and O2

are conserved currents, and for simplicity we take O1 = O2 = J , so there is a z1 ↔ z2

symmetry, implying the symmetry condition (5.3.13) on the function t(X3,Θ3, Θ̄3) in

(5.3.7). The J superfield has the component expansion (5.1.2). We’re interested in the

three-point functions

〈J (z1)J (z2)Oµ1...µ`(z3)〉 =
1

x1̄3
2x3̄1

2x2̄3
2x3̄2

2
tµ1...µ`
JJO`(X3,Θ3, Θ̄3). (5.4.8)

The scaling relation (5.3.10), with q = q̄ = 1 for the conserved currents has a =

1
3(qk + 2q̄k)− 2 and ā = 1

3(q̄k + 2qk)− 2. We now discuss the constraints on t in (5.4.8)

coming from current conservation. The condition that J is conserved, written in

superspace as D2J = D̄2J = 0, implies that D2t = D̄2t = 0, where D acts on t as

differential operators as in (5.3.12).
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A first consequence is that the operator O3 in (5.4.8) must be a real operator

of vanishing R-charge and integer spin ` (much as in the ΦΦ̄ OPE of the previous

subsection). Suppose, to the contrary, that e.g. R(Ok) = 2, which would lead to

ā = a+ 1 in (5.3.10), which would fix t
?
= Θ̄2

3f(X3) (f can’t have any additional factors

of Θ̄3, since Θ̄n>2
3 = 0, nor Θ3 factors without spoiling (5.3.10)). But that t cannot

satisfy D̄2t = 0. One can similarly use D2t = D̄2t = 0 to exclude all other possibilities

for non-zero R-charge operators in (5.4.8). So, in what follows, we take O` to have

q = q̄ = 1
2∆, and thus a = ā = 1

2∆− 2 in (5.3.10).

The conditions D2t = D̄2t = 0 uniquely determine the function tµ1...µ` in (5.4.8).

Let’s first write it for spin-` = 0 operators Ok in (5.4.8):

tJJO`=0
(X,Θ, Θ̄) =

cJJO

(X · X̄)2− 1
2

∆

[
1− 1

4
(∆− 4)(∆− 6)

Θ2Θ̄2

X · X̄

]
, (5.4.9)

with cJJO`=0
an arbitrary coefficient. Because the coefficient of the term involving

Θ3 and Θ̄3 is determined, the superconformal descendant three-point functions are

determined from that of the superconformal primaries. The case (5.1.4) where all three

operators are conserved currents, qk = 1, is exceptional, since D2X−2 = 0 (up to contact

terms).

For the case of an ` = 1 superconformal primary operator Oµk in (5.4.8), the

conditions determine, much as in (5.3.22)

tµJJO`=1
(X,Θ, Θ̄) =

cJJO`=1

(X · X̄)
5
2
− 1

2
∆

[
Xµ
− −

∆− 5

∆− 2

(X− ·X+)Xµ
+

X · X̄

]
, (5.4.10)

where Xµ
+ ≡ 1

2(Xµ + X̄µ), called Qµ in [14], is odd under the z1 ↔ z2 operation in

(5.3.13), and Xµ
− ≡ i(Xµ− X̄µ) ≡ −4ΘσµΘ̄, called Pµ in [14], is even under the Z2. An

example of a real, primary ` = 1 operator is the FZ operator Tµ (5.3.1), with ∆Tµ = 3.

If we set ∆Oµ = 3 in (5.4.10) and ∆O = 2 in (5.3.22), the two expressions properly

coincide.
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For general, even-spin-` superconformal primary O(µ1...µ`)
k , (5.4.9) generalizes to

t
(µ1...µ`)
JJO` even

= cJJO`
X

(µ1
+ · · ·Xµ`)

+

(X · X̄)2− 1
2

(∆−`)

[
1− 1

4
(∆− `− 4)(∆ + `− 6)

Θ2Θ̄2

X · X̄

]
− traces.

(5.4.11)

The generalization of (5.4.10) for odd spin ` is

t
(µ1...µ`)
JJO` odd

= cJJO`
X

(µ1
+ · · ·Xµ`−1

+

(X · X̄)2− 1
2

(∆−`)

[
X
µ`)
− − `(∆− `− 4)

∆− 2

(X− ·X+)X
µ`)
+

X · X̄

]
− traces.

(5.4.12)

In both (5.4.11) and (5.4.12) the ` Lorentz indices are symmetrized, with the traces

removed, to obtain a spin-` irreducible Lorentz representation.

These superspace results encode all component three-point functions, giving

relations among the conformal primary components. To make this explicit, we need to

expand both sides of (5.4.8) in the Grassmann coordinates; we expand J (z1) and J (z2)

as in (5.1.2), and Oµ1...µ` is as in (5.3.16), and likewise on the RHS. Then, matching

the coefficients of the terms with powers of the Grassmann coordinates θi=1,2,3 and

θ̄i=1,2,3 on the two sides of (5.4.8), gives relations among the primary and descendant

three-point functions analogous to (5.3.18) and (5.3.19). For ` even, (5.4.11) gives a

contribution when we take all three operators to be primary, setting all Grassmann

coordinates to zero; the coefficient cJJO` of this primary contribution determines all

descendant three-point function. For ` odd, the three-point function with all three

operators primary vanishes, as does (5.4.12) when all Grassmann coordinates are set to

zero, but there are still non-zero superconformal descendant contributions and expanding

(5.4.12) gives relations among them.

The three-point function result (5.4.8), with (5.4.11) and (5.4.12), can be ex-

panded in the Grassmann coordinates. To illustrate this, let’s now expand the three-

point function in θ3 ≡ θ and θ̄3 ≡ θ̄, setting θ1,2 = 0, and θ̄1,2 = 0. Using (5.3.9) we
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have

Xµ
+|θi=1,2=θ̄i=1,2=0 = Zµ + 2Y µνθσν θ̄ + Z2

(
xµ12

r12
− Zµ

)
θ2θ̄2,

Xµ
−|θi=1,2=θ̄i=1,2=0 = −2(Z2ηµν − 2ZµZν)θσν θ̄,

Θ2Θ̄2

X · X̄

∣∣∣∣
θi=1,2=θ̄i=1,2=0

= Z2θ2θ̄2.

One can also find

X · X̄|θi=1,2=θ̄i=1,2=0 = Z2 − 2Z4

(
2 +

x13 · x23

r12

)
θ2θ̄2,

X+ ·X−|θi=1,2=θ̄i=1,2=0 = 2Z2Zµθσµθ̄.

So, for example, (5.4.10) becomes

tµJJO`=1

x1̄3
2x3̄1

2x2̄3
2x3̄2

2

∣∣∣∣∣
θi=1,2=θ̄i=1,2=0

= −2
CJJO
r2

12

Z∆−1

(
Z2ηµν − ∆ + 1

∆− 2
ZµZν

)
θσν θ̄.

The boxed terms above drop out for primary correlation functions. Indeed, with no loss

in generality, by using superconformal symmetry to map (z1, z2, z3)→ (0, x2 =∞, z3 =

z), the boxed terms map to zero, as discussed around (5.3.11).

For ` even, the results for 〈JJAµ1...µ`〉, 〈JJLµµ1...µ`〉, and 〈JJDµ1...µ`〉 coincide

with those found in [19] for the corresponding quantities with JJ replaced with φφ̄,

while 〈JJMµµ1...µ`〉 = 0 and 〈JJNµ2...µ`〉 = 0. Accounting for the distinction [19]

between Lµµ1...µ` and Lµµ1...µ`
prim and also between Dµ1...µ` and Dµ1...µ`

prim , see (5.3.17), we

find, for ` even,

〈JJAµ1...µ`〉 = cJJO`
Z∆−`

r2
12

Zµ1 · · ·Zµ` ,

〈JJDµ1...µ`
prim 〉 = −cJJO`

∆(∆ + `)(∆− `− 2)

8(∆− 1)

Z∆+2−`

r2
12

Zµ1 · · ·Zµ` .

In addition, 〈JJMµµ1...µ`
prim 〉 = 0 and 〈JJNµ2...µ`

prim 〉 = 0, because the three-point function
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with JJ can involve only even-spin operators.

Likewise, for ` odd, 〈JJAµ1...µ`〉 = 0 and 〈JJDµ1...µ`
prim 〉 = 0, and the non-zero

primary three-point functions are

〈JJMµµ1...µ`
prim 〉 = 2cJJO`

`(∆ + `)

∆− 2

Z∆−`

r2
12

ZµZµ1 · · ·Zµ` ,

〈JJNµ2...µ`
prim 〉 = −2cJJO`

(`+ 2)(∆− `− 2)

∆− 2

Z∆+2−`

r2
12

Zµ2 · · ·Zµ` ,

with 〈JJAµ1...µ`〉 = 0 and 〈JJDµ1...µ`
prim 〉 = 0. In all of the above it’s to be understood that

the Zµ’s are symmetrized with the traces removed. For all `, 〈J(x1)J(x2)Lµµ1...µ`
prim 〉 = 0,

because the primary three-point function necessarily involves only the single coordinate

Zµ, and it is impossible to use that to build an operator with the right Lorentz index

structure to match Lµµ1...µ`
prim .

Summarizing, we find the relations

cJJD`;prim
= −∆(∆ + `)(∆− `− 2)

8(∆− 1)
cJJA` ,

cJJN`−1
= −(`+ 2)(∆− `− 2)

`(∆ + `)
cJJM`+1

,

cJJLprim = 0.

(5.4.13)

A check on these results is that cJJD`;prim
and cJJN` properly vanish when Oµ1...µ`

saturates the unitarity bound, ∆ = ` + 2, as then the components Nprim and Dprim

become null states and must vanish. As a special case, for ` = 1 and ∆O = 3, we have

Oµ = T µ, the Ferrara–Zumino supermultiplet, where Mµν ∼ Tµν and N ∼ T µ
µ = 0.

Upon going to components, the resulting two- and three-point functions can be

converted to expressions for the OPE coefficients, including conformal descendants, as

in (5.2.12). The superconformal descendant relations can then be determined by using

the two-point and three-point function relations discussed in the previous paragraph. A

more efficient approach would be to convert directly in superspace, from the two-point

and three-point function results above, to sOPE expressions. A special case has been



127

explicitly worked out in [18], as outlined after (5.3.14). For our case of interest here,

i.e. two conserved currents,

J (z1)J (z2) =
∑

sprimary

O(`)
∆

cOJJF
(`)
∆ (z12, ∂x2 , ∂θ2 , ∂θ̄2)O`∆(z2),

with F determined by requiring that using this and two-point functions (5.3.6) on the

LHS of (5.4.8) reproduces the RHS of (5.4.8). For example, for ` = 0, F satisfies

1

x1̄3
2x3̄1

2x2̄3
2x3̄2

2
t
(`=0)
JJO(X3,Θ3, Θ̄3) = cJJOF

(`=0)
∆ (z12, ∂x2 , ∂θ2 , ∂θ̄2)

1

x2̄3
∆Ox3̄2

∆O
,

where t on the LHS is given in (5.4.9).

5.5. Four-point function conformal blocks

Four-point functions (more generally n-point functions) can be reduced and

computed via the OPE. For a four-point function 〈Oi(x1)Oj(x2)Or(x3)Os(x4)〉, one

can apply the OPE (5.1.1) to Oi(x1)Oj(x2), and also to Or(x3)Os(x4), reducing the

four-point function to sums of two-point functions between the resultants on the RHS

of the two OPE pairs:

〈Oi(x1)Oj(x2)Or(x3)Os(x4)〉 =
∑

primary
Ok

1

r
1
2

(∆i+∆j)

12 r
1
2

(∆r+∆s)

34

cijkc
k`c`rsg∆k,`k(u, v),

(5.5.1)

where u ≡ r12r34/r13r24 ≡ zz̄ and v ≡ r14r23/r13r24 ≡ (1−z)(1− z̄) are the two indepen-

dent conformal cross-ratios for four-point functions. The four-point function conformal
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blocks g∆,` are fixed functions [21, 26] that account for the sum over descendants4

g∆,`(u, v) =
zz̄

z − z̄
(k∆+`(z)k∆−`−2(z̄)− (z ↔ z̄))

kβ(x) ≡ xβ/22F1(β/2, β/2, β;x).

(5.5.2)

The decomposition (5.5.1) is in the s channel of the four-point function, and one can

of course alternatively compute in the t channel or the u channel, and all three must

of course agree. There is a recent and growing literature on exploring these crossing

symmetry relation constraints, following [28].

The fact that the sum in (5.5.1) for non-SUSY N = 0 theories can be reduced to

a sum over primaries, with the descendant contributions accounted for in the universal

conformal block functions g∆,`, is a powerful consequence of the fact that conformal

symmetry completely determines the descendant contributions to the OPE from those

of the primaries. As we have emphasized, the analogous statement generally does not

hold for superconformal primaries. So, in superconformal theories, there is generally no

analog of (5.5.1) involving only a sum over only the superconformal primaries. In a

nutshell, there is no universal notion of “superconformal blocks” analogous to (5.5.2).

One can define superconformal blocks for correlation functions of short multiplets, as

we’ll discuss and review, but they depend on the particular operators in the correlation

function and are still not universal.

In this section, we will discuss the N = 1 conformal blocks for 〈JJJJ〉 and

〈JJφφ∗〉. These two cases are expected to be nicer than generic four-point functions

in N = 1 SCFTs, because the operators are in shortened representations, and that

determines the coefficients of all superconformal descendants in the intermediate channel

in terms of those of the superconformal primaries.5

4As in [27], we find it convenient to modify the original definition of g∆,` by dropping a (− 1
2 )`

factor: ghere
∆,` = (−2)`gD&O

∆,` .
5As we emphasized, that seems to not be the case for generic N = 1 operators, so it seems

that generic four-point functions can not be reduced to a set of N = 1 superconformal blocks
depending only on the superconformal primaries.
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5.5.1. Review of the N = 1 conformal blocks for 〈φφ∗φφ∗〉 [19, 20]

The four point function of two chiral and two anti-chiral operators can be

expanded as

〈φ(x1)φ∗(x2)φ(x3)φ∗(x4)〉 =
1

r
∆φ

12 r
∆φ

34

∑
O`∈φ×φ∗

(cφφ∗A`)
2

cA`A`
Gφφ

∗;φφ∗

∆,` (u, v)

where Gφφ
∗;φφ∗

∆,` (u, v) is a superconformal block that account for the s-channel OPE sum

over the A`, M`+1, N`−1, and D` conformal primaries, along with their descendants.

Using (5.3.19) and (5.3.20), the result is [19] (accounting for ghere
∆,` = (−2)`gD&O

∆,` )

Gφφ
∗;φφ∗

∆,` = g∆,` +
∆ + `

4(∆ + `+ 1)
g∆+1,`+1 +

∆− `− 2

4(∆− `− 1)
g∆+1,`−1

+
(∆ + `)(∆− `− 2)

16(∆ + `+ 1)(∆− `− 1)
g∆+2,`.

(5.5.3)

As we have emphasized, there is not a general notion of superconformal block, and the

superscript in Gφφ
∗;φφ∗

∆,` emphasizes that this superconformal block applies only for this

specific channel and four-point function.

Indeed, computing the same 〈φ(x1)φ∗(x2)φ(x3)φ∗(x4)〉 in the channel where the

x1 and x3 operators are brought together, leads to an intermediate sum over very

different classes of operators, corresponding to (5.3.14). We can define Gφφ;φ∗φ∗

∆,` for this

class, and the result involves a single g∆,`, rather than the four terms (5.5.3) found

in the s channel. See [20] for some of the details. This illustrates that there isn’t

a universal notion of superconformal blocks, even for different channels of the same

four-point function.
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5.5.2. The N = 1 conformal blocks for 〈JJJJ〉 and 〈JJφφ∗〉

The four-point current correlator can be expanded as

〈J(x1)J(x2)J(x3)J(x4)〉 =
1

r2
12r

2
34

∑
O∆,`∈J×J

(cJJA`)
2

cA`A`
GJJ ;JJ

∆,` (u, v),

where the N = 1 superconformal blocks on the RHS account for the sum over the

A`, M`+1, N`−1, and D` primaries in the intermediate operators (5.3.16), along with

their descendants. Comparing with (5.5.1), the decomposition in terms of N = 0

blocks simply follows from squaring the coefficients in (5.4.13) and dividing by the

normalizations in (5.3.20). For ` even we find

GJJ ;JJ
∆, ` even = g∆,` +

(∆ + `)(∆− `− 2)

16(∆ + `+ 1)(∆− `− 1)
g∆+2,`. (5.5.4)

For ` odd we find (with here an arbitrary overall normalization choice)

GJJ ;JJ
∆, ` odd =

(`+ 1)2(∆ + `)

4(∆ + `+ 1)
g∆+1,`+1 +

(`+ 2)2(∆− `− 2)

∆− `− 1
g∆+1,`−1. (5.5.5)

We can immediately now also obtain the conformal blocks for

〈J(x1)J(x2)φ(x3)φ∗(x4)〉 =
1

r12r
∆φ

34

∑
O∆,`

cJJO`cφφ∗O`
cO`O`

GJJ ;φφ∗

∆,` (u, v),

where

GJJ ;φφ∗

∆, ` even = g∆,` +
(∆ + `)(∆− `− 2)

16(∆ + `+ 1)(∆− `− 1)
g∆+2,`, (5.5.6)

GJJ ;φφ∗

∆, ` odd =
(`+ 1)(∆ + `)

4(∆ + `+ 1)
g∆+1,`+1 −

(`+ 2)(∆− `− 2)

2(∆− `− 1)
g∆+1,`−1. (5.5.7)

5.5.3. Connection with Dolan and Osborn’s N = 2 conformal blocks for 〈ϕϕϕϕ〉 [29]

In N = 2 SCFTs, operators are labeled by their SU(2)I representation I =

0, 1
2 , . . . , value of I3, their U(1)N=2 charge, in addition to dimension ∆ and spins (j, ̄).
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Several N = 1 representations assemble together to form a single N = 2 superconformal

representation. The N = 1 U(1)N=1
R is given by (see e.g. [2])

RN=1 =
1

3
RN=2 +

4

3
I3.

Taking the N = 2 supercharges QIα to have RN=2 charge −1, then QI=1,2
α has RN=1

charges 1/3 and −1, with the latter the N = 1 supercharge.

In particular, an N = 2 conserved current supermultiplet has primary compo-

nents with I = 1, RN=0 = 0, ∆ = 2, ` = 0. It consists of an N = 1 conserved current

supermultiplet J , plus a N = 1 chiral multiplet and conjugate anti-chiral multiplet Φ̄,

with ∆ = 2, ` = 0. The primary components were called ϕij in ϕ(ij) of [29], and we

denote them as 
ϕ11

ϕ(12)

ϕ22

 =


φ

J

φ∗

 =


|I = 1, I3 = 1〉

|I = 1, I3 = 0〉

|I = 1, I3 = −1〉

 . (5.5.8)

The structure of the four-point function for this N = 2 supermultiplet was considered

in [29], and a variety of possible four-point function conformal blocks, corresponding to

the possible intermediate operator in the OPE, were presented. The recent work [19]

used these results to connect with the N = 1 superconformal blocks Gφφ∗;φφ∗ . In this

section, we connect the N = 2 results of [29] with our N = 1 results for GJJ ;JJ and

GJJ ;φφ∗ .

The SU(2)I symmetry implies that when we take the ϕϕ OPE we get repre-

sentations 3 ⊗ 3 = 1 ⊕ 3 ⊕ 5, i.e. the RHS can have representations I = 0, 1, 2, of

SU(2)I . When we consider the 〈ϕϕϕϕ〉 four-point function, the contributions thus can

be labeled by the I = 0, 1, 2 values of the intermediate operators. Following [29], we

refer to these contributions as A0, A1, and A2, respectively. The SU(2)I symmetry

implies that the various four-point functions in 〈ϕϕϕϕ〉 are governed by the group

theory of Clebsch–Gordan coefficients (following [29], we absorb A0’s Clebsch, 1
3 , into
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its normalization):

GN=2|φφ;φ∗φ∗ = A2,

GN=2|φφ∗;φφ∗ = A0 +
1

2
A1 +

1

6
A2,

GN=2|JJ ;JJ = A0 +
2

3
A2,

GN=2|JJ ;φφ∗ = A0 −
1

3
A2.

(5.5.9)

The functions A0, A1, and A2 get independent contributions from each possible

N = 2 superconformal multiplets that can appear in the intermediate channel of the

ϕϕ OPE. Since the supercharges have I = 1
2 , each contributing N = 2 superconformal

multiplet has operators with different I values, that can potentially contribute to all

three AI=0,1,2. A variety of N = 2 supermultiplets and their A0,1,2 contributions were

presented in [29]. We will apply (5.5.9) to their results to determine the multiplet’s

contribution GN=2|φφ;φ∗φ∗ , GN=2|φφ∗;φφ∗ , GN=2|JJ ;JJ , and GN=2|JJ ;φφ∗ . Decomposing

the N = 2 multiplet into multiplets under the N = 1 subalgebra, these N = 2

superconformal blocks decompose into sums of N = 1 superconformal blocks. The case

GN=2|φφ∗;φφ∗ → GN=1|φφ∗;φφ∗ was presented in [19], and here we’ll similarly discuss a

few simple examples of (5.5.9).

One class of examples are the shortened N = 2 multiplets containing at most

twist ∆− ` = 2 operators. Quoting [29] (with gD&O
∆,` = (−2)−`ghere

∆,` ), these have

A0 = g∆=`+2,` +
(`+ 2)2

4(2`+ 3)(2`+ 5)
g∆=`+4,`+2,

A1 = g∆=`+3,`+1, A2 = 0.

(5.5.10)

An example in this class is the N = 2 conserved current multiplet (5.5.8), which

corresponds to setting ` = −1 in (5.5.10). Another example in this class is the N = 2

stress-energy tensor multiplet, corresponding to ` = 0 in (5.5.10); this N = 2 multiplet

contains the N = 1 stress-tensor multiplet (5.3.1) together with the N = 1 current
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multiplets of SU(2)I . We see from (5.5.9) that, since A2 = 0, no operators in this

class contribute to GN=2|φφ;φ∗φ∗ . Their contributions to GN=2|φφ∗;φφ∗ fit with the

decomposition of these N = 2 multiplets into N = 1 multiplets and the results of

[19], as was presented there. The blocks given in (5.5.4), (5.5.5), (5.5.6), (5.5.7) for

this case, ∆ = ` + 2, contain only a single N = 0 block, GJJ ;JJ
∆=`+2,` = g∆=`+2,` and

GJJ ;φφ∗

∆=`+2,` = g∆=`+2,`. The result (5.5.9) and (5.5.10) for GN=2|JJ ;JJ
∆=`+2,` and GN=2|JJ ;φφ∗

∆=`+2,`

contain contributions from two N = 1 real multiplets in the N = 2 multiplet, with

primary components O∆=`+2,` and O′∆=`+4,`+2, and the relative coefficient in (5.5.10)

accounts for the N = 2 relation among their OPE coefficients.

To quote a more complicated N = 2 representation multiplet, the contributions

to the conformal blocks from the multiplet of operators and descendants when the

primary has RN=2 = 0, I = 0, for general ∆ and `, is [29]

A0(u, v) = g∆,` +
1

12
g∆+2,` +

(∆ + `+ 2)2

16(∆ + `+ 1)(∆ + `+ 3)
g∆+2,`+2

+
(∆− `)2

16(∆− `− 1)(∆− `+ 1)
g∆+2,`−2

+
(∆ + `+ 2)2(∆− `)2

256(∆ + `+ 1)(∆ + `+ 3)(∆− `− 1)(∆− `+ 1)
g∆+4,`,

A1(u, v) = g∆+1,`+1 + g∆+1,`−1 +
(∆ + `+ 2)2

16(∆ + `+ 1)(∆ + `+ 3)
g∆+3,`+1

+
(∆− `)2

16(∆− `− 1)(∆− `+ 1)
g∆+3,`−1,

A2(u, v) = g∆+2,`

Using (5.5.9), we can read off the contributions to GN=2 from this representation. The

case GN=2|φφ∗;φφ∗ was considered in [19] and decomposed there in terms of the N = 1

blocks. The other cases in (5.5.9) can be similarly analyzed.
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5.6. Discussion & Conclusion

The current-current (s)OPE J (z1)J (z2) can have only real RN=1 = 0 operators

of even spin ` and their descendants on the RHS. For non-Abelian groups, odd-` real

operators can also contribute, proportional to the group’s structure constants fabc. The

constraints of N = 1 superconformal symmetry, combined with the current conservation,

imply relations among the OPE coefficients, essentially giving the super-descendant

coefficients in terms of those of the super-primaries.

We also gave the basic N = 1 superconformal blocks for GJJ ;JJ
∆,` and GJJ ;φφ∗

∆,` .

These are analogous to the Gφφ
∗;φφ∗

∆,` superconformal blocks given in [19] and the Gφφ;φ∗φ∗

∆,`

described in [20]. The blocks are analogous, but different, illustrating that there are no

universal superconformal blocks. In the N = 2 case, we discussed how these cases can

be related using the SU(2)I Clebsch–Gordan coefficients and the results of [29].

We will explore some possible applications of the current-current OPE and

superconformal symmetry to general gauge mediation of SUSY breaking in our upcoming

paper [10].

Acknowledgments

This research was supported in part by UCSD grant DOE-FG03-97ER40546. KI thanks

the IHES for hospitality while some of this work was done, and the participants of the

IHES Three String Generations and the CERN SUSY Breaking workshops for their

comments.

5.A. The (super)conformal algebra (and sign conventions)

This appendix both reviews standard material, and also attempts to give a

consistent set of sign conventions. The literature contains many sign conventions (some

with inconsistencies) for the conformal, supersymmetry, and superconformal algebras,

so we will here elaborate a bit on our notation. (Our signs agree with e.g. [30].) There
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are several places where sign errors can crop up. One is a standard, but often obscured,

sign difference when bosonic generators A are replaced with differential operators A

acting on the coordinates,

[A,O] = −AO. (5.A.1)

This is familiar from quantum mechanics, where [H,O] = −i~∂tO, even though H

can be replaced with H = +i~∂t. The sign in (5.A.1) accounts for the fact that

transformations compose in the opposite order when acting on the coordinates. Indeed,

defining another transformation [B,O] = −BO, with B the corresponding differential

operator, the differential operators compose in the opposite order

AB(O) ≡ [A, [B,O]] = −[A,BO] = −B[A,O] = BAO. (5.A.2)

So [[A,B],O] = −[A,B]O, which is consistent with (5.A.1) with [A,B] = C and

[A,B] = C. Many references, however, do not make a notational distinction between

what we’re calling A vs A. This issue is compounded in supersymmetry, see also

[31] for a very recent careful discussion. As standard, we follow the conventions of

Wess & Bagger [32]. The Q analog of (5.A.1) in [32] notation then has an i but,

potentially confusingly, in [32] no notational distinction is made between the operator

vs the differential operator. In addition, the metric of [32] is ηµν = diag(−1, 1, 1, 1),

with Hamiltonian H = P 0 = −P0, so now [P0,O] = +i~∂0O and P0 = −i~∂0. We’ll

elaborate on these and related points in what follows.

Recall (see e.g. [16]) that conformal transformations xµ → x′µ = (gx)µ are

such that dx′µdx
′µ = Ωg(x)−2dxµdx

µ. Beyond translations and rotations, this includes

dilatations x′µ = λxµ, with Ωg(x) = λ−1, and special conformal transformations, x′µ =

(xµ − bµx2)/Ωg(x), with Ωg = 1− 2b · x+ b2x2. An operator is called (quasi-)primary if

it transforms under all conformal transformations as O(x)→ T (g)O(x), where

(T (g)O)i(x′) = Ωg(x)∆ODi
j

(
Rgµα = Ωg

∂x′µ
∂xα

)
Oj(x), (5.A.3)
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where i labels the operator’s representation Di
j of the Lorentz group, and ∆O is the

operator’s scaling dimension. For rotations and boosts, Ωg(x) = 1 and (5.A.3) is the

standard Lorentz transformation of operators, with Rgµα the rotation or boost. For

dilatations, Rgµα = δµα, so Di
j is the identity, and (5.A.3) is the standard scaling of

operators with their scaling dimension ∆O. For special conformal transformations only,

(5.A.3) proves restrictive, distinguishing the primary operators from the descendants.

On the LHS of (5.A.3) we’ve transformed both the operator and the coordinate,

but we should replace x→ g−1x on both sides of (5.A.3) to get how the transformation

acts on just the operator. For example, the Poincaré generators act on the coordinates as

xµ → x′µ = g(xµ), and act on operators as g : Oi(x)→ O′i(x) = (U(g)O(x)U(g)−1)i =

Di
j(g)O(g−1(x)), with U(g) the appropriate unitary transformation. Under general

translations of operators forward by aµ, via opposite action on the coordinates, ga :

xµ → xµ − aµ, then ga : O(x) → O′(x) = U(a)O(x)U(a)−1 = O(xµ + aµ), with

U(a) = e−iPµa
µ
. We then have [Pµ,O(x)] = i∂µO(x). So the differential operator, as

in (5.A.1), is Pµ = −i∂µ. The minus sign in (5.A.1) and order reversal in (5.A.2) are

related to the g−1 action on the coordinates.

The dilatation generator acts on the coordinates as gδ : xµ → e−δxµ, Ωgδ(x) = eδ,

so gδ : O(x) → U(δ)O(x)U(δ)−1 = e∆OδO(eδx), where U(δ) = eiδD. This implies

[D,O] = −i(∆O + x · ∂)O; hence the differential operator is D = i(∆O + x · ∂). Now

gδga : O(x)→ O(x+ a)→ e∆OδO(eδ(x+ a)) = geδagδO(x), so U(δ)U(a) = U(eδa)U(ε),

which implies [Pµ, D] = iPµ. The differential operators indeed correspondingly satisfy

[Pµ,D] = iPµ. We can likewise take U(b) = e−iKµb
µ

to generate special conformal

transformations, and consider U(b)U(?) vs U(?)U(b) to get [Kµ, ?]. In sum, this yields

the conformal group, that’s isomorphic to SO(d, 2) in d dimensions:

[Mµν , Pρ] = i(ηµρPν − ηνρPµ), [Mµν ,Kρ] = i(ηµρKν − ηνρKµ),

[Mµν ,Mρσ] = i(ηµρMνσ − ηνρMµσ + ηνσMµρ − ηµσMνρ),

[D,Pµ] = −iPµ, [D,Kµ] = iKµ, [Kµ, Pν ] = 2i(ηµνD −Mµν),
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where Mµν are the SO(d− 1, 1) Lorentz generators. Commutators not given are zero.

On a quasi-primary multi-component field OI(x) we have

[Pµ,OI(x)] = i∂µOI(x), [D,OI(x)] = −i(x · ∂ + ∆O)OI(x),

[Mµν ,OI(x)] = i(xµ∂ν − xν∂µ)OI(x)−OJ(x)(sµν)JI ,

[Kµ,OI(x)] = i(x2∂µ − 2xµ x · ∂ − 2∆Oxµ)OI(x) + 2(sµν)JIx
νOJ ,

(5.A.4)

where (sµν)
J
I are the appropriate finite-dimensional spin matrices obeying the Mµν

algebra.

As an illustration of the order reversal in (5.A.2), consider [Kν , [Pµ,O(0)]] and

compare that to [Pµ, [Kν ,O(0)] on a scalar primary operator at the origin. The latter

vanishes, since Kν annihilates the scalar primary at the origin. That is compatible with

[Pµ, [Kν ,O(0)] = KνPµO(0) and Pµ = −i∂µ and Kν = −i(x2∂ν − 2xνx · ∂ − 2∆Oxν).

The opposite order properly gives a non-zero result, [Kν , [Pµ,O]]|x=0 = PµKνO|x=0 =

2∆OηµνO(0) = −2iηµνDO|x=0.

We define the supersymmetry fermionic variations of operators as

δξO = i[ξQ+ ξ̄Q̄,O] = (ξQ+ ξ̄Q̄)O, (5.A.5)

where the i after the first equality insures that, if O is real, then so is δξO.6 In the

second equality that i is absent, and we use the superspace differential operators of

[32],

Qα =
∂

∂θα
− iσµαα̇θ̄

α̇∂µ and Q̄α̇ = − ∂

∂θ̄α̇
+ iθασµαα̇∂µ. (5.A.6)

As in (5.A.2), the differential operators compose in the opposite order. Note that

{Qα, Q̄α̇} = 2iσµαα̇∂µ = −2σµαα̇Pµ; (5.A.7)

6Recall (ξQ)† = ξ̄Q̄ in [32] notation, where ξQ ≡ ξαQα = −ξαQα = Qξ, and ξ̄Q̄ ≡ ξ̄α̇Q̄
α̇ =

−ξ̄α̇Q̄α̇ = Q̄ξ̄.
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the last sign looks off, but it’ll be OK, since (5.A.5) gives ([κQ, ξ̄Q̄] = καξ̄α̇{Qα, Q̄α̇})

(δκδξ − δξδκ)O = −(καξ̄α̇ − ξακ̄α̇)[{Qα, Q̄α̇},O] = −(καξ̄α̇ − ξακ̄α̇)2σµαα̇[Pµ,O],

and also

(δκδξ − δξδκ)O = −(καξ̄α̇ − ξακ̄α̇){Qα, Q̄α̇}O = (καξ̄α̇ − ξακ̄α̇)2σµαα̇PµO,

consistent with [Pµ,O] = −PµO. In short, if we use the notation of [32] for the

fermionic generators, the analog of (5.A.1) is

Q(O) ≡ [Q,O} = −iQO. (5.A.8)

For a chiral superfield, Φ = φ+
√

2θψ+ · · · , with Q̄α̇(Φ) = 0, we have Qα(φ) = −i
√

2ψα

etc. For a real superfield J = J + iθj − iθ̄̄ + · · · , we find e.g. Qα(J) = jα and

Q̄α̇(J) = −̄α̇.

The superconformal algebra includes the usual supercharges Qα, Q̄α̇, supercon-

formal supercharges, Sα, S̄α̇, and the U(1)R-current generator R. The superconformal

algebra includes, in addition to the conformal-algebra commutators,

{Qα, Q̄α̇} = 2σµαα̇Pµ, {S̄α̇, Sα} = 2σ̄µα̇αKµ,

{Qα, Sβ} = −i(σµσ̄ν) β
α Mµν + δ β

α (2iD + 3R),

{S̄α̇, Q̄β̇} = −i(σ̄µσν)α̇
β̇
Mµν − δα̇β̇(2iD − 3R),

[D,Qα] = −1
2 iQα, [D, Q̄α̇] = −1

2 iQ̄α̇, [D,Sα] = 1
2 iS

α, [D, S̄α̇] = 1
2 iS̄

α̇,

[R,Qα] = −Qα, [R, Q̄α̇] = Q̄α̇, [R,Sα] = Sα, [R, S̄α̇] = −S̄α̇,

[Kµ, Qα] = −σµαα̇S̄
α̇, [Kµ, Q̄α̇] = σµαα̇S

α,

[Pµ, S̄α̇] = −σ̄µα̇αQα, [Pµ, Sα] = σ̄µα̇αQ̄α̇,

[Mµν , Qα] = −iσ β
µνα Qβ, [Mµν , Q̄α̇] = iσ̄ β̇

µν α̇
Q̄β̇,
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[Mµν , Sα] = −iσ β
µνα Sβ, [Mµν , S̄α̇] = iσ̄ β̇

µν α̇
S̄β̇.

The action of the superconformal generators on superfields was given in [14]

in a very efficient and compressed notation, so we’ll unpack it a bit here, and write

the variations as differential operators acting on superspace, with the −1 of (5.A.1)

for the bosonic generators and the −i of (5.A.8) for the fermionic generators. The

Pµ, Qα, and Q̄α̇ are as given in (5.A.6) and (5.A.7). The D and Kµ operators

include Grassmann additions to the expressions found from (5.A.4), e.g. dilatations

act as gδ : O(x, θ, θ̄) → eiδDO(x, θ, θ̄)e−iδD = e∆OO(eδx, eδ/2θ, eδ/2θ̄), which gives

[D,O] = −DO with

D = i

[
x · ∂ +

1

2

(
θ
∂

∂θ
+ θ̄

∂

∂θ̄

)
+ ∆

]
.

For a U(1)R transformation,

gR : O(x, θ, θ̄)→ eiαRO(x, θ, θ̄)e−iαR = eiαrOO(x, e−iαθ, eiαθ̄),

so [R,O] = −RO with

R = −rO + θ
∂

∂θ
− θ̄ ∂

∂θ̄
.

Finally, the special superconformal generators act on superfields as in (5.A.5),

δηO = i[ηS + η̄S̄,O] = (ηS + η̄S̄)O,

with Sα and S̄ α̇ the differential operators acting on superspace, and we read off the

transformation from that given in [14]: in the notation there

δOi(z) = −LOi(z) + [ω̂ β
α (z+)(s α

β )ii′ + ˆ̄ωα̇
β̇
(z−)(s̄β̇

α̇
)ii′ ]Oi

′
(z)

− 2qσ(z+)Oi(z)− 2q̄σ̄(z−)Oi(z),

where L = (vµ(z+)−2iλ(z+)σµθ̄)∂µ+λα(z+)Dα+λ̄α̇(z−)D̄α̇, and s and s̄ act, respectively,
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on dotted and undotted indices, and form, respectively, spin-j and spin-̄ representations

of the algebra. Setting to zero the parameters for other transformations, we have

vµ = −2θσµx̃+η,

λα = −i(η̄x̃+)α + 2ηαθ2, λ̄α̇ = i(x̃+η)α̇ + 2η̄α̇θ̄2,

ω̂ β
α = 4ηαθ

β + 2δ β
α θη, ˆ̄ωα̇

β̇
= −4θ̄α̇η̄β̇ − 2δα̇

β̇
η̄θ̄,

σ = 2θη, σ̄ = 2η̄θ̄,

where x̃+ = x̃ + 2iθ̄θ. In our conventions we then find

Sα = ix · σ̄α̇αQ̄α̇ + 2θα
(
θ̄
∂

∂θ̄
+ ∆ +

3

2
r

)
+ 2θβs α

β + θ2εαβ
(
Qβ +

∂

∂θβ

)
.
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Chapter 6

Superconformally Covariant OPE and General Gauge

Mediation

6.1. Introduction

Symmetries, even if they are broken, can usefully constrain theories and their

dynamics. Soft breaking can be regarded as spontaneous, even if it is actually explicit,

via background or spurion expectation values. The symmetry breaking is an IR effect,

and the unbroken symmetry can still apply to constrain UV physics. The operator

product expansion (OPE) gives a particularly useful way to separate UV physics from

long-distance IR physics [1]. We will here discuss and explore applications of breaking

an interesting, large symmetry group, superconformal symmetry, via the OPE.

To set the stage, recall how the hadronic world is probed by e+e− → e+e− scat-

tering, via an intermediate photon, with the QCD contributions to the electromagnetic

current two-point correlator. Writing the current-current OPE schematically as

J(x)J(0) =
∑
i

ciJJOi, (6.1.1)

the idea is that ciJJ “Wilson coefficients” are determined by UV physics, while IR

physics determines the expectation values of the operators on the RHS. Keeping only

a few leading operators often suffices to obtain good qualitative insights (despite the

fact that the errors in these approximations can be difficult to estimate). There is an
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extensive literature on using this and related ideas to study the hadronic world, e.g.

the classic papers of SVZ on QCD sum rules [2, 3]. The UV physics can be constrained

by a larger symmetry group, including broken generators.

Now consider an analogy with the above discussion where, instead of using

lepton sector scattering to probe the hadronic sector, we consider scattering of our

world’s visible sector fields to probe a new, hidden sector, which couples to our world

via gauge interactions. The hidden sector then contributes to SU(3)× SU(2)× U(1)

current correlators, and we can try to employ the power of the OPE to separate UV vs

IR physics. The UV theory might be asymptotically free, like QCD, or an interacting,

superconformal field theory (SCFT).

Our main motivation is to apply these considerations to general gauge mediation

(GGM) [4], where indeed the visible sector soft masses are directly determined by the

hidden sector’s contribution to the gauge-current two-point correlators [4, 5]:

Mgaugino = πiα

∫
d4x 〈Q2(J(x)J(0))〉,

m2
sfermion = 4παY 〈J(x)〉+

iα2c2

8

∫
d4x ln(x2M2)〈Q̄2Q2(J(x)J(0))〉.

(6.1.2)

The IR theory is neither conformal nor supersymmetric, e.g. because of messenger

masses M and mass splittings
√
F . We will explore the constraints that follow if

these soft symmetry breaking effects can be regarded as spontaneous (even if they

are actually explicit, via spurions), and therefore effectively restored in the UV. In

particular, we apply the UV constraints of superconformal symmetry to constrain

the Wilson coefficients in the OPE (6.1.1) in (6.1.2). The IR breaking effects then

show up in the IR, via operator expectation values on the RHS of the OPE. Even if

the OPE results are only approximate, they give a foothold to consider GGM with

non-weakly-coupled hidden sectors.

We discussed some general aspects about the OPE of conserved currents in
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superconformal theories in [6]. Leading terms at short distance include

Ja(x)Jb(0) = τ
δab1

16π4x4
+
kdabc
τ

Jc(0)

16π2x2
+ w

δabK(0)

4π2x2−γK
+ ciab

Oi(0)

x4−∆i
+ · · · , (6.1.3)

with a an adjoint index for the (say simple) group G; for simplicity, we will mostly

take G = U(1) in what follows. The coefficient τ of the unit operator can be exactly

determined from a ’t Hooft anomaly τ = −3 TrRFF [7] using [8] if needed, and gives

the leading coefficient of CFT “matter” to the G gauge beta function, see e.g. [9]. The

coefficient k in (6.1.3) of the ’t Hooft anomaly k ∼ TrG3 must vanish or be cancelled

to weakly gauge the G symmetry. The operator K in (6.1.3) refers to an operator

that classically has ∆ = 2, e.g. the Kähler potential, but is not conserved by the

interactions so it has anomalous dimension, ∆K = 2 + γK . Oi(0) in (6.1.3) is a generic,

real superconformal primary, and · · · denotes other terms, including superconformal

descendants.

Superconformal symmetry together with current conservation implies that the

OPE coefficients of superconformal descendants in (6.1.3) are completely determined

by those of the superconformal primaries [6].1 Such relations apply in the far UV,

but can be altered for example by RG running of the coefficients, because the theory

is ultimately not superconformal. Nevertheless, the UV relations of superconformal

symmetry can have approximate vestiges in the IR, to be explored here.

We also explore a related topic, the analyticity properties of the GGM [4]

current correlator functions C̃a=0,1/2,1(p2), and B̃1/2(p2). These functions can have

cuts when s = −p2 is big enough to create on-shell states, with the cut discontinuity

related by the optical theorem to total cross sections for hidden-sector state production,

σa(vis→ hid, s), in analogy with QCD production σ(e+e− → hadrons):

σa(vis→ hid) =
(4πα)2

s

1

2
Disc C̃a(s), (6.1.4)

1This is not as obvious as it sounds, because of the existence of the nilpotent superconformal
three-point function quantities Θ and Θ̄ of [10], see [6] for additional discussion.
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As in QCD applications, we can express visible-sector observables A(s) as s-integrals of

their discontinuity along the cut (see Fig. 6.1),

A(s) =
1

2πi

∫ ∞
s0

ds′
DiscA(s′)

s′ − s
=

1

π

∫ ∞
s0

ds′
ImA(s′)

s′ − s
, (6.1.5)

and then approximate by going to large s′, applying the OPE, and keeping only the

first few terms in the 1/s expansion. We use this to show that the GGM soft masses

s0

s

s

Figure 6.1: The dashed contour is deformed to the solid contour.

(6.1.2) can be approximated in this way in terms of the lowest dimension operators

appearing in (6.1.3) that can have non-zero SUSY-descendant expectation values:

Mgaugino ≈ −
απwγKi

8M2
〈Q2(Oi(0))〉,

m2
sfermion ≈ 4παY 〈J(x)〉+

α2c2wγKi
64M2

〈Q̄2Q2(Oi(0))〉,
(6.1.6)

where w is the coefficient of K(0) in (6.1.3) and γKi is the anomalous-dimension matrix

which mixes K with the operator Oi.

These considerations also constrain the possibilities for GGM functions C̃a(s),

B̃1/2(s). We can use (6.1.5) to relate these functions to integrals of their discontinuities

(as a spectral representation), and the optical theorem (6.1.4) to relate these discon-
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tinuities to kinematic phase space factors. For example, for producing two scalars of

masses m1 and m2,

σ0(s) =
λ1/2(s,m1,m2)

8πs2
|M|2, (6.1.7)

where the phase-space prefactor involves the standard (see e.g. [11]) factor

λ1/2(s,m1,m2) = 2
√
s|~p | =

√
[s− (m1 +m2)2][s− (m1 −m2)2] θ(s− (m1 +m2)2),

(6.1.8)

where |~p | is the CM momentum of the produced on-shell scalars (the step function θ

indicates that it is non-zero for real s ≥ (m1 +m2)2). Comparing with (6.1.4),

Disc C̃0(s) =
λ1/2(s,m1,m2)

4πs

∣∣∣∣ M4πα
∣∣∣∣2 . (6.1.9)

As a concrete example, consider minimal gauge mediation (MGM), with charged

messenger scalars of mass m± and fermions of mass m0. The superpotential is W =

hXΦΦ̃, where Φ, Φ̃ are charged messengers, with masses given by 〈hX〉 = M + θ2F ,

which leads to two fermions of mass m0 = M and scalars of mass m1,2 = m± =√
|M |2 ± |F |. The functions C̃a(p

2) of GGM have cuts where these states can go on

shell, with discontinuity related to the corresponding total cross sections as in (6.1.4),

e.g. C̃0(s) has a cut for s ≥ (m+ +m−)2, corresponding to production of the scalars

with masses m+ and m−, given by (6.1.9) with the tree-level amplitude M = 4πα, so

1

2
Disc C̃0(s) =

1

4πs

√
s2 − 4|X|2s+ 4|F |2, for s ≥ (m+ +m−)2, (6.1.10)

Likewise, C̃1/2(s), C̃1(s), and B̃1/2(s) have related discontinuities. For this example,

these relations are of course readily verified from the known, explicit expressions for

the GGM functions of weakly coupled theories. But one could imagine non-weakly

coupled examples, where these analyticity properties could usefully constrain the GGM

functions.

In the above discussion X can either be a dynamical field, the goldstino su-



148

perfield, or spurion of the spurion limit. We separate the UV description, sufficiently

far above 〈X〉, from the IR effects of 〈X〉. In the UV description, the messengers are

effectively massless and interacting with X with coupling h (we avoid going too far in

the UV, to avoid h’s Landau pole). We illustrate how to reproduce e.g. (6.1.10) from

direct computations of the Wilson coefficients of the two-point OPE of the current

superfield J = Φ†Φ− Φ̃†Φ̃, to terms on the RHS of the OPE involving the operators

(X†X)n, and superconformal descendants. (Aspects of the OPE interpretation of super-

propagators was explored for some interacting theories in [12].) As we will illustrate

and verify, the superconformal symmetry implies many relations among the various

terms. In the IR, we replace X → 〈X〉, and these terms then contribute to, and indeed

reproduce, the GGM [4] current-current correlators.

The paper is organized as follows: section 5.2 reviews the OPE, superconformal

covariance, and the results of Ref. [6] for current-current correlation functions in

general superconformal theories. In section 6.3 we apply these results to the general

gauge mediation functions Ca and B1/2 [4], discussing how these functions can be

constrained by approximate, broken, superconformal symmetry. In section 6.4 we

study the analyticity properties and constraints on the GGM functions, and how

the OPE can be applied to obtain approximations (6.1.6) for soft terms in theories

that aren’t necessarily weakly coupled. Section 6.5 illustrates and checks our various

general results in the well-studied example of weakly coupled minimal gauge messenger

mediation MGM. Section 6.6 summarizes and mentions possible further applications of

our findings. Appendix 6.A illustrates explicit computations of current-current OPE

Wilson coefficients in MGM.
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6.2. The operator product expansion

The OPE [1] replaces nearby operators with a sum of local operators

Oi(x)Oj(0) =
∑
k

ckij(x, P )Ok(0), (6.2.1)

where ckij(x, P ) are the (position space) Wilson coefficients (with [Pµ,O] = i∂µO). In

non-scale invariant theories, (6.2.1) approximately holds for small x, or in the light-cone

limit of small x2, while for CFTs (6.2.1) is exact. In momentum space,

i

∫
d4x e−ip·xOi(x)Oj(0) −−−−−→

p2→−∞

∑
k

c̃kij(p)Ok(0), (6.2.2)

with the Fourier transform applied on the Wilson coefficients, while the operators Ok(0)

remain in position space. The coefficients c̃kij(p) can be extracted from the OPE (6.2.2)

sandwiched between appropriate in and out external states.

In applications of the OPE to non-scale invariant theories, e.g. QCD, one splits

momentum integrals into UV and IR regions, above and below a renormalization scale

µ. For the IR physics of the renormalized operators, in particular their expectation

values, µ acts as a UV cutoff scale. For the UV physics, namely the Wilson coefficients,

µ acts as an IR cutoff scale. For a spirited discussion of the properties of the OPE,

and the necessity of this splitting at a scale µ, the reader is referred to [13]. The scale

µ drops out of physical quantities at the end of the day, of course. The coefficients

obey an RG equation

Dckij(µ2x2) = γk`C
`
ij − γ`iCk`j − γ`jCki`, (6.2.3)

with D = µ ∂
∂µ + β(g) ∂∂g . Even if the theory is RG flowing, with non-zero beta functions,

this is accounted for by these RG equations, making the OPE still effectively scale

covariant.
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6.2.1. Conformal-symmetry constraints

Exactly scale-invariant theories are generally also conformally invariant (modulo

recently found counterexamples [14, 15]). We’re here ultimately interested in applying

the OPE also to non-scale-invariant theories, but the intuition is that the Wilson

coefficients are UV-determined, so we can work near the approximately conformally

invariant UV fixed point, obtain relations there, and then RG flow them down to lower

scales. The Wilson coefficients should then (approximately) respect the full conformal

group, i.e. they should respect not only the dilation generator, D, but also the special

conformal generator, Kµ. These generators act on primary operators OI (I labels the

(j, ̄) spin indices) as

[Pµ,OI(x)] = i∂µOI(x), [D,OI(x)] = −i(x · ∂ + ∆O)OI(x),

[Kµ,OI(x)] = i(x2∂µ − 2xµ x · ∂ − 2∆Oxµ)OI(x) + 2xν(sµν)IJOJ(x),

where (sµν)
I
J is the operator’s Lorentz spin representation, and ∆O is its scaling

dimension.

Conformal symmetry implies that the OPE of conformal descendants are fully

determined by those of the conformal primaries [16]. For example, for the OPE of two

scalar operators,

Oi(x1)Oj(x2) =
∑

primary

O(`)
k

ckij
1

r
1
2

(∆i+∆j−∆k)

12

F∆k
∆i∆j

(x12, P )µ1...µ`O
(µ1...µ`)
k (x2), (6.2.4)

where xij ≡ xi − xj and rij ≡ x2
ij and the sum is over integer spin-` primary operators

O(µ1...µ`)
k (with symmetrized indices) on the RHS. The functions F∆k

∆i∆j
(x12, P )µ1...µ` ,

which give the coefficients of the descendants, are fixed by conformal covariance.

Equivalently, conformal symmetry completely fixes the form of the two-point and three-

point functions up to an overall coefficient. For example, the three-point functions
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related to (6.2.4) are

〈Oi(x1)Oj(x2)O(µ1...µ`)
k (x3)〉 =

cijk

r
1
2

(∆i+∆j−∆k+`)

12 r
1
2

(∆k+∆ij−`)
13 r

1
2

(∆k−∆ij−`)
23

Z(µ1Zµ2 · · ·Zµ`),

where ∆ij ≡ ∆i −∆j , and

Zµ ≡ xµ23

r23
− xµ13

r13
, Z2 =

r12

r13r23
.

We’ll sometimes be interested in Fourier transforming the OPEs, as in (6.2.2).

For example, in (6.2.4), taking x2 = 0 and Fourier transforming in x1 ≡ x,

i

∫
d4x e−ip·xOi(x)Oj(0) ⊃

ckijF
∆k
∆i∆j

(−i∂p, P )µ1...µ` F.T.

(
1

(x2)
1
2

(∆i+∆j−∆k)

)
O(µ1...µ`)
k (0),

The Fourier integral is generally singular but can be defined by analytic continuation,

with

F.T.

(
1

(x2)d

)
≡ i
∫
d4x e−ip·x

1

(x2)d
= (2π)2 Γ(2− d)

4d−1Γ(d)
(p2)d−2.

Logarithms of p2 can arise if the dimension d is an integer n, or nearby, d = n+ ε, with

ε� 1. The 1/ε terms are local contact terms that we can drop, and we’re left with

F.T.

(
1

x2n+ε

)
= − (2π)2

4n−1(n− 1)! (n− 2)!
(−p2)n−2 ln p2 +O(ε). (6.2.5)

Such ln(−s) terms, associated with dimensions that are integer or nearly integer, are

responsible for the discontinuities like (6.1.10). The needed smallness of the anomalous

dimensions, ε� 1, fits with the optical theorem connection (6.1.4) to the cross section,

since that assumes production of weakly coupled final state particles.
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6.2.2. Superconformally-covariant operator product expansion

Superconformal theories have Qα, Q̄α̇, and Pµ as raising operators, generating

the descendants. The superconformal primaries are annihilated by the lowering operators,

Sα and S̄α̇, and Kµ at the origin. The algebra, and our sign conventions, can be

found in [6]. To quote a few examples, the superconformal charges act on scalar

superconformal primary operators as

[Sα,O(x)] = ix · σ̄α̇α[Q̄α̇,O(x)], (6.2.6)

SβQα(O(x)) = 2(σµν βα x[µ∂ν]+δ
β
α x·∂)O(x)−ix·σ̄α̇βQαQ̄α̇(O(x))+(2∆O+3rO)δ β

α O(x),

(6.2.7)

where we define SβQα(O(x)) ≡ {Sβ, [Qα,O(x)]} etc.

Conserved currents are descendants of superconformal primary operators J with

∆J = 2 and Q2(J) = Q̄2(J) = 0,

jα(x) = Qα(J(x)), jµ(x) = −1
4Ξµ(J(x)), (6.2.8)

where Ξµ ≡ σ̄α̇αµ [Qα, Q̄α̇]. In superspace,

J (z) = J(x) + iθj(x)− iθ̄̄(x)− θσµθ̄jµ(x) + · · · , (6.2.9)

where · · · are derivative terms, following from the conservation equations D2J =

D̄2J = 0. The superconformal supercharges act on J(x) as in (6.2.6)

Sα(J(x)) = ix · σ̄α̇αQ̄α̇(J(x)), S̄α̇(J(x)) = −ix · σ̄α̇αQα(J(x)),

vanishing at the origin. Acting on the descendants as in (6.2.7) with ∆J = 2 and
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rJ = 0,

Sα(jα(x)) = −ix · σ̄α̇αQαQ̄α̇(J(x)) + 4(x · ∂ + 2)J(x),

Sα(jµ(x)) = 3σ̄µα̇α̄α̇(x)− 2x · σ̄α̇ασ̄µνβ̇
α̇
∂ν ̄β̇(x).

The OPE of all the descendants (6.2.8) follow from that of the primary operators,

J(x)J(0) =
∑

sprimary
O(`)

cO
(`)

JJ

(x2)
1
2

(4−∆O)
F∆O
JJ (x, P,Q, Q̄)µ1...µ`O

µ1...µ`(0), (6.2.11)

where “sprimary” is shorthand for “superconformal primary”. As discussed in [6], current

conservation Q2(J) = Q̄2(J) = 0 plays an important role in relating superconformal

primary and descendant OPE coefficients. Applying the above relations to the LHS of

(6.2.11) gives e.g. [6] (see also there for discussion about the sign)

Sα(J(x)J(0)) = Sα(J(x))J(0) = −ix · σ̄α̇α̄α̇(x)J(0). (6.2.12)

jα(x)jα(0) = 1
2Q

2(J(x)J(0)). (6.2.13)

In SCFTs, the latter can also be written via

jα(x)jβ(0) =
1

x2
Qβ(ix · σS̄)α(J(x)J(0)) (6.2.14)

various such relations were noted in [6]; just to quote a couple more,

SαSβ(J(x)J(0)) = S̄α̇S̄β̇(J(x)J(0)) = 0, (6.2.15)

jµ(x)J(0) =
x2ηµν − 2xµxν

4x4

[
Sσν S̄ − S̄σ̄νS

]
(J(x)J(0)). (6.2.16)

The RHS of the OPE is constrained by (6.2.15) and analogous relations in [6], including

the constraints from the generators of special conformal transformations. These relate
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different OPE coefficients inside the J(x)J(0) OPE in supersymmetric theories, yielding

the full OPE in terms of the OPE coefficients for the superconformal primaries.

As we showed in [6], these constraints can be efficiently implemented in super-

space, using the general formalism of [10]. The only operators that can appear on

the RHS of the J(x)J(0) are real, U(1)R charge zero operators, with the superspace

expansion (ξµ ≡ θσµθ̄ and · · · are operators with non-zero R-charge)

Oµ1...µ`(x, θ, θ̄) = Aµ1...µ`(x) + ξµB
µµ1...µ`(x) + ξ2Dµ1...µ`(x) + · · · . (6.2.17)

This is similar to the chiral-antichiral ΦΦ̄ OPE considered in [17], and as there Ξµ ≡

σ̄µα̇α[Qα, Q̄α̇], and Bµµ1...µ` = −1
4ΞµAµ1...µ` and Dµ1...µ` = − 1

64ΞµB
µµ1...µ`− 1

16∂
2Aµ1...µ` .

Operators B`+1 in (6.2.17) decompose into Lorentz irreducible representations M`+1

of spin ` + 1, N`−1 of spin ` − 1, and L± in the (1
2` ±

1
2 ,

1
2` ∓

1
2) representation of

SU(2)× SU(2).

Operators (6.2.17) with odd spin ` are odd under exchanging currents Ja ↔ Jb in

the OPE Ja(x)Jb(0), and thus only appear, proportional to the structure constants fabc,

in non-Abelian theories. Since for simplicity we consider the J(x)J(0) for G = U(1),

only even-` operators appear in the primary J(x)J(0) OPE. For operators (6.2.17) with

` even, this means that only the A` even and D` even operators contribute. For operators

(6.2.17) with ` odd, the B`+1 →M`+1, N`−1 components contribute.

Superconformal symmetry and current conservation fully determine all current-

current OPE superconformal descendant coefficients from those of the superconformal

primaries, since as shown in [6], the superspace dependence (in zi = (xµ, θα, θ̄α̇)i) of

the associated three-point functions is fully determined:

〈J (z1)J (z2)Oµ1...µ`(z3)〉 =
1

x1̄3
2x3̄1

2x2̄3
2x3̄2

2
tµ1...µ`
JJO`(X3,Θ3, Θ̄3). (6.2.18)
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Current conservation implies that, for (6.2.17) of spin ` even or odd, respectively,

t
(µ1...µ`)
JJO` even

= cJJO`
X

(µ1
+ · · ·Xµ`)

+

(X · X̄)2− 1
2

(∆−`)

[
1− 1

4
(∆− `− 4)(∆ + `− 6)

Θ2Θ̄2

X · X̄

]
− traces,

(6.2.19)

t
(µ1...µ`)
JJO` odd

= cJJO`
X

(µ1
+ · · ·Xµ`−1

+

(X · X̄)2− 1
2

(∆−`)

[
X
µ`)
− − `(∆− `− 4)

∆− 2

(X− ·X+)X
µ`)
+

X · X̄

]
− traces

(6.2.20)

in terms of the spin ` and dimension ∆ ≡ ∆O ≡ ∆A of the operator O; see [6]

and [10] for explanation about the notation. The primary OPE coefficient fixes the

coefficient cJJO` above, and then all descendant OPE coefficients are fully determined

by the requirement that they reproduce (6.2.18), (6.2.19), (6.2.20). The superconformal

relations are exhibited by expanding these expressions out in superspace. For example,

setting θi=1,2 = θ̄i=1,2 = 0, these imply [6] that the coefficients cijk of the three-point

functions satisfy

cJJD`;prim
= −∆(∆ + `)(∆− `− 2)

8(∆− 1)
cJJA` ,

cJJN`−1
= −(`+ 2)(∆− `− 2)

`(∆ + `)
cJJM`+1

.

The OPE coefficients ckij are related to the three-point coefficients cijk by ckij = ck`cij`,

where cij are the two-point function coefficients, and then (5.4.13) implies that

c
D`;prim

JJ = − (∆− 1)

2∆(∆ + `+ 1)(∆− `− 1)
cA`JJ ,

c
N`−1

JJ = −`(`+ 2)(∆ + `+ 1)

(`+ 1)2(∆− `− 1)
c
M`+1

JJ .

(6.2.21)
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6.3. Implications of superconformally covariant OPE for General Gauge Me-

diation

The GGM [4] framework relates visible-sector soft SUSY breaking parameters

to hidden sector current two-point functions (defined following the convention of [18])2

〈J(x)J(0)〉 = C0(x)
F.T.−−→ C̃0(p),

〈jα(x)̄α̇(0)〉 = −iσµαα̇∂µC1/2(x)
F.T.−−→ σµαα̇pµC̃1/2(p),

〈jµ(x)jν(0)〉 = (ηµν∂
2 − ∂µ∂ν)C1(x)

F.T.−−→ −(ηµνp
2 − pµpν)C̃1(p),

〈jα(x)jβ(0)〉 = εαβB1/2(x)
F.T.−−→ εαβB̃1/2(p),

〈jµ(x)J(0)〉 = 0.

(6.3.1)

The functions Ca(x) are real and B1/2(x) is complex, though in potentially realistic

models it must be possible to rotate it to be real, to avoid large CP violating phases. If

the theory were supersymmetric, all Ca(x) would be equal, and B1/2(x) would be zero.

The leading contribution to the above functions in the UV limit comes from

the unit operator on the RHS of the J(x)J(0) OPE (6.1.3),

UV limit : Ca(x) =
τ

16π4x4
+O

(
1

x2

)
F.T.−−→ C̃a(p) =

τ

16π2
ln

Λ2

p2
+O

(
1

p2

)
. (6.3.2)

The Ca(x) all coincide at this order, as seen from the OPE and Q(1) = 0 [4, 5]. If the

theory were exactly superconformal, only the unit operator could have an expectation

value and (6.3.2) would be the full answer.

Another application of the OPE in the UV limit was discussed in [18]: it follows

2The last relation can be altered for spontaneously broken non-Abelian groups to
〈jAµ (p)JB(−p)〉 = ipµf

ABC〈JC〉/p2, but Lorentz and gauge invariance imply that this doesn’t
contribute to the soft masses in any case. See [19, 20] for discussion of GGM in such cases.
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from the relations

〈Q̄2Q2(J(x)J(0))〉 = −8∂2(C0(x)− 4C1/2(x) + 3C1(x)), (6.3.3a)

σ̄α̇αµ 〈QαQ̄α̇(jµ(x)J(0))〉 = −6∂2(C0(x)− 2C1/2(x) + C1(x)), (6.3.3b)

〈QαQ̄α̇(jα(x)̄ α̇(0))〉 = 2∂2(C0(x) + 2C1/2(x)− 3C1(x)), (6.3.3c)

and the OPE, that the difference of any two C̃a(p) in the UV vanishes at least as

rapidly as 1/p4 in any renormalizable theory. For example [18], using the OPE

jµ(x)J(0) ∼ xµO(0)

x6−∆O
+
V µ(0)

x5−∆V
+ · · · , (6.3.4)

where O and V µ are scalar and vector operators, Lorentz invariance implies that only

V µ can contribute to (6.3.3b), with V µ a conformal primary so unitarity requires

∆V ≥ 3 (saturated by a conserved current). This implies C̃0(p)− 2C̃1/2(p) + C̃1(p) ≤

O(1/p4, ln(p2)/p4) for large p. Likewise, using (6.3.3a) and (6.3.3c), any two C̃a(p)

differ by at most O(1/p4, ln(p2)/p4) in the UV [18].

6.3.1. Constraints from (approximate) broken superconformal symmetry

We expect / conjecture that the GGM functions can be constrained by applying

the current-current OPE, with the Wilson coefficients approximately constrained by

approximate UV superconformal symmetry (up to RG running differences). The IR

effect of supersconformal symmetry breaking appears via the non-zero expectation

values of the various operators on the RHS of the OPE, namely the operators (6.2.17)

and their descendants.

By Lorentz invariance, only scalar operators can have non-zero expectation

values and translation invariance implies that Pµ → 0 in one-point functions. So only

scalar conformal primaries can have non-zero one-point functions. Such operators can

only come from the superconformal primary operators (6.2.17) with spin ` = 0 or

` = 1: the A`=0 and D`=0
prim components of ` = 0 scalar superconformal primaries O`=0
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in (6.2.17), or the N`−1=0 component of a primary O(`=1)µ. Likewise, the operator

V µ(0) in (6.3.4) can be the superconformal primary components Aµ or Dµ
prim of a

superconformal primary spin ` = 1 operator, or from the Mµ component of a spin ` = 0

superconformal primary operator (6.2.17).

Consider first the GGM function C0(x), which is given by the expectation value

of the J(x)J(0) OPE. The ` = 0 conformal primaries that can contribute on the RHS

of the OPE (6.2.11) yield (using (6.2.21) with ` = 0)

C0(x) =
∑
O

cOJJ

(x2)
1
2

(4−∆O)

(
〈AO〉 −

x2

2∆O(∆O + 1)
〈DO;prim〉

)

+
∑
Oµ

cNO
µ

JJ

(x2)
1
2

(3−∆Oµ )
〈NOµ〉

(6.3.5)

O runs over the real superconformal primaries with ` = 0, and Oµ over those with ` = 1,

and NOµ is the ` = 0 conformal primary, superconformal descendant. The 〈DO;prim〉 and

〈NOµ〉 expectation values are SUSY-breaking parameters of the low-energy theory. As

in the discussion in [18], two simplifying limits are the small SUSY-breaking parameters

limit, and the low-energy, spurion limit.

The functions C1/2(x), C1(x), and B1/2(x) can similarly be written by applying

the OPE to the current two-point functions on the LHS of (6.3.1). All of these

descendant current two-point functions are fully determined by the J(x)J(0) primary

OPE. In terms of the superspace expressions following (6.2.18), we simply need to extract

the appropriate θ1,2, θ̄1,2 term, to pick out the J descendant via (6.2.9). So C1/2(x) is

found by applying ∂θ1,α∂θ̄2,β̇
to both sides of (6.2.18) before setting θi=1,2 = θ̄i=1,2 = 0,

and C1(x) is found by extracting the θ1σ
µθ̄1θ2σ

ν θ̄2f(θ3, θ̄3) terms from (6.2.18). These

lead to expressions for C1/2(x) and C1(x) analogous to (6.3.5), fully determining them

in terms of the same coefficients in (6.3.5), the COJJ and CNO
µ

JJ OPE Wilson coefficients

and the vacuum expectation values 〈AO〉, 〈DO;prim〉, and 〈NOµ〉. Likewise, for the case
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of B1/2(x), using (6.2.13) gives

B1/2(x) =
∑
O

cOJJ

(x2)
1
2

(4−∆O)
〈(Q2A)O;prim〉.

The SUSY-breaking differences of the Ca(x) can also be analyzed via (6.3.3a) to

(6.3.3c), applying the OPE to the current-current operators on the LHS. As an example,

applying the OPE to the LHS of (6.3.3a), the contributing terms are the D`=0 terms

on the RHS of the OPE, so using Q2Q̄2(A`) = −128D`;prim + descendants,

1

16
∂2(C0(x)− 4C1/2(x) + 3C1(x)) =

∑
O`=0

cOJJ

(x2)
1
2

(4−∆O)
〈DO;prim〉 (6.3.6)

We can similarly consider the difference of the Ca’s in (6.3.3b), using the

OPE (6.3.4). The jµ(x)J(0) superconformal descendant OPE is fully determined

from the J(x)J(0) superconformal primary OPE. One way to obtain this is to note

that the jµ(x1)J(x2) OPE can be obtained from the superspace three-point functions

(6.2.18) results (6.2.19) and (6.2.20), by taking the θ1σ
µθ̄1 component to get jµ(x1)

and θ2 = θ̄2 = 0 to get J(x2). Alternatively, we can use (6.2.16) to get the jµ(x)J(0)

OPE from the J(x)J(0) OPE. This gives the conformal primary operator V µ in (6.3.4),

that contributes to (6.3.3b), in terms of the operators AµO`=1
, Dµ
O`=1

and Nµ
O`=2

and

Mµ
O`=0

. Acting with Ξµ = σ̄µα̇α[Qα, Q̄α̇] to get the LHS of (6.3.3b), this gives an

expression very analogous to (6.3.6), that relates ∂2(C0(x)− 2C1/2(x) + C1(x)) to the

superconformal primary OPE coefficients cO`=0
JJ and cNO

µ

JJ , along with the 〈DO`=0
〉 and

〈NOµ〉 SUSY-breaking expectation values.

6.4. Analyticity properties of the GGM functions C̃a(p) and B̃1/2(p)

Analyticity properties of correlation functions encode a wealth of physical

information (see e.g. [11, 21]). The functions C̃a(p
2) and B̃1/2(p2) (6.3.1), coming from

the hidden sector, contribute to the visible gauge vector multiplet propagators (see
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e.g. [20]), so analyticity properties of the GGM functions connect with that of the

gauge field propagators. The functions C̃a(s) and B̃1/2(s) are analytic in s = −p2,

aside from cuts on the positive, real-s axis for s sufficiently large to create on-shell

hidden sector states. The discontinuities of the imaginary part of the C̃a across the

cut is then related by the optical theorem to total cross sections for hidden sector pair

production, as in (6.1.4). As in (6.1.5), analyticity implies that the full GGM functions

A(s) = C̃a(s), B̃1/2(s) can be reconstructed from integrating their discontinuities along

all their cuts, labeled by c:

A(s) =
1

2πi

∑
c=cuts

∫ ∞
s0,c

ds′
[DiscA(s′)]c

s′ − s
=
∑
c

1

π

∫ ∞
s0

ds′
ImA(s′)|c
s′ − s

, (6.4.1)

where s0,c and [DiscA(s′)]c are the cut’s endpoint and discontinuity, respectively. The

OPE can be used to approximate the contribution from the large s′ UV part of the

cut integral.

Let’s first consider C̃0(p2), which can have a cut when the scalar (auxiliary)

component D(p) of the gauge multiplet can couple to produce a pair of on-shell scalars,

of masses m1 and m2. The production cross section for this process is (6.1.7)

σ0→0+0(s) =
λ1/2(s,m1,m2)

8πs2
|M0|2 , (6.4.2)

where λ1/2(s,m1,m2) = 2
√
s|~p | is the kinematic factor (6.1.8) and M0 ≡ M0→0+0.

The optical theorem (6.1.4) relates this to the discontinuity

Disc C̃0(s) =
∑ 2s

(4πα)2
σ0→0+0(s) =

∑ λ1/2(s,m1,m2)

4πs

∣∣∣∣M0

4πα

∣∣∣∣2 , (6.4.3)

where the sum is over all all distinct pairs of particles that can be produced.

Now consider C̃1/2(p2), which can have a cut where the gaugino component

λα(p) of the gauge multiplet can create an on-shell spin 0 + 1
2 pair of states, of masses
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m0 and mf respectively.3 The total integrated cross section σ =
∫
dσ
dΩ dΩ, averaged over

initial spins and summed over the final ones, is given by (where M 1
2
≡M 1

2
→0+ 1

2
)

σ 1
2
→0+ 1

2
=
λ1/2(s,ms,mf )

8πs2

1

2

(
1 +

m2
f −m2

s

s

)
|M 1

2
|2. (6.4.4)

The additional kinematic factor of 1
2(1 + (m2

f −m2
s)/s) compared with (6.4.2) comes

from the spin factor sums and angular integration (see e.g. eq. (5.13) in [22]). The

discontinuity of C̃1/2(p2) is related to this cross section by the optical theorem,

Disc C̃1/2(s) =
∑ s

8π2α2
σ 1

2
→0+ 1

2
(s) =

∑ λ1/2(s,ms,mf )

8πs

1

2

(
1 +

m2
f −m2

s

s

)∣∣∣∣∣M 1
2

4πα

∣∣∣∣∣
2

.

(6.4.5)

Likewise for spin 1, a massless intermediate vector boson can decay to either

two massive scalars or two massive fermions. In either case, the final state is a CP

conjugate pair, of the same mass. Accounting for the spin-kinematic factors, the total

cross sections are

σ1→0+0 =
λ1/2(s,ms,ms)

8πs2

1

6

(
1− 4m2

s

s

)
|M1→0+0|2, (6.4.6a)

σ1→ 1
2

+ 1
2

=
λ1/2(s,mf ,mf )

8πs2

2

3

(
1 +

2m2
f

s

)
|M1→ 1

2
+ 1

2
|2. (6.4.6b)

The optical theorem gives the discontinuity of C̃1 in terms of these as

Disc C̃1(s) =
s

8π2α2

(∑
σ1→0+0(s) +

∑
σ1→ 1

2
+ 1

2
(s)
)
, (6.4.7)

with the sums over the various scalars and fermions that can be produced. In all of

these discontinuities, λ1/2(s,m1,m2) implies a cut, from s0 = (m1 +m2)2 to infinity.

In the limit of unbroken supersymmetry, the produced state is a massive

supersymmetric chiral superfield with m1, m2, mf , ms → mSUSY, and M0 = M 1
2
,

3For (partially) Higgsed gauge messengers [19, 20], we can also have σ 1
2→1+ 1

2
, and also σ1→1+0.
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M1→0+0, M1→ 1
2

+ 1
2
→MSUSY. All of the above total cross sections and discontinuities

indeed properly coincide in this limit,

σtot;0, 1
2
,1 → σSUSY =

1

8πs

√
1−

4m2
SUSY

s
|MSUSY,0|2 ,

with discontinuity

Disc C̃0, 1
2
,1 → Disc C̃SUSY =

∑
mSUSY

1

4π

√
1−

4m2
SUSY

s

∣∣∣∣MSUSY,0

4πα

∣∣∣∣2 ,
Even if SUSY is broken, in the large-s limit the C̃a(p

2) must all coincide to at least

order 1/s2 [18], so their discontinuities at large s must also coincide to this order.

Finally, we can consider the possible cuts of B̃1/2(s). Much as with C̃1/2, such

cuts can arise when the gaugino can produce on shell states. Because B̃1/2(s) is a

complex rather than real amplitude, its cuts generally can not be identified with a real,

positive-definite cross section. On the other hand, to avoid CP violating phases, it

should be possible to rotate B̃1/2 to be real in physically realistic theories. As we will

illustrate in an example, the cut structure of C̃1/2 and B̃1/2 are essentially the same,

except that cut pairs add up in C̃1/2, while they subtract in B̃1/2. This opposite sign

the SUSY-violating amplitude B̃1/2(s) leads to a partial cancellation that is needed to

ensure that B̃1/2(s), and hence its discontinuity, properly vanishes at least as fast as

1/s2 for large s.

The above discussion implicitly assumed an IR free spectrum for the produced

states. In that case, the discontinuities mentioned above come from ln(−s) terms in the

current correlator Wilson coefficients, as illustrated in the appendix. Such ln(−s) terms

arise, as in (6.2.5), from the Fourier transform of OPE coefficients of operators with

integral (or half-integral) dimension, 2∆O ∈ Z. More generally, we could contemplate a

(broken) interacting SCFT, with mass gap, with quantum corrections to the anomalous

dimensions leading to non-integer 2∆O. The spectral analysis in that case is then

similar to that considered in the context of “unparticles,” see e.g. [23]—we won’t discuss
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it further here.

6.4.1. Soft masses from the OPE and analyticity

The OPE leads to approximations for the GGM soft masses in (6.1.2), which can

be applied even in strongly interacting hidden-sector theories. Using the last expression

in (6.4.1) and applying the OPE, the soft SUSY-breaking parameters are approximated

by

Mgaugino ≈
∑
k

α Im[sdk/2 c̃kJJ(s)]

2dk−1dkMdk
〈Q2(Ok(0))〉,

m2
sfermion ≈ 4παY 〈J(x)〉 −

∑
k

α2c2 Im[sdk/2 c̃kJJ(s)]

2dk+1πd2
kM

dk
〈Q̄2Q2(Ok(0))〉.

(6.4.8)

Here the classical scaling dimension dk is related to the quantum scaling dimension by

∆k = dk + γk, and Im[sdk/2 c̃kJJ(s)] is independent of s = −p2 by dimensional analysis.

Let us sketch a few details in how the expressions in (6.4.8) are obtained, to

highlight in particular some approximations. Using (6.1.2) and (6.4.1),

Mgaugino = πiαB̃1/2(s = 0) = α

∫
s0,c

ds′
Im[iB̃1/2(s′)]

s′

≈ α
∑
k

∫ ∞
ssusy

ds′
Im[c̃kJJ(s′)]

s′
〈Q2(Ok(0))〉

= α
∑
k

Im[sdk/2c̃kJJ(s)]〈Q2(Ok(0))〉
∫ ∞
ssusy

ds′ (s′)−dk/2−1.

(6.4.9)

The second line of (6.4.9) involves two approximations. First, we approximate B̃1/2(s′)

by replacing it with its OPE—this is a good approximation for the large s′ part of the

integral, while we apply it to the entire s′ integral.

The next approximation is that the cut endpoints s0,c on the top line of (6.4.9)

depend on the masses of the produced states, which are affected by the SUSY-breaking

contributions, while on the second line we approximated all cuts as starting at the

unbroken-supersymmetric physical threshold sSUSY = 4M2, where the SUSY-breaking
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corrections to the masses are dropped. This is needed because, once we apply the

OPE, the individual cuts are no longer visible. While this approximation sounds

perhaps rather crude, we will see in the example of weakly coupled messengers that it

nevertheless gives the full answer, perhaps because the different individual cut locations

essentially average to the supersymmetric threshold. We replace ∆k with the classical

dimension dk to get the contributing ln(−s) contribution to the imaginary part in (6.4.9).

Doing the s′ integral in (6.4.9) gives Mgaugino in (6.4.8). The derivation of m2
sfermion is

similar. Uniform convergence is assumed, and the m2
sfermion momentum integral was

regulated to tame the otherwise IR-divergent integral.4 Notice that (6.4.8) only require

the knowledge of the J(x)J(0) OPE, which is constrained by OPE superconformality.

The expressions (6.4.8) can be further approximated by keeping only the con-

tribution from the lowest dimension operator OK on the RHS of the OPE (6.1.3) for

which Q2(OK) 6= 0:

Mgaugino ≈ −
απwγKi

8M2
〈Q2(Oi(0))〉,

m2
sfermion ≈ 4παY 〈J(x)〉+

α2c2wγKi
64M2

〈Q̄2Q2(Oi(0))〉,
(6.4.10)

where γKi is the anomalous-dimension matrix which mixes OK with the operator Oi.

6.5. Example: Minimal Gauge Mediation

We now apply and test our general ideas and methods in the canonical example

of weakly coupled minimal gauge messenger mediation. The theory has canonical Kähler

potential and a hidden-sector supersymmetry-breaking chiral superfield X (or spurion)

4Though the momentum integral is actually not IR-divergent but this cannot be inferred from
the OPE alone; a complete knowledge of the Ca(x2M2) functions is necessary. Also, although the
OPE is convergent for large enough s′, the approximations (6.4.8) might suffer from convergence
issues from our integrating s′ all the way down to sSUSY = 4M2. This can require that the OPE
sum be regulated by analytic continuation; an example of this will be seen in the next section.
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coupled to a pair of messengers Φ and Φ̃, of U(1) charge ±1, via the superpotential

Wh⊗m = hXΦΦ̃. (6.5.1)

X is chiral, Q̄α̇(X(x)) = 0, with X(z+) = X(y) +
√

2θχ(y) + θ2F (y), with

χα(x) =
i√
2
Qα(X(x)), F (x) =

1

4
Q2(X(x)). (6.5.2)

At low-energy, X and F get expectation values and the messengers Φ and Φ̃ become

free fields with SUSY-split masses

M0 = h〈X〉, m2
± = m2

0 ± f, (6.5.3)

with M0 the fermion and m± the real-scalar masses (m0 = |M0| and f = |h〈F 〉|). In

the UV, with X regarded as a dynamical field, the coupling h in (6.5.1) has a Landau

pole; we restrict our attention to below the scale where it is UV completed or cutoff.

The U(1) current superfield is J = Φ†Φ− Φ̃†Φ̃, with Q2(J) = Q̄2(J) = 0 and

components

J(x) = φ†φ(x)− φ̃†φ̃(x),

jα(x) = −i
√

2[φ†ψα(x)− φ̃†ψ̃α(x)],

̄α̇(x) = i
√

2[φψ̄α̇(x)− φ̃ ¯̃
ψα̇(x)],

jµ(x) = i[φ∂µφ
†(x)− φ†∂µφ(x)− φ̃∂µφ̃†(x) + φ̃†∂µφ̃(x)] + ψσµψ̄(x)− ψ̃σµ ¯̃

ψ(x),

and their interactions with the SUSY-breaking superfield X are given by

Lint = −h∗hX†X(φ†φ+ φ̃†φ̃)− [h(−Fφφ̃+Xψψ̃ + φψ̃χ+ φ̃ψχ) + h.c.]. (6.5.4)
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We also define real superfields K and K ′, and “meson” chiral field M , by

K = Φ†Φ + Φ̃†Φ̃, K ′ = K − 2X†X, M = ΦΦ̃. (6.5.5)

So in (6.5.4) −|hX|2 sources the bottom component of K, and hF sources M . K is

the messenger’s classical Kähler potential, with the classical dimension of a conserved

current, but the current is violated by (6.5.1) (though (6.5.1) preserves K ′):

Q2(K) =
1

8π2
W 2 + 4hXM, Q2(K ′) =

1

8π2
W 2.

We include the anomaly term W 2 for completeness here, but it will not play a role in

what follows since we initially turn off the gauge interactions, α→ 0. In this limit, K ′

is a conserved current.

Below the scale of 〈X〉 and 〈F 〉, where the theory is free, we know e.g.

〈J(x)J(0)〉 ≡ C0(x) =
2

(2π)d/2

(m+m−
x2

)d/2−1
Kd/2−1(m+x)Kd/2−1(m−x),

C̃0(p2) = 2

∫
d4q

(2π)4

1

q2 +m2
+

1

(p+ q)2 +m2
−
.

In the first line we used the d-dimensional propagator, with Kν(z) a Bessel function. In

the following subsections we will test our general considerations by using the explicit,

known expressions for the GGM functions C̃a(p
2) and B̃1/2(p2) in this case [4]. We

will reinterpret the expressions in terms of the OPE in the “CFT” (6.5.1) with field X

included, applying and testing our constraints from superconformal symmetry. Using

e.g. (6.2.7), the superconformal supercharges act on the superfield X components at

xµ = 0 as

{Sα, χβ(0)} = 3i
√

2rXδ
α
β X(0), [Sα, F (0)] = i

√
2(3rX − 2)χα(0),

where rX = 2
3∆X is the R-charge of the chiral superfield X. The Sα action at an
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arbitrary point x is easily obtained from the superconformal-algebra equations and the

chiral-superfield commutation relations.

6.5.1. The cross sections and analyticity properties

The total cross sections for scattering from the visible to the hidden sector can

be immediately computed to O(α) from the general expressions (6.4.2), (6.4.4), and

(6.4.6a) and (6.4.6b). In this weakly coupled hidden sector, the amplitude in these

expressions is simply M = 4πα, with the kinematic factors involving the hidden-sector

messenger masses (6.5.3):

σ0(vis→ hid) =
(4πα)2

4πs

1

2s
λ1/2(s,m+,m−),

σ1/2(vis→ hid) =
(4πα)2

4πs

1

4s2

[
(s+m2

0 −m2
+)λ1/2(s,m0,m+) + (m+ → m−)

]
,

σ1(vis→ hid) =
(4πα)2

4πs

1

12s2

[
(s− 4m2

+)λ1/2(s,m+,m+) + (m+ → m−)

+4(s+ 2m2
0)λ1/2(s,m0,m0)

]
,

σ′1/2(vis→ hid) =
(4πα)2

4πs

1

2s

[
λ1/2(s,m0,m+)− λ1/2(s,m0,m−)

]
.

(6.5.6)

Here σ′1/2 is not an honest cross section, but we anyway relate it to B̃1/2, whose phase

can be eliminated to make σ′1/2 real and positive. In the unbroken-SUSY limit, F → 0,

σa=0,1/2,1(s)→ σSUSY(s,mSUSY) =
(4πα)2

8πs

√
1−

4m2
SUSY

s
θ(s− 4m2

SUSY), σ′1/2 → 0.

(6.5.7)

The full cross sections (6.5.6) can be obtained from σSUSY (6.5.7), e.g.

σ0(s) = exp

(
−f

2

s

∂

∂m2
0

)
σSUSY(s),

with similar (but slightly uglier) expressions for σ1/2, σ1, and σ′1/2.

The cross sections (6.5.6) have expansions in powers of 1/s in the UV limit,
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using (6.5.3),

σ0(vis→ hid) =
(4πα)2

4πs

[
1

2
− m2

0

s
+
f2 −m4

0

s2
− 2m2

0(m4
0 − f2)

s3
+O(s−4)

]
,

σ1/2(vis→ hid) =
(4πα)2

4πs

[
1

2
− m2

0

s
+

1
2f

2 −m4
0

s2
− 2m6

0

s3
+O(s−4)

]
,

σ1(vis→ hid) =
(4πα)2

4πs

[
1

2
− m2

0

s
+
f2 −m4

0

s2
− 2m2

0(m4
0 − f2)

s3
+O(s−4)

]
,

σ0 − 4σ1/2 + 3σ1 =
(4πα)2

4πs

2f2

s2

[
1 +

4m2
0

s
+O(s−3)

]
,

σ′1/2(vis→ hid) = −(4πα)2

4πs

f

s

[
1 +

2m2
0

s
+

6m4
0

s2
+O(s−3)

]
.

(6.5.8)

In the UV limit, the SUSY-breaking differences of σ0, σ1/2, and σ1 show up at O(f2/s3),

while σ′1/2 is O(f/s2).

The optical theorem relations (6.4.3), (6.4.5), (6.4.7), relate these cross sections

to the discontinuities of the GGM functions C̃a(s), and here B̃1/2(s) obeys a similar

relation,

σa=0,1/2,1 =
(4πα)2

s
Im(iC̃a(s)) =

(4πα)2

s

1

2i
Disc(iC̃a(s)),

σ′1/2 =
(4πα)2

m0s
Im(iB̃1/2(s)) =

(4πα)2

m0s

1

2i
Disc(iB̃1/2(s)).

(6.5.9)

We now verify these relations from the known, explicit integral expressions for the

GGM functions in this case, as given in [4]. Let’s first remark that since, as shown

on general grounds in [18], the C̃a(s) coincide to O(1/s2, ln s/s2) in the UV limit, it

follows from (6.5.9) that the σa in this limit necessarily always coincide to O(1/s3), as

seen explicitly in the present example in (6.5.8).

Consider first C0 using its integral expression

C̃0 = 2

∫
d4q

(2π)4

1

q2 +m2
+

1

(p+ q)2 +m2
−
⊃ − i

8π2

∫ 1

0
dx ln[x(1−x)p2+xm2

++(1−x)m2
−],

where the last expression is the finite part. The Landau equations for determining the
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endpoint of the cut,

x(1− x)p2 + xm2
+ + (1− x)m2

− = 0 and
∂

∂x
[x(1− x)p2 + xm2

+ + (1− x)m2
−] = 0,

have solutions s± = −p2
± = (m+ ±m−)2 and x± = m−

m−±m+
. The s+, x+ solution gives

the endpoint of the cut, while s− is unphysical, since it has x− < 0, outside of the

region of integration. Indeed, ∆C̃0 can be here be calculated analytically from the

integral to give

C̃0 ⊃
i

8π2s
λ1/2(s,m2

+,m
2
−) ln

√
−s+ (m+ +m−)2 +

√
−s+ (m+ −m−)2√

−s+ (m+ +m−)2 −
√
−s+ (m+ −m−)2

.

The only physical branch point, on the first sheet of the logarithm, is that at s+—there

is no physical branch point at s− = (m+−m−)2, and there is no physical pole at s = 0.

Thus, in agreement with the above cross section and the optical theorem (6.5.9),

Disc C̃0 ≡ C̃0(s+ iε)− C̃0(s− iε) =
λ1/2(s,m2

+,m
2
−)

4πs
θ(s− (m+ +m−)2). (6.5.10)

It similarly follows from the explicit integral expression for C̃1/2(s),

C̃1/2 = − 2

p2

∫
d4q

(2π)4

[
1

(p+ q)2 +m2
+

+
1

(p+ q)2 +m2
−

]
p · q

q2 +m2
0,

that C̃1/2 has two (physical) branch points, at s = (m0 +m+)2 and s = (m0 +m−)2,

with

Disc C̃1/2 =
1

8πs2
(s+m2

0−m2
+)λ1/2(s,m0,m+)θ(s−(m0+m+)2)+[m+ → m−]. (6.5.11)

(Again, s = 0 is not a pole on the first sheet of the logarithm.) So (6.5.11) indeed

agrees with (6.5.9) and the above cross sections. Similarly, B̃1/2, has two branch points,
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at exactly the same positions in the s-plane as C̃1/2, with

Disc B̃1/2 =
m0

4πs
λ1/2(s,m2

0,m
2
+)θ(s− (m0 +m+)2)− (m+ → m−). (6.5.12)

The relative sign between the two terms in (6.5.12) cancels the contributions to O(1/s),

consistent with the restoration of supersymmetry in the deep UV.

Similarly, the explicit expression for C̃1,

C̃1 =
2

3p2

∫
d4q

(2π)4

{
(p+ q) · (3p+ 2q) + 4m2

+

(q2 +m2
+)[(p+ q)2 +m2

+]
+ (m+ → m−)

− 4q · (p+ q) + 8m2
0

(q2 +m2
0)[(p+ q)2 +m2

0]

}
,

reveals three branch points, at s = 4m2
±, 4m

2
0. (The supertrace relation StrM2 = 0, i.e.

m2
+ +m2

− − 2m2
0 = 0, is needed to prevent C̃1(s) from having a pole at s = 0 on the

physical sheet.) The C̃1(s) discontinuities are consistent with the optical theorem and

the cross sections (6.4.6a) for scalar production and (6.4.6b) for fermion production.

At large s, the sum of the discontinuities across the three cuts add to coincide with

that found above for C̃0 and C̃1/2 to order O(1/s2), consistent with UV supersymmetry

restoration.

6.5.2. OPE for J(x)J(0) and superpartners

We now consider the current-current OPE J(x)J(0) (6.1.3), along with its

Fourier transform

i

∫
d4x e−ip·xJ(x)J(0)→ c̃1(s,Λ)1 + c̃K(s)K(0) + c̃J2(s)J2(0) + c̃K2(s)K2(0) + · · ·

+ F(X,X†, F, F †, χ, χ†; s, µ).

(6.5.13)
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The first few terms in the position-space OPE are found from taking Wick contractions

c1(x) =
1

8π4x4
+ · · · , cK(x) =

1

2π2x2
+ · · · , cJ2(x) = 1 + · · · ,

(So τ = w = 2 in (6.1.3), coming from Φ and Φ̃. In the α, h → 0 limit, K becomes

a conserved current and the leading K term on the RHS of the J(x)J(0) OPE can

be regarded as giving the TrU(1)2
JU(1)K = 2 ’t Hooft anomaly.) Here · · · are higher

order perturbative corrections. These Wilson coefficients have Fourier transforms

c̃1(s) =
1

8π2
ln

Λ2

−s
+ · · · , c̃K(s) = −2

s
+ · · · , c̃J2(s) = δ(4)(p) + · · · . (6.5.14)

For example, c̃K can be found from the diagram

J(0)J(x)
p

−ic̃K(s) = =
2i

s
.

(6.5.15)

As usual, a UV cutoff Λ enters for the Fourier transformation of the identity term in

(6.5.13).

The important terms in what follows will be those on the second line of (6.5.13),

representing the contributions of the supersymmetry breaking “goldstino” (or spurion

background) superfield X, and its superpartners, to the OPE. When we take expectation

values of (6.5.13), and superpartners, the superconformal and supersymmetry breaking

effects will come from the expectation values of these operators involving X and X†.
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Since J(x) is U(1)R neutral, the possible terms in F in (6.5.13) include

i

∫
d4x e−ip·xJ(x)J(0) ⊃

∞∑
m,n=0

c̃0(m,n; s, µ)(F †F )m(X†X)n(0)

+
∞∑

m,n=0

d̃0(m,n; s, µ)(F †F )m(X†X)nX†F †χ2(0) + h.c.

+
∞∑

m,n=0

ẽ0(m,n; s, µ)(F †F )m(X†X)nχ2χ̄2(0) + · · · .

(6.5.16)

There are similar OPE expansions for the current superdescendants of J(x), e.g.

i

∫
d4x e−ip·xjα(x)̄α̇(0) ⊃ −iσµαα̇p

µ
∞∑

m,n=0

c̃1/2(m,n; s, µ)(F †F )m(X†X)n(0)

− iσµαα̇p
µ
∞∑

m,n=0

d̃1/2(m,n; s, µ)(F †F )m(X†X)nX†F †χ2(0) + h.c.

− iσµαα̇p
µ
∞∑

m,n=0

ẽ1/2(m,n; s, µ)(F †F )m(X†X)nX†F †χ2χ̄2(0) + · · · .

(6.5.17)

The scale µ appearing in (6.5.16) is the IR normalization point mentioned in

section 6.2. The Feynman diagrams used to compute the Wilson coefficients in (6.5.16)

(see appendix 6.A), are UV-convergent but IR-divergent. So we integrate over virtual

momenta starting at an IR cutoff µ, yielding µ dependent Wilson coefficients that

are governed by the RG equations (6.2.3). Operator expectation values are similarly

µ dependent, governed by RG equations. The µ dependence ultimately drops, as

discussed in [13], when computing OPE expectation values, like the GGM functions.

This here works thanks to operator mixing between operators on the two lines of

(6.5.13), involving the messengers and X.

As an example of this, consider the coefficient c̃X†X(s, µ) of the operator X†X in

the OPE, called c̃0(0, 1; s, µ) in (6.5.16), which is obtained at one-loop in the appendix
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by evaluating a Feynman diagram with an insertion of X†X, with IR cutoff µ on the

loop momentum,

c̃X†X(s, µ) =
1

4π2

|h|2

s
ln
−s
µ2

+ · · · , (6.5.18)

where again · · · includes higher order corrections in |h|2. The µ dependence in (6.5.18)

is cancelled, effectively replaced with Λ, by the one loop operator mixing between X†X

and the operator K, given by the diagram of Fig. 6.2.

K

k

X

X
†

Figure 6.2: Diagram giving rise to operator mixing between K and X†X.

This diagram, which requires both UV cutoff Λ and IR cutoff µ, gives operator mixing:

Kren(0) = K(0)− |h|
2

8π2
ln

Λ2

µ2
X†X(0). (6.5.19)

(This is related to the fact that K in (6.5.5) has γK = |h|2/16π2 whereas K ′ in (6.5.5)

has γK′ = 0 to this order.) When combined with the tree-level Wilson coefficient c̃K

in (6.5.14), the µ-dependence in (6.5.18) cancels with that in (6.5.19), and is thereby

ultimately replaced with a Λ-dependence from c̃K(s)K(0).

As an immediate illustration and check of our methods and results, let us

connect the first few leading UV terms of the J(x)J(0) OPE expectation value with

the corresponding terms in the σ0(s) cross section in (6.5.8). Using (6.5.9), (6.5.8), and

(6.5.13), we have

Disc C̃0(s) =
1

2π

[
1

2
− m2

0

s
+
f2 −m4

0

s2
− 2m2

0(m4
0 − f2)

s3
+O(s−4)

]
= Disc c̃1(s)〈1〉+ Disc c̃X†X(s)〈X†X〉+ Disc c̃(X†X)2〈(X†X)2〉+ · · ·

The first two terms on the top line indeed agree with the first two terms on the second
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line, upon using c̃1(s) from (6.5.14), and c̃X†X(s) from (6.5.18) and

〈1〉 = 1, 〈(|h|2X†X)n〉 = m2n
0 , Im ln(−(s± iε)) = ∓π. (6.5.20)

In fact, we can reproduce the full cross sections (6.5.6) and associated disconti-

nuities, from the OPE (6.5.13) expectation value,

C̃0 ⊃
∞∑

m,n=0

c̃0(m,n; s)(〈F †F 〉)m(〈X†X〉)n. (6.5.21)

An explicit one-loop computation of the Wilson coefficients c̃0(m,n; s, µ) in (6.5.16) is

given in the appendix. The discontinuity in particular comes from the terms ∼ ln(−s)

as in (6.5.20), and using the result from the appendix gives

Disc c̃0(m,n; s) = − 1

2π

(−1)mΓ(2(m+ n)− 1)

Γ(m+ n)Γ(m+ 1)Γ(n+ 1)

(
1

s

)m( |h|2
s

)m+n

. (6.5.22)

Using (6.5.22), the seemingly complicated series in m and n indeed nicely sums up to

give (recall from (6.5.3) that m0 ≡ |h〈X〉| and f ≡ |h〈F 〉|)

Disc C̃0 =
∞∑

m,n=0

Disc c̃0(m,n; s)(〈F †F 〉)m(〈X†X〉)n

=
1

4πs

√
s2 − 4m2

0s+ 4f2.

(6.5.23)

Upon using (6.5.3), (6.5.23) indeed exactly reproduces, to all orders in 1/s, the expres-

sion (6.5.10), involving the standard kinetic factor λ1/2(s,m+,m−) (6.1.8).

As indicated in the J(x)J(0) OPE (6.5.16), there are terms involving X’s

fermion components, χ (the goldstino). Such terms vanish upon taking the expectation

value, so they do not contribute to C̃0(s), as in (6.5.21). We retain the χ terms in

(6.5.16) because they do contribute once we act on them with the supercharges Q,

Q̄, so they contribute to (6.1.2), (6.3.3) etc. The form of the terms in (6.5.16) have
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been constrained by the U(1)R symmetry and reality of J .5 The action of Q on the

operators in (6.5.16) can be obtained from (6.5.2), which we can represent as

Qα → −i
√

2

(
χα∂∂X + F

∂

∂χα

)
,

so e.g.

Q2 → 4F
∂

∂X
− 2χ2 ∂2

∂X2
− 4χαF

∂2

∂X ∂χα
+ 2F 2 ∂

2

∂χ2
. (6.5.24)

Let us now consider the jα(x)jβ(0) OPE, whose expectation value gives B1/2(x).

By relation (6.2.13), this can be obtained from Q2 acting on J(x)J(0) OPE (6.5.16),

and the terms with non-zero expectation value are those without remaining χ or χ†

fermion fields. In terms of (6.5.24), the contributions come from the first and last

terms, giving

i

∫
d4x e−ip·x〈jα(x)jβ(0)〉 → εαβ〈FX†

∞∑
m,n=0

c̃ ′1/2(m,n; s, µ)(F †F )m(X†X)n〉,

with coefficients c̃ ′1/2 contributions from the c̃0 and d̃0 terms in (6.5.16)

c̃ ′1/2(m,n; s, µ) = (n+ 1)c̃0(m,n+ 1; s, µ) + 2d̃0(m− 1, n; s, µ). (6.5.25)

Using the explicit expressions for c̃0(m,n; s, µ) and d̃0(m,n; s, µ), given by (6.A.1) and

(6.A.2) in the appendix, we find that (6.5.25) indeed gives the correct expression for

B̃1/2(s), and in particular its discontinuity is properly related to the last expression in

5 There are additional operators involving derivatives, with OPE coefficient denoted as e.g.
∂d0: ∑

m,n

∂d0(m,n; s, µ)(F †F )m(X†X)n∂µχσ
µχ̄(0).
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(6.5.6) and (6.5.8):

Disc B̃1/2(s) =

∞∑
m,n=0

Disc c̃ ′1/2(m,n; s)(〈F †F 〉)m(〈X†X〉)n

=
m0

4πs

√
s2 − 4m2

0s− 2fs+ f2 − (f → −f),

(6.5.26)

which precisely reproduces (6.5.12).

We can similarly consider Q2Q̄2 acting on the J(x)J(0) OPE, which by (6.3.3a)

gives expectation value equal to −8∂2(C0(x)− 4C1/2(x) + 3C1(x)). Now, using (6.5.24)

and its analog for Q̄2, the c̃0(s), d̃0(s)χ2 + h.c., and ẽ0(s)χ2χ̄2 terms in the J(x)J(0)

OPE (6.5.16) all contribute. The resulting relation can be verified from a direct loop

computation of the ẽ0(s) Wilson coefficients, along the lines of the c̃0 and d̃0 perturbative

computation outlined in the appendix.

Let us now turn to using, and checking, the additional constraints that follow

from our claimed superconformal covariance of the OPE Wilson coefficients. One

way to implement the constraints of superconformal invariance is to directly use the

superspace-based [10] results of [6], reviewed in section 6.2.2 above. It follows from

these results that the OPE of all components of the J (z) current superfield (6.2.9) are

fully determined by the superconformal primary contributions to the primary J(x)J(0)

OPE, with independent Wilson coefficients for all real superconformal primary operators

Oµ1...µ` (6.2.17). As discussed in (6.3.5), only the spin ` = 0 operators O, and spin

` = 1 operators Oµ have spin zero components that can get expectation values and

contribute to the GGM functions.

To use these results here, we need to classify the independent, real supercon-

formal primary operators of spin ` = 0, 1 that can be built from X and X†. Clearly

one such class of primary operator superfields are On(z) = (X†X)n. Using (6.5.24)

Q2(Xn) = nXn−2(4FX − 2(n− 1)χ2), we see that the descendants in (6.2.17) involve

particular linear combinations of FX and χ2. Classes of additional superconformal

primary operators can be obtained from different, orthogonal linear combinations of
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FX and χ2 terms.6 We won’t work out here the details of all classes of superconformal

primaries for this example.

Alternatively, we can directly check that the superconformal relations like

(6.2.12), (6.2.14), (6.2.15), (6.2.16) etc. are satisfied. As a first example, conformal

covariance with respect to Kµ fully determines the P dependence in (6.2.1) (as in e.g.

[16]), and in particular the contribution of scalar operators O to the J(x)J(0) OPE

have

J(x)J(0) ∼ cJJO
x4−∆O

(
1 +

1

2
xµ∂µ +

∆O + 2

8(∆O + 1)
xµxν∂µ∂ν −

∆O
16(∆2

O − 1)
x2∂2 + · · ·

)
O(0).

(6.5.27)

Explicit calculation indeed verifies, for example (in position space, using dimensional

regularization), that the Wilson coefficients of the operators On = (X†X)n for the first

two terms in (6.5.27) indeed have the relative factor of 1
2 of (6.5.27); this gives a check

of conformal covariance of the OPE.

We now outline similar explicit checks of our proposed superconformal covariance

of the OPE Wilson coefficients, with the generator S and S̄. The proposed superconfor-

mal covariance yields many individual relations, which when combined determine the

superconformal descendant Wilson coefficients in terms of those of the superconformal

primaries.

As an example, the superconformal algebra implies that

Q̄S̄(J(x)J(0)) = −ix · σ̄α̇αjα(x)̄α̇(0)− 2ixµ(jµ(x)− i∂µJ(x))J(0). (6.5.28)

Taking the Fourier transform of (6.5.28) and using the J(x)J(0) OPE (6.5.16) and

jα(x)̄α̇(0) OPE (6.5.17) yields the relation

d̃0(m− 1, n− 1; s)− ∂d̃0(m− 1, n; s) = 1
4 [2(1−m)− n]

[
c̃0(m,n; s)− c̃1/2(m,n; s)

]
,

(6.5.29)

6It is necessary here to retain the interaction (6.5.1), since F is a null operator if X is free.
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where ∂d̃0(m,n; s) is the Wilson coefficient of (F †F )m(X†X)n(∂µχ)σµχ̄ in (6.5.16).

Explicit computation of the Wilson coefficients verifies that (6.5.29) is indeed satisfied.

The relation (6.5.29) determines the c̃1/2 Wilson coefficients in the jα(x)̄α̇(0)

OPE (6.5.17) in terms of the Wilson coefficients c̃0, d̃0, and ∂d̃0 in the primary J(x)J(0)

OPE (6.5.16). This fits with the result [6] that all superconformal descendant current-

current OPE coefficients are fully determined from those of the primaries. In addition to

relating the various OPEs of J ’s descendants, jα, ̄α, and jµ, superconformal symmetry

also implies relations among the terms on the RHS of the J(x)J(0) OPE (6.5.16),

determining the Wilson coefficients of all superconformal descendants in terms of those

of the superconformal primaries.

As an example, consider ∂d̃0(m,n; s), the Wilson coefficient of the operator

(F †F )m(X†X)n(∂µχ)σµχ̄ that entered in (6.5.29). Since [S̄α̇, i∂µχσ
µχ̄] 6= 0, these

operators are not superconformal primary, so the coefficients ∂d̃0(m,n; s) are completely

determined by the superconformal symmetry in terms of the other, superconformal

primary Wilson coefficients. Indeed, inserting the J(x)J(0) OPE into superconformal

relations like (6.2.15) and

(
Q2 +

2i

x2
Qx · σS̄

)
(J(x)J(0)) = 0

yields enough relations to, for example, fully determine the Wilson coefficients of super-

conformal descendants like i∂µχσ
µχ̄, χx·σχ̄ and X†F †χ2 in terms of the superconformal

primaries. One can append (X†X)n(F †F )m in front of all of these operators and the

result remains.7 As expected from the analysis of [6], the Wilson coefficients of all

superconformal descendant operators are determined from those of the superconformal

primaries.

7Since the action of S on F and F † gives zero at x = 0, one has to use derivative operators
in order to generate the F †F s. Then, one can use the known action of Kµ to show that Wilson
coefficients of superconformal descendants are determined in terms of those of superconformal
quasi-primaries.
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6.5.3. Soft masses

We now apply general expressions (6.4.8) to analyze the gaugino and sfermion

masses in this simple model. The expressions (6.4.8) and (6.4.10) can be applied to

strongly coupled theories, and here we verify that our techniques can indeed properly

approximate soft masses in simple weakly-coupled models, where the answer is already

known: Mgaugino = α
4π

F
X g(x) and m2

sfermion = 2
(
α
4π

)2
c(r)f(x) [24, 25], with x ≡ |F/hX2|

and

g(x) =
1

x2
[(1 + x) ln(1 + x) + (1− x) ln(1− x)],

f(x) =
1 + x

x2

[
ln(1 + x)− 2 Li2

(
x

1 + x

)
+

1

2
Li2

(
2x

1 + x

)]
+ (x→ −x).

(6.5.30)

We find, perhaps surprisingly, that the OPE methods—generally an approximation—

here reproduce the full, exact functions g(x) and f(x)! We discuss here the gaugino

mass in some detail. The sfermion mass computation is conceptually essentially the

same, although technically a bit more involved.

The Wilson coefficients entering in (6.4.8) are the c̃ ′1/2(m,n; s, µ) in (6.5.25),

whose imaginary parts give the discontinuity in (6.5.26). So (6.4.8) gives

Mgaugino ≈ α
∑
m,n

Disc[sn+2m+1c̃ ′1/2(m,n; s, µ)]

4n+2m+1(n+ 2m+ 1)m
2(n+2m)−1
0

(〈F †F 〉)m(〈X†X〉)n.

Using the result for c̃ ′1/2(m,n; s, µ) in (6.5.26), this gives Mgaugino ≈ Mgaugino,OPE ≡
α
4π

F
X gOPE(x), with

gOPE(x) =

∞∑
n,m=0

Γ[2(n+m)]

4n+2m(n+ 2m+ 1)Γ(n)Γ(n+ 1)Γ(2m+ 2)
x2m.

The ratio test shows that the
∑

m sum converges (for x < 4, which is satisfied since

we anyway need 0 < x < 1 to avoid tachyons), but the
∑

n requires a continuation to

converge. Indeed, the
∑

n sum can be rewritten in terms of hypergeometric functions,
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giving

gOPE(x) =
1

2
+

∞∑
m=0

1

24m+3(m+ 1)
3F2

[
m+ 3/2,m+ 1, 2m+ 2

2, 2m+ 3
; 1

]
x2m. (6.5.31)

The hypergeometric function 3F2

[
a,b,c
d,e ; z

]
converges at z = 1 only if Re s > 0 where

s = d + e − (a + b + c), and that is not satisfied in (6.5.31). Fortunately, one can

analytically continue the hypergeometric functions using a generalization of Dixon’s

theorem,

3F2

[
a, b, c

d, e
; 1

]
=

Γ(d)Γ(e)Γ(s)

Γ(a)Γ(b+ s)Γ(c+ s)
3F2

[
d− a, e− a, s
s+ b, s+ c

; 1

]
,

which leads to convergent hypergeometric functions and gives

gOPE(x) = 1 +
1

6
x2 +

1

15
x4 +

1

28
x6 + · · · = g(x).

The approximate gOPE(x) function obtained from the OPE gives the exact function

g(x)! Similarly, the OPE approximation for the sfermion mass function fOPE(x) actually

gives the full, exact result in (6.5.30).

Recalling the approximations made in (6.4.8), it is perhaps surprising that

the OPE manages to reproduce the exact results (at least in this example). In

particular, (6.4.8) was obtained by approximating that there is a single cut, starting at

the supersymmetric threshold for particle production, with supersymmetry breaking

neglected. We know from our discussion in subsection 6.5.1, that this is at best an

approximate oversimplification, since the different contributions to the soft masses

actually have different cut structures. It is interesting and curious that, at least in the

present example, the OPE conspires in such a way to somehow fully account for the

true cut structure. We do not know if this occurs more generally.

Before concluding, it is interesting to see how good the approximation is

if we keep only the leading order contribution (6.4.10). Using the classical OPE
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coefficient (6.5.15) and the Konishi current mixing (6.5.19), which are 1/2π2 and

|h|2/4π2 respectively, the soft SUSY breaking functions (6.5.30) can be approximated

by g(0) = f(0) ≈ 1
2 . Thus, to lowest order the approximations (6.4.10) allow the compu-

tation of the soft SUSY breaking parameters to an accuracy of 50%. This is probably

the best (and often the only) approximation to the soft SUSY breaking parameters one

can achieve in strongly-coupled theories.

6.6. Conclusion

Conformal theories are interesting arenas for exploring quantum field theory.

Various possible model-building applications of approximate conformal symmetry and

non-weakly coupled sectors have been proposed in the literature over the years, to

help naturalize hierarchies, e.g. that of technicolor, flavor [26], sequestering [27], and

the µ/Bµ problem [28, 29]. These and other models have recently motivated renewed

interest in exploring the consequences of conformal or superconformal symmetry, see

e.g. [30] and following papers. Here we explore possible vestiges of approximate

superconformal symmetry in wider classes of models, where the symmetries can be

(softly or spontaneously) broken.

In weakly coupled models, one can simply write down integral expressions for the

GGM functions Ca and B1/2, see [18, 31]. Our methods here give some approximate tools

to analyze theories that are not necessarily weakly coupled, giving some approximate

insights on connecting the model theory to observational consequences. It would be

interesting to apply the methods to concrete examples of non-weakly coupled theories,

and to explore concretely some of the above mentioned proposed applications.
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6.A. Combinatorics for Wilson coefficients

In this appendix we calculate the one-loop Wilson coefficient of the operator

(F †F )m(X†X)n in the Fourier-transformed OPE of J(x)J(0). The leading contribution

to the coefficient comes from the one-loop diagram with m insertions of (the background

expectation value of) F † and F , and n insertions of X†X (Fig. 6.3). The combinatoric

. .
 .

. . .

J(0)J(x)
p

k

mn

X

X
X†

X†

F

F

F †

F †

Figure 6.3: The Wilson coefficient of the operator (F †F )m(X†X)n(0) in the OPE
i
∫
d4x e−ip·xJ(x)J(0).

factors are as follows. Permutations among the X†X insertions do not count as

separate diagrams, nor do permutations among F †s or F s. F † and F have to be in

alternating order, and only one such ordering counts. We can start with all X†X and

F and F † insertions on the upper propagator, and then start bringing the F †s and

F s, and the X†Xs, past the current insertion, to the lower propagator. Every time

an F † or an F goes past the current insertion, there is a minus sign, from that in

J(x) = φ†φ(x) − φ̃†φ̃(x). After some standard manipulations for the calculation of
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one-loop diagrams, the Wilson coefficient computed from Fig. 6.3 is

c̃0(m,n; s, µ) =
|h|2(m+n)

8π2

n∑
j=0

2m+1+j∑
k=1+j

(−1)k+j+1 (n+ 2m− k + 1)!

(n− j)! (2m− k + 1 + j)!

(k − 1)!

j! (k − 1− j)!

×
∫ 1

0
dx (−1)n

Γ(2m+ n)

Γ(k)Γ(2m+ n+ 2− k)
xk−1(1− x)2m+n−k+1 (2m+ n+ 1)µ2 + ∆

(µ2 + ∆)2m+n+1
,

(for m, n not both zero) where µ is the IR normalization point, and ∆ ≡ x(1− x)Q2,

with Q2 = p2
E . Here k counts the number of propagators that make up the lower

propagator, and j counts how many X†X insertions are on the lower propagator.

In connection with the analyticity properties, we are particularly interested in

contribution that is logarithmic in Q2/µ2. Expanding the result of the above Feynman

parameter integration in the UV (large s ≡ −Q2 > 0) we get

c̃0(m,n; s, µ)→ 1

4π2

(−1)mΓ(2(m+ n)− 1)

Γ(m+ n)Γ(m+ 1)Γ(n+ 1)

(
1

s

)m( |h|2
s

)m+n

ln
−s
µ2
. (6.A.1)

The case m = n = 0, i.e. c̃1, is instead given by (6.5.14). As in the discussion around

(6.5.19), the IR scale µ everywhere ultimately cancels, thanks to operator mixing, and is

effectively simply replaced with the UV cutoff scale Λ. As discussed after (6.5.23), the

combinatoric factors in (6.A.1) precisely reproduce the 1/s expansion of the kinematic

factor λ1/2(s,m+,m−) that enters in the cross section and the C̃0 discontinuity.

To outline a similar example, the Wilson coefficients d̃0(m,n; s, µ) are obtained

by similar considerations of a diagram like that of Fig. 6.3, but with the X†F †χ2

external fermion insertions. The result analogous to (6.A.1) is then

d̃0(m,n; s, µ)→

1

4π2

Γ(2(m+ n+ 1))

Γ(n+ 1)

[
1

Γ(2(m+ 2))Γ(n)
+ (−1)m

1

Γ(m+ 2)Γ(m+ n+ 1)

]
×
(

1

s

)m+1( |h|2
s

)m+n+2

ln
−s
µ2
.

(6.A.2)
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Chapter 7

Field-theoretic Methods in Strongly-Coupled Models of

General Gauge Mediation

7.1. Introduction

The theoretical appeal of supersymmetry (SUSY) makes imperative the study

of the phenomenology of its breaking. The Large Hadron Collider (LHC) has not yet

found signs of low-scale SUSY, but abandoning SUSY at this early stage in experimental

discovery would be premature. Nevertheless, SUSY extensions of the Standard Model

are now tightly constrained by experimental data, and it appears that the simplest

among them are not likely to survive as viable candidates for phenomenology. Therefore,

new models of SUSY breaking as well as new tools for their analysis remain useful in

exploring physics beyond the Standard Model. It would of course be ideal if tools were

developed that could be used at strong coupling, since if SUSY is a symmetry of nature

at some high scale, then it may very well reside in a model that is strongly-coupled at

low energies.

In the context of gauge mediation of SUSY breaking (for a review see [1]) a

formalism exists, known as general gauge mediation (GGM), that allows one to study

such models in a unified fashion [2–4]. More specifically, SUSY-breaking parameters

in the minimal supersymmetric standard model (MSSM) are generated in models of

gauge-mediated SUSY breaking via two-point correlators of gauge-current superfields

of the hidden, SUSY-breaking sector. This, then, dictates that a current analysis is

186
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possible, and allows one to understand the generation of soft masses in the MSSM

Lagrangian.

Such an analysis benefits strongly from the use of the operator product expansion

(OPE). In N = 1 superconformal theories OPEs of current correlators were studied

in [5], where the superconformal symmetry was seen, as expected, to relate the OPEs

of different components of the gauge-current superfield. Of course the study of the

OPE is motivated by the fact that the OPE is one of the few tools that allows us to

extract useful information even at strong coupling. This is reflected in the wealth of

applications of the OPE in QCD.

The results of [5] were applied to the case of GGM correlators in [6]. Part of

the motivation for that work was the observation that, even in theories that break the

superconformal symmetry explicitly, one can introduce spurions to render the breaking

spontaneous. The spurions are fully dynamical in the ultraviolet (UV), and an OPE

analysis can be carried out to determine Wilson coefficients of spurionic operators in

operator products. In the infrared (IR) the spurions acquire vacuum expectation values

(vevs), and the Wilson coefficients have to be evolved from the UV according to their

renormalization-group equation. It was shown in [6] that, in the case of minimal gauge

mediation (MGM), soft masses could be approximated very well by only the leading

spurionic term in the current-current OPE that develops a SUSY-breaking vev.

In MGM one can actually compute the full gaugino and sfermion masses using

the OPE [6]. This is a rather special case and one cannot typically expect to be able to

compute the complete current-current OPE. Nevertheless, it is physically acceptable to

truncate the OPE and carry out the calculation of the soft masses, since the truncation

is not expected to alter significantly the essential results. The error introduced in

truncating the OPE allows only an approximate determination of the soft masses, up

to O(1) overall factors which may be unimportant.

The technology developed in [6] may be used in strongly-coupled models of SUSY

breaking. This is because the determination of Wilson coefficients is done in the UV,
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where asymptotic freedom allows for a perturbative computation, while non-perturbative

effects are contained in the vevs of operators, i.e. are captured by IR quantities. Thus,

at least at the qualitative level, one is able to use the methods of [6] in order to

understand the generation of soft masses in the MSSM, even when the SUSY-breaking

sector is strongly-coupled in the IR. In theories where weakly-coupled duals exist, it

is also possible to check the strongly-coupled computations at the quantitative level

by comparing results obtained with both methods. As we will see the approximations

discussed here are indeed reasonable up to factors of order one, suggesting that relevant

information can be extracted from them even in the strong-coupling regime.

Of course AdS/CFT [7] is another tool one can use in order to understand

the behavior of field theories at strong coupling. Indeed, the realization of GGM in

holography has been considered by numerous authors, see e.g. [8–17]. The main theme

of these works is the description of GGM correlators by holographic methods. In this

paper, however, our methods will be strictly field-theoretic and four-dimensional.

N = 1 supersymmetric QCD (SQCD) is an ideal candidate for the application

of our methods. In the free magnetic range of the massive theory Intriligator, Seiberg

and Shih (ISS) demonstrated the existence of a metastable SUSY-breaking vacuum [18].

In their treatment they used the power of Seiberg duality [19] in order to establish their

result in the strongly-coupled regime of the electric theory. The big global symmetry

of SQCD in the ISS vacuum allows its use as the hidden SUSY breaking sector in the

context of gauge mediation. Phenomenologically, however, there is a problem due to an

accidental R-symmetry which precludes Majorana masses for the gauginos.

Although modifications of the ISS scenario have been proposed in the literature,

see e.g. [20–31], in this paper we consider a new deformation where we add an additional

spontaneous breaking of SUSY from a singlet chiral superfield. This superfield acquires

its vev through its own dynamics, about which we will remain agnostic. This new

model is similar to MGM but with messengers strongly interacting through another

gauge group. As we will see, with this deformation our theory develops ISS-like vacua
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but with a broken R-symmetry. In our example there are no SUSY vacua anywhere in

field space, but the ISS-like vacua we find should be metastable against decay to other

SUSY-breaking vacua with lower energy.

The paper is organized as follows. In section 7.2 we review background material

related to our work. We give a lightning review of N = 1 SQCD, as well as a quick

overview of gauge mediation, GGM, and the role of the OPE in our considerations. In

section 7.3 we present the analysis of our deformation of ISS. We also recover MGM

and pure ISS as limits of our deformed SQCD. Section 7.4 concludes and contains a

discussion of general qualitative features of strongly-coupled models of SUSY-breaking.

It is argued that such models are naturally split. Appendix 7.A contains weakly-coupled

computations of the superpartner spectrum for general messenger sectors. We use

notation and conventions of Wess & Bagger [32].

7.2. N = 1 SQCD, gauge mediation of SUSY breaking, and the OPE

In this section we first review the aspects of N = 1 SQCD and gauge mediation

which are necessary for our purposes. This section is far from self-contained and the

reader is referred to the literature, e.g. [33], for completeness.

7.2.1. Essentials of N = 1 SQCD

SQCD with Nc colors and Nf flavors is an N = 1 supersymmetric SU(Nc)

gauge theory with Nf quark flavors Qi (left-handed quarks) which are chiral superfields

transforming in the Nc of SU(Nc), and Nf quark flavors Q̃ı̃ (left-handed antiquarks)

which are chiral superfields transforming in the Nc of SU(Nc), where i, ı̃ = 1, . . . , Nf

are flavor indices.1

There is a large global symmetry in SQCD—the relevant representations and

charge assignments are shown in Table 7.1.

1Note that there are no Fayet–Iliopoulos terms since the gauge group does not contain U(1)
factors.
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Table 7.1: Matter content of SQCD and its (anomalous) transformation properties.

SU(Nf )L SU(Nf )R U(1)B U(1)A U(1)R′

Q Nf 1 1 1 1

Q̃ 1 Nf −1 1 1

However, the U(1)A×U(1)R′ symmetry is anomalous. A single U(1) R-symmetry,

which we will denote U(1)R, survives and is a full quantum symmetry. Thus, the global

symmetry of the quantum theory is SU(Nf )L × SU(Nf )R × U(1)B × U(1)R with the

appropriate R-charge assignment as shown in Table 7.2.

Table 7.2: Matter content of SQCD and its (non-anomalous) transformation properties.

SU(Nf )L SU(Nf )R U(1)B U(1)R

Q Nf 1 1 1−Nc/Nf

Q̃ 1 Nf −1 1−Nc/Nf

To make our notation more convenient we define the matrices

Q =


Q1

 · · ·

QNf

 , Q̃ =


( Q̃1 )

...

( Q̃Nf )

 ,

i
a

a
ı̃

where a = 1, . . . , Nc is a fundamental or antifundamental color index. In this notation

the Lagrangian of SQCD is2

LSCQD =

∫
d4θ Tr(Q†e2gVQ+ Q̃e−2gV Q̃†) +

(∫
d2θ trWαWα + h.c.

)
.

2Tr denotes a sum over both fundamental gauge and flavor indices, while tr denotes a sum
over adjoint gauge indices only, e.g.

TrQ†T IQ ≡ Q†
ib(T

I)bcQ
ic and trWαWα ≡WαIW I

α.
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In components (and after integrating out the auxiliary fields), this becomes

LSCQD = − tr(1
4FµνF

µν + iλσµDµλ̄)− Tr[DµQ
†DµQ+ DµQ̃DµQ̃†

+ iψ̄σ̄µDµψ + iψ̃σ̄µDµ
¯̃
ψ − i

√
2g(Q†λψ − ψ̄λ̄Q− ψ̃λQ̃† + Q̃λ̄

¯̃
ψ)]

− 1
2g

2

N2
c−1∑
I=1

[Tr(Q†T IQ− Q̃T IQ̃†)]2,

where Dµ = ∂µ + igAIµT
I(R) is the gauge-covariant derivative. Note that SQCD only

has D-term contributions to the scalar potential,

VSCQD = 1
2g

2

N2
c−1∑
I=1

[Tr(Q†T IQ− Q̃T IQ̃†)]2,

where T I are SU(Nc) generators with I = 1, . . . , N2
c − 1 the adjoint color index. This

scalar potential has a large vacuum degeneracy, which is however lifted when masses

for the quarks are added.

Masses for the flavors

The lowest-dimensional gauge-invariant chiral superfield one can construct from

Qi and Q̃ı̃, namely the mesonic superfield3

M i
ı̃ = Tr(Q̃ı̃Q

i)(Nc,0),

can be used to give gauge-invariant masses to all quark flavors. The Lagrangian of

massive SQCD (mSQCD) is then

LmSCQD = LSCQD +

(∫
d2θWtree + h.c.

)
,

3Tr(·)(x,y) denotes a sum over color indices up to x and flavor indices up to y. Hence,
Tr(·) ≡ Tr(·)(Nc,Nf ).
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where Wtree = Tr(mM)(0,Nf ), with m a nondegenerate Nf × Nf mass matrix. Note

that the inclusion of masses breaks the non-Abelian part of the global symmetry to

one of its subgroups. The scalar potential in LmSCQD is

VmSCQD = Tr(mm†Q†Q+m†mQ̃Q̃†) + 1
2g

2

N2
c−1∑
I=1

[Tr(Q†T IQ− Q̃T IQ̃†)]2,

and includes the anticipated mass terms. The vacuum degeneracy of VSCQD is lifted in

VmSCQD due to the mass terms.

7.2.2. Essentials of gauge mediation

Mediation of SUSY breaking was born to address phenomenological impasses

reached by trying to break SUSY within the observable sector of supersymmetric

extensions of the standard model. As an example, supertrace conditions that remain

even after SUSY is broken are hard to satisfy consistently with the observed low-mass

spectrum of particles [34].

Gauge mediation requires that SUSY be broken in a hidden sector with the

breaking communicated to the MSSM through the familiar gauge interactions, thus

avoiding new sources of flavor-changing neutral currents, a generic problem in models

of gravity-mediated SUSY breaking. All soft SUSY-breaking terms in the MSSM

Lagrangian are generated via loop effects, and desired phenomenology is obtained very

naturally, except, of course, for the notorious µ/Bµ problem [35]. For an extensive

review of theories with gauge mediation the reader is referred to [1].

In the minimal incarnation of gauge mediation one assumes the existence

of a hidden sector that contains a gauge singlet chiral superfield S, as well as a

messenger sector with fields Φ, Φ̃ in complete GUT representations so that gauge-

coupling unification is not spoiled. Through interactions in the hidden sector S develops

a vev both in its first and its last component, 〈S〉 = 〈S〉+ θ2〈FS〉. The superpotential

that couples the hidden sector with the messenger sector is Wh⊗m ∝ S Tr(Φ̃Φ), such
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that the SUSY breaking of the hidden sector is fed into the messenger sector. The

usual gauge interactions then communicate the SUSY breaking to the supersymmetric

extension of the standard model generating the appropriate soft SUSY-breaking terms.

General gauge mediation

A unified and powerful framework for the study of gauge mediation, dubbed

general gauge mediation, was developed in [2–4]. In GGM soft terms are written in

terms of one- and two-point correlators of components of a current (linear) superfield

of the hidden sector,

J (z) = J(x) + iθj(x)− iθ̄̄(x)− θσµθ̄jµ(x) + · · · , (7.2.1)

where the ellipsis stands for derivative terms, following from the conservation equations

D2J = D̄2J = 0.4 Among the virtues of GGM is its ability to disentangle genuine

characteristics of gauge mediation from possible model-dependent features. GGM also

leads to phenomenological superpartner-mass sum rules that, if verified by the LHC,

will identify gauge mediation as the dominant means by which SUSY is broken in

nature (see e.g. [36, 37] for a renormalization group study of the above-mentioned sum

rules). Moreover, GGM encompasses strongly-coupled hidden sectors at the qualitative

level and also at the quantitative level, at least in principle. In our view this is the

greatest strength of GGM, which is nevertheless largely unexplored. In the next section

it will be discussed extensively.

4In this paper D is the D-term, thus we use D for the covariant derivatives.
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The correlators one considers in GGM are (using the conventions of [4])

〈J(x)J(0)〉 = C0(x)
F.T.−−→ C̃0(p),

〈jα(x)̄α̇(0)〉 = −iσµαα̇∂µC1/2(x)
F.T.−−→ σµαα̇pµC̃1/2(p),

〈jµ(x)jν(0)〉 = (ηµν∂
2 − ∂µ∂ν)C1(x)

F.T.−−→ −(ηµνp
2 − pµpν)C̃1(p),

〈jα(x)jβ(0)〉 = εαβB1/2(x)
F.T.−−→ εαβB̃1/2(p),

(7.2.2)

where F.T. stands for Fourier-transforming, F.T. ≡ i
∫
d4x e−ip·x. It was realized in [3]

that for the soft masses, for example, only the one-point function 〈J(x)〉 and the

correlator 〈J(x)J(0)〉 are needed:5

Mgaugino =
iπαSM

d(G)

∫
d4x 〈Q2(JA(x)JA(0))〉,

m2
sfermion = 4πY αSM〈J(x)〉+

iC2(R)α2
SM

8d(G)

∫
d4x ln(x2M2

m)〈Q̄2Q2(JA(x)JA(0))〉,

(7.2.3)

where Mm is a supersymmetric scale in the hidden-sector theory, e.g. the messenger

scale. For clarity, the appropriate MSSM gauge group index A has been reintroduced.6

Using the results of [38] it was pointed out in [5] that, within a superconformal

field theory, the superconformal algebra and current conservation are powerful enough to

relate all possible two-operator products of components of the current superfield (7.2.1)

to the operator product J(x)J(0). Consequently, only the correlator 〈J(x)J(0)〉 is

necessary, while all other correlators in (7.2.2) can be expressed in terms of 〈J(x)J(0)〉

with the help of the superconformal group. From [5] one has

jα(x)jβ(0) =
1

x2
Qβ(ix · σS̄)α(J(x)J(0)),

5Since Q is used in this paper for the quarks of SQCD, we use Q to denote the SUSY generator.
Q always acts with an adjoint action, e.g. Q2(O(x)) ≡ {Qα, [Qα,O(x)]}.

6The MSSM gauge group is chosen to be a GUT SU(N) subgroup of the hidden-sector global
symmetry group where A = 1, . . . , N2 − 1 is the appropriate adjoint index.
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jα(x)̄α̇(0) =
1

x4

[
(S ix · σ)α̇(ix · σS̄)α − x2Q̄α̇(ix · σS̄)α + 2∆Jx

2(ix · σ)αα̇
]

(J(x)J(0)),

jµ(x)jν(0) =
1

16x8

[
(x2ηµρ − 2xµxρ)(SσρS̄ − S̄σρS)

×{x4(Q̄σ̄νQ−QσνQ̄) + (x2ηνλ − 2xνxλ)(SσλS̄ − S̄σ̄λS)

−2x2
(
Qσν ix · σ̄S − Q̄σ̄ν ix · σS̄

)
}

−8i(∆J + 1)x2(ηµνηλρ − ηµληνρ − ηµρηνλ − iεµνλρ)xλ

×{(x2ηρδ − 2xρxδ)SσδS̄ + x2Q̄σ̄ρ ix · σS̄ + 4i∆Jx
2xρ}

−8i(∆J + 1)x2(ηµνηλρ − ηµληνρ − ηµρηνλ + iεµνλρ)x
λ

×{(x2ηρδ − 2xρxδ)S̄σ̄δS + x2Qσρ ix · σ̄S + 4i∆Jx
2xρ}

+32x4∆J(∆J + 1)(x2ηµν − 2xµxν)
]

(J(x)J(0)),

with S, S̄ the superconformal supercharges. Implications of this observation in the

case of a UV asymptotically-free hidden sector (i.e. with approximate superconformal

symmetry) and in particular in the example of MGM were analyzed using the OPE

in [6], and we will rely heavily here on the results of that paper. It is important to note

that using the OPE in the equations above and Fourier-transforming the results allow

a simple evaluation of the total cross-sections of the visible sector to the hidden sector,

with different mediators corresponding to the different components of the MSSM vector

superfields. This is reminiscent of electron-positron scattering to hadrons in QCD. In

the following we will focus on the superpartner spectrum, and will not discuss such

cross-sections.

As shown in [6] a complete expansion of (7.2.3) can be obtained with the help

of the J(x)J(0) OPE which thus gives an approximation to the soft MSSM SUSY-

breaking masses even for strongly-coupled hidden sectors. The expansion relies on

several approximations (e.g. cuts at supersymmetric threshold, uniform convergence

of the OPE) but, at least in the simple case of MGM, a complete knowledge of the

OPE leads to an exact evaluation of the soft SUSY-breaking masses, after analytic
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continuation of the sums. To avoid complications such as arduous OPE computations

and analytic continuations, a further approximation to (7.2.3), given by

Mgaugino ≈ −
πwAAαSM

8d(G)M2
m

γKi〈Q2(Oi(0))〉,

m2
sfermion ≈ 4πY αSM〈J(x)〉+

C2(R)wAAα2
SM

64d(G)M2
m

γKi〈Q̄2Q2(Oi(0))〉,
(7.2.4)

was introduced in [6]. Here wAB is the OPE coefficient of a scalar operator K with

classical scaling dimension 2 in the OPE of two conserved currents (like, e.g. the

Konishi current in MGM), and γ is the anomalous-dimension matrix of K (see (7.3.2),

(7.3.3) and (7.3.7)). So, to get an approximation to the soft MSSM SUSY-breaking

masses, even in a theory with a strongly-coupled hidden sector, one only needs to identify

the lowest-dimension operators that have non-zero vevs after acted upon with Q2 and

Q̄2Q2.

In the example of MGM there is only one such operator, namely S†S, and

calculating its mixing with the Konishi current one finds that the approximation to

the soft masses (7.2.4) is actually only a factor of 2 smaller than the usually quoted

answers [39]. For more details the reader is referred to section 7.3.1 and [6].

7.3. SQCD as the SUSY-breaking sector

To be specific, in this paper we take the messenger sector of gauge mediation

to be SQCD without masses for the quarks but, instead, with Kähler potential and

superpotential for matter fields given by

Ke = Tr(Q†Q+ Q̃Q̃†) + S†S,

We = ξS Tr Q̃Q,

(7.3.1)

where S is the MGM-like singlet field which has non-vanishing vacuum expectation value

〈S〉 = 〈S〉+ θ2〈FS〉, and Q, Q̃ are the messenger fields which are Nf flavors of SU(Nc)
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fundamental and antifundamental superfields. The non-Abelian part of the global

symmetry of SQCD is thus broken to its diagonal subgroup, SU(Nf )L × SU(Nf )R →

SU(Nf )V, which contains SU(N), a grand-unified extension of the MSSM gauge group.

The coupling ξ is assumed weak. We will refer to SQCD with an extra singlet and

the superpotential (7.3.1) as sSQCD. We stress that it is straightforward to repeat the

analysis for more general messenger sectors and hidden sectors.

In order to use the approximation (7.2.4) in this framework, it is necessary to

determine the J(x)J(0) OPE at the lowest non-trivial order as well as the appropriate

anomalous dimension matrix.

Note that non-perturbative effects (instantons) contribute both to the vevs of

operators appearing on the right-hand side of the OPE and to the (perturbative) OPE

coefficients themselves [40]. Furthermore, for operator products satisfying the chirality

selection rule, instantons can lead to new non-perturbative contributions on the right-

hand side of the OPE, i.e. operators with purely non-perturbative OPE coefficients [41].

Instanton corrections of the first type do not modify the OPE coefficients at lowest

order and are thus non-negligible only for vevs of operators. Instanton corrections of

the second type lead to new non-perturbative OPE contributions which can dominate

over the perturbative ones.7 Since the J(x)J(0) OPE is non-trivial at the classical

level and does not satisfy the chirality selection rule, for our purposes non-perturbative

contributions that are calculable can be safely ignored.

The currents of interest for the evaluation of the J(x)J(0) OPE are

JA = Tr(QtAQ† − Q̃†tAQ̃)(Nc,N),

K = Tr(Q†Q+ Q̃Q̃†)(Nc,N),

where we denote the SU(N) generators by tA to avoid confusion with the SU(Nc)

7It is important to notice that both types of non-perturbative contributions to the OPE
coefficients are calculable. Thus, as usual, the OPE coefficients are fully calculable, while all
incalculable non-perturbative effects are contained in the vevs of operators.
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generators T I . At the classical level the OPE is simply

JA(x)JB(0) =
Ncδ

AB

16π4x4
1 +

wAB

4π2x2
K(0) + · · · , (7.3.2)

where wAB = δAB/N , while the one-loop anomalous-dimension matrix between K and

S†S is

γ =

 γK,K γK,S†S

γS†S,K γS†S,S†S

 weak−−−−−→
coupling

1

8π2

2C2(Nc)g
2 2NNc|ξ|2

|ξ|2 0

 . (7.3.3)

Note here that although computable in the weak-coupling regime, the anomalous

dimensions are large in the IR for strongly-coupled theories and are therefore kept

undetermined in the following, leading to yet another approximation. The soft SUSY-

breaking masses are

Mgaugino ≈ −
παSM

8N |ξ〈S〉|2
[
γK,K〈Q2(K)〉+ γK,S†S〈Q2(S†S)〉

]
,

m2
sfermion ≈

C2(R)α2
SM

64N |ξ〈S〉|2
[
γK,K〈Q̄2Q2(K)〉+ γK,S†S〈Q̄2Q2(S†S)〉

]
,

(7.3.4)

since the supersymmetric mass scale Mm = |ξ〈S〉| and 〈J〉 = 0 for a non-Abelian group.

These expressions can be further simplified using the supersymmetry algebra

and the Konishi anomaly [42] (in Wess–Zumino gauge) in the αSM → 0 limit:

Q2(S†S) = 4S†FS ,

Q̄2Q2(S†S) = 16(F †SFS − iψ̄S σ̄
µ∂µψS + S†∂2S),

Q2(K) = 4

[
Tr(Q†F + F̃ Q̃†)(Nc,N) +

Ng2

16π2
tr λ̄λ̄

]
,
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Q̄2Q2(K) = 16

[
Tr(F †F − iψ̄σ̄µDµψ +Q†D2Q+ i

√
2g(Q†λψ − ψ̄λ̄Q)

+ gQ†DQ)(Nc,N) + {(Q,ψ, F, g)→ (Q̃, ψ̃, F̃ ,−g)}

−Ng
2

32π2
tr(2DD − 4iλσµDµλ̄− FµνFµν)

]
.

Note that Q̄2Q2(S†S,K) are real up to total derivatives. After using the equations of

motion (we omit the ones for the fields with a tilde),

F = −ξ∗S†Q̃†, DI = −gTr(Q†T IQ− Q̃T IQ̃†),

D2Q = −i
√

2gλψ − gDQ+ |ξ|2S†SQ− ξ∗F †SQ̃
†,

iσ̄µDµψ = −i
√

2gλ̄Q− ξ∗S† ¯̃
ψ, iσµDµλ̄

I = i
√

2g(Q†T Iψ − ψ̃T IQ̃†),

the approximations (7.3.4) can be written in terms of vacuum condensates of UV

elementary fields as

Mgaugino ≈
παSM

2N |ξ〈S〉|2

[
2ξ∗γK,K〈S†Tr(Q†Q̃†)(Nc,N)〉 −

Ng2

16π2
γK,K〈tr λ̄λ̄〉

−γK,S†S〈S†FS〉
]

m2
sfermion ≈

C2(R)α2
SM

4N |ξ〈S〉|2
[
2ξ∗γK,K〈ξS†SK + Tr(S†ψ̄

¯̃
ψ − F †SQ

†Q̃†)(Nc,N)〉

−Ng
2

32π2
γK,K〈tr(2DD − 4E − FµνFµν)〉+ γK,S†S |〈FS〉|2

]
,

(7.3.5)

where E = i
√

2gTr(Q†λψ − ψ̃λQ̃†). Note that m2
sfermion is of course real, although this

is not manifest in (7.3.5), a consequence of the fact that Q̄2Q2(K) is not manifestly

real.

Finally, for a strongly-coupled theory it is more natural to express the ap-

proximations (7.3.5) in terms of vacuum condensates of IR elementary fields, i.e. the

MSSM-restricted mesonic superfield M = Tr(M)(0,N) and the “glueball” superfield
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G = −(g2/32π2) trWαWα, leading to

Mgaugino ≈
παSM

2N |ξ〈S〉|2
[
2ξ∗γK,K〈S†M†〉 − 2NγK,K〈G†〉 − γK,S†S〈S†FS〉

]
,

m2
sfermion ≈

C2(R)α2
SM

4N |ξ〈S〉|2
[
−2ξ∗γK,K〈S†F †M + F †SM

†〉+NγK,K〈FG + F †G〉

+γK,S†S〈F
†
SFS〉

]
.

(7.3.6)

Equations (7.3.4), (7.3.5) and (7.3.6) can be easily generalized to more compli-

cated UV theories with several gauge groups and matter fields in different representations.

They can also be generalized to closely-related types of mediation like general gaugino

mediation [43]. The approximations (7.3.6) are especially useful since they give an

estimate for the MSSM soft SUSY-breaking masses from the knowledge of the vevs of a

few IR elementary fields, taking the anomalous-dimension matrix to be of O(1). Indeed

only the vacuum structure of both the messenger and the hidden sector is necessary

to approximately determine the MSSM superpartner spectrum. The knowledge of the

spectrum of messengers does not directly enter the computation.

Note that these approximations should be valid for strongly-coupled theories as

well, although the size of the error introduced by truncating the OPE and assuming

that cuts extend to the supersymmetric threshold is difficult to estimate in general.

The anomalous-dimension terms cannot be computed at strong coupling, but they are

expected to be O(1). It is however possible to argue for the functional dependence

of the relevant anomalous dimensions at strong coupling. For example, γK,K should

depend on the electric quark mass and electric strong-coupling scale, and since it must

be dimensionless it should be expressible by a series in positive powers of |ξ〈S〉/Λe|
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and |ξ〈FS〉/Λ2
e |. For |〈FS〉/ξ〈S〉| � 1, at lowest order one thus expects8

γK,K
strong−−−−−→

coupling

Ñc

16π2

∣∣∣∣ξ〈S〉Λe

∣∣∣∣ δK,K , γK,S†S
strong−−−−−→

coupling

NÑc

16π2
|ξ2|δK,S†S , (7.3.7)

where δK,K and δK,S†S are dimensionless numbers of order one. We introduced in

(7.3.7) one-loop factors as well as factors of Ñc and N to account for the effective

number of degrees of freedom propagating in the loops as suggested by the Seiberg

dual (see (7.3.8)).

Furthermore, although the vevs of the appropriate fields in the vacuum of

interest are not always calculable in the strongly-coupled regime, it is often possible

to approximate them in terms of the relevant scales of the theory under consideration.

Therefore the approximations (7.3.6), which represent the main results of this paper,

as well as their generalizations to more complicated models, should be acceptable up

to dimensionless numbers of order one. Finally, when weakly-coupled duals exist, it is

possible to assess the issues discussed above and directly check that the approximations

(7.3.6) are indeed reliable up to O(1) factors, as will be seen in the next section.

In the event that SUSY is discovered at the LHC and that gauge mediation is

the relevant means of SUSY-breaking communication, the approximations (7.3.6) open

a rare window into the messenger and the hidden sector: by experimentally measuring

the MSSM superpartner spectrum, they allow an approximate determination of some

of the vevs of operators in the messenger and the hidden sector. This is reminiscent of

QCD sum rules [46] (see also [47] for a nice review and more references), although here

the spectrum of hidden-sector resonances is not necessary.

We will now use these equations to investigate the superpartner spectra of

sSQCD and its different limits, starting from the computationally-reachable weakly-

8Note that the form of the anomalous current K is known in terms of magnetic variables around
the free supersymmetric and R-symmetric IR CFT in massless SQCD as described by Seiberg
duality [44] (see also [45]). However the anomalous dimension computed from this perspective
does not lead to the appropriate functional dependence as argued here since we are interested in
the ISS SUSY-breaking vacuum.
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coupled regime and ending with the often incalculable strongly-coupled regime. To this

end, we will use Seiberg duality [19], which for SU(Nc) sSQCD in the free magnetic

phase leads to the following SU(Ñc ≡ Nf − Nc) weakly-coupled dual theory for the

matter fields (here the meson M , the magnetic quarks q and q̃, and the singlet S),

Km =
1

α|Λe|2
Tr(M †M)(0,Nf ) +

1

β
Tr(q†q + q̃q̃†)(Nf−Nc,Nf ) + S†S + · · · ,

Wm =
1

Λd
Tr(qMq̃)(Nf−Nc,Nf ) + ξS Tr(M)(0,Nf ),

(−1)Nf−NcΛ
Nf
d = Λ

3Nc−Nf
e Λ

3(Nf−Nc)−Nf
m .

(7.3.8)

Note that α and β are positive real dimensionless numbers of order one, and Λe, Λm

and Λd are the electric strong-coupling scale, the magnetic scale and the duality scale

respectively.9 Seiberg duality will allow the determination of the vevs of the relevant

IR elementary fields in terms of a few unknowns, therefore providing a direct check of

the approximations (7.3.6).

7.3.1. sSQCD in the g → 0 limit: MGM

In the limit of vanishing hidden-sector gauge coupling, sSQCD is equivalent

to MGM with Nc messenger flavors. In this limit the phenomenology of sSQCD is

already well-known, and is easily reproduced with our methods. Indeed, the only non-

vanishing vacuum condensate occurs for the MGM singlet S and the theory is effectively

equivalent to MGM with Nc flavors of messengers as expected. The approximations

(7.3.6) along with the one-loop anomalous-dimension matrix (7.3.3) thus give (here

9Due to the freedom in defining the magnetic quarks, β, Λm and Λd are not fully determined
by the electric theory.
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xS = |〈FS〉/ξ〈S〉2|)

Mgaugino ≈ −
αSM

4π

〈FS〉
〈S〉

×Nc ×
{
gapprox(xS) =

1

2

}
,

m2
sfermion ≈ 2

(αSM

4π

)2
∣∣∣∣〈FS〉〈S〉

∣∣∣∣2 × C2(R)×Nc ×
{
fapprox(xS) =

1

2

}
,

which, as already mentioned, are only a factor of 2 smaller than the usually quoted

one- and two-loop answers in the limit where xS = 0 [39],

g(xS) =
1 + xS
x2
S

ln(1 + xS) + {xS → −xS} = 1 +
x2
S

6
+ · · · ,

f(xS) =
1 + xS
x2
S

[
ln(1 + xS)− 2 Li2

(
xS

1 + xS

)
+

1

2
Li2

(
2xS

1 + xS

)]
+ {xS → −xS}

= 1 +
x2
S

36
+ · · · ,

where Li2(x) = −
∫ 1

0 dt ln(1−xt)
t is the dilogarithm or Spence function. Note that since

the OPE is truncated at lowest order in the SUSY-breaking expansion, it is naturally

expected that the approximations (7.3.6) only capture (part of) the xS = 0 limit of

g(xS) and f(xS).

The functions g(xS) and f(xS), which are only defined in the region 0 ≤ xS ≤ 1

in order to avoid tachyonic messengers, do not deviate much from unity, and so the

agreement of the OPE with the full answer at one loop for the gauginos and at two

loops for the sfermions is reasonable, as can be seen in Fig. 7.1.

A complete OPE analysis of MGM shows that the method described in [6]

and extended here works in the weakly-coupled regime, providing a useful consistency

check. Note that it is not easy to use our method to obtain exact results in the

weakly-coupled regime. Nevertheless, the simple approximations (7.3.6) match weakly-

coupled computations up to dimensionless numbers of order one, a property which

should translate to the strongly-coupled regime as well.
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Figure 7.1: gapprox/g and fapprox/f as functions of xS for MGM.

7.3.2. sSQCD in the 〈S〉 → m/ξ and 〈FS〉 → 0 limit: mSQCD

In the limit where the MGM singlet S is assumed frozen without an F-term,

sSQCD is nothing else than mSQCD. The theory is most interesting in the free magnetic

phase, given by Nc + 1 ≤ Nf < 3Nc/2, where both a SUSY-preserving phase and a

(metastable) SUSY-breaking phase exist [18].

Around the SUSY vacuum

In mSQCD, although 〈M〉 and 〈G〉 do not vanish at the supersymmetric vacuum,

the soft SUSY-breaking masses vanish, as expected, due to the Konishi anomaly [42].

Indeed, although

g2

32π2
〈trλλ〉 = [Λ

3Nc−Nf
e det(ξ〈S〉)]

1
Nc e2πik/Nc , (7.3.9)

where (7.3.9) is valid for any Nc and Nf [41], the vacuum condensate for the mesonic

superfield is

〈Tr(Q̃ı̃Q
i)(Nc,0)〉 = [Λ

3Nc−Nf
e det(ξ〈S〉)]

1
Nc

[
(ξ〈S〉)−1

]i
ı̃
e2πik/Nc , (7.3.10)
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as enforced by the Konishi anomaly [42],

−i
2
√

2
{Q̄α̇,Tr(ψ̄α̇ı̃ Q

i)(Nc,0)} = −ξ〈S〉Tr(Q̃ı̃Q
i)(Nc,0) + δiı̃

g2

32π2
trλλ, (7.3.11)

in supersymmetric vacua.10 In terms of the IR fields this implies that ξ〈S〉〈M〉 = N〈G〉.

Since all remaining vacuum condensates vanish, the approximations (7.3.6) lead to a

superpartner spectrum consistent with SUSY.

Around the ISS vacuum

As shown by ISS [18], mSQCD with small masses has a metastable SUSY-

breaking minimum close to the origin of field space. A sketch of the potential of

mSQCD is shown in Fig. 7.2.

Φ

V

Figure 7.2: A sketch of the potential of mSQCD.

Since the SUSY-breaking scale and the messenger scale are the same in ISS,

there is no dimensionless SUSY-breaking parameter to keep track of the order at which

SUSY-breaking effects appear in any computation. Thus, in order to compare (7.3.6)

with weakly-coupled computations of the sfermion masses from the dual theory (see

Appendix 7.A), it is convenient to distinguish between the SUSY-breaking scale and

the messenger scale by introducing two ξ’s, (ξ, ξL) with xM = ξL/ξ and 0 ≤ |xM| ≤ 1.

This effectively splits the mass matrix in two sectors and allows us to keep track of the

10Here the index k labels the degenerate SUSY vacua which arise from the spontaneous breaking
of the discrete global symmetry Z2Nc to Z2.
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SUSY-breaking effects.

The location of the SUSY-breaking minimum can be found using the dual

theory (7.3.8) and, in terms of the IR elementary fields (embedding the MSSM into

the X-sector of (7.3.13)), is given by

〈M〉 = 〈G〉 = 〈FG〉 = 0, 〈FM〉 = −Ncαξ
∗
L〈S†〉|Λe|2. (7.3.12)

The ISS vacuum faces an immediate problem for phenomenological applications: it

has an accidental R-symmetry and thus constrains to zero Majorana gaugino masses.

This can be seen directly from the approximations (7.3.6) and the vevs (7.3.12). The

sfermion masses, on the other hand, are not constrained by the accidental R-symmetry

and are indeed non-zero, as is also clear from (7.3.6) and the vevs (7.3.12).

Fixing Λd = Λm = (−1)(Nc−Nf )/(3Nc−Nf )Λe and using the anomalous dimensions

(7.3.7) the approximated sfermion masses obtained from (7.3.6) are

m2
sfermion ≈ 2

(αSM

4π

)2
|xM|2αβ|ξ〈S〉Λe|

× C2(R)× Ñc ×
{
fapprox(xM) =

4π2

Ñcβ

∣∣∣∣ Λe

ξ〈S〉

∣∣∣∣ γK,K =
δK,K
4β

}
,

while using the dual theory the weakly-coupled computation gives

f(xM) =
1 + |xM|
|xM|2

[
ln(1 + |xM|)− 2 Li2

(
|xM|

1 + |xM|

)
+

1

2
Li2

(
2|xM|

1 + |xM|

)]
+ {|xM| → −|xM|}

= 1 +
|xM|2

36
+ · · · .

Although xM = 1 in ISS, our approximations only rely on the lowest-order operators

appearing in the OPE and should only capture (part of) the xM = 0 contributions to

f(xM), up to a number of order one (as in the MGM case of section 7.3.1). This is

exactly what happens here. Moreover, since the function f(xM) stays close to unity for
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all xM, the approximations (7.3.6) are reasonable for 0 ≤ |xM| ≤ 1 as shown in Fig. 7.3.

Therefore the method developed here gives sensible results even in strongly-coupled

0 0.2 0.4 0.6 0.8 1
0.24

0.26

0.28

0.3

0.32

0.34

|xM|

fapprox/f

Figure 7.3: fapprox/f as function of |xM| for mSQCD with β = δK,K = 1. Both
gapprox(xM) and g(xM) vanish and so the corresponding ratio is not plotted here.

theories including higher-order SUSY-breaking corrections.

It is interesting to notice that a full knowledge of the OPE could possibly

lead to a computation of the anomalous dimensions of relevant operators in mSQCD

following the method described here, as was done for MGM in [6]. For more details

the reader is referred to section 7.3.3 and [18].

7.3.3. sSQCD in the free magnetic phase

Here we explore sSQCD for Nc + 1 ≤ Nf < 3Nc/2. As mentioned above, in

mSQCD dynamical SUSY breaking in metastable vacua occurs for this range of Nf close

to the origin of field space [18]. Although the electric theory is strongly coupled, Seiberg

duality allows one to establish the presence of SUSY breaking. In this subsection we

also use Seiberg duality to understand SUSY breaking in sSQCD close to the origin of

field space.
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Around the would-be SUSY vacuum

Let us first discuss the fate of the would-be SUSY vacuum of mSQCD in the

full sSQCD theory. For |〈FS〉/ξ〈S〉2| � 1 one would expect that the vevs of the glueball

and mesonic superfields are only slightly perturbed compared to their mSQCD values

(7.3.9) and (7.3.10). Moreover, from the point of view of the sSQCD fields, SUSY is

explicitly broken. One should thus expect that the SUSY vacuum of mSQCD becomes a

SUSY-breaking vacuum in sSQCD. Since small instantons are relevant, it is impossible

to compute the vevs of the glueball and mesonic fields from instanton techniques without

a full knowledge of the hidden-sector theory. It is nevertheless possible to estimate the

vev of the lowest component of the mesonic superfield from the superpotential and the

Kähler potential (7.3.8), leading to

〈M〉 = [ξNf−Nc〈S〉Nf−NcΛ3Nc−Nf
e ]

1
Nc

×

1 +
Nc −Nf

Nc

1

α|ξ|2

(
ξ∗〈S†〉

Λ∗e

)Nf
Nc 〈F †S〉Λ∗2e

〈S†〉2〈S〉Λe
+ · · ·

 .
One could then use the Konishi anomaly (7.3.11) to obtain the vev of the glueball

superfield, but since the vacuum is expected to be non-supersymmetric, this approach

is inconclusive. A complete knowledge of the hidden sector seems thus necessary to

determine the characteristics of the superpartner spectrum around this vacuum.

Around the ISS-like vacuum

Around the origin of field space it is more convenient to use the dual theory

as given by (7.3.8), but with canonically-normalized matter fields Φ, ϕ and ϕ̃. The

superpotential becomes

Wm = hTrϕΦϕ̃− hΨ Tr Φ,
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where Ψ is a background field with 〈Ψ〉 = µ2 + θ2µ3
F . The parameter µF is the source

of R-symmetry breaking in our example. With the parametrization

Φ =

YÑc×Ñc ZT
Ñc×Nc

Z̃
Nc×Ñc XNc×Nc

 , ϕT =

χÑc×Ñc
ρ
Nc×Ñc

 , ϕ̃ =

χ̃Ñc×Ñc
ρ̃
Nc×Ñc

 , (7.3.13)

the scalar potential becomes

V = Nf |hµ2|2 + hµ3
F Tr(Y +X) + h∗µ∗3F Tr(Y † +X†)

+ |h|2 Tr[−µ2(χ̃†χ∗ + ρ̃†ρ∗)− µ∗2(χT χ̃+ ρT ρ̃)

+ χ̃†(Y †Y + Z̃†Z̃)χ̃+ ρ̃†(Z∗ZT +X†X)ρ̃+ ρ̃†(Z∗Y +X†Z̃)χ̃

+ χ̃†(Y †ZT + Z̃†X)ρ̃+ χ†(Y ∗Y T + Z†Z)χ+ ρ†(Z̃∗Z̃T +X∗XT )ρ

+ ρ†(Z̃∗Y T +X∗Z)χ+ χ†(Y ∗Z̃T + Z†XT )ρ+ (χTχ∗ + ρTρ∗)(χ̃†χ̃+ ρ̃†ρ̃)].

As in the ISS case, the rank condition implies that SUSY is broken with F †X = hµ2, and

a minimum should develop around the origin of field space, which can be conveniently

described with the following ansatz:

〈Φ〉 =

Y0 0

0 X0

 , 〈ϕT 〉 =

q0

0

 , 〈ϕ̃〉 =

q̃0

0

.
Assuming q̃0 = q0 = q the scalar potential is minimized in (almost) all directions when

Y0 = −
µ∗3F

h(|q0|2 + |q̃0|2)
= −

µ∗3F
2h|q|2

,

q =
1

3
µ(1 +H1/3 +H−1/3)1/2, where H = 1− 27

2
|ε|

(
|ε| −

√
|ε|2 − 4

27

)
.

(7.3.14)
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Here ε = µ3
F /2h

∗µ∗2µ and it is assumed small. The constraint on q comes from

minimization in the χ̃-direction leading to the condition

|q|6 − µ∗2q2|q|2 +

∣∣∣∣µ3
F

2h

∣∣∣∣2 = 0,

which requires that q/µ ∈ R. Keeping the solution11 for which q −−−−→
µF→0

µ leads to the

vev mentioned above. For a well-defined q one needs |ε| ≤ 2
√

3
9 which is easily satisfied

for small |ε|. For small µF (or ε), (7.3.14) can be approximated by

Y0 = −
µ∗3F

2h|µ|2
+ · · · , q = µ

(
1− 1

2
|ε|2 + · · ·

)
.

The scalar potential is stabilized in all but the X-direction. As opposed to the

ISS case where X is a flat direction of V , here X is a runaway direction at tree level and

V slopes down in the X-direction. Since the runaway behavior is dictated by the small

deformation µF , it is expected that the one-loop Coleman–Weinberg potential stabilizes

the runaway direction close to the origin of field space, thus leading to spontaneous

breaking of the accidental R-symmetry of the ISS model and allowing for non-vanishing

gaugino masses.

To calculate the Coleman–Weinberg potential [48] for a general supersymmetric

theory with n chiral superfields Φi, canonical Kähler potential, and superpotential

W (Φ), we need the mass matrices for scalar and spin-1
2 fields, given respectively by the

2n× 2n matrices

M2
0 =

W †ikWkj W †ijkWk

WijkW
†k WikW

†kj

 and M2
1/2 =

W †ikWkj 0

0 WikW
†kj

,
with Wi ≡ ∂W/∂Φi and similarly for the rest, where the derivatives are to be evaluated

at the vevs computed for the zero components of the chiral superfields.

11The other solutions lead to tachyons.
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In the case of supersymmetric theories, where quadratic divergences cancel

among bosons and fermions,

STrM2 ≡ TrM2
0 − TrM2

1/2 = 0, (7.3.15)

the Coleman–Weinberg potential takes the form

VCW =
1

64π2
STrM4 ln

M2

Λ2
≡ 1

64π2

[
TrM4

0

(
ln

M2
0

4Λ2
+

1

2

)
− TrM4

1/2

(
ln

M2
1/2

4Λ2
+

1

2

)]
,

where Λ is the cutoff scale and plays no role in the following. We are therefore interested

in VCW as a function of the runaway direction X, VCW(X). Due to the supertrace

relation (7.3.15), we only have to consider the mass matrices for the (ρ, Z) sector, since

this is the only sector in which the spectrum is non-supersymmetric at tree level.

The mass eigenstates for the messenger sectors are fairly complicated. To

simplify the analysis we choose to compute them at order ε, leading to

m̃2
1 = |hµ|2 εx+ ε∗x∗

1 + |x|2
,

m̃2
2 = |hµ|2

(
1 + |x|2 − εx+ ε∗x∗

1 + |x|2

)
,

m̃2
3 = |hµ|2

(
3

2
+

1

2
|x|2 − 1

2
(1 + 6|x|2 + |x|4)1/2

+
1 + |x|2 − (1 + 6|x|2 + |x|4)1/2

1 + 6|x|2 + |x|4 − (1 + |x|2)(1 + 6|x|2 + |x|4)1/2
(εx+ ε∗x∗)

)
,

m̃2
4 = |hµ|2

(
3

2
+

1

2
|x|2 +

1

2
(1 + 6|x|2 + |x|4)1/2

+
1 + |x|2 + (1 + 6|x|2 + |x|4)1/2

1 + 6|x|2 + |x|4 + (1 + |x|2)(1 + 6|x|2 + |x|4)1/2
(εx+ ε∗x∗)

)
,

for the bosonic mass eigenstates and

m2
1 = |hµ|2

(
1 + 1

2 |x|
2 − 1

2 |x|(4 + |x|2)1/2
)
,

m2
2 = |hµ|2

(
1 + 1

2 |x|
2 + 1

2 |x|(4 + |x|2)1/2
)
,

(7.3.16)
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for the fermionic mass eigenstates. Note that to simplify the notation we introduced

x = X/µ. Moreover, it is important to notice that m̃1 vanishes exactly once higher-order

corrections are introduced since it corresponds to a Goldstone boson.

Including the Coleman–Weinberg potential with corrections up to O(ε) terms,

the runaway in the X-direction is found to be stabilized at

X0 = −16π2 + Ñc|h|2 ln 2

Ñc|h|2(ln 4− 1)
ε∗µ,

and a minimum appears close to the origin in field space. As we have explained, SUSY

is also broken in the faraway vacuum. A sketch of the potential can be seen in Fig. 7.4.

Φ

V

Figure 7.4: A sketch of the potential of sSQCD. The shading indicates that our
analysis of the spectrum in the corresponding region, i.e. around and past the would-be
SUSY vacuum, is not conclusive.

To make use of (7.3.6) we relate the canonically-normalized IR fields to the UV

elementary fields with the help of the following dictionary:

ϕ =
q√
β
, ϕ̃ =

q̃√
β
, Φ =

M√
αΛe

,

h =

√
αβΛe

Λd
, µ2 = −ξ〈S〉Λd

β
, µ3

F = −ξ〈FS〉Λd

β
.

As already mentioned, one can choose to fix Λd = Λm = (−1)(Nc−Nf )/(3Nc−Nf )Λe and
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describe the results in terms of α and β, which leads to (N = Nc)

〈M〉 =
Ncσ(xM)

2β

∣∣∣∣ Λe

ξ〈S〉

∣∣∣∣ ξ∗〈F †S〉, 〈FM〉 = −Ncαξ
∗
L〈S†〉|Λe|2,

when embedding the MSSM gauge group into the X-sector of (7.3.13). Here ξL has

been introduced, as in the ISS case, to keep track of the SUSY-breaking effects, and

σ(xM) encodes the position of the minimum as a function of the SUSY-breaking effects,

σ(xM) =
16π2 + Ñcαβ

2a

Ñcαβ2b
x∗M,

a =
1

2xM

[
(1 + |xM|) ln(1 + |xM|) + {|xM| → −|xM|}

]
−−−−→
xM→1

ln 2,

b =
1

2|xM|
[
(1 + |xM|)2 ln(1 + |xM|)− |xM| − {|xM| → −|xM|}

]
−−−−→
xM→1

ln 4− 1.

Using the anomalous dimensions (7.3.7), the superpartner spectrum at order O(µ3
F ) ∼

O(〈FS〉) is thus

Mgaugino ≈
αSM

4π

〈FS〉
〈S〉

× Ñc

×

{
gapprox(xM) = σ∗(xM)x∗M

2π2

Ñcβ

∣∣∣∣ Λe

ξ〈S〉

∣∣∣∣ γK,K − 2π2

NcÑc|ξ|2
γK,S†S =

= σ∗(xM)x∗M
δK,K
8β
−
δK,S†S

8

}
,

m2
sfermion ≈ 2

(αSM

4π

)2
|xM|2αβ|ξ〈S〉Λe| × C2(R)× Ñc

×
{
fapprox(xM) =

4π2

Ñcβ

∣∣∣∣ Λe

ξ〈S〉

∣∣∣∣ γK,K =
δK,K
4β

}
,

(7.3.17)
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and can be compared to the weakly-coupled computation which gives

g(xM) =

[
1 + |xM|
|xM|2

ln(1 + |xM|) + {|xM| → −|xM|}
]

+
σ∗(xM)

2xM|xM|
[
3|xM| − (3 + 4|xM|+ |xM|2) ln(1 + |xM|)− {|xM| → −|xM|}

]
= 1 +

|xM|2

6
+ · · ·+ σ∗(xM)

(
x∗M|xM|2

15
+ · · ·

)
,

f(xM) =
1 + |xM|
|xM|2

[
ln(1 + |xM|)− 2 Li2

(
|xM|

1 + |xM|

)
+

1

2
Li2

(
2|xM|

1 + |xM|

)]
+ {|xM| → −|xM|}

= 1 +
|xM|2

36
+ · · · .

(7.3.18)

At order O(〈FS〉) the sSQCD sfermion masses are the same as the mSQCD

sfermion masses. Note that the functional dependence of the anomalous dimension

γK,K , necessary for the approximate gaugino masses to match the weakly-coupled

computation, is the same as the one expected from the sfermion masses. This gives

another way to see why the functional dependence of γK,K is indeed proportional to

|ξ〈S〉/Λe|.

As for the mSQCD case, xM = 1 but by truncating the OPE the results (7.3.17)

should only capture the lowest-order contribution in the xM-expansion of g(xM) and

f(xM) up to O(1) factors, as can be seen directly. Note however that the power

in |xM| of the spontaneous R-symmetry breaking contribution to the gaugino mass,

denoted by σ(xM), does not exactly match the weakly-coupled computation: it is off

by a factor of |xM|2. This suggests that all OPE contributions of the same type must

be included to appreciate the suppression seen at small dynamical SUSY breaking, i.e.

for small |xM|. Yet, this point is of no relevance since the metastable SUSY-breaking

minimum disappears for small |xM|, indeed 〈M〉 −−−−→
xM→0

∞. This is clear since for fixed

ε, the Coleman–Weinberg potential cannot compete against the runaway when |xM|

is too small. The value of xM at which the minimum disappears can be estimated
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from the constraint that the messenger masses must be all non-tachyonic. Using the

messenger masses at order ε, this constraint is obtained from the fermionic messenger

mass eigenstates (7.3.16). In Fig. 7.5 we plot our results for 0.5 ≤ |xM| ≤ 1.

0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

fapprox/f

gapprox/g

|xM|

Figure 7.5: gapprox/g and fapprox/f as functions of |xM| for sSQCD with β = δK,K =

δK,S†S = 1 and Ñc = 2.

Note that the gaugino approximation overestimates the mass if all dimensionless

numbers are positive.12 Overall, the method described here gives sensible results even

for strongly-coupled theories of SUSY-breaking. Again, a complete knowledge of the

OPE could allow a determination of the anomalous dimensions of relevant operators of

sSQCD using these methods.

Finally, even though it is not the main purpose of this paper, it is of interest

to discuss some of the phenomenology of this new deformation. From the IR point

of view, sSQCD is reminiscent of the multitrace deformation discussed in [31]. The

main difference can be found in the fermionic sector, where the goldstino also has a

component in the ψS direction. As such, multitrace deformations are not needed here

to give reasonable masses to the fermionic components of X. The phenomenology of

sSQCD is thus very similar to the phenomenology of [31].

12From the sfermion mass (7.3.17) it is clear that δK,K/β is positive and thus δK,K must be
positive.



216

At this point one may observe that there appears to be a contradiction between

our result (7.3.17) for Mgaugino, using also the explicitly computed g(xM) of (7.3.18),

and the general result of small first-order gaugino mass of Komargodski and Shih [49].

However, this is not so: our example is in a sense modular. The gaugino mass appears

proportional to 〈FS〉/〈S〉, for it arises from the extra SUSY-breaking sector we have

included. This can then be thought of as a separate hidden sector, with ISS as the

messenger sector. The treatment of Komargodski and Shih does not constrain such

models.

7.4. Discussion and conclusion

In this paper we have used the results of [6] to further illustrate how the OPE

can be used to understand superpartner spectra in the MSSM in the context of gauge

mediation. Although delivering only approximate answers, our methods do capture

the essential physics of soft-mass generation in the MSSM. This becomes possible

through the UV-IR splitting achieved by the OPE. The methods developed here lead

to approximations valid up to order-one numbers both at weak and strong coupling, as

can be checked explicitly for strongly-coupled theories with weakly-coupled duals. For

strongly-coupled theories of SUSY breaking without weakly-coupled duals, the logic

can be inverted and the approximations discussed here might allow us to argue for

the functional dependence of relevant anomalous dimensions, which are in practice

technically very difficult to calculate.

Using similar techniques one should also be able to perform approximate com-

putations of total cross-sections from the visible sector to the hidden sector, which

could be very useful in the event that SUSY is discovered at the LHC.

Our methods were applied here to a new deformation of SQCD, where an

additional spontaneous breaking of SUSY is considered. This arises from the F-term

vev of a spurion S, whose zero component supplies the quark masses in SQCD. This
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deformation moves the ISS vacuum away from the origin and thus induces a breaking

of the accidental R-symmetry. Consequently, Majorana gaugino masses are allowed

in this ISS-like vacuum. Note that there are no SUSY vacua with our deformation

of SQCD. An obvious extension of our work would be to study the µ/Bµ problem in

strongly-coupled models, although this is bound to be more model-dependent.

In (7.3.6) and (7.3.17), the main results of this paper, the soft masses are

parametrized by entries of the anomalous-dimension matrix γ between the current K

and the spurionic operator S†S. The calculation of γ can be easily done in the UV,

where the electric theory is under control, with the one-loop result (7.3.3). One could

then imagine using magnetic variables to express γ in a form useful in the IR, but the

presence of the electric coupling g in (7.3.3) complicates matters. A direct calculation

of γ in the IR of SQCD, around the SUSY-breaking minimum, using the magnetic

description from the outset, is thus more desirable. However the meaning of the current

K in terms of the magnetic dual fields is not clear a priori. It would be interesting to

carry out in mSQCD the computations done for MGM, and then determine some of

the relevant anomalous dimensions of mSQCD operators.

Finally, it is well-known that theories of metastable SUSY breaking generically

have an approximate R-symmetry, with small parameter ε [50]. For such theories of

dynamical SUSY-breaking, our results imply that the approximations (7.3.6) can be

schematically written as

Mgaugino ≈
1

M2
m

(〈S†M†〉 − 〈G†〉) +O(ε),

m2
sfermion ≈

1

M2
m

(〈S†F †M + F †SM
†〉+ 〈FG + F †G〉) +O(ε).

(7.4.1)

Again S could be a dynamical field or simply a mass term. Here all order-one prefactors

are neglected and all explicit R-symmetry breaking contributions are included in O(ε).

Nevertheless, important qualitative features of the superpartner spectrum can be inferred

from (7.4.1). First, contrary to the sfermion masses, the gaugino masses do not depend



218

on any F-terms, and so there is no a priori relation between the gaugino masses and

the SUSY-breaking scales or the sfermion masses. Nonetheless, the gaugino masses

must vanish in the supersymmetric limit, which implies a relation between the different

vevs in (7.4.1) reminiscent of the Konishi anomaly. For hidden-sector gauge groups

that are completely Higgsed this means that the vev of the MSSM-restricted mesonic

superfield must either vanish or blow up as the dynamical SUSY-breaking effect is

taken to zero.

Second, since non-vanishing (Majorana) gaugino masses break the approximate

R-symmetry, the vevs appearing in (7.4.1) must carry appropriate R-charges. Now,

as the explicit R-symmetry breaking parameter ε is taken to zero, the metastable

SUSY-breaking minimum generically becomes stable with an exact R-symmetry. In the

limit where gravity decouples, the spontaneous R-symmetry breaking must vanish in

the ε → 0 limit in order to avoid a massless R-axion, which is experimentally ruled

out. In this case, the R-symmetry-breaking vevs leading to non-vanishing gaugino

masses are thus generated by the explicit R-symmetry breaking and are also O(ε). One

can directly conclude that such models are naturally split, with gaugino masses much

smaller than sfermion masses.

Last, since ε must remain small in order not to destabilize the metastable SUSY-

breaking vacuum, in order to get an acceptable phenomenology with |Mgaugino/msfermion|

of order one the spontaneous R-symmetry breaking must be non-negligible. This is

partly achieved since the MSSM-restricted mesonic superfield usually lies on a flat

direction in the ε → 0 limit, which thus leads to a one-loop enhanced vev when the

Coleman–Weinberg potential stabilizes the runaway in the finite ε limit. Thus, to

obtain acceptable superpartner spectra in strongly-coupled models of SUSY-breaking,

model-builders should focus on theories with large R-symmetry-breaking vevs.
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7.A. Superpartner spectra in weakly-coupled theories

Superpartner spectra can be computed directly from the messenger sector in

weakly-coupled theories of SUSY breaking. Although the result is well-known for simple

messenger sectors, as for example in MGM [39], for general messenger sectors this is

not the case (for a derivation using GGM, see [51]).

Consider a messenger sector consisting of n chiral superfields Φi and Φ̃i trans-

forming in a vector-like representation R+ R̄ of the MSSM with arbitrary mass matrices(
M2

0

)
2n×2n

and
(
M1/2

)
n×n = Wij such that

L ⊃ −
(
φ∗i φ̃i

)(
M2

0

)
ij

φj
φ̃∗j

− (ψ̃i)(M1/2

)
ij

(
ψj

)
− h.c.,

where (φi, ψi) are the bosonic and fermionic components of Φi and similarly for Φ̃i.

Introducing unitary matrices Ub, Uf and Ũf which diagonalize the mass matrices,

m̃2
i δij = (UbM2

0 U
†
b )ij , miδij = (Ũ∗f M1/2 U

†
f )ij ,

with m̃i and mi the (real positive) bosonic and fermionic mass eigenvalues respectively,

the gaugino and sfermion masses are given by

Mgaugino = −αSM

π
C(R) G , m2

sfermion =
(αSM

4π

)2
C2(Rsfermion)C(R) F 2, (7.A.1)
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where C(R) = 1
2 for the fundamental representation and

G =

2n∑
i=1

n∑
j,k,l=1

(Ub)ik(U
∗
b )i,n+l(U

†
f )kj(Ũ

†
f )ljmj

[
ln

(
Λ2

m2
j

)
− m̃2

i

m̃2
i −m2

j

ln

(
m̃2
i

m2
j

)]
,

F 2 =

2n∑
i=1

m̃2
i ln(m̃2

i )[4 + ln(m̃2
i )] + 4

n∑
i=1

m2
i ln(m2

i )[−2 + ln(m2
i )]

+
2n∑

i,j,k,l=1

(−1)b(k−1)/nc+b(l−1)/nc(Ub)ik(U
†
b )kj(Ub)jl(U

†
b )li

× m̃2
i

[
− ln(m̃2

j ) ln(m̃2
j ) + 2 ln(m̃2

i ) ln(m̃2
j )− 2 Li2

(
1− m̃2

i

m̃2
j

)]

+ 2

2n∑
i=1

n∑
j,k,l=1

[
(U †b )ki(Uf )jk(Ub)il(U

†
f )lj + (U †b )n+k,i(Ũ

∗
f )jk(Ub)i,n+l(Ũ

T
f )lj

]

×

{
m̃2
i

[
ln(m2

j ) ln(m2
j )− 2 ln(m̃2

i ) ln(m2
j ) + 2 Li2

(
1− m̃2

i

m2
j

)
− 2 Li2

(
1−

m2
j

m̃2
i

)]

+m2
j

[
ln(m̃2

i ) ln(m̃2
i )− 2 ln(m̃2

i ) ln(m2
j ) + 2 Li2

(
1− m̃2

i

m2
j

)
+ 2 Li2

(
1−

m2
j

m̃2
i

)]}
.

The diagrams leading to (7.A.1) can be found in [39]. Note that due to the magic

of SUSY, the cutoff Λ does not appear in the gaugino masses. Here Li2(x) =

−
∫ 1

0 dt ln(1−xt)
t is the dilogarithm or Spence function.

Note that, although the messenger spectrum of MGM, mSQCD and sSQCD are

quite different, the superpartner spectra are given in terms of the same functions g(x)

and f(x) (when the spontaneous R-symmetry breaking contribution is discarded in the

sSQCD case).

As a final point, note that it is straightforward to include extra messengers

transforming under different representations of the MSSM gauge group.
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