
Learning Part-Based Abstractions for Visual Object Concepts
Haoliang Wang

Dept. of Psychology
UC San Diego

haw027@ucsd.edu

Nadia Polikarpova
Dept. of Computer Science & Engineering

UC San Diego
nadia.polikarpova@ucsd.edu

Judith E. Fan
Dept. of Psychology

UC San Diego
jefan@ucsd.edu

Abstract

The ability to represent semantic structure in the environment —
objects, parts, and relations — is a core aspect of human visual
perception and cognition. Here we leverage recent advances
in program synthesis to develop an algorithm for learning the
part-based structure of drawings as represented by graphics
programs. This algorithm iteratively learns a library of abstract
subroutines that can be used to more compactly represent a set
of drawings by capturing common structural elements. Our
experiments explore how this algorithm exploits statistical reg-
ularities across drawings to learn new subroutines. Together,
these findings highlight the potential for understanding human
visual concept learning via program-like abstractions.
Keywords: program synthesis; library learning; perceptual
organization

Introduction
As humans, we can readily represent semantic structure in
our environment — objects, parts, relations, etc. For example,
we can effortlessly grasp the correspondence between a real
human face and a line drawing of a face (Fig. 1), even without
auxiliary cues such as color and texture. Moreover, we imme-
diately know that the two dots in the line drawing represents
the eyes, the line beneath it represents the mouth, and the big
circle represents the head. How are visual concepts organized
such that they robustly encode such abstract correspondences?
Here we explore the notion that this robustness reflects the
inherently generative and compositional organization of hu-
man conceptual knowledge (Palmer, 1977; Tenenbaum, Kemp,
Griffiths, & Goodman, 2011). In this paper we present: (1) a
proof-of-concept method for learning abstract structural units
within objects, represented as subroutines in a graphics library;
and (2) computational experiments exploring how the result-
ing library of learned subroutines is jointly determined by the
data distribution and the cost of learning.

There is a long tradition within cognitive science of seeking
to characterize the perceptual units by which humans parse
the visual world (Palmer, 1977; Goldstone, 2003). Proposed
solutions have ranged from feature representations discovered
via dimensionality reduction techniques (Lee & Seung, 1999)
to those learned by neural networks (Yamins et al., 2014),
or recovered by probabilistic inference (Austerweil & Grif-
fiths, 2013). While many approaches have focused on learn-
ing image-like internal representations, here instead we aim
to learn graphics programs, a procedural representation that
inherently captures the compositionality of visual concepts

Figure 1: Human faces are configured in consistent ways
across varying degrees of visual abstraction. (McCloud, 1994)

(Lake, Ullman, Tenenbaum, & Gershman, 2017; Overlan, Ja-
cobs, & Piantadosi, 2017; Stuhlmuller, Tenenbaum, & Good-
man, 2010; Lake & Piantadosi, 2020; Yildirim & Jacobs,
2015), inspired by “vision-as-inverse-graphics” (Kulkarni,
Kohli, Tenenbaum, & Mansinghka, 2015; Yildirim, Kulka-
rni, Freiwald, & Tenenbaum, 2015).

Graphics Programs to Represent Visual Concepts

Our graphics programs are generative models expressed in
a domain-specific language (DSL), which contains draw-
ing primitives (circles, lines, etc), geometric transformations
(translation, scaling, etc), and, most importantly, supports
defining (and calling) new subroutines. Here we explore the
use of graphics programs with subroutines to model two impor-
tant aspects of human perceptual organization: (1) abstraction:
the ability to adapt to input statistics; and (2) compositional-
ity: the ability to encode the internal part-based organization
of objects. We model abstraction by learning novel subrou-
tines with parameters, as required to explain common patterns
across objects. An example of a more abstract subroutine
is face(x,y), where the parameters x and y stand for the
shapes of eyes and mouth; the face subroutine represents
the abstract concept of a face, which captures the positions
of facial features inside the face, but not their exact shapes.
We model compositionality by learning sets of subroutines
that can be composed to capture more complex objects. For
example, we can model the drawing of a face wearing a hat
with a program that calls two subroutines, face and hat; this
model captures part-based organization by grouping together
all the facial features into the concept of a face.

1091

propose
score

 rewrite

= set(

(move 4.0 3.0 0.1 0.1 (scale 9.0 0.1 circle)),

(move 4.0 4.0 0.1 0.1 (scale 2.0 0.1 line)),

(move 5.0 2.0 0.1 0.1 (scale 1.0 0.1 line))

(move 3.0 2.0 0.1 0.1 (scale 1.0 0.1 line)),

)

= set((move 4.0 3.0 0.1 0.1 (scale 9.0 0.1 circle)),

(move 4.0 4.0 0.1 0.1 (scale 2.0 0.1 circle))

(move 5.0 2.0 0.1 0.1 (scale 1.0 0.1 circle)),

(move 3.0 2.0 0.1 0.1 (scale 1.0 0.1 circle)),

)

= f(circle)

= set(

(move 4.1 2.9 (scale 9.2 circle)),
 (move 3.1 2.0 (scale 1.1 line)),

(move 4.9 2.2 (scale 1.0 line))

 (move 4.0 3.8 (scale 2.1 line)),

)

= set((move 4.2 3.0 (scale 8.9 circle)),

(move 3.0 1.9 (scale 1.2 circle)),
(move 5.0 2.1 (scale 1.1 circle)),

 (move 4.1 3.9 (scale 2.0 circle)))

f(x) = set((move 4.0 3.0 0.01 0.01 (scale 9.0 0.01 circle)),
 (move 4.0 4.0 0.01 0.01 (scale 2.0 0.01 x)),
 (move 5.0 2.0 0.01 0.01 (scale 1.0 0.01 x)),
 (move 3.0 2.0 0.01 0.01 (scale 1.0 0.01 x)))
= f(line)

line

circle

move

scale

dataset

{

, ...
, ...

}...
& 6 other
unit shapes

base DSL

program

spatial clustering

subroutine learning

hateyes

head mouth

head

mouth
left eye

eyeright

library

rewritten using new subroutine

A B

C

D

E learned

programs
probabilistic

programs
structured

F

‘ ‘, ‘’ ‘’,
‘’ ‘’,

,f1 f2

fi

fi +

noisy face

‘ ‘

‘ ’

‘ ’

mouth
left eye

eyeright
head

best

Figure 2: Overview of our algorithm. The algorithm takes as input a dataset of line drawings (A), which are represented as
graphics programs (C) written in a base DSL (B). Spatial clustering transforms input programs into probabilistic programs (D).
Subroutine learning rewrites probabilistic programs using learned subroutines (E), following an iterative process shown in F.

Program Synthesis
How could such compositional abstractions be learned auto-
matically from a corpus of drawings? To answer this question
we turn to an area of computer science called program synthe-
sis, which studies algorithms to search for an optimal program
within a DSL that reconstructs given data. Program synthe-
sis has recently been used to model how humans recognize
and generate handwritten characters (Lake, Salakhutdinov, &
Tenenbaum, 2015). This prior work, however, used a fixed
DSL and hence could not model the emergence of novel con-
cepts by learning subroutines. Perhaps the study most related
to the current paper comes from Tian, Ellis, Kryven, and
Tenenbaum, which aimed to model motor structure learning
using a recently developed program learning method (Ellis,
Morales, Sablé-Meyer, Solar-Lezama, & Tenenbaum, 2018)
that could iteratively augment the DSL with new subroutines.
In this paper we use a similar learning method, but to our
knowledge we are the first to: (1) apply this method to learn
structured object concepts, and (2) systematically explore how
the data distribution and model parameters affect which ab-
stractions are learned.

Computational Model
As a proof-of-concept, we apply our learning method to the
domain of “smiley faces.” Fig. 2 presents an overview of our
model. The model takes as input a dataset of N line drawings

of faces, each represented as a collection of circles, lines, and
other geometric primitives (Fig. 2A). In these drawings, facial
features can take different shapes, are slightly jittered, and
some features (like hats) are optional. The model produces
as output: (1) a library of learned subroutines, and (2) N
graphics programs that produce the same image as the input
drawings, but might contain calls to the learned subroutines
(Fig. 2E). The goal of the model is to minimize the overall
description length of the output corpus, which forces it to
learn subroutines that capture common structure in the input
drawings, and hence can be reused multiple times.

The learning process is organized into two main stages:
spatial clustering and subroutine learning, which respectively
handle continuous and discrete variation in the input dataset.
The first stage abstracts away the jitter in the input drawings by
inferring which geometric primitives across examples are most
likely to represent the same part. The second stage abstracts
away shape variation by extracting common fragments of the
drawing into subroutines. We will use the running example in
Fig. 2 to explain these two stages in more detail.

Smiley Face Dataset
Each smiley face in the input dataset is represented as a pro-
gram in the base DSL, which contains 8 primitive shapes, as
well as compound shape expressions that represent geometric
transformations and sets of shapes (Fig. 2B). Fig. 2C depicts
two smiley faces from the dataset expressed in the base DSL;

1092

as you can see from the figure, the input programs are “flat”
and lack any structure: each program is simply a set of prim-
itive shapes, and each shape is individually moved, scaled,
and rotated to appear at the right position (in the figure, we
omit rotations in the interest of brevity, but our experiments
do use rotations). More generally, each smiley face consists of
five features: head, mouth, left and right eye, and an optional
hat; out of these features, the head is always a circle, the
hat is always a line, and the other features can manifest as
any primitive shape. The positions of each of the five features
are consistent between the different faces in the corpus, but
only approximately: to model our visual environment more
realistically, we added noise to each facial feature’s location,
size, and rotation.

Abstracting Over Continuous Variation via Spatial
Clustering
Due to small amounts of spatial variation in the absolute lo-
cations of parts across faces, the two heads in Fig. 2C are at
slightly different locations (4.1 vs 4.2) and of a slightly dif-
ferent sizes (9.2 vs 8.9). If our model is to learn a structured
representation of a face, it first needs to understand that these
two circles are describing the same facial feature: the head
(note that the order of shapes within each input program is
arbitrary, so we cannot assume e.g. that head is always the
first shape). In other words, we need to cluster the shapes
across the input programs based on their spatial proximity (i.e.
the numeric parameters of move and scale). The results of
such clustering are depicted in Fig. 2D, where clusters are
visualized as colors (red is head, blue is mouth, etc).

To perform the clustering, we assume that the positions
of shapes that represent the same facial feature are drawn
from the same Gaussian distribution. We then use an existing
algorithm called the Chinese Restaurant Process (CRP) (Blei,
Griffiths, Jordan, Tenenbaum, et al., 2003; Salakhutdinov,
Tenenbaum, & Torralba, 2012), which has the benefit that the
number of clusters need not be known a-priori. For example,
CRP is able to infer that the scale ratios of the two heads
in Fig. 2C are drawn from the same Gaussian with mean
µ = 9.0 and standard deviation σ = 0.1; similarly, the move
vectors of these two shapes are also drawn from the same
distribution; hence these two shapes are clustered together into
the “red” cluster. Note that clustering only takes into account
the parameters of move and scale, but not the primitive shape
they are applied to; for example, the two mouths Fig. 2C are
clustered together as “blue”, despite having different shapes.

As a result of clustering, each input program pk is rewrit-
ten into a probabilistic program p′k, where intuitively pk is a
sample from the distribution encoded by p′k (Fig. 2D). These
new programs are written in the probabilistic DSL, which is a
slight modification of the base DSL, where all geometric trans-
formations have µ and σ parameters. For example, instead of
scale(9.0), which denotes a single scaling transformation,
we now write scale(9.0, 0.1), which denotes a Gaus-
sian distribution of scaling transformations with µ = 9.0 and
σ = 0.1. Fig. 2D demonstrates how this probabilistic scale

is used to describe the head in both p′i and p′j (the same param-
eters are used in both heads, since they were clustered together
by CRP).

Abstracting Over Discrete Variation via Subroutine
Learning
Consider the two probabilistic programs in Fig. 2D: they share
the same structure in the sense that they place four facial fea-
tures at the same (probabilistic) positions, but they differ in the
shapes of eyes and mouth. Our model represents this common
structure and variation explicitly by rewriting the corpus of
probabilistic programs using a library of learned subroutines.
Fig. 2E demonstrates this rewriting for our running example.
Here the learned subroutine f(x) has the same structure as
p′i and p′j, but the concrete shapes of eyes and mouth are re-
place with a parameter, x; with this subroutine at hand, we can
rewrite the two programs more compactly by simply making
a call to the subroutine with different arguments: f(line)

and f(circle), respectively. Note that the representation
in Fig. 2E is more compact: while the total size of p′i and p′j
is 37×2 = 74 tokens, after the rewriting, the total size of f,
p′′i and p′′j is only 38+2+2 = 42 tokens (the size of f is the
size of its body plus the number of parameters). This dataset
compression is achieved thanks to a careful choice of the
subroutine, which maximally captures the common structure
between p′i and p′j and abstracts away the differences.

Our model learns a library of subroutines automatically by
repeatedly performing the following three steps: (1) propos-
ing fragments from the probabilistic programs as candidate
subroutines; (2) scoring these candidates according to how
well they compress the dataset; and (3) re-writing all programs
using the highest scoring candidate and adding it to the library
(Fig. 2F). In the rest of this section, we describe the three steps
in more detail.

Propose In the first step, our model proposes a set of can-
didate subroutines by extracting fragments from the given
probabilistic programs, matching those fragments against frag-
ments of other programs in the dataset, and abstracting away
their differences into parameters using a technique known as
anti-unification (Plotkin, 1970). Let us illustrate this proce-
dure on our running example. Given the program p′i, we first
generate a fragment for each of the 15 non-empty subsets of
its shapes; for example, the following fragment f 4 represents
just the head and f 7 represents head and mouth (we omit the
σ parameters in this section for brevity):

f 4 = move(4.0, (scale(9.0, circle)))

f 7 = set(move(4.0, (scale(9.0, circle))),

move(4.0, (scale(2.0, line))))

Finally f 15 = p′i is a fragment representing the whole face.
Next, the model attempts to match (or anti-unify) each frag-

ment f k
i from p′i with each fragment f m

j from p′j; for the match
to be successful, we require that the numeric parameters of
move and scale must coincide, while the primitive shapes in

1093

the two fragments might differ, in which case they are replaced
by a parameter. For example, matching f 4 with the mouth
fragment from p′j fails, since their positions differ. Matching
f 4 with the head fragment from p′j succeeds and yields f 4

itself as a candidate subroutine, since the two fragments are
identical; this subroutine is a constant, i.e. has no parame-
ters. Finally, matching f 15 against the whole p′j succeeds and
yields a unary subroutine f(x) from Fig. 2E, i.e. a subroutine
with a single parameter, x, which replaces the mismatched
shapes. This subroutine is unary because all mismatches be-
tween the two fragments are of the same form: line on the
left vs circle on the right. More generally, matching two
incongruent faces (where the shape of the mouth differs from
the shape of the eyes), may yield a binary subroutine f(x,y)

with two parameters: one for the shape of the eyes and the
other one for the shape of the mouth. In total, a dataset with
just {p′i, p′j} yields 15 candidate subroutines, because each
fragment of p′i has a unique matching fragment in p′j. For a
larger dataset, the number of candidates can grow if we include
faces with hats and/or incongruent faces.

Score In each iteration of the loop in Fig. 2F, we add a single
most promising candidate subroutine f to the current library L .
To pick such f , we score each candidate using the following
loss function:

loss(f)=w×size(L∪{ f})+ ∑
N
k=1MDL(p′k | L ∪{ f})

N
(1)

This loss function consists of two terms: the first is the size
of the new library, with f added, and the second one is the
average minimum description length (MDL) of a probabilis-
tic program conditioned on the new library. The size of a
library is the total number of tokens in all its subroutines; the
contribution of the library size term is controlled by a weight
parameter, w, reflecting the cost of learning. The MDL of a
program conditioned on a library is defined as:

MDL(p | L) = min{size(p′) | p′ L−→
∗

p} (2)

Here p′ L−→
∗

p means that the program p′ can be rewritten into
p by substituting calls to subroutines from L with their defi-
nitions. Intuitively, the MDL is the size of the most compact
version of p written in terms of the library L . For example,
the minimal description length for p′i in Fig. 2D using the
base library is 37, and when we augment the base library with
f(x), this terms becomes 2: one for the function itself and
one for function application, shown in Fig. 2E.

The candidate f with the minimal loss hence provides max-
imal compression of input programs while minimizing ex-
pansion of the library. In our running example, among the
15 candidates proposed for the dataset {pi, p j}, the highest-
scoring candidate is the unary subroutine f(x) from Fig. 2E,
which represents the whole face. For example, with w = 0.5,
adding this subroutine to the empty library changes the loss
from 0+37 = 37 to 0.5×38+2 = 21 In contrast, adding e.g.
the constant subroutine f 4 defined above would result in the
loss of 0.5×9+29 = 33.5.

const unarybinary const unarybinary const unarybinary

Figure 3: Heat map representing the relative frequency with
which different kinds of subroutines (i.e., constant, unary,
and binary) were learned, for different values for the cost of
learning (x axis) and different degrees of covariance between
features (y axis). The patterns are similar across different ws,
and more pronounced for higher values of w.

Rewrite After the candidate subroutine with the highest
score has been selected and added to the library, all current
programs are re-written to make use of the new subroutine.
For example, as shown in Fig. 2(E), the programs p′i and p′j
are rewritten in terms of the newly added subroutine f(x).
The resulting programs p′′i and p′′j are used as the input to the
next iteration of library learning. The process stops when none
of the proposed candidate subroutines improve the loss any
further. In our example, p′′i and p′′j each contain only a single
fragment, and the result of matching these fragments is a unary
candidate subroutine g(x) = f(x). Rewriting p′′i and p′′j in
terms of g(x) does not change their size (it simply replaces f

with g); hence this candidate is rejected, since it increases the
size of the library without compressing the corpus.

Computational Experiments
The goal of our experiments was to explore how different
constraints on learning, supplied either by external variables
(i.e., the data distribution) or internal components of the model
(i.e., the cost of learning w in Eq. 1), jointly influenced the
subroutines our algorithm learned.

Experiment setup
Building on classic work investigating perceptual learning in
cognitive science (Goldstone, 2003; Austerweil & Griffiths,
2013), we designed our data distributions to vary along two
dimensions:

• Number of shapes: We varied the number of different
shapes that the eyes and mouth could take, which could

1094

be any number between two (circle and line) and eight
(circle, line, heart, etc.).

• Covariance between features: We varied how strongly
particular facial features co-occurred. Specifically, the prob-
ability Pcong that the shape of eyes and mouth are congruent
varied between 0.0 (where the eyes and mouth were always
represented by different shapes) and 1.0 (where the eyes
and mouth matched).

We generated 100 samples from each data distribution, each
sample containing 100 smiley faces. We then ran our algo-
rithm for each sample and analyzed the library of learned
subroutines. To measure how the data distribution affects
the level of abstraction of the learned concepts, we analyzed
whether each library contained a “face subroutine” (i.e. a
subroutine with a head, two eyes, and a mouth) with different
number of parameters:

• Constant face (e.g. p′i in Fig. 2): these subroutines contain
constant shape primitives, reflecting cases where the model
fails to learn more abstract structure but instead memorized
subsets of the original input programs. These subroutines
tend to only be applicable to a small number of faces, and
thus not reusable across examples.

• Unary face (e.g. f(x) in Fig. 2): these subroutines have a
single parameter, and hence are able to abstract over a single
shape inside the face (e.g. eyes and mouth in a congruent
face). This kind of subroutine is more expressive than the
constant subroutine because it can be applied to new shapes
that the model has never seen before so long as they exhibit
the same structure.

• Binary face: this subroutine has two parameters, one for
the the eyes and one for the mouth. Is is the most flexible
abstraction, since it captures all variations of facial features
in our dataset.

Manipulating the cost of learning
First we explored the consequences of varying w, the cost
of learning, over a range, 0 ≤ w ≤ 0.07 (Fig. 3). This cost-
of-learning parameter can be interpreted as a simple proxy
for various constraints on human learning and memory that
can vary widely across task contexts, such as cognitive load
(Sweller, 1988). We found that at a low level of w (w=0.01),
the model is free to learn all three types of subroutines, be-
cause it has very little pressure against memorization. As w
increases, learning constant subroutines is disfavored (from
left to right in Fig. 3, the frequency of constant subroutines
decreases), forcing the agent to discover regularities in the
data distribution and learn abstractions that are reusable across
a larger proportion of the dataset. And at a high level of w
(w=0.07), the binary subroutine dominates, because it is the
most expressive one and thus gives the best compression of
the visual environment.

0.5

0.3

0.7

0.4

0.6

0.2

0.1

pr
op

or
ti

on

2 3 4 5 876
number of shapes

Figure 4: Proportion of samples in which a given type of
subroutine was learned as a function of number of shapes that
the eyes and mouth could take. Error bands reflect 95% CIs.

Manipulating the covariance between features
Insofar as our model can exploit statistical regularities in the
co-occurrence of parts across different smiley faces, we hy-
pothesized that it would be better able to learn meaningful
correlations between different parts (i.e., that line-eyes and
line-mouths tend to appear within the same face) when the
data distribution supported these inferences. Over a wide
range of w, we found that when most faces are incongruent
(Pcong = 0.1), the model hardly ever learns unary subroutines.
As faces become more likely to be congruent, the probability
that the model learns unary subroutines gradually increases,
while the prevalence of binary subroutines remains stable. In
the perfectly congruent distribution, the model only learns the
unary subroutine (Fig. 3).

Manipulating the number of shapes
In the experiments conducted so far there were always eight
different shape primitives that the eyes and mouth could take.
To explore how varying the number of unique shapes con-
strained the kinds of subroutines the model learned, we var-
ied the number of primitives between 2 and 8, but otherwise
replicated the same settings as in the above experiments. We
computed the proportion of each type of learned subroutine
by summing over values of Pcong and w (Fig. 4). We found
that when there are only two shapes, the model tends to mem-
orize each face rather than learn abstractions. However, as
the number of shapes increases, the model is able to acquire
a more compact representation of the visual environment by
learning more abstract subroutines, as it becomes increasingly
expensive to memorize specific combinations of features.

Manipulating the prevalence of features
So far we have we assumed that all faces always have the same
four features (head, left eye, right eye, and mouth) and fo-
cused on different types of face subroutine the model learned

1095

0

0.05

0.10

0.15

0.20

0

0.05

0.10

0.15

0.20

0

0.05

0.10

0.15

0.20

0

0.05

0.10

0.15

0.20

co
st

 o
f l

ea
rn

in
g

p(hat)=0.1 p(hat)=0.3 p(hat)=0.5 p(hat)=0.7

0.8

0.6

0.4

0.2

0.0

1.0

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

probability of eye-mouth congruence

Figure 5: Each heat map corresponds to a different data dis-
tribution with a Phat. Each row indicates a different value
of w, each column indicates a different value of Pcong. Each
cell represents the proportion of samples in which the hat

subroutine was learned as a separate concept.

under different settings. A key challenge for learning good
perceptual representations is to determine when to learn a uni-
fied, albeit more complex concept (e.g., a binary face subrou-
tine) and when to instead learn separate, but simpler concepts
(Goldstone, 2003). To explore this trade-off, we conducted
a new set of experiments in which we manipulated the prob-
ability that a face would be wearing a “hat” (Phat), the cost
of learning (w), and covariance between features (Pcong), and
measured how often hat was learned as a separate concept
from the face (Fig. 5). We found that all three of these vari-
ables interact to determine how likely it is for the model to
learn a separate hat subroutine: specifically, it is more likely
to do so at higher values of Pcong when it is clearer that the
shape features within the face and the hat are statistically in-
dependent. Moreover, for higher values of Phat, the threshold
for w at which the model learns a separate hat subroutine is
also higher. This result reflects the fact that for higher val-
ues of Phat the model observes the “hat” together with faces
more often, making it more beneficial (i.e., for reducing MDL)
to learn a “unitized” face_hat subroutine, rather than two
separate face and hat subroutines.

Discussion
In this paper, we presented a proof-of-concept method for
learning abstract structural units within objects, represented
as subroutines in a graphics library, and investigated how the
resulting library of learned subroutines is jointly determined
by the data distribution and the cost of learning. Our approach
takes inspiration from “vision-as-inverse-graphics”, whereby
structured visual representations are learned by synthesizing
graphics programs whose internal structure captures statistical

regularities in the input.
A key step in learning part-based abstractions in graphics

programs is proposing novel subroutines that may represent
these parts. The method we developed uses anti-unification
(Hwang, Stuhlmüller, & Goodman, 2011; Rule, 2020), an
algorithm widely used in computer science to discover com-
monalities between symbolic expressions, and which is also
closely related to structure mapping, an influential algorithm
that has been used to model analogical reasoning in cognitive
science (Falkenhainer, Forbus, & Gentner, 1989). A promising
avenue for future research would be to apply related program-
synthesis techniques to model how humans detect and propose
analogies.

A critical open question concerns the scalability of the al-
gorithm, as the drawings used in the current experiments are
highly simplified: the input data are represented not as images
but as programs, in which key structural primitives have al-
ready been segmented (e.g., the shapes). A way to address
this issue is to apply modern visual encoding algorithms to ex-
tract symbolic expressions from raw pixel input (Ellis, Ritchie,
Solar-Lezama, & Tenenbaum, 2017), building on recent ad-
vances using neural networks to learn more structured, graph-
based latent representations (Mrowca et al., 2018; Battaglia et
al., 2018; Bear et al., 2020) that explicitly represent object-like
primitives and relations. A promising direction for future work
is to combine such modeling techniques with techniques from
program synthesis to model human visual concept learning
under realistic levels of image complexity and variation.

In the current set of experiments, each facial part was al-
ready categorized as being either continuous (e.g., location) or
categorical (i.e., shape) variables, which determined whether
clustering or anti-unification was applied to them to learn more
abstract representations. However, in more realistic settings
learners are generally not told which features are which, and
thus future work should develop models that can infer what
type of learning approach is appropriate.

It may also be valuable to explore applications of this learn-
ing algorithm to make predictions about which abstractions
people infer when learning to parse and generate novel sym-
bols, and what kind of experience is necessary to support such
inferences (Tian et al., 2020; Lake et al., 2015). Although
we focus in this paper on modeling such analogical structure
in graphics programs, there is potential for applying related
to techniques to model learning of compositional structure
in other types of input, such as speech (Saffran, Aslin, &
Newport, 1996). In the long run, these modeling approaches
have strong potential for leading both more robust artificial
intelligence and a deeper understanding of human cognition.

Acknowledgments

We would like to thank Shraddha Barke, Rose Kunkel, Yuyao
Wang, Ed Vul, and members of the Cognitive Tools Lab at
UC San Diego for very helpful discussion. This work was
supported by NSF CAREER Award #2047191 to J.E.F.

1096

References

Austerweil, J. L., & Griffiths, T. L. (2013). A nonparametric
bayesian framework for constructing flexible feature repre-
sentations. Psychological review, 120(4), 817.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez,
A., Zambaldi, V., Malinowski, M., . . . others (2018). Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261.

Bear, D. M., Fan, C., Mrowca, D., Li, Y., Alter, S., Nayebi, A.,
. . . others (2020). Learning physical graph representations
from visual scenes. arXiv preprint arXiv:2006.12373.

Blei, D. M., Griffiths, T. L., Jordan, M. I., Tenenbaum, J. B., et
al. (2003). Hierarchical topic models and the nested chinese
restaurant process. In Nips (Vol. 16).

Ellis, K., Morales, L., Sablé-Meyer, M., Solar-Lezama, A., &
Tenenbaum, J. (2018). Library learning for neurally-guided
bayesian program induction. In Neurips.

Ellis, K., Ritchie, D., Solar-Lezama, A., & Tenenbaum, J. B.
(2017). Learning to infer graphics programs from hand-
drawn images. arXiv preprint arXiv:1707.09627.

Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The
structure-mapping engine: Algorithm and examples. Artifi-
cial intelligence, 41(1), 1–63.

Goldstone, R. L. (2003). Learning to perceive while perceiving
to learn. In Perceptual organization in vision (pp. 245–290).
Psychology Press.

Hwang, I., Stuhlmüller, A., & Goodman, N. D. (2011). Induc-
ing probabilistic programs by bayesian program merging.
arXiv preprint arXiv:1110.5667.

Kulkarni, T. D., Kohli, P., Tenenbaum, J. B., & Mansinghka, V.
(2015). Picture: A probabilistic programming language for
scene perception. In Proceedings of the ieee conference on
computer vision and pattern recognition (pp. 4390–4399).

Lake, B. M., & Piantadosi, S. T. (2020). People infer recursive
visual concepts from just a few examples. Computational
Brain & Behavior, 3(1), 54–65.

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015).
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266), 1332–1338.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman,
S. J. (2017). Building machines that learn and think like
people. Behavioral and Brain Sciences, 40.

Lee, D. D., & Seung, H. S. (1999). Learning the parts
of objects by non-negative matrix factorization. Nature,
401(6755), 788–791.

McCloud, S. (1994). Understanding comics. HarperPerennial.
Retrieved from https://books.google.com/books?id=
oJ1vPwAACAAJ

Mrowca, D., Zhuang, C., Wang, E., Haber, N., Fei-Fei, L.,
Tenenbaum, J. B., & Yamins, D. L. (2018). Flexible neu-
ral representation for physics prediction. arXiv preprint
arXiv:1806.08047.

Overlan, M. C., Jacobs, R. A., & Piantadosi, S. T. (2017).
Learning abstract visual concepts via probabilistic program

induction in a language of thought. Cognition, 168, 320–
334.

Palmer, S. E. (1977). Hierarchical structure in perceptual
representation. Cognitive psychology, 9(4), 441–474.

Plotkin, G. (1970). Lattice theoretic properties of subsumption.
Edinburgh University, Department of Machine Intelligence
and Perception. Retrieved from https://books.google
.com/books?id=2p09cgAACAAJ

Rule, J. S. (2020). The child as hacker: building more human-
like models of learning. Unpublished doctoral dissertation,
Massachusetts Institute of Technology.

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical
learning by 8-month-old infants. Science, 274(5294), 1926–
1928.

Salakhutdinov, R., Tenenbaum, J., & Torralba, A. (2012). One-
shot learning with a hierarchical nonparametric bayesian
model. In Proceedings of icml workshop on unsupervised
and transfer learning (pp. 195–206).

Stuhlmuller, A., Tenenbaum, J. B., & Goodman, N. D. (2010).
Learning structured generative concepts..

Sweller, J. (1988). Cognitive load during problem solving:
Effects on learning. Cognitive science, 12(2), 257–285.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman,
N. D. (2011). How to grow a mind: Statistics, structure,
and abstraction. science, 331(6022), 1279–1285.

Tian, L., Ellis, K., Kryven, M., & Tenenbaum, J. (2020).
Learning abstract structure for drawing by efficient motor
program induction. Advances in Neural Information Pro-
cessing Systems, 33.

Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A.,
Seibert, D., & DiCarlo, J. J. (2014). Performance-optimized
hierarchical models predict neural responses in higher visual
cortex. Proceedings of the National Academy of Sciences,
111(23), 8619–8624.

Yildirim, I., & Jacobs, R. A. (2015). Learning multisen-
sory representations for auditory-visual transfer of sequence
category knowledge: a probabilistic language of thought
approach. Psychonomic bulletin & review, 22(3), 673–686.

Yildirim, I., Kulkarni, T. D., Freiwald, W. A., & Tenenbaum,
J. B. (2015). Efficient analysis-by-synthesis in vision: A
computational framework, behavioral tests, and compari-
son with neural representations. In Thirty-seventh annual
conference of the cognitive science society (Vol. 4).

1097

https://books.google.com/books?id=oJ1vPwAACAAJ
https://books.google.com/books?id=oJ1vPwAACAAJ
https://books.google.com/books?id=2p09cgAACAAJ
https://books.google.com/books?id=2p09cgAACAAJ

	Introduction
	Graphics Programs to Represent Visual Concepts
	Program Synthesis

	Computational Model
	Smiley Face Dataset
	Abstracting Over Continuous Variation via Spatial Clustering
	Abstracting Over Discrete Variation via Subroutine Learning

	Computational Experiments
	Experiment setup
	Manipulating the cost of learning
	Manipulating the covariance between features
	Manipulating the number of shapes
	Manipulating the prevalence of features

	Discussion
	Acknowledgments
	References

